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SECOND-ORDER L-:OMPTON-GETTINGEFFECT ON AF'BITRARY INTENSIY DISTRIBUTIO_N
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Kuala Lumpur, Malaysla

1 INTRODUCTION Theoretical studies of energetic particles in

space are often referred to a special frame of reference. To compare
theory with experlrr,ent, one has to transform the particle distribution
from the special frame to the observer's frame, or vice versa. Various
methods have been derived to obtain the directional distribution in the

o_'.mov_ng frame from the dlr_ctlonal fluxes measured on a spacecraft

(e.g., Erdos, 1981; Sanderson et al., 1985, and references therein).
These methods have become progressively complicated as increasingly

detailed directional particle data become available.
We present here a set of 2nd order correct formulae for the

transformation of an arbitrary differentlal intensity distribution,

expressed as a series of spherical harmonics, between any two frames in
constant relative motion. These formulae greatly slmpllfy the

complicated procedures currently in use for the determination of the
differential intensity distribution In a comovlng frame.

2. THE DESIRED FORM OF THE TRANSFORMATION In the observer's frame,

let the particle dlffer_ntlal intensity w.r.t, momentum (or rlgldlty_ be

expressed in terms of the spherical harmonics C_, S._ as :
n

.5( . i

n=O m=0

We wish to transform this to the frame moving with velocity W relative to

the observer, also 2n ter_s of spher_ca! harmonics :

jp(p,8,¢) --nEm_ {Anm(P)Cm(_'¢) + Bnm(P)Sm(8 '€ )1. (2)

Here cm(8'¢)n = pm(c°Sn 8)cos(me), sm(8,€) - pm(cosS)sin(m¢), (3)

P_( _ = associated Legendre function, p = particle momentum, and (_,_ are
the polar and azimuthal angles of the particle arrlval direction. The
superscript or subscript S indicates that the quantity is referred to the

frar,,eof the observer/spacecraft.
In short, our purpos_ is to find the relation between the coeffl-

cients A.., B._ in the comovlng frame and the coefflclet_ts A_k, B_k
and their p-derlvatlves in the observer's frame, and v_ce versa.

We denote below the cor,,potlentsof _WaJong^and normal to the magnetic

field by WII and _Wi rr-spectlvely, and define WII=Wtl /W, W2 = W_L/W, and
= W/v, with v the particle speed. We choose the polar coordinate axis

to point along the magnetic field, and measure g from the direction of

W]_.Hence, _), i_denote the particle pitch-angle and gyrophase respect-
ively. We will refer to this coordinate system as the standard one.

3. SOME CURRENT SOLUTIONS Gleeson and Axford (1968_ and Forman

(1970) obtained Ist order transformations from (2) to (I), for J_=Aoo(p).

Forman's elegant approach uses the Lorentz Invarlance of the phase-space
dlstributJon function. Balogh et al. (1973) obtained a 2ridorder result
for the Isotropld case and a Ist order result for the anlsotroplc case
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1 INTRODUCTION TheoretEal studies of energetlc partldes It, 

spa~e are often referred to a specIal frame of reference. To compare 
theory with experiment, one has to transform the particle distribution 
fr8m the SPPCIRI frame to the 8bserver's frame, or vice versa. Various 
methods have been derived to obtain the directional distribution In the 
comovlng frame from the dlrp~tlonal fluxes measured on a spacecraft 
(e.g., Erdos, 1981; Sanderson et al •• 1985, and references therein). 
These mpth8ds have bec~me progresslvply complicated as Increasingly 
detailed directional particle data become available. 

We present here a set of 2nd ordpr C8rrpct formulap for the 
transformation of an arbitrary dlffer~ntlal Int~nslty dlstrlbutlon, 
exprpssed as a series of spherical harmonics, between any two frames In 
constant r~latlve motion. Th~s~ formula~ gr~atly slmpllfy th~ 

complicated procedures currently In use for the determination of the 
dlff~r~ntlal lnt~nslty distribution In a comovlng fram~. 

