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1 INTRODUCTION Theoretical studies of energetic particles 1h
space are often referred to a gpecial frame of reference. T compare
theory with experiment, wone has to transform the particle distribution
from the special frame to the nbserver’s frame, or vice versa. Various
methods  have been derived to obtain the divectional distribution 1n the
comaving  frame from  the directional fluxes measured on a spacecraft
(e.g., Erdos, 1981; Sanderson et al., 1985, and references therein).
These methnds have become progressively complicated as rhereasingly
detailed directional particle data become available.

We present here a set of 2nd order correct formulae for  the
transformation of an  arbitrary differential intensity distribution,
enpressed as a series of spherical harmonics, between any two frames 1n
constant relative mot1on, These formulae agreatly simplify  the
complicated procedures currently in use for the determination of the
differential intensity distribution i1n a comoving frame.

2. THE DESIRED FORM OF THE TRANSFORMATION In the observer’s frame,
let the particle differential intensity w.r.t. mementum Cor rigadity) be
ewpressed 1n terms of the spherical harmonics C%, Sm ag
jz(ps,98,¢s) =1 z {A (pS)C:(es,¢s)+8nm(ps)S:(es,¢s)}. )
n=0 m=0Q
We wish to transform this to the frame moving with velocity W relative to
the observer, also 1n terms of spherical harmonics

. _ m m
]p(p,6,¢) =z {Anm(p)Cn(6,¢) + Bnm(p)Sn(e s )}, )
Here C:(9,¢) = Pg(cos 8)cos(mé), SE(B,¢) = P:(cose)sin(m¢), (3

Fr( ' = associated Legendre function, p = particle momentum, and ©, @ are
the polar and azimuthal angles of the particle arrival d1re-t10n. The
superscript or subscript 8 indicates that the quantity 1s referred to the
frame of the observer/spacecraft.

In short, our purpose 16 to find the relation between the creffi-
cients Anam, Bnm in the comoving frame and the coefficients A%w, BY.
and their p-derivatives in the cbserver’s frame, and vice versa.

We dencte below the components of W alaong Jand normal to the magnetic
f1e1d by W) and W, respectively, and define w” Wy /W, NL W, /W, and

= W/v, with v the particle speed. We choose the polar coordinate axis
ta point along the magnetic field, and measure ¢ from the direction of
W,. Hence, ©, @ denote the particle pitch-angle and ayrophase respect-
ively. We will refer to this coordinate system as the standard one.

3. SOME CURRENT SOLUTIONS Gleesocn and Axford (1968 and Forman
(1970) obtained 1st order transformations from (2) to (1), for 1p=Aco(p).
Forman's elegant approach uses the Lorentz invariance of the phase—space

drstributron function. Balogh et al. (1973) obtained a 2nd order result
for  the 1sotropid case and a 1st order result for the amsotropic  case
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that includes the n=1 terms. Ng (13984) obtaihed a  2nd order
transformation for gyrotropic distributions (jp = Y Ano(pIF.(cos8)) valad
for relativistic particles. n

Another approach, taken by Sanderson et al. (1985), 15 based oh a
method by Ipavich (19743, This 15 outlined below. One may use eqgh
(12) of Ipavich (1974) to transform each term 1n the series (11, provided
one pays the price of using a non-standard coordinate system 1n which the
polar ax1s points along the velacity W. Dencte the nok-
standard polar and azimuthal angles by &%, @%. This allows any term
ABm P TR (OE, 08 for the phase-space density to be transformed to:

* 1 - * * *
Aim[p(l—Zecose +€2)2]C:{tan l[sine /(cos® -€),¢ 1}, €41

and similarly for BR,(pe)CR(OE,0%). Faollowing Ipavich and  Sanderson
2t al., onhe assumes a power-law spectrum (ped/dpe) 1og ABn(pe) = — 2r.,
and obtains from (4),* -r -1

- * *
(1-2ecosd +e°) ™ Azm(p)C:{tan [sind /(cosH ~e),¢*]}. 3

Eqn (5) may be compared to Sanderson et al.'s eqn (A1), There vremains
the task of converting (5 to the faorm (2), including a  change from
a%, g% back to the standard angular coordinates @,0.

