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INTRODUCTION

In the last decade our understanding of modulatlon of the galactic cos-

mic rays has considerably progressed by the exploration by space probes of
mayor heliospheric structures, such as the Coratating interaction Regions,

the neutral sheet, and the compression regions of intense heliospheric ma_
netic fields. Also relevant in this context were the detections in the --

outer hellosphere of long lasting Forbush type decreases of cosmlc ray in-
tensity (I,2,3).

In this paper we shall present the results of our recent theoretical --

studies on the changes in intensity and energy, at different locations --
from the sun, induced by the passage of shocks across the heliosphere. In

this short version of our research we shall deal mainly with the simplest
cases of modulation of IGV and 2GV particles by single or several shocks
during periods of positive and negative solar field polarity.

We shall report here the results of the theoretical aspects of our re--

search. The comparison of the theoretical predictions with space probe --
data (4,5) will allow us to draw conclusions on the role of shocks on the-
modulation on both the 11 and 22 year galactic cosmic ray cycles in the --

outer heliosphere and on the plausibity of the models and parameters used.

METHOD AND MODELS

The modulatlon that the galactic rPlativistic cosmic rays undergo during
their propagation across the hellosphere all the way to the observer, is--
studied by means of Liouville's theorem that states that the slx dimension

al phase space density f(_,2) it conserved alon_ the particle trajectorie-s.

In order to follow the past history of a partlcle of momentum 2, detected
at _, one must trace the trajectory of the particle all the way to the - -
boundary.

The method which we used in our studies of shock induced Forbush De....

creases (6,7),(the FdM method), consists of integration of full differen-

tial equation of motion d2/dt = e(E+vxB/_) of a large mumber of particles
moving in both Parkerian and magnetic field shock model, scattered also -
by small irregularities achieved by random angular deflection corresponding

to a chosen diffusion coefficient. The trajectory of each individual parti
cle is integrated back in time,all the way from the observer at r to the --

chosen spherical boundary, keeping all along a detailed account,--of the - -

changing particle2momentum. Tne intensity of the particle is inferred from
the relation j_p . We determine the associated intensity at the boundary-
by a power law in total particle energy of spectral index -2.6.

The FdM method allowed us to prove that the principal mechanism of
Forbush decreases is simply the additional adiabatic coolinq of the rela-

tivistic cosmic rays durinq their prolongued containment by magnetic field-
between the shock and the sun.

In the present research we use a method designed by B. Thomas (the BTM -
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method wich saves much computer time. It differs from FdM in that in---

stead of solving the full differential equation we now solve the Boltzman

equation and deal with the GC. We compute the focussing and all the drift
velocities and evaluate the diffusion and the energy loss by the FdM met_

od. Just as in FdM we impose a kll and k_and follow the trajectory int_
gration of 50 particles, back in time, from the position of the observer-
all the way to the boundary; at every step size of the integration we com

pute the "average particle" position and pitch angle.

The momentum ._o at the boundary, averaged over all individual particles
estimates is used to compute the intensity and particle energy loss at _.
(For better understanding of FbM and TBM methods we refer the reader to -

reference 7)

We use the semispherical shock model of Dryer's type (8), a Parkerlan-
magnetic field model autside the shocks, and a magnetic field model inside

the shock, given by B = Bo/r2 ; B_=(B.o/r)V _sinO{3+3cos.. _(r-r.o)/d }, where
d is,_the width of the shock and r is the _ellospherlc distance of the --
shock interface, o

In our elementary studies on the shocks influence of cosmic ray modula
tion we asume that all the shocks propagate with the same velocity of 40_
klm/sec_its width changing with the position of the shock, given by
d=O.2xr • . The shocks are placed at sufficiently large distance - --
(20AU),°from each other to avoid shock-shock interaction. Moreover'the -
shock's loss of energy is not considered. A flat ecliptic neutral sheet-
model is used; we place the observers at X:0,_:0 and X:5°,_=O °, for po_
itive and negative polarity periods, respectively.

RESULTS AND COMMENTS

Figure IA exhibits the 22 years modulation of IGV protons in the outer
heliosphere induced by the diffusive propagation in a merely Parkerian --

magnetic field; k,,:.219x102_cm2/sec and 7.68x1021rcm2/sec, for I and
2GV respectively. As seen by observers located at different r, the inten-

sities for negative polarity are not only higher that for positive polar!
ty, but exhibit a relatively constant radial gradient. In the table-
below we list some of the modulation characteristics.

