
• •"_. .IVi76_-di___!_, o_i'-I
NASA-CR- 172244
19850026204

NASA Contractor Report 1/224/4

•//_s sW/J
i" SYSTEM MAINTENANCE ..

MANUAL FOR MASTER:
MODELING OF AERODYNAMIC SURFACES
BY THREE DIMENSIONAL
EXPLICIT REPRESENTATION

$. G. Gibson

BOEINGCOMMERCIALAIRPLANE COMPANY
P.O. BOX3707, SEATTLE,WASHINGTON98124

r'n,n7
CONTRACT NAS1-15325 Lt ! i[t't.l_t" U wAPRIL 1983

.... . • j ,,,

i...',.,:.:, iQ.8-i

LrNSLEY RESEARCH CENTER
_" NASALI,'-,,,_RY,

• , " VIRGINIA!t. ,'...?TO,,,

NASA .
i National Aeronautics and

Space Administration

LangleyResearchCenter
Hampton, Virginia 23665

3 1176 00187 6359 _.__.._

NASA Contractor Report 172244

SYSTEM MAINTENANCE
MANUAL FOR MASTER:
MODELING OF AERODYNAMIC SURFACES
BY THREE DIMENSIONAL
EXPLICIT REPRESENTATION

S. G. Gibson

BOEINGCOMMERCIALAIRPLANE COMPANY
P.O. BOX 3707, SEATTLE,WASHINGTON98124

CONTRACTNAS1-15325
APRIL 1983

N/ A
National Aeronautics and
Space Administration

" Langley Research Center
Hampton, Virginia 23665

FOREWORD

This report specifies the implementation of MASTER, a system of computer programs used to model three-
dimensional geometry configurations. The work was conducted under Subtask 4.3.3 of NASA contract
NAS1-15325 from February 1981 through February 1983. The contract was managed by the NASA
Energy Efficient Transport Office (EETPO), headed by Mr. R.V. Hood, which is a part of the Aircraft
Energy Efficiency (ACEE) program organization at the Langley Research Center. Mr. D.B. Middleton was
the technical monitor for the contract. Mr. D.E. Reubush of the Propulsion Aerodynamics group at Langley
assisted in the installation of MASTER. The work was performed in the Engineering organization of the
Boeing Commercial Airplane Company and in the Energy and Technology Applications organization of the
Boeing Computer Services Company. Key contractor personnel responsible for the material in this report
were:

G.W. Hanks S.G. Gibson
ProgramManager BCAC PropulsionTechnology

B.W.Farquhar R.A.Mastro
ProjectManager ETA ComputationalMathematics

J.L.Colehour B.S.Terrill
BCAC PropulsionTechnology BCAC PropulsionTechnology

D.R.Ferguson D.A.Vanrossum
ETA ComputationalMatematics ETA InformationServices

CONTENTS

1.0 INTRODUCTION .. 1

2.0 ACRONYMS AND KEYWORDS .. 2

3.0 ENVIRONMENT .. 4

3.1 Computing Hardware ... 4
3.2 Operating System ... 4
3.3 Compiler .. 4
3.4 Utilities ... 4
3.5 Database Manager ... 4
3.6 Graphics Hardware .. 4

4.0 SYSTEM FILES ... 5
4.1 File Name Conventions ... 5
4.2 Source Files .. 5
4.3 Intermediate Binaries .. 5
4.4 Intermediate Text Files ... 5
4.5 Execution Files .. 5
4.6 Maintenance Files ... 6
4.7 Associated Program Files .. 6
4.8 Demonstration Files .. 6
4.9 Other Files ... 6

5.0 SYSTEM MAINTENANCE ... 7
5.1 System Installation .. 7
5.2 System Regeneration ... 7
5.3 System Updates ... 7

5.3.1 Update Identifiers ... 7
5.3.2 Update Log .. 7 :
5.3.3 Update Testing ... 7
5.3.4 Update-Job Templates ... 8

5.4 Error Logs .. 11

6.0 PROCEDURES ... 12
6.1 General Features ... 12

6.1.1 CCLProcedure Entry and Exit 12
6.1.2 CCL Registers ... 12
6.1.3 CCL Decisions ... 12
6.1.4 Data Files .. 14
6.1.5 Listing File ... 14
6.1.6 Temporary Files ... 15
6.1.7 Error Packages .. 15

6.2 Procedure DRAWIT ... 15
6.2.1 Data Files .. 15
6.2.2 Restrictions ... 16
6.2.3 Scratch Files .. 16

6.3 Procedure GENTRN ... 16
6.3.1 Data Files •.................... 16
6.3.2 Restrictions ... 16
6.3.3 Scratch Files .. 16r

°°°

Ill

! -

6.4 Procedure MSHNRM .. 16
6.4.1 Data Files .. 16
6.4.2 Restrictions ... 17
6.4.3 Scratch Files .. 17

6.5 Procedure NRMCFD .. i7
6.5.1 Data Files .. 17
6.5.2 Restrictions ... 17
6.5.3 Scratch Files .. 17

6.6 Procedure NRMREV .. 17
6.6.1 Data Files .. 17
6.6.2 Restrictions ... 18
6.6.3 Scratch Files .. 18

6.7 Procedure REGSIL .. 18
6.7.1 Data Files .. 18
6.7.2 Restrictions ... 18
6.7.3 Scratch Files .. 18

6.8 Procedure SILSRF .. 18
6.8.1 Data Files .. 18
6.8.2 Restrictions ... 19
6.8.3 Scratch Files .. 19

6.9 Procedure SRFINT .. 19
6.9.1 Data Files .. 19
6.9.2 Restrictions ... 19
6.9.3 Scratch Files 19

6.10 Procedure TRNSIL .. 20
6.10.1 Data Files .. 20
6.10.2 Restrictions ... 20
6.10.3 Scratch Files .. 20

7.0 MAIN PROGRAMS ... 21
7.1 DRAWIT ... 21

7.1.1 Files .. 21
7.1.2 Routines Called .. 21
7.1.3 Method .. 21
7.1.4 Main-Program Routine .. 21
7.1.5 Subroutine ADD ... 22
7.1.6 Subroutine DRWPAT ... 22
7.1.7 Subroutine DRWPC .. 22
7.1.8 Subroutine DRWPIC .. 23
7.1.9 Subroutine DRWVEC ... 23
7.1.10 Subroutine LBLPAT .. 24
7.1.11 Subroutine LBLPC ... 24
7.1.12 Subroutine LIM3D ... 25
7.1.13 Subroutine LOADTX .. 25
7.1.14 Subroutine MARKTX ... 25
7.1.15 Subroutine MENU .. 26
7.1.16 Subroutine OPTMEN ... 26
7.1.17 Subroutine PATIN ... 27
7.1.18 Subroutine READPT .. 27 .
7.1.19 Subroutine PATOPT .. 27
7.1.20 Subroutine PCGMAL ... 28

iv

7.1.21 Subroutine PCIN ... 28
7.1.22 Subroutine READPC .. 28
7.1.23 Subroutine PCOPT ... 29
7.1.24 Subroutine PC2NPT .. 29
7.1.25 Subroutine PSGMAL ... 29
7.1.26 Subroutine SBMENU ... 30
7.1.27 Subroutine SUB ... 30
7.1.28 Subroutine TEXBOT .. 30
7.1.29 Subroutine UVXYZ ... 31
7.1.30 Subroutine UXYZ.. 31
7.1.31 Subroutine VECIN ... 31
7.1.32 Subroutine READV 32
7.1.33 Subroutine VECOPT .. 32
7.1.34 Subroutine VIEW .. 32
7.1.35 Subroutine LABL3D .. 32
7.1.36 Subroutine MENUD .. 33
7.1.37 Subroutine LABAXS .. 33
7.1.38 Subroutine DATADT .. 34
7.1.39 Subroutine GCUR3D .. 34
7.1.40 Subroutine GVIEW ... 34
7.1.41 Subroutine INPUTA .. 35
7.1.42 Subroutine INPUTI ... 35
7.1.43 Subroutine IDEN ... 36
7.1.44 Subroutine XLAT3 ... 36
7.1.45 Subroutine ROTAD ... 36
7.1.46 Subroutine ORIENT .. 36

7.2 GENTRN ... 37
7.2.1 Files .. 37
7.2.2 Routines Called .. 37
7.2.3 Method .. 37

7.2.4 Main-Program Procedure .. 37
7.2.5 Main-Program Error Conditions 37

7.3 MSHNRM .. 38
7.3.1 Files .. 38
7.3.2 Routines Called .. 38
7.3.3 Method .. 38

7.3.4 Main-Program Procedure .. 38
7.3.5 Main-Program Error Conditions 39

7.4 NRMCFD ... 39
7.4.1 Files .. 39
7.4.2 Routines Called .. 39
7.4.3 Method .. 40

7.4.4 Main-Program Procedure .. 40
7.4.5 Main-Program Error Conditions 40

7.5 NRMREV ... 40
7.5.1 Files .. 40
7.5.2 Routines Called .. 40
7.5.3 Method .. 40
7.5.4 Main-Program Procedure : 40
7.5.5 Main-Program Error Conditions 40

7.6 REGSIL .. 41
7.6.1 Files .. 41
7.6.2 Routines Called .. 41
7.6.3 Method .. 41
7.6.4 Main-Program Procedure .. 41
7.6.5 Main-Program Error Conditions 41

7.7 SILSRF .. 41
7.7.1 Files .. 41
7.7.2 Routines Called .. 42 .
7.7.3 Method .. 42
7.7.4 SDMS Data Management .. 42
7.7.5 Main-Program Procedure .. 42
7.7.6 Main-Program Error Conditions 43

7.8 SRFINT .. 43
7.8.1 Files .. 43
7.8.2 Routines Called .. 43
7.8.3 Method •.. 43
7.8.4 SDMS Data Management .. 43
7.8.5 Main-Program Procedure .. 43
7.8.6 Main-Program Error Conditions 44

7.9 TRNSIL .. 44
7.9.1 Files .. 44
7.9.2 Routines Called .. 44
7.9.3 Method ... : 44
7.9.4 Main-Program Routine .. 44
7.9.5 Subroutine GETRAN ... 44
7.9.6 Subroutine RDTRN ... 45
7.9.7 Subroutine FNDTRN ... 45
7.9.8 Subroutine CHKROT ... 45
7.9.9 Subroutine SECGRP .. 46
7.9.10 Subroutine MEMGRP ... 46
7.9.11 Subroutine PATGRP .. 46
7.9.12 Subroutine SEC .. 47
7.9.13 Subroutine MEM : ... 47
7.9.14 Subroutine READEC .. 48
7.9.15 Subroutine WRITEC .. 48
7.9.16 Subroutine READSP .. 48
7.9.17 Subroutine READMP ... 49
7.9.18 Subroutine WRITSP .. 49
7.9.19 Subroutine WR1TMP ... 50
7.9.20 Subroutine SEQKNT .. 50
7.9.21 Subroutine SAVKNT ... 51
7.9.22 Subroutine CHECK ... 51
7.9.23 Subroutine TRAN .. 51
7.9.24 Subroutine LINEAR .. 52
7.9.25 Subroutine RTOP .. 52
7.9.26 Subroutine PTOR .. 52
7.9.27 Subroutine ROTATE .. 53

vi

8.0 SYSTEM LIBRARY ... 54
8.1 Subroutine ARRSRT .. 54
8.2 Subroutine BICCOF ... 54
8.3 Subroutine BRCOEF .. 54
8.4 Subroutine BRINT .. 55
8.5 Subroutine CBSPN .. 55
8.6 Subroutine CHECK ... 56
8.7 Subroutine CHKNRM ... 56
8.8 Subroutine CLOSCV .. 57
8.9 Subroutine CONCUV .. 57
8.10 Subroutine CONHUL 58
8.11 Subroutine CONINT .. 58
8.12 Subroutine CON2HL .. 59
8.13 Subroutine CRSPRD .. 59
8.14 Subroutine CR1PRM .. 59
8.15 Subroutine CUBCOF .. 60
8.16 Subroutine CUBIC .. 60
8.17 Subroutine CURDIF ... 61
8.18 Subroutine CURPAR .. 62
8.19 Subroutine CURSLP .. 62
8.20 Subroutine CYCBEN .. 63
8.21 Subroutine DEGNER .. 63
8.22 Subroutine DEGTST .. 64
8.23 Subroutine DETLOC .. 65
8.24 REAL Function DISVAL ... 66
8.25 REAL Function DOTPRD .. 66
8.26 Subroutine ENRICH .. 67
8.27 Subroutine ERRCHK .. 67
8.28 Subroutine FINCUV .. 68
8.29 Subroutine FSORT .. 68
8.30 Subroutine GETMSH .. 69
8.31 Subroutine GETPAT .. 69
8.32 Subroutine HGERR ... 70
8.33 REAL Function HSMCON .. 70
8.34 Subroutine HSZERO .. 71
8.35 Subroutine INTERP ... 72
8.36 INTEGER Function JHMCON ... 72
8.37 Subroutine KN1CHK .. 73

8.38 Compass INTEGER Function KOMSTR 74
8.39 Compass INTEGER Function LSTRNG 74
8.40 Subroutine MEMPAT .. 75
8.41 Subroutine MODEL ... 75
8.42 Subroutine MSHOPT .. 75
8.43 Compass INTEGER Function NSCAN 77
8.44 Subroutine NW021 ... 78
8.45 Subroutine NW093 ... 80
8.46 Subroutine OPENCV .. 80
8.47 Subroutine ORDER ... 80
8.48 Subroutine PARTAL • 81
8.49 Subroutine PARTA1 .. 81
8.50 Subroutine PATNRM .. 82
8.51 Subroutine PATVAL .. 82

vii

8.52 Subroutine PCGMAL .. 83
8.53 Subroutine PERSTO .. 83
8.54 Subroutine PLINT .. 84
8.55 Subroutine PLNCUR 85
8.56 Subroutine PLNSRF .. 86
8.57 Subroutine PPTCUR .. 87
8.58 Subroutine PROCUV .. 88
8.59 Subroutine PSGMAL .. 90
8.60 Subroutine QUAD .. 91
8.61 Subroutine RADCUR .. 91
8.62 Subroutine RADCUT .. 91
8.63 Subroutine RADINT .. 92
8.64 Subroutine RADSRF .. 92
8.65 Subroutine REACUV .. 93
8.66 Subroutine READ .. 93
8.67 Subroutine RESID .. 94
8.68 Subroutine ROOTS... 94
8.69 Subroutine SAXPY ... 95
8.70 Subroutine SCOPY .. 95
8.71 REAL Function SDOT ... 96
8.72 Subroutine SETTOL ... 96
8.73 Subroutine SILCPY ... 97
8.74 Subroutine SILOPT ... 97
8.75 REAL Function SNRM2 .. 98
8.76 Subroutine SORTRN .. 98
8.77 Subroutine SQRDC ... 99
8.78 Subroutine SQRSL ... 100
8.79 Subroutine SSCAL ... 100
8.80 Subroutine SSWAP .. 101
8.81 Subroutine STRCUV ... 101
8.82 Compass Subroutine STRMOV ... 102
8.83 Subroutine SUFDEG ... 102
8.84 Subroutine SUFFER ... 103
8.85 Subroutine SUFINT .. 104
8.86 Subroutine SUFROT ... 105
8.87 Subroutine TANSCL ... 107
8.88 Subroutine TRACE .. 107
8.89 LOGICAL Function TRMCHK .. 108
8.90 Subroutine TXTCPY ... 109
8.91 Subroutine UNIQRN ... 109
8.92 REAL Function UPOLC ... 110
8.93 Subroutine VARKNT ... 110
8.94 Subroutine VERRN .. 111
8.95 REAL Function VIP .. 112
8.96 REAL Function VIPA .. 112
8.97 DOUBLE PRECISION Function VIPDS 112
8.98 Subroutine WRIPAT ... 113
8.99 Subroutine WRTCRV ... 113
8.100 Subroutine XTRACT ... 114

9.0 REFERENCES .. 115

°°o
viii

1.0 INTRODUCTION

This document is the system maintenance manual for "Modeling of Aerodynamic Surfaces by Three-
dimensional Explicit Representation" (MASTER), a system of programs with which engineers can loft the
surface geometry of configurations and extract geometric information from the surface model. It explains
the details of MASTER's implementation, and is written for maintenance programmers. The user's manual
describes the function of the system and explains how to operate it. (See Reference 1.) The user's manual
also defines data formats and gives a set of examples. (This manual refers to the user's manual, rather than
duplicating its contents.)

2.0 ACRONYMSAND KEYWORDS

1. BEGIN
Control statement calling a MASTER procedure (or any other CCL procedure)

2. CCL

Cyber Control Language
3. CDC

Control Data Corporation
4. CFD

Computational Fluid Dynamics (also the data format for combined mesh and intersection-normal
output)

5. CUR
Curve data format (also file name for procedure MSHNRM intersection curves).

6. DDP
The program that creates SDMS data-definition files from an input text file.

7. DRAW1T
Procedure for graphic display of surface models and intersection normals

8. GENTRN
Procedure to generate coordinate-transformation data

9. INPUT
Default file name for job-input data

10. LSTOPT
Keyword to change the level of listing from procedure MSHNRM (within mesh data)

II. MASTER

Modeling of Aerodynamic Surfaces by Three-dimensional Explicit Representation
12. MSH

Mesh data format (also file name for procedure MSHNRM or procedure NRMCFD input)
13. MSHNRM

Procedure to compute mesh/surface intersection normals
14. NEWCFD

File name for CFD-format output (from procedure NRMCFD)
15. NEWNRM

File name for intersection- normal output (from procedure NRMREV)
16. NEWSIL

File name for surface-description output (from procedure TRNSIL or from procedure REGSIL)
17. NOS

Network Operating System (for CDC computers)
18. NRM

Intersection-normal data format (also file name for procedure MSHNRM output or procedure
NRMCFD input)

19. NRMCFD
Procedure to format intersection normals for CFD input

20. NRMREV
Procedure for intersection-normal reversal

21. OLDCFD
File name for CFD-format input (for procedure NRMCFD)

22. OLDNRM
File name for intersection-normal input (for procedure NRMREV)

23. OLDSIL
File name for surface-description input (for procedure TRNSIL or for procedure REGSIL)

2

24. OPTION

File name for program-control selection input for one of the additional procedures of MASTER
25. OUT

Listing file from MASTER procedures in an interactive job
26. OUTPUT -

Default file name for job output data, which contains listing from MASTER procedures in a batch job
27. PC

Parametric Cubic
28. PLINT

The MASTER subroutine that computes plane/patch intersecti°n curves
29. PLOT-10

The subroutine library supporting Tektronix storage-tube graphics terminals
30. REGSIL

Procedure to regulate point spacing along input surface-deseription curves
31. SDMS

Scientific Data Management System. The database manager used within MASTER
32. SEC

Section-curve data format (also file name for procedure SRFINT output)
33. SELECT

A program associated with MASTER that replaces REGSIL
34. SIL

Surface Input Language, the surface-description data format (also file name for procedure SILSRF out-
put)

35. SILSRF
Procedure to model surfaces

36. SRF

Surface-model data format (also file name for procedure SILSRF output or procedure MSHNRM input)
37. SRFINT

Procedure for surface/surface intersection
38. TRN

Coordinate-transformation data format (also file name for procedure TRNSIL input)
39. TRNSIL

Procedure for coordinate transformation within surface-description data
4O. UPDATE

The CDC utility program used to maintain MASTER source code

3.0 ENVIRONMENT

This section specifies the computingenvironmentin whichMASTERis currentlyimplemented.(Theen-
vironmentof the implementationon the NASALangleyResearchCenter(LaRC)ACDcomputingsystem is
documented.)

3.1 COMPUTINGHARDWARE

MASTERis executed on Cyberseries computers,manufacturedby the ControlData Corporation.

3.2 OPERATINGSYSTEM

MASTERis executedby Version 1.2 of the NOS operatingsystemfor CDCcomputers.(See Reference2.)
The LaRCversion is at level 528.

3.3 COMPILER

MASTERis programmedin FORTRAN.Version 4.8 of the FTN4compileris used.(SeeReference3.)This
is the CDCversion of FORTRAN66.

3.4 UTILITIES

A pair of other utility programs arerequired forthe maintenanceof MASTER.Version I of the CDCUP-
DATEutility is used to control source-coderevisions. (See Reference4. Version 1.4 is used at LARC.)An
interactive text editor is used to prepare system-updatejob decksfromthe templates describedin Section
4.3.3. Any editor which supports globalstring substitutions and accepts the EORrecordmarks of CDC
computersis sufficient.

3.5 DATABASEMANAGER

The user'sdata is handledby MASTERas localfiles, but someprogramsuse the SDMSdatabasemanager
to handlestructuredtemporarydata. (See Reference5.)

3.6 GRAPHICSHARDWARE

DRAWlT, the graphic-display program within MASTER, is designed to be executed from Textronix
4010-series interactive graphics terminals.These are strokegraphics terminals which use a storage tube,
rather thana refresheddisplay.The DRAWITgraphicdisplayfunctionsuse thestandard grahicssoftware
suppliedby Tektronixwith these terminals, the PLOT-10package.(See Reference6.)

4

4.0 SYSTEMFILES

This section lists the system files found on the MASTER system account. It also shows the relation-
ships between these files.

4.1 FILE NAME CONVENTIONS

Some general conventions are used to group related files together, and some parts of file names are
identified as abstract variables, which are referred to by their symbolic names.

More than one version of MASTER can exist on the same system account. Each version has a separate
copy of all the program information. This permits a programmer to test modifications to an ex-
perimental version without affecting the version that is accessed by general users. Files from each ver-
sion have the same initial letter, which identifies the version. (Thesymbol "+" is used in this document
to stand for this letter.)

The files for each version are mostly gathered into 5 parts, each of which has a 4-1etter name:

1. Procedure files are found in the part named "PROC".
2. Sample data and miscellaneous files are found in the part named "DATA".
3. Main programs are found in the part named "MAIN".
4. Most of the subroutines are found in the part named "SUBS".
5. Selected subroutines are found in the part named '%IBS". (The selected subroutines are the ones

which originate from NASA-funded work.)

An arbitrary part name is symbolized "XXXX" in this manual.

4.2 SOURCE FILES

Source data for each part is stored on an UPDATE program-library file, with the name "+ PLXXXX". Each
of these program libraries was initially formed from a source file with the name "+UPXXXX".

4.3 INTERMEDIATE BINARIES

The relocatable object code produced by compiling the FORTRAN source code is stored on 3 files:
+BRMAIN, +BRSUBS, and +BRLIBS. File +MASBIN contains the combined contents of +BRSUBS
and + BRLIBS, with the subroutines sorted alphabetically if possible.

File DDP is found on the MASTER system account. This file contains the program to convert SDMS data-
definition text to binary form. (See Reference 5.)

4.4 INTERMEDIATE TEXT FILES

Files + PROC and + DATA contain listings of the corresponding source data, with UPDATE line numbers.

Files SILDBD and IBRDBD contain data-definition text for use with SDMS.

4.5 EXECUTION FILES

MASTER users access the system through a procedure file, whose name usually starts with the version
letter "+", this file has the symbolic name 'VERSION".

Each main program is executed from a file of relocatable object code. The symbolic name for an arbitrary
main program is "PROGRAM",and the corresponding file is named "+PROGRAM". Most programs are
stored without the associated subroutines, which are found in a library. This is called a user library in the
operating-system manual, but this manual calls it the MASTER system library. The library is found on file
+ MASLIB.

°

ThelibrarySDI_LIB isfoundontheMASTER systemaccount;theSDMS databasemanagerissupported
by thislibrary.The bins-,Tdatadefn_fionsusedby SILSRF andSRFINT arefoundrespectivelyon the
d_rect-accessfilesZZZSILand ZZZIBR;theyarerespectivelyformedwithDDP fromtheSILDBD and
IBRDBD definitiontextfiles.

File MESSAGE contains an interactive message-display program that is used by MASTER; its source code
is on file FMESSAGE.

4.6 MAINTENANCE FILES

File +ERRLOG is an error log that contains listing information and data from aborted executions of
MASTER procedures. (The first EOF-partition is a copy of file NEWPAGE that heads the list.) Any follow-
ing EOF-partitions are error packages. The first record in an error package is listing information. The next
record is a copy of the procedure record that was executed. Any following records contain data.

File J+INIT is the job deck to create a system version from the initial source data. File J+REGEN is a job
deck which reads the source libraries and creates the other files for this version from the current source
version.

System updates are made from job decks, which are stored as permanent files. These decks have file names
like "+JAN01A" with the month, day, and final letter copied from the update identifier. Files JUPPROC,
JUPDATA, JUPMAIN, JUPSUBS, and JUPLIBS are templates that can be edited into the job decks for
system updates. File UPDATES is a log of system updates for all the versions at the installation.

4.7 ASSOCIATED PROGRAM FILES

There are some programs which are associated with MASTER but have not yet been included. Programs
FIXNRM, MSH465, and SELECT are in this category. (They are mentioned in the demonstration of P465
input preparation, see Reference 7 for more details. They are not documented in this manual.) The general
convention for these files is that the binary file has the same name as the program and that the source-code
file has the letter "F" as a prefix.

4.8 DEMONSTRATION FILES

Some files on the system account demonstrate MASTER usage, to help users learn to operate the system.
Job deck J + DEMO will demonstrate the examples from the user's manual. (See Section 6 of the MASTER
user's manual.):Job decks JDMPREP, JDMSRF, JDMNRM, JDM465, and JDM465E form an
application-oriented demonstration. The input files are these demonstration jobs are accessed
from the system account, and copies of their correct outputs are there for comparison.

4.9 OTHER FILES

File NEWPAGE is simply a page header, which is used to start a new page when assembling error
packages. File STDTRN contains a set of standard coordinate transformations, Whichare compatible with
procedure TRNSIL.

6
/

5.0 SYSTEMMAINTENANCE

This section describes the major activities involved in maintaining MASTER according to current
practices.

5.1 SYSTEM INSTALLATION

A new version of MASTER can be created by job J+INIT. This job reads an initial version of the source
data for all 5 parts from files +UPPROC, +UPDATA, +UPMAIN, +UPSUBS, and +UPLIBS. It creates
all the other system files. This is better suited than J + REGEN for creating the first version of MASTER at
an installation, because a text form of the source data is used. (Text files are simpler to transmit between
computers than binary files, such as UPDATE libraries.) After installation of the initial version, the
existing system updates should be made to this version.

5.2 SYSTEM REGENERATION

Job J + REGEN also creates a new copy of the MASTER system files, but it starts with the UPDATE
library files "+UPXXXX". This is convenient for recovering when fries are lost or corrupted. It also is
useful to create a listing of the current form of the programs, after the version has been updated many
times.

5.3 SYSTEMUPDATES

After a version of MASTERis created, it is modified through system updates. This practiceshould be
followed without exception, becauseit supportsthe reliableremoval of the modifications.The desired
changes to the UPDATElibrariesare made, andthen they are addedto the intermediate and execution
files.

The principal changes to the source code that can be made are the insertion of new lines and the deletion of
existing ones. Deletions are made only by entering *DELETE directives to the UPDATE utility, while in-
sertions can be made with the *INSERT and *DELETE directives. (See Reference 4.)

5.3.1 UPDATE IDENTIFIERS

Each update job adds a correction set to the UPDATE library for the affected part of MASTER. This cor-
rection set is given a unique identifier, based upon the date that coding of the update was begun. The iden-
tifier contains 8 characters. The first 2 characters are the year, the next 3 letters are the month, and the
next 2 characters are the day of the month. The last character is a letter chosen to make the identifier uni-
que. The identifier "82 JAN01A" follows this form. The identifier is input to the UPDATE utility with a
*IDENT directive. (See Reference 4.)

5.3.2 UPDATE LOG

A log is kept of the system updates, on file UPDATES. This log lists each identifier in chronological order,
with the affected part and the date when each version was changed. It is manually maintained by editing
the file.

5.3.3 UPDATE TESTING

Updates can be in error either beacuse incorrect line numbers are specified or because incorrect lines are in-
serted. Should an error be discovered after the update was entered, it must be removed with the *PURGE
directive before a corrected update with the same identifier can be entered. (See Reference 4.)

7

Update jobs should be tested before modifying the system. The REPLACE commands in the job deck can
be deactivated by placing a star before the command. A job deck with all the REPLACE statements de-
activated can check the job deck and the line numbers without affecting the system files. (A job deck with
only the UPDATE-library replacement deactivated can modify an experimental MASTER version for
testing purposes.)

5.3.4 UPDATE-JOB TEMPLATES

The system-update job decks have a regular patterns, which are expressed as the template files, JUPSUBS
etc. Job decks can easily be edited from copies of the template corresponding to the part of the system
being changed, using the global replacement feature of a text editor. The symbol "+" becomes the initial
letter for the system version, the phrase 'WERSION" becomes the name of the version (and the associated
procedure file). The update identifier is formed from other symbols and phrases: _YEAR" becomes the
2-digit year, '2VIONTH"becomes the 3-letter month, 'Y)AY"becomes the 2-digit day of the month, and "%"
becomes the unique letter at the end of the identifier. The phrase "DESCRIBE CHANGES" becomes a short
description of the update. In MAIN updates, '_PROGRAM" becomes the main-program name. In SUBS or
LIBS updates, "ROUTINE" becomes the subroutine name.

The input UPDATE directives are appended to the edited file, completing the record of data input to
UPDATE.

5.3.4.1 Procedure Update

File JUPPROC contains the following text:

+MONTHDAY%,CMS0000,T05,P02. VERSION YEAR MONTH DAY UPDATE %
USER, < userno >, < password>. < name> 1< phone>/< mailstop >
CHARGE, < project> ,LRC.
* YEARMONTHDAY% UPDATE PROC

GET,OLDPL = + PLPROC.
UPDATE,N = + PLPROC.
CATALOG, + PLPROC,N,R.
* REPLACE,+PLPROC.
CATALOG,COMPILE,N,R.
COPYSBF,COMPILE.
REWIND,COMPILE.
GET,OLD = + PROC.
GATALOG,OLD,N,R.
GOPYL,OLD,COMPILE, + PROC,,RT.
CATALOG, + PROG,N,R.
* REPLACE,+PROC.

REWIND ,INPUT.
SKIPR,INPUT,1.
RETURN,COMPILE.
UPDATE,D,8. NO SEQUENCE NUMBERS FOR EXECUTION FILE
CATALOG,COMPILE,N,R.
COPYSBF,COMPILE.
REWIND,COMPILE.
GET,OLD=VERSION.
CATALOG,OLD,N,R.
COPYL,OLD ,COMPILE ,VERSION,,RT.
CATALOG,VERSION,N,R.
* REPLACE,VERSION.

--- END OF RECORD ---

8

*]DENT YEARMONTHDAY %
*! UPDATE PROC: (DESCRIBE CHANGES)

Job decks edited from this template do the following:

1. Modify the procedure source on the UPDATE library, writing the modified procedure to file
COMPILE, with line numbers.

2. Replace the modified procedure on the listing file.
. 3. Repeat the UPDATE step, giving a version without line numbers.

4. Replace the modified procedure on the execution file.

5.3.4.2 Data Update

File JUPDATA contains the following:

+MONTHDAY%,CM50000,T05,P02. VERSION YEAR MONTH DAY UPDATE %
USER, < userno>, < password >. < name > /< phone > /< mailstop >
CHARGE, < project > ,LRC.

* YEARMONTHDAY%: UPDATE DATA

GET,OLDPL = + PLDATA.
CATALOG,OLDPL,N,R.
REWIND,INPUT.
SKIPR,INPUT,1.
UPDATE,F,C = + DATA,N = + PLDATA.
CATALOG, + PLDATA,N,R,U.
* REPLACE,+PLDATA. UPDATE LIBRARY
CATALOG, + DATA,N,R.
* REPLACE, + DATA. LISTING WITH SEQUENCE NUMBERS

REWIND,INPUT.
SKIPR,INPUT,1.
UPDATE,D,8,C=DATA,N=0. NO SEQUENCE NUMBERS
CATALOG,DATA,N,R.
(COPY RECORDS FROM DATA TO FILES, CATALOG, AND REPLACE)

--- END OF RECORD ---

*]DENT YEARMONTHDAY%
*/UPDATE DATA: (DESCRIBE CHANGES)

Job decks edited from this template do the following:

1. Modify the data source on the UPDATE library, writing the modified data to file COMPILE, with line
numbers.

2. Replace the modified data on the listing file.
3. Repeat the UPDATE step, giving a version without line numbers, on file DATA.
4. Replace the data file which contains the modified data.

Note that the last line of the control-statement record must be replaced with the appropriate commands to
copy the revised information from file DATA and to replace the system files. The contents of DATA will be
divided by record marks.

5.3.4.3 Main-ProgramUpdate

File JUPMAINcontainsthe following:

+MONTHDAY%,CM70000,T10,P02. VERSION YEAR MONTH DAY UPDATE %
USER,< userno>, < password>. < name> /< phone> /< mailstop>
CHARGE,< project> ,LRC.

* YEARMONTHDAY% UPDATE MAIN
t

GET,OLDPL= + PLMAIN.
CATALOG,OLDPL,N,R,U.
UPDATE,N= +PLMAIN.
CATALOG,+PLMAIN,N,R.
* REPLACE,+ PLMAIN.
REWIND,COMPILE.
FTN,I=COMPILE,OPT=0,R= 3,ROUND,B= + PROGRAM.
CATALOG,+ PROGRAM,N,R.
* REPLACE,+ PROGRAM.
GET,OLD= + BRMAIN.
CATALOG,OLD,N,R.
COPYL,OLD,+ PROGRAM,+ BRMAIN,,RAT.
CATALOG,+ BRMAIN,N,R.
* REPLACE,+BRMAIN.

-- END OF RECORD --

*IDENT YEARMONTHDAY%
*1 UPDATE MAIN: PROGRAM - (DESCRIBE CHANGES)

Job decks edited fromthis template do the following:

1. Modifythe sourcecode on the UPDATElibrary,writing the modifiedprogram to file COMPILE.
2. Compilethe objectcode for the modifiedprogram.
3. Replace the execution file for the program.
4. Replacethe copy of the modifiedprogram on the combinedfile.

