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UNSTEADY FLOW IN A SUPERSONIC CASCADE WITH TWO IN-PASSAGE SHOCKS
Willis H. Braun

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A model for a supersonic blade row with two in-passage shock waves is
developed. It accounts for three-dimensional effects in observed flows by
using a hypothetical biade shape in a two-dimensional cascade. There is
enough flexibility in the choice of blade shape to accommodate a desired
entrance angle, exit angle, boundary-layer thickness and stage pressure ratio
at a given entrance Mach number.

The model divides the mean flow into regions of uniform or one-dimensional
flow in which the solutions for the superimposed unsteady flow may be found
successively. The analysis makes use of previous solutions for unsteady flow
in cascades and over an oscillating wedge.

Six flow conditions are chosen in the range of parameters for which the
two-shock model is valid for studies of flutter in torsion and bending. It is
found, in keeping with previous results from a single-shock model, that in
each case there is increasing instability with decreasing frequency.

INTRODUCTION

The analysis of unsteady flows in blade rows has been facilitated by the
use of models for the underlying steady flow which permit the governing differ-
ential equations to he written with constant coefficients. This has been true
for both supersonic flows and mixed flows with a single shock wave (ref. 1) in
which the mean flows were assumed to be uniform. A number of experimental
measurements (refs. 2 to 5), using both pressure sensors and laser anemometers,
has shown that mulitiple shock waves are a common occurrence in the tip region
of the blades, especially near the operating point of the compressor. One of
the frequent patterns (fig. 1) observed in the experimental studies has an
oblique shock wave at the leading edge of each blade and a nearly normal shock
wave at the trailing edge. It is that flow which we shall investigate for
bending and torsional flutter.

We shall first introduce a model for the mean flow which incorporates the
two shock waves and modifies the actual blade surfaces to account for three-
dimensional flow effects. There are three mean-flow domains which are modeled
as either uniform or one-dimensional flow so that the greatest use can be made
of previous solutions for unsteady duct flow (ref. 1) and flow around an oscil-
lating wedge (ref. 6). The range of validity of the model is estimated and six
numerical examples are calculated covering the intervals of inlet Mach number
and stage pressure ratio for which the model is valid. The stability charac-
teristics of the examples are discussed.



Considerable use is made of the analysis previously developed in
reference 1 for the flow in a blade passage with a single normal shock wave
present. Some familiarity with that paper is assumed in parts of the exposi-
tion. The stability analysis of a mean-flow configuration related to those
treated here and in reference 1 has recently been completed (unpublished data
by E. Acton, Unsteady Flow in a Supersonic Cascade with Strong 0blique Leading
Edge Shocks (1982)); it treats the case of a single strong shock wave
emanating from the blade leading edge. It uses the principal elements of the
blade model employed here.

A computer program, TIPS (Two In-Passage Shocks), has been written which
uses the analysis described in this report to calculate the stability of a flow
in a cascade. The user provides inlet flow conditions, geometric parameters
and disturbance characteristics and the program yields corresponding unsteady
19fts and moments. Contact COSMIC, The University of Georgia, Athens, Georgia
30602, concerning the avajlablity of this program. Frank Molls programmed the
model and suppliied the numerical calculations.

MODEL

An example of a double-shock configuration observed in an experimental
rotor (ref. 5) is shown in figure 2 which exhibits static pressure contours
measured at the blade tips. The dashed 1ine beginning at the leading edge of
a blade corresponds to an oblique shock wave whose angle is calculated from
the pressure ratio across the contours. The position of the shock is in good
agreement with the direction of the contours. A nearly normal shock wave ema-
nates from the trailing edge of the blade. The apparent discrepancy between
the angle of the oblique shock wave and the small wedge angle of blade at its
leading edge is attributed in reference 5 to a radial contraction of the flow
in the blade passage.

Following the course set in an earlier analysis (ref. 1) we wish to use a
model of the flow in the blade passage which represents the main features of
the mean flow to a good approximation and at the same time keeps the equations
governing the unsteady motion as amenable to solution as possible. In figure
3 the incremental rotor annulus at the blade tips has been unrolled into a
two-dimensional cascade. In it a two-dimensional contraction is imposed by
the presence of a wedge at the leading edge. The wedge angle, § , while much
larger than the metal angle of the blade, correctly accounts for the shock
angle, x . Where the oblique shock intersects the lower blade, the surface of
the blade is turned parallel to the flow behind the shock. Consequently the
shock is not reflected, in accordance with the observed flow in figure 2.

In order to terminate the blade in a small thickness comparable to the
combined thicknesses of the upper- and lower-surface boundary layers, the upper
surface of the blade after its intersection with the oblique shock wave is
represented by a (cub1c) function f,(x3) whose initial direction is that
of the turned flow, B3, and whose f1na1 slope corresponds to the exit
angle, Bz, which is a free parameter of the blade design. Likewise, the
Tower surface over the same range of the coordinate x3 1s designated by
the function fg(x3). The shock wave terminating this region of flow is
normal to the exit direction, up. The last segment of the lower surface
along which the flow is subsonic following the second shock wave, is parallel
to the exit flow direction.



The mean flow used in this model is uniform in the entrance region, the
triangular region immediately behind the oblique shock wave and in the exit
region behind the normal shock wave. Solutions to the unsteady equations of
motion can, therefore, be obtained analytically in those regions. The flow in
the channel between the curvilinear surfaces is assumed to be one-dimensional
so that the unsteady motion in that region may be obtained subject to a slowly-
varying flow approximation.

The unit of Tength in th model is the length of the blade as measured in
the turned flow direction 3. The chord length is, then,

]
L = > 1
c cos(x0 - B3)

Other lengths are

] + 1
S = ac cos B]/sol, s = Qc sin B]/sol
+ ]
53 = s sin(x - 8§)/sin x, s3 = Rc sin 83/501

ds =1 - (s’ +s cot x) cos s, L, = (1 - ds) tan &

(Here "sol" denotes the solidity of the blade row.)
The trailing-edge values of the boundary-layer displacements are specified
in fractions &, and &y of the base width, %4, of a blade with unidirec-

tional flow after the oblique shock. The chord intersects the base at a
fraction v of its width measured from the lower side.

sol sin x sin (Xo - 83)

cos(B; - x) sin &

v =

The two cubic functions defining the curved portions of the blade surface

) k) (B, - By) <X3>2 <XS>3
f(x,))=-24% 31|57 -2+ - d_ tan - =1 -\
u 3) u i dS dS s 2 3 _ds dS
Xy 2 y 3 . . Xy 2 Xy 3
fo(Xg) = sq + %, |3 H; -2 a; - d, tan(B2 - 33) a; - a;
R

L

The cross-sectional area of the blade passage per unit blade height of the
cascade is

are

and




3
A(xq) = Q-d—‘> x5+ (fg-fu>2

In these expressions,

©
!

= Qb(l - v - éu)

u
9'C 1 ) ] 2 ] [ ] 2 ] ]
22 = - 5o sin 82 sin(B2 - B3) + ab E: + 8, sin (32 - B3) - 8, cos (B2 - 83)]
and
] ]
dg = dS - S, s1n(B2 - 63)

A convenient but not necessary assumption in this model is that the
elastic axis for torsion 1ies on the chord at some fraction f of its length
measured from the leading edge. Then the distance d, of the elastic axis
from the origin of xj 1in the inlet direction is

d0 = -s+ + flcos § + »(1 - ds) sin & tan §]

which reduces to the value appropriate for a system of infinitesimally thin
blades (ref. 1) when & = 0.

In region 2 the corresponding moment arm of the elastic axis is

+ 1
d =1 -5, - QC(1 - f) cos(B2 - x.)

