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ABSTRACT

We suggest that optically small y-ray flares result from gradual
pre-flare acceleration of protons over _10_s by a serles of MHD shocks
_n the low corona. A fraction of the accelerated protons are trapped
rn the corona where they form a seed populatlon for future accelera-
tlon. If the shock acceleration is sufficiently rap_d proton energles
may exceed the y-ray productlon threshold and trigger y-ray emission.
Thls occurs w_thout the total flare energy belng necessarily large.
Magnetic fleld geometry is an important parameter.

i. Introductlon

Now that the statistlcs of y-ray flares have improved to the polnt
where meanlngful comparlsons can be made wlth other flare data it has
become clear that not only the large, spectacular He flares are
associated with prompt nuclear llne emlsszons (e.g., 12C and 160).

Such flares requlre the presence of protons > i0 MeV and >generally
exh_blt the p(n,y)d neutron capture line requlring protons _ 30 MeV.
Results from SMM [i] have shown that a slgnlficant portlon of the y-
ray events have onset tlmes of y-rays and hard X-rays (> 28 keV)
colncldent to w_thin _ 1 s with the total hard X-ray integrated flux
well correlated wlth that of the y-rays [2]. A process for produclng
hard x-rays from y-ray produclng protons is dlscussed in another paper
[3]. Our model for such flares must be capable of produclng such
quasl-szmultanelty, and at should also be capable of delaying y-ray
productlon wlthout havang to resort to a separate model. In extreme
cases there _s evadence of proton (ion) acceleratlon up to 1 GeV wlthin
a few s of the hard X-ray onset [4].

If we concentrate on the more common case where protons only up to
30 MeV are requlred, thls stall represents a slgniflcant energy galn if
the protons start wlth a thermal dlstr_butlon at % 107K (i keV).
Although mechanlsms have been examlned theoretlcally to achleve such
rapld acceleratlons [5], the necessary physlcal conditlons for the
requlred acceleration efflciency are very severe and appear to be
improbable at the Sun. We suggest that such rapid acceleration is not
necessary, and that y-ray emlssion represents the end product of a much
more gradual (% 103 s) acceleratlon process.

2. The Acceleration of Protons

There are few observational constralnts on proton acceleratlon up
to _ 1 MeV, somewhat below the y-ray productlon threshold. However, we

82 

SH 1. 3-2 

THE STARTING CONDITIONS FOR AN OPTICALLY SMALL SOLAR GAMMA RAY FLARE 

G. M. S1mnett 
Department of Space Research, Un1vers1ty of B1rm1ngham 

B1rm1ngham BI52TT, Un1ted K1ngdom 

J. M. Ryan 
Space SC1ence Center, Un1vers1ty of New Hampsh1re 

Durham, New Hampsh1re 03824 USA 

ABSTRACT 

We suggest that optically small y-ra~ flares result from gradual 
pre-flare accelerat10n of protons over ~10 s by a ser1es of MHD shocks 
1n the low corona. A fraction of the accelerated protons are trapped 
1n the corona where they form a seed populat10n for future accelera
t10n. If the shock accelerat10n 1S sufficiently rap1d proton energ1es 
may exceed the y-ray product10n threshold and trigger y-ray emission. 
Th1S occurs w1thout the total flare enerqy be1ng necessar11y large. 
Magnet1c f1eld geometry is an 1mportant parameter. 

1. Introduct10n 

Now that the statist1cs of y-ray flares have 1mproved to the p01nt 
where mean1ngful compar1sons can be made w1th other flare data 1t has 
become clear that not only the large, spectacular Ha flares are 
associated with prompt nuclear 11ne em1SS10ns (e.g., 12c and 160 ). 
Such flares requ1re the presence of protons > 10 MeV and >generally 
exh1b1t the p(n,y)d neutron capture line requ1ring protons ~ 30 MeV. 
Results from SMM [1] have shown that a s1gn1ficant port10n of the y
ray events have onset t1mes of y-rays and hard X-rays (> 28 keV) 
c01nc1dent to w1thin ~ 1 s with the total hard X-ray 1ntegrated flux 
well correlated w1th that of the y-rays [2]. A process for produc1ng 
hard x-rays from y-ray produc1ng protons is d1scussed in another paper 
[3] • Our model for such flares must be capable of produc1ng such 
quas1-s1multane1ty, and 1t should also be capable of delaying y-ray 
product10n w1thout hav1ng to resort to a separate model. In extreme 
cases there 1S eV1dence of proton (10n) accelerat10n up to 1 GeV w1thin 
a few s of the hard X-ray onset [4]. 

If we concentrate on the more common case where protons only up to 
30 MeV are requ1red, th1s st111 represents a s1gnif1cant energy ga1n 1f 
the protons start w1th a thermal d1str1but10n at ~ 107K (1 keV). 
Al though mechan1sms have been exam1ned theoret1cally to ach1eve such 
rap1d accelerat10ns [5], the necessary phys1cal condit1ons for the 
requ1red accelerat10n eff1ciency are very severe and appear to be 
1mprobable at the Sun. We suggest that such rapid acceleration 1S not 
necessary, and that y-ray em1ssion represents the end product of a much 
more gradual (~ 103 s) accelerat10n process. 

