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ELEMENTALABUNDANCEDIFFERENCESBETWEENNUCLEI
ACCELERATEDIN CIR SHOCKSAND SOLARFLARES

W.F. Dietrich and J.A. Simpson

Enrico Fermi Institute, University of Chicago,
Chicago, Illinois 60637, USA

ABSTRACT. By measuring the ratios of nuclear abundances
H/He, CNO/Fe-group and the Fe-group/HE for 51 passages of Coro-
tating Interaction Regions (CIRs) at i AU, and also by measuring
these ratios from 620 solar flares in the energy range 0.6 to 4
MeV per nucleon, it is concluded that CIR shock acceleration
alone does not change significantly these ratios from the values
they have for solar system abundances or the solar wind. On the
other hand, the solar flare ratios continue to reflect strong
biases in the abundances, consistent with requirements for multi-
stage acceleration processes at the Sun.

I. Introduction. It was discovered that hydrogen and helium nuclei are
accelerated in the interplanetarymedium in association with corotating
interaction regions (CIRs) mainly beyond 1 AU (McDonald et al. 1976;
Barnes and Simpson 1976) and that the corotating shocks associated with
the CIRs are the site of the acceleration process (e.g. Barnes and
Simpson 1976; Pesses et al. 1978). McGuire et al. (1978), Gloeckler e__t
a__1.(1979)and Scholer et al. (1979) then showed that at 1 AU,CIRs ac-
celerate nuclei over the element range of hydrogen to iron with relative
abundances that tend to be different from typical abundance distributions
observed at low energies in solar flare accelerated nuclei.

The evidence by Tsurutani et al. (1982) that CIR shock accel-
eration of ions is due to quasi-perpendicularshocks mainly beyond 1 AU
now provides the opportunity to investigate further; i) the origin of the
local (interplanetary) "seed" ion popul_stion which is accelerated by
CIRs, and; 2) the question of whether an interplanetary quasi-perpendi-
cular shock can reproduce the kinds of preferential enhancements of abun-
dances frequently observed for solar flare accelerated nuclei. This
latter question has a strong bearing on whether, in solar flares, shocks
alone can account for the observed enhancements, or whether, for example,
the ions in the solar flare site undergo a preliminary stage of injection
which biases the relative abundances. Our investigation includes the

measurement of selected abundance ratios (e.g., H/He, CNO/Fe, and Fe/He)
for 51 passages of CIRs at 1 AU during the period 1973-79. We also have
determined these abundance ratios for 620 solar flares observed during
1973-84, of which a subset of 100 flares are observed to be 3He-rich.

2. Experimental Aspects. Because the spectra of CIR accelerated nuclei
have steep negative slopes and are restricted to energies below a few MeV
per nucleon, their measurement by means of single dE/dx parameter ana-
lysis is difficult(e.g.McGuireet al. 1978).Thesedifficultiesare
reduced in the case of the IMP 7 and IMP 8 Low Energy Telescope (LET;
Simpson et al.,1974)which, in addition to a thin dE/dx detector has: a)
a second yes/no detector providing particle range information, and; b) a
256 channel pulse height analyzer that spans the range H to Fe (which is
in saturation). Pulse discriminator levels are set for fluxes of four
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major nuclear groups, mainly H, He, CNO and Mg-Fe. The latter group,
dominated by the iron flux will be referred to as the Fe-group ("Fe") in

this report. The pulse height analysis enables us: I) to independently
measure the energy spectrum of He nuclei; 2) to evaluate any conta-

mination of low Z particles by higher Z nuclei (which is an insignificant
factor for the CIR composition measurements) and; 3) to normalize the

fluxes of H, He, CNO, and "Fe" to abundance ratios for the same energy

per nucleon. For CIRs the principal source of error in the "Fe" group
abundances is statistical fluctuations, however for the CNO group and He
abundances, the largest errors are systematic (i.e. from uncertainties in

the count rate discriminator levels, the spectral slope, and uncer-

tainties of range-energy relations at these low energies)• For solar
flares the "Fe" contamination appearing in the CNO fluxes is the most
significant factor. Since the same instrument and method of analysis are

employed in obtaining both CIR and solar flare abundances, the systematic

errors mostly cancel when determining the ratios of abundances• Further
details on the analysis will be published elsewhere.

The identification of intervals for CIR passage were mainly based
on CIRs identified in previous publications ( see e.g., Christon and

Simpson, 1979; Tsurutani et el., 1982) with the constraints that: i) the
flux for the He at low 10o --_-_T----_--_-- ....., .......
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used to preparethe histograms in Figures 3 and 4. ,,0
i///_ €OROI*TIXGI.T[.*CtlO_ R[GIO.