Sanderson 2t al. accomplish the above by numerically antegrating the
transformed intensity abtained from (5) (their egns (A11) and (A12)) over
each sector, each energy 1interval and each telescope to produce an
equivalent set of counts 1n the comoving frame, and then fitting (2) tn
the equivalent set of counts.

Although the assumption of a power-law spectrum may be avoided by
using (4), the numerical integration and the second fitting are  time-
consuming and unnecessary for say, *10 KeV protons, because we are able
to obtain the transformation posed 1n Section 2, correct to 0(W/vY2  and
for arbitrary direction of W.

4. DERIVATION OF THE TRANSFORMATION FORMULAE We begin with

2 2
3p(Ps0s8) = IR L AL (PICT(B 0 )+ %’-—5 BS (p)S(8 400},
s's sPs
and consider each term 1n the series. First we transform the spherical
harmonics CH(0g,0e). Galilean transformation of momentum gives

€e)

cos es = cos 0§ - E(Q||—c cos 08) + %32[(3c2—l)cos 80— 2Q|F] + 0(83), 7

. M . N o . -
sin Bs cos m¢s = sin"® cos mé + melg sin™® cos mé - W sin™ chos(m—l)¢]+

1

2 2 . ~ ., M-
+ e {[m(m+2)z —m]51nm6 cos m$ - 2m2w 4 sin" le cos(m-1)¢ +

1
+ ﬁi(m—l)m sinm—ze cos(m-2)¢} + 0(53) , (e
where r= - i:ﬁ.: ﬁ|'cos 0+ ﬁl sin 8 cos ¢, 9
¢ cos mp = ﬁ‘|cos 0 cos md + %ﬁlsin 8lcos(m-1)¢ + cos(m+l)él, t10)
C2 cos m = (ﬁ?|00329 + %ﬁi sinze) cos m$ + ﬁ||ﬁl sin 6 cos 6 x
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% [cos(m-1)¢ + cos(m+l)¢]+ %ﬁi sin2e[cos(m—2)¢ + cos(m+2)¢]. an

Using (7) - (10), and various properties of PR, we nbtaxn

c:(e s )y =c" (e,¢)+e(n+1)u 1€05¢) +snv (e,¢) te (n l)(n+l)X _p(8,0)4

+ € n(n+1)Yn (e,¢) + e n(n+2)Zn+2(6,¢) + o(e ), €12
wher e (2n+1)U:fl = %ﬁl(n+m—l)(n+m)0m:i - v‘q (n+m)C:_l— %»‘qlc’r']‘fi , U
(20+1)VI%) = 3 (n-mt1) (n=m+2)C 7+ W (n-meL )" MR TN (14)
(20-1) (ns1)XC, = 37 z%%%m%;.cg—g & |y Z%%%?%%T chy +

+ B D A N g eme™ s 022 )

- me _ 142 (nim)!(n-m+2)! m-2 PN m-1
(2n-1)(2n+3)Y, " = 80 S o T Cn 32m-1)W | ) (neme 1) (nem)c] e

+
2 2 2 2 ) .
- 3[(2n"+20-2m"-1)i7 + (n +n+m2-1)Wf]C + LW wlcm*l+ wlcm*%lﬂ
(2n+1)(2n+3)2™¢ = Bw2 (n-m+4) 1 m-2 ﬁ ﬁ (n-m+3)! m-1

- 1
n+2 1 (o-mt ne2 T Y (n-m)t “n+2 b
~2 A2 (n-m+2)! m m+l ~2 m+2
+ Y(ow- AlTMTel: 1 173
SN oo e T ||w (n-mt1)C o + 31 Chyn o

Note that the functions U, V, X, Y, and Z are all expressed i1n terms of
the spherical harmonics CY¥ (0,2), and that

P.I(0,8) = (-1)"P7(0,4) (n-m) 1/ (ntm)1, €18)
m mc mc
= - (19)
CCn n+l Un—l ’
me mc 1 m mc mec mc 203
-2 - = = - - (20}
tln-2)u "+ (43)V ] -5C = (4 20)X T,=3Y 4 (2n46)27 .

