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EFFECTSOFA WAVYNEUTRALSHEETONCOSMICRAYANISOTROPIES
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(I) The Universityof Arizona,Tucson,Arizona,USA
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Abstrpct.We presentthe first resultsof our 3-D numericalcodecalcula-
ting cosmic ray anisotropies.The code includesdiffusion,convection,
adiabaticcooling,and drift in an interplanetarymagneticfield model
containinga wavy neutralsheet.Wefind thatthe 3-D model can reproduce
all the principalobservationsfor a resonableset of parameters.

Introduction.In the last decade, the effectsof curvatureand gradient
driftsbecamea centralissuein the theoryof cosmicray transport.It
has been suggestedthat drift may play an important,and perhapsdomi-
nant, role in cosmic ray propagationin the heliosphere,and it may be
responsiblefor the asymmetriesappearingin consecutivell-yearcycles• !
(Jokipii,Levy and Hubbard 1977; Jokipii and Koprlva 1980; Kota 1979;
Jokipii and Thomas 1981; K_ta and Jokipii 1983)oThe first success of
driftmodelsin explaininggalacticcosmic-rayphenomenawas the explana-
tion of the phase shiftof the solardailyvariation(Levy1976)observed
in the years of the seventies,following the polarity reversal of the
solarmagneticfield.The firstquantitative2-dimensional(2-D)calcula-
tionwas carriedout by Jokipiiand Kopriva (1980).In this work, howe-
ver, the too smallvalue of the diffusioncoefficient,_, led to unrea-
sonableanisotropiesin some cases.K_ta (1981)derivedan approximate
force-field solution with a virtually perfect isotropyoThis model,
however,reliedupon the too simplepictureof lhard-sphere'scattering.

The well known phase shift of the solar daily variation(Duggaland
Pomerantz, 1975) is naturally explained by 2-D models (Levy 1976,
Kadokuraand Nishida1984).The magneticconfigurationof the seventies
(A>0)yields a smallerradialdensitygradientwhich cannotbalancethe
convectionby the solarwind and thusresultsin a net outwardstreaming.
Another well establishedobservation is the presence of the polarity
dependent N-S anisotropy associated with the B_ x _n streaming
(Bercovitch1970, Pomerantz and Bieber 1984).In the seventies(A>0),
this streamingis directedaway from the neutralsheet.In a 2-D model,
this pattern of streaming is hard to reconcile with the div S_< 0
requirement, thus 2-D models are bound to encounter difficulties in
explaining both observations.

The basic difficulty, in principle at least, may be removed if, viola-
ting the axial and N-S symmetries, a wavy neutral sheet is included. It
is the purpose of this work to demonstrate that a 3-D model is indeed
able to reproduce all components of the observed anisotropies. We present
the first anisotropy results of our 3-D code incorporating a wavy neutral
she et.

Th_._fieModel. We used a 3-D numerical code to solve the modulation equation
including diffusion, convection, adiabatic deceleration and drift. The
model and the scheme of calculation were described in detail elsewhere

(K_ta and Jokipii 1983, see also the preceding paper SH-4.2-10 in this
issue). Briefly, a usual spiral field is adopted, the magnetic equator is
a tilted plane at the sun, which then evolves into a wavy sheet (Jokipii
and Thomas 1981). The case of A>0 corresponds to outward polarity above
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the sheet and inward polarity below the sheet while A<O corresponds to

the opposite configuration (sixties and eighties). Steady state is
assumedin the frame corotatingwith thesun.The most seriouslimitation
of the code is that it assumes constant solar wind speed thus many
phenomena,like shocks,are precluded.

Calculationswere carriedout for protonsin the 1 - I0 GV range.The
parallel diffusion coefficient,_,, was assumed to be inversely
proportionalto the magneticfieldstrength,B,

_, = KoPl/2_(Bearth/B)

with P being the particlerigidityin GV, _ is the particlevelocity
in units of velocity of _ght_ and Ko is a normalization constant in
the range of I0Z_ - I0Z_ cmZ/secoThe ratio of the perpendicularand
paralleldiffusioncoefficientswas kept constantat _/_, -0.05-0.20.

