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UNSTEADY FLOW IN A SUPERSONIC CASCADE WITH TWO IN-PASSAGE SHOCKS 

Willis H. Braun 

National Aeronautics and Space Administration 
lewis Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

A model for a supersonic blade row with two in-passage shock waves is 
developed. It accounts for three-dimensional effects in observed flows by 
using a hypothetical blade shape in a two-dimensional cascade. There is 
enough flexibility in the choice of blade shape to accommodate a desired 
entrance angle, exit angle, boundary-layer thickness and stage pressure ratio 
at a given entrance Mach number. 

The model divides the mean flow into regions of uniform or one-dimensional 
flow in which the solutions for the superimposed unsteady flow may be found 
successively. The analysis makes use of previous solutions for unsteady flow 
in cascades and over an oscillating wedge. 

Six flow conditions are chosen in the range of parameters for which the 
two-shock model is valid for studies of flutter in torsion and bending. It is 
found, in keeping with previous results from a single-shock model, that in 
each case there is increasing instability with decreasing frequency. 

INTRODUCTION 

The analysis of unsteady flows in blade rows has been facilitated by the 
use of models for the underlying steady flow which permit the governing differ­
ent1al equat10ns to be wr1tten w1th constant coefficients. This has been true 
for both supersonic flows and mixed flows with a single shock wave (ref. 1) in 
which the mean flows were assumed to be uniform. A number of experimental 
measurements (refs. 2 to 5), using both pressure sensors and laser anemometers, 
has shown that multiple shock waves are a common occurrence in the tip region 
of the blades, especially near the operating point of the compressor. One of 
the frequent patterns (fig. 1) observed in the experimental studies has an 
oblique shock wave at the leading edge of each blade and a nearly normal shock 
wave at the trailing edge. It is that flow which we shall investigate for 
bending and torsional flutter. 

We shall first introduce a model for the mean flow which incorporates the 
two shock waves and modifies the actual blade surfaces to account for three­
dimensional flow effects. There are three mean-flow domains which are modeled 
as either uniform or one-dimensional flow so that the greatest use can be made 
of previous solutions for unsteady duct flow (ref. 1) and flow around an oscil­
lating wedge (ref. 6). The range of validity of the model is estimated and six 
numerical examples are calculated covering the intervals of inlet Mach number 
and stage pressure ratio for which the model is valid. The stability charac­
teristics of the examples are discussed. 



Considerable use is made of the analysis previously developed in 
reference 1 for the flow in a blade passage with a single normal shock wave 
present. Some familiarity with that paper is assumed in parts of the exposi­
tion. The stability analysis of a mean-flow configuration related to those 
treated here and in reference 1 has recently been completed (unpublished data 
by E. Acton, Unsteady Flow in a Supersonic Cascade with Strong Oblique Leading 
Edge Shocks (1982»; it treats the case of a single strong shock wave 
emanating from the blade leading edge. It uses the principal elements of the 
blade model employed here. 

A computer program, TIPS (Two In-Passage Shocks), has been written which 
uses the analysis described in this report to calculate the stability of a flow 
in a cascade. The user provides inlet flow conditions, geometric parameters 
and disturbance characteristics and the program yields corresponding unsteady 
lifts and moments. Contact COSMIC, The University of Georgia, Athens, Georgia 
30602, concerning the availablity of this program. Frank Molls programmed the 
model and supplied the numerical calculations. 

MODEL 

An example of a double-shock configuration observed in an experimental 
rotor (ref. 5) is shown in figure 2 which exhibits static pressure contours 
measured at the blade tips. The dashed line beginning at the leading edge of 
a blade corresponds to an oblique shock wave whose angle is calculated from 
the pressure ratio across the contours. The position of the shock is in good 
agreement with the direction of the contours. A nearly normal shock wave ema­
nates from the trailing edge of the blade. The apparent discrepancy between 
the angle of the oblique shock wave and the small wedge angle of blade at its 
leading edge is attributed in reference 5 to a radial contraction of the flow 
in the blade passage. 

