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ONSET OF SOLAR FLARES AS PREDICTED BY TWO-DIMENSIONAL
MHD-MODELS OF QUIESCENT PROMINENCES

J. GALINDO TREJO
Instltuto de Geof_slca,UNAM, 04510 - M_xico, D. F., MEXICO

i. Introduction. It is well known the close connection
between the sudden disappearance ("disparition brusque") of
the quiescent prominences and the two-ribbon flares (see
e.g. [6]). Durlng this dynamlc phase the prominence ascends
rapidly (typically with a velocity about I00 Km/sec) and
dlsappears. In another later stage is observed material
falllng back into the chromosphere. The impact of this
downfalllng matter on the chromosphere produces the
H_ -brlgthening, which shows the symmetric double pattern.
The occurrence of the "disparition brusque" is thought to be
a consequence of a plasma instability of magnetohydrostatic
structures (see e.g. [ii]). Two-dlmensional MHD-models for
qulescent prominences have been worked out since the fifties.
They descrlbe the prominence in magnetohydrostatic
equillbrlum under the action of Lorentz forces, gas pressure
gradlents and the gravitational force. However, the
stabillty properties of most of these models are not yet
determlned. We analyze by means of the MHD-energy principle
[2] the stabllity properties of four prominence models. We
show that all consldered models undergo instabilities for
parameters outslde of the observed range at quiescent
promlnences. We consider the possibility that such
instabillties in the flare parameter range may indicate just
the onset of a flare.

2. Equilibrium and Stability Theory. We define a coordinate
system with x-axis along prominence, y-axls perpendicular to
the promlnence sheet and z-axis vertical (opposed direction
of the gravity acceleratlon). We take into account only
plasma structures, which are independent on x. In a
two-dimenslonal theory the magnetic field can be expressed
as:

B=VA Zz +B (Y,z) (I)
where A is the x-component of a vector potential. The equili-
brium condltion, which A must satisfy reads:

n +& B (AJ (2)AA
where P Is the plasma pressure, the external gravltational
field and 9 =-_H/a_=-_P/_the mass density. Any
two-dimensional promlnence model corresponds to a particular
cholce of the functions P(A,_), Bx(A) and the boundary
conditlons. In order to analyze the stability properties of
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1. Introduction. It is well known the close connection 
between the sudden disappearance ("disparition brusque") of 
the quiescent prominences and the two-ribbon flares (see 
e.g. [6)). Dur1ng this dynam1c phase the prominence ascends 
rapidly (typically with a velocity about 100 Km/sec) and 
d1sappears. In another later stage is observed material 
fall1ng back into the chronosphere. The impact of this 
downfall1ng matter on the chromosphere produces the 
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The occurrence of the "disparition brusque" is thought to be 
a consequence of a plasma instability of magnetohydrostatic 
structures (see e.g. [11]). TWo-d1mensional MHD-models for 
qU1escent prominences have been worked out since the fifties. 
They descr1be the prominence in magnetohydrostatic 
equil1br1um under the action of Lorentz forces, gas pressure 
grad1ents and the gravitational force. However, the 
stabil1ty properties of most of these models are not yet 
determ1ned. We analyze by means of the MHD-energy principle 
[2] the stab1lity properties of four prominence models. We 
show that all conS1dered models undergo instabilities for 
parameters outs1de of the observed range at quiescent 
prom1nences. We consider the possibility that such 
instabil1ties in the flare parameter range may indicate just 
the onset of a flare. 

2. EquilibriuM and Stability Theory. We define a coordinate 
system with x-axis along prominence, y-ax1s perpendicular to 
the prom1nence sheet and z-axis vertical (opposed direction 
of the gravity accelerat1on). We take into account only 
plasma structures, which are independent on x. In a 
two-diMens1onal theory the magnetic field can be expressed 
as: 

(1) 

where A 1S the x-component of a vector potential. The equili
brium cond1tion, which A must satisfy reads: 