Results and Discussion. Anisotropies were calculated at three
heliocentric distances (0.5, I, and 5 AU) over the full range of
heliographiclatitudesand longitudes.Here, we presentthe resultsnear
the earth. The anisotropies to be reported are obtained at the
helioequator,at I AU, and averagedover longitudesin a magneticsector.

The eclipticcomponentsof the anisotropy responsible for the solar
daily variationare given in FiguresI and 2 (P-2.3GV; w._/_, -.05).It
shouldbe noted that the anisotropiesobtainedfor a flat sheet (dashed
lines)show sharp changesat the neutralsheet.The actualvalues(dots)
may considerablydifferfrom the averagesover a (-5°, 5°) latitudeband
(open circles).Inmost cases,A>0 gives an earlierphase and a smaller
amplitudewhich is in generalagreementwith observations.Similarre-
sults were obtained for other rigidities,too.At large values of Ko,
understandably,drift effectsdiminish and a near perfect corotatlon
applles.The breaks in the lines in the K_ = 1.5-5.1022cm2/sec rangeU .

indicatethat corota_ionshouldbe reachedsomewherein this interval.
Figure 3 shows _, the zenith angle componentof the averagenear

earth anisotropyabove the neutralsheetfor P - 2.3CV. Considerfirst
the caseA>0, when the 'observed'value of_ is negative in accordance
with the sense of theB_xyn streaming.Curve(a) correspondingto_,
= .05and o_= 15° yieldsthe correctsignfor_. Largertilt angle (o_=
30°, curve (b)),however, may alreadygive positivevalues,too. If we
take,on the otherhand, a larger perpendiculardiffusion (curve(c):
_ /_-.20,o1=30o)_ willagain point in the proper direction for all
values of Kn. The underlying physical picture is that, in the case of
largetilta_glesand small perpendiculardiffusion,most particlesreach
the earth without having interactedwith the neutralsheet. Being too
far from the earth,the neutralsheetbecomesirrelevantfor A>0. As for
A<0, particles intersect the sheet several times before reaching the
earth. As a result,the calculated_ always shows the propersenseand
is fairlyindependentof the tiltangle,co.

Figure4 indicatesthat the magnitudeof_ increasesand its sign
becomes more distinctivewith increasingrigidities.This finding can
also be anticipated since drift effects are expected to be more
pronouncedat higherrigidities.

The typicalazimuthaldependenceof the N-S anisotropyis presented
in Figure5. In most cases,we cannotfind a one-to-onecorrespondence
betweenthe signofj_ and the polarityof the field. In general,smal-
ler tilt angle, and larger _-_ results in a better correlation; the
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the sheet and inward polarity below the sheet while A<O corresponds to 
the opposite configuration (sixties and eighties). Steady state is 
assumed in the frame corotating with the sun. The most serious limitation 
of the code is that it assumes constant solar wind speed thus many 
phenomena, like shocks, are precluded. 

Calculations were carried out for protons in the 1 - 10 GV range. The 
parallel diffusion coefficient, r::.", was assumed to be inversely 
proportional to the magnetic field strength, B, 

1<:. .. - Kop1/2(3 (Bearth/B) 

with P being the particle rigidity in GV, p is the particle velocity 
in units of velocity of light and Ko is a normalization constant in 
the range of 1021 - 10 23 cm~/sec. The ratio of the perpendicular and 
parallel diffusion coefficients was kept constant at K.J.ltt.'d -0.05-0.20. 

Results and Discussion. Anisotropies were calculated at three 
heliocentric distances (0.5, 1, and 5 AU) OVer the full range of 
heliographic latitudes and longitudes. Here, we present the results near 
the earth. The anisotropies to be reported are obtained at the 
helioequator, at 1 AU, and averaged over longitudes in a magnetic sector. 