These plots reveal: i) The rangeof variationsfor .........,
SUBSKTor _[ RICMFLAR[S

all 3 measuredabundanceratios for CIRs (including ,20
experimental error) is seen in Figs. 1 and 2 to be
smallcomparedto that for the range of solar flare
abundance ratios (i.e.,the dynamicrangeof varia-_,oo
tion for ClRs is only a factor-2 for H/He and CNO/He
and factor30 for "Fe"/He,whereasthe dynamicranges_ so
for solarflareabundanceratios are 30009 40, and-_
3000 for H/He, CNO/He and "Fe"/He, respectively),z
From the number distributions of the CIR H/He and _-_o
"Fe"/He ratios in Figs. 3 and 4 we note the narrowero
distribution for the CIRs compared with the cot-_ ,o
responding solar flare distributions. Unlikethe z=
case for solarflares,we have found no examples of
large deviations from the mean abundanceratiosfor 20_

CIRs; 2) the mean H/He, CNO/Heand "Fe"/Heratiosfor _ __ ]
CIRs are 20, 0.015, and 0.00048respectively,while ,o ,o,.o_,0,,o,,oo
the correspondingH/He, CNO/Heand "Fe"/Heratiosfor r("Fe"/He) ....

flares are 52, 0.030,and 0.0028,respectively.The Fzgure3
CIR averageabundanceratiosare close to the zoo , i i

universal abundance ratios (Cameron_ 1982) __......,4°'°'*'"_"'"*c"°"""°"so_,,_,,
(markedas bars on the axesof Figs. 1 and 2) 18o ,u.sE,o,_,.c.....s
except the H/He ratio which is in somewhat _-
betteragreementwith fast solarwind values. _ ,6o JAverage solar flare"Fe"/Heabundancesat 2-4 uJ

MeV/n are seen to be enhanced by a factor of _'4°
six to sevenover photosphericabundances,and z_
He is seen to be depleted in solar flares _12°
relative to both H and CNO. In Fig. 1 and 2, _,0Q
very few solar flares ratios appear in the z
plot areaoccupiedby the CIR data. - ,0

We have compared our results for the
H/He, CNO/He and Fe/He ratios of CIR ac-_ 6o
celeratedparticleswith previously reported
abundanceratiosin Table I. We have convert-_ 4o
ed publishedHe/O ratiosto a CNO/He ratio by
using the the published CIR C/O ratios. 20
Clearlyour survey, when averaged over many
CIRS, confirms the earlier published work '°° _0 ,0_ 1o_ i0'
based on relativelyfew CIRs and flares, it'(H/He) s,o,0

Figure4
A. Conclusions. We find that: i) for nucleiacceleratedin corotating
interactionregionshocksthe averagevaluesof the abundanceratios are
close to the solar system abundancesand are not inconsistentwith the
abundanceratiosfor the solarwind; 2) The variabilityof the abundance
ratios for CIRs is more than an order of magnitude less than the
variabilityobservedin solarflaresconfirmingMcGuire et al. (1978);
3) there is no evidence for preferentialenhancementsof nuclearabun-
dancesin any CIR events.

From the aboveevidencewe concludethat the "seed"nucleifor the
CIR shock accelerationmechanismare ambientions in the interplanetary
medium with a composition which is simila_to the solarsystemabun-
dances. However,for solar flarenucleiwe find, as reportedby several
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4. Conclusions. We find that: 1) for nuclei accelerated in corotating 
interaction region shocks the average values of the abundance ratios are 
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abundance ratios for the solar wind; 2) The variability of the abundance 
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From the above evidence we conclude that the "seed" nuclei for the 
CIR shock acceleration mechanism are ambient ions in the interplanetary 
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dances. However, for solar flare nuclei we find, as reported by several 
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TABLE I

Reference Energy C/O CNO/He Fe/He p/He Number Years
Range (MeV/n) x 100 • I0000 of CIRs

(7) 3.4 - 23. 0.8 ± .2 1.48 + .45 + NA 22. _ 5_ 6 1973-1976
(9) 0.6 - 1.0 0.91Z .03 0.98 _ .045 + 7.1 ± .6 11.9 ± 0.2 4 1974

0.90 Z .07 0.80 _ .08_ + 1.8 Z .6 11.2 Z 0.2 5 1976
(4) 0.3 - 5.0 1.05 _ ,19 1.25 _ .42- 5.5 Z 2. 16.6 ± 3.5 9 1974,1976

This Work 0.6 - 4.0 NA 1.5 ± .25 5. ± 3. 20. _ 2. 51 1973-1979
(2) 0.60 1.67 4.7 14.

. Ratios and errors calculated from C/O and He/0 ratios and errors quoted zn each paper.
* Average of 17 events at 1.6-8.8 MeY/n

investigations, that the ambient source of nuclei reflects biases in the
relative abundances of accelerated nuclei - i.e., preferential enhance-
ments of some abundances. Thus, if shocks accelerate nuclei in solar
flares, they probably represent the second stage of acceleration. The
small variation in the CIR abundance ratios suggests that only shock ac-
celeration is involved in the interplanetary medium, whereas the extreme
variability of the solar flare ratios from solar flares points to a com-
plex, multiple acceleration process.

5, Acknowledgements. We wish to acknowledge support of the staff in the
Laboratory for Astrophysics and Space Research, particularly the aid
given by S.P. Christon in identifying CIRs for this study. This work was
supported in part by NASA Contract NAS 5-28422 and NSF Grant ATM 84-
12382.
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