2. THE DESIRED FORM OF THE TRANSFORMATION In the clbserv€'r' s frame, 
let the particle dlfferpntlal Intensity w.r.t. momentum (or rigIdity) be 
e~,pressed It, terl .... s ,:of the sph€'rical harmo:otHI:s C~, S~ as : 

n 
j8(p ,9 ,. ) = L 
p s S s n=O 

~ {A8 (p )Cm(9 ,. )+B8 (p )Sm(9 ,4> )}. 
m=O nm s n s s nm 8 n 8 8 

<.1) 

We Wish to transform thiS to the frame moving With velOCity ~ relative to 
the observer, also 1n terms of spher1cal harmon1cs 

j (p,9,.) = L L {A (p)Cm(9,.) + B (p)Sm(9,4»}. (2) 
p n m nm n nm n 

Her~ C
m

(9,4» = pm(cos 9)cos(m4», Sm(9,4» = pm(cos9)sin(m4», (3) n n n n 

P~( I = assOCiated Legendre function, p = particle momentum, and 9, 0 are 
the polar and azimuthal angles of the particle arr1val direction. Th~ 

superscript or subscript S Indicates that the quantity IS referred to the 
frame of th~ observ~r/spacecraft. 

In short, our purp8sP IS to find the rplatlon betwppn thp c8effl­
cients A~M' Bnm in the comovlng fram~ and the coeffiCients A~k' B'k 
and th~lr p-derlvatlves In the observer's frame, and Vlce versa. 

We denote below the components of W aJonQ and normal to the magnetic 
held by!:-lll and !:-l.L Yf·spectlV(~ly, and dehne-WI!= WII /W, WJ.. = W.J../W~ and 
E ~ W/v, With v the particle speed. We choose the polar coordinate aXIs 
to pOint along the magnetlc field, and measure 0 from the direction of 
~l.' Henc~, f), 0 detV:lt~ the partlde pi tch-angl~ and gyrl::ophase resped­
Ively. We wlil refer to thiS coordinate system as the standard one. 

3. SOME CURRENT SOLUTIONS 131~~son and A'dord 0'358) and Forman 
(1970) obtained 1st order transformations from (2) to (1), for Jp=Aoo(p). 
Forman's ~l~gant approach us~s th~ Lor~ntz lnvarlanc~ of th~ phas~-space 
dlstrlbutlon function. Balogh et al. (1973) obtained a 2nd order result 
for the Isotropl~ case and a-1st ord~r result for the anlsotr8plc case 
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that In,-ludes the n=1 terms. Ng (1'98,4),z,btalned a 2rid order

transformation for gyrotroplc distributions (jp = _-A_ofp)F'.fcosg)) valid
for relativistic particles, n

Another approach, taken by Sanderson et al. (1985), is based c,na

method by Ipavlch (1974). This is outlined belc,w. One may use eqn
(12) of Ipavlch (1974) to transform ea,zhterm in the series (I_, provided

one pay..-the price of aslng a non-stan,iard coordlnate system in which the
polar axis points along the velocity _W. Denote the non-

standard polar and azimuthal angles by _*, 0". This allows any term

A_(ps')['_(_,O_ for the phase-space density to be transformed to:

As [p(l-2_cose*+_2)½]cm{tan-l[sinO*/(cose -E),@ ]} ¢4_nm n '

and similarly for B_(pg)E:_(e_,@_). Following Ipavich and Sanderson
et al., otleassumes a power-law spectrum (psdldp,) log A_.,(p,) = - 2r.,

and obtains from f4), -r-i

(l_2_cose*+ 2) n A_nm(P)Cnm[tan-][sine*/(cose* *-E),_]}. (5)

Eqn (5) may be compared to Sanderson et al.'s eqn fall'). There remains
the task of converting (5_ to the form €2), including a change from

@_,_ ba,:k to the standard angular coordinates _,_.
Sanderson et al. accomplish the above by numerically integrat_ng the

transformed intensity obtained from (5")(their eqns (All) and (AI2)) over
each sector, each energy interval and each telescope to produce art

equivalent set of counts _n the como(/Jng frame, and then flttlng (2) to

the equivalent set of counts.
Although the assumption of a power-law spectrum may be avoided by

using (4), the numerical integration and the second fitting are time-
consuming and unnecessary for say, >10 KeV protons, because we are able
to obtai, the transformation posed in Section 2, correct to OCW/v_2 and
for arbltrary direction c,f W.