Following the course set in an earlier analysis (ref. 1) we wish to use a 
model of the flow in the blade passage which represents the main features of 
the mean flow to a good approximation and at the same time keeps the equations 
governing the unsteady motion as amenable to solution as possible. In figure 
3 the incremental rotor annulus at the blade tips has been unrolled into a 
two-dimensional cascade. In it a two-dimensional contraction is imposed by 
the presence of a wedge at the leading edge. The wedge angle, & , while much 
larger than the metal angle of the blade, correctly accounts for the shock 
angle, x. Where the oblique shock intersects the lower blade, the surface of 
the blade is turned parallel to the flow behind the shock. Consequently the 
shock is not reflected, in accordance with the observed flow in figure 2. 

In order to terminate the blade in a small thickness comparable to the 
combined thicknesses of the upper- and lower-surface boundary layers, the upper 
surface of the blade after its intersection with the oblique shock wave is 
represented by a (cub1c) function f u(x3) whose initial direction is that 
of the turned flow, 33, and whose final slope corresponds to the exit 
angle, 32, which is a free parameter of the blade design. Likewise, the 
lower surface over the same range of the coordinate x3 is designated by 
the function f~(x3). The shock wave terminating this region of flow is 
normal to the exit direction, u2. The last segment of the lower surface 
along which the flow is subsonic following the second shock wave, is parallel 
to the exit flow direction. 
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The mean flow used 1n th1s model 1s un1form 1n the entrance reg10n, the 
tr1angular reg10n 1mmed1ately beh1nd the ob11que shock wave and 1n the ex1t 
reg10n beh1nd the normal shock wave. Solut10ns to the unsteady equat10ns of 
mot10n can, therefore, be obta1ned analytically 1n those reg10ns. The flow in 
the channel between the curv111near surfaces 1s assumed to be one-d1mens10nal 
so that the unsteady mot10n 1n that reg10n may be obta1ned subject to a slowly­
vary1ng flow approx1mat10n. 

The un1t of length 1n the model 1s the length of the blade as measured 1n 
the turned flow d1rect10n B3' The chord length 1s, then, 

2. c = ( _1l1»1 cos Xo 'J3 

1 

other lengths are 

I + 
S = 2.c cos Bl/sol, s 

+ s3 = s s1n(x - &)/s1n x, s3 

+ ds = 1 - (s + S cot x) cos &, 2.b (1 - ds) tan & 

(Here "sol" denotes the so11d1ty of the blade row.) 

The tra111ng-edge values of the boundary-layer d1splacements are spec1f1ed 
1n fract10ns &u and &2. of the base w1dth, 2.b, of a blade w1th un1d1rec­
t10nal flow after the ob11que shock. The chord 1ntersects the base at a 
fract10n v of 1ts w1dth measured from the lower s1de. 

sol s1n x s1n (xo - B~) 
v = I 

cos(Bl - x) s1n & 

The two cub1c funct10ns def1n1ng the curved port10ns of the blade surface 
are 

and 

The cross-sect10nal area of the blade passage per un1t blade he1ght of the 
cascade 1s 
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In these expressions, 

iU = ib(l - v - 6U) 

iC I I I r + sin2(B~ 
I COS2(B~ - B~)J ii = - sol sin 62 sin(B2 - 63) + ib 6u - 63) - 6i 

and 

I I 

di = ds - s2 sin(B2 - B3) 

A convenient but not necessary assumption in this model is that the 
elastic axis for torsion lies on the chord at some fraction f of its length 
measured from the leading edge. Then the distance do of the elastic axis 
from the origin of xl in the inlet direction is 

+ do = -s + f[cos 6 + vel - ds ) sin 0 tan 6] 

which reduces to the value appropriate for a system of infinitesimally thin 
blades (ref. 1) when 6 = O. 