5.3.4.4 Subroutine-Library Update

File JUPSUBS contains the following:

+MONTHDAY%,CM70000,T2,P02. VERSION YEAR MONTH DAY UPDATE %
USER,< userno>, < password>. < name> /< phone> /< mailstop>
CHARGE,< project> ,LRC.

* YEARMONTHDAY% - UPDATE SUBS

GET,OLDPL= +PLSUBS.
CATALOG,OLDPL,N,R,U.
UPDATE,N= +PLSUBS.
CATALOG,+PLSUBS,N,R.
* REPLACE,+PLSUBS.
REWIND,COMPILE.
FTN,I=COMPILE,OPT=0,R=3,ROUND,B=LGO.
CATALOG,LGO,N,R.
GET,OLD= + BRSUBS.
CATALOG,OLD,N,R.
COPYL,OLD,LGO,+ BRSUBS,,RAT.

10

CATALOG, + BRSUBS,N,R.
* REPLACE,+BRSUBS.
GET,OLDBIN = + MASBIN.
CATALOG,OLDBIN,N,R.
REWIND,LGO.
COPYL,OLDBIN,LGO, + MASBIN,,RAT.
CATALOG, + MASBIN,N,R.
* REPLACE,+MASBIN.
LIBGEN,F = + MASBIN,P =+ MASLIB,N =MASTLIB.

" CATALOG, + MASLIB,N,R,U.
* REPLACE,+MASLIB.

-- END OF RECORD ---

*IDENT YEARMONTHDAY%

*/ UPDATE SUBS: ROUTINE (DESCRIBE CHANGES)

Job deckseditedfromthistemplatedothefollowing:

1. Modifythesourcecodeon theUPDATE library,writingthemodifiedsubroutinetofile
COMPILE.

2. Compiletheobjectcodeforthemodifiedsubroutine.
3. Replacethecopyofthemodifiedsubroutine,on file+ BRSUBS.
4. Replacethecopyofthemodifiedsubroutine,on file+ MASBIN.
5. Regenerateand replacethesubroutinelibrary,on file+MASLIB.

FileJUPLIBS containsa similartemplate,exceptthat"LIBS"appearsintheplaceof"SUBS"everywhere.

5.4ERROR LOGS

An errorpackageisappendedtotheerror-logfilewhenevera MASTER procedureaborts.Thesepackages
contain considerableinformationto analyze the errors,includingthe data which was
input.

Errorpackagesareusedtoautomaticallycapturedataonerrors.Theerrorlogshouldbeclearedperiodical-
lyofoldpackages,toreducefile-storagecharges.

II

6.OPROCEDURES

This section describes the control-language procedures which execute the MASTER programs. First the
features which are shared by all procedures are explained, then the details of specific procedures are
shown.

6.1GENERAL FEATURES

Thissectionexplainsthegeneralfeatureswhichalltheproceduresshare.

6.1.1CCL PROCEDURE ENTRY AND EXIT

CyberControlLanguage(CCL)proceduresareused.(SeeReference2.)They arecalledbya BEGIN state-
ment andexitedwitha REVERT statement.The procedurefileconsistsofseparaterecordsforeachpro-
cedure.ThefirstlineofeachprocedureisaPROC statement.ThePROC statementdefinessymbolicnames
withintheprocedure.The BEGIN statementhasfieldscorrespondingtoeachsymbolicname.The fields
whichcontainargumentscausetheargumentstobesubstitutedforthecorrespondingsymbolicnames
thosesymbolicnamesthatcorrespondtoemptyfieldsareusedasthedefaultarguments.

6.1.2CCL REGISTERS

CCL supportsasetofregistersthatarelocaltoeachprocedure;apairoftheseregistersareused.Register
R1 containsthefieldlengthbeforetheprocedurewasentered.Thisfieldlengthisrestoredwhen thepro-
cedureisleft.RegisterR2 isusedasanerrorindicator;ithasanonzerovalueonlywhen anerrorhasbeen
detected.

6.1.3CCL DECISIONS

CCL supportsdecisionsthroughIFE statements.Suchdecisionsarecontrolledby conditions,whichare
evaluatedduringexecution.The conditionOT=TXO isusedtoindicatethatthecurrentjobhasaninter-
active,ratherthanbatch,origin.The conditionFILE(<filename>,AS)isusedtoindicatethata fileexists
withthename specified.The conditionFILE(<filename>,_r)isusedtoindicatethatthenamed fileis
associatedwithan interactiveterminal.(Thistestisusedtoavoidattemptstobackspacesuchfiles.)

A similartypeofdecisionisthetrappingofan errorexit.Thisusesan EXIT statement,whichisprevented
fromaffectingnormalexecutionby a SKIP statement.

The rangeofan IFE statementismarkedby an ENDIF statement,and possiblyby an ELSE statement,
withthesameidentifierastheIFE statement.The rangeofaSKIP statementismarkedwithanENDIF
statementwiththesameidentifierastheSKIP statement.The followingidentifiersareused:
1. The testforexistanceofa fileusesthatfile'sname foran identifier.
2. Identifierscontaininga filename followedby"TT"areusedtotestthatfileforbeinganinteractive

terminal.

3. "UNKNOWN" isusedtotraperrorsinthefilenametests.(Nosucherrorsareexpected,butthey
couldhappeniftheconditionsymbolsaremodified.)

4. "PROCEED _ isusedtoproceedaftersuccessfulfilename tests.
5. "ACCESS" isusedtotraperrorsmade attemptingtoaccessMASTER systemfiles.
6. "REQUEST isusedtoproceedaftersystem-fileaccesses.(Thenextstepistorequestthedesiredfield

length.)
7. _FIELD"isusedtotraperrorsmade requestingfieldlength.(A MFL extensionisattemptedbefore

abortingtheprocedure.
8. "MFL" isusedtotraperrorsmade requestinga MFL extension.
9. "EXECUTE" isusedtoproceedtoprogramexecutionaftera successfulfield-lengthrequest.
10. "PROGERR" isusedtotrapprogram-executionerrors.
11. "ERRPACK" isusedtodecidewhethertoassembleanerrorpackageortoassembletheusuallisting

output.
12. "LISTING"isusedtodecidewhichfilename (OUT orOUTPUT) touseforthelistingfile.

12

The basicstructureof these decisionsis the following:

CheckData Files (andPossibly Set ErrorFlag)

Skip UNKNOWN
EXIT.
Set Error Flag

- Endif UNKNOWN

If (No Error)PROCEED

AccessSystem Files

Skip ACCESS
EXIT.
Set ErrorFlag

EndifACCESS

If (No Error)REQUEST

RequestFieldLength

Skip FIELD

EXIT.
Request MFL Extension
Request Field Length

SkipMFL
EXIT.
Abort Procedure,

< + + +........... +......... and Revert to Calling Job
Endif MFL

Endif FIELD

If (No Error) EXECUTE

Execute Program

Skip PROGERR
EXIT.
Set Error Flag

Endif PROGERR

Endif EXECUTE

- Endif REQUEST

Endif PROCEED

13

If (Error) ERRPACK

Prepare Error Package

If (Interactive Job) LISTING

Copy Error Package to OUT

Else LISTING

Copy Error Package to ouTPUT

Endif LISTING

<_+_--Abort Procedure,and Revertto CallingJob

ElseERRPACK

PrepareListingFile

If (InteractiveJob) LISTING

Copy ListingFile to OUT

Else LISTING

Copy Listing File to OUTPUT

Endif LISTING

<-_-+_Revert to Calling Job

Endif ERRPACK

6.1.4 DATA FILES

The symbolic names of a procedure appear in place of the names for the user's input and output data files.
If no file name appears in the corresponding field of the BEGIN statement, the default name is used; other-
wise the user-specified file name is substituted. (Throughout this manual, these data files are referred to by
their default names.)

The data formats named in this manual are defined in Section 3 of the MASTER user's manual.

If input data can appear on a file, it is rewound before program execution, otherwise the file is returned
before execution. All data files are rewound after execution.

6.1.5 LISTING FILE

All listing information is written to a special file, called the listing file. This file is never rewound and
assumed to always be positioned at the end of information, which is compatible with the batch-job han-
dling of file OUTPUT. For batch jobs, this file is OUTPUT, so the listing is printed. For interactive jobs,the
listing file is OUT; this prevents the terminal from being swamped with data. The interactive user must
then dispose OUT to get a printed copy. The listing from some procedures also contains a listing of the out-
put data. The listing file is packed into a single record. The procedures for interactive programs write the
interactive prompts to OUTPUT, rather than the listing file. This allows the user to respond to the
prompts.

14

6.1.6 TEMPORARYFILES

Whena procedureuses files other than the user'sinput and output files, they are hidden from the user.
Such files arereturned beforeandafter execution.Theyaregiven nameswhich start with '_ZZZ'.(Thisis
an extension of the NOS convention of using names starting with "ZZZZZ"for temporary files; see
Reference2.) By avoidingsuch names, users can avoid interferencefrom the procecurewith their otherlocal files.

. All the program'sfiles are explictly named in the procedure. This changes the temporary files from the
natural names which appear on the PROGRAMstatement to the procedure's names.

6.1.7 ERRORPACKAGES

Errorpackagesare intended to includeall the availableinformationaboutan abortedprocedure,placing
the most useful information first. The listing for an errorpackagestarts with the program-executionout-
put. This is followedby the results of an ENQUIREcommand.(Thiscommandlists local file names and
another general information aboutjob status.) Next comes a pair of DAYFILEversions. The "0P=M"
DAYFILE,which comesfirst, is limited to the procedure.(TheIFE-ELSE-ENDIFdecisionwith identifier
'_DAYFILE"is used to recognizedthe last BEGINstatement, which appears differently in dayfdes from
batch and interactive jobs.)The followingDAYFILEcoversthe entire job up to this time. Now the data
files are catalogedand listed. This is followedby the load map.Finally all the binaryfiles, includingpro-
gram and any subroutinelibraries,are cataloged.Thelisting forthe error packageis packedinto a singlerecord.

The listing for the errorpackageis copiedto theuser'slistingfile. Thentheprocedurerecordandthe data
which generatedthe errorare added,as separaterecords.This expandedpackageis appendedto the error
log, on the system account. This processautomaticallyenables the programmer to duplicate the user'sproblem.

At the beginning of each procedure, files ZZZPROCand ZZZPAGEare copiedfrom the system account.
ZZZPAGEis simplya pageheader,to start componentsof an error packageon newpages. ZZZPROCis a
copy of the procedurefile which is being called,to extract the procedurerecordfor an error package.

6.2 PROCEDUREDRAWIT

DRAWIT is used to displaygeometric data graphically.It can showsurface models, curve models, and in-
tersection normals. It uses a Tektronix 4010-series interactive graphics terminal, with a storage screen.

6.2.1 DATA FILES

DRAWlT uses files INPUT and OUTPUT to interact with the terminal and to display views of the
geometric data. The format of the data read from INPUT is text. The format of the data written to OUT-
PUT is dependent on the Tektronix graphics implementation. These files do not appear in the procedure
parameter list.

The BEGIN statement for DRAWIT has the following list of data files: SRF, CUR, NRM, and OUT.
Surface-model data to be viewed is input on file SRF. Curve-model data to be viewed is input on file CUR.
Intersection-normal data to be viewed is input on file NRM. OUT is the listing file for interactive execu-
tions. (This file is only used when an error package is prepared.)

Program DRAWIT is executed with the following list of input files: INPUT, OUTPUT, SRF, CUR, NRM,
ZZZSRF, ZZZCUR, ZZZNRM, and ZZZREAD. ZZZSRF, ZZZCUR, and ZZZNRM are used within the pro-
gram for random-access data storage. (ZZZREAD is not used.)

15

6.2.2 RESTRICTIONS

ProcedureDRAW1Tmust be executedfroman interactivejob and froma Tektronix4010-seriesstorage-
tube graphicsterminal. It requiresa field length of 100000 (octal).

6.2.3 SCRATCHFILES

File ZzzPROGis the program,ZZZMASTis the MASTERlibrary,andZZZP10is the PLOT-10graphics
library.Files ZZZPAT,ZZZCUR,andZZZNRMarerandom-accessfiles whichstore dataforuse withinthe
program;ZZZDATis a file used to readdata into the program and to hold data for appendingto an error
log.ZZZPAGEis a pageheaderforan error package;ZZZLOADis a loadmap;ZZZLISTholdslistingfor an
error package.ZZZPROCis a copyof theprocedurefile, forappendingDRAWITprocedureto an errorlog.

6.3 PROCEDUREGENTRN

GENTRNis used to form elementary rotation matrices, to multiply them, and to combine them with
translationvectors in TRN format.

6.3.1 DATA FILES

The BEGINstatement forGENTRNhasthe followinglist of data files:INPUT,TRN,andOUT.GENTRN
uses files INPUTand OUTPUTto interact with the terminal. Text messagesrequestinginput are written
to OUTPUT,thennumericdata (with commentlines possible)arereadfromINPUT.File TRNreceivesthe
outputdata, in TRNformat.File OUTreceivesthe listing output from interactiveexecutions.

ProgramGENTRNis executedfrom interactive jobs with the following list of files: INPUT, OUTPUT,
TRN, ZZZTlVlP,and ZZZLIN.It is executed from batch jobs with the following list of files: INPUT,
ZZZLIST,ZZZTRN,TRN,ZZZTMP,andZZZLIN;in this case,ZZZLISTholds theprogram output,which is
copiedto the listing file. In both cases, a catalogof the TRN outputand a listing of it are copiedto the
listing file after execution. ZZZTMPand ZZZLINare temporaryfiles which are only used within the
program.

6.3.2 RESTRICTIONS

GENTRNrequiresa field length of 50000 (octal).

6.3.3 SCRATCHFILES

File ZZZPROGis the program, andZZZMASTis the MASTERlibrary.ZZZLINholds the latest line of in-
put data, andZZZTMPholdsthe transformations to be output.ZZZLISTholds the outputfroma batchex-
ecution,andpossiblyan error package;ZZZPAGEis a pageheaderforanerrorpackage;ZZZLOADis a load
map. ZZZDATholdsdataforappendingto the errorlog;ZZZPROCis the procedurefile, forappendingthe
GENTRNprocedureto an error log.

6.4 PROCEDUREMSHNRM

MSHNRMis used to intersect a coordinatemesh with a surfacemodel.

6.4.1 DATA FILES

The BEGINstatement forMSHNRMhas the following list of data files: MSH,SRF,NRM,CUR,andOUT.
Meshdata must be inputfromfile MSH,in MSHformat. Surface-modeldata must be input fromfile SRF,
in SRFformat.Intersection-normal data is outputto file NRM,in NRMformat. (Intersectioncurves,an in-
termediate result,are outputto file CUR,in CURformat.)The listing file forinteractiveexecutionsis file
OUT.

16

Program MSHNRM is executed with the following list of files specified: MSH, SRF, CUR, NRM, ZZZLIST,
ZZZPSMS,ZZZPCMS,ZZZRSMS,and ZZZRCMS.ZZZLISTholds the program output, which is copied to
the listing file. The last 4 files are temporary files, which are only used within the program.

6.4.2 RESTRICTIONS

MSHNRM requires a field length of 160000 (octal). Files MSH and SRF must exist as local disk files.

o 6.4.3 SCRATCH FILES

File ZZZPROGis the program, and ZZZMASTis the MASTERlibrary. ZZZPSMSstores the patches for use
within the program ZZZPCMSholds intersection curves within the program; ZZZRSMSholds radius-
interpolating surface data from rectangular-coordinate surface models ZZZRCMS holds radius-
interpolating intersection-curve data from rectangular-coordinate surface models. ZZZLISTholds the
listing output, and possibly an error package; ZZZPAGEis a page header for an error package ZZZLOADis
a load map. ZZZDATholds data for appending to an error log ZZZPROCis the procedure file, for al_
pending the MSHNRM procedure to an error log.

6.5 PROCEDURE NRMCFD

NRMCFD is used to combine the complete set of normals and the complete coordinate mesh for a con-
figuration, giving a CFD analysis input file.

6.5.1 DATA FILES

The BEGIN statement for NRMCFD has the following list of data files: MSH, NRM, OLDCFD, NEWCFD,
and OUT. Mesh data must be input from file MSH, in MSH format. Intersection normal data must be input
from file NRM, in NRM format. Header data can be input from file CFD, in text format; such data is op-
tional. A complete file of input for CFD analysis is output to file NEWCFD, in CFD format. The listing file
for interactive executions is output to file OUT.

Program NRMCFD is executed with the following list of files specified: MSH, NRM, OLDCFD, NEWCFD,
and ZZZLIST.ZZZLISTholds the program output, which is copied to the listing file.

6.5.2 RESTRICTIONS

NRMCFD requires a field length of 160000. Files MSH and NRM must exist as local disk files.

6.5.3 SCRATCH FILES

File ZZZPROGis the program, and ZZZMASTis the MASTER library. ZZZLISTholds listing output,
possibly an error package; ZZZPAGE is a page header for an error package; ZZZLOADis a load map.
ZZZDATholds data for appending to an error log; ZZZPROCis the procedure file, for appending procedure
NRMCFD to an error log.

6.6 PROCEDURE NRMREV

NRMREV is used to reverse the direction of all the normals in a file.

6.6.1 DATA FILES

The BEGIN statement for NRMREV has the following list of data files: OLDNRM and NEWNRM. (There
° is no listing file.) Intersection normals must be input on file OLDNRM, in NRM format. Reversed normals

are output on file NEWNRM, also in NRM format.

Program NRMREV is executed with the following list of files: OLDNRM, NEWNRM, and ZZZLIST.
ZZZLIST holds the program output, which is copied to the listing file.

17

6.6.2 RESTRICTIONS

NRMREV requires a field length of 20000 (octal). File OLDNRM must exist as a local disk file.

6.6.3 SCRATCH FILES

File ZZZPROGis the program, and ZZZMASTis the MASTER library. ZZLISTholds listing data, possibly
an error package ZZZPAGEis a page header for an error package; ZZZLOADis a load map. ZZZDATholds
data for appending to an error log; ZZZPROCis the procedure file, for appending procedure NRMREV to
an error log.

6.7 PROCEDURE REGSIL

REGSIL regulates the point spacing within input curves. It reads a simplified SIL section specification set,
and it writes a complete SIL file. REGSILis very expensive to use, so SELECTshould be used instead. (See
Appendix E of Reference 7.)

6.7.1 DATA FILES

The BEGIN statement for REGSIL has the following list of file names: OPTION, OLDSIL, NEWSIL. (In-
teractive execution is forbidden, so no listing file for interactive execution is needed.) Program-control
selections must be input from ffile OPTION, in the format described in Section 7.4.1.5 of the MASTER
user's manual. Simplified SIL sections must be input on file OLDSIL, in the format described in Section
7.3.2 of the user's manual. Surface-description data is output to file NEWSIL, in SIL format; the form of
this surface description is explained in Section 7.3.3 of the user's manual.

Program REGSIL is executed with the following list of files specified: OLDSIL, OPTION, NEWSIL, and
ZZZLIST. ZZZLIST holds the program output, which is copied to the listing file. The NEWSIL output is
cataloged and listed on the listing file.

6.7.2 RESTRICTIONS

REGSIL must be executed from a batch job. It requires a field length of 160000 (octal). File OLDSIL must
exist as a local disk file.

6.7.3 SCRATCH FILES

File ZZZPROGis the program, and ZZZMAST is the MASTER library. ZZZLISTholds listing output,
possibly an error package; ZZZPAGEis a page header for an error package; ZZZLOADis a load map.
ZZZDATholds data for appending to an error log; ZZZPROCis the procedure file, for appending procedure
REGSIL to an error log.

6.8 PROCEDURE SILSRF

SILSRF is used to model surfaces.

6.8.1 DATA FILES

The BEGIN statement for SILSRF has the following list of data files: SIL, SRF, and OUT. Surface-
description data must be input from file SIL, in SIL format. The resulting surface model is output to file
SRF, in SRF format. The listing file from interactive execution is output to file OUT.

Program SILSRF is executed with the following list of files: SIL, ZZZNEWS, SRF, and ZZZLIST.File
ZZZNEWSis a rewritten version of the data from SIL after execution, it replaces the original form of this
data on file SIL. ZZZLISTis the program output, which is copied to the listing file. The reformatted surface
description is cataloged and listed on the listing file.

18

6.8.2 RESTRICTIONS

SILSRF required a field length of 160000 (octal). File SIL must exist as a local disk file.

6.8.3 SCRATCH FILES

File ZZZPROG is the program, and ZZZMAST is the MASTER library. ZZZSDMS is the SDMS data-
manager library; ZZZSIL is the SDMS data definition; ZZZSIL1, ZZZSIL2, ZZZSIL3, and ZZZSKA hold the
SDMS database used within the program. ZZZNEWS is the reformatted version of the SIL input data.

" ZZZLIST holds printed output, possibly an error package; ZZZPAGE is a page header for an error package;
ZZZLOAD is a load map. ZZZDAT holds data for appending to an error log; ZZZPROC is the procedure file,
for appending procedure SILSRF to an error log.

The database files are temporary direct access files on the user's account. File ZZZSIL is stored on the user's
account as a direct access permanent file. If this file is not found from a previous execution, it is produced
from the source file SILDBD by DDP. (This feature deals with the frequent archiving of small direct-access
files on the ACD system.)

6.9 PROCEDURE SRFINT

SRFINT computes the intersection of two surface models, giving SIL section specifications.

6.9.1 DATA FILES

The BEGIN statement for SRFINT has the following list of data files: SRF1, SRF2, SEC, OPTION, and
OUT. The pair of surface models to be intersected must be input to files SRF1 and SRF2, in SRF format.
Non-default program control options can be input from file OPTION, in the format described in Section
7.4.2.5 of the MASTER user's manual. The curves of intersection are output to file SEC, in the modified
SIL format described in Section 7.3.1 of the user's manual. The listing file for interactive execution is out-
put to file OUT.

Program SRFINT is executed with the following list of files: SEC, OPTION, ZZZLIST, SRF1, SRF2,
ZZZSRF1, and ZZZSRF2. ZZZLIST is the program output, which is copied to the listing file. The SEC out-
put is cataloged and listed on the listing file. The last pair of files are temporary; they are only used within
the program.

6.9.2 RESTRICTIONS

SRFINT requires a field length of 160000. Files SRF1 and SRF2 must exist as local disk files.

6.9.3 SCRATCH FILES

File ZZZPROG is the program, and ZZZMAST is the MASTER library. ZZZSDMS is the SDMS library;
ZZZIBR is the SDMS data definition; ZZZIBR1, ZZZIBR2, ZZZIBR3, and ZZZIBR4 hold the SDMS
database for use within the program. ZZZSRF1 and ZZZSRF2 hold the surface data for use within the pro-
gram. ZZZLIST holds the listing output, possibly an error package; ZZZPAGE is a page header for the error
package; ZZZLOAD is a load map. ZZZDAT holds data for appending to an error log; ZZZPROC is the pro-
cedure file, for appending procedure SRFINT to an error log.

The database files are temporary direct access files on the user's account. File ZZZIBR is stored on the
user's account as a direct access permanent file. If this file is not found from a previous execution, it is pro-
duced from the source file IBRDBD by DDP. (This feature deals with the frequent archiving of small direct-
access files on the ACD system.)

19

6.10 PROCEDURE TRNSIL

TRNS]L is used either to convert a surface description from cylindrical coordinates to rectangular coor-
dinates ortorotateandtranslatea surfacedescriptioninrectangularcoordinatesasifitwerea rigidob-
jectortoconverta surfacedescriptionfromrectangularcoordinatestocylindricalcoordinates.

6.10.1DATA FILES

The BEGIN statementforTRNS]L hasthefollowinglistoffilenames:TRN, OLDS]L,NEWS]L, INPUT,
and OUT. SurfacedescriptiondatamustbeinputtofileOLDS]L,inS]L format.Thoseexecutionswhich
rotateandtranslaterectangular-coordinatedatamusthavea listofcoordinatetransformationsinputfrom
fileTRN, inTRN format.The choiceofa transformationisreadfrom fileINPUT. The transformed
surface-descriptiondataisoutputtofileNEWS]L, inS]Lformat.The listingfilefrominteractiveexecu-
tionisoutputtofileOUT.

Program TRNS]L isexecutedfrom interactivejobswiththefollowinglistoffiles:INPUT, OUTPUT,
OLDSIL, NEWS]L, and TRN. Itisexecutedfrom batchjobswiththefollowinglistof files:INPUT,
ZZZLIST,OLDS]L,NEWS]L, andTRN; ZZZLISTistheprogramoutput,whichiscopiedtothelistingfile.
Inbothcases,theNEWS]L outputiscatalogedand listedtothelisttingfile.

6.10.2RESTRICTIONS

TRNSIL requiresa fieldlengthof40000(octal).FileOLDSIL mustexistasalocaldiskfile;fileTRN can
onlybea localdiskfile.

6.10.3SCRATCH FILES

FilesZZZPROG istheprogram,and ZZZMAST istheMASTER library.ZZZLISTholdslistingoutput,
possiblyan errorpackage;ZZZPAGE isa pageheaderforan errorpackage;ZZZLOAD isa loadmap.
ZZZDAT holdsdataforappendingtoanerrorlog;ZZZPROC istheprocedurefile,forappendingprocedure
TRNS]L toan errorlog.

2O

7.O MAIN PROGRAMS

This section describes the MASTER code contained in the MAIN part. For most programs, this is simply
the main-program module. Programs DRAW1T and TRNSIL have the associated subroutines kept within
this part, rather than using the MASTER system library.

7.1 DRAWIT

• DRAWrr is a program which displays 3-D views of MASTER geometric data, using interactive graphics. It
uses the PLOT-10 graphics library to control a Tektronix 4010-series storage-screen terminal. Surface and
curve models can be displayed, as can intersection normals. Individual data elements can be selected for
display, and the elements can be labelled.

7.1.1 FILES

The file name list for DRAWIT is the following: INPUT, OUTPUT, SRF, CUR, NRM, TAPE1, TAPE2, and
TAPE3. INPUT and OUTPUT are connected to the graphics terminal. INPUT reads text, mostly menu
selections. OUTPUT writes both menu text and graphic-display data. SRF is the input f'fe for surface
patches. CUR is the input file for PC-curve segments. NRM is the input file for intersection normais. Fries
TAPE1, TAPE2, and TAPE3 are used for random-access storage of the input data. (This uses READMS and
WRITMS.) TAPE1 stores patch data, TAPE2 stores PC-curve data, and TAPE3 stores intersection-normal
data.

Within the program, INPUT and OUTPUT are respectively referred to as units 5 and 6.

7.1.2 ROUTINES CALLED

The main program for DRAWIT calls the following subroutines: CLOSMS, DRWPIC, FINITT, INITT,
MENU, MOVABS, ORIENT, TINPUT, and TSEND. Subroutine CLOSMS is from the Fortran library; it is
documented in the Fortran manual. Subroutines FIN1TT, INITT, MOVAABS, TINPUT, and TSEND are
from the PLOT-10 graphics library; they are documented in the PLOT-10 manual. Subroutines DRWPIC
(see Section 7.1.8 below), MENU (7.1.15), and ORIENT (7.1.46) are from the MAIN group of MASTER;
they are found in Update deck DRAWlT.

7.1.3 METHOD

DRAWIT has two main branches: menu interaction and graphic display. The menu-interaction branch
copies data from input files to random-access files and selects which data elements are to be displayed. The
graphic-display branch reads the selected data elements from random-access storage and draws a 3-D view
of them. A grid of constant-parameter lines is displayed for each patch.

7.1.4 MAIN-PROGRAM ROUTINE

The PLOT-10 graphics interface is initialized. A cycle is repeated until the menu-interaction branch
returns a selection to stop the program. This cycle contains the following steps: Subroutine MENU is
called, giving the user a series of menus through which to interact with the program. Unless and exit is re-
quested, subroutine DRAWPIC draws a 3-D display. Subroutine ORIENT draws the 3 axes. PLOT-10
subroutine TINPUT then waits for a carriage return before the cycle is repeated. Finally, the graphics in-
terface and the random-access data storage are closed.

The following common blocks are declared:

- COMMON /BLKI/ IDUMI(3)
COMMON /BLK2/ IDUM2(3)
COMMON /BLK3/ IDUM3(3)
COMMON /BLK4! IDUM4

21

COMMON /QPATCH/ IDUM12(507)
COMMON /QPC/ IDUM7(1006)
COMMON /QVEC/ IDUM8(1005)
COMMON /SCRAT/ IDUM9(6000)
COMMON /STATUS/ IDUMI0(3)

7.1.5SUBROUTINE ADD

Adds a singledataelementtothelistofselectedelements

7.1.5.1ParameterList

i. K [In/Out,INTEGER(100)]
The listofelementscurrentlyselected:Thisisa listofindices,sortedinascendingorder.

2. N [In/Out,INTEGER scalar]
The number ofelementscurrentlyselected

3.]PICK[In,INTEGER scalar]
The indexfortheelementtoadd

7.1.5.2Common Data

none

7.1.6 SUBROUTINE DRV_PAT

Draws a set of patches

7.1.6.1 Parameter List

1. LUNPAT [In, INTEGER scalar]
Logical unit for patch random-access storage

2. NPAT [In, INTEGER scalar]
Number of patches to be drawn

3.]PAT [In, INTEGER(500)!
List of patches to be drawn: This is a list of indices, sorted in ascending order.

4. NUPAT [In, INTEGER scalar]
Number of constant.U lines to be drawn for each patch: Possible values are 2 to 10.

5. NVPAT [In, INTEGER scalar]
Number of constant-V lines to be drawn for each patch: Possible values are 2 to 10.

6. LABPAT [In, INTEGER scalar]
Flag to draw patch labels: If 1, labels are drawn. Otherwise, they are not drawn.

7. ICYL [In, INTEGER, scalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular coor-
dinates are used.

8. SCRMAX [In, REAL, scalar]
Maximum screen size

7.1.6.2 Common Data

COMMON /SCRAT/ X(2000), Y(2000), Z(2000)
COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001), CMOPEN(3)

Common block !SCRAT/holds the coordinates to be plotted.

7.1.7 SUBROUTINE DRWPC

Draws a set of PC curves

22

7.1.7.1 Parameter List

1. LUNPC [In, INTEGER scalar]
Logical unit for PC-curve random-access storage

2. NPC [In, INTEGER scalar]
Number of PC curves to draw

3.]PC [In, INTEGER(1000)]
List of PC curves to draw: This is a list of indices, sorted in ascending order.

4. NUPC [In, INTEGER scalar]
Number of points to draw along each PC curve: Possible values are 2 to 10.

5. LABPC [In, INTEGER scalar]
Flag to draw curve labels: If 1, labels are drawn. Otherwise, they are not drawn.

6. ICYL [In, INTEGER scalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular coor-
dinates are used.

7. IADD [In, INTEGER scalar]
Flag to add to an existing picture: If 1, the patches are added to an existing display. Otherwise, the
screen is cleared and screen limits are reset before drawing curves.

8. SCRMAX [In, REAL scalar]
Maximum screen size

7.1.7.2 Common Data

COMMON /SCRAT/ X(2000), Y(2000), Z(2000)
COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001)

Common block/SCRAT/holds the coordinates to be plotted.

7.1.8 SUBROUTINE DRWPIC

Draws a display containing patches, PC curves, and/or normals

7.1.8.1 Parameter List

1. ICYL [In, INTEGER, scalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular coor-
dinates are used.

7.1.8.2 Common Data

COMMON /QPATCH/ IDRPAT, NPATT, LUNPAT, NUPAT, NVPAT, LBLPAT, NPAT,
IPAT(500)

COMMON /QPC/ IDRPC, NPCT, LUNPC, NUPC, LABPC, NPC, IPC(1000)
COMMON /QVEC/ IDRVEC, NVECTr, LUNVEC, LABVEC, NVEC, IVEC(1000)
COMMON /SCRAT! DUMMY(6000)

7.1.9 SUBROUTINE DRWVEC

Draws a set of intersection normals, represented by vectors

7.1.9.1 Parameter List

1. LUNVEC [in, INTEGER scalar]
Logical unit for vector random-access storage

2. NVEC [In, INTEGER scalar]
Number of vectors to draw

23

3. IVEC [In, INTEGER(1000)]
List of vectors to draw: This is a list of indices, sorted in ascending order.

4. LABVEC [In, INTEGER scalar]
Flag to draw vector labels: If 1, labels are drawn. Otherwise, labels are not drawn.

5. ICYL [in, INTEGER scalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular coor-
dinates are used.

6. IADD [In, INTEGER scalar]
Flag to add to an existing picture: If 1, the vectors are added to an existing display. Otherwise, the
screen is cleared and screen limits are reset before drawing vectors.

7. SCRMAX [in, REAL scalar]
Maximum screen size

7.1.9.2 Common Data

COMMON /SCRAT/ Xl(1000), YI(1000), Zl(1000), X2(1000), Y2(1000), Z2(1000)
COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001)

Common block/SCRAT! holds the coordinates to be plotted.