2. The Accelerat10n of Protons 

There are few observat10nal constra1nts on proton accelerat10n up 
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know from range/energy conszderatzonsthat the acceleratzon cannot take
place at hzgh denslties, thus restrlcting the acceleration site to the
hlgh corona. For example, at a denslty of 2 x 109 cm-3, whlch is
representatlve of the base of the corona [6], a i00 keY proton has a
range of only 4 x 109 cm, whzch it would cover in _ 8 s. Therefore
not only would any acceleration process at these densitles result in
excesslve heatlng - most of the available energy would be dlsslpated as
heat - but protons whzch dzd manage to get accelerated to i00 keV
would have a short llfetlme. However, a 400 keV proton has a range of
1012 cm at a denszty of 108 cm-3, and therefore a izfetzme _ 103 s.
From these conslderatlons we suggest that any proton acceleration
reglon should be at a denslty at least as low as 3 x 108 cm-3
correspondzng to an altztude of _ 105 km. We belleve the most
plausible mechanism for proton acceleratlon zs coronal shock
acceleratlon. The baszc theory of partzcle acceleration in shocks has
been gzven by Bell [7] and most subsequent work has developed from his
suggestlons.

Fzg. 1 outllnes the scenario that appears most appropriate for the
development of y-ray flares. The magnetlc fleld configuratlon _s

izkely to be complex, wzth a serzes of small scale loops (shown lef_
inset), plus some overlying magnetlc structure wlth an overall szze
105 km. We suggest that evolutlon of the lower lylng loop structure,
posslbly caused by emerglng flux, causes small energy releases, heatlng
and a succession of small shocks. A fractzon of the protons
accelerated in these shocks are trapped in the overlying field and are
available for further acceleratlon as seed particles in subsequent
shocks . The acceleratlon we believe requires and zs enchanced through
the development of resonant turbulence, zllustrated schematically in
the center Inset of Fzg. i. Throughout the whole process there Is
feedback between the accelerated partzcles, the MHD waves and shocks.
Thzs drlves the energy release process harder. The latter is probably
due to _nduced addltional magnetzc fzeld reconnectlon. In the y-ray
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Figure i. Schematlc of pre-flare and flare particle acceleratlon and
actzvlty.
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F1qure 1. Schemat1c of pre-flare and flare particle accelerat10n and 
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flare the build up of the proton populatzon is eventually sufflclent
for a slgnlflcant preclpltation of protons near or below the transltlon
zone, produclng the slgnature of a y-ray flare. Thls is allustrated
schematically in the rlght inset of Fig. i. The whole process takes
103 s. Thas as consastent wlth the coronal accelerataon model
discussed by Lee and Ryan [8].

There are some observable consequences of the scenarlo we have
outllned. First, some of the more energetlc protons from the early
accelerataonswall not be stably trapped but wall impact the top of the
chromosphere, causlng heatlng but lattle else. Thas heatlng should be
vlszble praor to the flare as small soft X-ray and EUV brlghtenlngs
from the approprlate ampact polnts along the base of the loops
indlcated an the left anset (Fag. i). Second, the protons that are
stably trapped wall, an fact, contmnue to lose energy to the coronal
gas, thereby heatlng it. It has recently been suggested [9] that such
heatang may destabllze a coronal mass e3ectlon, thus opening the
magnetlc faeld and releasing the trapped protons. Thas would also
drave the energy release harder, causang a flare but probably not a
y-ray flare because the partacle trappang envaronment has been lost.

3. Supportang Observations

The model as well supported by observataons of the M4 y-ray flare
near the solar lamb on 1980 June 29, 10:41 UT. Fig. 2 shows the
intensaty-tame profale of 3.5-8.0 keV X-ray, emassaon from 10:20-10:45
UT. The onset of the ampulsive phase we take to be 10:40:IOUT. It as
obvaous from the soft X-ray observataons that there was conslderable
pre-flare actlvlty for some 20 m before the ampulslve phase. The OV
transatlon reglon UV llne Intensaty exhabats the same general behavior
while hard X-rays and y-rays are undetectable untal after 1041 and
peaklng at about 1042. Spatlally resolved data show that there were a
number of resolved braght poants an OV over a regaon of the lamb
coverlng a pro3ected dmstance of > 105 km. A large X-ray emlttlng
structure extending _ 1.5 x 105 km above the lamb (an pro3ectlon) was
reported for the peraod of June 29 [i0].

The general conclusaon from these data as that before the y-ray
flare there was non-ampulsave, but substantaal emassaon from the
transataon zone over a wadespread area near the solar lamb. There was
also evadence of a large scale magnetic structure of the type we
belaeve as sultable for trapping moderate energy protons (few hundred
keV) for perzods of many manutes. Although there as some evldence for
small dasturbances in the corona durang the flare, there was no ma3or
coronal transaent as there was from other non-y-ray flares from thas
regaon.

