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Abstract

The energy spectrum of primary cosmic rays is explained by

particles emitted during a thermal expansion of explosive objects inside

and near the galaxy, remnants of which may be supernova and/or active

galaxies, or even stars or galaxies that disappeared from our sight

after the explosion. A power law energy spectrum for cosmic rays,

E"a-l, is obtained from an expansion rate t = R_. Using the solution of

the Einstein equation, we obtain a spectrum which agrees very well with

experimental data. The implication of an inflationary early universe on

the cosmic ray spectrum is also discussed. It is also suggested that

the conflict between this model and the singularity theorem in classical

general relativity may be eliminated by quantum effects.

*Paper submitted to the 19th International Cosmic Ray Conference, 1985
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Since the discovery of cosmic rays early this century, an impressive

amount of experimental data has been accumulated. Yet, the origin of cosmi(

rays defies the understanding of physicists. Several important questions

are: What is the fraction of galactic and extragalactic components of

primary cosmic rays? How can one understand the power law energy spectrum

(~E-2"5 - E-3 for the energy range 109 eV < E < 1020 eV)? How do they

attain such high energies? Despite various attempts in the past to answer

these questions, we are still left in the dark.I In this article, we

present a model which explains some of the features of cosmic rays describe_

above.

The following are the assumptions which we propose to make:

(a) The sources of primary cosmic rays are supernova, galaxies and/or

clusters of galaxies which have exploded in the past, after the

gravitational contraction. Active galaxies such as radio- or X-ray

galaxies, Seifert galaxies, or QSO's may be the remnants of such an

explosion. Or some of them might have disappeared completely from our

sight after the explosion.

(b) The explosion of such an object is a replica of the expansion of the

universe at a smaller scale. It goes from expansion in a radiation

dominated era at extremely high temperature to that in a matter

dominated era at lower temperature. It may even undergo a phase like

that of an inflationary early universe.

(c) In the course of expansion, high energy particles of various kinds are

emitted because of nonequilibrium processes. The energy distribution

of the emitted particles reflects the black body radiation law at the

temperature T at which the particles are emitted. The number of such
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particles is not large and the system is approximately in equilibrium

at each instant since the collision time is much smaller than the

expansion time.

Under the assumptions, the number of particles of type x emitted with

energy E is given by

= (2s+l) E2Vsdt (I)
fx(E) _ I nx(E/kT) eElkT . ,/KT +_I '

where VS is the effective volume around the surface of the system which

emits the particles, nx(E/kT)dt is the fraction of particles x emitted in

time interval dt and u and s are the chemical potential (zero) and the spin

for fermions (bosons) of type x. The +(-) sign in the denominator is for

fermions (bosons). The volume VS is taken to be

a2
VS = 4xR2d = 4__ (2)

(KT)3

since the surface of the particle distribution is defined with uncertainty

AX = d = 1/kT, where a is a constant defined by R = a/kT. For an expanding

system
t = bR_ , (3)

where b is constant and2

_=2 for the radiation dominated era (4a)
and

_=3/2 for the matter dominated era (4b)
(the Einstein-deSitter flat space)

The function nx(E/kT) is unknown, but is assumed to scale as a function of

E/kT. The result is essentially the same if the E (or T) dependence of

nx(E/kT, E (or T)) is slowly varying except in E/kT. The chemical potential

for fermions is obtained by the condition
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N= (2s+I) (KT) 3 I x2dx (5)
V 2 2 o ex - _/kT + I

or equivalently

"o = ./kT : g_ N 2_2 ), (6)
3 (2s+I)

V(kT)

where N is the total number of particles in the system and V is the volume

given by

4_ R3 : 47 a3
v= T

3 (kT)3 (7)

(At high temperature, g(x) = _n(x/2).) Obviously, Po is independent of

temperature since VT3 is constant during the course of the expansion. (uo=0

for bosons, as was stated earlier.) Using eqs.(1)-(4), we obtain

A

fx(E) : x,____, (8)
E_+I

where

2(2s+Z)sb(a)2+_ 7 nx(S)Sa+2ds (9)Ax's° o :I

is a constant. Then, the total energy spectrum is given by

As
f(E) : _ (10)

where

As : Z Ax,_ • (11)
X

The power law energy spectrum (8) and (10) with the values of s in eq.(4),

is