7.1.10 SUBROUTINE LBLPAT

Draws labels on a patch display

7.1.10.1 Parameter List

1. LUNPAT [in, INTEGER scalar]
Logical unit for patch random-access storage

2. NPAT [in, INTEGER scalar]
Number of patches to be drawn

3. IPAT [In, INTEGER(500)]
List of patches to be drawn: This is a list of indices, sorted in ascending order.

4. ICYL [In, INTEGER, scalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular coor-
dinates are used.

7.1.10.2 Common Data

COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001)

7.1.11 SUBROUTINE LBLPC

Draws labels on a PC curve display

7.1.11.1 Parameter List

1. LUNPC [in, INTEGER scalar]
Logical unit for PC curve random-access storage

2. NPC [In, INTEGER scalar]
Number of curves to be drawn

3. IPC [in, INTEGER(500)]
List of curves to be drawn: This is a list of indices, sorted in ascending order.

4. ICYL [In, INTEGER, scalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular coor-
dinates are used.

24

7.1.11.2 Common Data

COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001)

7.1.12 SUBROUTINE LIM3D

Determines the window bounding the display and determines the maximum screen size

7.1.12.1 Parameter List

1. X [In,REAL(NPTS)]
X coordinatesofthepointstobe plotted

2. Y [In,REAL(NPTS)]
Y coordinates of the points to be plotted

3. Z [In, REAL(NPTS)]
Z coordinates of the points to be plotted

4. NPTS [In, INTEGER scalar]
Number of points to be plotted

5. SCRMAX [Out, REAL scalar]
Maximum screen size: This is the diagonal length for a box bounding the points to be plotted.

7.1.12.2 Common Data

COMMON /WINDOW/ XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, FACTOR

The bounding box definition and the screen size are stored in common Block/WINDOW/, for use by
subroutines LABL3D, GCUR3D, GVIEW, and ORIENT.

7.1.13 SUBROUTINE LOADTX

Converts a ranges of indices to an array of text: This is used for displaying selection menus.

7.1.13.1 Parameter List

1. I1 [In, INTEGER scalar]
Minimum index in range

2. I2 [In, INTEGER scalar]
Maximum index in range

7.1.13.2 Common Data

COMMON /SCRAT/ TEXT(100)

Common block/SCRAT/holdsthetextarray.

7.1.14 SUBROUTINE MARKTX

Marks each selected element in a range within the text array of indices: This is used for displaying
selection menus.

7.1.14.1 Parameter List

_ 1. I1 [In, INTEGER scalar]
Minimum subscript in range

2. I2 [In, INTEGER scalar]
Maximum subscript in range

25

3. K [In, INTEGER(100)]
List of elements selected

4. NK [In,INTEGERscalar]
Numberof elements selected:This is a list of indices.

7.1.14.2 Common Data

COMMON /SCRAT! TEXT(100)

Commonblock !SCRAT!contains the text array, which camefrom subroutineLOADTX.

7.1.15 SUBROUTINEMENU

Displays the main menuand handles the user'sselection

7.1.15.1 Parameter List

1. ICYL[Out,INTEGERscalar]
Flag for cylindricalcoordinates:If 1, cylindrical coordinatesare used. Otherwise,rectangularcoor-
dinates are used.

2. IEXIT[Out, INTEGERscalar]
Flag to stop execution: If 1, the main programwill stop.

7.1.15.2 Common Data

COMMON !QPATCH! IDRPAT, NPATT, LUNPAT, NUPAT, NVPAT, LABPAT, NPAT,
IPAT(500)

COMMON !QPC! IDRPC, NPCT, LUMPC, NUPC, LABPC, NPC, IPC(1000)
COMMON /QVEC! IDRVEC, NVECTT, LUNVEC, LABVEC, NVEC, IVEC(1000)

Commonblock !QPATCH!contains the following:IDRPAT, the flag to display patches; NPATr, the
numberof patches read;LUNPAT,the logical unit for patchinput, whichis initialized to 1;NUPATand
NVPAT, the numberof gridlines to display fora patch, whichare each initializedto 5; LABPAT,the flag
to display patches with labels;NPAT, the number of patches selected; and IPAT, the array of selected
patches.

Commonblock!QPC!contains the following:IDRPC,the flag to displayPCcurves;NPCT,the numberof
PC curves read; LUNPC, the logical unit for PC curve input, which is initialized to 2;
NUPC,the numberof points to display fora PCcurve,which is initializedto 5; LABPC,the flagto display
PCcurves with labels;NPC,the number of PCcurvesselected;andIPC, the array of selected PCcurves.

Commonblock!QVEC/containsthe following:IDRVEC,the flagto displayvectors;NVECTT,the number
of vectors read;LUNVEC,the logical unit for vector input, which is initializedto 3; LABVEC,the flag to
displayvectors withlabels;NVEC,thenumber of vectors selected;andIVEC,the arrayof selectedvectors.

7.1.16 SUBROUTINEOPTMEN

Displays option menu andhandles user'sresponse(i.e., a choiceof coordinates)

7.1.16.1 Parameter List

1. ICYL[Out, INTEGERscalar]
Flag for cylindrical coordinates: If 1, cylindrical coordinates are used. Otherwise, rectangular co-
ordinates are used.

25

7.1.16.2 Common Data

none

7.1.17 SUBROUTINE PATIN

Reads an input file of patches

7.1.17.1 Parameter List

empty

7.1.17.2 Common Data

COMMON /BLKI/ IDUMI,II,I2
COMMON /QPATCH/ IDUM2(1), NPATT, LUNPAT, IDUM3(3), N-PAT, IPAT(500)
COMMON /SCRAT/ DUMMY(250), PAT(48)
COMMON /STATUS/ ISTAT1
COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001), CMOPEN(3)

Common block/INDEXX/holds CMOPEN(1),which indicates whether patch data is available in random-
access storage; it is set when new patches are read. This block also holds ICMPAT, the key array for patch
random-access storage.

Common block/QPATCH! holds the following: IPAT, the array of selected patches, which is emptied when
new patches are read; LUNPAT, the logical unit for patch input; NPA_'r, the number of patches read,
which is set; and NPAT, the number of patches selected, which is set to 0.

Common block/BLKI! contains I1 and I2, the range of patch indices to display, which are both set to zero.

Common block/STATUS! holds ISTAT1, which indictates that some patches were read.

7.1.18 SUBROUTINE READPT

Reads a single patch

7.1.18.1 Parameter List

1. PAT [Out, REAL(48)!
Geometric patch representation: Effectively allocated PAT(4,4,3). PAT(*,*,K) is the K-th component
of a vector. PAT(I,1,*) is the (U,V) = (0,0) position; PAT(I,2,*) is the (1,0) position; PAT(2,1,*) is the
(0,1) position; and PAT(2,2,*) is the (1,1) position. PAT(3,1,*), PAT(3,2,*), PAT(4,1,*), and
PAT(4,2,*) are the corresponding V-derivatives. PAT(I,3,*), PAT(I,4,*), PAT(2,3,*), and PAT(2,4,*)
are the corresponding U-derivatives. PAT(3,3,*), PAT(3,4,*), PAT(4,3,*), and PAT(4,4,*) are the cor-
responding cross-derivatives.

2. IERR [Out, INTEGER scalar]
Flag for end-of-file: If an EOF is encountered, IERR is set to 1. Otherwise, it is set to 0.

7.1.18.2 Common Data

none

7.1.19 SUBROUTINE PATOPT

Displays patch-option menu and handles the user's responses until the main menu is reentered

27

7.1.19.1 Parameter List

empty

7.1.19.2 Common Data

COMMON /BLKI/ TITL, I1, I2
COMMON /QPATCH/ IDRPAT, NPATr, LUNPAT, NUPAT, NVPAT, LABPAT,

NPAT, IPAT(500)
COMMON /SCRAT! SBTEXT(10,24)
COMMON /STATUS/ ISTAT1

7.1.20 SUBROUTINE PCGMAL

Converts a PC curve from geometric representation, end position and tangent vectors, to algebraic
representation, polynomial coefficients.

7.1.20.1 Parameter List

1. A [In, REAL(4,3)]
Geometric representation of PC curve: A(1,J) and A(2,J) are the J-th components of the initial and
final positions. A(3,J) and A(4,J) are the corresponding components of the tangents.

2. B [Out, REAL(4,3)]
Algebraic representation of PC curve: B(I,J) is the coefficient of U(4I)in the cubic polynomial for the
J-th position component.

7.1.20.2 Common Data

none

7.1.21 SUBROUTINE PCIN

Reads an input file of PC curves

7.1.21.1 Parameter List

empty

7.1.21.2 Common Data

COMMON /BLK2/ IDUM1, I1, I2
COMMON !QPC/ IDUM2(1), NPCT, LUNPC, IDUM3(2), NPC, IPC(1000)
COMMON /SCRAT/ DUMMY(250), PC(12)
COMMON !STATUS! ISTAT(2)
COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001), CMOPEN(3)

7.1.22 SUBROUTINE READPC

Reads a single PC curve

7.1.22.1 Parameter List

1. PC [Out, REAL(12)]
PC curve: Effectively allocated PC(4,3). PC(*,J) is a parametric cubic function for the J-th spatial
component. PC(l,*) and PC(2,*) are the initial and final position components. PC(3,*) and PC(4,*) are
the initial and final tangent components.

2. IERR [Out, INTEGER scalar]
Flag for end-of-file: If an EOF encountered, IERR is set to 1. Otherwise, it is set to 0.

i,

28

7.1.22.2 Common Data

none

7.1.23SUBROUTINE PCOPT

DisplaysPC-curve-optionmenu andhandlestheuser'sresponsesuntilthemainmenu isreentered

7.1.23.1 Parameter List

empty

7.1.23.2 Common Data

COMMON /BLK2/ TITL, II, 12
COMMON /QPC/ IDRPC, NPCT, LUNPC, NUPC, LABPC
COMMON /SCRAT/ SBTEXT(10,24)
COMMON /STATUS/ IDUMI(1), ISTAT2

7.1.24SUBROUTINE PC2NPT

Computesa setofpointson a PC curveatevenly-spacedparametervalues

7.1.24.1 Parameter List

1. PC [In, REAL(4,3)]
PC curve: PC(*,J) is a parametric cubic function for the J-th spatial component. PC(l,*) and PC(2,*)
are the initial and final position components. PC(3,*) and PC(4,*) are the initial and final tangent
components.

2. NPT [In, INTEGER scalar]
A sign times the number of points to compute: If positive, PC is a geometric representation. If
negative, PC is an algebraic representation.

3. PTS [Out, REAL(3,*)]
Points computed along the curve

7.1.24.2 Common Data

none

7.1.25 SUBROUTINE PSGMAL

Converts a patch from geometric representation to algebraic representation

7.1.25.1 Parameter List

1. GEO [In, REAL(4,4,3)]
Geometric patch representation: GEO(*,*,K) is the K-th component of a vector. GEO(1,1,*) is the
(U,V) = (0,0) position; GEO(1,2,*) is the (1,0) position; GEO(2,1,*) is the (0,1) position; and
GEO(2,2,*) is the (1,1) position. GEO(3,1,*), GEO(3,2,*), GEO(4,1,*), and GEO(4,2,*) are the cor-
responding V-derivatives. GEO(1,3,*), GEO(1,4,*), GEO(2,3,*), and GEO(2,4,*) are the corresponding
U-derivatives. GEO(3,3,*), GEO(3,4,*), GEO(4,3,*), and GEO(4,4,*) are the corresponding cross-
derivatives.

2. ALG [Out, REAL(4,4,3)]
Algebraic representation of patch: ALG(I,J,K) is the coefficient of U(4_) * V(4"I)in the bicubic
polynomial for the K-th position component.

29

7.1.25.2 Common Data

none

7.1.26 SUBROUTINE SBMENU

Displays the menu to select which elements from an input file to display

7.1.26.1 Parameter List

1. TITL [In, REAL scalar]
Title characters for the kind of data element being selected

2. I1 [In, INTEGER scalar]
Initial index value in the range being displayed for selection

3. I2 [In, INTEGER scalar]
Final index value in the range being displayed for selection

4. NTOT [In, INTEGER scalar]
Number of data elements which were read from the input file

5. K [In/Out, INTEGER(100)]
List of selected elements: This is a list of indices, sorted in ascending order.

6. NK [In/Out, INTEGER scalar]
The number of elements currently selected

7.1.26.2 Common Data

COMMON /BLK4/ IADD
COMMON !SCRAT! TEXT(5,24)

7.1.27 SUBROUTINE SUB

Removes a single data element from the list of selected elements

7.1.27.1 Parameter List

1. K [InlOut, INTEGER(100)]
The list of elements currently selected: This is a list of indices, sorted in ascending order.

2. N [In, INTEGER scalar]
The number of elements currently selected

3. IPICK [In, INTEGER scalar]
The index for the element to remove

7.1.27.2 Common Data

none

7.1.28 SUBROUTINE TEXBOT

Adds the bottom to an element-selection menu display

7.1.28.1 Parameter List

empty

7.1.28.2 Common Data

COMMON !SCRAT! TEXT(5,24)

3O

7.1.29 SUBROUTINE UVXYZ

Computes the position on a patch corresponding to an ordered pair of parameter values

7.1.29.1 Parameter List

1. ALG [In, REAL(4,4,3)]
Algebraic representation of patch: ALG(I,J,K) is the coefficient of U(44) * V(4"I)in the bicubic
polynomial for the K-th position component.

2. U [In, REAL scalar]
Patch parameter

3. V [In, REAL scalar]
Patch parameter

4. X [Out, REAL scalar]
Position component

5. Y [Out, REAL scalar]
Position component

6. Z [Out, REAL scalar]
Position component

7.1.29.2 Common Data

none

7.1.30 SUBROUTINE UXYZ

Computes the position on a PC curve corresponding to a parameter value

7.1.30.1 Parameter List

1. PCGEO [In, REAL(4,3)]
PC curve: PCGEO(*,J) is a parametric cubic function for the J-th spatial component. PCGEO(1,*) and
PCGEO(2,*) are the inital and final position components. PCGEO(3,*) and PCGEO(4,*) are the inital
and final tangent components.

2. U [In, REAL scalar]
Parameter

3. X [Out, REAL scalar]
Position component

4. Y [Out, REAL scalar]
Position component

5. Z [Out, REAL scalar]
Position component

7.1.30.2 Common Data

none

7.1.31 SUBROUTINE VECIN

Reads an input file of vectors (i.e., intersection normals)

7.1.31.1 Parameter List

empty

31

7.1.31.2 Common Data

COMMON /BLK3/ IDUMI, II, 12
COMMON /QVEC/ IDUM2(1), NVECTT, LUNVEC, IDUM3(1), NVEC, IVEC(1000)
COMMON /SCRAT/ DUMMY(250), VEC(6)
COMMON /STATUS/IDUM4(2),ISTAT3
COMMON /INDEXX/ ICMPAT(501), ICMPC(1001), ICMVEC(1001), CMOPEN(3)

7.1.32 SUBROUTINEREADV

Readsa single vector

7.1.32.1 Parameter List

1. VEC[Out, REAL(6)]
Vector:Thefirst 3 elementsare thepositioncomponents.The remaining3 elementsare com-
ponentsof the vector'sdirection.

2. IERR[Out, INTEGERscalar]
Flag for end-of-file:If an EOFis encountered,IERRis set to 1. Otherwise,it is set to 0.

7.1.32.2 Common Data

none

7.1.33 SUBROUTINE VECOPT

Displays vector-option menu and handles user's responses until the main menu is reentered

7.1.33.1 Parameter List

empty

7.1.33.2 Common Data

COMMON /BLK3/ TITL, I1, I2
COMMON /QVEC/ IDRVEC. NVECTT, LUNVEC, LABVEC, NVEC. IVEC(1000)
COMMON /SCRAT/ SBTEXT(5,24)
COMMON /STATUS/ IDUMI(2), ISTAT3

7.1.34 SUBROUTINE VIEW

Displays the orientation menu and handles the user's selection

7.1.34.1 Parameter List

empty

7.1.34.2 Common Data

COMMON /QCVIEW/ ALPHA, BETA, GAMMA, X, Y, Z
COMMON /QXDXVL/ QXVAL(30)
COMMON /WINDOW/ XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, FACTOR

7.1.35 SUBROUTINE LABL3D

Writes a text label at a 3-D location

32

7.1.35.1 Parameter List

1. TEXT [In, REAL scalar]
Character representation of the label

2. NC [In, INTEGER scalar]
Number of characters in the label

3. X [In, REAL scalar]
Position coordinate

4. Y [In, REAL scalar]
Position coordinate

5. Z [In, REAL scalar]
Position coordinate

7.1.35.2 Common Data

COMMON /WINDOW/ XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, FACTOR
COMMON /MATRIX/ ROTA(4,4)

7.1.36 SUBROUTINE MENUD

Displays a menu and returns the user's selection

7.1.36.1 Parameter List

1. 1TITLE [In, INTEGER(7)]
Title for the menu: This is character data.

2. NCT [In, INTEGER scalar]
Number of characters in the title

3. LINE [In, INTEGER(*)]
Character data for display on menu lines: Effectively, the subscripts (word,line) are used,
corresponding to an INTEGER(NW,NL) allocation.

4. NW [In, INTEGER scalar]
Number of words to display per line: This can be up to 7.

5. NL [In, INTEGER scalar]
Number of lines to display

6. IAREA [Out, INTEGER scalar]
Index for the line selected by the user

7.1.36.2 Common Data

none

7.1.37 SUBROUTINE LABAXS

Displays a line of text at a 2-D screen position

7.1.37.1 Parameter List

1. NULL [Not used]
2. ILINE [in, INTEGER(7)]

Character text to display
3. NC [In, INTEGER scalar]

Number of characters to display
4. IX [In, INTEGER scalar]

Horizontal screen coordinate: This can range from 1 to 780.
5. IY [In, INTEGER scalar]

Vertical screen coordinate: This can range from 1 to 780.

33

7.1.37.2 Common Data

none

7.1.38 SUBROUTINE DATADT

Displays a set of REAL variables and allows the user to selectively modify their values.

7.1.38.1 Parameter List

1. TITLE [In, REAL(*)]
Title to be displayed: This is character data.

2. NC [In, INTEGER scalar]
Number of title characters

3. TEXT [In, REAL(*)]
Text describing the variables: This is packed character data, with the text for each variable im-
mediately following the previous variable's text.

4. NW [In, INTEGER(')]
Number of text characters for each variable

5. NX [In, INTEGER scalar]
Number of variables to display

6. X [In/Out, REAL(')]
The variables to be displayed and modified

7. NULL [Not used]

7.1.38.2 Common Data

none

7.1.39 SUBROUTINE GCUR3D

Displays a 3-D curve, by drawing lines connecting the input points in order

7.1.39.1 Parameter List

1. X [In, REAL(*)]
Array of X-coordinate values

2. Y [In, REAL(*)]
Array of Y-coordinate values

3. Z [In, REAL(*)]
Array of Z-coordinate values

4. NPTS [In, INTEGER scalar]
Number of points

7.1.39.2 Common Data

COMMON /MATRIX/ ROTA(4,4)
COMMON /WINDOW/ XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, FACTOR

7.1.40 SUBROUTINE GVIEW

Computes a transformation matrix to rotate the display about its center

34

7.1.40.1 Parameter List

1. IX [In, INTEGER scalar]
Ordinal for rotation about the X-axis: IX, IY, and IZ must all have different magnitudes from the set
1, 2, and 3. With a positive sign the rotation is counterclockwise; with a negative sign it is clockwise.

2. IY [In, INTEGER scalar]
Ordinal for rotation about the Y-axis

3. IZ [In, INTEGER scalar]
Ordinal for rotation about the Z-axis

4. ALPHA [In, REAL scalar]
Angle for rotation about the X-axis, in degrees

5. BETA [In, REAL scalar]
Angle for rotation about the Y-axis, in degrees

6. GAMMA [In, REAL scalar]
Angle for rotation about the Z-axis, in degrees

7.1.40.2 Common Data

COMMON /WINDOW/ XL, XH, YL, YH, ZL, ZH, FACTOR

7.1.41 SUBROUTINE INPUTA

Reads in character data from the keyboard

7.1.41.1 Parameter List

1.]FILE [Out, INTEGER(*)]
Input character data

2. NW [Not used]
3. IX [In, INTEGER scalar]

Horizontal screen coordinate where the cursor is placed before reading data: This can range from i to
780.

4. IY [In, INTEGER scalar]
Vertical screen coordinate where the cursor is placed before reading data: This can range from 1 to
780.

7.1.41.2 Common Data

none

7.1.42 SUBROUTINE INPUTI

Reads in integer data from the keyboard

7.1.42.1 Parameter List

1.]FILE [Out, INTEGER(*)]
Input integer data

2. NW [Not used]
3. IX [In, INTEGER scalar]

Horizontal screen coordinate where the cursor is placed before reading data: This can range from I to
780.

4. IY [In, INTEGER scalar]
Vertical screen coordinate where the cursor is placed before reading data: This can range from 1 to
780.

35

7.1.42.2 Common Data

none

7.1.43 SUBROUTINEIDEN

Initalizes transformationmatrix to an identity -

7.1.43.1 Parameter List

empty

7.1.43.2 Common Data

COMMON /MATRIX/ ROTA(4,4)

7.1.44 SUBROUTINEXLAT3

Revises the transformation matrix, by applyinga 3-D translation

7.1.44.1 Parameter List

1. X [In,REALscalar]
Translationcomponent

2. Y [In, REALscalar]
Translation component

3. Z [In,REALscalar]
Translationcomponent

7.1.44.2 Common Data

COMMON /MATRIX/ ROTA(4,4)

7.1.45 SUBROUTINEROTAD

Revises the transformation matrix, by applying a rotation about one of the coordinate axes

7.1.45.1 Parameter List

1. DEG[In, REALscalar]
Angle, in degrees

2. IAXIS[In, INTEGERscalar]
Axis selection:1 selects the X-axis, 2 selects the Y-axis,and 3 selects the Z-axis.

7.1.45.2 Common Data

COMMON /MATRIX/ ROTA(4,4)

7.1.46 SUBROUTINEORIENT

Drawsa set of 3 referenceaxes

7.2.46.1 Parameter List

empty

36

7.1.46.2 Common Data

COMMON /QCVIEW/ A, B, G, X, Y, Z
COMMON /WINDOW/ W(6)
COMMON /MATRIX/ ROTA(4,4)

7.2 GENTRN

GENTRNis an interactive programwhichprompts the user for transformationdata andcombines it to
define coordinatetransformations.

7.2.1 FILES

The file list for GENTRNis the following:INPUT, OUTPUT,TRAN,TEMP,and LINEIN.INPUT and
OUTPUTare connectedto the terminal. Each line from INPUT is copiedto file LINEINbeforebeing pro-
cessed. (This is done to simulate a BACKSPACE of terminal input, which can not be
movedbackwards.)Coordinatetransformationsare accumulatedon TEMP,a temporaryfile. The transfor-
mations are written to file TRAN.Thedata on files TEMPandTRANare in TRNformat.

Within the program, INPUTand OUTPUTare respectivelyreferred to as units 0 and 1. TEMPis referred
to as unit 3. LINEIN is referred to as unit 4. TRANis referred to as unit 2.

7.2.2 ROUTINESCALLED

ProgramGENTRNcalls the followingroutines:COS,DATE,SIN, TIME,TRMCHK,and TXTCPY.Func-
tions COSandSIN and SubroutinesDATEand TIMEarefromtheFortran library;they aredocumentedin
the Fortranmanual. SubroutinesTRMCHK(see Section 8.89 below)and TXTCPY(8.90) are from the
SUBS group of MASTER.

7.2.3 METHOD

GENTRNstarts operationby writing an introductorymessage. It continuesby defining transformations
until an empty line is input instead of starting the next transformation. The number of transformations
created is written to file TRAN.The transformations, which have been accumulatedon file TEMP,are
copied to file TRAN.

An individualtransformation is created by reading an initial translationvector, then a sequenceof rota-
tions about the coordinate axes, and finally another translationvector.

7.2.4 MAIN-PROGRAMPROCEDURE

If file TRANcontains inputtransformations, theyarecopiedto file TEMP.Transformationsareassembled
in coreandthen written to TEMP.FinallyTEMPandTRANarerewound,theoutputtransformationcount
is written to TRAN,and the text on TEMP is copiedto TRAN.

A transformation is assembled in the following way: Null initial and final translations and an identity
matrix are initialized.The user is asked for an initial translation.Rotation input is explained to the user.
Rotations are input,as an axis codeand then an angle. Eachrotation is set up and multipliedinto the ac-
cumulated rotation matrix.A choiceof zero for the axis codeends rotation input. Finally the useris asked
for a final translation.

Entering an empty line at any stage is indicated by a false value for DATA. This causes the current
transformation to be written to TEMP and then the TRANoutput is prepared.(An empty line when an
initial translation is requested will not write an identity transformationto TEMP.)

7.2.5 MAIN-PROGRAMERRORCONDITIONS

none

37

7.3 MSHNRM

MSHNRM is a program which computes intersection normals where the mesh lines defined by a set of coor-
dinate values touches a surface model.

7.3.1 FILES

The file list for MSHNRM is the following: MSH, SRF, INT, NRM, OUTPUT, PATMS, TEMPPC,
TEMPRS, and TEMPRC. A mesh description is read from fffleMSH, and a set of patches is read from file
SRF. Intersection curves, which are intermediate data, are written to file INT. Normals are written to file
NRM. The mesh description is in MSH format, and the patch data is in SRF format. The output intersec-
tion curves are in CUR format, with system comments added. (There are 6 components to these curves,
rather than the usual 3; components 4 through 6 are the surface-normal direction, interpolated along the
curve.) The normals are output in NRM format. PATMS is a random-access file which stores the patches;
each patch is stored as a 48-word binary record. TEMPPC is a sequential-access file which stores the
intersection-curve segments for the current orientation of intersection planes as 24-word binary records.
Files TEMPRS and TEMPRC are used only when intersecting rectangular coordinate patches with a cylin-
drical coordinate mesh. TEMPRS is a sequential-access ffflewhich stores patches with RADIUS appended
as the fourth coordinate; each patch is stored as a 64-word binary record. TEMPRC is a sequential-access
file which stores intersection curves with RADIUS appended as the seventh coordinate; each curve seg-
ment is stored as a 28-word binary record.

Within the program, MSH is referred to as unit 1. SRF is referred to as unit 2. INT is referred to as unit 3.
NRM is referred to as unit 4. Files PATMS and TEMPPC are respectively referred to as units 5 and 7.
OUTPUT is referred to as unit 6. Files TEMPRS and TEMPRC are respectively referred to as units 8 and 9.

7.3.2 ROUTINES CALLED

MSHNRM uses the following routines: COS, DATE, GETMSH, GETPAT, MSHOPT, PLNCUR, PLNSRF,
RADCUR, RADCUT, RADINT, RADSRF, SIN, SYSTEM, and TIME. Functions COS and SIN and
Subroutines DATE, SYSTEM and TIME are from the Fortran library; they are documented in the Fortran
manual. Subroutines GETMSH (see Section 8.30 below), GETPAT (8.31), MSHOPT (8.42), PLNCUR (8.55),
PLNSRF (8.56), RADCUR (8.61), RADCUT (8.62), RADINT (8.63), and RADSRF (8.64) are part of
MASTER, from the SUBS group.

7.3.3 METHOD

MSHNRM starts by writing an introductory message, reading the mesh input, and then reading the patch
input. The normals are calculated by first fitting intersection curves to the surface, where a first coor-
dinate is held constant at mesh values, and then cutting the intersection curves where a second coordinate
is held constant at mesh values. The intersection curves contain the 3 surface-normal components as well
as the position coordinates.

7.3.4 MAIN-PROGRAM PROCEDURE

Variables NXINT, KXINT, NXCUT and KXCUT control the sequence of intersections and cuts. Each orien-
tation is identified by the coordinate which is held constant. NXINT intersections are used: KXINT(1) to
KXINT(NXINT). The current intersection orientation is stored as IXINT. For each IXINT value,
NXCUT(IXINT) cutting orientations are used: KXCUT(1,IXINT) to KXCUT(NXCUT(IXINT), IXINT).

For each orientation, a plane is defined for each mesh value by requiring that a linear function of the coor-
dinates must equal zero. This linear function is defined by a 4-element array: PLNINT or PLNCUT. The
plane is defined such that

PLN(1)*X(1) + PLN(2)*X(2) + PLN(3)*X(3) + PLN(4)= 0.
The accuracy of the planar intersector is controlled by the tolerance value, TOLINT. This is set by default
to 10. 4, which is tighter than the value listed in the user's manual by a factor of 10. This default value can
be overridden by including a namelist in the mesh input options on file MSH.

38

Variable LSTOPT controls detailed listing output which is build into the code. The greater value LSTOPT
takes, the more details are listed:

1. LSTOPT = 0givesjustasummaryofthenumberofPC-segmentsrepresentingintersectioncurves
from each intersection orientation and the number of normals resulting from cutting these curves.

2. LSTOPT = 1 is the default. It adds a table of the intersection normals, listing the position,
-- surface-normal direction, and indices for the normal, for the PC-curve which generated this normal,

and for the patch which generated the PC-curve.
3. LSTOPT = 2 adds to the intersection-normal table a column listing which root of the cubic equa-

tion for the cut generated each normal. It also adds totals of PC-curves and normals for each
interseection location.

4. LSTOPT = 3 adds a listing of each cut location.
5. LSTOPT = 4 adds internal details of the intersection computations whenever a possible error is

detected.
6. LSTOPT = 10 adds these internal details for all intersections.
7. LSTOPT = 11 adds the cubic polynomial for each cut.
8. LSTOPT = 100 adds internal details of the approximation of each intersection by a set of PC

curves.

The intersection curves are an interpolation from the discrete points on the intersection which are given by
subroutine PLINT. The tangent direction at these points is well defined, but the tangent magnitudes are
not. A pair of methods are implemented for scaling these tangents: The Ferguson-Phillips method, the
default, determines tangent magnitudes to minimize the mean 2nd derivative magnitude along the curve.
Locally-explicit scaling makes the tangent component at one endpoint pointing towards the other endpoint
have a magnitude equal to the distance between the points; this makes the locally-rotated position compo-
nent along this line a linear function of the parameter, so the remaining locally-rotated components are ex-
plicitly cubic functions of the first component. Locally explicit scaling can be selected by setting TANSCL
from the default of 2 to 1, in the namelist for MSH option input.

7.3.5 MAIN-PROGRAM ERROR CONDITIONS

The following conditions will cause the main program to abort:
1. Bad input data
2. Over 100 failures to intersect an individual patch with a plane
3. A request to intersect a cylindrical-coordinate mesh with rectangular-coordinate patches (This

capability is planned, but not yet implemented.)

7.4 NRMCFD

NRMCFD is a program which combines mesh and intersection-normal data to form a CFD input file. It also
sorts, aligns and removes duplications from the input data.

7.4.1 FILES

The file list for NRMCFD is the following: MSH, NRM, OLDCFD, NEWCFD, and OUTPUT. A mesh
description is read from file MSH, and a set of intersection normals is read from file NRM. The mesh
description is in MSH format, and the normals are in NRM format. The first 80 columns of text data from
file OLDCFD are read, until a mesh or normal keyword from CFD format are detected or until the data
ends. The combined data is written to file NEWCFD, in CFD format.

Within the program, OUTPUT is referred to as unit 6. MSH, NRM, and OLDCFDare respectively referred
to as units 1, 2, and 3. NEWCFD is referred to as unit 4.

7.4.2 ROUTINES CALLED

NRMCFD uses the following routines: CHECK, CHKNRM, DATE, EOF, GETMSH, KOMSTR,MSHOPT,
SYSTEM, TIME, UNIQRN, and VERRN. Function EOF and Subroutines DATE, SYSTEM, and TIME are

39

k

from the Fortran library; they are documented in the Fortran manual. Subroutines CHECK (see Section
8.6 below), CHKNRM (8.7), GETMSH (8.30), KOMSTR (8.38), MSHOPT (8.42), UNIQRN (8.91), and
VERRN (8.94) are from the SUBS group of MASTER.

7.4.3 METHOD

NRMCFD starts operation by writing an introductory message. The header data is copied from OLDCFDto
NEWCFD. The mesh data is read, the mesh values are sorted, duplicate values are removed, and the mesh
data is written to NEWCFD. The normals are read into core. The range of THETA is corrected to agree
with the mesh values. Coordinates within a tolerance of a corresponding mesh value are shifted to the
exact mesh value. Normals with duplicate positions are removed. Normals which do not match at least two
mesh values are removed. The remaining normals are sorted and written to NEWCFD.

7.4.4 MAIN-PROGRAM PROCEDURE

All mesh and normal data are handled as in-core arrays.

7.4.5 MAIN-PROGRAM ERROR CONDITIONS

Missing mesh or normal input are the only error conditions detected by the main program. (Bad input data
and sorting errors can be detected by its subroutines.) These conditions will abort the
program.

7.5 NRMREV

NRMREV is a program which reverses the normal direction of a file of intersection normals.

7.5.1 FILES

The file list for NRMREV is the following: OLDNRM, NEWNRM, and OUTPUT. Intersection normals in
NRM format are read from file OLDNRM, and normals are written to file NEWNRM in NRM format. A
message introducing the program is written to file OUTPUT.

Within the program, OUTPUT is referred to as unit 6. OLDNRM and NEWNRM are respectively referred
to as units I and 2.

7.5.2 ROUTINES CALLED

NRMREV calls the following routines: CHECK,DATE, and TIME. Subroutines DATE and TIME are from
the Fortran library they are documented in the Fortran manual. Subroutine CHECK (see Section 8.6
below) is from the SUBS group of MASTER.

7.5.3 METHOD

An individual normal is read, all 3 normal components are negated, and the normal is written. This is
repeated until the input ends.

7.5.4 MAIN-PROGRAM PROCEDURE

OLDNRM is rewound and any input comments are listed to OUTPUT. OLDNRM is rewound again and the
normals are copied, with reversal, to NEWNRM. (Comments are copied with the normals.)

7.5.5 MAIN-PROGRAM ERROR CONDITIONS

NRMREV will not abort under any known conditions.

4O

7.6 REGSIL

REGS]L is a program which reads a set of point strings representing curves, computes a new set of point
strings representing the same curves, and writes a surface description based upon the new curve set. Each
string in the new set has the same relative spacing, which is selected to minimize interpolation errors. The
new strings have the least number of points required to preserve the curve shapes, within a tolerance.

REGSIL is very expensive to execute. SELECT should be used instead. (See Appendix E.3 in Reference 7.)

