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NOTES ON DRIFT THEORY
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ABSTRACT
It 1s shown that there 1s a simpler way to derive the average guiding
centre drift of a distribution of particles than via the so-called
“single particle" analysis. Based on this derivation 1t 1s shown
that the entire drift formalism can be considerably simplified, and
that results for low order anisotropies are more generally valid than
1s usually appreciated. This drift analysis leads to a natural al=
ternative derivation of the drift velocity along a neutral sheet.
Full derivations are given in Burger, Moraal and Webb (1985; re=
ferred to as BMW), of which copies will be available at the Conference.

1. Alternative Derivation of Drift Velocity. A particle at position x, with
momentum p, velocity v, in a magnetic field B has a gyroradius R = b x p/q,
where b = B/B2. Its guiding centre 1s at xq = x - R.  Differentiation of
Xg w.r.t. time 1n the steady state (3/5t=0), with employment of the Lorentz
force p = q(E + v x B) then gives

B
g

<lg>=<.\.">+.[’;x.b.+<l)_x(_V_'E)E>/Qs (1)
for the instantaneous, average drift velocity of particles inside a volume ele=
ment d®x around x. For a particle distribution function F(x, p, t) with den=
s1ty N, this average 1s defined as

<eee> = (1/N) J”‘ Fd>p = (1/N) I dpp? J -+ FdQ, (22)

where d = s1n0dod¢. We shall also use differential (omnidirectional)
averages 1n momentum space in the interval (p, p + dp) denoted by

<o-->Q = I LN FdQ/J FdQ (zb)

In terms of directions 1n momentum space, p may be written as

p = plcosGe, + sinocosge, + ﬁn@s1n¢g3L (3)
with 0 the pitch and ¢ the phase angle relative to B. In index notation the
last term of (1) 1s €1Jk<p3v£>bk,2/q and determination of<lg>or<_\fg >0
only requires finding the components < pJvz> of the < pv > tensor, given a par=
ticular F.  In BMW 1t 1s shown that the most complicated F which gives a
tractable expression for Xg 1S
X

F(_)g_,g_,t)=F00+{choso+F11s1n0cos¢>+F1 _1s1nes1n¢}+
’ £=2

FzOPz(coso), (4)

where Pz are the Legendre polinomials. The < p v > tensor 1s of the form:

= 1 2
RXZE PN 0 0 » S P Yy =—3~<pv(1+§{:%%)>
0 = > =

bepvy> 0 B<p v >= <ppVp> = <p3V3>

0 0 é<p_Lv_L> =%<pv (1 -%%gb (5)
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For this form of F, the average drift velocity (1) becomes
- 1 _ 1
WU T w2 +§x§¢a[:5<plv*22xb+(<pliv'r é<plvl>)§(ZX%)l] (6)

There are six noteworthy points about this seemingly familiar result: (3) It

1s the <nstantaneous average guiding centre velocity of particles in the volume
element d®x 1n terms of the fields E and B inside d®x. The usual "single par=
ticle" derivations (e.g. Ross1 and Olbert, 1970) give a similar result, but for
the time (gyroperiod) averaged drift ve]oc1ty n terms of the fields Eg and Bg
at the guiding centres. (11) Our analysis does not need the usual "$ingle par=
ticle condition that R<<L (where L 1s the smallest scale length of variation of
E and B). But, this does not mean that (6) 1s valid for any ratio R/L, as 1s
discussed 1n Section 3.  (111) The result (6) 1s usually 1nterpreted to hold
only for gyrotropic distributions, i1n which Fy =F1 _1—0 in (4), (e.g. Ross1 anu
Olbert, 1970, Lee and Fisk, 1981). This too strict condition on F stems from
1mprudent mixing of the <p v> tensor with the pressure tensor P=N(<p v>-<p><v>),
(1v) If F s of the simple form F=(1+cos@)Y, the underlined térm 1n (6) exceeds
the first one 1n E::l only 1f v>3.56. This represents a much higher anisotropy
than usually found in Astrophysical applications, because then fully 95% of the
particles have pitch angles in the forward range 0>0>1/2. (v) For first order
anisotropies, F@J(€>2) =0, the exact guiding centre velocity 1s form (5):