0,2 2 0
When allowance for the trailing-edge boundary-layer thicknesses is made, the
blade separation and stagger lengths are

Sy = lc cos 62/501 - (au + sg)gb cos(B2 - BS)’

st + ag)mb s1n(B2 - B3)

5 = % sin 32/501 - (8

u

At any entrance Mach number M; and for any cascade geometry this model
is valid if the static pressure ratio Ppy across the blade row is not so low
that the oblique shock fails to intersect the adjacent blade or so high that
the velocity behind this shock is subsonic. Figure 4 shows the region of
validity in the My, P27 plane for a cascade of solidity 1.4, stagger
angle 62° and entrance-flow angle 67°.1 To the left of the valid area is the
region of low pressure ratio in which the flow through the blade passage is

TThe blades are untapered at the trailing edge and take the shape indi-
cated by the dashed lines in figure 3.



1ikely to be entirely supersonic. To the right is the region of high pressure
ratio in which a strong oblique shock is a 1ikely configuration.

In general, even though the blades are tapered near the trailing edge to
more nearly approximate the shape of real blades, there is a finite trailing-
edge thickness, corresponding to a boundary-layer displacement thickness, and
a wake of finite thickness as well. It is assumed, in keeping with the bound-
ary conditions on the infinitesimally thin wake in reference 1, that the
pressure and normal component of velocity are also continuous across the wake
of the present model.

ANALYSIS

The unsteady flow produced by the osciilating blade row in the supersonic
region upstream of the leading shock has been treated in reference 1 for the
case where there is a single normal shock at the leading edge of each blade.
In the present double-shock configuration the upstream supersonic region
extends an additional length s cot x along the upper blade surface before
the oblique shock from the adjacent blade touches down. The upstream solution
is the same as in reference 1 and extends without modification through this
region up to the leading shock. Likewise, the unsteady solution in the sub-
sonic flow region 2 downstream of the normal shock wave is, with s1ight modi-
fication, the same as the downstream subsonic solution of the single-shock
analysis of reference 1. The main new features of the present model are the
oblique shock and the supersonic region between this shock and the trailing
normal shock.

Boundary Conditions on the Blade

With the bending motion of amplitude Hy, assumed normal to the entrance-
region surface and with x = dy the projection of the elastic axis upon that
surface, the amplitude of the upper surface oscillation of the zeroth blade is

w1 = H0 + Ao(x - do)

The motion of the lower surface of the same blade is

w3 = H0 cos & + Ao(x3 + 1 - dS - f)

(Subscript 1 refers to the entrance flow, subscript 3 to the region behind the
oblique shock. Subscript 2 is reserved for the subsonic exit region. See
fig. 3.)

As indicated in reference 7, the most general blade motion is the super-
position of motions with constant interblade phase angle, o, so we need only
consider motions of this type. Then in the cascade, the motion of the nth
blade is determined by

+ ino
Vs (x3 +NSg,¥q + N(R, + 53)> = e Va(Xg,¥q) (1)



where V3 can be any of the physical variables. 1In particular, on the Tower
surface of the first blade,

W,

io
= e [Ho cos & + AO(x3 * asg - f)]
(We shall see later that there is an additional motion with « = cot(x - §)
associated with the perturbation of shock position. However, it does not enter
into the shock relations which are the immediate concern of this discussion.)

Conditions on the 0Oblique Shock Wave

As discussed in reference 1, the pressure disturbances generated in the
upstream supersonic region distort the oblique shock and may be transmitted by
it, but not reflected, i.e., the flow region 1 is unaffected by the shock.

The perturbed Rankine-Hugoniot equations have been given by Carrier (ref. 6)
for an oblique shock in a disturbance-free upstream flow, and by Moore (ref. 8)
when there are upstream disturbances. A particular case of the latter is given
in reference 1 for the normal shock wave. It also applies to oblique shock
waves when the coordinates move with the component of the mean velocity paral-
le1 to the shock. The dimensionless time derivative in the moving coordinates
transforms as

D
3 1 a_ a\-_1__s
at © sin x <;t - €os X a;) = sin x Dt

since time was normalized by c/; sin x. With the displacement of the shock
normal from its mean position denoted by xg(y,t), the pressure perturbation by
p', the disturbance normal and tangent velocities by u{n) and u(t), respec-
tively, then the shock conditions, to first order in the disturbance quan-
tities, are

2 2
M sinTx - + 1Y) D x

u+ 1 u+ 1 1 0t

u -
3 Dt (u + 1)M$ s1n2x 1 Dt u+ 1/ sin x

2 .2 ,
(ny  Ds¥s _ (u - 1M sinx - 2 ﬁ“n) ) szs] , 2<u__1) b
@% sin{x - &) axs

(t) _ (0 _ |
@ﬁ sin x ayS

sin x

where, as indicated previously, the subscripts 1 and 3 refer to conditions
upstream and downstream of the shock. When these relations are expressed in
terms of the streamwise and cross-stream velocities in the upstream and post

shock flows



(t) (t) (n)

Uy = U sin x - U cos x, Vq = U sin x + Uy cosS X

) (t)

sin(x - 8) - ug "’ cos(x - &), vg = (n)

uét) sin(x - &) + ug cos(x - &)

(n
Ug = Ug

they take the form

% szs
SIS i T L T IR E (2)
2 szS axs
U3t la gy o T Ko gy el et ey (3)
v+Iq'{l2—s'+KEx—s=ap+au+av (4)
TN TR ETRES 1L I P M

where we have equated tangential velocities at the shock wave to obtain

cos(x - &8)/cos x =4Y1/%§. The coefficients In, Ky, apq are the functions
of the entrance Mach number and shock angle iisted in appendix A. The quan-
tities on the right side are known from the solution for the unsteady flow in
the upstream supersonic region which, as we indicated, is independent of the
downstream flow.

Solution in Region 3

Carrier (ref. 6) developed the solution to the small amplitude, unsteady
flow behind a shock wave attached to a wedge that is oscillating about its apex
as Bessel series for the unsteady potential, vorticity and shock displacement.
We adapt his solution to the region behind the oblique shock by generalizing
the wedge motion and replacing a portion of the potential series representing
the effect of the boundary condition on the blade by a form characteristic of
duct solutions as, for example, in reference 1. The potential, stream func-
tion, and shock displacement in region 3 between the zeroth blade and the first
blade (figure 3) are, in our notation,

1K M., (Xo+as. ) —
37317373 =
e Eé% An cosh ne Jn(k3r) + Qb (5)

<I>3=

2 2 2.
Twy (X, tas M. /By-ay,/B.;) -
¥, - e 3'73 733773 83 E cnan[k3 Vaz-Bg (s3-y3)] (6)

n=1



2 2 =
YoM (s,-y,) /B .
X, = e 373773737773 E 5,3, [k3Vu2 - g2 (54 - ys?] (7)

n=0

where

2 2 2
ro o= (x3 + a53) - B3 (s3 - y3)

1] B3(53 - ¥5)

6 = tanh™
(x3 + ass)

The potential &p 1is given by
Qb = 1m] [Ho cos & + Ao(x3 + 1 - dS - fi]f](ys;M3w3)

.