7.6.1 FILES

The file list for REGS]L is the following: OLDSIL, OPTION,NEWS]L, and OUTPUT. Section curves in the
simplified SIL format described in Section 7.3.2 of the MASTER user's manual are read from file OLDSIL.
Program-control options are read from file OPTION, as described in Section 7.4.1.5 of the user's manual. A
surface description in S]L format is written to file NEWS]L. Printer-formatted listing data is written to
file OUTPUT.

File OLDSIL is referred to as unit 2 within the program. OPTION is referred to as unit 3. NEWSIL is re-
ferred to as unit 4. OUTPUT is referred to as unit 6.

7.6.2 ROUTINES CALLED

REGSIL uses the following routines: DATE, ENRICH, EOF, ORDER, READ, SYSTEM, TIME, VARKNT,
and XTRACT. Function EOF and subroutines DATE, SYSTEM, and TIME are from the Fortran library;
they are documented in the Fortran manual. Subroutines ENRICH (see Section 8.26 below), ORDER (8.47),
READ (8.66), and XTRACT (8.100) are from the SUBS group of MASTER; subroutine VARKNT (8.93) is
from the LIBS group.

7.6.3 METHOD

SIT, sections are input first. Optimal placements of a given number of knots are found for successive
numbers of interior knots, until the input tolerance is satisfied. Finally a SIL block based upon the new
knot placements is output.

7.6.4 MAIN-PROGRAM PROCEDURE

Subroutine READ is called to read the input sections. In a loop over the number of interior knots,
Subroutine VARKNT is called to compute optimal knot placements. (Subroutine ENRICH can be used to
add more points to the input curves and thus remove interlacing deficiencies.) This loop is exited when the
maximum error is within the tolerance. Subroutine ORDER sorts the knot locations. Subroutine XTRACT
writestheoutputS]Ldata.

7.6.5MAIN-PROGRAM ERROR CONDITIONS

Thisprogramrunsfora longtime,sotimelimitsarethemostfrequenterrorencountered.

7.7SILSRF

S]LSRF isa programwhichreadsa surfacedescriptionand computesa setofpatcheswhichmodelsthe
describedsurface.

7.7.1FILES

The filelistforS]LSRF isthefollowing:OLDS]L,NEWS]L, SRF,andOUTPUT. A surfacedescriptionis
readfromfileOLDS]L,inSILformat.ThisdataiscopiedtofileNEWS]L, rewritteninS]Lformatwith
systemcomments.The surfacemodelisoutputon fileSRF,inSRF format.An introductorymessage,a
patchcountfromeachS]Lblockinput,andoptionaldump outputformstheprinterinformation,whichis
writtentoOUTPUT.

41

Within the program, OLDSIL is referred to as unit 1. NEWSIL is referred to as unit 2. SRF is referred to as
unit 3. OUTPUT is referred to as unit 6.

7.7.2 ROUTINES CALLED

SILSRF uses the following routines: CHECK, CURPAR, CURSLP, DATE, DBCLOS, DBOPEN, DSMAP,
ENDMAP, ESGET, ESPUT, ISDMS, SILCPY, SILOPT, SVMAP, SYSTEM, TIME, and WRIPAT.
Subroutines DATE, SYSTEM, and TIME are from the Fortran libarary; they are documented in the For-
tran manual. Subroutines DBCLOS, DBOPEN, DSMAP, ENDMAP, ESGET, ESPUT, ISDMS, and SVMAP
are part of the SDMS data-manager library; they are documented in the SDMS manual. Subroutines
CHECK (see Section 8.6 below), CURPAR (8.18), CURSLP (8.19), SILCPY (8.73), SILOPT (8.74), and
WRIPAT (8.98) are from the SUBS group of MASTER.

7.7.3 METHOD

Input options are processed first, the SIL input is copied with system comments added, and rewound. The
input options are read past again. Then input SIL blocks are used to create patches until there is no more
input. Each block is processed as it appears: section group, then member group, and finally patch group.

7.7.4 SDMS DATA MANAGEMENT

The data structure is predefined, according to the text in file SILDBD. SDMS program DDP uses this text
to create a data-definition binary file, ZZZSIL. During execution, the data is stored on direct-access files
ZZZSIL1, ZZZSIL2, ZZZSIL3, and ZZZSKA. The SDMS working space, array BUFR, is initialized by
subroutine ISDMS. A new database is opened by subroutine DBOPEN for each SIL block. Map "KNOTS" is
associated with data set "KNOTSET ", for section-knot data; map "CPTS" is associated with data set
"CPSET", for corner-point data. These maps are defined by a sequence of subroutine calls: DSMAP,
SVMAP, and then ENDMAP. The maps link in-core variables with corresponding fields of an arbitrary
data-set element and the key values identifying the element. The key and data values are placed in the pro-
per in-core variables, and then elements are added to the data set with a call to Subroutine ESPUT. When
data is to be retreived, the key values are placed in their in-core variables, and ESGET is called; the data
values then appear in their in-core variables. Subroutine DBCLOS closes the database. The data-deirmition
options cause the database to be deleted upon closing.

7.7.5 MAIN-PROGRAM PROCEDURE

SILSRF begins operation with an introductory message. The SIL input is copied, checked, and reformat-
ted. The input is rewound, and the SIL options are read. A SDMS database, to store section-knot and
corner-point (i.e., member knot) data, is initialized. Patches are created independently from each block of
SIL data.

For each block, the section-point positions are fitted with parametric cubic tension splines to give tangent
vectors at the section knots. The position and tangent data is stored in the database. Next the member
points are processed. Position and section-tangent vectors are retreived from the database. The positions
are fitted with sp]ines to give tangent vectors along the members, at the corner points. The corresponding
section tangents are fitted with splines to give twist vectors (i.e., cross derivatives). The member tangent
and twist data is stored along with section-knot index data in the database. Finally the patch, specifications
are processed. Data for the corner points is retreived, along with the corresponding section-knot data. The
derivatives are scaled, and the patch is written out.

Before splines are fit, parameter values are assigned to each curve, in proportion to the chord length be-
tween adjacent points. This parameterization ranges from 0 to 1 over a complete curve. The parameter
values are stored in the database. The derivatives which are retreived are scaled to give a parameter dif-
ference of 1.0 between adjacent knots, increasing their values. (This causes the opposite sides of a patch to
be scaled differently, but a shared patch boundary is scaled identically in beth patches.)

42

7.7.6 MAIN-PROGRAMERRORCONDITIONS

A prematureend to the SIL input will cause SILSRFto abort, as will a SDMS-detectederror.

7.8 SRFINT

- SRFINT is a program which computesthe curves wherea pair of surface models intersect each other.

7.8.1 FILES

The file list forSRFINTis the following:TAPE7,INPUT,OUTPUT,TAPE1,TAPE2,TAPE3,andTAPE4.
The pair of surface models are read from TAPE1and TAPE2;they are in SRF format. These surface
models are stored on TAPE3and TAPE4respectively;they are sequential-accessbinary files containing
48-wordrecords.Program-controloptions can be read from INPUT, in the format described in Section
7.4.2.5 of the MASTERuser'smanual. (Otherwisethe default optionsare used.)Printer-formattedlisting
data is written to OUTPUT.The intersection curves are written to TAPE7, in the format described in
Section 7.3.1 of the user'smanual.

Files INPUTandOUTPUTare respectivelyreferred to within the programas units 5 and 6.

7.8.2 ROUTINES CALLED

SRFINTcalls the followingroutines:CLOSCV,DATE,DBCLOS,DSMAP,ENDMAP,ESSOPN,ESSPUT,
GETPAT,ISDMS, OPENCV,SETI_OL,SUFFER, SUFINT, SVMAP, SYTEM,TIME,and WRTCRV.
SubroutinesDATE,SYSTEMandTIMEarefromthe Fortran library;they aredocumentedin theFortran
manual. SubroutinesDBCLOS,DSMAP,ENDMAP,ESSOPN,ESSPUT,ISDMS,and SVMAPare fromthe
SDMS library;they are documentedin the SDMSmanual.SubroutinesCLOSCV(see Section 8.8 below),
GETPAT(8.31),OPENCV(8.46),SETTOL(8.72),SUFFER(8.84),and WRTCRV(8.98)are fromthe SUBS
part of MASTER;SubroutineSUFINT(8.85) is from the LIBS part.

7.8.3 METHOD

SRFINTstarts operationwith an introductorymessage.Theworkingspaceforthe databasemanager is in-
itialized, the database is opened,and the map from the database to correspondingin-corevariablesis de-
fined. Thepatchsets representingboth surfacesare read.A doubleloop computesthe intersectionof each
combinationof a patch fromone surfaceand a patch fromthe othersurface.Eachintersectionconsists of
one or morebranches,which are disconnectedfromeachother.Eachbranchis stored in the database,and
its endpointsare storedwithin an in-coretable.Next, connectionsbetweenbranchesare addedto the table,
by matching endpoint positions.Finally, the connectedcurves,both open andclosed, are output.

7.8.4 SDMS DATA MANAGEMENT

The data structureis predefined,accordingto the text in file IBRDBD.SDMSprogramDDPuses this text
to create a data-definitionbinaryfile, ZZZIBR.Duringexecution,the data is storedon direct_accessfiles
ZZZIBR1,ZZZIBR2,ZZZIBR3,and ZZZIBR4.The SDMSworkingspace, arrayWORK,is initializedby
subroutineISDMS.Map'_RANCHMAP"is associatedwithdata set '_BRANCHES".Thismap is definedby
a series of subroutinecalls:DSMAP,SVMAP,and then ENDMAP.Themap linksan in-corearray withan
arbitrarydata-set elementsequenceandthe key values identifyingthe sequence.The key and datavalues
areplacedin the properin-corevariables,andthenan elementsequenceis addedto the data set witha call
to subroutineESSPUT.Whendata is to be retrieved,the key values areplacedin their in-corevariables,
and ESSGET is called; the sequence then appears in its in-core array. Subroutine DBCLOS closes the
database. The data-definitionoptions cause the data base to be deleted uponclosing.

7.8.5 MAIN-PROGRAMPROCEDURE

The procedureis explainedin the main-programcomments.

43

7.8.6 MAIN-PROGRAM ERROR CONDITIONS

At most 200 inserscction branches can be handled by the endpoint table; overflow will cause the program
to abort. Errors in reading patch data and SDMS-detected errors will also cause it to abort.

7.9 TRNSIL

TRNSIL is a program which transforms the coordinates within a surface description. It can convert cylin-
drical coordinates to or from rectangular coordinates. It can perform rotations and translations on rec-
tangular coordinates.

ThesourcecodeforTRNSIL wasprecompiledfromTRANSFOR structuredpseudocode.
r,

7.9.1FILES

The filelistforTRNSIL isthefollowing:INPUT, OUTPUT, G, TRAN, and NEWG. FilesINPUT and
OUTPUT areconnectedtotheterminal(orbatchinputand output).Transformationselectionsareread
fromINPUT afterpromptingmessagesarewrittentoOUTPUT. Thesurfacedescriptionisreadfromfile
G, inSIL format.The transformedsurfacedescriptioniswrittentofileNEWG inSIL formatand with
systemcomments.

Withintheprogram,G isreferredtoasunit1.NEWG isreferredtoasunit2.TRAN isreferredtoasunit
3.INPUT and OUTPUT arerespectivelyreferredtoasunits5 and 6.

7.9.2ROUTINES CALLED

The main programforTRNSIL usesthefollowingroutines:DATE, GETRAN, MEMGRP, PATGRP,
SECGRP, SYSTEM, and TIME. SubroutinesDATE, SYSTEM, and TIME arefromtheFortranlibrary;
theyaredocumentedintheFortranManual.SubroutinesGETRAN (seeSection7.9.5below),MEMGRP
(7.9.10),PATGRP (7.9.11),andSECGRP (7.9.9)arefromtheMAIN groupofMASTER; theyarefoundin
UpdatedeckTRNSIL.

7.9.3METHOD

TRNSIL beginsoperationwith an introductorymessage.It getsthe transformationselection.It
transformsthe3 partsofa SILblockintheorderthattheyappear:firstthesectiongroup,themember
group,andthenthepatch-specificationgroup.

7.9.4MAIN-PROGRAM ROUTINE

7.9.4.1Description

TRNSIL callssubroutinestoperformeachstepofoperation.Itwillabortonlyifa subroutinedetectsan
error.

7.9.4.2 Common Data

none

7.9.5 SUBROUTINE GETRAN

Gets the transformation selection from the user and reads the selected transformation from file TRAN

7.9.5.1 Parameter List

1. LIN [In, INTEGER scalar]
Logical unit for file INPUT

44

2. LOUT[In, INTEGER scalar]
Logicalunit for file OUTPUT

3. LTRAN [In, INTEGER scalar]
Logical unit for file TRAN

4. OK [Out, LOGICALscalar]
Error flag

7.9.5.2 Common Data

COMMON /TRNDEF/ RECPOL, POLREC, DELTAI(3), ROT(3,3),
DELTAO(3)

7.9.6 SUBROUTINERDTRN

Reads a selected transformation from file TRAN

7.9.6.1 Parameter List

1. LOUT[In, INTEGERscalar]
Logicalunit for file OUTPUT

2. LTRAN[In, INTEGERscalar]
Logicalunit for file TRAN

3. 1TRAN[In, INTEGERscalar]
Index for the desiredtransformation

4. DELTAI[Out,REAL(3)]
Inital translation

5. ROT[Out,REAL(3,3)]
Rotationmatrix

6. DELTAO[Out,REAL(3)]
Final translation

7. OK[Out,LOGICALscalar]
Errorflag

7.9.6.2 Common Data

none

7.9.7 SUBROUTINE FNDTRN

Finds the desired transformation,by skippingpast the precedingones

7.9.7.1 Parameter List

1. LOUT[In, INTEGERscalar]
Logicalunit for file OUTPUT

2. ITRAN [In, INTEGER scalar]
Index for the desired transformation

3. OK [Out, LOGICALscalar]
Error flag

7.9.7.2 Common Data

none

7.9.8 SUBROUTINE CHKROT

Checks a rotation matrix for orthogonality, to within a tolerance

45

7.9.8.1 Parameter List

1. LOUT[In,INTEGERscalar]
LogicalunitforOUTPUT

2. N [In,INTEGER scalar]
Matrixsize

3. ROT [In, REAL(3,3)]
Rotationmatrix

4. OK[Out,LOGICALscalar]
Flag for orthogonalityof the matrix

7.9.8.2 Common Data

none

7.9.9 SUBROUTINE SECGRP

Transforms the section group of a SIL block

7.9.9.1 Parameter List

i. LOUT [In,INTEGER scalar]
LogicalunitforfileOUTPUT

2. LGIN [In,INTEGER scalar]
LogicalunitforfileG

3. LGOUT [In,INTEGER scalar]
LogicalunitforfileNEWG

4. OK [Out,LOGICAL scalar]
Errorflag

7.9.9.2Common Data

none

7.9.10 SUBROUTINE MEMGRP

Transforms the member group of a SIL file

7.9.10.1 Parameter List

1. LOUT [In, INTEGER scalar]
LogicalunitforfileOUTPUT

2. LGIN [In,INTEGER scalar]
LogicalunitforfileG

3. LGOUT [In,INTEGER scalar]
LogicalunitforfileNEWG

4. OK [Out,LOGICAL scalar]
Errorflag

7.9.10.2Common Data

none

7.9.11 SUBROUTINE PATGRP

Copies the patch group of a SIL file

46

7.9.11.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGIN [In, INTEGER scalar]
Logical unit for file G

3. LGOUT [In, INTEGER scalar]
Logical unit for file NEWG

4. OK [Out, LOGICALscalar]
Error flag

7.9.11.2 Common Data

none

7.9.12 SUBROUTINE SEC

Transforms a single section

7.9.12.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGIN[In,INTEGERscalar]
LogicalunitforfileG

3. LGOUT[In,INTEGERscalar]
Logical unit for file NEWG

4. ISEC [In, INTEGER scalar]
Section index

5. OK [Out, LOGICAL scalar]
Error flag

7.9.12.2 Common Data

none

7.9.13 SUBROUTINE MEM

Transforms a single member

7.9.13.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGIN [In, INTEGER scalar]
Logical unit for file G

3. LGOUT [In, INTEGER scalar]
Logical unit for file NEWG

4. IMEM [In, INTEGER scalar]
Member index

5. OK [Out, LOGICAL scalar]
Error flag

7.9.13.2 Common Data

COMMON /SECKNT/ NKNOT(27), XKNOT(3,29,27)

47

7.9.14 SUBROUTINEREADEC

Reads the end condition for either a section or a member

7.9.14.1 Parameter List

1. LOUT[In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGIN [In, INTEGER scalar]
Logical unit for file G

3. LGOUT[In, INTEGERscalar]
Logical unit for file NEWG

4. IENDF [Out, INTEGER scalar]
End-condition code

5. ENDD [Out, REAL(3,2)]
Inital and final tangent vectors

6. OK-[Out,LOGICALscalar]
Error flag

7.9.14.2 Common Data

none

7.9.15 SUBROUTINEWRITEC

Transformsand writes the end conditionfor either a section or a member

7.9.15.1 Parameter List

1. LOUT[In, INTEGERscalar]
Logical unit for file OUTPUT

2. LGOUT[In, INTEGERscalar]
Logicalunit for file NEWG

3. IENDF[In, INTEGERscalar]
End-conditioncode

4. ENDD[In, REAL(3,2)]
Initial and final tangent vectors

5. XFIRST[In, REAL(3)]
Inital position

6. XLAST[In, REAL(3)]
Final position

7. OK[Out,LOGICALscalar]
Error flag

7.9.15.2 Common Data

none

7.9.16 SUBROUTINEREADSP

Reads the string of points for a section

7.9.16.1 Parameter List
1. LOUT[In, INTEGER scalar]

Logical unit for i_ileOUTPUT
2. LGIN[In, INTEGER scalar]

Logical unit for file G

48

3. LGOUT [In, INTEGER scalar]
Logical unit for file NEWG

4. NPTS [Out, INTEGER scalar]
Number of points

5. XPT [Out, REAL(3,53)]
Coordinates

6. TENSE [Out, REAL(53)]
Tension values

7. ISKNOT [Out, INTEGER(53)]
Knot flags

8. OK [Out, LOGICAL scalar]
Error flag

7.9.16.2 Common Data

none

7.9.17 SUBROUTINE READMP

Reads the string of points for a member

7.9.17.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGIN [In, INTEGER scalar]
Logical unit for file G

3. LGOUT [In, INTEGER scalar]
Logical unit for file NEWG

4. NPTS [Out, INTEGER scalar]
Number of points

5. ISKNOT [Out, INTEGER(27)]
Section-knot indices

6. ISEC [Out, INTEGER(27)]
Section indices

7. TENSE [Out, REAL(27)]
Tension values

8. IMKNOT [Out, INTEGER(27)]
Knot flags

9. OK [Out, LOGICAL scalar]
Error flag

7.9.17.2 Common Data

none

7.9.18 SUBROUTINE WRITSP

Transforms and writes the string of points for a section

7.9.18.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGOUT [In, INTEGER scalar]
Logical unit for file NEWG

49

3. NPTS [In, INTEGER scalar]
Number of points

4. XPT [In, REAL(3,53)]
Untransformed coordinates

5. TENSE [In, REAL(53)]
Tension values

6. JSKNOT [In, INTEGER(53)]
Knot flags

7. OK [Out, LOGICAL scalar]
Error flag

7.9.18.2 Common Data

COMMON /TRNDEF/ RECPOL, POLREC, DUMMYI(3), DUMMY2(3,3),
DUMMY3(3)

COMMON /BRANCH/ THOLD

7.9.19 SUBROUTINE WRITMP

Copies the point string for a member

7.9.19.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. LGOUT [In, INTEGER scalar]
Logical unit for file NEWG

3. NPTS [In, INTEGER scalar]
Number of points

4. ISKNOT [In, INTEGER(27)]
Section-knot indices

5. ISEC [In, INTEGER(27)]
Section indices

6. TENSE [In, REAL(27)]
Tension values

7. JMKNOT [In, INTEGER(27)]
Knot flags

8. OK [Out, LOGICAL scalar]
Error flag

7.9.19.2 Common Data

none

7.9.20 SUBROUTINE SEQKNT

Adjusts the knot flags for either a section or a member curve to show the ordering of the knots

7.9.20.1 Parameter List

I. NPTS [In,INTEGER scalar]
Number ofpointsincurve

2. ISKNOT [In, INTEGER(53)]
Unsequenced knot flags

3. JSKNOT [Out, INTEGER(53)]
Sequenced knot flags

5O

7.9.20.2 Common Data

none

7.9.21 SUBROUTINE SAVKNT

Saves the knot coordinates from a section, for use when transforming member end directions

7.9.21.1 Parameter List

1. LOUT [In, INTEGER scalar]
Logical unit for file OUTPUT

2. ISEC [In, INTEGER scalar]
Index for this section

3. NPTS [In, INTEGER scalar]
Number of points in this section

4. XPT [In, REAL(3,53)]
Section-point coordinates

5. JSKNOT [In, INTEGER(53)]
Knot flags for this section

6. OK [Out, LOGICAL scalar]
Error flag

7.9.21.2 Common Data

COMMON /SECKNT! NKNOT(27), XKNOT(3,29,27)

7.9.22 SUBROUTINE CHECK

Finds the next data line in the input file: System comment lines are skipped, and user comment lines are
copied to an output file.

7.9.22.1 Parameter List

1. LIN [In, INTEGER scalar]
Logical unit for input file

2. LOUT [In, INTEGER scalar]
Logical unit for output file to which the user comments are copied

3. DATA [Out, LOGICAL scalar]
Flag indicating that a data line was found before the end-of-file was reached

7.9.22.2 Common Data

none

7.9.23 SUBROUTINE TRAN

Transforms position vectors and (optionally) tangent vectors

7.9.23.1 Parameter List

1. XI [In, REAL(3)]
Untransformed position vector

2. DXI [In, REAL(3)]
Untransformed tangent vector

3. SLOPES [In, LOGICAL scalar]
Flag to transform the tangent vector

51

4. XO[Out,REAL(3)]
Transformed position vector

5. DXO [Out, REAL(3)]
Transformed tangent vector

6. OK [Out, LOGICAL scalar]
Error flag

7.9.23.2 Common Data

COMMON fI_RNDEF/ RECPOL, POLREC, DUMMY1(3), DUMMY2(3,3),
DUMMY3(3)

7.9.24 SUBROUTINE LINEAR

Performs linear transformation of position and (optionally) tangent

7.9.24.1 Parameter List

1. XI [In, REAL(3)]
Untransformed position vector

2. DXI [In, REAL(3)]
Untransformed tangent vector

3. SLOPES [In, LOGICAL scalar]
Flag to transform tangent

4. XO [Out, REAL(3)]
Transformed position vector

5. DXO [Out, REAL(3)]
Transformed tangent vector

7.9.24.2 Common Data

COMMON frRNDEF/ DUMMY(2), DELTAI(3), ROT(3,3), DELTAO(3)

7.9.25 SUBROUTINE RTOP

Converts 2-D rectangular coordinates to polar coordinates

7.9.25.1 Parameter List

1. X [In, REAL scalar]
The rectangular coordinate that points in the THETA = 0 degrees direction

2. Y [In, REAL scalar]
The rectangular coordinate that points in the THETA = 90 degrees direction

3. R [Out, REAL scalar]
Radial polar coordinate

4. THETA
[Out, REAL scalar]
Angular polar coordinate, in degrees

7.9.25.2 Common Data

none

7.9.26 SUBROUTINE PTOR

Converts2-Dpolarcoordinatestorectangularcoordinates

52

7.9.26.1 Parameter List

1. R [In,REAL scalar]
Radialpolarcoordinate

2. T [In,REAL scalar]
Angularpolarcoordinate,indegrees

3. X [Out,REAL scalar]
The rectangularcoordinatethatisproportionaltoCOS(THETA)

4. Y [Out,REAL scalar]
The rectangularcoordinatethatisproportionaltoSIN(THETA)

7.9.26.2 Common Data

none

7.9.27 SUBROUTINE ROTATE

2-D rotation of rectangular coordinates

7.9.27.1 Parameter List

1. XIN [In,REAL scalar]
Unrotatedrectangularcoordinate

2. YIN [In,REAL scalar]
Unrotatedrectangularcoordinate

3. ANGLE [In,REAL scalar]
Angleofrotation,indegrees

7.9.27.2 Common Data

none

53

8.0 SYSTEMLIBRARY

This section describes the code in the MASTERsystem library.Eachroutineis foundin either the SUBS
part of MASTERor the LIBSpart, in an Update deckwith the same name as the routine.

8.1 SUBROUTINEARRSRT(from LIBS)

Sorts the elements of a real arrayin ascendingorderand creates a key array

8.1.1 PARAMETERLIST

1. N [In,INTEGERscalar]
Numberof values to sort

2. A [In/Out,REAL(*)]
Arrayof real values to be sorted in place

3. KEY[In/OutINTEGER(*)]
Arrayof integer values which is rearranged to match A

8.1.2 COMMONDATA

none

8.2 SUBROUTINE BICCOF (from LIBS)

Converts a bicubic function from geometric representation to algebraic representation

8.2.1 PARAMETER LIST

1. P [In, REAL(16)]
Geometric representation of the bicubic function: Effectively allocated REAL(4,4). P(1,1) is the (U,V)
= (0,0) value; P(1,2) is the (1,0) value; P(2,1) is the (0,1) value; and P(2,2) is the (1,1) value. P(3,1),
P(3,2), P(4,1), and P(4,2) are the corresponding V-derivatives. P(1,3), P(1,4), P(2,3), and P(2,4) are the
corresponding U-derivatives. P(3,3), P(3,4), P(4,3), and P(4,4) are the corresponding cross-derivatives.

2. BC [Out, REAL(4,4)]
Algebraic representation of the bicubie function: BC(I,J) is the coefficient of U(4_1)* V(4"I).

8.2.2 COMMON DATA

none

8.3 SUBROUTINEBRCOEF(from LIBS)

From SubroutineSUFINT, generates Bernstein coefficients for a patch (or for a part of a subdivided
patch):One spatial componentis processedwith each call to BRCOEF.

8.3.1 PARAMETERLIST

1. SVAL [In, REAL(2)]
U values bounding the subpatch

2. TVAL[In, REAL(2)]
V values boundingthe subpatch

3. PATCH[In,REAL(16)]
Geometricrepresentation of the bicubicfunction (Actually a single bicubic function): Effectively
allocatedREAL(4,4).P(1,1)is the (U,V) = (0,0)value;P(1,2)is the (1,0)value;P(2,1)is the (0,1)value;
and P(2,2) is the (1,1) value. P(3,1), P(3,2), P(4,1), and P(4,2)are the correspondingV-derivatives.
P(1,3),P(1,4),P(2,3), andP(2,4)are the correspondingU-derivatives.P(3,3),P(3,4), P(4,3),andP(4,4)
are the corresponding cross-derivatives.

54

4. VET [Out, REAL(16)]
Bicubic coefficients for Bernstein representation: This is called VERT in Subroutine
SUFINT.

8.3.2 COMMON DATA

none

8.4 SUBROUTINEBRINT (from LIBS)

Within SubroutinePLINT,determinesthe S values in the regionof interest at 'which the bicubichas a
double root, by using utility SubroutineHSZEROto root the resultant function that is calculated by
Function DISVAL

8.4.1 PARAMETER LIST

1. TOL [In, REAL(2)]
Array containing the user-specified tolerance: TOL(1) is the input tolerance. TOL(2) is computed by
PLINT and is used as a lower limit for the stepsize.

2. IRT [In, INTEGER(3)]
Array containing the subscripts of the roots of a cubic equation: U(IRT(1))is the real root found via a
Newton iterative scheme; U(_IRT(2))and U(IRT(3))are the roots found from the quadratic factor.

3. VBND [In, REAL(2)]
Vertical (S) boundaries to the region of interest

4. ANS [Out, REAL(15)]
Array containing the S values at which the bicubic has a double root for T: This is defined
only when NDEG is 3.

5. NA [Out, INTEGER scalar]
Number of values in ANS

6. BB [Out, REAL(3)]
Array containing S values where the bicubic is degenerate (i.e., The polynomial in T at these S values
has degree less than 3.)

7. NBB [Out, INTEGER(3)] '
The degree of the polynomial in T obtained by evaluating the bicubic at the degenerate S values

8. NB [Out, INTEGER scalar]
Number of values in BB

9. NDEG [Out, INTEGER scalar]
The maximum degree of the polynomial in T obtained by evaluating the bicubic at an
arbitrary S value

10. IER [In/Out, INTEGER scalar]
Success/error code: BRINT detects IER = -6 and returns IER values from Subroutines HSZERO
(whose error codes are shifted in value) and DEGNER.

(-6) is returned when the patch is recognized as having more then the theoretical limit of
fifteen S values where T has a double root.

8.4.2 COMMON DATA

COMMON/IRPI/A(4,4)

The bicubic polynomial is input from A, in algebraic form.

8.5 SUBROUTINE CBSPN (from LIBS}

Evaluates the set of cubic B-spline functions for a set of knots at a single point

55

8.5.1 PARAMETER LIST

1. X [In, REAL(')]
Array of knots: They must be monotonically increasing.

2. N [In, INTEGER scalar]
Number of knots: This must be at least 8.

3. T [In, REAL scalar]
Value where the B-spline functions are evaluated: T must be within the closed interval
[X(4), X(N4)].

4. VAL [Out, REAL(*)]
B-spline function values: There are N-4 functions.

5. IER [Out, INTEGER scalar]
Error code: 0 if successful; -5 if T is out of range.

8.5.2 COMMONDATA

COMMON ICNTRLI IL, EPS, DELX, MODE, MAXFN, KF, KORD

IL is the only active common variable; it is set so that T lies in the half-open interval [XOL), X(IL+ 1)).

8.6 SUBROUTINE CHECK {from SUBS)

Finds the next data line on an input file: System comments are skipped, and user comments are copied to
an output file.

8.6.1 PARAMETER LIST

1. INPUT [In, INTEGER scalar]
Logical unit for the input file

2. OUTPUT [In, INTEGER scalar]
Logical unit for the output file to which user comments are copied

3. DATA [Out, LOGICALscalar]
Indicates that a data line was found before the end-of-file was reached

8.6.2 COMMON DATA

none

8.7 SUBROUTINECHKNRM(from SUBS)

Checksthat a set of intersectionnormalseach lie on a mesh line:Any normalswhich do not are removed
from the set.

8.7.1 PARAMETERLIST

1. OUTPUT[In, INTEGERscalar]
Logicalunit for listing file: Any removednormalsare listed.

2. NMSH[In, INTEGER(3)]
Number of mesh values in each set

3. MAXMSH[In, INTEGERscalar]
Length allocated to XMSHarray

4. XMSH[In,REAL(MAXMSH,3)]
Meshvalue sets for each coordinate

5. NNRM[In/Out,INTEGERscalar]
Numberof intersection normalsin the set

6. XNRM[In/Out,REAL(6,NNRM)]
Set of intersection normals

56

8.7.2 COMMONDATA

none

8.8 SUBROUTINE CLOSCV (from SUBS)

Used by Program SRFINT to connect a closed curve: The endpoint table entries for the intersection
branches are linked together.

8.8.1 PARAMETER LIST

1. L6 [In, INTEGER scalar]
Logical unit for OUTPUT

2. I [In, INTEGER scalar]
Index of the beginning endpoint in the table

3. NEND [In, INTEGER scalar]
Number of endpoints in the table

4. ICON [In, INTEGER(201)]
Where each endpoint connects: This is a table of endpoint indices, whose subscripts are also endpointindices.

5. IDONE [In/Out, INTEGER(201)]
Flags to show whether each endpoint has been connected yet: Initially 0, this is set to 1 when a con-
nection is made.

6. ICURVE [Out, INTEGER(201)]
The connected list of endpoints making up the output curve.

7. NP [Out, INTEGER scalar]
The number of endpoints in the output curve

8.8.2 COMMON DATA

COMMON /ENDTBL/ X(201), Y(201), Z(201), IPI(201), IP2(201), NBR(201)
KOUNT(201), IPOINT(201)

8.9 SUBROUTINE CONCUV (from LIBS)

Called by Subroutines REACUV and FINCUV to store surface/surface intersection branches

8.9.1 PARAMETER LIST

1. IS [In, INTEGER scalar]
2. ITYP [In, INTEGER scalar]

Type of curve to store
•3. JCRV1 [In, INTEGER scalar]

Curve index for PONT: This is for the output location and for a type-1 curve input location.
4. JCRV2 [In, INTEGER scalar]

Curve index for PONT: This in the input location for a non-type-1 curve.
5. MXJPT [In, INTEGER scalar]

Maximum number of points to be stored in a single intersection branch
6. NJCRV [In, INTEGER scalar]

Number of curves in array PONT
7. NMPT [In/Out, INTEGER(*)]

Number of points stored on each intersection branch
8. PONT [In/Out, REAL(3,MXJPT,NJCRV)]

Intersection branches, also called curves
9. IER [Out, INTEGER scalar]

Error code: This is zero for a normal exit. See Subroutine SUFINT for more details.

57

8.9.2 COMMONDATA

none

8.10 SUBROUTINE CONHUL (from LIBS)

Computesthe convexhull boundinga patch

8.10.1 PARAMETERLIST

1. TOL[In,REALscalar]
Tolerancevalue

2. NV [In, INTEGERscalar]
Numberof Bernstein coefficients:This is typically 16.

3. VERT[In,REAL(3,NV)]
Bemstein coefficients for the patch

4. NUM [Out,INTEGERscalar]
Numberof planes in the convex hull

5. NORM[Out,REAL(4,30)]
The convexhull boundingthe patch:This is a set of planes, each of the formNORM(*,J).Eachplane
is representedby the coefficients of its equation:
NORM(1,J)*X(1) + NORM(2,J)*X(2) + NORM(3,J)*X(3) + NORM(4,J) + 0.