I 2 3 - 4 + I. Proton rigidity.

2. The % ratio of negative to posi

80 UA: 42% tive polarity intensities at 80
IGV 20 UA: 2.4% 0.7%/AU 25% 41.9% and 20 UA

3. Average intensity gradient of -

80 UA: 30% 20<r< 80 AU (negative polarity)

2GV 29 UA: 21% .16%/AU 3.5% 9.1% 4. % of total energy (ET) loss by-
adiabatic cooling for 20 AU ob-

seEyer,

Obviously the theoretical data on propagation in Parkerian _ield is --

rather elementary as it does not include the effects induced by large ma_

netic heliospheric structures. Sti]} it serves as a uselful] tool, as a _

first approximation, to which the effect of shocks, CIR or inclined neutral
sheet can be separately added.
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Fig.lA: Intensity of 1GV protons, detected by observers located along the
cliptic at different distances from the sun, for A- and A+ periods.

Fig.lB: The computed intensities of 1GV protons for 1976-2002 period. The
sign of solar field polarity is marked.

Finally we shall discuss the modular(on of cosmic rays induced by - --
shocks. Using the BTMmethod and the shock and shock associated magnetic-
field models, se have computed the intensities of 2 GV protons for the --
cases of 1, 2, and 4 shocks propagating across the outer heliosphere. - -
Notice that it takes aproximately 1_ months for the shocks to propagate -
from the sun to the boundery. For the period of positive solar field po-
larity. An observer located at 17 AU will detect as illustrated in Fig.2A
a similar pattern of intensity vs time, for the three cases mentioned. A-
typical Forbush type 15% intensity decrease, lasting aproximately 100 days
of equal decrease and recovery t_fme, followed by a 40 days period of 5% -
intensity increase above the Parkerian propagation intensity level (which
we shall call here PI). This increase :. due to an acceleration,during --
the temporal trapping of particles between the shocks is followed by a re
covery to practic_ly PI level. 0nly in the case of 4 shocks one detects _
as slow intensity decrease of less than 4%.

Thes intensity vs time pattern, during A- period is very different frcm
the one described above, which obviously implies an important 22 years --
cosmic rays intensity cycle.

As seen in figure 2B, the observer at 24 AU, sees a slightincrease of-
intensity, lasting 40 and 80 days for 1 shock and 2 shocks, respectively;
this is probably due to the typical PI increase during the A- periods.

This increase is followed by an abrupt 50% decrease that occurs at 30-
AU for the case of 1 shock and at 50 AU for 2 shocks propagating across -
the outer heliosphere. Necesarily the intensity level will rise as the -
particles aproach the vecinity of the boundary.

One must keep in mind that the pattern I vst used, corresponds to a --
rather simple model of shocks, described before. We plan to continue - -
this research using a much more realistic shock models.
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Fig.1A: Intensity of lGV protons, detected by observers located along the 
cl iptic at different distances from the sun, for A~ and A+ periods. 

Fig.1B: The computed intensities of lGV protons for 1976-2002 period. The 
sign of solar field polarity is marked. 
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Fig.2Aand 2B show the intensityvariationsduring340 daysof observations
by an observer located along the ecliptic at fi'xeddistance from the sun.

The variations are induced by one(a),two(b)or four(c)shocks. The abcissa-
marks the position _ of the most advanced shock; it also provides the --

time:(t)x4.33 _^ day_, measured from the day of emision of the mentioned-
shock. (Fig.2A:Vobserver at 17 AU, A-; Fig.2B observer at 24 AU, A+)
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Fig.2A and 2B show the intensity variations during 340 days of observations 
by an observer located along the ecl iptic at f(xed distance from the sun. 
The variations are induced by one(a),two(b)or four(c)shocks. The abcissa­
marks the position ~ of the most advanced shock; it also provides the -­
time:(t)x4.33 r. dayg, measured from the day of emision of the mentioned­
shock. (Fig.2A: oobserver at 17 AU, A-; Fig.2B observer at 24 AU, A+) 
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