-2 . . 1
- Ao [§w3 wgfy(¥giMaug) + “3f2(y3'”3”3)] o

in which the functions fy(y;e) and fo(y,w) are those already defined for
region 1 in reference 1 and represent duct effects having contributions from
all the blades. We have followed Van Dyke (ref. 9) in adding to the series
for the shock displacement the term

~ [2 2
DoJo[kS o - By (54 - y3)]

which describes the change in shock position due to the motion of the blade
leading edge. When the blade has both a plunging motion and an oscillation
around an axis not at the apex,

~ 10 1
D, = e [HO cos x - Aokcf cos(x + X - B]ﬂ (8)

The perturbation pressure and velocities are obtained from the velocity
potential and stream function from the relations

3 Sa at ax3 3 ax3 ay3 3 3 (9)

From the first of these and the periodicity relation (1) the pressure on the
blade surface behind the oblique shock wave is



kg5 1Tkghy(xg+1-d)-c) = , 2 -
Pa(Xg,-2p) = - 3¢ Z n+l M_ - A
3 n=0

-io

w1e S
X Jn[k?’(x3 + 1 - ds)] - T “’3[”0 cos &

+
+ Ao(x3 +1 - dS *Sq - f)] + 1Ao} f](S3;M3m3)

Moo
1205 te ‘ 39353
-5, ¢ {“’3‘:2(53'”3“’3) ST (Fly0y55) f1(0iMg0 )}

+
dg -1 < x3 < B353 - 55
The coefficients Kn’ En’ En remaining unspecified in the solutions (5),
(6), (7) must be determined from the shock conditions (2), (3), (4) in a manner
to be described below.

For convenience in the later computation of the 1ift and moment on the
blade we record here the contributions to those quantities obtained from the
foregoing expression for the pressure.

The 1ift developed on the blade surface from the leading edge to

+
x3 = -53 is
+
_53
L33: i P3 b)dX
S
k.,s
=—-—3—e1° <~+]+&K—~ >Z
253 n 3 n n-1/n
n=0
[+ 3 ~
- aSw. [, (H +_§'A f,(s 'Mm)+1Aﬁ(S)e1°
117313 2 o/ 1'73°373 03'°3
where



as

3 iM.Kkun NN y(22 + 0+ 1,-1MKqas)

. _ 3¥3 i 3¥3
By = € Ip(kgn)dn = ¢ 2840 ,
A 3¥3d=t  (2m,) Li(n + 2)!

~ +
H3 = H cos & + Ao(s3 - f)

and

Mawqs4

a _ . + .
H3(s3) = f2(S3,M3m3,S3)m3 + f1(s3,M3m3) s1n(M3 3 3) f (0; M3

3)

The evaluation of Kn is made by expanding the Bessel function in its power
series at n = 0 and integrating to obtain a sum of incomplete gamma functions
v(2% + n + 1,-1M3k3as3).

Likewise, the moment contributed by this blade surface, measured about the
leading edge, is

+
..53
M33 = (x3 - ds + 1)P3(x3,-9.b)dx3
ds-1
K,s il
3~ -l ry 21 % x 2
= - 254 € 2{: (An+1 * Mg Ap - n-1)An
n=0
ss.e '
- % s H, + A 2 as (s w,) + 1A (s )
2 3 03 ™3 3’ 3 3 3
where
aS3 o
a iM k. n n v(28 +n + 2, -1M k 530S )
~ _ 3°3 -1 3
By =] e Jpkgn)dn = 2 2%+n | ,
0 (M3k3) o0 (2M3) Li(n + 2)!

Upstream Shock Quantities

The unsteady pressures and velocities ahead of the shock wave can be
obtained from reference 1 as

10
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(M k-2 )X (M k40 )X
p1e1“’t=2[e 1 RY + e 11 R;]cos (D—:M)

n
n=0
2 T e A (X - d )] F-(y3M0)
9 1" 0 o/ "1V ™9
3 2 . 2 )
- 1A0[am] o1fy(¥ilye) + “’15“’"1“’1’]

[+ <]
(M k, - A)X T(M k4 )X
u e“"’t = Z e M n Q; + e 1 Q; cos (n%.v_) + 1Aow]f1(y;M]m1)
n=0

1.3
17 Ty ay [p,(X.y) ¥ u1(X.y)]

In order to bring these quantities into a form appropriate for the shock con-
ditions we write them in terms of the argument % = k3 a2 - Bg (s3 - y3) of

Carrier's solution and transform them to Bessel series.

On the shock locus
X = (s - y)cot x

an argument of the functions fy and fp of &, becomes
* \/2 2
1M]m1(y -5) = q]k3 o - B3 (s3 - y3) + ak3M3(s3 - y3)

where

M1 )

k

+ sin x + M3 cos(x - &)

3
Vi - Mg sin’(x - &)

— 1+

q

If the generating function for the Bessel functions, and its parametric
derivative,

e ™ =3 (n) +Z 1t” + (-5)™"13 (n), t = -(M + 8), B = VM _ 1
v=1

netitn _ % u[?” - (-?)'”]Jv(n), T = i(M+B)

1



are introduced, it follows that

©

+iM, 0, (y-5) ok, M (S,-Y,)
e 11T e T3 (g +Z [(tt)"‘ : (-ttf'"]-"m(i)

m=1
with
t, = (q] +Vod - 1)
and that
Vi - M2 sin’(x - &) +1M 0 (y-5)
1k3 CcoS x xe

(-]

tak, M (S,-Y,)
-1l 337373 E m[t[{‘ -(-t+)'"‘] Ip(E)
+

g m=1

Consequently, the functions fy, fp, appearing in &p, can be transformed to
Bessel series by using the identities

TaKaMa(Sa-Yo)
cos M]m](y -S) =¢ 3377373 ZE: (])ngm(g)
m=0

Yok M, (S.-Ya) e
3 -
sin M]m1(y - 5) =¢ 3°73 73 } E (])em Jm(g)
m=0

©

ok, M, (s,-Y,) 1)~
cos M.uy = 373'°3773 Z( )G;Jm(g)

m=0

«©

ek, M, (5,-Y,)

337373 2 : 1)~-

sin M]w1y = -ie ( )eme(g)
m=0

tak M, (S.-Ya)
3*°3 73 E 1
X COS M]m](y -s) =c¢e 3 ( )W;Jm(s)
m=1

12



1ak M (s -y.)
X sin Mo (y - 5) = -te 0> 33 Z(”wmam(g)
m=1

takoMa(54-Y,) R v
X cos Moy = e 33 3 252(1)T;Jm(5)

m=1

1ak M (s -y
x sin Moy = - 3) j{:(])w In(8)

are defined in appendix 8.2

The quantities (])eﬁ ,(])51 (])Wi (])ﬁﬁ

m’ m’

The Fourier cosine series appearing in each of pjy, uy, and vy is trans-
formed by again introducing coordinates of region 3 to obtain

(1) nmy _ .t
[ﬁ1k1 + L™ ] s = T+ akMa(s, - ¥g)

Then, for example, in the pressure the Fourier series becomes

(1)] [ ()]
Mk_x §|M. k., +2
E + 11 - nwy
3 R+ e Re | cos (:)
Pt + - -
takaMa(S4-Y,) 1 ir’ g ir E ir %
= % e 3 E (-1)" ( M~ ye M ) + R; (; M~ ye M )

n
M]k] cos x - M3k3 cos(x - &) - (s“ + x cot x) sin x

r

S+

2
k3\/1 - M3 sin’(x - §)

We approximate the summation in this last form by a least-squares fit to a
polynomial of order 50, say,

2The functions fi1, fo» and expressions involving them are also 1isted in
appendix B.