6. IER[Out, INTEGERscalar]
Errorcode:This is zerofor a normal exit. See SubroutineSUFINT for more details.

8.10.2 COMMONDATA

none

8.11 SUBROUTINECONINT(from LIBS)

Calledby SubroutineSUFINT,determines whether a patch fromthe secondsurfaceintersects the convex
hull boundinga patch from the first surface

8.11.1 PARAMETER LIST

1. TOL[In, REALscalar]
Tolerance value

2. NUM [In, INTEGERscalar]
Number of planes in the convexhull

3. NORM[In,REAL(4,NUM)]
Theconvexhullboundingthe first-surfacepatch:This is a set of planes,eachof the form NORM(*,J).
Eachplane is representedby the coefficients of its equation:
NORM(1,J)*X(1) + NORM(2,J)*X(2) + NORM(3,J)*X(3) + NORM(4,J) + 0.

4. NV [In, INTEGERscalar]
Numberof Bernstein coefficients for the second-surfacepatch

5. VERT[in, REAL(16,3)]
Bernstein coefficients representingthe second-surfacepatch

6. INT [Out,INTEGERscalar]
Intersection code:This is 1 if the second.surfacepatch intersects the convexhull of the first surface.
Otherwisethis is 0, and there is no possibilityof the patches intersecting each other.

8.11.2 COMMONDATA

none

58

8.12 SUBROUTINECON2HL(from LIBS)

Calledby SubroutineCONHUL

8.12.1 PARAMETERLIST

1. TOL[In,REALscalar]
Tolerancevalue

2. VERT[In, REAL(3,16)]
Bemstein patch coefficients

3. TVER[Temporary,REAL(3,16)]
Arrayto store and manipulateVERTdata

4. NV [In,INTEGERscalar]
Numberof Bernstein coefficients

5. NF [In, INTEGERscalar]
6. NORM[In/Out,REAL(3)]

Normal to a polygon face
7. TNRM[In, REAL(4)]

Coefficients for a plane
8. KEY[In/Out,INTEGER(16)]

Key to rearrangeconvexhull data
9. INT [Out, INTEGERscalar]
10. NXTRM[In/0ut, INTEGERscalar]

8.12.2 Common Data

none

8.13 SUBROUTINE CRSPRD (from LIBS)

Computes the normalized cross product of a pair of vectors and the component of a third vector in this
direction

8.13.1 PARAMETER LIST

1. VEC1 [In, REAL(3)]
First vector for cross product

2. VEC2 [In, REAL(3)]
Second vector for cross product

3. VEC3 [In, REAL(3)]
Vector whose component in cross-product direction is computed

4. NORM [Out, REAL(4)]
NORM(l), NORM(2),and NORM(3) are the components of the normalized cross product. NORM(4)is
the component of VEC3 in this direction.

8.13.2 COMMON DATA

none

8.14 SUBROUTINECR1PRM(from LIBS)

Within ProgramREGSIL,computesparametervalues along a curve

8.14.1 PARAMETER LIST

1. CRV[In,REAL(NDIMC,*)]
Coordinatesof the input points andthe chord lengths along the curve.

59

2. NPTS [In, INTEGER scalar]
Number of points along the curve

3. NDIM [In, INTEGER scalar]
Number of spatial coordinates; set to 3.

4. NDIMC [In, INTEGER scalar]
Number of curve dimensions

5. P [Out, REAL(*)]
Parameter values: These are monotonically increasing. The increase is proportional to the chord
length between adjacent points. The values range from 0 to 1.

6. IER [Out, INTEGER scalar]
Error code: 0 for success; 1 if NPTS is 1; 2 if adjacent points on the curve are coincident. (When all
the points are coincident, an equally-spaced parametrization is returned.)

7. CYL [In, LOGICAL scalar]
Flag for cylindrical coordinates

8. IXAXI [In, INTEGER scalar]
Index for the axial cylindrical coordinate

9. IXRAD [In, INTEGER scalar]
Index for the radial cylindrical coordinate

10. IXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

8.14.2 COMMON DATA

none
8.15 SUBROUTINE CUBCOF {from LIBS}

Computes the bicubic polynomial for the distance from a point on a patch to the nearest point on a plane:
This function's zero curves are the plane/patch intersection slices.

8.15.1 PARAMETER LIST

1. PLN [In, REAL(4)]
Coefficients for the plane:
PLN(1)*X(1) + PLN(2)*X(2) + PLN(3)*X(3) + PLN(4) = 0.

2. P [In, REAL(16,3)]
Geometric patch representation: Effectively allocated P(4,4,3). P(*,*,K) is the K-th component of a
vector. P(1,1,*) is the (U,V) = (0,0) position; P(1,2,*) is the (1,0) position; P(2,1,*) is the (0,1) position;
and P(2,2,*) is the (1,1) position. P(3,1,*), P(3,2,*), P(4,1,*), and P(4,2,*) are the corresponding
V-derivatives. P(1,3,*), P(1,4,*), P(2,3,*), and P(2,4,*) are the corresponding U-derivatives. P(3,3,*),
P(3,4,*), P(4,3,*), and P(4,4,*) are the corresponding cross-derivatives.

3. BC [Out, REAL(4,4)]
Coefficients for the output bicubic function, in algebraic form: BCAI,J) is the coefficient of U(4_) *
V(4-I).

8.15.2 COMMON DATA

none

8.16 SUBROUTINE CUBIC(from LIBS)

Finds the roots of a cubicpolynomial

8.16.1 PARAMETER LIST

1. A [In, REAL(4)]
Arraycontainingthe coefficients of the cubic:
A(1) * X° + A(2)* X2 + A(3)* X + A(4) = 0.

6O

2. TOL[In,REAL(2)]
Array containing the user-specifiedtolerance

3. IGS[In, INTEGERscalar]
Guesscode:If positive, an initial approximationto a root is input as U(IT(1)),otherwise Subroutine
CUBICcomputesthe initial approximation.

4. IT [In,INTEGER(3)]
Array containing the subscriptswhere the roots of a cubicequationare to be stored:U(IT(1))is the
real root found via a Newton iterative scheme;U(IT(2))and U(IT(3))are the roots found from the
quadraticfactor.

5. NR [In, INTEGERscalar]
The numberof roots desired: If NR is 1, only the initial root found via the Newton scheme is re-
turned;otherwise all 3 roots are returned.

6. IC [Out,INTEGERscalar]
Thesign of the discriminantfor the quadraticequationobtainedby deflating the cubicwith the first
root. (Thequadratic equationhas IC + 1 roots, so the cubicequationhas IC + 2 roots.)

7. U [In/Out,REAL(3)]
The real parts of roots to the cubicequation:The roots are returned here. If IGS is 1, an initial
approximationto start the Newton iterationis inputas U(IT(1)).

8. IER [Out,INTEGERscalar]
Success/errorcode:0 for a successfulsolution;1 if the iterativeschemeto fred the first root did not
convergeto the tolerancewithin MXITiterations.

8.16.2 COMMONDATA

COMMON/CPLINT/MXIT

MXIT is the upper limit on the number of iterations used to find the first root of the cubicpolynomial.

8.17 SUBROUTINECURDIF(from SUBS)

Computes derivatives along a curve, according to parametric cubic tension spline interpolation

8.17.1 PARAMETERLIST

1. XYZ [In, REAL(3,NPT)]
Point coordinates at each point

2. DERIV [Out, REAL(3,NPT)]
Parametric derivatives at each point: These are the tangent vectors.

3. GNU [In, REAL(NPT)]
Tension value at each point

4. 2"r[In, REAL(NPT)]
Parameter value at each point

5. NPT [In, INTEGER scalar]
Number of points: This can be from 1 to 175.

6. IBDY [In, INTEGER scalar]
End-condition flag: 0 indicates natural (called '2mknown" in the user's manual) conditions at each
end; 1 indicates a specified derivative at the initial end and a natural condition at the final end; 2 in-
dicates a natural condition at the initial end and a specified derivative at the final end; 3 indicates
specified derivatives at both ends; 4 indicates a periodic curve.

7. VLEFT [In, REAL(3)]
Input derivative value at the inital end: This is used only when IBDY is 1 or 3.

8. VRIGHT [In, REAL(3)]
Input derivative value at the final end: This is used only when IBDY is 2 or 3.

9. IERR [Out, INTEGER scalar]
Error code: 0 is returned from a successful call; 4 is returned if IBDY is not a proper value; 8 is re-
turned if NPT is too large.

61

8.17.2 COMMONDATA

none

8.18 SUBROUTINE CURPAR (from SUBS)

Calculates parameter values along a curve: The parametrization is based upon chord length.

8.18.1 PARAMETER LIST

1. XYZ [In, REAL(3,N)]
Coordinates at each point

2. CYL [In, LOGICAL scalar]
Flag for cylindrical coordinates

3. IXAXI [In, INTEGER scalar]
Index for the axial cylindrical coordinate

4. IXRAD [In, INTEGER scalar]
Index for the radial cylindrical coordinate

5. IXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

6. PVAL [Out, REAL(N)]
Parameter values: This is a monotonic list. An unnormatized parametrization has values from 0 to
TLGTH. A normalized one has values from 0 to 1.

7. TLGTH [Out, REAL scalar]
Total chord length along the curve

8. N [In, INTEGER scalar]
Number of points: This must be at least 2.

9. NORM [In, LOGICAL scalar]
Flag to return a normalized parametrization

8.18.2 COMMON DATA

none

8.19 SUBROUTINE CURSLP (from SUBS)

An interface to the spline-fit subroutine CURDIF: This scales end conditions before calling
CURDIF and copies the slopes at knots after calling.

8.19.1 PARAMETER LIST

1. NPTS [In, INTEGER scalar]
Number of points

2. POINTS [In, REAL(3,NPTS)]
Coordinate values

3. NKNOTS [In, INTEGER scalar]
Number of points that are knots

4.]:KNOTS[In, INTEGER(NKNOTS)]
Point indices for the knots

5. TENS [In, REAL(NPTS)]
Tension values

6. IENDF [in, INTEGER scalar]
End-condition flag: 0 indicates natural (called 'kmknown" in the user's manual) conditions at each
end; I indicates a specified derivative at the initial end and a natural condition at the final end; 2 in-
dicates a natural condition at the initial end and a specified derivative at the final end; 3 indicates
specified derivatives at both ends; 4 indicates a periodic curve.

62

7. ENDD[In,REAL(3,2)]
ENDD(*,I) is the tangent direction at the initial end:This is used only when IENDF is 1 or 3.
ENDD(*,2)is the tangent directionat the final end: This is used only when IENDFis 2 or 3.

8. PARM [In,REAL(NPTS)]
Parametervalues

9. CHORD [in,REALscalar]
Totalchordlengthalongthecurve

I0. CYL [In,LOGICALscalar]
Flagforcylindricalcoordinates

11. IXAXI[In,INTEGER scalar]
Indexfortheaxialcylindricalcoordinate

12. IXRAD[In, INTEGER scalar]
Index for the radial cylindrical coordinate

13. IXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

14. SLOPE [Out, REAL(3,NKNOTS)]
Tangent values: These are computed by a parametric cubic spline fit.

8.19.2 COMMONDATA

none ,

8.20 SUBROUTINE CYCBEN (from LIBS)

Within Subroutine PLINT, determines whether a double root of the bicubic exists at a given S value: This
is used to locate the extreme S values for a cycle, which is a loop-shaped zero curve.

8.20.1 PARAMETER LIST

1. TR [In, REAL)3,2)]
Array containing the roots of the polynomial in T obtained by evaluating the bicubic at the current S
value.

2. TOL [In, REAL scalar]
The user-specified tolerance

3. HBND [In, REAL(2)]
Horizontal (23 boundaries to the region of interest

4. ICY [Out, INTEGER scalar]
Double-root code: This is 1 if a double root exists; otherwise it is 0.

5. IT [In/Out, INTEGER (3)]
Array containing the subscripts of the roots of a cubic equation: U(IT(1))is the real root found via a
Newton iterative scheme; U(IT(2)) and U(IT(3)) are the roots found from the quadratic factor.

6. IR1 [Out, INTEGER scalar]
Lower limit for a range of curves used by subroutine PROCUV when initializing for tracing

7. IR2 [Out, INTEGER scalar]
Upper limit for a range of curves used by subroutine PROCUV when initi_g for tracing

8.20.2 COMMON DATA

none

8.21 SUBROUTINE DEGNER (from LIBS)

Within subroutine PLINT, determines the general degree of the bicubic in a vertically-bounded region and
those S values where the bicubic is degenerate

63

8.21.1 PARAMETER LIST

1. TOL [In, REAL(2)]

Array containing the user-specified tolerance: TOL(1) is the input tolerance. TOL(2) is computed by
PLINT and is used as a lower limit for the stepsize.

2. VBND [In, REAL(2)]
Vertical iS) boundaries to the region of interest

3 IRT [In, INTEGER(3)]
Array containing the subscripts of the roots of a cubic equation: U(IRT(1))is the real root found via a
Newton iterative scheme; U(IRT(2))and U(IRT(3))are the roots found from the quadratic factor.

4. NDG [Out, INTEGER scalar]
Number of degenerate S values

5. DGBND [Out, REAL(3)]
Array containing S values where the polynomial in T is degenerate

6. IDGS [Out, INTEGER(3)]
Array containing the degree of degeneracy of the bicubic at the corresponding DGBND values

7. NDEG [Out, INTEGER scalar]
The maximum degree of the polynomial in T obtained by evaluating the bicubic at an
arbitraryS value

8. IER [In/Out,INTEGER scalar]
Success/errorcode:Theonlypossibleerrorcodeisa 1,whichispassedalongfromSubroutineCUBIC.

8.21.2COMMON DATA

COMMON/IRP1/BICOF(4,4)

The bicubicpolynomialisinputfromBICOF.

8.22SUBROUTINE DEGTST {fromLIBS)

WithinSubroutinePLINT,storesanysuper-degeneratecurvesanddeterminestheU-valuesatwhichdou-
blerootsexistintheregionofinterest

8.22.1PARAMETER LIST

1. BC [In,REAL(4,4)]
Coefficientsfortheoutputbicubicfunction,inalgebraicform:BC(I,J)isthecoefficientofU (4_J)*
V(4-I).

2. VBND [In, REAL(2)]
Vertical (S) boundaries to the region of interest

3. HBND [In, REAU2)]
Horizontal (T) boundaries to the region of interest

4. TOL [In, REAL(2)]

Array containing the user-specified tolerance: TOL(1) is the input tolerance. TOL(2) is
computed by PLINT and is used as a lower limit for the stepsize.

• 5. ID [In, INTEGER(2)]

Array specifying the renaming of U and V as S and T. ID(1) is the index value for S in the ordered pair
(U,V), and ID(2) is the index value for T. (e.g., If ID(1) is 2, then S is the name for V within the planar
intersector.)

6. IRT[In,INTEGER(3)]
Array containing the subscripts of the roots of a cubic equation: U(IRT(1)) is the real root found via a
Newton iterative scheme; U(IRT(2)) and U(IRT(3)) are the roots found from the quadratic factor.

7. TCT [Out, REAL(13)]
Array containing S values at which the polynomial in T has a double root. (Subroutine BRINT uses
15, rather than 13, as the limit for the number of double roots.)

8. NC [Out, INTEGER scalar]
The number of S values at which the polynomial in T has a double root

54

9. NCI [Out, INTEGER scalar]
The number of S values at which the polynomial in T has a double root between the horizontal boun-
daries

10. NDG [Out, INTEGER scalar]
Number of degenerate S values

11. NDEG [Out, INTEGER scalar]
The maximum degree of the polynomial in T obtained by evaluating the bicubic at an
arbitrary S value

15. MXPT [In, INTEGER scalar]

Upper limit on the number of points desired on a single output curve: If a particular curve generates
more than MXPT points, the subroutine will stop processing that curve and the remaining points will
be lost. MXPT must be at least 2. (This feature guarantees that each intersection curve will not exceed
the space allocated for it.)

16. MXCRV [In, INTEGER scalar]
Upper limit on the number of curves generated from a single call: If a call generates more than
MXCRV curves, the subroutine will finish processing any curves and will return only MXCRV curves.
(This feature guarantees that the intersection curves will not exceed the space allocated for them.)
MXCRV must be positive and at most 12.

17. NCRV [In/Out, INTEGER scalar]
The current number of curves generated

18. CURVE [In/Out, REAL(2,MXPT,MXCRV)]

Array containing (U,V) pairs for points on the patch, along intersection curves. CURVE(1,1,K) is the
number of points in the K-th curve; CURVE(*,J+ 1,K) is the J-th (U,V) pair on this curve.

19. IER [In/Out, INTEGER scalar]

Success/error DEGTST can generate error codes -5, -6, and 4. It also returns error codes from utility
Subroutine HSZERO (whose error codes are shifted in value by Subroutine BlaIN'r}, _ubroutme
BRINT, and Subroutine DEGNER.

-5 is returned when the patch is recognized as having more than the theoretical limit of three
degenerate U values.

-6 is returned when the patch is recognized as having more than the theoretical limit of twelve U
values where V has a double root. (This code can also come from Subroutine BRINT, which allows a
limit of 15 (not 12) double roots.)

4 is returned when the number of intersection curves exceeds MXCRV. (This error code is detected
when storing super-degenerate curves.)

8.22.2 COMMON DATA

COMMON /IRPI! BCT(4,4)

The bicubic polynomial is input from BCT.

8.23 SUBROUTINE DETLOC {from LIB8}

Called by Subroutine SUFINT, trims a plane/patch intersection slice to just those points which are in a
triangular region of the plane

8.23.1 PARAMETER LIST

1. TOL [In, REAL scalar]
Tolerance value

2. LN [Out, REAL(3,4)]
3. NORM [In, REAL(4,3)]
4. TEMP1 [In/Out, REAL(3)]

" A point to be tested

55

5. IRD [In, INTEGER(3,2)]
6. NPT [In, INTEGER scalar]

Number of points in CURVE
7. CURVE [In, REAI_2,NFD]
8. BICOF [In, REAL(4,4,3)]

Patch coefficients
9. IC [In, INTEGER(3)]
10. PAT [In, REAL(16,3)]

Patch coefficients
11. PLN [In, REAL(4)]

Plane coefficients
12. NJCRV [In/Out, INTEGER scalar]
13. MXJPT [In, INTEGER scalar]
14. MXJCRV [In, INTEGER scalar]

Number of intersection slices to trim
15. NMPT [Out, INTEGER(MXJCRV)]
16. POINT [In/Out, REAI_3,MXJPT,MXJCRV)]

Intersection slices: They are trimmed.
17. IER [Out, INTEGER scalar]

Error code: This is zero for a normal exit. See Subroutine SUFINT for more details.

8.23.2 COMMON DATA

none

8.24 REAL FUNCTION DISVAL (from LIBS)

Within Subroutine PLINT, computes the resultant for the bicubic: This is a polynomial in S of degree 15
whose zeros correspond to the degeneracies of the bicubic function.

8.24.1 PARAMETER LIST

1. X [In, REAL scalar]
S value

8.24.2 COMMON DATA

COMMON /IRPI! A

[Not used]

8.25 REAL FUNCTION DOTPRD (from LIBS)

Computes the scalar product of a pair of vectors and subtracts a constant

8.25.1 PARAMETER LIST

1. TOL [In, REAL scalar]
Tolerance: If the magnitude of the result is less than this value, it is set exactly to zero.

2. VEC1 [In, REAL(3)]
First vector

3. VEC2 [In, REAL(4)]
VEC2(1), VEC2(2), and VEC2(3) are the components of the second vector. VEC2(4) is the constant
which is subtracted from the result.

8.25.2 COMMON DATA

none

65

8.26 SUBROUTINE ENRICH (from SUBS)

Interpolates points on a curve, with enriched density

8.26.1 PARAMETER LIST

1. NSSLP/In, INTEGER(17)]
End condition codes for each curve

2. DXI/In, REAL(17)]
Initial tangent X-components for each curve

3. DYI/In, REAL(17)]
Initial tangent Y-components for each curve

4. DZI/In, REAL(17)]
Initial tangent Z-componente for each curve

5. DXO/In, REAL(17)]
Final tangent X-components for each curve

6. DYO/In, REAL(17)]
Final tangent Y-components for each curve

7. DZO/In, REAL(17)]
Final tangent Z-components for each curve

8. X/in/Out, REAL(17,175)]
Position X-components for each point on each curve

9. Y/in/Out, REAL(17,175)]
Position Y-components for each point on each curve

10. Z/In/Out, REAL(17,175)]
Position Z-components for each point on each curve

11. CYL/In, LOGICAL scalar]
Flag for cylindrical coordinates

12. NPMAX/In, INTEGER scalar]
Upper limit on curve length

13. IXAXI/In, INTEGER scalar]
Index for axial cylindrical coordinate

14. IXRAD/In, INTEGER scalar]
Index for radial cylindrical coordinate

15. IXANG/In, INTEGER scalar]
Index for angular cylindrical coordinate

8.26.2 COMMON DATA

COMMON /MODSTF2/ NCURV, NDIM, NDIMC, N1, N2, IFAIL
COMMON /MODSTF3/ LEN(17)

LEN/In/Out REAL(17)] is the number of points on each curve.

8.27 SUBROUTINE ERRCHK (from SUBS)

Evaluate the spatial errors along a curve between the original point spacing and a revised spacing: The
distance between each interior point from the original spacing and a point interpolated at the samei
parameter value from the revised spacing is written to unit 6. (No data values are returned from this
subroutine.)

8.27.1 PARAMETER LIST

1. XYZ [In, REAL(3,*)]
Coordinate values at the original points

2. XYZK [In, REAL(3,*)]
Coordinate values at the revised points

57

3. END [In, REAL(*,*)]
End tangent values

4. CYL [In, LOGICALscalar]
Flag for cylindrical coordinates

5. IX [In, INTEGER scalar]
Index for the radial cylindrical coordinate

6. IR [In, INTEGER scalar]
Index for the radial cylindrical coordinate

7. IA [In, INTEGER scalar]
Index for the angular cylindrical coordinate

8. NP [In, INTEGER scalar]
Number of interior points for the revised spacing: This does not count the 2 endpoints.

9. NPTS [In, INTEGER scalar]
Number of points for the original spacing: The 2 endpoints are counted.

10. NSSLP [In, INTEGER scalar]
End condition code

11. PVALO [In, REAL(*)]
Parameter values at the interior points from the initial spacing

8.27.2 COMMON DATA

none

8.28 SUBROUTINE FINCUV (from LIBS}

Called by Subroutine SUFINT, to finish connecting plane/patch intersection slices to form patch]patch
intersection branches

8.28.1 PARAMETER LIST

1. TOL [in, REAL scalar]
Tolerance value

2. NCRV [In/Out, INTEGER scalar]
Number of intersection branches: These are formed by connecting the slices.

3. MXPT [in, INTEGER scalar]
Maximum number of points to be calculated for an intersection branch

4. MXCRV [In, INTEGER scalar]
Maximum number of intersection branches to be calculated

5. NMPT [Out, INTEGER(*)]
Count of matches, for each intersection branch

6. CURVE [In/Out, REAL(*)]
Connected intersection branches

7. IER [Out, INTEGER scalar]
Error code: This is zero for a normal exit. See Subroutine SUFINT for more details.

8.28.2 COMMON DATA

none

8.29 SUBROUTINE FSORT (from LIBS}

Sorts in place the elements of a one-dimensional real array in ascending algebraic order: The Shell
algorithm is used.

68

8.29.1 PARAMETER LIST

1. FA [In/Out, REAL(*)]
The array to be sorted

2. N [In, INTEGER scalar]
The number of elements in FA

8.29.2 COMMON DATA

none

8.30 SUBROUTINE GETMSH (from SUBS)

Reads coordinate value sets from MSH format data

8.30.1 PARAMETER LIST

1. MSH [In, INTEGER scalar]
Logical unit for mesh input

2. OUTPUT [In, INTEGER scalar]
Logical unit for printer output

3. NCLABM [In, INTEGER(3)]
Number of characters in mesh coordinate labels

4. LABELM [In, INTEGER(3)]
Mesh coordinate labels: This is character data.

5. MAXMSH [In, INTEGER scalar]
Number of spaces allocated for mesh coordinate values

6. NMSH [Out, INTEGER(3)]
Number of mesh coordinate values for each component

7. XMSH [Out, REAL(MAXMSH,3)]
Mesh coordinate values

8. QERR [Out, LOGICAL scalar]
Error flag

8.30.2 COMMON DATA

none

8.31 SUBROUTINE GETPAT (from SUBS)

Reads patches from SRF format data: The patches are stored on a sequential-access binary file for later
use.

8.31.1 PARAMETER LIST

I. SRF [In,INTEGER scalar]
Logicalunitforpatchinput

2. OUTPUT [In, INTEGER scalar]
Logical unit for printer output

3. PATMS [In, INTEGER scalar]
Logical unit for patch mass storage

4. NPAT [Out, INTEGER scalar]
Number of patches read

5. QERR [Out, LOGICAL scalar]
Error flag

59

8.31.2 COMMONDATA

none

8.32 SUBROUTINE HGERR (from LIBS)

Handles error exits from some utility routines. (The source code to this routine is proprietary to Boeing
Computer Services.)

8.32.1 PARAMETER LIST

1. MODE [In, INTEGER scalar]
Code for the mode of operation: (-4) to restore the default I/O unit value to IEUNIT; (-3) to set
IEFLAG, the countdown limit for printing messages; (-2) to set IEUNIT to a non-default I]Ounit; (-1)
for a null call to force initialization of the COMMONvariables; (0) to print a warning message; (1) to
print an input error message; (2) to print a working-storage error message; (3) to print a processing
error message; (4) to print a traceback line; and (5) to print a traceback line and state that the error
was unexpected.

2. SUBNAM [In, REAL(2)]
Subroutine name: This is character data.

3. IER [In, INTEGER scalar]
Error code from the calling routine

4. N [In, INTEGER scalar]
Various usages, depending on the value of MODE:If MODE = -3, N is the countdown value to be in-
put. If MODE = -2, N is the I/O unit value to be input. If MODE = 2, N is the number of additional
real words of working storage required by the calling routine. For all other values of MODE, N is
ignored.

8.32.2 COMMONDATA

COMMON /HGERRC/ IEUNIT, IEFLAG, NERRS, IXPAND(3)

IEUNIT is the logical I/O unit for error message output, which is specified by the function value
JHMCON(4). IEFLAG is the number of messages to be printed. The call which reduces IEFLAG to 0 will
only print if a traceback message is requested; calls after this number reaches 0 do not print. NERRS con-
rains the total number of calls to HGERR. IXPAND reserves space in the COMMON block for future
expansion.

8.33 REAL FUNCTION HSMCON {from LIBS} .

Hardware-dependent REAL constants (The source code for this routine is proprietary to Boeing Computer
Services):

1. SCLOBR
Clobber constant: A number used when errors are detected to abort continued computations. This is
-INDEFINITE in this case.

2. SRANGE

Symmetric range: The largest positive X such that X, -X, l/X, and -1/X are floating-point numbers.
This is approximately .319 * 10294 in this case.

3. SOVFLO

Overflow threshold: The largest positive X such that X and -X are floating-point numbers. This is ap-
proximately .127 * 10323 in this case.

4. SUNFLO
Underflow threshold: The smallest positive X such that X and -X are floating-point numbers. This is
approximately .313 * 10293 in this case.

7O

5. SRELSP
Relative spacing:The maximumrelative spacing between adjacent floating-pointnumbers; this is
B(I"N)whereB is the base, HSMCON(7),andN is the mantissa length, HSMCON(8).This is the con-
servativedefinition of "machineepsilon."This is approximately.711 * 10"14in this case.

6. SRELPR
Relative precision:The smallestpositive floating-pointX such that 1-Xand I+X aredistinct from1.
This is the IFIPdefinition of "machineepsilon."This is approximately.355 * 10"14in this case.

7. SRADIX
Radix:The base of the floating-pointnumber system. This is 2 in this case.

8. SDIGIT
Mantissalength:Thenumber of base-RADIXdigits in the mantissa of a floating point number. (Ifan
implicit or hiddendigit is present, it is included.)This is 48 in this case.

9. SEOVFL
Exponentialoverflow:The largest positive floating-pointinteger X such that ex is a floating-point
number without overflow.This is 741 in this case.

10. SEUNFL
Exponentialunderflow:The negative integer Xwith the largest magnitudesuch that ex is a floating-
point number without undertow. This is -675 in this case.

11. SMXINT
Maximumfloatableinteger: The largestpositivefloating-pointintegersuch thatit, and all smallerin-
tegers canbe truncatedcorrectlyto INTEGERandconvertedbackto the samefloating-pointnumber.
This is approximately.281 * 1015 in this case.

12. SPI
PI: Approximately 3.14159

13. SEXPE
The baseof natural logarithms:Approximately2.71828

14. SEULER
Euler'sconstant: Approximately.57721

15. SRADEG
Number of radiansin i degree(PI/180):Approximately.01745

16. SDEGRA
Numberof degrees in 1 radial (180/PI):Approximately57.295

8.33.1 PARAMETERLIST

1. I [In, INTEGERscalar]
Index to the desiredconstant:This can range from 1 to 16.

8.33.2 COMMONDATA

none

8.34 SUBROUTINE HSZERO (from LIBS)

(Thesource code for this routine is proprietary to Boeing Computer Services) Finds one zero of an arbitrary
real-valued function of a real variable, in a specified interval. The function values at the two ends of the in-
terval must be of opposite signs. Either the secant rule or inverse quadratic interpolation is used.

8.34.1 PARAMETER LIST

1. AX [In, REAL scalar]
Left endpoint of the specified interval

2. BX [In, REAL scalar]
Right endpoint of the specified interval: This must be greater than AX.

3. TOL [In, REAL scalar]
Tolerance value: TOL must be positive. The solution, ZEROIN, will be given within TOL +
2*EPS*ABS(ZEROIN) of its exact value, where EPS is the value of HSMCON(5).

71

4. F [User-suppliedRoutine]
A REALFUNCTIONsubprogramwhichcalculatesF(X).

5. ZEROIN[Out,REALscalar]
The desired zero

6. IER[Out,INTEGERscalar]
Success/errorcode:0 for a successfulcall;I whenAXis not less than BX;2 whenTOLis not positive;
3 when F(AX)andF(BX)have the samesign.

8.34.2 COMMONDATA

none

8.35 SUBROUTINEINTERP (from SUBS)

Interpolates the locationsof a new point on a curve,fromits parameter value in the interval between the
surroundingold points

8.35.1 PARAMETERLIST

1. XYZ[In,REAL(3,175)]
Positions of oldpoints

2. SLOPE[In, REAL(3,175)]
Tangent vectors at oldpoints

3. LOD[In, INTEGERscalar]
Interval to be used for interpolation:This is the index for the inital old point in the interval

4. XYZK[Out, REAL(3)]
Positions at new point

5. PDIF[In,REALscalar]
Parameter valuelocating the new point in the selected interval

6. PSCALE[In,REALscalar]
Scale factor for tangentsat old points: This is the curvelength for which tangent values were com-
puted, dividedby the length of the selected interval.

8.35.2 COMMONDATA

none

8.36 INTEGER FUNCTION JHMCON (from LIBS)

Machine-dependent INTEGER constants (The source code for this routine is proprietary to Boeing Com-
puter Services):

1. ICLOBR
Clobber constant: A number used when errors are detected to abort continued computations. This is
approximately .576 * 1018 in this case.

2. IRANGE
Symmetric range: The largest integer I such that a full arithmetic capability is supported for all in-
tegers in [-I,1].This is approximately .281 * 1015 in this case.

3. IOVFLO
Overflow threshold: The largest integer I such that all integers in [-I,I] are machine integers. This is
approximately .576 * 1018 in this case.

4. NERR

Default error message unit: The logical I/O unit number for standard error-message output. This is
the left-justified Hollerith value 6LOUTPUT in this case. (It is conventionally the same as the default
output unit.)

5. NIN

Default input unit: The logical I/O unit number that is preconnected to the standard input unit of the
system. This is the left-justified Hollerith value 5LINPUT in this case.

72

6. NOUT

Default output unit: The logical I]O unit number that is precounected to the standard output unit of
the system. This is the left-justified Hollerith value 6LOUTPUT in this case.

7. NCNIN
Number of input characters: The default number of characters, including blanks, which can be read
from a single record on the default input unit. This is 80 in this case.

8. NCNOUT

Number of output characters: The default number of characters, including blanks and carriage con-
trol, which can be output to a single record on the standard output unit of the system. This is 133 in
this case.

9. NIDEC

Number of decimal digits for INTEGER: The largest number of decimal digits always allowed and
converted correctly by the compiler when compiling INTEGER constants. This is 17 in this case.

10. NSDEC

Number of decimal digits for REAL: The largest number of decimal digits always allowed and con-
verted correctly by the compiler when compiling REAL constants. This is 15 in this case.

11. NDDEC

Number of decimal digits for DOUBLE PRECISION: The largest number of decimal digits always
allowed and converted correctly by the compiler when compiling DOUBLE PRECISION constants.
This is 29 in this case.

12. NIPAGE

Page size: The size of a page, in INTEGER storage units, on virtual machines. On non-paging
machines, as in this case, it has the value 1.

13. NCHAR

Characters in INTEGER: The maximum number of characters that will fit into one INTEGER storage
unit. This is 10 in this case.

14. NSISU
Size of a REAL word: The maximum number of INTEGER storage units that will fit on one REAL
storage unit. This is 1 in this case.

15. NDISU

Size of a DOUBLE PRECISION word: The maximum number of INTEGER storage units that will fit
into one DOUBLE PRECISION storage unit. This is 2 in this case.

8.36.1 PARAMETER LIST

1. I [In, INTEGER scalar]
Index to the desired constant: This can range from 1 to 15.

8.36.2 COMMON DATA

none

8.37 SUBROUTINE KN1CHK (from LIBS}

Within Program REGSIL, checks to see whether a set of knots interlaces with the input data

8.37.1 PARAMETER LIST

1. x [In,REAL(101)]
Knot values: They are monotonically increasing.

