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ONSET OF SOLAR FLARES AS PREDICTED BY TWO-DIMENSIONAL
MHD-MODELS OF QUIESCFNT PROMIMENCES

J. GALINDO TREJO
Instituto de Geofisica,UNAM, 04510 - México, D. F., MEXICO

l. Introduction. It is well known the close connection
between the sudden disappearance ("disparition brusque") of
the quiescent prominences and the two-ribbon flares (see
e.g. [6]). During this dynamic phase the prominence ascends
rapidly (typically with a velocity about 100 Km/sec) and
disappears. In another later stage is observed material
falling back into the chrormosphere. The impact of this
downfalling matter on the chromosphere produces the

Hea -brigthening, which shows the symmetric double pattern.
The occurrence of the "disparition brusque" is thought to be
a consequence of a plasma instability of magnetohydrostatic
structures (see e.g. [11]). Two~dimensional MHD-models for
quiescent prominences have been worked out since the fifties.
They describe the prominence in magnetohydrostatic
equilibrium under the action of Lorentz forces, gas pressure
gradients and the gravitational force. However, the
stability properties of most of these models are not yet
determined. We analyze by means of the MHD-energy principle
[2] the stability properties of four prominence models. We
show that all considered models undergo instabilities for
parameters outside of the observed range at quiescent
prominences. We consider the possibility that such
instabilities in the flare parameter range may indicate just
the onset of a flare.

2. Equilibrium and Stability Theory. we define a coordinate
system with x-axis along prominence, y—axis perpendicular to
the prominence sheet and z~-axis vertical (opposed direction
of the gravity acceleration). We take into account only
plasma structures, whiéh are independent on x. In a
two-dimensional theory the magnetic field can be expressed
as:

B=VAW z)xe, +B(¥,2) e, (1)

where A 1s the xX-component of a vector potential. The equili-
brium condition, which A must satisfy reads:

(A, = 2
AAz_mr#i) , T(A.$)=P(h,¢)+ L B(a) (2)

where P 1s the plasma pressure, the external gravitational
field and ¢ =-M(d$=-0P/dp the mass density. Any
two-dimensional prominence model corresponds to a particular
choice of the functions P(A,¢), Bx (A) and the boundary
conditions. In order to analyze the stability properties of
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prominence models we use the MHD-energy principle of
Bernstein et al. (1958), according to which the stability
of an equilibrium configuration is determined by the
behaviour of the potential energy functional SW(&,£*)
resulting from a perturbation &(r,t) to the system. For the
two-dimensional equilibrium class the functional SW (%, £%)
may be written in the form:
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where ﬁzgy%+§ %,aﬁ-% VA,B =VLAx&, . We have
suppoosed compfex three~dimensional disvlacements of the
following generalized form:

1kxX+iwt

£(y)-£me s (g one+E06.2 | € (4)

It is assumed periodic boundary conditions along the promi-
nence axis (x-~direction)and _g=0 on the edge of the plasma
region in the y,z-plane. The x-integration in equation (3)
is to be carry out over one period. If §W 1is positive for
all displacements which satisfy the boundary conditions,
then the equilibrium is stable. The MHD-energy principle is
a necessary and sufficient criterion for stability. The
stability problem reduces therefore to analize the sign of
the minimum of &W. It 1s i1nteresting to note that to the
variational problem which implies the minimisation of 4W,
is associated the Euler-Lagrange equation:

2
- Sw £ =F(Ew) (5)
where F is a self-adjoint differential overator with time
independent coefficients (see e.g. [1l]). We use the
normalization constraint: % §elgiPa’r=1 and obtain the

spectrum of eigenvalues further one has wfm":MmJW(g’g*)

3. Stability Results for Prominence Models. We have
evaluated the energy principle for four prominence models:
Menzel, (M), [10]; Dungey, (D), [3]; Kippenhahn and
Schliiter, (XS), [7]1; Lerche and Low, (LL), [9]. One obtains
generally stability statements by two procedures: (a)
analytically, by manipulating the energy functional dwW to
recognize a definite sign and so to infer about the
stability properties, (b) numerically, by carring out the
minimisation of 8W with the aid of a computer code. Our
analytical results concerning to these models are reported
elsewhere [4]. We obtain global stability for the KS-model
1nh case of arbatrary 3D-displacements [5]; for the other
models the stability statements are restrictive to special
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classes of displacements (2D, long wavelengths, etc.). In
order to obtain more general results concerning to broader
class of displacements we have developed a numerical code
based on the finite element-method. This procedure provides,
besides qualitative stability statements, the largest
growth rate in case of instability and the frequency of the
fundamental oscillations of stable systems. Our code was
tested successfully by applying it to simple systems, whose
dynamic properties are well known (e.g. Alfvén waves,
current sheets and sound waves in a constant gravitational
field). We obtain numerically a stable behaviour for the
four models in the parameter range of the observations of
typical quiescent prominences (T=7.103°K, ne=5.101°cm‘3,

B=5G, thickeness ¥=5.10° Km, height 2Z=1.5-5.10% Km). All
models describe horizontal large~scale oscillations with
periods between 16 and 80 min (see Table 1). Reported data
indicate that quiescent prominences undergo actually
horizontal oscillations from and towards the perturbation,
which is originated in solar flares. The observed periods
range from 6 to 80 min. [2], [8]1, [1].

Table 1, Periods of horizontal Unstable behaviour is found

oscillations in quiescent only out of the observed
prominences. parameter range. When one
considers typical
Model Period (min) parameters of flares (e.qg.
T~ 107°K, n ~ 10''cm—?3,
M 40 B~ 50 G) on& obtains
D 55-80 =8MN KT . Just for
KS 16 A B? 21
LL 17-50 these parameters we get

instability only in case of
LL model. The other models continue stable around these
parameters. Figure 1 shows function of asgf/2 (we use
dimensionless variables, so that Q)min is normalized by g/h,
where g=2.74x10"cm/sec?, h=kT/mg is the density scale height
and m is the proton mass). We have separated the different
physical effects (electromagnetic, compressional and
gravitational parts) in the energy functional

SW( gmln’gxtln)’ so that it is possible to infer about the

nature of the instability. For the situation illustrated on
Fig. 1 we find that the instability is driven mainly

by electromagnetic forces. Gravitation provides also an
instabilizing effect. 1In opposition to this, the
compression has continually a stabilizing effect. Such a
gravitational-electromagnetic mixed instability has a
typical growth rate I'=(9/h |Omn| /27 ~ 4.77 1073t , i. e. a
growth time?~ 5.8 h. On the other hand, the impulsive phase
of a flare elapses within few minutes, so that the found
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whin ' ' ' growth time may explain rather the
05 evolution of the flare ribbons and the
associated loop system which last
025 several hours. The cause of the
parameter shift in the guiescent
prominence may reside in an external
0 perturbation in form of a shock wave
generated by a distant flare or in an
-0.25 1 ] L internal perturbation in form of a
| 2 3 g - newly emerging flux in the same active
Fig.l. LL-Model: region. Our results can be considered
minimum eigenvalue as preliminaries because the studied
w? . as function two-dimensional models are still very
min . . .
of okh=f3/2. simple to describe the complexity
of quiescent prominences. However,

further applications of our stability
method to more realistic models give the possibility of a
better description of the impulsive phase of solar flares.
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