<!g> = <y > +Exb+ (P/gN) vyxb (7a)
or <Vp>g = <V >o ¥ Exb+ (pv/3q) Y x b (7b)

where P = (N/3)<pv> 15 the scalar pressure. Because of the error mentioned 1n
(111), this 1s usually quoted as an approximate result, strictly valid for 1so=
tropic distributions only. (vi) Since

Yxbs= -é— Bx@Jer-:l (8)

the last term 1n (7) 1s the sum of the usual gradient and curvature drift.

2. Average Particle Velocity <y> and Nomenclature. From the first moment of
the Vlasov Equation 3F/3t+¥.VF+p-VpF=0, 1t 1s readily shown that in the steady
state the average particle ve10c1ty for a distribution of the form (4) 1s

w>=<y > +£x_tz+%l:ﬁv<l(N<éplvl>)+(<p W2 -é<plv*>)§(y_x§)*] (9)

The underlined term 1s 1dentical to the one in (6). For first order anisotro=
pies this reduces to the well-known form

Ww> o=y >+ Exb+ 1/(gN) b x ¥P, (10a)
or 1n the differential case
W =<y > +CEx b+ pv/(3qU) b x YU (10b)

where U =p2(1/47)/Fd 1s the differential number density in (p,p+dp), and
C = 1-(1/3U)3/3p(pU) the Compton-Getting factor. The results (10) are standard
in cosmic ray literature.

From the definition Xg=X- -R 1t follows that <vg> = <¥> - <dR/dt>. The average
circulation velocity <dR/dt> 1s usually ca]leg the diamagnetic drift, and to=
gether with <v>, these two velocities are frequently referred to as collective
plasma drifts. This 1s 1in opposition to the guiding centre drift which 1s cal=
led a "single particle drift". The average guiding centre drift seems equally
collective to us. We also argue that the guiding centre drmift 1s the only drift,
because 1t 1s designed to tell you where the distribution goes after the trouble=
some, typically dominant circular motion of each particle has been subtracted.

In BMW these arguments are extended to the non-steady state (3/3t=0). After
multiplication of all velocities with gN 1t 1s easi1ly shown that for first or=
der anisotropies
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= + +dJd = + 7 X +
=gyt dprdy =+ Ux M an/at, (11)
where M=-N<ip v >b 1s the diamagnetic moment per unit volume and II=bxN<p> the po=
larisation veCtdr of the plasma. The total plasma current density 1s therefore
the sum of the guiding centre (or free) current density, the diamagnetic (or
bound) current density and the polarisation current density. When standard
"single particle" drift analyses are used, the equivalent result for (11) can on=
1y be written down readily for the perpendicular components (e.g. Parker, 1957).
Northrop (1961, 1963) also included the parallel components but he needed the 1n=
troduction of a distribution function Fg for guiding centres in addition to F,
and elaborate algebra to do 1t. By contrast our result 1s essentially true per
definition.

3. Neutral Sheet Drift. Standard drift theory breaks down at neutral sheets
(B=0) because the condition R/L<<1 1s violated. Our derivations are independent
of this ratio but they st111 break down. The reason follows from Figure 1 which
shows a field B=B(x)e;, with B(x) homogeneous in x, and dB/dx any arbitrary large
positive value. The drift of particles such as (a) and (b) is perfectly well
described by the last term of (7), independent of the magnitude of dB/dx. How=
ever (8) shows that at x=0, yxb»w, while Figure 1 suagests that individuals drift
with fimite velocity. Consequently <vg> cannot be 1nfinite (as 1t was used by
Jokip11 and Thomas (1981, and references therein)). The obvious reason for this
breakdown 1s that the drift velocity at x=0 depends on the phase angle at the
point of crogsing.