13



50 .
2 (5)

The polynomial is, in turn, converted to a Bessel series by using Gegenbauer's
expansion (ref. 10)

( ) Z (et ZJF(H — J +2n(z)

with the result for the Fourier series in the pressure p,

@

(M ky-2 )X T(M k4 )X
Zl:e 171 "n R;+e 71 n R; cos<nf-y->

m=0
[n/2]
1ak gM3(54-¥4) _
- 33 3 Z 3 () Z Mr(l]-%m nr(n m!m)
m=0

The alternate expression for the upstream pressure for application in the shock
relations is, then,

[n/2]
1w uM (S -y )/B
H Ad 2
oy(Hy - Agdg) . 2 o [ew (gt _ (Mgt
- M] s1n(M]w]s) 0 3w, Mlm] s1n(M]m1s) n n
A w
o1 o (1)t (1), + [ 1o (1)~ (1) -]
M] sin(M1w]s) € Yn - wn * M1 tan x|e Yn - yn
1o
-e &+ (1)5; + Mys (1)5;]
fak M (s -y
2 ol ZJ (5) (Mgl (10)

n=0

and similarly for the velocity fiuctuations

14



o [n/2]

2 2
fw,aM (5,-y,)/B
fot _ 373'°3 73 32 E (2) nt(n - m
u1e = ¢ Jn(g) n_2m m!

n=0 m=0

Yo (N)z+ (1) ¢
e 8, - 8,
) M] s1n(M]m]s)

+ 1A

1ok Mo (5,-Ya) N
i U R I ZJH(E) M) (o) (1)
n=0

[n/2]

tat _ ogaMg(53-¥) /B3 ZJ(E) Z A3 orln-m

w,(H -Ad) w
1o 00 3 1 o (1)~- (1) .-
- } sin(Mers) 1A, %0, [sm(M]w]s)]g [e &, - en]

Ao”]

s1n(M]m]s)

<

s}
o
I

+ - M, tan x [e1° (Mg* _ (])W+] - [e1° (M- . (])W;]

n n n

n

oK Mo (S0-Ya) X
L N AR Zan“) (g3

n=0 (12)

e1a[s+ (1)5; - (1)5+]

Recursion Relations
To 11lustrate the method of preparing the downstream quantities for sub-

stitution into the shock relations (2), (3), (4) we compute the pressure along
the oblique shock wave in its proper form.

15



From equations (5) and (9)

1K M (Xo+asS,) T
S 3 33*"3 773 E :~' 5 3
Py = oo 1w3 T e An cosh né Jn(k3r) t 5T 1m3 T @b

3 3 - 3 3

By employing the relations

or_ = cosh 9, gg = - 51:h 6
3 3

Jp_1(x) + Jp+](x) = %Q Jp(x)

and the derivative of the Bessel function we obtain for the derivative in the
first term of p3,

Tk M (X +aS,) = ik, M, (X, +eaS,,)

3 33733 § :‘. _ 3'3*73°7°3

5;; e An cosh ne Jn(k3r) =e
n=1

Ko o
- 3 z ::~
X 1M3k3 E An cosh ne Jn(k3r) t 5 An Jn_](k3r) cosh(n - 1)e
n=1

n=1

k -]
- 53- E An Jn+](k3r) cosh(n + 1)e
n=1

Introducing a new summation index N =n - 1 1in the second term in the brace,
N=n+1 1in the third term, and adding the time-derivative term yields

1K M. (X, +aS,) — k, 1k, M,(X,+ as.)
3 3 gl Xgtasy §£:~» X3 TK3llaiXgr oSy
Gw3 - S;é)e An cosh ne Jn(k3r) =5 e
n=1

(-]
~ 2_1_ ~ ~
X E cosh ne Jn(kBr)[An-1(1 - 6n0)(1 - én]) - M3 An(1 - 6n0) - An+i}
n=0
For the term involving &, we again use the generating function of the
Bessel functions to obtain
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1ok Mo (S -Y,) = [ _ .
-e 233N () +Z [(ti)'“ ' (_ti)‘"‘]am(s)

m=1

e

and, on the shock wave,

1y V1 - W2 san’(x - 4) #1Mg05(Y-54)
Cos(x - 3) (x3 + asj)e

1ak M (s —y3

[ - t)'"]a (¥)
V(q3
t - 1[q§ v Vigp? - 1]

From these expressions all of the functions of x3 and y3 1in the potential
%, may be represented as expansions in Bessel functions in the same way as the
corresponding quantities in the upstream region. After considerable manipula-
tion one can write

1aM K (s -y

with (3)£¢’n(1)def1ned as in appendix C. Thus, on the oblique shock where

+
iq,E lak, M (S,-Y,)
= ige 3 e 3737373

X3 + aS3 = a.(S3 - y3),

jou t 1K Mool Sa-Yn) o k

1 s 313 537Y3 E: 3 -

e p3 = ——53 e Jn(g) 3 cosh ne An-]“ - am)(] - sno)
n=0

_2 5 x (3) (1)
M3A(]"60)"An+1] 9 ‘

Likewise, the unsteady velocities and shock displacement are given by
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to, t Ky daMKo(Sa-Y.)
1 3 3"3*°3 73
e u; = e E Jn(g)
n=0
\/ 2 2 (=
-e - B3((:n+'| Cn-1) -
[++]
1w]t k333 1aM3k3(s3-y3)
e vV, = - J
3 2
n=0
(o]
10)]1: E(i ”ﬁ'_‘g 1k3M3a(53—y3)Z
e = e
Dt ] 2
n=0
+ cos(x

We can now substitute the expres
shock relations (2), (3), (4), multip

0

% % (3) _(2)
(An+1 - An—l) cosh ne0 + @n f

’21M3An cosh ne

2ia

T +
M3n

¢y

ZIQ
w

(%) ’n )

X % (3) (3)
+ (Anﬂ + An-l) sinh ne0 + Rn i

21

-
3

2
3

2 ~
M sin“(x - <§)]Dn

_ 8 y/1 - M sin®(x - s)(ﬁnﬂ - Bn_]);

sions for py, uy, p3, u3z, v3 finto the
1y the first equation by 2s3M3/sk3, the

other two by 2/kg, and by equating coefficients of the Bessel functions of

1ike order obtain the following recur

(n+1)

sion relations for the An’ Cn, and Dn:

(n) (n-1) _ g(n)
e P R T R i (%
where
Knﬂ Kn
(n+1) ~ (n) ~
Cj = cnﬂ , cJ = Cn ,
n+1 Dn
_ 253ty 2(1)
An-] o sk3 n
(n-1) ~ n
G = a0 B | 2@
(1 + ‘Sn])Dn—l _g R(B)
k3 n

18



The matrices .,l”, .qu, 'Zij and the vector g?r(1]) are defined in appendix C.
The recursion system is entered at n = 0 with

and with 50 given by equation (8).

Channel Region

The wedge-flow solution is valid up to the point where the shock wave 1n—
tersects the adjacent blade. At the intersection the flow is at the angle B3
(see fig. 3). MWe construct a perpendicular to the blade at this point (in the
y3-direction) and designate the region downstream of it up to the normal shock
wave as the "channel region". The passage diverges slowly from its initial
width S(x3) = s3 to its final value S(x3) = sp. Provided dS(x3)/dx3 << 1,
it 1s appropriate to represent the mean flow as one-dimensional, i.e.,

U3 = WUy(x3). For the unsteady flow also to be slowly varying it is nec-
essary that the wavelength of the disturbance A ~ S(x3).