2. NX [In, INTEGER scalar]
Number of knot values

3. K [In, INTEGER scalar]
The order of the splines for which interlacing conditions are being tested: This is the polynomial
degree, plus 1.

4. T [In,REAL(101)]
Input data values: They are monotonically increasing.

73

5. NT [In, INTEGER scalar]
Number of input data values

6. IFAIL [Out, INTEGER scalar]
Result code: 0 if interlacing requirements are satisfied; 10000 + I if interlacing fails at knot I;-1 if
T(1) is less than X(1); -2 if T(NT) is greater than X(NX); -10000 I if the multiplicity of the knot at
X(I) exceeds K.

8.37.2 COMMONDATA

none

8.38 COMPASS INTEGER FUNCTION KOMSTR (from LIBS)

Compares two strings: A value of -1, 0, or +1 is returned when the first string respectively is less than,
equal to, or greater than the second.

8.38.1 PARAMETER LIST

1. SA [In, Array]
String 1

2. LA [In, INTEGER scalar]

Location of the first character in string SA: This is I for the leftmost character position in the array.
3. NA [In, INTEGER scalar]

The number of characters in string SA and in string SB
4. SB [In, Array]

String 2
5. LB [In, INTEGER scalar]

Location of the first character in string SB: This is I for the leftmost chracter position in the array.

8.38.2 COMMONDATA

none

8.39 COMPASS INTEGER FUNCTION LSTRNG (from LIBS)

Locates the first occurance of a character string as a substring of another string: If found, the location of
the inital character of the substring is returned; 0 is returned if no match is found; -1 is returned if an error
in the inputs was detected.

8.39.1 PARAMETER LIST

1. sl [In,Array]
The string to be searched for

2. I1 [In, INTEGER scalar]

Location of the first character in string SI: This is 1 for the leftmost character position in the array.
3. N1 [In, INTEGER scalar]

The length of string S1
4. S2 [In, Array]

The string being searched for a substring
5. I2 [In, INTEGER scalar]

Location of the first character in string $2: This is 1 for the leftmost character in the array.
6. N2 [In, INTEGER scalar]

The length of $2

8.39.2 COMMON DATA

none

74

8.40 SUBROUTINEMEMPAT(from SUBS)

Given a set of section specifications,writes memberandpatch specificationsto complete a SILfile for a
regularregion

8.40.1 PARAMETERLIST

1. NSECT[In, INTEGERscalar]
Numberof section curves

2. NMEM [In, INTEGERscalar]
Number of member curves: This equals the number of knots on each of the existing sections

3. CYL [In, LOGICALscalar]
Flag for cylindrical coordinates

8.40.2 COMMONDATA

none

8.41 SUBROUTINEMODEL(from LIBS)

Within programREGSIL,computes the errorfor a trial knot placement.

8.41.1 PARAMETERLIST

1. PKNOT[In,REAL(*)]
• Parameter values to place knots

2. NP [In, INTEGER scalar]
Number of PKNOTvalues

3. ERRMAX[Out, REAL scalar]
Maximumposition error between the original points and the corresponding interpolated points on
the new curve,for each curve.

4. IER[Out,INTEGERscalar]
Error code:0 for success;-4if somecurvehasless points than NP;-5 foran errorreturnfrom CBSPN;
-6 for an errorreturn fromSQRSL;-7 for a failure whilecheckingknots;-8 if NP is not positive ;and
1000+I for an interlacing failure, whichis a local deficiencyin the number of input points.

8.41.2 COMMONDATA

COMMON /CNTRL/ IL, EPS, DELX, MODE, MAXFN, KF, KORD
COMMON /MODSTF1/ CRV(800,4), WORK(9000)
COMMON /MODSTF2/ NCURV, NDIM, NDIMC, NPRT1, NPRT2, IFAIL
COMMON /MODSTF3/ LEN(17)

Commonblock/CNTRL/primarilycontrolsthe optimizationroutineNW021. ILis the locationparameter
used by subroutine CBSPN.EPS is the error tolerance used by NWO21.DELXis the step size used by
NWO21 for numerical differentation. MODEis used by NW021. MAXFNis the limit on the numberof
errorfunction evalutationsto be madeby NW021. KF controlsthe listing output fromNWO21.KORDis
the orderof the splines used;it is 4, giving cubicsplines.

CRVstores the coordiatesof the input points and the chordlengths along the curves. WORKis used as
temporary storage. NCURVis the numberof curves.NDIMis thenumber of spatial dimensions; it is set to
3. NDIMCequals the length of CRV.LEN is the numberof input points for each curve.

8.42 SUBROUTINEMSHOPT(from SUBS}

Readsoptiondeclarations from a file of MSHdatafor use by programs MSHNRMor NRMCFD

75

8.42.1 PARAMETER LIST

1. MSH [In, INTEGER scalar]
Logical unit for MSH-format input

2. oIYrPUT [In, INTEGER scalar]
Logical unit for listing output

3. CYLSRF [In/Out, LOGICAL scalar]

Flag for cylindrical surface coordinates: This is FALSE upon entry, but it can be set TRUE before
exit.

4. CYLMSH [In/Out, LOGICAL scalar]
Flag for cylindrical mesh coordinates: This is FALSE upon entry, but it can be set TRUE before exit.

5. LSTOPT [In/Out, INTEGER scalar]
Level of MSHNRM listing output selected: This is 1 upon entry, but it can be set to any value beforeexit.

6. IXAXIM [In/Out, INTEGER scalar]
Index for the axial cylindrical coordinate: This is 1 upon entry, but it can be set to 2 or 3 before exit.
(IXAXIM, IXRADM, and IXANGM must be a permutation of the set 1, 2, and 3.)

7. IXRADM [In/Out, INTEGER scalar]
Index for the radial cylindrical coordinate: This is 2 upon entry, but it can be set to 1 or 3 before exit.
(IXAXIM, IXRADM, and IXANGM must be a permutation of the set 1, 2, and 3.)

8. IXANGM [In/Out, INTEGER scalar]
Index for the angular cylindrical coordinate: This is 3 upon entry, but it can be set to 1 or 2 before
exit. (IXAXIM, IXRADM, and IXANGM must be a permutation of the set 1, 2, and 3.)

9. IXSAXI [In/Out,INTEGER scalar]
Indexfortherectangularaxialcoordinate:ThisisI uponentry,butitcanbesetto2 or3 beforeexit.
(IXSAXI,IXSSIN,andIXSCOS mustbea permutationoftheset1,2,and 3.)

10. IXSSIN [In/Out,INTEGER scalar]
IndexfortherectangularcoordinatewhoseaxispointsintheTHETA = 90degrees(horizontal)direc-
tion:Thisisi uponentry,butitcanbesetto2 or3 beforeexit.(IXSAXI,IXSSIN,andIXSCOS must
be a permutationoftheset1,2,and 3.)

11. IXSCOS [In/Out,INTEGER scalar]
TInhdeXfor the rectangt_ll_ar coordinate whose axis points in the THETA = 0 degrees (vertical) direction:

is is I upon entry, but it can be set to 2 or 3 before exit. (IXSAXI, IXSSIN, and IXSCOS must be a
permutation of the set 1, 2, and 3.)

12. LABELR [In/Out, INTEGER(3)]
Labels for rectangular coordinates: This is character data. The default labels are input, but the labels
can be changed before exit.

13. NCLABR [In/Out, INTEGER(3)]
The number of characters in the rectangular-coordinate labels: This can range from i to 10.

14. LABELC [In/Out, INTEGER(3)]
Labels for cylindrical coordinates: This is character data. The default labels are input, but the labels
can be changed before exit.

15. NCLABC [In/Out, INTEGER(3)]
The number of characters in the cylindrical-coordinate labels: This can range from I to 10.

16. LABELX [Out, INTEGER(3)]

Labels for surface coordinates: This is character data. It is either the labels for cylindrical or
rectangular coordinates.

17. NCLABX [Out, INTEGER(3)]
The number of characters in the surface coordinate labels: This can range from 1 to 10.

18. LABELM [Out, INTEGER(3)]
Labels for mesh coordinates: This is character data. It is either the labels for cylindrical or
rectangular coordinates.

19. NCLABM [Out, INTEGER(3)]
The number of characters in the mesh coordinate labels: This can range from I to 10.

20. NXINT [In/Out, INTEGER scalar]
The number of intersection orientations for MSHNRM mesh/surface intersection: A value of 0 is in-
put, but this can be changed before exit. If the value remains 0, the default values of NXINT, KXINT,
NXCUT, and KXCUT for the choice of mesh coordinates is copied into these variables. The default
output value is 2. Values of 1 or 3 are allowed.

76

21. KXINT[Out,INTEGER(3)/
MSHNRMintersectionorientations:This is the index forthecoordinateheld constant.Either default
values or new values input from file MSH are returned.Default values for cylindricalmesh coor-
dinates define KXINT(1)= IXANGMandKX!N_T(2)= IXAXIM;default valuesfor rectangularmesh
mesh coordiatesdefine KXINT(1)= IXSAXIand KXINT(2)= IXSSIN.

22. NXCUT[Out,INTEGER(3)/
The numberof cut orientationsforeach MSHNRMintersectionorientation in mesh/surfaceintersec-
tion: Eitherdefault valuesor newvalues inputfromfile MSHarereturned.Thesearelisted by the in-
tersection orientation, which is a coordinateindex. Default values for cylindricalmesh coordinates
define NXCUT(IXANGM)= 2 andNXCUT(IXAXIM)= 1; default values for rectangularmesh co-
ordinatesdefineNXCUT(IXSAXI)= 2 andNXCUT(IXSSIN)= 1. Possiblevalues forNXCUT(I)are 1
or 2 wheneverI is declared as an intersection orientation.

23. KXCUT[Out,INTEGER(3,2)/
Cutorientations for each intersectionMSHNRMorientation in mesh/surfaceintersection: Theseare
index values for the coordinateto be held constant, and they are stored by the intersection orienta-
tion, whichis a similarcoordinateindex. Eitherdefault valuesor newvalues input from file MSHare
returned.Defaultvalues for cylindricalmesh coordinatesare KXCUT(IXANGM,1)= IXAXIMAND
KXCUT(IXANGM,2)= KXCUT(IXAXIM,1)= IXRADM;default valuesfor rectangularmesh coot-

•dinates are KXCUT(IXSAXI,1)= IXSSINandKXCUT(IXSAXI,2)= KXCUT(IXSSIN,1)= IXSCOS.
Possiblevaluesfor KXCUT(I,J)excludeI, providedI is declaredas an intersectionorientation withat
least J cut orientations declared;they are fromthe set 1, 2, and 3.

24. IQSCAL/In/Out,INTEGERscalar]
Code to select a method to scale tangents for parametriccubic interpolationalong MSHNRMin-
tersectioncurves:The default value is present uponentry (2), but a different value can be present
upon exit. Possible values are 1 (whichgives locally explicit scaling)and 2 (whichgives Ferguson-
Phillips scaling,minimizing the integral of 2nd derivativesalong the arc).

25. MXIT/In/Out,INTEGERscalar]
Limit on iterations for MSHNRMcubic-polynomialsolution:The default value (50) is presentupon
entry, but a different value can be presentuponexit.

26. TOLINT/In/Out,REAL]
Parametric tolerance for MSHNRMplane/patchintersection:The default value (.0001) is present
uponentry, but a different value can be presentupon exit.

27. TOLDIS/In/Out,REAL]
Distance tolerancefor NRMCFDresolvingdistinct normallocations:The defaultvalue (.0005)is pre-
sent uponentry,buta differentvaluecanbe presentupon exit.The value is in distance units, typical
inches.

28. TOLANG/In/Out,REAL]
AngulartoleranceforNRMCRDresolvingdistinct normal locations:The default value(.01)is present
uponentry, but a different valuecan be presentuponexit. The value is in units of degrees.

29 QERR[Out,LOGICALscalar]
Errorflag

8.42.2 COMMONDATA

none

8.43 COMPASS INTEGERFUNCTIONNSCAN (from LIBS)

Scans a string of charactersfor the first occuranceof a characterthat is not containedin a specifiedpool:If
such a character is found, its position in the string is returned; otherwise 0 is returned; -1 is returned if an
error is detected in the input.

8.43.1 PARAMETERLIST

1. $1/In, Array]
The string to be scanned.

77

2. I1 [In, INTEGER scalar]

Location of the first character in pool SI: This is 1 for the leftmost character position in the array.
3. N1 [In, INTEGER scalar]

The length of string S1
4. $2 [In, Array]

The pool of characters
5. I2 [In, INTEGER scalar]

Location of the first character in pool $2: This is 1 for the leftmost character position in the array.
6. N2 [In, INTEGER scalar]

The number of characters in pool $2

8.43.2 COMMONDATA

none

8.44 SUBROUTINE NW021 (from LIBS)

Finds a local minimum of a sum of squares of M nonlinear functions of N variables: RI(Xl,X2XN)2 + ...
+ RM(X1,X2,...,XN) 2. It is adapted from a subroutine called VA07A. The method used is a combination of
Gauss-Newton and steepest descent, called modified Marquardt.

8.44.1 PARAMETER LIST

1. RESID [User-Supplied Routine]

This routine calculates the R-functions at a given value of the X-variables. It must act in the following
way:

SUBROUTINE RESID(M,N,X,R,IFL)
INTEGER M,N,IFL
REAL X(N),R(M)

C
IFL = 0

c
UsingtheinputvaluesforX,
computevaluesforR.Ifan error
preventsthis,setIFL toa
nonzero value.

C
RETURN
END

2. LSQ [User-Supplied Routine]

This routine calculates the coefficients for the least-squares normal equations at a given value of the
X-variables. There are A and V coefficients. A(I,J) is required for all I from 1 to N and for all J from 1
to N. (A is symmetric.) It is defined by: A(I,J) = DR1/DXI * DR1/DXJ + ... + DRM/DXI * DRM/DXJ.
V(I) is required for all I from 1 to N. It is defined by: V(I) = R1 * DR1/DXI + ... + RM * DRM/DXI.
The routine must act in the following way:

SUBROUTINE LSQ(M.N.X.R.A.V)
INTEGER M,N,IFL
REAL X(N),R(M),A(N,N),V(N)

c
UsingtheinputvaluesforX,
computevaluesforA and forV
(This can be done by first
computing the partial derivatives
and then using the above formulas).

78

C
RETURN
END

3. M [In,INTEGERscalar]
The numberof dependentR-functions.M must be at least N; it can be at most 200.

4. N [In, INTEGERscalar]
The numberof independentX-variables.N must be at least 2; it can be at most 25.

5. X [In/Out,REAL(_]
The initial approximationto the desiredminimumis input, and the irmalapproximationis returned.

6. R [Out,REAL(M)]
The values for the R-functionsat the final approximationto the minimumis returned.

7. SS [Out,REALscalar]
The i'malanvroximationto the minimum value for the sum of squares is returned

8. A [Temporary,REAL(N,N)]
9. D [InYOut,REAL(N)]

Nonnegativescaling factors:These valuesare input only if MODEis 3. If so, their values shouldap-
proximatethe square rootsof thecorrespondingX-valuesat the expectedminimum. (Seethe discus-
sion of MODEbelow.)

10. EPS [In,REAL(N)]
The absoluteaccuraciesto whichthe X-variablesare computed.

11. MAXFN[In, INTEGERscalar]
Maximumnumberof calls to RESIDbefore abandoningthe problem:This must be positive

12. MODE[In, INTEGERscalar]
Scalingcode:This can be 1, 2, or 3. It controlsthehandling of the D-array,whichis used to scale the
A-matrix
If MODEis 1, then the subroutineestimates valuesfor the D-array.IF A(I,I)happensto be zero,D(I)
is set to zero;otherwise,D(1)is set to A(I,I).
If MODEis 2, then no scaling is used. The subroutinesets the D-arrayto ones.
If MODEis 3, then the input D-arrayvalues are used.

13. KF [In/Out,INTEGERscalar]
Input print-controlcode:Intermediate steps arelisted to file OUTPUT,using PRINTstatements. If
KF is zero,no listing is generated;otherwiseeveryKF-th iterationlists the following:the numberof
calls to RESID,SS, and X. If KF is positive,R is also listed.

Outputsuccessierrorcode:0 is returnedfrom a successfulcall; 1 is returnedwhen the MAXFNlimit
is reached;2 is returnedwhenN is input less than two;3 is returnedwhenMis input less than N;4 is
returnedwhenMODE= 3 is input andsomeDelement is not positive;5 is returnedwhen someEPS
element input is not positive; 6 is returned when MAXFN input is not positive. (When codes 2
through6 are returned,X is unchangedand no valuesare set for R andSS.);7 is returnedwhen the
RESIDsubroutinereturnsa nonzeroerrorcode;8 is returnedwhen an elementon the diagonalof the
A-matrixis negative.

8.44.2 COMMONDATA

COMMON /NWO2B/ S(25)
COMMON /NW02C/ T(25)
COMMON /NWO2D/ U(25)
COMMON /NWO2E/ V(25)
COMMON (NWO2F/ W(200)

79

8.45 SUBROUTINE NWO93 {from LIBS)

Cholesky decomposition of a symmetric matrix and back-substitution solution.

8.45.1 PARAMETER LIST

1. A [In/Out, REAL(NR,*)]
The input N-by-N symmetric matrix: This is replaced by the triangular factor from the
decomposition.

2. NR [In, INTEGER scalar]
Length of columns allocated for A.

3. N [In, INTEGER scalar]
Matrix size

4. S [In/Out, REAL(*)]
Input N-long right-hand-side vector: This is replaced by intermediate results from the substitution.

5. IER [Out, INTEGER scalar]
Error flag: This is set to 0 for a successful call. It is set to 1 if a zero value is encountered on the
diagonal during factorization; in this case the input matrix is not positive-definite.

8.45.2 COMMON DATA

none

8.46 SUBROUTINE OPENCV {from SUBS)

Used by Program SRFINT to connect an open curve: The endpoint table entries for the intersection
branches are linked together.

8.46.1 PARAMETER LIST

1. L6 [In,INTEGERscalar]
Logical unit for printer output

2. I [In, INTEGER scalar]
Index of the beginning open endpoint in the table

3. NEND [In, INTEGER scalar]
Number of endpoints in the table

4. ICON [In, INTEGER]

Where each endpoint connects: This is a table of endpoint indices, whose subscripts are also endpoint
indices.

5. IDONE [In/Out, INTEGER(201)]
Flags to show whether each endpoint has been connected yet: Initally 0, this is set to 1 when a connec-
tion is made.

6. ICURVE [Out, INTEGER(201)]
The connected list of endpoints making up the output curve.

7. NP [Out, INTEGER scalar]
The number of endpoints in the output curve

8.46.2 COMMON DATA

COMMON /ENDTBL! X(201), Y(201), Z(201), IPI(201), IP2(201),
NBR(201), KOUNT(201), IPOINT(201)

8.47 SUBROUTINE ORDER {from SUBS}

Checks parameter values along a curve for range and duplicates

80

8.47.1 PARAMETERLIST

1. PKNOT[In/Out,REAL(*)]
Parameter values: Duplicatedvalues are removed.

2. NP [In/Out, REAL]
Number of points: This is reduced to reflect the removed duplicates.

3. QERR [Out, LOGICALscalar]
Error flag

8.47.2 COMMONDATA

none

8.48 SUBROUTINE PARTAL (from LIBS)

Within Subroutine SUFINT, computes partial derivatives at a point on a patch.

8.48.1 PARAMETER LIST

1. BC [In, REAL(4,4)]
Bicubic function, algebraic representation: BC(I,J) is the coefficient of U(4_1)* V(4"I).

2. SVAL [In,REAL scalar]
U value

3. TVAL [In, REAL scalar]
V value

4. PATCH [Out, REAL(16)]
Function values and derivatives

8.48.2 COMMON DATA

none

8.49 SUBROUTINE PARTA1 (from LIBS)

Within Subroutine REGSIL, computes partial derivatives for NW021 optimization.

8.49.1 Parameter List

I. M [In,INTEGER scalar]
2. NP [In,INTEGER scalar]

Number ofknots
3. P [In,INTEGER scalar]

Trialknotplacements
4. R [Out,REAL(*)]

Residuals
5. A [Out,REAL{NP, *)]
6. V [Out, REAL(*)]

8.49.2 COMMON DATA

COMMON /CNTRL/ IL, EPS, DELX, MODE, MAXFN, KF, KORD
COMMON /MODSTF1/ CRV(800,4),WORK(9000)
COMMON /MODSTF2/ NCURV, NDIM, NDIMC, NPRT1, NPRT2, IFAIL
COMMON /MODSTF3/ LEN(17)

81

8.50 SUBROUTINE PATNRM (from SUBS)

Evaluates the position and surface normal at a point, along with their directions of change along a
plane/patch intersection curve.

8.50.1 PARAMETER LIST

1. OUTPUT [In, INTEGER scalar]"
Logical unit for listing output

2. NCLABX [In, INTEGER(3)]
Number of characters in coordinate labels

3. LABELX [In,INTEGER(3)]
Coordinate labels: This is character data.

4. LSTOPT [In, INTEGER scalar]
Code for the level of listing output

5. CYLSRF [In, INTEGER scalar]
Flag for cylindrical surface coordinates

6. IXRAD [In, INTEGER scalar]
Index for the radial cylindrical coordinate

7. INXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

8. ALG [In, REAL(16,3)]
Patch coefficients, in algebraic format: Effectively allocated REAL(4,4,3). ALG (I,J,K) is the coef-
ficient of U(44) * V(4"I)in the bicubic function interpolating the K-th spatial component.

9. PLN [In, REAL(3)]
Direction normal to the plane of intersection

10. U0 [In, REAL(2)]
Parametric location of the desired point on the patch: This is a (U,V) pair.

11. X [Out, REAL(3)]
Position

12. DXDT [Out, REAL(3)]
Tangent along curve (i.e., the direction of position change along the curve)

13. SN [Out, REAL(3)]
Surface normal direction: This is scaled to a unit length.

14. DSNDT [Out, REAL(3)]
Direction of surface-normal change along the curve: This is scaled consistently with DXDT and SN.

7.50.2 COMMON DATA

none

8.51 SUBROUTINE PATVAL (from SUBS)

Computes position and parametric derivatives at a parametric location on a patch

8.51.1 PARAMETER LIST

1. OUTPUT [In, INTEGER scalar]
Logical unit for listing output

2. NCLABX [In, INTEGER(3)]
Number of characters in coordinate labels

3. LABELX [In, INTEGER(3)]
Coordinate labels: This is character data.

4. LSTOPT [In, INTEGER scalar]
Code for the level of listing output

5. CYLSRF [In, LOGICAL scalar]
Flag for cylindrical surface coordinates

82

6. IXRAD[In,INTEGERscalar]
Indexfor the radialcylindricalcoordinate

7. IXANG[In, INTEGERscalar]
Index for the angularcylindricalcoordinate

8. ALG[In,REAL(4,4,3)]
Patch coefficients, in algebraicformat:ALG(I,J,K)is the coefficient of U(44) * V(4"I)in the bicubic
functioninterpolatingthe K-th spatial component.

9. UV [In,REAL(2)]
Parametric location:This is a (U,V)pair.

10. X [Out,REAL(3)]
Position vector

11 DXDU[Out, REAL(3)]
First U-derivative vector

12. DXDV[Out,REAL(3)]
First V-derivativevector

13. D2XDU2[Out,REAL(3)]
Second U-derivativevector

14. D2XDUV[Out,REAL(3)]
Mixedsecond-derivativevector

15. D2XDV2[Out,REAIX3)]
Second V-derivativevector

8.51.2 COMMONDATA

none

8.52 SUBROUTINEPCGMAL(from SUBS)

Convertsa parametriccubiccurvesegment froma geometricrepresentationto an algebraicrepresentation

8.52.1 PARAMETERLIST

1. B [In,REAL(4,3)]
Geometricrepresentationof PCcurve:B(1,J)is the inital value of the J-th coordinate,B(2,J) is its
final value,B(3,J) is its inital derivative, and B(4,J)is its final derivative.

2. A [Out,REAL(4,3)]
Algebraicrepresentationof PCcurve:A(I,J)is the coefficientof U(4"I)in the cubicpolynomialforthe
J-th coordinate.

8.52.2 COMMONDATA

none

8.53 SUBROUTINE PERSTO (from LIBS)

Cyclically permutes the storage of 3 values

8.53.1 PARAMETER LIST

i 1. ARRAY [In/Out, REAL(3)]
The values to be permuted

8.53.2 COMMON DATA

none

83

8.54 SUBROUTINEPLINT (from LIBS)

Computesthe intersectionsof a planeanda patch:Theseintersectionsarecalledcurveshero,in somecon-
texts they are called intersectionslices. This is done by finding the zero curvesof a bicubicfunction.

8.54.1 PARAMETERLIST

1. PAT [In,REAL(16,3)]

Geometricpatchrepresentation:EffectivelyallocatedPAT(4,4,3).PAT(*,*,K)is the K-thcomponent
of a vector.PAT(I,1,*)is the (U,V) = (0,0)position;PAT(I,2,*)is the (1,0)position;PAT(2,1,*)is the
(0,1) position; and PAT(2,2,*) is the (1,1) position. PAT(3,1,*), PAT(3,2,*), PAT(4,1,*), and
PAT(4,2,*)are the correspondingV-derivatives.PAT(I,3,*),PAT(I,4,*),PAT(2,3,*),andPAT(2,4,*)
arethe correspondingU-derivatives.PAT(3,3,*),PAT(3,4,*),PAT(4,3,*),and PAT(4,4,*)arethe cor-respondingcross-derivatives.

2. PiN [In,REAL(4)]
Coefficients for the plane:

PLN(1)*X(1) + PLN(2)*X(2) + PLN(3)*X(3) + PLN(4) = 0.
3. TOL[In/Out,REAL(2)]

Array containing the user-specifiedtolerance:TOL(1)is the input tolerance. Any point on a
parametriccubiccurveinterpolatingthe output(U,V)points is withinTOL(1)distance(in parametric
units)of a straightline betweenthe surroundingoutputpoints. TOL(2)is computedby the subroutine
and is used as a lowerlimit for the stepsize.

4. _ [In,INTEGERscalar]
Upper limit on the numberof iterations used to find a real root of a cubicpolynomialvia a Newton
scheme:MXITmust be positive.

5. MXPT[In, INTEGERscalar]
Upperlimit on the numberof points desiredon a single outputcurve:If a particularcurvegenerates
morethan MXPTpoints, the subroutinewill stop processingthatcurveandthe remainingpoints will
be lost. MXPTmust be at least 2. (This feature guaruntees that each intersection curve will not
exceed the spaceallocatedfor it.)

6. lVIXCRV[In, INTEGERscalar]
Upper limit on the number of curves generated from a single call: If a call generates more than
MXCRVcurves,the subroutinewill finish processinganycurvesandwill returnonlyMXCRVcurves.
(Thisfeature guarunteesthat the numberof intersectioncurveswillnot exceedthe number of spaces
allocated for them.) lVIXCRVmust be uositive and at most 12.

7. WORK [Temporary, REAL(2,MXPT,3)]

A work array that is passedto SubroutinePROCUV(as arrayC)
8. NCRV[Out, INTEGERscalar]

The number of curvesgenerated
9. CURVE[Out,REAL(2,MXPT,MXCRV)]

Arraycontaining(U,V)pairsfor points on the patch,along intersectioncurves.CURVE(1,1,K)is the
numberof points in the K-th curve;CURVE(*,J+1,K)is the J-th (U,V)pairon this curve.

10. IER [Out,INTEGERscalar]

Success/errorcode:Zerofor a successfulcall. Fornegativevaluesof IER,SubroutinePLINTwill stop
processingimmediately andall its calculationswill be lost. For positive values of IER, calculations
will continuebut the results may be suspect.

-1 is returnedif lVlTA_Tis less than two. (Thiserror code originates in SubroutinePLINT.)

-2 is returned if MXCRVis either less than 1 or greater than 12. (This error code originates inSubroutinePLINT.)

-3 is returnedif MXITis not positive. (Thiserrorcodeoriginates in SubroutinePLINT.)

-4is returnedif TOL(1)is less than therelativeprecisionof the machine.(Thiserror codeoriginates inSubroutinePLINT.)

84

-5 is returnedif thepatchis recognizedas havingmorethan the theoreticallimit of three degenerate
S values. (Thiserrorcode originates in SubroutinePLINT.)

-6 is returnedif the patchis recognizedas havingmorethan the theoreticallimit of twelve or fifteen
S values whereT hasa doubleroot. (Thiserrorcodecan originateeitherin SubroutineDEGTSTorin
SubroutineBRINT.)NOTE:SubroutinePLNSRFchangesPLINTerrorcode -6 to a value of 6, which

r in a nonfatal error.

-7 is returned if the total numberof boundaryintersectionsrecognizedexceedsthetheoretical limitof
tewenty-three.(Thiserror codehas been deactivated.)

-8 is returned if the number of intersectionboundariesrecognizedon theupperorthe lower edgeex-
ceedsthe theoreticallimit of three. (Thiserrorcodecan originate either in SubroutinePLINTor in
SubroutinePROCUV.)

-9 is returned duringcurveprocessingif morethan the expectednumber of doublerootswas found.
(This error code originates in SubroutinePLINT.)

-10 is returned duringcurve processingif more than the expected number of boundaryroots was
found. (Thiserror codehas been deactivated.)

-11 is returned if the bicubicis degenerateat a boundaryvalue. (i.e., Evaluatingthe bicubicat this
boundarygives a polynomialof degreeless than 3.) (Thiserror codehas been deactivated.)

-12, -13, and-14 arereturnedif SubroutineHSZEROfailed whilebeing calledby Subrntine BRINT.
The HSZEROerror codeis IER + 11.

1 is returned if morethan MXITiterationswere requiredfor SubroutineCUBIC.

2 is returnedif thestep sizerequiredto followthe curveis less than TOL(2).NOTE:Thiscase tends to
indicate that some of the returned (S,T)data lies outsidethe unit square, which is theoretically im-
possible. (Thiserror codeoriginates in SubroutineTRACE.)

3 is returned if the number of points calculated on a curve exceeds MXPT.(This error code can
originateeither in SubroutinePROCUVor in SubroutineSTRCUV.)

4 is returned if the numberof intersection curves exceeds MXCRV.(Thiserrorcode can originate
either in SubroutineSTRCUVor in SubroutineDEGTST.)

5 is returned if internal conditionsindicate that either a curveis missing or that values outside the
unit squareare returned. (This error code can either originate either in SubroutinePLINTor in
SubroutinePROCUV.)

8.54.2 COMMONDATA

COMMON/CPLINT/MAXIT

MAXITstores the value of MXIT

8.55 SUBROUTINEPLNCUR(from SUBS)

Used by MSHNRMto intersect a plane with a set of PC curves: This performs the cutting step upon
plane/patchintersection curves. These curves contain 6 components, the 3 position components plus 3
surface-normalcomponents.

85

8.55.1 PARAMETER LIST

I. OUTPUT [In,INTEGER scalar]
Logicalunitforlistingoutput

2. TEMPPC [In,INTEGER scalar]
Logicalunitformass storageofintersectioncurves:Intersectionslices(Connectedplane/patchin-
tersectionsarestored,inthefollowingform:patchindex,sliceindex(withintheintersectionofthis
particularplane/patchpair),numberofPC segments,initialPC-segmentcountfortheslice,andfinal-
lythePC segments(ingeometricform,withsurface-normalcomponents)

3. NRM [In,INTEGER scalar]
Logicalunitforintersection-normaloutput

4. NCLABX [Notused]
5. LABELX [Notused]
6. PLNCUT [In,REAL(4)]

Coefficientsforcuttingplane:
PLN(1)*X(1) + PLN(2)*X(2) + PLN(3)*X(3) + PLN(4) = 0.

7. MXPT [In, INTEGER scalar]
Maximum number of segments in an intersection curve

8. INTCUR [Temporary, REAL(4,6,MXFr)]
Array to hold an intersection curve from mass storage

9. NSLINT [In, INTEGER scalar]
Number of intersection slices stored on file TEMPPC

10. TOL [In, REAL scalar]
Tolerance for cubic polynomial solution

11. NNVCUM [In/Out, INTEGER scalar]
Cumulative count of intersection normals

12. LSTOPT [In, INTEGER scalar]
Level of listing output

13. QERR [Out, LOGICAL scalar]
Error flag

8.55.2 COMMON DATA

none

8.56 SUBROUTINE PLNSRF (from SUBS)

Used by MSHNRM to intersect a plane with a set of patches: This performs the intersection step that gives
curves, which are cut later. These curves contain 6 components, the 3 position components plus 3 surface-
normal components.

8.56.1 PARAMETER LIST

1. OUTPUT [In,INTEGER scalar]
Logicalunitforlistingoutput

2. PATMS [In,INTEGER scalar]
Logicalunitforpatchmassstorage

3. TEMPPC [In,INTEGER scalar]
Logicalunitformass storageofintersectioncurves:Intersectionslices(Connectedplane/patchin-
tersectionsarestored,inthefollowingform:patchindex,sliceindex(withintheintersectionofthis
particularplane/patch),number ofPC segments,initial,PC segments(ingeometricform,with
surface-normalcomponents).

4. INT [In, INTEGER scalar]
Logical unit for listing of intersection curves: The curves are listed in CUR format (basically
geometric representation), with surface-normal components and with system comments labelling
each intersection slice and each PC segment within the slice.

86

5. NCLABX [In, INTEGER (3)]
Number of characters in the coordinate labels

6. LABELX [In, INTEGER(3)]
Coordinate labels: This is character data

7. PLNINT [In, REAL(4)]
Coefficients for intersection plane:

PLNINT(1)*X(1) + PLNINT(2)*X(2) + PLNINT(3)*X(3) + PLNINT(4)= 0.
8. NPAT [In, INTEGER scalar]

Number of patches
9. MXIT [In, INTEGER scalar]

Limit on the number of iterations for cubic polynomial solution
10. MXPT [In, INTEGER scalar]

Limit on the number of points to be returned on an intersection slice
11. MXCRV [In, INTEGER scalar]

Limit on the number of intersection slices to be returned from a plane/patch combination
12 TOLINT [In, REAL(2)]

Plane/patch intersection tolerance: The tolerance is input as TOLINT(1), which is a tolerance of (U,V)
pairs interpolated between the returned set of such pairs. TOLINT(2) is set to approximately the
mean proprotional of the input tolerance and the precision of floating-point representation for this
machine.