The drift in and around a neutral sheet 1s readily calculated 1f B 1s given by
B(x)=[ 2H(x)-17]B e,, where By 1s a constant and H the unit step function at x=0.
Figure 2 shows the orbit of a particle with velocity v=(v,0,¢), projected onto
the plane ©=n/2. It last crossed the sheet at point a under phase anale ¢¢, and
w1ll again do so at point b after having completed a projected arc lenath
s<2Ro(m-¢¢c)s1n@, where Ry=p/(qBy). At that time the guiding centre abruptly
jumps a distance £=2Rps1n@sin¢c 1n the direction of -ey. Therefore the component
of the (time averaged) gquiding centre velocity in the direction -ey may be taken
as

vgy = /At = (&/s)vsinO= [v/(H—¢C)]s1nOs1n ¢ (12)
From the relation cosdéc=cosd+x/(Rosin?) 1t follows that of all the particles mo=
mentarily inside d3x, at a distance x from the sheet, only those with

01<0<I-0; and ¢1<¢<2M-¢1, where sI1nd1=x/(2R,) and COS¢1=1'X/(ROS1n6) (13)

can cross the sheet before completing a full orbit. Therefore the directionally
averaged drift velocity over an 1sotropic particle distribution inside d3x 1s

R'O 1 21‘[' ¢1
<¥g>,= ~ey(v/4N) [ dosin®0 J desingc(0,0)/ [ M-¢c(0,0) ] (14)
) 01 b1

The x-component of the drift velocity oscillates and does not contribute to the
average, while the z-component of the average 1s zero for an 1sotropic distribu=
tion. The integral (14) can be evaluated as a series at x=0 to give <v,>=-0,463e
while 1ts numerically calculated value in the range -2R,<x<2Ry 1s shown”in Figure’2.

This interpretation of guiding centre drift at a neutral sheet differs considera=
bly from previous ones. Firstly, there 1s no sheet current density of the form
J(x)=Jo8(x)ey as 1s sometimes suggested. In fact the assumed 1sotropy implies
J=0 everywhere, even 1n a volume element d3x at x=0. Secondly, the distribution
in the entire range -2R,<x<2R, progresses (dri1fts) in the direction -8y, 1nstead
of the infinite sheet drift current Jg=JgqoS(x)ey derived by Jokip11 et al. (1977)
from the v x B/B2 term in (F).

As an example we consider the motion of cosmic rays 1n the internlanetary magnetic
field.
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B = Bolro/r)2[ ey - (@r sin O/V)_e‘(bj[1 - 2H(e-1/2) ], (15)

where @ 1s the angular velocity of the Sun, V s the radial solar wind velocity
and the function (1-2H) models a flat neutral plane at 0=r/2. The neutral sheet
drift (14) will be experienced by cosmic ray particles within an angle A0=2Rqy/r
from the plane. If V=400 kms-*, Q=(21/27) day-!, r=1 A.U., and By=5//2 nT

(1 B |=5nT at Earth), 1t 1s readily shown that

80 = 0.72 (P/Py)r(r? +

roz)—% degrees, (16)

where P 1s particle rigidity with P,=1 GV. Typical cosmic ray protons with kine=
tic energy T=250 MeV, P=0.75 GV are therefore convected along the neutral plane
in a region with thickness 24021 degree. This neutral plane drift effect 1s not
1included 1n existing drift models of cosmic ray modulation. Jokipi1 and Thomas
(1981, and references therein) used the §-function type drift velocity at the

neutral plane, derived from

the YxB/B? term. Potgieter and Moraal (1985) used a

finite neutral plane drift velocity pattern, similar to that of Figure 2, but not
based on the fundamental arguments used here. In their model the angular region
49 1n (16) could 1.a. be varied 1n an empirical and unjustified way, and 1t 1s

significant that cosmic ray

observations were better explained with finite neus=

tral plane drift 1n a region 4032 1°, than with a §-function type drift at

0=n/2 only.
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