6.A = -411" 1~(A.1» (2 ) 

where P 1S the plasma pressure, the external grav1tational 
field and s> =- ?)nla~=-?JP/a,/> the mass density. Any 
two-dimensional prom1nence model corresponds to a particular 
cho1ce of the functions P(A,~), Bx(A) and the boundary 
condit1ons. In order to analyze the stability properties of 
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prominence models we use the MHD-energy principle of
Bernstein et al. (1958), according to whlch the stability

of an equilibrium configuration is determined by the
behaviour of the potential energy functional_(__,__)

resulting from a perturbation __(r_,t) to the system. For the
two-dimensional equilibrium class the functional _W(._,__ _)

may be written In the form:

where _
_=_e_+_e_,_=-__ %A , _=V_A_ _ . we have

supposee como±ex three-dlmens_onal disolacements of the
following generalized form:

_ ei''{ E%c ,z)e,,+ -1e= - (4)

It is assumed perzod_c boundary conditions along the promz-

hence axls (x-direction)andS=0 on the edge of the plasma

regmon _n the y,z-plane. The x-mntegration zn equation (3)
is to be carry out over one period. If _W zs positive for

all displacements which satisfy the boundary conditions,
then the equmllbrium is stable. The MHD-energy principle is

a necessary and sufficient criterion for stabzlity. The

staDility problem reduces therefore to analize the sign of
the minimum of _W. It IS interestmng to note that to the

variational problem whzch implzes the minimisatzon of _W,
is associated the Euler-Lagrange equation:

where F is a self-adjo_nt differential operator with time
Independent coefficients (see e.g. [i]). We use the
normalization constraint: ½_91._l_a_r=_ and obtain the
spectrum of elgenvalues further one has _0_m,,=S_WC._,._)

3. Stabmlity Results for Prominence Models. We have

evaluated the energy principle for four prominence models_
Menzel, (M), [I0] ; Dungey, (D), [3] ; Kippenhahn and
Schl_ter, (KS), [7] ; Lerche and Low, (LL), [9]. One obtains
generally stability statements by two procedures: (a)
analytically, by manipulating the energy functional _W to
recognlze a definite sign and so to znfer about the
stability properties, (b) numerically, by carring out the
m_nlm_sat_on of _W wlth the aid of a computer code. Our
analytical results concerning to these models are reported
elsewhere [4]. We obtain global stability for the KS-model
_n case of arbitrary 3D-d_splacements [5] ; for the other
models the stability statements are restrictive to special
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classes of displacements (2D, long wavelengths, etc.). In
order to obtain more general results concerning to broader
class of displacements we have developed a numerical code
based on the finite element-method. This procedure provides,
besides qualitative stability statements, the largest
growth rate in case of instability and the frequency of the
fundamental oscillations of stable systems• Our code was
tested successfully by applying it to simple systems, whose
dynamic properties are well known (e.g. Alfv_n waves,
current sheets and sound waves in a constant gravitational
field). We obtain numerically a stable behaviour for the
four models in the parameter range of the observations of
typical quiescent prominences (T=7 103°K he=5 101°cm-3
B=5G, thickeness Y=5.103 Km, height Z=1.5-5.104 Km). All
models describe horizonta! large-scale oscillations with
periods between 16 and 80 min (see Table I). Reported data
indicate that quiescent prominences undergo actually
horizontal oscillations from and towards the perturbation,
which is originated in solar flares. The observed periods
range from 6 to 80 min. [2], [8], [11.

Table i. Periods of horizontal Unstable behaviour is found
oscillations in quiescent only out of the observed
prominences, parameter range. When one

considers tyDical
Mode! Perlod (min) parameters of flares (e.g.

T_ 10_°K, n _ 1011cm"3,
M 40 B_ 50 G) on_ obtains

D 55-80 _= __ _. . Just for
KS 16
LL 17-50 these parameters we get

instability only in case of
LL model. The other models continue stable around these
parameters. Figure 1 shows function of am_/Z (we use

dimensionless variables, so that 602min is normalized by g/h,
where g=2.74x10_cm/sec 2, h=kT/mg is the density scale height
and m is the proton mass). We have separated the different
physlcal effects (electromagnetic, compressional and
gravitational parts) in the energy functional

