NUCLEAR REACTIONS IN SHOCK WAVE FRONT DURING SUPERNOVA EVENTS.

A.K. Lavrukhina

V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, USSR Academy of Sciences, Moscow, USSR

The new unique isotopic anomalous component of Xe(XeX) was found in the carbonaceous chondrites. It is enriched in light shielded isotopes (124Xe and 126Xe) and in heavy nonshielded isotopes (134Xe and 136Xe). We suppose that all characteristics of Xe-X can be explained by a model of nucleosynthesis of the Xe isotopes in shock wave front passed through the He envelope during supernova events. The light isotopes are created by p-process and the heavy isotopes are created by n-process ("slow" r-process). They were captured with high-temperature carbon grains condensing by supernova shock waves.

1. Introduction

The shock waves from supermassive object explosions pass through an environment of low density (outer envelopes of supernovae) and form a compressed nonequilibrium phase where the high-energy (~10 MeV/nucleon) ion reactions take place. In accordance to this theoretical model the interactions of protons with the helium nuclei with formation of D and free nucleons, the nuclear reactions with the CNO nuclei and the 4He interactions with the formation of the Li, Be and B isotopes were examined /1,2/. The main difficulty of this model is conditioned by temperature limitation because all these isotopes are destroyed at $T \sim 10^7$K. In region of heavy elements this limitation is not essential and the high-energy ion reactions can lead to nucleosynthesis of some rare isotopes, for example, of the bypassed isotopes by p-process /3/. The (n, γ)-reactions can simultaneously take place because the neutron flux is increased in shock wave front both in fragmentation reactions and in the 12C (p, n) reaction.

Detailed investigations of isotopic composition of some elements (C, N, O, Ne, Mg, Si, Ar, Ca, Ti, Kr, Ag, Te, Xe, Ba, Nd, Sm, U) in mineral phases of carbonaceous chondrites led to the conclusion about presence the relics of nucleogenetic origin /4,5/. We believe that one of them is a relict of nuclear reactions in shock wave front during supernova events. It is unique isotopic anomalous component of Xe (XeX). It is present in the carbonaceous chondrites which are nonchanged substance of protoplanetary nebula and contain some relics of interstellar grains.
2. Results.

The totality of the experimental data /6/ allows to make the following conclusion about the characteristics of Xe-X. (1) The isotopic composition of Xe-X is characterised by the excesses of light shielded isotopes 124Xe and 126Xe (124Xe $>$ 126Xe) and heavy nonshielded isotopes 134Xe and 136Xe (136Xe $>$ 134Xe) (Fig. 1).

(2) This component realizes only after long action of various oxidizing reagents on meteorite matter. These reagents dissolve all phases enriched in another component of Xe (solar and planetary Xe).

Fig. 1. The isotopic composition of Xe-X (130Xe = 1) in acid-insoluble residue of the carbonaceous chondrite Efremovka CV, etched by H_3PO_4, H_2SO_4 and HClO_4 at t = 220°C.

(3) Xe-X is characterized by the correlations for the isotopic ratios 124Xe/130Xe, 136Xe/130Xe and 136Xe/130Xe ($r > 0.9$). (4) The host phase of Xe-X is a fine-grained carbon matter of unknown nature. Its content is $\ll 1\%$ of the total carbon content in meteorite. It is very stable to the action of oxidizing reagents. (5) The maximum of the Xe-X realization as an indivisible component corresponds to 900–1000°C (Fig. 2).

Fig. 2. The histograms of realization of 124Xe (1) and 136Xe (2) at temperature annealing of the acid-insoluble residue of the carbonaceous chondrite Kainsaz CO, etched by conc. HNO_3 /7/.

(6) The Xe-X quantity is equal of $\ll 1\%$ of the total Xe in meteorite; it does not correlate with the trapped Xe content. (7) Xe-X is accompanied by the main quanti-
ties of the trapped He and Ne, and by the excesses of heavy nonshielded isotopes 84Kr and 86Kr (not by light isotope 78Kr). (8)XeX is not accompanied by excesses of the heavy isotopes Ba, Nd, Sm and also radiogenic 129Xe and by-passed isotope 184Os.