4. DERIVATION OF THE TRANSFORMATION FORMULAE We begl. with

2 2

jp(p,8,¢)- y.E{vp ASm(Ps)Cm(e ,@s)+ vp BnSm(Ps)Sm(es,@s)}nm _ s _ ' (6)
VsPs VsPs

and consider ea,:h term in the series. First we transf,:,rmthe spherical

harmonics C_(_.,Os). Galilean transformation of momentum gives

cos e = cos e - €(_11 -_; cos e) + ½_2[(3_;2-1)cos e- 2_/11_;] + o(_3) ([7)
s

sinmSs cos m@s = slnm8 cos m@ + m_[_ sinm8 cos m@ - WI^ sinm-18cos(m-l)@]+

½£2{[m(m+2)_2-m]sinm8 cos m@ - 2m2Wl _ sinm-18 cos(m-l)@ +
+

^2
+ Wl(m-l)m sinm-28 cos(m-2)@) + 0(£ 3) , (8)

^ ^ ^

where _ = - v.W = W)icos8+ Wl sin 8 cos @, ('9)

m@ = Wllcos 8 cos m@ + ½Wlsine[cos(m-l)¢+ cos(re+l)@], (10)
cos

2 ^2 _^2 ^ ^
r. cos me = (WllCOS2e + _W[ sin2£) cos m@+ WIIW[ sin 0 cos e x
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that It,d udes the terms. Ng (1'384) 
transformation for gyrotroplc distributions (jp 
for relativistic particles. 

obtained a 2nd order 
= I A~o(P)Pn(cos9» valId 

n 

Another approach, taken by Sanderson et aI. (1985), IS based on a 
method by Ipavlch (1974). ThiS IS outlined below. One may use eqn 
(12) of Ipavlch (1974) to transform each term In the series (1), prov1ded 
one pays the prlce of aSln9 a non-standard coordlnate system In which the 
polar aXIs pOints along the velOCity ~. Denote the non­
standard polar and azimuthal angles by 9*, 0*. ThiS allows any term 
A~m(Pe)C~(91,01) for the phase-space dens1ty to be transformed to: 

s * 2 1 m -1 * * * A lp(1-2£cose t£ )2]C {tan [sine /(cose -£),~ ]}, 
nm n 

and simllarly for B~M(PS)C~(9~,0~). FollOWing Ipavlch and Sanderson 
et aI., one assumes a power-law spectrum (ped/dpe) log A~m(Pe' = - 2r n , 

and obtains from (4), -r -1 
* 2 n c:; m -] * * * (1-2£cose t£ ) A (p)C {tnn [sine /(cose -£),~ ]}. nm n 

( 5) 

Eqn (5) may be compared to Sanderson et aI.'s eqn fAll). There remains 
the tas~ of convertlng (5) to the form f2', Including a change from 
9*,0* back to the standard angular coordinates 9,0. 

Sanderson et aI. accomplish the above by numerlcalIy lnte9ratlng the 
transformed Intensity obtalned from (5) (thelr eqns (All) and (A12» over 
each sector, each energy lnterval and each telescope to produce an 
eqa1vaIent set of counts 1n the comov1n9 frame, and then fltt1ng (2) to 
the equivalent set of cou~ts. 

Although the assumption of a power-law spectrum may be aVOided by 
using (4), the numerlcal Integration and the second flttlng are tlme­
consuming and unnecessary for say, >10 KeV protons, because we are able 
to obtain the transformation posed In Section 2, correct to OfW/v)2 and 
for arbltrary direction of W. 

4. DERIVATION OF THE TRANSFORMATION FORMULAE We begin With 

2 2 
j (p,e,~) = EE{ vp 2 AS (p )Cm(e ,~ )t vp 2 BS (p )Sm(e ,~ )}, 

p nm p nm s n s s nm s n s s (6) 
v v P s s s s 

and conSider each term In the series. First we transform the spherical 
harmmucs C!!:(ge , 0e ). Galilean transfoYlilahon of momenturn gi ves 

1'. 2 2 ~ 
cos as = cos a - £(w ll -~ cos a) + ~£ [(3~ -1)cos a- 2W

l
f] (7) 