13. CURPAR [Temporary, REAL(2, MXPT, MXCRV)]
Array to hold parametric points computed along plane/patch intersection curves

14. INTWRK [Temporary, REAL(2, MXPT, 3)]
Array used by subroutine PLINT to compute plane/patch intersection curves

15. INTCUR [Temporary, REAL(4, 6, MXPT)]
Array to hold a parametric cubic curve interpolating and intersection slice

16. LSTOPT [In, INTEGER scalar]
Level of listing output

17. CYLSRF [In, LOGICAL scalar]
Flag for cylindrical surface coordinates

18. IXRADM [In, INTEGER scalar]
Index for the radial cylindrical coordinate

19. IXANGM [In, INTEGER scalar]
Index for the angular cylindrical coordinate

20. IQSCAL [In/Out, INTEGER scalar]
Code to select a method to scale tangents for parametric cubic interpolation .along MSHNRM in-
tersection curves: Possible values are 1 (which gives locally explicit scaling) and 2 (which gives
Ferguson-PhiUips scaling, minimiiing the integral of 2nd derivatives along the arc).

21. NSLINT [Out, INTEGER scalar]
Number of slices in the intersection of this plane with all the patches

22. NPCCUM [In/Out, INTEGER scalar]
Cumulative count of PC segments

23. IERINT [Out, INTEGER scalar]
Error code returned from Subroutine PLINT

24. QERR [Out, LOGICAL scalar]
Error flag

8.56.2 COMMON DATA

none

8.57 SUBROUTINE PPTCUR (from SUBS)

Fits PC curves in physical space to parametric points computed along plane/surface intersection curves

87

8.57.1 PARAMETER LIST

1. OUTPUT [In,INTEGER scalar]
Logicalunitforlistingoutput

2. NCLABX [In, INTEGER(3)]
Number of characters in coordinate labels

3. LABELX [In, INTEGER(3)]
Coordinate labels: This is character data.

4. LSTOPT [In, INTEGER scalar]
Level of listing output

5. CYLSRF [In, LOGICAL scalar]
Flag for cylindrical coordinates

6. IXRAD [In, INTEGER scalar]
Index for the radial cylindrical coordiante

7. IXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

8. IQSCAL [In, INTEGER scalar]
Code to select a method to scale tangents for parametric cubic interpolation along MSHNRM in-
tersection curves: Possible values are 1 (which gives locally explicit scaling) and 2 (which gives
Ferguson-Phillips scaling, minimizing the integral of 2nd derivatives along the arc).

9. PAT [In, REAL(16,3)]
Geometric patch representation: Effectively allocated PAT(4,4,3). PAT(*,*,K) is the K-th component
of a vector. PAT(I,1,*) is the (U,V) = (0,0) position; PAT(I,2,*) is the (1,0) position; PAT(2,1,*) is the
(0,1) position; and PAT(2,2,*) is the (1,1) position. PAT(3,1,*), PAT(3,2,*), PAT(4,1,*), and
PAT(4,2,*) are the corresponding V-derivatives. PAT(I,3,*), PAT(I,4,*), PAT(2,3,*), and PAT(2,4,*)
are the corresponding U-derivatives. PAT(3,3,*), PAT(3,4,*), PAT(4,3,*), and PAT(4,4,*) are the cor-
responding cross-derivatives.

10. PLN [In, REAL(4)]
Coefficients for intersection plane:

PLN(1)*X(1) + PLN(2)*X(2) + PLN(3)*X(3) + PLN(4) = 0.
11. NPT [In, INTEGER scalar]

Number of points input in array CURVE
12. CURVE [In, REAL(2,NPT)]

Points on the plane/patch intersection curve: These are parametric (U,V) pairs.
13. INTCUR [Out, REAL(4,6,NPT)]

Parametric curves interpolating along the intersection
14. QERR [Out, LOGICAL scalar]

Error flag

8.57.2 COMMON DATA

none

8.58 SUBROUTINE PROCUV (from LIBS}

Within Subroutine PLINT, controls the tracing of curves (After the patch has been divided into vertical
strips in which the number of roots to trace is constant)

8.58.1 PARAMETER LIST

1. BC [In, REAL(4,4)]
Coefficients for the output bicubic function, in algebraic form: BC(I,J) is the coefficient of U(4J) *
V(4-I).

2. NDEG [In, INTEGER scalar]
The maximum degree of the polynomial in T obtained by evaluating the bicubic at an arbitrary S
value

88

3. HBND [In, REAL(2)]
Horizontal (T)boundaries to the region of interest

4. BBND [In, REAL(NB)]
Array containing S values at which the number of T roots can change for one of the following reasons:
1. An zero curve leaves the region of interest via an horizontal or vertical boundary.
2. The quadratic factor in the polynomial in T has a double root.

_ 3. The polynomial in T is degenerate.
5. JB [In/Temporary, INTEGER scalar]

BBND(JB) is the S value at which a zero curve enters the region of interest.
6. NBDG [In, INTEGER(NB)]

The degree of the polynomial obtained by evaluating the bicubic at an S value from array BBND
7. NB [In, INTEGER scalar]

Number of S values where the bicubic is degenerate
8. TOL [In, REAL(2)]

Array containing the user-specified tolerance: TOL(1) is the input tolerance. Any point on a
parametric cubic curve interpolating the output (U,V) points is within TOL(1)distance (in parametric
units) of a straight line between the surrounding output points. TOL(2)is computed by PLINT and is
used as a lower limit for the stepsize.

9. TRT [In, REAL(4,2)]
Array containing S values at which a zero curve enters or exits the region of interest by a horizontal
boundary

10. TCT [In, REAL(NC)]
Array containing S values at which the polynomial in T has a double root

11. NC [In, INTEGER scalar]
The number of S values at which the polynomial in T has a double root

12. IPT [In/Out, INTEGER(3)]
The number of points calculated on a zero curve: If IPT(I) = -1, then the curve passing through the
root U(IT(I))will not be traced.

13. IPTT [In, INTEGER(3)]
A temporary version of array IPT used to initially determine which zero curves will be traced.

14. IT [In/Out, INTEGER(3)]
Array containing the subscripts of the roots of a cubic equation: U(IT(1))is the real root found via a
Newton iterative scheme; U(IT(2))and U(IT(3)) are the roots found from the quadratic factor.

15. ID [In, INTEGER(2)]
Array specifying the renaming of U and V as S and T. ID(1) is the index value for S in the ordered pair
(U,V), and ID(2) is the index value for T. (e.g., If ID(1) is 2, then S is the name for V.within the planar
intersector.)

16. NTR [In, INTEGER(2)]
Array containing the number of values in TRT

17. TR [In/Temporary, REAL(3,2)]
Array containing the roots of T corresponding to the ends of the interval in S for the current tracing
step. TR(*,I) at the left of the patch is input to start the tracing.

18. RPT [In/Temporary, REAL(3,2)]
Array containing the partial derivative of the bicubic with respect to T at the 3 T roots at the current
tracing step.

19. RPS [In/Temporary, REAL(3,2)]
Array containing the partial derivative of the bicubic with respect to S at the 3 T roots at the current
tracing step.

20. RPTT [in/Temporary REAL(3,2)]
Array containing the second partial derivative of the bicubic with respect to T at the 3 T roots at the
current tracing step.

21. RPSS [In/Temporary, REAL(3,2)]
Array containing the second partial derivative of the bicubic with respect to S at the 3 T roots at the
current tracing step.

22. RPST [In/Temporary, REAL(3,2)]
Array containing the mixed second partial derivative of the bicubic at the 3 T roots at the current
tracing step.

89

23. C [Temporary, REAL(2,MXFr,3)]
Array used to accumulate points on the intersection curves while they are traced

24. MXPT [In, INTEGER scalar]
Upper limit on the number of points desired on a single output curve: If a particular curve generates
more than MXPT points, the subroutine will stop processing that curve and the remaining points will
be lost. MXPT must be at least 2. (This feature guaruntees that each intersection curve will not
exceed the space allocated for it.)

25. MXCRV [In, INTEGER scalar]
Upper limit on the number of curves generated from a single call: If a call generates more than MX-
CRV curves, the subroutine will finish processing any curves and will return only MXCRV curves.
(This feature guaruntees that the number of intersection curves will not exceed the number of spaces
allocated for them.) MXCRV must be positive and at most 12.

26. NCRV [In/Out, INTEGER scalar]
The number of curves generated

27. CURVE [In/Out, REAL(2,MXPT,MXCRV)]
Array containing (U,V) pairs for points on the patch, along intersection curves. CURVE(1,1,K) is the
number of points in the K-th curve; CURVE(*,J+ 1,K) is the J-th (U,V) pair on this curve.

28. IER [In/Out, INTEGER scalar]
Success/error code: PROCUV detects error codes -9, -8, and 5. It also returns error codes from
Subroutines TRACE and PROCUV.

-8 is returned when the number of intersection boundaries recognized on the upper or the lower edge
exceeds the theoretical limit of three.

-9 is returned when during curve processing more than the expected number of double roots was
found.

5 is returned when the JP indices to the TRT array lose alignment with the JB and JB1 indices to the
BBND array.

8.58.2 COMMON DATA

none

8.59 SUBROUTINE PSGMAL {from SUBS}

Converts a patch from geometric representation to algebraic representation

8.59.1 PARAMETER LIST

1. GEO [In, REAL(4,4,3)]
Geometric patch representation: GEO(*,*,K) is the K-th component of a vector. GEO(1,1,*) is the
(U,V) = (0,0) position; GEO(1,2,*) is the (1,0) position; GEO(2,1,*) is the (0,1) position; and
GEO(2,2,*) is the (1,1) position. GEO(3,1,*), GEO(3,2,*), GEO(4,1,*), and GEO(4,2,*) are the cor-
responding V-derivatives. GEO(1,3,*), GEO(1,4,*), GEO(2,3,*), and GEO(2,4,*) are the corresponding
U-derivatives. GEO(3,3,*), GEO(3,4,*), GEO(4,3,*), and GEO(4,4,*) are the corresponding cross-
derivatives.

2. ALG [Out, REAL(4,4,3)]
Algebraic representation: ALG(I,J,K) is the coefficient of U(4_}* V(4"I}in the bicubic polynomial for
the K-th coordinate.

8.59.2 COMMON DATA

none

90

8.60 SUBROUTINE QUAD (from LIBS)

Within Subroutine PLINT, finds the roots of a quadratic equation

8.60.1 PARAMETER LIST

r 1. A [In, REAL(3)]
Array containing the coefficients of the equation:

A(1)* X2 + A(2) * X . A(3) = 0.
2. TOL [In, REAL(2)]

The user-specified tolerance
3. IC [Out, INTEGER scalar]

The sign of the discriminant for the quadratic equation. (The equation has IC + 1 roots.)
4. LR [Out, REAL scalar]

The real part of the larger root of a quadratic equation
5. SR [Out, REAL scalar]

The real part of the smaller root of a quadratic equation

8.60.2 COMMON DATA

none

8.61 SUBROUTINE RADCUR (from SUBS}

Stub for use by the planned MSHNRM capability to intersect a cylindrical-coordinate mesh with
rectangular-coordinate patches: This subroutine will transform parametric cubic intersection curves, ad-
ding radius-squared as a 7th coordinate. (The surface normal is represented as the 4th-6th coordinates.)

8.61.1 PARAMETER LIST

1. OUTPUT [In, INTEGER scalar]
Logcial unit for listing output

2. PATMS [Not used]
3. TEMPRC [Not used]
4. NCLABX [Not used]
5. LABELX [Not used]
6. PLNCUT [Not used]
7. NCRV [Not used]
8. QERR [Out, LOGICAL scalar]

Error flag

8.61.2 COMMON DATA

none

8.62 SUBROUTINE RADCUT (from SUBS)

Stub for use by the planned MSHNRM capability to intersect a cylindrical-c0ordinate mesh with
rectangular-coordinate patches: This subroutine will cut intersection curves at specific values of radius-
squared, which is interpolated as the 7th coordinate. This cutting will produce intersection normals.

8.62.1 PARAMETER LIST

1. OUTPUT [In, INTEGER scalar]
Logical unit for listing output

2. TEMPPC [Not used]

91

3. TEMPRS[Not used]
4. NRM [Not used]
5. NCLABX[Not used]
6. LABELX[Not used]
7. RADIUS[Not used]
8. NCRV [Not used]
9. QERR [Out, LOGICALscalar]

Error flag

8.62.2 COMMONDATA

none

8.63 SUBROUTINERADINT (from SUBS)

Stub for use by the planned MSHNRMcapability to intersect a cylindrical-coordinatemesh with
rectangular-coordinatepatches:Thissubroutinewill intersect patchesat specificvaluesof radius-squared,
which is interpolated as a 4th coordinate.Thisprocesswill producethe usual intersectioncurves.

8.63.1 PARAMETERLIST

1. OUTPUT[In,INTEGERscalar]
Logcial unit for listing output

2. PATMS[Notused]
3. TEMPPC[Notused]
4. TEMPRS[Notused]
5. NCLABX[Notused]
6. LABELX[Not used]
7. RADIUS[Not used]
8. MXIT[Not used]
9. MXPT [Not used]
10. NXCRV[Not used]
11. TOLINT[Not used]
12. NCRV [Not used]
13. INTCUR[Not used]
14. IERINT [Not used]
15. INTWRK [Not used]
16. QERR [Out, LOGICALscalar]

Error flag

8.63.2 COMMONDATA
none

8.64 SUBROUTINE RADSRF (from SUBS)

Stub for use by the planned MSHNRM capability to intersect a cylindrical-coordinate mesh with
rectangular-coordinate patches: This subroutine will transform patches, adding radius-squared as a 4th
coordinate.

8.64.1 PARAMETER LIST

1. OUTPUT [In, INTEGER scalar]
Logical unit for listing output

2. PATMS [Not used]
3. TEMPRS [Not used]
4. NCLABX [Not used]
5. LABELX [Not used]

92

6. NPAT [Not used]
7. QERR [Out,LOGICALscalar]

Error flag

8.64.2 COMMONDATA

none
8.65 SUBROUTINE REACUV (from LIBS)

Called from Subroutine SUFINT to begin to connect intersection slices

8.65.1 PARAMETER LIST

1. MXJPT [In, INTEGER scalar]
2. NJCVT [In, INTEGER scalar]
3. NJCRV [In, INTEGER scalar]
4. MXJCRV [In, INTEGER scalar]
5. NHLD [In, INTEGER scalar]
6. NMPT [In, INETGER(NHLD)]
7. PONT [In/Out, REAL(3,MXJPT,NJCRV)]
8. TOL [In, REAL scalar]

Tolerance value
9. MXPT [In,REAL scalar]

Maximum numberofpointstobe calculatedineachoutputintersectionbranch
10. MXCRV [In,REAL scalar]

Maximum number ofintersectionbranchestobecalculated
11. NCRV [In/Out,INTEGER scalar]

Number ofintersectionbranchescalculated
12. CURVE [In/Out,INTEGER scalar]

Intersectionbranches:ThisisthetypeofdataoutputfromSUFINT.
13. IER [Out,INTEGER scalar]

Errorcode:Thisiszerofora normalexit.(SeeSubroutineSUFINT formoredetails.)

8.65.2COMMON DATA

none

8.66 SUBROUTINE READ (from SUBS)

Within Program REGSIL, reads a SIL-format set of sections from unit 2, copying SIL options to unit 4

8.66.1 PARAMETER LIST

1. NSSLP [Out, INTEGER(17)]
End-condition codes for each section

2. DXIS [Out,REAL(17)]
X-componentsofinitialend directionsforeachsection

3. DYIS [Out,REAL(17)]
Y-componentsofinitialenddirectionsforeachsection

4. DZIS [Out, REAL(17)]
Z-components of initial end directions for each section

5. DXOS [Out, REAL(17)]
X-components of final end directions for each section

6. DYOS [Out, REAL(17)]
Y-components of final end directions for each section

7. DZOS [Out, REAL(17)]
Z-components of final end directions for each section

93

8. X [Out, REAL(17,175)]
X-coordinates of points for each section, for each point

9. Y [Out, REAL(17,175)]
Y-coordinates of points for each section, for each point

10. Z [Out, REAL(17,175)]
Z-coordinates of points for each section, for each point

11. LABELX [In/Out, INTEGER(3)]
Coordinate labels: The default labels are input, but SIL options can change the labels. This is
character data.

12. NCLABX [In/Out, INTEGER(3)]
Number ofcharactersinthecoordinatelabels

13. CYL [In/Out,LOGICAL scalar]
Flagforcylindricalcoordinates:The defaultisinputasrectangularcoordinates.

14. IXAXI [In/Out,INTEGER scalar]
Indexfortheaxialcylindricalcoordinate:(IXAXI,IXRAD, andIXANG mustbea permutationofthe
set1,2,and 3.)

15. IXRAD [In/Out,INTEGER scalar]
Index for the radial cylindrical coordinate: (IXAXI, IXRAD, and IXANG must be a permutation of the
set 1, 2, and 3.)

16. IXANG [In/Out, INTEGER scalar]
Index for the angular cylindrical coordinate: (IXAXI, IXRAD, and IXANG must be a permutation of
the set 1, 2, and 3.)

8.66.2 COMMON DATA

COMMON /MODSTF2/ NSECT, NDIM, NDIMC, N1, N2, IFAIL
COMMON /MODSTF3/ NPTS(17)

NSECT is the number of sections and NPTS is the number of points for each section. Values for these
variables are read by this subroutine.

8.67 SUBROUTINE RESID (from LIBS)

Used by subroutine NW021 to compute residuals.

8.67.1 PARAMETER LIST

1. M [not used]
2. NP [In, INTEGER scalar]

Number of knots per curve
3. PKNOT [In, REAL(*)]

Trialknotplacements
4. R [Out, REAL(*)]

Residuals
5. IFL[Out,INTEGER scalar]

Errorcode

8.67.2COMMON DATA

none

8.68 SUBROUTINE ROOTS (from LIBS)

Within Subroutine PLINT, determines the roots of the cubic polynomial in T given by by evaluating the
bicubic at a given S value. (Error codes from Subroutine CUBIC are not passed along.)

94

8.68.1 PARAMETERLIST

1. BC [In,REAL(4,4)]
Coefficients for the output bicubicfunction,in algebraicform:BC(I,J)is the coefficient of U (4"J) *
V(4-I).

2. SVAL[In, REAL scalar]
The S value

3. IRT[In,INTEGER(3)]
Arraycontainingthe subscriptsof the roots of a cubicequation:U(IRT(1))is the real root found viaa
Newton iterativescheme;U(IRT(2))andU(IRT(3))are the roots found from the quadratic factor.

4. TOL[In,REAL(2)]
Array containing the user-specifiedtolerance: TOL(1)is the input tolerance. Any point on a
parametric cubiccurveinterpolatingthe output(U,V)points is within TOL(1)distance(inparametric
units)of a straight line betweenthe surroundingoutputpoints. TOL(2)is computedby PLINTandis
used as a lowerlimit for the step size.

5. TRVAL[Out,REAL(3)]
Array containingthe roots of T at the S value in SVAL

6. IC[Out,INTEGERscalar]
Thesign of the diseriminantfor the quadraticequationobtainedby deflating the cubicwith the first
root. (Thequadraticequationhas IC + 1 roots, so the cubicequationhas IC + 2 roots.)

8.68.2 COMMONDATA

none

8.69 SUBROUTINE SAXPY (from LIBS)

BLAS (LINPACK Basic Linear Algebra Subprogram) to compute a constant times a vector plus a vector
(see Reference 7).

8.69.1 PARAMETER LIST

I. N [In,INTEGER scalar]
Number ofelementsofSX and SY

2. SA [In,REAL scalar]
Constant

3. SX [In,REAL(*)]
The vectorwhichismultipliedby constant

4. INCX [In,INTEGER scalar]
The storageincrementbetweentheelementsofSX

5. SY [In/Out,REAL(*)]
The otherinputvector,alsotheresult

6. INCY [In,INTEGER scalar]
The storageincrementbetweentheelementsofSY

8.69.2COMMON DATA

none

8.76 SUBROUTINE SCOPY (from LIBS)

BLAS (LINPACK BasicLinearAlgebraSubprogram)tocopya vector(seeReference7).

8.70.1 PARAMETER LIST

1. N [In,INTEGER scalar]
The numberofelementsinthevector

95

2. SX [In,REAL(*)]
The original vector

3. INCX [In, INTEGER scalar]
The storage increment between the elements of SX

4. SY [Out,REAL(*)]
The copy

5. INCY [In, INTEGER scalar]
The storage increment between the elements of SY

8.70.2 COMMONDATA

none

8.71 REAL FUNCTION SDOT (from LIBS}

BLAS (LINPACK Basic Linear Algebra Subprogram) to compute the scalar product of two vectors (see
Reference 7).

8.71.1 PARAMETER LIST

I. N [In,INTEGER scalar]
The numberofelementsinSX and inSY

2. SX [In,REAL(*)]
Vector1

3. INCX [In,INTEGER scalar]
The storageincrementbetweenelementsofSX

4. SY [In, REAL(*)]
Vector 2

5. INCY [In, INTEGER scalar]
The storage increment between elements of SY

8.71.2 COMMONDATA

none

8.72 SUBROUTINE SETTOL (from SUBS)

Sets the tolerances used by Program SRFINT

8.72.1 PARAMETER LIST

1. L5 [In, INTEGER scalar]
Logical unit number for input

2. L6 [In, INTEGER scalar]
Logical unit number for output

3. TOLPT [Out, REAL(3)]
Tolerances for each coordinate for matching end points between intersection slices: The default values
are 1.0 distance units (typically inches) for each component.

4. TOL [Out, REAL(4)]
Tolerances for computing the intersection of a pair of patches: TOL(1)is a gluing tolerance for joining
planar-intersector results; TOL(2) is a flatness tolerance for the approximation of a patch by polygon
faces; TOL(3) is the planar-intersector tolerance. TOL(4) is set within the planar intersector. TOL(1),
TOL(2),and TOL(3)have default values of .01, .001, and .00001 respectively.

•8.72.2 COMMON DATA

none

96

8.73 SUBROUTINE SILCPY (from SUBS)

Copies a file of SIL data, rewriting it with system comments added

8.73.1 PARAMETER LIST

i. OLDSIL [In,INTEGER scalar]
LogicalunitforSIL input

2. NEWSIL [In, INTEGER scalar]
Logical unit for SIL output

3. NCLABX [In/Out, INTEGER(3)]
Number of characters in the coordinate labels

4. LABELX [In/Out, INTEGER(3)]
Coordinate labels: This is character data.

5. _ [Temporary, REAL(3,175)]
Array to hold point coordinates for a section

6. IQPT [Temporary, INTEGER(2,120)]
Array to hold section-knot and section indices for a member

7. TEN [Temporary, REAL(175)]
Array to hold tension values for either a section or a member

8. TENDD [Temporary, REAL(3,2)]
Inital and final end directions for either a section or a member

9. IUOV0 [Temporary, INTEGER(2)]
Array to hold member-knot and member indices for the (0,0) patch comer

10. IUOV1 [Temporary, INTEGER(2)]
Array to hold member-knot and member indices for the (0,1) patch comer

11. IU1V0 [Temporary, INTEGER(2)]
Array to hold member-knot and member indices for the (1,0) patch comer

12. IU1V1 [Temporary, INTEGER(2)]
Array to hold member-knot and member indices for the (1,1) patch comer

8.73.2 COMMON DATA

none

8.74 SUBROUTINE SILOPT (from SUBS)

Reads option declaractions at the beginning of a SIL file and copies them

8.74.1 PARAMETER LIST

i. OLDSIL [In,INTEGER scalar]
LogicalunitforSILinput

2. NEWSIL [in,INTEGER scalar]
LogicalunitforSILoption-declarationoutput:Ifnegative,copyingissuppressed.

3. OUTPUT [in,INTEGER scalar]
Logicalunitforlistingoutput:Ifnegative,listingissuppressed

4. CYL [in/Out,LOGICAL scalar]
Flagforcylindricalcoordinates:Rectangularcoordinatesareinputasthedefault.

5. IXAXI [In/Out,INTEGER scalar]
Indexfortheaxialcylindricalcoordinate.A defaultvalueofI isinput.(IXAXI,IXANG, andIXRAD
must bea permutationoftheset1,2,and3.)

6. IXRAD [In/Out,INTEGER scalar]
-. Index for the axial cylindrical coordinate. A default value of 2 is input. (IXAXI, IXANG, and IXRAD

must be a permutation of the set 1, 2, and 3.)
7. IXANG [In/Out, INTEGER scalar]

Index for the axial cylindrical coordinate. A default value of 3 is input. (IXAXI, IXANG, and IXRAD
must be a permutation of the set 1, 2, and 3.)

97

8. LABELR[In/Out,INTEGER(3)]
Labelsfor rectangularcoordinates:This is characterdata.The defaultlabels are input, butthe labels
can be changedbefore exit.

9. NCLABR[In/Out,INTEGER(3)]
The numberof characters in the rectangular-coordinatelabels:This can range fi_m 1 to 10.

10. LABELC[In/Out,INTEGER(3)]
Labelsfor cylindricalcoordinates:This is characterdata. Thedefault labels are input, but the labels
can be changed beforeexit.

11. NCLABC[In]Out,INTEGER(3)]
The number of characters in the cylindrical-coordinatelabels:This can range from I to 10.

12. LABELX[Out, INTEGER(3)]
Labels for surface coordinates:This is character data. It is either the labels for _ylindrical or
rectangularcoordinates.

13. NCLABX[Out, INTEGER(3)]
The numberof characters in the surfacecoordinatelabels:This can range from 1 to 10,

14. DUMP[Out,LOGICALscalar]
Flag to list details of the surface-modelingcalculations

8.74.2 COMMONDATA

none

8.75 REAL FUNCTION SNRM2 (from LIBS}

BLAS (UNPACK Basic Linear Algebra Subprogram) to compute the Euclidean norm of a vector (see
(see Reference 7).

8.75.1 PARAMETER LIST

1. N [In, INTEGER scalar]
The number of elements in SX

2. SX [In, REAL(*)]
The vector

3. INCX [In, INTEGER scalar]
The storage increment between the elements of SX

8.75.2 COMMON DATA

none

8.76 SUBROUTINE SORTRN (from SUBS}

Sorts N-tuples of real values, using quicksort

8.76.1 PARAMETER LIST

1. LFERR [In, INTEGER scalar]
Logical unit to write error messages

2. NKEY [In, INTEGER scalar]
The number of components in the sorting key: This must be positive.

3. IKEY [In, INTEGER(NKEY)]
Key to precedence of components in sorting: These must either be between 1 and N or be
between -N and -1. IKEY(I) controls the sorting of all N-tuples which have the previous I-1 com-
ponents equal. If IKEY(I) is positive, these values are sorted in ascending order on their I-th com-
ponent. If IKEY(1) is negative, these values are sorted in descending order on their I-th component.

4. N [In, INTEGER scalar]
The number of components in each N-tuple: This must be positive.

98

5. LONG [In, INTEGER scalar]
The number of N-tuples to sort: From 1 to 220 are permitted.

6. A [In/Out, REAL(N,LONG)]
Array containing the N-tuples

7. QERR [Out, LOGICAL scalar]
Error Flag

8.76.2 COMMON DATA

none

8.77 SUBROUTINE SQRDC (from LIBS)

LINPACK routine to compute the QR decomposition of a matrix: The matrix, X, is factored into two
matrices, Q and R. Q is orthogonal and R is upper triangular. (This decomposition can be used by
LINPACK routine SQRSL to perform coordinate transformations, projections, and least-squares
solutions.) (see Reference 7.)

8.77.1 PARAMETER LIST

1. X [In/Out, REAL(LDX,P)]
On entry this array holds the input matrix, X. On exit it holds in its upper triangle the upper-
triangular factor, R; below its diagonal, X contains information from which the orthogonal factor, Q,
can be recovered.

2. LDX [In, INTEGER scalar]
The leading dimension allocated for the array X

3. N [In, INTEGER scalar]
The number of rows in the matrix X. (N should be greater than P, or the least-squares problem will be
underdetermined.)

4. P [In, INTEGER scalar]
The number of columns in the matrix X.

5. QRAUX [Out, REAL(P)]
Further information from which (combined with the data returned below the diagonal in array X) the
orthogonal factor, Q, can be recovered.

6. JPVT [In/Out, INTEGER(P)]
If JOB = 1, pivoting control information is input and the pivoting ordering used is returned.
The sign of each input value controls the treatment of the corresponding matrix column: A positive
value indicates an initial column;a zero value indicates a free column; a negative value indicates a
final column.(Initialcolumns are moved to the leading part of X, and final columns are moved to the
trailing part of X. During the decomposition, only free columns are moved. The information from the
leading part of the matrix, as pivoted, stays in the leading part of R, along with all of Q.)
The output values from an execution with pivoting show the index of the column that was moved into
the J-th location.

7. WORK [Temporary, REAL(P)]
Array used while pivoting: This is not referenced if JOB = 0.

8. JOB [in, INTEGER scalar]
Pivoting code: If 0, pivoting is not done; if 1, pivoting is done according to the JPVT input. A
pivoting execution factors a rearrangement of X, so the rearrangement information that is output in
JPVT is needed to use the factorization.

8.77.2 COMMON DATA

none

99

8.78 SUBROUTINE SQRSL (from LIBS)

LINPACK routine to manipulate the QR decomposition of a matrix, as computed by Subroutine SQRDC:
(The matrix, X, has been factored into two matrices, Q and R. Q is orthogonal and R is upper triangular.)
This manipulation can solve least-squares problems, and it can perform coordinate transformations and
projections (See Reference 7.)

8.78.1 Parameter List

1. X [In, REAL(LDX,P)]
The contents of array X after returning from Subroutine SQRDC

2. LDX [In, INTEGER scalar]
The leading dimension allocated for the array X

3. N [In, INTEGER scalar]
The number of rows in the matrix X. (N should be greater than P, or the least-squares problem will be
underdetermined.)

4. K [In, INTEGER scalar]
The number of leading columns of the matrix X to manipulate: K must not exceed either N
or P.

5. QRAUX [in, REAL(P)]
The contents of array QRAUX after returning from Subroutine SQRDC

6. Y [In, REAL(N)]
A vector to be manipulated, of length N

7. QY [Out, REAL(N)]
If requested, the matrix product of Q before Y. Otherwise this array is not referenced.

8. QTY [Out, REAL(N)]
If requested, the matrix product of Q-transpose before Y. Otherwise this array is not referenced.

9. B [Out, REAL(P)]
If requested, the solution of the least-squares problem minimizing the norm of the N-vector dif-
ference "Y-XB'. Otherwise this array is not referenced.

10. RSD [Out, REAL(N)]
If requested, the residual vector '_!-XB" for the least-squares solution. Otherwise this array is not
referenced. (This is also the orthogonal projection of Y onto the orthogonal complement to the col-
umn space of X.)

11. XB [Out, REAL(N)]
If requested, the matrix product of X before B, which is the least-squares approximation to Y. Other-
wise this array is not referenced. (This is also the orthogonal proection of Y onto the column space of
X.)

12. JOB [In, INTEGER scalar]
Parameter to request specific results: This is written as a decimal number with 5 digits: ABCDE.
Digit A is nonzero to request the computation of QY; one of digits B, C, D, or E are nonzero to request
the computation of QTY; digit C is nonzero to request the computation of B; digit D is nonzero to re-
quest the computation of RSD; and digit E is nozero to request the computation of XB.

13. INFO [Out, INTEGER scalar]
Error code: This is zero for the case when R is nonsingular. Otherwise it is the index of the first zero
on the diagonal of R, and B is not changed.

8.78.2 COMMON DATA

none

8.79 SUBROUTINE SSCAL (from LIBS)

BLAS (LINPACK Basic Linear Algebra Subprogram) to scale a vector by a constant (see Reference 7).

100

8.79.1 PARAMETER LIST

1. N [In, INTEGER scalar]
The number of elements in SX

2. SA [In, REAL scalar]
The constant

3. SX [In/Out, REAL(*)]
The vector

4. INCX [In, INTEGER scalar]
° The storage increment between the elements of SX

8.79.2 COMMON DATA

none

8.80 SUBROUTINE SSWAP (from LIBS}

BLAS (LINPACK Basic Linear Algebra Subprogram) to swap two vectors (see Reference 7).

8.80.1 PARAMETER LIST

1. N [In, INTEGER scalar]
The number of elements in SX and in SY

2. SX [In/Out, REAL(*)]
Vector 1

3. INCX [In, INTEGER scalar]
The storage increment between the elements of SX

4. SY [In/Out, REAL(*)]
Vector 2

5. INCY [In, INTEGER scalar]
The storage increment between the elements of SY

8.80.2 COMMONDATA

none

8.81 SUBROUTINE STRCUV (from LIBS)

Within Subroutine PLINT, stores a plane/patch intersection curve

8.81.1 PARAMETER LIST

1. C [In/Out, REAL(2,MXFr,3)]
Array used to accumulate points on the intersection curves while they are traced: Curves are input
here and then cleared from the array.

2. IRT [In, INTEGER scalar]
Index to the curve to be stored

3. IRT1 [In, INTEGER scalar]
Index to the remaining part of a loop-shaped curve to be stored, also the index to where an
ITYP = 4 call stores a curve in C.

4. ID [in, INTEGER(2)]
Array specifying the renaming of U and V as S and T. ID(1) is the index value for S in the ordered pair
(U,V), and ID(2) is the index value for T. (e.g., If ID(1) is 2, then S is the name for V within the planar
intersector.)