_W( _mln'_ _in )' SO that it is possible to infer about the
nature of the instability. For the situation illustrated on
Fig. 1 we find that the instability is driven mainly
by electromagnetic forces. Gravitation provides also an
instabilizing effect. In opposition to this, the
compression has continually a stabilizing effect. Such a
gravitational-electromagnetic mixed instability has a
typical growth rate F=_7_J_mz, I/2_ _ 4.7_ _0"_,__ , i. e.
growth time_ 5.8 h. On the other hand, the impulslve phase
of a flare elapses within few minutes, so that the found
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classes of displacements (2D, long wavelengths, etc.). In 
order to obtain more general results concerning to broader 
class of displacements we have developed a numerical code 
based on the finite element-method. This procedure provides, 
besides qualitative stability statements, the largest 
growth rate in case of instability and the frequency of the 
fundamental oscillations of stable systems. Our code was 
tested successfully by applying it to simple systems, whose 
dynamic properties are well known (e.g. Alfv~n waves, 
current sheets and sound waves in a constant gravitational 
field). We obtain numerically a stable behaviour for the 
four models in the parameter range of the observations of 
typical quiescent prominences (T=7.10 3 0K, n e =S.10 1 0cm- 3 , 

B=SG, thickeness Y=S.10 3 Km, height z=I.S-S.104 Km). All 
models describe horizontal large-scale oscillations with 
periods between 16 and 80 min (see Table 1). Reported data 
indicate that quiescent prominences undergo actually 
horizontal oscillations from and towards the perturbation, 
which is originated in solar flares. The observed periods 
range from 6 to 80 min. [2], [8], [1]. 

Table 1. Periods of horizontal 
oscillations in quiescent 
prominences. 

Model 

M 
D 
KS 
LL 

Per10d (min) 

40 
55-80 
16 
17-50 

Unstable behaviour is found 
only out of the observed 
parameter range. When one 
considers typical 
parameters of flares (e.g. 
T",10 7 °K, n "'-I lOl;Lcm- 3 , 

B,... 50 G) on~ obtains 
/.l =8'1r11.kT > ,l • Just for '"' B2 N -L. 

these parameters we get 
instability only in case of 

LL model. The other models continue stable around these 
parameters. Figure 1 shows function of ~.~/2 (we use 
dimens10nless variables, so that cut. is normalized by g/h, m1n 
where g=2.74xl04cm/sec 2 , h=kT/mg is the density scale height 
and m is the proton mass). We have separated the different 
phys1cal effects (electromagnetic, compressional and 
gravitational parts) in the energy functional 
c5w ( Cp , ~ lit ), so that it is possible to infer about the Elm1n - m1n 
nature of the instability. For the situation illustrated on 
Fig. 1 we find that the instability is driven mainly 
by electromagnetic forces. Gravitation provides also an 
instabilizing effect. In opposition to this, the 
compression has continually a stabilizing effect. Such a 
gravitational-electromagnetic mixed instability has a 
typical growth rate r=Jg/h'lCA)tn,nl/21f""4.7110-~et~t, i. e. q 
growth timer- S.8 h. On the other hand, the impulsive phase 
of a flare elapses within few minutes, so that the found 
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' ' growth tlme may explain rather the
evolution of the flare ribbons and the
associated loop system which last
several hours. The cause of the

0 parameter shift in the quiescent
prominence may reside in an external

0 perturbation in form of a shock wave
generated by a distant flare or in an

-O.Z5 internal perturbation in form of a
! 2 3 _ . newly emerglng flux in the same active

Fig.l. LL-Model: region. Our results can be considered
minimum eigenvalue as preliminaries because the studied2
60min as function two-dimensional models are still very

of _=_/2 simple to describe the complexity• of quiescent prominences• However,
further applications of our stability

method to more realistic models give the possibility of a
better description of the impulsive phase of solar flares.
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growth tJ.me may explain rather the 
evolution of the flare ribbons and the 

associated loop system which last 
several hours. The cause of the 
parameter shift in the quiescent 
prominence may reside in an external 
perturbation in form of a shock wave 
generated by a distant flare or in an 
internal perturbation in form of a 
newly emergJ.ng flux in the same active 
region. Our results can be considered 

as preliminaries because the studied 
two-dimensional Models are still very 
simple to describe the complexity 
of quiescent prominences. However, 
further applications of our stability 

method 
better 

to more realistic models give the possibility of a 

description of the impulsive phase of solar flares. 
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