• m 
Sl.n e cos m~ = 

s s 
m m ~ m-l 

sin a cos m~ t m£[~ sin e cos m~ - W
1 

sin ecos(m-1)~]+ 

t !£2{[m(mt2)~2-m]sinma cos m~ - 2m2wl~ sinm- 1 a cos(m-1)~ t 

~2 m-2 3 
t WI(m-I)m sin a cos(m-2)~} + 0(£ ) , (8) 

~ 

where ~ = - ~.~ = WIt cos at WI sin a cos ~, ('3) 

!WIsin e[cos(m-1)~ 
~ 

~ cos m~ = WII cos a cos m~ t t cos(m+l)~], (.10) 

2 ~2 2 ~2 2 ~ A 

~ cos m~ = (W II cos a t !W
I 

sin a) cos m~ t W
II 

W
1 

sin a cos a x 
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i^2
x [cos(m-I)% + cos(m+l)%]+ _W1 sin2O[cos(m-2){ + cos(m+2)_]. (11)

Using (7) - (I0"),and various properties of P_, we obtain

+ 2n(n+l)ymCce,_ ) + 2nCn+ 2 mc)Zn+2(O,@) + O(E 3) €12)n f '

where (2n+l)umCI- _ ½_l(n+m_l)(n+m)cm-__ _ _,, (n+m)cm_l_ _W1Cn_11" m+l , (13)

(2n+l)vm+l i^ m-I ^ (n_m+l)Cm+l ,^ m+l '14)= _Wl(n-m+l)(n-m+2)Cn+1 + WI! - _WICn+1 ,

mc- i^2 (n+m)! cm-2 ½Q W1 (n+m)! cm-i(2n-l)(2n+l)Xn-2 8WI (n+m-q)! n-2 II (n+m-3)! n-2 +

I ^2 ^2 (n+m)! cm _l(n+m)cm+l i^2 m+2 (15)+ q(2W11-WI) (n+m-2)! n-2 + ½WII - + _WICn-2'

t2n-l)(2n+3)ymCn = q_ll2 (n+m)!(n-m+2)!(n+m_2)1(n_m)!cm-2n + ½(2m-I)W))WI (n-m+l)(n+m)Cm-l+n

^2 2_I)WI]Cn+_(2m+I)WI$'l_n T_.l_n ..16)_ ½[(2n2+2n_2m2_l)W$1 + (n2+n+m ^2 m I ^ ,] ,_m+l,l,_%2,,m+_

(2n+l)(2n+3 mc = i^2 (n-m+4)l cm-2 ^ ^ (n-m+3)! cm-i
)Zn+2 8Wl (n-m)! n+2 + ½WH W1 (n-m)! n+2 +

^2 ^2 (n-m+2)lCm ^ Q_(n-m+l)Cm+l + Iw2cm+2 f17)+ ¼(2WIIWI) (n-m)( n+2 - ½Wll . n+2 _ 1 n+2 '

Note that the fun,:ti,-,ns U, V, X, Y_ and Z are all expressed in terms of
the spherical harmonics C_j (e,O), and that

P-m(8,¢) = (-1)mpm(e,_)(n-m)t/(n+m)!, ¢18)n n

_C_ me _ Umc (19)= Vn+l n-i '

_[(n_2)UmCn_l + (n+3)Vm+l]_ _lcmn (4-2n)XnC2 -3¥mc+- (2n+6'Zn+2" '2(')

Se,:ondly, we expand A_m(pm) about p =pm :

2 2 2 2 ,,s.AnSm(Ps) = ASm(p)+_PAnmS(p)+ _ [(1- )PAnS(p) + _ p AnmtP)]+O(_). ,21)

.-,(-
Then we multiply (21) and (12), and use _I0), (11), (19) and (-)) to

express A_.(p.)C_(ee, O_) in terms of a series of E._(e,_) correct to
O(E=). This expression actually applies to the transformation of phase-

space distribution function, but will not be exhibited here.
Finally, multiplying

vp2/(VsP_) = i + 3_ - (3_2/2)(1-5L; 2) + 0(_ 3) _22_

into the above expression, and simplifying as before, we obtain

[vp2/(VsPs2)]AnSm(Ps)Cnm(Os,ls) : As Cm +¢[(n-2)A s +pA,S]u me_ +¢[(n+3)A s +nm n nm nm n-I nm