Prlor to the _mpulsave phase sagnzficant plasma turbulence was
observed in Ca XIX emlssaon lndacatlng random velocltles > 150 km/s.
Also there is very l_ttle evldence of radio emlssaon before the
impulsive phase. Th_s is all consistent wath energy deposataon and
wave generataon by non-thermal protons an the low corona. Clearly thls
is a feature of our gradual acceleration model, whlch would predict
proton energles of a few hundred keV, whach are suffacient to drave the
plasma turbulence, some 10s of seconds before the i0 MeV energaes
requared for the y-rays.
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flare the bUl.ld up of the proton populatl.on l.S eventually suffl.cl.ent 
for a sl.gnl.fl.cant precl.pl.tation of protons near or below the tranSl.tl.on 
zone, producl.ng the sl.gnature of a y-ray flare. Thl.s l.S l.llustrated 
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discussed by Lee and Ryan [8]. 
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chromosphere, caUSl.ng heatl.ng but ll.ttle else. Thl.S heatl.ng should be 
vl.sl.ble prl.or to the flare as small soft X-ray and EUV brl.ghtenl.ngs 
from the approprl.ate l.mpact pOl.nts along the base of the loops 
lndl.cated l.n the left l.nset (Fl.g. 1). Second, the protons that are 
stably trapped wl.ll, l.n fact, contl.nue to lose energy to the coronal 
gas, thereby heatl.ng it. It has recently been suggested [9] that such 
heatl.ng may destabll.ze a coronal mass e]ectl.on, thus opening the 
magnetl.c fl.eld and releasing the trapped protons. Thl.s would also 
drl.ve the enerqy release harder, caUSl.ng a flare but probably not a 
y-ray flare because the partl.cle trappl.ng enVl.ronment has been lost. 

3. Supportl.ng Observations 

The model l.S well supported by observatl.ons of the M4 y-ray flare 
near the solar ll.mb on 1980 June 29, 10:41 UTe Fl.g. 2 shows the 
intensl.ty-tl.me profl.le of 3.5-8.0 keV X-ray, eml.SSl.on from 10:20-10:45 
UTe The onset of the l.mpulsive phase we take to be lO:40:l0UT. It l.S 
obvl.oUS from the soft X-ray observatl.ons that there was consl.derable 
pre-flare actl.vl.ty for some 20 m before the l.mpulsl.ve phase. The OV 

tranSl.tl.On regl.On UV ll.ne l.ntensl.ty exhl.bl.ts the same general behavior 
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structure extendl.ng ~ 1.5 x 105 km above the ll.mb (l.n proJectl.on) was 
reported for the perl.od of June 29 [10]. 

The general conclusl.on from these data l.S that before the y-ray 
flare there was non-l.mpulsl.ve, but substantl.al eml.SSl.on from the 
transl.tl.on zone over a wl.despread area near the solar ll.mb. There was 
also eVl.dence of a large scale magnetic structure of the type we 
bell.eve l.S sUl.table for trapping moderate enerqy protons (few hundred 
keV) for perl.ods of many ml.nutes. Although there l.S some eVl.dence for 
small dl.sturbances in the corona durl.ng the flare, there was no maJor 
coronal tranSl.ent as' there was from other non-y-ray flares from thl.s 
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Prl.or to the l.mpulsl.ve phase sl.gnl.ficant plasma turbulence was 
observed l.n Ca XIX eml.SSl.on l.ndl.catl.nq random velocl.tl.es > 150 km/s. 
Also there l.S very ll.ttle eVl.dence of radl.o eml.SSl.on before the 
impulsive phase. Thl.s is all consistent Wl.th energy deposl.tl.on and 
wave generatl.on by non-thermal protons l.n the low corona. Clearly thl.s 
is a feature of our gradual acceleratl.on model, whl.ch would predl.c~ 

proton energl.es of a few hundred keV, whl.ch are suffl.cient to drl.ve the 
plasma turbulence, some lOs of seconds before the 10 MeV energl.es 
requl.red for the y-rays. 
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4. Concluslons

We belleve that the mechanlsm resultlng In y-ray emission from an
otherwise optically small flare is the slow build-up of partlcle energy
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Figure 2. Soft Y-ray count rate measured by
HXIS on SMM. The impulsive phase as well off scale.

over a tame scale of 103 s before the ampulslve phase. The magnetlc
fleld configuratlon is very important and requares the presence of
stable magnetic structures in the corona reaching to altatudes an
excess of 105 km. Such magnetic structures are used to trap accelera-
ted particles. During the pre-flare peraod energy is transferred to
non-thermal protons by a series of small MHD shocks, gradually re-
acceleratlng the survlvang protons. A sagnature of thls accelerataon
is the excitatlon of weak EUV and soft X-ray emission where some of the
accelerated protons ampact the chromosphere.
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