The slowly varying approximation for the unsteady flow is a straight

channel solution modified to account for the slowly varying channel width. The
potential and stream function respectively, are

X
1f 3(M3k3-x'(]3))dx3 1f 3(M3k +x(3))dx3

(o]
+ 1} nary.,
§3 = Tne + Tn cos 3 + @b + @s

n=0

(14)

4]

s nwy 3
3 1f d
v, - nz_ 8% sin (s ) L, ©3 93 (15)

where the parameters M3, W, = wcﬁﬁé, kKo S @ M /63, and

3 3

kgS) = ‘/;g + (mr/BsS)2 vary slowly with Xg-

The additional potential &g, appearing in equation (14), arises from
the motion of the upper blade surface in following the disturbance of the
oblique shock wave. In figure 5 the dashed 1ine represents the displaced
position of the model wall due to a displacement x4(0) of the oblique shock
wave from its mean position. The displacement of the wall in region 3 normal
to itself is

19



X (0) sin &
W o= ——
s sin x

where from equation (7),

1ak3(0)M3(0)s3 -

xs(O) = e ] (16)
- =~ 2 2
D - Z 53 (k3 o’ - B; s3>
n=0
The upwash condition on the blade,
Vs = - 1w.|WS

is satisfied, along with the convective wave equation governing the flow
(eq. (2.2), ref. 1) by

cos[M,(0)w,(0) (s, - ¥,)]
5 = = ToWg 0N (0) SIn[M.(0)on(0)5.]
s L 3t 0)wg(0)s,
In order to find the expansion constants Tﬁ . BgB) in equations (14),

(15) we match the Tatter quantities to the wedge solution (5), (6) at x3 = 0.
To expedite this we can, without affecting p3, uz, v3, replace &3 and Y¥3
in the wedge region by

1KMo (X ¥aS,) o
e CE N ZAncoshneJn(k3r)+<I>

%3 b
n=1
cosh w,(s, - ¥,) Jow,(X,*taS MZ/BZ)
373 3 373 373734
i sinh w,s € ¢
3°3
2 ,,2 2, ®
" _e1m3(x3+as3M3/l33—uy3/B3 ZE ; kﬂ(s )]
3 - n “n|<3¥ - F3 (53 - Y3
n=1

2,2
sinh w3(53 - y3) 1m3(x3+as3M3/B3)6
sinh w3S3

The vorticity, @3, contributes no normal velocity at the blade surface, a
characteristic shared by equation (15).
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In order to match pressures at x3 = 0, it is necessary to match both &3
and 3®/9x3. Equating &3 and &3 at x3 =0, multiplying by sin mwy3/s3,

integrating and employing orthogonality properties of the trigonometric func-
tions yields

+ - 2
T T e ——5—— (I~ 1., - 1..) (17)
m m s3(1 + 6mo) 1 12 13
where
=~ S
1k M,as 3 Ty ik, M, as
33773 E ~ 3 - 33773
IH = An cosh ne Jn(k3r) cos(msa) dy3 0 ze An,m
n=1 0

X3=

ik Moas, C 03 ‘mary - tw,e kgM3Sse ¢
I = ___iJl_ii__ cosh o (s - ¥.) cos —3 d “3°
12 =1 sin w 3 3 Y3 =
333 0

2
S3 ws + (m«/sa)z

hoad (2]

/53 <mﬁy - m]wS

I,, = ® _(y,) cos )dy

13 s'73 3 2
0 3 (M3 3) - (mw/s3)
The integral 8n,m appearing in 1Iyy7 1is evaluated in appendix D.

Similarly, matching a&/ax3 and a3/ax3 yields

+ 2
TolMaky = Ap) + To(Mgkg + 2 ) = 1551 + 670) (I - 1)) (18)
where
fakgMgSy o .. (3
I, Ze Z R 1k, cosh ne J_(k,r)
n=1 0
20 myq
N sinh ne J (k r) + k3 a cosh ne J (k r) cos| — )dy3
3 3=0 3
and
Iy =13 Iy,
To evaluate 1Ip7 we use
30 sinh © 1
Xy =" r 9 =3 (]n-l * Jn+1)



in the second term of the integrand, and

—

ar

]
—37; = cosh o, h =2 én-] - ‘]n+1)

in the third term, and

Sq S
to obtain
© _ 53
12] = Z An [21M3 cosh ne ']n
n=1 0
m«(ss-ys)
+ cosh(n - 1)eJn_] - cosh(n + 1)eJn+] cos ——— dy3
x3=0 3

Introducing a new summation index Nj = n - 1 1in the second term of the inte-
grand and Nz =n + 1 1in the third term leads to

<21M3An * An+1 - An-]An,m)

When equations (16) and (17) are combined one finds

iM,(0)k,(0)s, 1k, (0)
+ e 3 3 3 3
Tp = s,(1 + 6n,0) E Ap * 2)»'(]3)(0) (A1 = Apr) 4m,n
m=0
k.(0) ©.(0)C
+ 11 + 3 3

- MS(O)ng)(O) wg(O) + (nn/sg)?

M3(0)k3(0) @) sin § 5
sin x

-ip

|+

xg3)(0) (n«/s3)2— M§(0)m§(0)
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Equating vorticities ws and ‘gs at Xq = 0, mulitiplying by
sin m1ry3/s3 = (_])m+1 s1n(s3 - y3)m1r/s3 and integrating across the channel

yields

n 2
n=1 0
fak. M, s S
3733 a 3
x stn(M )y - ;ﬁ_;__g (-1)™1 j sinh wyy sin(™ gy
3 “3°3 0 3
® jak M.s
fw,as (0) e 37373 mw/s
L ~ 3 A
=€ Colom ~ 2 2 C
n=] ' 0)3 + (m1f/53)
or
[+ <] .Y
3) 2 tw(0)as, (0) (nw/s,)C M3(0)k4(0)s5a
Bn = S e C A - e

mm,n 2 2
3 w3(0) + (n«/s3)

m=1

The integral

1(.) ay/B
880 = (. 1)"‘”f 33, \kVe? - 82 y sin("—:y->dy
0

[« 3
m n 3 3

is evaluated in appendix D.

The pressure obtained from the potential &3 of equation (14) is, on the

upper surface of the blade,
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X

3
® 1f [M3(x3)k3(x3)-x§‘3)(x3)] 6%,

_ S (3)pt 0
P(x3,0+) = s Rn e
n=0
f*a (3) .
i [M3(X3)k3(x3)+xn (xs)]dx3
(3),- 0
+ R e
n
+
- wqu [Ho €os § + Ao(x3 - S5 + f)]f.|(0,M3m3)
9 2 . 2 . + fl
- 1Ao l:a“’B w3f1(0,M3m3) + m3f2(0,M3w3,53)] oy
. m.ISWs
M3w3 tan(M3m3s3)
where

d
15 M) ka3 () |d
] /0 [3"‘3) 3(X3) (Xs)] "3 [ky(x9) (g +
ie My 7 M (%3) T

(3) %
Rn = M3(x3) +n

On the lower surface
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a
X

- (3) 2
—10’ S n (3) I:MB(XB)k3(x3)")\n (X3)]dx
p(x310") =€ 53 (—1) R e
n=0

3 (3) 2
(3)R 1fo M (x3)k (x3)+x (x3)]dx

+

, wam][Ho cos & + A (xg + f)] £1(A(Xq) Ma0q)

“11 8 2 2
- 1A, ;; 3;; waf (A(Xg) iMawa) + waf,(A(Xy) sMyw,)

-io
e w]swS

M3m3 sin(M

+

3¢353)

with §3 = Xgq - dS + sg. In calculating the 1ifts from these pressures we must

allow for the difference in the slope of the curved blade surface in region 3
and the slope of the blade surface in region 1. On the upper surface the
contribution to the 1ift is

ds
L3] = 'g 3( 3,0+) cos(8 - a )dx

]
cos & + fu(x3) sin §

‘/1 v [F (%) 1

Defining the moment with respect to the trailing edge, we have

cos(8 - o) =

u

d
s
(x3 - dS)PB(x3,0+)dx3

: ‘/1 v [F (xg) 12

On the lower surface of the blade we also allow for the altered length of
the channel (dg versus dg) and obtain for the 1ift