Secondly, we expand AR, (pg) about p = pa @
s _ S 'S 1.2 (1,21 1S 22,8 3
Anm(ps) Anm(p)+€CpAnm(p) + e[ (1-¢ )pAnm(p) + L' p Anm(p)]+0(€ ).

Then we multiply (21) and (12), and use (10), (11, (19 and (20) to
enpress AR, (pe)lN(fg,0s) 1n terms of a series of LN, correct  to
0ceg=), This expression actually applies to the transformation of phase-
space distribution function, but will not be exhibited here.

Finally, multiplying

2 2
vp /(vp ) = 1 + 3et - (382/2)(1-5C2) + 0(ed) (22
1nto the above expression, and simplifying as before, we obtain
2 2)1,8 m - aAS M s S4,,MC s
[vp™/(v <Ps )1A m(pS)Cn(OS,¢s) = A C +€[(n—2)Anm+pAr')m]Un_1 +e[(n+3)Anm+
2 s 8 2, ,8,,mc 2 s
nm]Vr1+l te [(n—u)(n—2)Anm+(2n—5)pAgm+p Agm]x +e [(n-2)(n+3)Anm+
2

+UpA? nSqi,me, 2 s _ 'S Sy,me 3 -
pAnm+p Anm]Yn +e [(n+3)(n+5)Anm (2n+7)pAnm+p A;m]Zn+2 + 0(e”), 23
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the right hand side being evaluated at (p,0,M. Eqgns (&), 10) - (17),
(19) - (20) and (23) hold wheh we replace all the cosines dependent on @
by sines, C% by 8@, UnS, by Um8,, etc. Substituting (23) into (6), we
obtain the desired result i1n the form (2), as well as the relation
between A,.. and A, and their derivatives. These, however, are not
exhibited here for lack of space. For the i1nverse transformation, we

merely need to interchange quantities labelled and unlabelled with G,
and reverse the signs of N” and wl 1n the above.

Se SDME IMPLICATIONS For »10 KeV protons, once AS, and their 1ist
and 2nd derivatives are experimentally determined, onhe need only substi-
tute these i1nto the formulae to obtain the relevant Ann 1h the comoving
frame, bypassing the complicated procedures mentioned 1n Section 3.

The formulae are useful in other regards. For example, we have

- _ 10 e
A=At e[(n+1)/(2n+3)][(n l+pd/dp][gwl(n+2)An+l’l W||(n+l)An+l’O]+

1 0 t 2 ot
+ c[n/(2n—l)][n+2-pd/dp][zwl(n—l)An_l’1+W"nAn_l,O] + 0(e7). (24
For highly amisotropic solar particles, the gyrotropic terms Awo »¥ the
non-gyrotropic  term  Aa. The former may be eliminated 1n (24) by
choosing the ExB drift frame (W, = 0). If 1n addition, An-a,a and Ane1, 1
are neglible, theh Ao — ABs = 0(g2).
Next consider the 1st harmonic terms.

S = - - 1 0 ' 2
AlO Aot ew||( 00 pA 2pA /5) EwlpAQl + 0(e”) ,

s ~ 2
- - - + - 1 t - t 1
All All ewl(3Aoo pAOO+pA20/5 6pA22/5) + 3ew|'pA21/5 + 0(e™) ,
_S = - e 1 - 0 1 2 g
BJy By, * 3eW, pB) /5 - BeW pB) /5 + 0(e”) . t23)

Even 1f all the non—qyrotropic terms vanish, 1f pAko # 0, the Ist

arder 1st harmonic anisotropy vector is not aligned with W'

6. REMARKS The new formulae are useful in the study of transverse
anisotropies. The derivation 1n Section 4 18 being extended to cover
relativistic particles (see also Ng, 1984). These and other

considerations and a more complete account of the present work will  be
presented elsevhere.
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