-pA'S_vmCnm] n+l +J[(n-4)(n-2)As +(2n-5)pA'S+p2A"S]xmC"+_2[(n-2)(n+3)AS +nm nm nm n-z nm

+qpA'S+p2A"S]ymC+£2[(n+3)(n+5)ASnmnm n nm-(2n+7)pA'S+p2A"S]zmCnmnm n+2 + O(£3), (_,3.'_
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[ ] 
1~2 2 

x eos(m-1)~ t eos(mt1)~ t qW
1 

sin 8reos(m-2)~ t eos(mt2)~], (' 11) 

USlng (7) - (10), and varlOUS propertles of p~, we obtaln 
m m mc mc 2 me 

e (8 ,~ ) = e (8,~)te:(n+l)U 1(8,~) t£nV t1(8,~) t£ (n-1)(nt1)X 2(8,~)t 
n s s n n- n n-

2 mc ' 2 mc 3 
t £ n(nt1)Y (8,~) t £ n(nt2)Z 2(8,~) t 0(£ ), (12) 

n nt 

Note that the functlons U, V, X, V, and Z are all expressed In terms of 
the spherical harmonics C~ (e,0), and that 

-m m m 
P (9,</» = (-1) P (9,</>)(n-m)I/(n+m)l, fiB) 

n n 

em = vmc _ umc (1'3) ~ n nt1 n-1' 

[ ( mc mc] 1 m mc mc mc 
~ n-2)U 1t (nt3)V 1 - -2 e = (4-2n)X -3Y t (2nt6)Z 2' (20) 

n- nt n n-2 n nt 

Secondly, we expand A~M(PS) about p = ps : 

s s s 2[ 2 s 2 2 s 3 
A (p) = A (p)t£~pA' (p) t ~£ (1-~ )pA' (p) t ~ P A" (p)]tO(£ ). (21) 

nm s nm nm nm nm 

Then we multlply (21) and (12), and use (10), (11), (19) and (20) to 
€-~,press A~rn(Pe)C~(ee,0e) I.n terms of a s€-rles of (.~(e,f7) corr€-ct to 
Q(E2 ). ThiS expreSSlon actually applles to the transformation of phase­
space distribution function, but Will not be €-xhlbited here. 

Finally, multiplYing 

2 2 2 2 3 
vp /(v p ) = 1 t 3£~ - (3£ /2)(1-5~ ) t 0(£ ) s S 

Into the above e~presslon, and slmpllfYlng as before, we obtain 

[ vp2/(V p2)]As (p )e
m

(8 ,~ ) = AS em +~[(n-2)As +pA,s]Umc t£[(nt3)As t 
s s nm s n s s nm n nm nm n-1 nm 

A'S] mc 2[ s s 2 s me 2 s 
-P"nm Vnt1 t£ (n-4)(n-2)A t(2n-S)pA' tp A"]X t£ [(n-2)(nt3)A + 

nm nm nm n-2 nm 

+4pA' s tp2A"s ]ymc +£2[ (n+3) (nt5)As -(2nt7 )pA' s +p 2 A"s] Zmc + 0(£ 3), (23) 
nm nm n nm nm nm n+2 
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the rlght imandslde being evaluated at (p,e,B). Eqns (8"), ('In)- (17),
(19) - (20) and (23) hold when we replace all timecoslnes dependent on 0

('gm)by slnes, C) by S(, U)°, by U)9,, etc. Substltutlng _ into (6), w_
obtaln the desired result in the form (2), as well as the relatlon

between A_,,,and ASk and tlmelr derlvatlves. These, however, are not
exhibited here for lack of space. For tlme inverse transformatlotl, we

merely need to interchange quantitles labelled and unlabelled with S,
and reverse timesigns of WIIand Wi itstimeabove.

g
S. SOME IMPLICATIONS For >I0 KeV protons, once A:,k and their Ist
and 2ridderivatives are experimentally determined, one need only substi-
tute these into time formulae_to obtain timerelevant A,,,in the comovlng

frame, bypassitlg ti_ecomplicated procedures met_tioned ItlSection 3.
The formulae are useful in other regards. For example, we have

As + _[(n+l>/(2n+3> ][n-l+pd/dp] [½WI(n+2)An+I,I-WII (n+l)An+l,O ]+nO =Ano

+ E[n/(2n_l)][n+2_pd/dp][½_l(n-l)An_l,l+Qll nAn_l,O ] + O(_2). _'24)

For highly atusotroplc solar particles, timegyrotroplc terms Ako >> the

non-gyrotroplc term A,,,. Tile former may be ellminated Itl (24) by
choosing timeEx_Bdrift frame (Wll= 0). If In addltlon, A,-_._ and A_,+,._
are negllble, then AnD - A,eo = O(&_').