M3y =
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+

]
d_-s cos § + f (x,) siné {d
- s 73 P*"3 9
Ly, = [S+ Pa(x4,0-) . 2 3, dx,
3 ‘/1 + [fg(x3)]
The corresponding moment about the end of the channel is
+
—s3+dS dg 2 o
P(x,,0-){—]dx 3 s
X3PiX3.0-0\q 3 P.(X,,0-)dx d
s + 3*'73 3 )
M., = + (s, - d,) -
32 + : > 3 3 ‘/ ] > \d
st 41 (k)] S (RN XA

Region 2

The solution for the unsteady flow in the subsonic region that follows
the normal shock wave proceeds as in reference 1 after allowing for the down-
stream displacement of the shock to the trailing edge of the blade and includ-
ing the effects of upstream vorticity. The downstream pressure is still given
by equations (G1) and (G2) of reference 1, but now the coefficients B£2) of a
downstream propagating wave are determined by the equation

«©

+(1-5.-¢ )
F in ' T2 %0 ~in.e

2 __n (2 + - n“o (2)
IEPRIER =By 4 * 8y © Eem Koo

m=0

rather than by equation (3.33) of reference 1. The small quantity e, repre-
sents the length of a nominal channel between the shock position and the end of
the blade. The quantities ai, K
is defined in appendix E.

mn remain as defined in reference 1, and Fn

The pressure on the blade surface in region 2 is given by equations (G1)
and (G2) of reference 1. The 1ift and moment derived from them are included

in appendix E.

Shock Lifts and Moments

The unsteady displacements of the two shock waves where they impinge upon
the blade surfaces contribute to the unsteady 1ifts and moments by shifting the
boundary between adjacent regions of the flow and thereby altering the domain
of influence of the mean pressures, as discussed in reference 1. The oblique
shock, for example, forms the boundary between regions 1 and 3 on the top of
the blade. From figure 5 it can be seen that xg(0)/sin x 1is the penetration

(0) (0)

of region 1 into region 3, for which (p] - Pg )xS(O)/s1n x 1s a correc-

tion to the downward pressure force normal to the surface in region 1. Since
the dimensionless pressure difference is
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(0)

(0)
Pa " " P )| 2 [] tan(x - &
2 = X'~ Ttan x

Py
it follows from equation (18) that the 1ift due to the oblique shock is

5;]) sin § Ds 10‘MB(O)kEI(O)SS

s sin x asq
The corresponding moment 1is
(m _ (1)
a(s = (s cot x - do)j?s

where dy 9s the value of x at which the elastic axis projects upon the sur-
face in region 1.

The expression for the 1ift due to the normal shock is similar to that
given in reference 1 with modifications required for the downstream displace-
ment of the shock and its impingement on the lower surface rather than the
upper:

2
2M3(ds) -n+ 1

(2) _ - +
& = 2Ky (d_)M5(d) — Pyldg - 54,0)
4 + s +
+ T U3(ds - s3,0) s, - P2(1 - 252,0)

The moment 1is

2 ! 1
Mﬂg ) . [%c(1 - f) cos(B2 - xo) - s;]j?g )

RESULTS AND DISCUSSION

A set of six blades which are examples of the two-shock model is shown in
figure 6. For all blades the solidity is 1.4, the stagger angle is 62° and
the entrance angle is 67°. The exit angle is 65° except in the first case for
which 1t 1s 63°. The initial choices of entrance Mach number, My, and pressure
ratios, P27, were made to provide a distribution of flow conditions over the
shaded region of figure 4. Since figure 4 was constructed for the simplest
geometry having straight surfaces and a boat-tail trailing edge (dashed lines
in fig. 6) it is necessary to recompute the pressure ratio after the choice of
boundary-layer thickness and exit angle to account for the isentropic expansion
of the gas in the channel and the strengthened normal shock wave. The expan-
sion and the enhanced normal shock strength tend to counteract each other; thus
the actual pressure ratios stay within 15 percent of the initial estimate and
are sometimes much closer.
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Each blade has been given a trailing-edge thickness to represent the dis-
placement effect of surface boundary layers. The displacement thickness on
the upper surface is denoted by é&,%p and the displacement thickness on the
lower surface by &gp. The values for §,; and &g were chosen to yield a
combined thickness of about 10 percent of p. In one case &, = &g and in
two cases &g = 0. In the remaining three blades &g 1s actually negative,
thereby reducing blade thickness, but simultaneously increasing the effective
stagger angle. This suggests that in some applications it may be desirable to
begin the model design with an initially undervalued stagger angle and to use
negative boundary-layer thickness and the exit angle to bring it up to the
desired value.

Some representative pressure distributions on the blade surfaces are shown
in figures 7 to 12, for blades pitching about their centers (f = 0.5). The
pressures for four interblade phase angles are given in each case. On the
upper surface, the pressures in the entrance region exhibit the same charac-
teristics that occur in the normal-shock configuration of reference 1, namely,
that they are relatively uniform and low in magnitude over the full length of
the surface -s* < x < s cot x except, perhaps, for phase angles of #/2 or ,
or at high frequency. The pressures on the additional surface 0 < x < s cot x
now included in the entrance region have no unusual characteristics. In the
second supersonic region behind the oblique shock wave, however, the pressures
are sharply peaked, a characteristics observed previously (ref. 1) in the sub-
sonic region behind a normal shock wave, and now seen to be feature of the un-
steady flow behind a weak shock as well. These peaks appear to be even more
predominant at low frequencies than at high.

On the lower surface, as well, the unsteady pressure behind the oblique
shock wave has generally several times the magnitude of the pressure in the
entrance region, although it is likely to be more uniform in spatial distribu-
tion except at the high frequency. At the point on the blade surface where
the curved surface of the channel begins, the pressures are usually strongly
affected. There is often a sharp reversal in the magnitude of the pressure
which then falls to a lower magnitude at the end of the channel, just preceding
the normal shock wave.

When the disturbances are transmitted through the second, normal, shock
wave there is once again apt to be an amplification of their strength, espe-
cially when the blades are out of phase (o = w/2) or of opposing phase (o = r).
When the blades are moving in phase (o = 0) the pressure amplitude in the sub-
sonic region is 1ikely to be Tow. In general, however, the effect of succes-
sive shock waves appears to compound, thus raising the disturbance magnitude
to a high level.

The dimensionless 1ifts and moments in regions 2 and 3 have been derived
or recorded in the Analysis section. The 1ift and moment in region 1 can be
obtained from the pressures given in equations (D1) and (D2) of reference 1.
They are defined and recorded here in appendix F. The separate 1ift forces
when added vectorially and referred to the normal of the entrance-region sur-
face yield for the total 1ift

' ! (1) (2) ' '
L = (L33 + L32 - L32) cos & + L21 cos(B] - BZ) - L]] + Ls + Ls cos(ﬁ] - 82)
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Likewise, after each moment M1q has been translated to a corresponding moment
Mij referred to the elastic axis, the complete moment is given by

M=M., +M. + M. -M.-M

(M (2)
33 * Mgp + My - Wy, LR

31

The total complex moment M 1is plotted for each of the blade models at three
reduced frequencies, wy, in figures 13 to 18. When Jw M in these figures
is negative, the blade is receiving energy from the flow and flutter is the
result. The interblade phase angle o 1is the parameter along the curves.
Black dots denote an interval of «/8 in o.