In this paper it has made an attempt to show that all these reliable observations may be understood only in the terms of a nucleogenic origin of XeX. The unique isotopic composition of XeX and its very low abundances witness about exotic process of nucleosynthesis. According to the classical theory of nucleosynthesis /8/ the Xe isotopes can be created in the following nuclear reactions: s-process in the He envelope of massive stars at the stage of red giant (128Xe, 129Xe, 130Xe, 131Xe, 132Xe), r-process at the stage of explosive carbon (oxygen) burning (129I, 131Xe, 132Xe, 134Xe, 136Xe) and in inner envelopes, enriched in 56Fe (the heavy element isotopes), p-process in outer envelopes, enriched in hydrogen, at high parameters ($T \sim 10^{9}$K and $\rho \sim 10^{4}$ g cm$^{-3}$) (124Xe, 126Xe), spallation process with high-energy particles accelerated in front of supernova shock waves /9/ (124Xe, 126Xe), radioactive decay of 129I(129Xe) and spontaneous fission of 244Pu, 248Cm and other (131Xe, 132Xe, 134Xe, 136Xe).

The observed differences of the isotopic ratio values for XeX and solar Xe: (124Xe/126Xe) XeX/(124Xe/126Xe) solar = 1.245 and (136Xe/134Xe) XeX/(136Xe/134Xe) solar=1.293 (see Fig.1) witness about the XeX nucleosynthesis in the processes which are differ from those for solar Xe. For the understanding of a nature of these processes two facts have a significance. (1) As it was shown by us /9/, the cosmic abundances of 124Xe and 126Xe (124Xe/126Xe) can be explained by their creation in spallation reaction with the high-energy particles accelerated in front of supernova shock waves at $L_{p}(E_p > 25$ MeV)=5×10^{21}cm$^{-2}$ and $\gamma=2.5$. (2) The XeX isotopic ratio value 124Xe/126Xe > 1 (see Fig.1) is typical only for the by-passed isotopes with $A \leq 114$ which by p-process have been created /9/. Hence, 124Xe and 126Xe in that exotic component of Xe have been created also by p-process. One of the real astrophysical objects, in which the condition for p-process can be realized, is the shock wave front (waves of unloading) crossed through the He envelope of supernova. The 4He fragmentation leads to an increasing of the n_p values and consequently to an increasing of the amounts of the (p, γ)-reaction products on seed nuclei formed in s-process in the He envelope.

The simultaneous increasing of neutron flux (n_n) leads to fast (n, γ)-reactions. However, the parameters of r-process in shock wave front are essentially different from those of the classical r-process and mainly at the excrence of lower n_n value. It leads to a increasing of the γ_n value and to a partial contri-
butions of $^\beta$-decay in r-process. This is a slow r-process or n-process /10/. This process is characterized by a change of the peak position on the mass curve up to $A > 130$ /11/. The isotopic structure of the heavy isotopes of 136Xe corresponds to the curve of yields of nuclides in n-process /10/. The maximum yield has 136Xe($N=82$) which lies on the decay ladder at $N=82$ and is the first stable nucleus encountered by the ladder. At high parameters of classical r-process the nuclear structure has not influence on the yields of nuclides. Therefore, just the fact that 136Xe has the maximum yields in XeX witnesses about a presence of n-process simultaneously with p-process in the shock wave front during supernova events. The products of these processes were captured as an indivisible component with high-temperature carbon grains condensing by supernova shock waves.

3. Conclusion

All above-mentioned properties of XeX may be explained by the model of its isotopes formation in the shock wave front during supernova events, the chemical and isotopic compositions of presupernova He envelope, and the property of high-temperature grains "survive" at the conditions which during all stages of supernova remnant evolution have taken place. These grains can be exposed by the action of intensive cosmic ray irradiation, mutual collisions, shock waves, turbulent magnetic fields and other. Thus, isotopic anomalous XeX is a relict of new nonstudied processes of nucleosynthesis, which in the shock wave front during outbursts of supernova or another cosmic objects have taken place.

References