Next conslder tlme Ist harmonic terms.

s + E ^ ( -' ' -2 ' 5) _ ^ ' + O(t 2)
AIO= AIO WII 3Aoo PAoo PA20/ - WIPA21

-All -All + EWI( - ' ' - ' 5 + 3EWIIPAil/5 + O(e 2) ,s : 3Ao0 PAoo+PA20/5 6pA22/ )

S -
_BiI _BIi + 3E_IIpB_I/S _ 6_iPB__2/S + O(_ 2) . (25)

Even If all the notl-qyrotropic terms vanish, if pASo -_0, time lsf
order" Ist harmonic atusotropy vector is _>otaligned with W_'

6. REMARKS The new formulae are useful in the study of transverse

atusotropies. The derivatlon in SectJon 4 is belng extended to cover
relatlvlst1.: particles (see also Ng, 1984). These and otiler
conslderatlons and a more complete account of the present work will be

presented elsewhere.
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the right hand side being evaluated at (p,e,0). Eqns (81, (10) - (17), 
(19) - (20) and (23) hold when we replace all the COSlt1e-S de-pendent on 0 
by Sines, C~ by S~, U~~l by U~!l' e-tc. Substltutlnq (23) into (6), WP 
obta1n the desired result 1n the form (2), as weli as the relation 
between Anm and A'k and their derlvatlve-s. These-, however, are not 
e-xhlb1ted here- for lac~ of space. For the 1nverse transformatlon, we 
me-rely need to Interchange quantit1es labelled and unlabelled with S, 
and reve-rse- the s1gns of WII and Wl. 1n the above-. 

3. SOME IMPLICATIONS For )10 Ke-V prc1tons, once AEJk and thelY 1st 
and 2nd de-rivat1ves are exper1mentally determ1ned, one need only substl­
tute these 1nto the formulap to obta1n the rele-vant Anm In the- comov1ng 
frame, bypassing the compl1cated procedures mentioned 1n Sect10n 3. 

The formulae are useful 1n other regards. For exarnple, we have 

A~O = AnO + e:[(n+l)/(2n+3)][n-l+Pd/dp](~Wl(n+2)An+1,1-WIl (n+1)An+1,o]+ 

" " 2 
+ e:[n/(2n-l)][n+2-pd/dp][~Hl(n-l)An_l,1+HII nAn_

1
,0] + 0(£ ). (24) 

For highly an1sotrop1c solar particles, the gyrotroplc terrns Ako » the 
non-gyrotrop1c term Akl • The former rnay be ellrninated 1n (24) by 
choos1ng the ;~:~ dnft frame (W II = 0). If 111 add1tlOt1, An- l • l and An+ l • l 
are- negllble-, the-n Ano - A~o = 0(£2). 

Next cons1der the 1st harmon1c te-rrns. 

s 
AlO + £W II (3AOO"':pAbo-2pA20/5) - d~lPA2I + 0(£2) A

10 = , 
s 

-All £Wl(3AOO-pAbo+pA20/5-6PA22/5) + 3£W II pA2l /5 -AU = + 

s -Bll + " " 2 -Bll = 3£W" pB2l /S - 6£W
1

PB22 /S + 0(£ ) 

Even 1f all the non-Qyrotropic terrns van1sh, 1f pA'o f 0, 
order 1st harmonic an1sotropy vector is not aligned w1th WI 

+ 0(£2) 

( 25) 

the 1st 

6. REMARKS The new formulae are- useful in the study of transverse 
anlsotropies. The derivat10n 1n SectIon 4 15 beln~ extended to cover 
relatlvlst1c particles (see also Ng, 1984). These and other 
conslde-ratlons and a rnore cornplete account of the present wor~ w111 be 
presented elsewhere. 
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