In all cases the figures indicate that there is instability in torsion at
the moderate and low frequencies but in only one case at the high frequency.
The exception is blade 4 which has the largest thickness ratio of all the
blades. This progression to greater instability as the frequency is decreased
was also the characteristic of the cascade with one normal shock wave in
reference 1. The instability is more apparent in the double shock case with
flow at the intermediate frequency being decisively unstable. The increased
complication of the flow in the double-shock model is reflected in the more
complicated stability figure than for the single-shock flow. The number of
Joops and crossings has increased and the moment wanders more erratically in
the complex plane.

The complex 1ifts are displayed in figures 19 to 24. A negative Jm L
means that the blade is receiving energy from the flow and there is instability
in bending. Qualitatively, the trend towards instability in bending at lower
frequencies is the same as in torsion. Blade 4 is seen to be the most stable
of the six examples, and, again, the figures display considerably more struc-
ture than in the single-shock model.

CONCLUDING REMARKS

The model for a supersonic blade row with shock waves which has been pre-
sented here has extended the operating range of turbomachinery for which
stability calculations can be made. Based on the single geometry explored
here, the model is appropriate at My > 1.3 at the Towest applicable stage
pressure ratio and, for any pressure ratio, at higher entrance Mach numbers
than the single shock model. The calculations for specific cases show that in
this operating region the presence of shock waves has a strong influence on
the unsteady flow and that the tendency for instability at low frequencies
observed in the single-shock model of reference 1 persists in the two-shock
model. Thickness ratio appears to have significant influence on stability of
the flow at high frequencies.
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APPENDIX A - COEFFICIENTS OF SHOCK CONDITIONS

_ 4 sin x €osS x
1 (u+ 1) cos(x - &) 2

—
l]

- tan(x - §) cos x

3 = - & COS X 2(M$ s1n2x + 1)

[+ 3 = 2

(u + 1)M$ sin™x

K3 = - sin x sin(x - $§) [I _ tan(x - & ]

2 2
2M] sin™x = u + 1 . -4 sinzx o, o A.sin x cos x
o+ 12 p o+ 1 13 u+ 1

Gpy = = aos1n x sin(x - 8§) + cos &
Y uocos x sin(x - &) - sin &
@ay = - aos1n x cos(x - &) + sin §
Gag = - aocos x cos(x - 8) + cos &
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APPENDIX B - FUNCTIONS IN THE UPSTREAM SHOCK QUANTITIES
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APPENDIX C - MATRICES OF THE RECURSION RELATIONS

2 2
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M)yt "7 78 P e

HQ, = (H0 - Aodo) cos(x - XQ_) - AOS sin(x - XQ,)

i" 'n cos xg 1(Myw, S, +0) : t?_(q;) - t?(q;)

n
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+ e
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+ 1A 2 2
qy = - M3 cos(x - §) * k3 sin Xq ‘/1 - M3 sin®(x - §)
X-l-‘-X; XS=X_6
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APPENDIX D - INTEGRALS ARISING IN THE MATCHING PROCESS
In the integration across the blade passage at x3 = 0 there arise

integrals of the type

S
pr = (" 3Jk0 % Dy 4
m,n_(-) m(ka(0)r,) e cos (= y
0

3
where
i 5 2 5 1 asy + B3(O)y
y = 53 - y3o rO = (aS3) - (83(0)y) ’ eO = 2 In aS3 _ BS(O)Y
Letting

y
Y _9_.3 p= -
nS= » b = akg(0)sy, P = By(0)ky(0)s,

3 33

puts these integrals in the form

A; n n 1 2 2 2 b2 + Pzg2 2
UL Y f J b - p°n cos nmn dn
S m 2 2 2

3 0 b™ - P™n

In succession one expands the Bessel function in i1ts power serjes, translates

to a new coordinate n = n + A and converts factors (n + 2\)" to their
binomial expansion (A = b/p). Then one has integrals of a standard type

1EaN -
f ﬁm+9‘e1n“" dn
+

It follows that

+
|I+

- K

. § : (b/2)2k+m (-2)3(m + 2k - 1)!

mn ~ nw (m + k)! (k - 3! 3!
k=0

[k+ Lm:%:l)] 2r+1
X Z (ol s gmeedert ] N =g
(m+ 2k -3 -2r - 1)! \nx
r=0

The end quantity desired is
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+ - ) 2k+m _k k| ~
San _ o * Bnun) - (b/2) 2{: (-2) Fn+2k-3
s

e (m+ K7 D Tk~ T3
3 3 k=0 50
[m+2k-j—'l]
2
= : (=1)"(m + 2k - 1)! (u/nr)?"]
me2k-j = (m+2k-3-2r-1)1
r=0

) [(1 , gmRk-d-2rl g u)m+2k—j—2r4q

To put Ap,pn in a form convenient for calculations we first introduce a
new summation index & = k - j and sum over all nonnegative values of both &
and j. In the %, matrix we construct a final index k = 2% + } which sums
over all nonnegative values with 0 < o < [k/2]. Then

tnn = 3 2+ i2en] P

(%]

J=0
[k—'l
2 r 2r+]
rﬁn)( ) = (kki é;]z )7 (ﬁ#) (1 w2
r=0
(/2] me2j-2k -2k

(m) (b/2)
(b) = ZE: (m+ 3 -Kk)! k! (3 - 2k)!

For the case n =0,

Fk(tu,mr) (s u)kﬂ
nw Tt u(k + 1)

Another quantity arising from the integration across the blade passage is
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3 2
$w, (0)ay/BE(0)
Aéor)‘ (-n" f e 3 3 Jm[kS(O) ‘/az . r3§<0) y] s1n<’s‘—;1)dy
0

[+

—s5(-1)M" ] ,\2k+m
2 k! (k + m)! (2)

k=0
Y(2k+m+],a;nﬂ> y(2k+m+],a;n">
X -
(a + n11r)2k+m+1 (a - mr)2k+m+1
ok, (0)s
3 3 _ 2 2

a = -—————MB(O) , p = k3(0)53 ‘/a - 63(0),

2 2

83 = M3 -1, a = cot(x - &)

v 1is the incompliete gamma function.
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APPENDIX E - EFFECTS OF UPSTREAM VORTICITY AND CHANGED
SHOCK LOCATION ON SOLUTION IN SUBSONIC REGION

Equation (3.33) of reference 1 must be modified to account for the
presence of vorticity upstream of the normal shock wave and for the altered
position of the shock wave.

If vorticity ¢y 1s present, it affects the derivation of the shock con-
dition (A2) (or (2.18)) as given in appendix A of reference 1. The expressions for
vi and d¢$y3/3t must be augmented to read

36, dy 3, 3,

= —_ —t _ _p'. _ !
Vi Ty T at - Py YWt

ay

corresponding to the expressions in region 2,

a—— + u o —
2 ay

Y275 T et T i P2
From these one can form a(v2 - v])/at, employ Dw/Dt = 0 on both sides of the

shock wave, and set the expression equal to the time derivative of equation
(Alc) to obtain.