5. ITYP [in, INTEGER scalar]
The type of zero curve: (1) Simple curve, (2) Open loop, (3) Closed loop, (4) Indicates a call to
Subroutine STRCUV to reverse a curve, moving it from C(*,*,IRT) to C(*,*,IRT1).

101

6. IPT [In/Out, INTEGER(3)]
The number of points on a zero curve in C(*,*,K): If IPT(I) = -1, then the curve passing through the
root U(1T(I))will not be traced.

7. MXPT [In, INTEGER scalar]

Upper limit on the number of points desired on a single output curve: If a particular curve generates
more than MXPT points, PLINT will stop processing that curve andthe remaining points will be lost.
MXPT must be at least 2. (This feature guarantees that the each of intersection curves will not exceed
the number of spaces allocated for them.)

8. MXCRV [In, INTEGER scalar]

Upper limit on the number of curves generated from a single call: If a call generates more than
MXCRV curves, PLINT will finish processing any curves and will return only MXCRV curves. (This
feature guarantees that the number of intersection curves will not exceed the number of spaces
allocated for them.) MXCRV must be positive and at most 12.

9. NCRV [In/Out, INTEGER scalar]
The number of curves stored in array CURVE

10. CURVE [In/Out, REAL(2,MXPT,MXCRV)]
Array containing CO,V) pairs for points on the patch, along the stored intersection curves.
CURVE(1,1,K) is the number of points in the K-th curve; CURVE(*,J+ 1,K) is the J-th CO,V)pair onthis curve.

11. IER [In/Out, INTEGER scalar]
Success/error code: STRCUV can return error codes 3 and 4.3 is returned when the number of points
calculated on a curve exceeds MXPT. 4 is returned when the number of intersection curves exceeds
MXCRV.

8.81.2COMMON DATA

none

8.82 COMPASS SUBROUTINE STRMOV

Copies a character string.

8.82.1 PARAMETER LIST

1. SA [In, Array]
Input string

2. LA [In, INTEGER scalar]

Location of the first charcter in string SA: This is 1 for the leftmost character position in the array.
3. NA [In, INTEGER scalar]

Number of characters in string SA
4. SB [Out, Array]

String copy
5. LB [in, INTEGER scalar]

Location of the first character in string SB: This is 1 for the leftmost character position in the array.

8.82.2 COMMON DATA

none

8.83 SUBROUTINE SUFDEG (from LIBS)

Within SubroutinePLINT,determines if the bicubicis degenerateat a given S value, also computes the
rootsat the S value and the partial derivatives at these roots:This is calledby PLINTto root patchboun-
dariesand to initalizeroots for tracing.

102

8.83.1 PARAMETER LIST

I. SVAL [In,REAL scalar]
S value

2. BC [In, REAL(4,4)]
Coefficients for the output bicubic function, in algebraic form: BC(I,J) is the coefficient of U(4_) *

_ V(4-I).
3. HBND [In, REAL(2)]

Horizontal (T) boundaries to the region of interest
4. IDEG [Out, INTEGER scalar]

Degree of the polynomial in T obtained when the bicubic is evaluated at the S value
5. NDEG [In, INTEGER scalar]

The maximum degree of the polynomial in T obtained by evaluating the bicubic at an arbitrary S
value

J 6. IRT [In, INTEGER(3)]
Array containing the subscripts of the roots of cubic equation: U(IRT(1)) is the real root found via a
Newton iterative scheme; U(IRT(2))and U(IRT(3)) are the roots found from the quadratic factor.

7. TOL [In, REAL(2)]
Array containing the user-specified tolerance: TOL(1) is the input tolerance. Any point on a
parametric cubic curve interpolating the output (U,V) points is within TOL(1)distance (in parametric
units) of a straight line between the surrounding output points. TOL(2)is computed by PLINT and is
used as a lower limit for the stepsize.

8. IC [Out, INTEGER(2)]
The sign of the discriminant for the quadratic equation obtained by deflating the cubic with the first
root. (The quadratic equation has IC + 1 roots, so the cubic equation has IC + 2 roots.)

9. TRVAL [Out,INTEGER scalar]
ArraycontainingtherootsofthecubicpolynomialinT obtained!by evaluatingthebicubiciatSVAL

10. RPS [In,REAL(3)]
ArraycontainingthepartialderivativewithrespecttoS ofthecubicpolynomialinT obtainedby
evaluatingthebicubicatthe3 T rootsas5VAL

11. RPT lOut,REAL(3)]
ArraycontainingthepartialderivativewithrespecttoT ofthecubicpolynomialinT obtainedby
evaluatingthebicubicatthe3 T rootsasSVAL

12. RPSS [Out,REAL(3)]
ArraycontainingthesecondpartialderivativewithrespecttoS ofthecubicpolynomialinT obtained
by evaluatingthebicubicatthe3 T rootsatSVAL

13. RPST [Out,REAL(3)]
Arraycontainingthemixed secondpartialderivativeof thecubicpolynomialin T obtainedby
evaluatingthebicubicatthe3 T rootsatSVAL

14. RPTT [Out,REAL(3)]
ArraycontainingthesecondpartialderivativewithrespecttoT ofthecubicpolynomialinT obtained
by evaluatingthebicubicatthe3 T rootsatSVAL

15. IER [In/Out,INTEGER scalar]
Success/errorcode:Theonlypossibleerrorcodeis1,whichispassedalongfromSubroutineCUBIC.

8.83.2COMMON DATA

none

8.84 SUBROUTINE SUFFER (from SUBS)

Reports errors from subroutine SUFINT

8.84.1 PARAMETER LIST

1. L6 [In, INTEGER scalar]
Logical unit for error-message output

103

2. IER [In, INTEGER scalar]
Error code, returned from SUFINT

3. IPAT1 [In, INTEGER scalar]
Index to current first-surface patch

4. IPAT2 [In, INTEGER scalar]
Index to current second-surface patch

5. MXJPT [In, INTEGER scalar]
This must be at least 3.

6. NLEV [In, INTEGER scalar]
Maximum depth for the binary patch-subdivision tree: This must be at least 1.

7. MXJCRV [In, INTEGER scalar]
This must be at least 2.

8. TOL [In, INTEGER(4)]
Tolerance values: TOL(1)is used to control the gluing of trimmed slices together to make intersection
branches. TOL(2) is used to determine when a subpatch is effectively fiat. TOL(3) is the input
tolerance for the plane/patch intersector. TOL(4) is the second tolerance computed by the planelpatch
intersector.

9. MXPT [In, INTEGER scalar]
The maximum number of points to be computed on an intersection branch: This must be at least 2.

10. MXCRV [In, INTEGER scalar]
The maximum number of intersection branches to be computed: This must be at least 1.

8.84.2 COMMON DATA

none

8.85 SUBROUTINE SUFINT (from LIBS}

In Program SRFINT, computes the intersection of a single patch from the first surface with a single patch
from the second surface: The first patch is subdivided until its components are within a tolerance of being
fiat; it is represented by planar regions approximating these components. The planes corresponding to
these regions are intersected with the second patch, giving slices. These slices are trimmed at the edges of
the planar regions, then they are glued together at their endpoints. Each connected string of trimmed
slices is called an intersection branch.

8.85.1 PARAMETER LIST

I. ICC [In/Out,INTEGER scalar]
TheinputICC valueindicatesthetypeofcall:ICCisnegativeforaninitialcall,when theconvexhull
ofthefirstpatchisnotyetcomputed;ICCispositivefora continuecall,when theconvexhullwas
previouslycomputed.The outputICCvalueissettozeroifanerroroccuredwhilecomputingthecon-
vexhull;otherwiseitistheabsolutevalueoftheinputvalue.

2. PATCH [In,REAL(16,3,2)]
The pairofpatchestobe intersected:PATCH (*,J,K)isthegeometric-formrepresentationofthe
bicubicfortheJ-thspatialcoordinatefortheK-thpatch.

3. TOL [In,INTEGER(4)]
Tolerancevalues:TOL(1)isusedtocontrolthegluingoftrimmedslicestogethertomakeintersection
branches.TOL(2)isusedto determinewhen a subpatchiseffectivelyfiat.TOL(3)istheinput
tolerancefortheplane/patchintersector.TOL(4)isthesecondtolerancecomputedbytheplane/patch
intersector.

4. IWRK [Temporary, INTEGER(*)]
An array used during patch subdivision

5. NWRK [In, INTEGER scalar]
The amount of space allocated for array IWRK: This must be at least NLEV + MXCRV + MXJCRV.

6. NLEV [In, INTEGER scalar]
Maximum depth for the binary patch-subdivision tree: This must be at least 1.

104

7. PONT [Temporary, REAL(3, MXJPT, MXJCRV)]
Array to hold spatial coordinates for plane/patch intersection results

8. MXJPT [In, INTEGER scalar]
This must be at least 3.

9. MXJCRV [In, INTEGER scalar]
This must be at least 2.

" 10. WORK2 [Temporary, REAL(3,MXIPT,MXICRV)]
Array used by PLINT, the plane/patch intersector: The parametric representation of intersection
curves computed by PLINT are stored in part of WORK2.

11. MXIT [In, INTEGER scalar]
The maximum number of iterations for cubic polynomial solution within PLINT, the plane/patch
intersector.

12. MXIPT [In, INTEGER scalar]
Maximum number of points to be computed on an intersection slice: This must be at least 2.

13. MXICRV [In, INTEGER scalar]
This must be at least 4. (MXICRV - 3 is the maximum number of intersection slices to be computed by
a single call to PLINT, the plane/patche intersector.

14. HOLD [In/Out, INTEGER(*)]
The planes defining the convex hull of the first patch: At least 120 values must be allocated for this
array. This is input when ICC is positive, and it is output when the input value of ICC was negative.

15. MXPT [In, INTEGER scalar]
The maximum number of points to be computed on an intersection branch: This must be at least 2.

16. MXCRV [in, INTEGER scalar]
The maximum number of intersection branches to be computed: This must be at least 1.

17. NCRV [Out, INTEGER scalar]
The number of intersection branches computed

18. CURVE [Out, REAL(3, MXPT,MXCRV)]
The intersection branches: CURVE(1,1,K) is the number of points on the K-th branch.
CURVE(I,J+ 1,K) is the I-th spatial coordinate of the J-th point on the K-th curve.

19. IER [Out, INTEGER scalar]
Error code: This is zero for a successful execution. It is positive is the results are suspect. It is negative
if a fatal error stopped processing.

Fatal error codes are : (-1) An error was detected while finding the convex hull of patch 1, and ICC
was set to zero; (-2)One of the three input tolerance values was less than the relative precision for this
machine; (-3) MXJPT is less than three; (-4) MXJCRV is less than 2; (-5)
MXICRV is less than four; (-6) NWRK is less than NLEV + MXCRV + MXJCRV; (-7)NLEV is less
than 1; (-8) MXPT is less than 2; (-9) MXCRV is less than 1; (-10) Bad normals were produced for the
convex hull; (-11) No extreme face could be found to initialize the convex hull algorithm; (-12) The
convex hull contains more normals than the theoretical limit; (-13) The convex hull contains more
edges than the theoretical limit; (-14) the convex hull is planar; (-15 to -28) PLINT produced an error
code equal to IER + 13.

Nonfatal error codes are: (1) A subpatch does not satisfy the flatness tolerance after NLEV successive
subdivisions.

8.85.2 COMMON DATA

none

8.86 SUBROUTINESUFROT (from LIBS)

When tracing plane/patchintersectionswithin SubroutinePLINT,computestheroots of the polynomialin
T at the next S value and the partialderivatives of the bicubicat these roots.

105

8.86.1 PARAMETER LIST

1. SVAL [In, REAL(2)]
Array containing the S values bounding the current interval for tracing roots: Roots at SVAL(2) are
being calculated, and the previous roots are at SVAL(1)

2. HVAL [In, REAL scalar]
Step size: This is the amount that S increases. (It is used to initialize the iteractive scheme in
Subroutine CUBIC.

3. BC [In, REAL(4,4)]
Coefficients for the output bicubic function, in algebraic form: BC(I,J) is the coefficient ofU(4_) *
V(44)

4. HBND [In, REAL(2)]
Horizontal (T) boundaries to the region of interest

5. IDEG [In, INTEGER scalar]
Degree of the polynomial in T obtained when the bicubic is evaluated at the S value

6. NDEG [In, INTEGER scalar]
The maximum degree of the polynomial in T obtained by ebaluating the bicubic at an arbitrary S
value

7. IRT [In/Out, INTEGER(3)]
Array containing the subscripts of the roots of a cubic equaton: U(IRT(1))is the real root found via a
Newton iterative scheme; U(IRT(2)) and U(IRT(3)) are the roots found from the quadratic factor.

8. IPT [In, INTEGER(3)]
The number of points calculated on a zero curve: If IPT(I) = -1, then the curve passing through the
root U(IT(I))will not be traced.

9. TOL [In, REAL(2)]
Array containing the user-specified tolerance: TOL(1) is the input tolerance. Any point on a
parametric cubic curve interpolating the output (U,V) points is within TOL(1)distance (in parametric
units) of a straight line between the surrounding output points. TOL(2)is computed by PLINT and is
used as a lower limit for the stepsize.

10. IC [Out, INTEGER scalar]
The sign of the discriminant for the quadratic equation obtained by deflating the cubic with the first
root. (The quadratic equation has IC + 1 roots, so the cubic equation has IC + 2 roots.)

11. TRVAL [Out, REAL(3,2)]
Array containing the values of the 3 T roots at the 2 S values from array SVAL

12. RPS [in/Out, REAL(3,2)]
Array containing the partial derivative of the bicubic with respect to S at the 3 T roots at the 2 S
values from array SVAL

13. RPT [In/Out, REAL(3,2)]
Array containing the partial derivative of the bicubic with respect to T at the 3 T roots at the 2 S
values from array SVAL

14. RPSS [In/Out, REAL(3,2)]
Array containing the second partial derivative of the bicubic with respect to S at the 3Tirootsat,the 2
S values from arry SVAL

15. RPST [In/Out, REAL(3,2)]
Array containing the mixed second partial derivative of the bicubic at the 3 T roots at the 2 S values
from array SVAL

16. RFI_ [In/Out, REAL(3,2)]
Array containing the second partial derivative of the bicubic with respect to T at the 3 T roots at the 2
S values from array SVAL

17. IER [In/Out, INTEGER scalar)]
Success/error code: The only possible error code is 1, which is passed along from Subroutine CUBIC.

106

8.86.2 COMMONDATA

none

8.87 SUBROUTINE TANSCL (from SUBS}

In Program MSHNRM, scales position ans surface-normal derivatives for parametric cubic interpolation
along intersection curves.

8.87.1 PARAMETER LIST

I. OUTPUT [In,INTEGER scalar]
Logicalunitforlistingoutput

2. X0 [In,REAL(3)]
Initialposition

3. DXDU0 [In/Out,REAL(3)]
Initialposition-derivative:The inputdirectionisnotchanged,onlythescale.

4. SN0 [In, REAL(3)]
Initial surface-normal direction

5. DSNDU0 [In/Out, REAL(3)]
Initial surface-normal derivative: The input direction is not changed, only the scale.

6. X1 [In, REAL(3)]
Final position

7. DXDU1 [In/Out, REAL(3)]
Final position-derivative: The input direction is not changed, only the scale.

8. SN1 [In, REAL(3)]
Final surface-normal direction

9. DSNDU1 [in/Out, REAL(3)]
Final surface-normal derivative: The input direction is not changed, only the scale.

10. IQSCAL [In, INTEGER scalar]
Code to select a method to scale tangents for parametric cubic interpolation along MSHNRM in-
tersection curves: Possible values are 1 (which gives locally explicit scaling) and 2 (which gives
Ferguson-PhiUips scaling, minimizing the integral of 2nd derivatives along the arc).

11. QERR [Out, LOGICAL scalar]
Error flag

8.87.2 COMMON DATA

none

8.88 SUBROUTINE TRACE (from LIBS}

Within Subroutine PLINT, determines the step size required to satisfy the tolerance and performs a single
step of tracing the roots from one S value to another.

8.88.1 PARAMETER LIST

1. BICOF [In, REAL(4,4)]
Coefficients for the output bicubic function, in algebraic form: BC(I,J) is the coefficient of U(4_1)*
V(4-I).

2. TOL [In, REAL(2)]
Array containing the user-sepcified tolerance: TOL(1) is the input tolerance. Any point on a
parametric cubic curve interpolating the output (U,V) points is within TOL(1)distance (in parametric
units) of a straight line between the surrounding output points. TOL(2)is computed by PLINT and is
used as a lower limit for the stepsize.

3. BBNDY [In, REAL scalar]
Maximum S value for the current tracing step

107

4. IDET [In, INTEGER scalar]
The degree of the polynomial in T when the bicubic is evaluated at BBNDY

5. HBND [In, REAL(2)]
Horizontal (T)boundaries to the region of interest

6. HBEPS [In, REAL(2)]
Army containing horizontal boundaries slightly wider than the region of interest

7. NDEG [In, INTEGER scalar]
The maximum degree of the polynomial in T obtained by evaluating the bicubic at an arbitrary S
value

8. IPT [In, INTEGER(3)]
The number of points calculated on a zero curve: If IPT(I) = -1, then the curve passing through the
root U(1T(I))will not be traced.

9. IT [In/Out, INTEGER(3)]
Array containing the subscripts of the roots of a cubic equation: U(IT(1)) is the real root found via a
Newton iterative scheme; U(IT(2)) and U(IT(3)) are the roots found from the quadratic factor.

10. SVAL [In/Out, REAL(2)]
Array containing the S values bounding the current interval for tracing roots: Roots and partial
derivatives at SVAL(2) are being calculated, and the previously-calculated roots and partial
derivatives are at SVAL(1).

11. TRVAL [In/Out, REAL(3,2)]
Array containing the roots of T at the S value in SVAL

12. IFG [Out, INTEGER scalar]
Code for completion of tracing: 1 if SVAL(2) has reached BBNDY, 0 otherwise.

13. RPS [In/Out, REAL(3,2)]
Array containing the partial derivative of the bicubic with respect to S at the 3 T roots at the 2 S
values from array SVAL

14. RPT [In/Out, REAL(3,2)]
Array containing the partial derivative of the bicubic with respect to T at the 3 T roots at the 2 S
values from array SVAL

15. RPST [In/Out, REAL(3,2)]
Array containing the mixed second partial derivative of the bicubic at the 3 T roots at the 2 S values
from array SVAL

16. RPSS [In/Out, REAL(3,2)]
Array containing the second partial derivative of the bicubic with respect to S at the 3 T roots at the 2
S values from array SVAL

17. RPTT [In/Out, REAL(3,2)]
Array containing the second partial derivative of the bicubic with respect to T at the 3 T roots at the 2
S values from array SVAL

18. IC [Out, INTEGER scalar]
The sign of the discriminant for the quadratic equation obtained by deflating the cubic with the first
root. (The quadratic equation has IC + 1 roots, so the cubic equations has IC + 2 roots.)

19. IER [In/Out, INTERGER scalar]
Success/error code: 1 is passed along from Subroutine CUBIC; 2 is returned when the step size re-
quired to follow the curve is less than TOL(2). (This case tends to indicate that some of the returned
(S,T) data lies outside the unit square, which is not valid.)

8.88.2 COMMON DATA

none

8.89 LOGICAL FUNCTION TRMCHK (from SUBS}

Finds the next data line on an input file: System comments are skipped, and user comments are copied to
an output file.

108

8.89.1 PARAMETER LIST

1. INPUT [In, INTEGER scalar]
Logical unit for the input file

2. I2NEIN [In, INTEGER scalar]
Logical unit where the current data line is copied for reading within the calling program: 80 columns
are copied.

3. OUTPUT [In, INTEGER scalar]
Logical unit for the output file to which user comments are copied

4. DATA [Out, LOGICAL scalar]
Indicates that a data line was found before the end-of-file was reached

8.89.2 COMMON DATA

none

8.90 SUBROUTINE TXTCPY (from SUBS)

Copies text lines: 80 characters are copied per line.

8.90.1 PATAMETER LIST

1. INPUT [In, INTEGER scalar]
Logical unit for input

.2. OUTPUT [In, INTEGER scalar]
Logical unit for output

8.90.2 COMMON DATA

none

8.91 SUBROUTINE UNIQRN (from SUBS)

Removes duplicates from a set of real N-tuples: The N-tuples are sorted by SORTRN and then adjacent
pairs are tested for duplication within a tolerance.

8.91.1 PARAMETER LIST

1. LFERR [In, INTEGER scalar]
Logical unit for error message output

2. NKEY [In, INTEGER scalar]
Number of sorting keys and tolerances

3.]KEY [In, INTEGER(NKEY)]
Key to precedence of components in sorting: These must either be between 1 and N or be between -N
and -1. IKEY(1) controls the sorting of all N-tuples which have the previous I-1 components equal. If
]KEY(l) is positive, these values are sorted in ascending order on their I-th component. If IKEY(l) is
negative, these values are sorted in descending order on their I-th component.

4. TOL [In, REAL(NKEY)]
Tolerances for recognizing effectively equal components: These must be positive. The I-th tolerance
corresponds to the]KEY(I) component.

5. N [In, INTEGER scalar]
Number of components in the N-tuples

6. NN [In, INTEGER scalar]
Number of input N-tuples

7. LONG [Out, INTEGER scalar]
Number of N-tuples after removing duplicates

109

8. A [In/Out, REAL(N,NN)]
Array of N-tuples

9. QERR [Out, LOGICALscalar]
Error flag

8.91.2 COMMONDATA

none

8.92 REAL FUNCTION UPOLC (from LIBS)

Evaluates a coefficient of the cubic polynomial in T obtained by evaluating the bicubic at a given S value.

8.92.1 PARAMETER LIST

1. J [In, INTEGER scalar|
The coefficient of T(4_ in the polynomial is to be evaluated

2. X [In, REAL scalar]
The S value where the polynomial is to be evaluated

8.92.2 COMMON DATA

COMMON /IRPI/ A(4,4)

The bicubic polynomial is input from A.

8.93 SUBROUTINE VARKNT {from LIBS)

Within Program REGSIL, optimizes knot placement on a set of spline curves: The curves are fit with first_
degree continuous splines. The number of points is incremented until a parametric knot placement can
keep the position error at the input points within a tolerance.

8.93.1 PARAMETER LIST

1. TOL [In, REAL scalar]
Tolerance value

2. NPMAX [In, INTEGER scalar]
Maximum number of knots

3. PKNOT [Out, REAL(*)]
Knot placements: This in normalized arclength; it increases monotonically from 0 to 1.

4. ERRMAX [Out, REAL(*)]
Errors from the final knot placement: This is the maximum error for each curve.

5. IER [Out, INTEGER scalar]

Error code: 0 for success; -1 for negative NCURV, NDIM, or NDIMC; -2 for an input curve with not
enough points to define NBEG knots; -3 for an error in subroutine NW021.

6. NBEG [In, INTEGER scalar]
Initial number of knots to try

7. NP [Out, INTEGER scalar]
Number of knots

8. CYL [In, LOGICAL scalar]
Flag for cylindrical coordinates

9. IXAXI [In, INTEGER scalar]
Index for the axial cylindrical coordinate

10. IXRAD [In, INTEGER scalar]
Index for the radial cylindrical coordinate

11. IXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

110

8.93.2 COMMONDATA

COMMON /CNTRL/ IL, EPS, DELX, MODE, MAXFN, KF, KORD
COMMON fMODSTFI/ CRV(800,4),WORK(9000)
COMMON /MODSTF2] NCURV, NDIM, NDMIC, NPRT1, NPRT2, IFAIL
COMMON /MODSTF3] LEN(17)

Common block/CNTRL/primarily controls the optimization routine NW021. IL is the location parameter
used by subroutine CBSPN. EPS is the error tolerance used by NW021. DELX is the step size used by
NW021 forfnmnericall differentationJ MODE is iusedl by NW021. MAXFN is the limit on the number of
error function evaluations to be made by NW021. KF controls the listing output from NW021. KORD is
the order of the splines used; it is 4, giving cubic splines.

CRV stores the coordinates of the input points and the chord lengths along the curves. WORK is used as
temporary storage. NCURV is the number of curves. NDIM is the number of spatial dimensions; it is set to
3. NDIMC equals the length of CRV. LEN is the number of input points for each curve.

8.94 SUBROUTINE VERRN (from SUBS)

Verifies (i.e., aligns) a set of real N-tuples to a set of discrete values for each component: They are sorted
before verification.

8.94.1 PARAMETER LIST

1. LFERR [In, INTEGER scalar]
Logical unit for error message output

2. NKEY [In, INTEGER scalar]
Number of components to be verified

3. IKEY [In, INTEGER(NKEY)]
Key to precedence of components in sorting: These must either be between 1 and N or be bet-
ween -N and -1. IKEY(I) controls the sorting of all N-tuples which have the previous I-1 com-
ponents equal. If IKEY(1) is positive, these values are sorted in ascending order on their I-th
component. If IKEY(1) is negative, these values are sorted in descending order on their I-th
component.

4. TOL [In, REAIX4)]
Tolerances for recognizing components near to verifying values: These must be positive. The
I-th tolerance corresponds to the IKEY(I) component.

5. NSET [In, INTEGER(N)]
Number of values in the verification set for each component: The index corresponds to the
position of the component in the N-tuple.

6. MAXSET [In, INTEGER scalar]
Number of variables allocated for each verification set

7. SET [In, REAL(MAXSET,N)]
Sets of values for aligning components: The second index corresponds to the position of the
component in the N-tuple.

8. N [In, INTEGER scalar]
Number of components in each N-tuple

9. LONG [In, INTEGER scalar]
Number of N-tuples

10. A [in/Out, REAL(N,LONG)]
Array of N-tuples

11. QERR [Out, LOGICAL scalar]
Error flag

8.94.2 COMMON DATA

none

111

8.95 REAL FUNCTIONVIP (from LIBS)

Calculates the inner product of two vectors

8.95.1 PARAMETERLIST

1. A [In,REAL(*)]
Vector1

2. INCA[In, INTEGERscalar]
The storage incrementbetween the elementsof A

3. B [In,REAL(')]
Vector 2

4. INCB [In, INTEGERscalar]
The storage incrementbetween the elementsof B

5. N [In,INTEGERscalar]
The numberof elements in A and in B

6. C [Out,REALscalar]
Result

8.95.2 COMMONDATA

none

8.96 REAL FUNCTION VIPA (from LIBS)

Adds the inner product of two vectors to the input value of a variable

8.96.1 PARAMETER LIST

1. A [In, REAL(*)]
Vector 1

2. INCA [In, INTEGER scalar]
The storage increment between the elements of A

3. B [In, REAL(*)]
Vector 2

4. INCB [In, INTEGER scalar]
The storage increment between the elements of B

5. N [In, INTEGER scalar]
The number of elements in A and in B

6. C [in/Out, REAL scalar]
The variable to which the inner-product value is added

8.96.2 COMMON DATA

none

8.97 DOUBLE PRECISION FUNCTION VIPDS (from LIBS)

Calculates the inner product of two vectors with double-precision accumulation and subtracts this inner
product from the input value of a variable

8.97.1 PARAMETER LIST

1. A [In, REAL(*)]
Vector 1

2. INCA [In, INTEGER scalar]
The storage increment between the elements of A _ -

112

3. B [In, REAL(*)]
Vector 2

4. INCB [In, INTEGER scalar]
The storage increment between the elements of B

5. N [In, INTEGER scalar]
The number of elements in A and in B

6. C [In/Out, REAL scalar]
The variable from which the scalar-product value is subtracted

° 8.97.2 COMMON DATA

none

8.98 SUBROUTINE WRIPAT (from SUBS)

Writes a patch

8.98.1 PARAMETER LIST

1. LUNOUT [In, INTEGER scalar]
Logical unit for patch output

2. PATCH [In, REAL(16,3)!
Patch coefficients

8.98.2 COMMON DATA

none

8.99 SUBROUTINE WRTCRV (from SUBS)

In Program SRFINT, writes a surface/surface intersection curve: These are SIL-format section curves.

8.99.1 PARAMETER LIST

1. L6 [In, INTEGER scalar]
Logical unit for listing output

2. L7 [In, INTEGER scalar]
Logical unit for curve output

3. ICURVE [In, INTEGER(NP)]
Indices to the endpoint table for the branches making up the curve: Each location appears twice, as a
final endpoint for one branch and then as the initial endpoint for the next branch.

4. NP [in, INTEGER scalar]
Number of endpoints for the branches making up the curve: This is an even number.

5. CURVE [Temporary, REAL(3,100)!
Array to hold a branch of the curve

6. KEND [In, INTEGER scalar]
SIL end-condition code to be written with the section. (End directions are not output.)

8.99.2 COMMON DATA

COMMON /DBVALU/ IPAT1, IPAT2, IBR, XYZ(3)
COMMON /ENDTBL/ X(201), Y(201), Z(201), IPI(201), IP2(201) NBR(201), KOUNT(201),
IPOINT(201)
COMMON /SDMSER/ NERR

Common block/DBVALU/contains the mapped variables for SDMS database keys and data values. Com-
mon block/SDMSER/is used to report retreival of the end of an SDMS element set sequence (i.e., the end
of a curve), which is handled like an error in SDMS. Common block/ENDTBL/holds the endpoint table.

lt3

8.100 SUBROUTINE XTRACT (from SUBS)

Used by Program REGSIL to compute and write new points on a curve, from their parametric values and
the old points

8.100.1 PARAMETER LIST

1. NSSLP [In, INTEGER(17)]
End-condition flags for each curve

21 DXI [In, REAL(17)]
X-components of initial end directions for each curve

3. DYI [In, REAL(17)]
Y-components of initial end directions for each curve

4. DZI [in, REAL(17)]
Z-components of initial end directions for each curve

5. DX0 [In, REAL(17)]
X-components of final end directions for each curve

6. DY0 [In, REAL(17)]
Y-components of final end directions for each curve

7. DZ0 [In, REAL(17)]
Z-components of final end directions for each curve

8. X [In, REAL(17,175)]
X-components of input points for each curve, for each point

9. Y [In, REAL(17,175)]
Y-components of input points for each curve, for each point

10. Z [In, REAL (17.175)]
Z-components of input points for each curve, for each point.

11. PKNOT [In, REAL(50)]
Parameter values where output points will be interpolated on the interior of each curve

12. NP [In, INTEGER scalar]
Number of interior points on the output curves

13. LABX [In, INTEGER(3)]
Coordinates labels: This is character data

14. NLABX [in, INTEGER(3)]
Number of characters in the coordinate labels

15. CYL [In, LOGICAL scalar]
Flag for cylindrical coordinates

16. IXAXI [in, LOGICAL scalar]
Index for the axial cylindrical coordinate

17. IXRAD [in, INTEGER scalar]
Index for the radial cylindrical coordinate

18. IXANG [In, INTEGER scalar]
Index for the angular cylindrical coordinate

8.100.2 COMMON DATA

COMMON /MODSTF2/ NCURV, NDIM, NDIMC, N1, N2, IFAIL
COMMON /MODSTF3/ LEN(17)

NCURV is the number of curves. LEN is the number of input points on each curve.

114

9.0 REFERENCES

1. Gibson,S.G., '¢User'sManualforMASTER:Modelingof AerodynamicSurfacesby Three-Dimensional
ExplicitRepresentation,"NASA CR166056,January1983.

2. _NOSVersion I ReferenceManual,"CDCDocument60435400, Rev. N, November1981.
3. "FORTRANExtendedVersion4 ReferenceManual,"CDCDocument6049780, Rev.F, August 1980.
4. "UPDATE1 ReferenceManual," CDCDocument60449900, Rev. B, March1978.
5. Baruah,P.K., et al., "FANAIR,Volume4--Maintenance Document(Version 1.1),"NASA CR3254,

1980.
6. "PLOT-10Terminal Control System User's Manual," Tektronix Document 062-1474-00, 1972.
7. Dongerra,J.J., _Ioler,C.B., Blmcl_i-J_Ri,andStewart_Gi_V,_i_IPACK User'sGuide,"Society for

Industrialand AppliedMathematics(Philadelphia,PA), 1979.

115

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-172244

4. Title and Subtitle 5. Report Date

System Maintenance Manual for Master: Modeling of Aerodynamic April 1983
Surfaces by Three-Dimensional Explicit Representation 6. PerformingOrganizationCode

B-8411
7. Author(s) 8. Performing Organization Report No.

S. G. Gibson D6-51089
9. Performing Organization Name and Address 10. Work Unit No. -"

Boeing Commercial Airplane Company 4.3.3
P.O. Box 3707 11. Contract or Grant No.

Seattle, WA 98124 NAS1-15325
13. Type of Report and Period Covered

! 12. Sponsoring Agency Name and Address

Contractor Final Report
National Aeronauticsand SpaceAdministration

Washington,D.C. 20546 14.Sponsor,ngAgencyCode

15. Supplementary Notes

Langley Technical Monitor: David E. Reubush

16.- Abstract

A system of computer programs has been developed to model general three-dimensional surfaces. Sur-
faces are modeled as sets of parametric bicubic patches. There are also capabilities to transform co-
ordinates, to compute mesh/surface intersection normals, and to format input data for a transonic
potential flow analysis (NASA CR-3514). A graphical display of surface models and intersection nor-
mals is available. There are additional capabilities to regulate point spacing on input curves and to com-
pute surface/surface intersection curves.

Internal details of the implementation of this system are explained, and maintenance procedures are
specified. (Data formats and operating instructions are referenced from NASA CR-166056, which is the
user's manual for the system.)

17. Key Words 18. Distribution Statement

bicubic patch parametric Unclassified - Unlimited
database manager surface model

interactive graphics three-dimensional Subject Category 61
version control

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 124 A06

ForsalebytheNationalTechnicalInfumati0nService,Springfield.Virginia22161

"

..
1111"mllmml'iU~IIIII' .

3 1176 00187 6359
-- '---