The ecliptic components of the anisotropy responsible for the solar 
daily variation are given in Figures 1 and 2 (P"2.3 GV; K.)../I<:." -.05). It 
should be noted that the anisotropies obtained for a flat sheet (dashed 
lines) show sharp changes at the neutral sheet. The actual values (dots) 
may considerably differ from the averages over a (-50, 50) latitude band 
(open circles). In most cases, A>O gives an earlier phase and a smaller 
amplitude which is in general agreement with observations. Similar re­
sults were obtained for other rigidities, too. At large values of Ko ' 
understandably, drift effects diminish and a near perfect corotation 
applies. The breaks in the lines in the Ko" 1.5-5.10 22 cm2/sec range 
indicate that corota~ion should be reached somewhere in this interval. 

Figure 3 shows l.,., the zenith angle component of the average near 
earth anisotropy above the neutral sheet f~ P - 2.3 GV. Consider first 
the case A>O, when the 'observed' value of t,. is negative in accordance 
with the sense of the 1!. xyn streaming. CurvtL (a) corresponding to K.JlC.u 
= .05 and ce. .. 150 yields the correct sign for !~. Larger tilt angle (0(. .. 
300 , curve (b», however, may already give positive values, too. If we 
take, on the other hand, a larger perpendicular diffusion (curve (c): 
t<:..a. /K.,a-.20,()(. ... 300 )!d' will aga£h point in the proper direction for all 

values of Ko' The underlying physical picture is that, in the case of 
large tilt angles and small perpendicular diffusion, most particles reach 
the earth without having interacted with the neutral sheet. Being too 
far from the earth, the neutral sheet becomes irrelevant for A>O. As for 
A<O, particles intersect the sheet. several times before reaching the 
earth. As a result, the calculated l.,. always shows the proper sense and 
is fairly independent of the tilt angle,~. 

Figure 4 indicates that the magnitude of 1.,. increases and its sign 
becomes more distinctive with increasing rigidities. This finding can 
also be anticipated since drift effects are expected to be more 
pronounced at higher rigidities. 

The typical azimuthal dependence of the N-S anisotropy is presented 
in Figure 5. In most cases, we cannot find a one-to-one correspondence 
between the sign of!~ and the polarity of the field. In general, smal­
ler tilt angle, an,d larger K..a. results in a better correlation; the 
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correlation also improves at higher rigidities. At 5 AU heliocentric
distance, virtually all our runs gave a I00 percent correlation. To
interpret this, we note that the waves in the neutral sheet become rela-
tively tighter at larger distances from the sun. Thus we expect the
effects of waviness to be more direct there.

Conclusion. Our numerical results demonstrate that the inclusion of a
wavy neutral sheet may explain all components of the observed anisotro-
pies. We find a general agreement between 'theoretical' and 'observed'
anisotropies for a wide range of parameters. At high latitudes, veil
above or below the sheet, however, we predict the anisotropy to point
toward the equator in the case of A>0. This is in contrast to the
poleward direction expected from the B_x _n term only.
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Figure I. Radial and azimuthal components of the average neat earth
anisotropycalculatedfor A>0, P=2.3GV, t__/_.-.05. Dashedand solidlines
refer to flat (seetext)and wavy sheets,respectively.Ko is in units of
1022 cm2/sec.The phasesof the resultingdailywaves are alsoshown.
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correlation also improves at higher rigidities. At 5 AU heliocentric distance, virtually all our runs gave a 100 percent correlation. To interpret this, we note that the waves in the neutral sheet become rela­tively tighter at larger distances from the sun. Thus we expect the effects of waviness to be more direct there. 

Conclusion. Our numerical results demonstrate that the inclusion of a wavy neutral sheet may explain all components of the observed anisotro­pies. We find a general agreement between 'theoretical' and 'observed' anisotropies for a wide range of parameters. At high latitudes, well above or below the sheet, however, we predict the anisotropy to point toward the equator in the case of A>O. This is in contrast to the poleward direction expected from the ~ x2n term only. 
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Figure 1. Radial and azimuthal components of the average near earth anisotropy calculated for A>O, P=2.3 GV, t<J tc ll ... '05. Dashed and solid lines refer to flat (see text) and wavy sheets, respectively. Ko is in units of 1022 cm2/sec. The phases of the resulting daily waves are also shown. 
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