2 2 2 2 2
s % [ X . X Uy (37w, Uy 37,\ [3w 3y
ay [z, \Pe "2t ) TRt Tat | Ty oy? '%g atz'yz"atz

When (Ala) and (A1b) are introduced, the augmented version of equation (A2) is
found:

2 /.2 2 2
3 pl _ (MZ . ]‘_‘l [32) pl _ (u . ]) M-|M2 9 \l’z +?/-l 9 ‘l’z
ay |2 1T " w+1 717 B]B2 ay2 th atz
M? azw] 32¢]
+ (u + ]) 4 ) + 2 (E])
B] ay at

When the time differentiations are carried out and the time factor is can-
celled, we have an equation corresponding to equation (2.18) of reference 1,



Again in the companion shock relations (eq. (2.17) of ref. 1) we allow for the
occurrence of upstream vorticity and write

2 4
28, v MS + 1 36, ¥ B
_ 1 1 1 1 2 1 fp-1
ax tay T2 2*tax Yoy t2 |MrT- W2 (é ¥ 1) Pyl (E3)
1

If ¥ 1is eliminated between (E2) and (E3) by differentiating (E2) with
respect to y and obtaining the first and third y derivatives of ¥
from (E3), the extra term in ¥; 1in the combined equation is

M2 M2 M2 aSY M2 M2 -
2 _ 1 1 2 2 1 2 1
ALY | Byl b el LRIl e B
B] 82 B] ay 62 B]
Using the definition
m.lM.I
ky = —
1 B2
1
and the relations
%
WA = Wy
2 1 @%
2 2
Qﬁ (u + 1)M] _ BZ”]
xU " 2 2]—
> [(p+'|)M]—2[31 B,M,
we find the vorticity term to be
me,\ (o i\ |, %y o) 2 ey
R Wl B Sl v i S T B
1 B, 87/ [85 ay 2 y

In reference 1 the region before the normal shock wave was region 1; here
it is region 3, and we substitute for ¥; the expression in equation (15) for

¥3, evaluated at x3 = dg:

©

ds
3) Ny, 1][; m3dx3
Ws(ds,ys) = 2 :Bn sin .

n=1 2
Substituting M3(ds) for M] evirywhere in the shock condition and introduc-
ing the shock position x =1 - So - £ into the expressions for the poten-
tials where they appear in the shock relation, we find the condition on the

coefficients B;Z) of the duct waves in the subsonic region,
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% T_IQE__ = Bgz)e 2o a; + a;e'innso Bn Kmn
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2
2 Kk
+ _ (2)] (2) 2
an = [)\n + 2M2k2Xn + <M3>

The inhomogeneous term Fp has the additional term

d

(E£4)

s
1% eging T2 2 )| 2 [k (d)B.(d) ¥
(3) 0 2 3‘s nw 315’73 s
nw(l + éno)Bn e 5 - - {B.s. L e —
(32 Ba(ds)_l 272 2
Equation (E4) replaces equation (3.33) of reference 1. In it e, is the
length of a nominal duct ahead of the trailing edge in which the flow is sub-
sonic. 1In the calculations made for this report ¢y has been set to 0.01.
(1 + 68 )s inJe. (2M2 - g2 [2.2
P no’’2 -, .° "o 2~ "2 fna® 22 o(2)
n= 2 n''n - 4 2 292"2) “1%n
B s
2 2
2 2 2
_ | PMatdsdMs - ByCdf 22 e 2
B4 S2 2721
2 2
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M5 (w22 A\ ) O+ &)s, (3)g+ , (3)4- (2) _ .(3)
'ET 2 ' 2 O + 7770 [ - ¥Ry feg™ - ¢
s
2 2
ds 2 2 2
1 w3dxg (3y My M3(d) )/ nge \2 | Kg(dg)Bs(ds)
-nu(l +6&_)e B - | =2
no n BZ Bz(d ) 5252 M2
0 2 3 s
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2 2 2
2 MB(ds)MZ - B3(ds)

1
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There is a factor s/sp appearing in Lpy and Mpy which arises from
the normalization of the pressure in region 2 and which merits explianation.
Because time, velocities and pressure are nondimensionalized with respect to
the chord, the density p, and velocity 47, whereas the material derivative in
region 2 introduces the velocity %, the ratio of mass fluxes p>/p %o
appears in the nondimensionalization of the momentum equation. Where the blade
passage is of .constant width, as is the case in reference 1, the ratio is
unity; but when the blade passage varies in width, as it does here, the ratio
1s Just the reciprocal of the channel widths, s/sp. This explains the appear-
ance of the latter ratio in the 1ift and moment as well as the appearance of
s/s3 1in equation (9).
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APPENDIX F - LIFT AND MOMENT IN REGION 1

2 -~ S(COt X - 81)
= s(By + cot x) [ f (0;M@)) [H) + A 5 + Yoy fa(05M 0)A
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+ U le ‘ - e
i n
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+ U \e -e
n
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———=Schock location determined
from the LA measurements,
15 percent span

eeeeee  Schock location determined
from holography, 5 percent

R v
Rotation

Figure 1. - Relative Mach number contours measured with the LA at
15 percent span from the tip (ref. 3).

‘ Direction of rotation

100% Speed (Near design)

Figure 2. - Rotor blade tip static pressure contours. Inlet Mach number, 1,493
(ref, 5). .
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Figure 3, - Blade-passage regions and notation.
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Figure 4, - Domain of validity of flow model. Solidity = 1. 4; stagger
angle = 62%; entrance-flow angle = 67°,
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(@) Blade 13
R
My = L4; Py =211 \\\\\\*
= - ~
B = 67°; X, = 62; By = 63°; 8= 7.475°;
estimated Py) = 1. 8.

@BRded; S
My=1.8; Py = 3.49; N
Bty = Sty * 0.0016 P PN
By = 67% Xo 620 By = 5% N\ 7/
5= 17.68°; estimated v
P21 =310,

_—Mean position of shock
4

7

Region 1

(b) Blade 2;
M1‘1.6; P21‘2.76; N p;
6ulb =0.0042P 21 6£ =0; \.//
By = 67% Xo = 62%; By~ 65

5= 12.947°%; estimated Pyy = 2.4

(e) Blade 5
Ml = 1.8; P21 - 3.6].‘,

AS
6ylb -00. 0028 P Zg; 6‘,5 - 0;0 \\\ >
By = 677 X =627 Py~ 65, ~. /
5= 13.9%0°; estimated Y
P21 = 3. 60.

Figure 5. - Displacement of blade wall due to incrementat change
in oblique shock position.
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~

~
\\

(c) Blade 3;

M1'1.6', P21'2_81; \\ ~y
8,2y = 0.005 Pyy; By 2y = -0.0018 Py 5
B = 67%; Xo = 62%; By= 650; 6= 8.461;
estimated Pyy = 2.75.

(f) Blade 6
Ml =1, 8; P21 =3 68:
B2y = 0.0039 P oy
Gltb = =0, 0013 le; \\ 7
B = 679 X = 62%; By=650;6-0.735% ¢
estimated Py = 3.8

Figure 6. - Blade models for six flow conditions. Entrance angle, 67°; stagger angle, 62°; solidity, 1.4,
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Figure 7. - Nondimensionalized surface-pressure amplitudes on blade 1 undergoing pure
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59



4 \
3
)
\
I\\
21— 1\
v\
\\ AN
~ \\
~
ReP 11— N S
o R T T
~< ==
~
\\\
\\
0 ‘\\
/] \\\\\
— s~
—-—— 2
= /
-1 —_— 32 /
s Elastic axis
-2 .’I | | l
st 0 scot x scotx +dg

(a) In-phase component (real part) of pressure acting on upper surface.

Figure 9. - Nondimensional surface-pressure amplitudes on blade 3 undergoing pure
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Figure 9. - Continued.
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Figure 18. - Moment coefficient for pitching motion about center of blade 6. (My = 1.8; Py = 3.68.)

81



I

Im LIHo Im L/Ho
- 1
mi2™> - ﬁ
ReLIH, 0 / Re L/H0
| l 1 L I s
1 2 -3 -2 1

2 L

(c) wy = 2

Figure 19, - Lift coefficient for plunging motion of blade 1.
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Figure 22, - Lift coefficient for plunging motion of blade 4,
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Figure 23. - Lift coefficient for plunging motion of blade 6. (M) = 1.8; Pgy = 3,68,)
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