In region 2 the corresponding moment arm of the elastic axis is 

When allowance for the trailing-edge boundary-layer thicknesses is made, the 
blade separation and stagger lengths are 

I I I 

s2 = ic cos B2/s01 - (6u + 0i)ib cos(B2 - B3), 

At any entrance Mach number Ml and for any cascade geometry this model 
is valid if the static pressure ratio P2l across the blade row is not so low 
that the oblique shock fails to intersect the adjacent blade or so high that 
the velocity behind this shock is subsonic. Figure 4 shows the region of 
validity in the Ml, P2l plane for a cascade of solidity 1.4, stagger 
angle 62° and entrance-flow angle 67°.' To the left of the valid area is the 
region of low pressure ratio in which the flow through the blade passage is 

'The blades are untapered at the trailing edge and take the shape indi­
cated by the dashed lines in figure 3. 

4 



likely to be entirely supersonic. To the right is the region of high pressure 
ratio in which a strong oblique shock is a likely configuration. 

In general, even though the blades are tapered near the trailing edge to 
more nearly approximate the shape of real blades, there is a finite trailing­
edge thickness, corresponding to a boundary-layer displacement thickness, and 
a wake of finite thickness as well. It is assumed, in keeping with the bound­
ary conditions on the infinitesimally thin wake in reference 1, that the 
pressure and normal component of velocity are also continuous across the wake 
of the present model. 

ANALYSIS 

The unsteady flow produced by the oscillating blade row in the supersonic 
region upstream of the leading shock has been treated in reference 1 for the 
case where there is a single normal shock at the leading edge of each blade. 
In the present double-shock configuration the upstream supersonic region 
extends an additional length s cot x along the upper blade surface before 
the oblique shock from the adjacent blade touches down. The upstream solution 
is the same as in reference 1 and extends without modification through this 
region up to the leading shock. Likewise, the unsteady solution in the sub­
sonic flow region 2 downstream of the normal shock wave is, with slight modi­
fication, the same as the downstream subsonic solution of the single-shock 
analysis of reference 1. The main new features of the present model are the 
oblique shock and the supersonic region between this shock and the trailing 
normal shock. 

Boundary Conditions on the Blade 

With the bending motion of amplitude Ho assumed normal to the entrance­
region surface and with x = do the projection of the elastic axis upon that 
surface, the amplitude of the upper surface oscillation of the zeroth blade is 

W, = H + A (x - d ) o 0 0 

The motion of the lower surface of the same blade is 

(Subscript 1 refers to the entrance flow, subscript 3 to the region behind the 
oblique shock. Subscript 2 is reserved for the subsonic exit region. See 
fig. 3.) 

As indicated in reference 7, the most general blade motion 
position of motions with constant interblade phase angle, 0, so 
consider motions of this type. Then in the cascade, the motion 
blade is determined by 

( 
+ ) ina V3 x3 + ns 3'Y3 + n(1b + s3) = e V3(x3'Y3) 

5 
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where V3 can be any of the physical variables. In particular, on the lower 
surface of the first blade, 

W3 = eio[Ho cos & + Ao(x3 + ~s3 - f)] 
(We shall see later that there is an additional motion with ~ = cot(x - &) 
associated with the perturbation of shock position. However, it does not enter 
into the shock relations which are the immediate concern of this discussion.) 

Conditions on the Oblique Shock Wave 

As discussed in reference 1, the pressure disturbances generated in the 
upstream supersonic region distort the oblique shock and may be transmitted by 
it, but not reflected, i.e., the flow region 1 is unaffected by the shock. 
The perturbed Rankine-Hugoniot equations have been given by Carrier (ref. 6) 
for an oblique shock in a disturbance-free upstream flow, and by Moore (ref. 8) 
when there are upstream disturbances. A particular case of the latter is given 
in reference 1 for the normal shock wave. It also applies to oblique shock 
waves when the coordinates move with the component of the mean velocity paral­
lel to the shock. The dimensionless time derivative in the moving coordinates 
transforms as 

a 1 (a a ~ _ 1 Os 
at ~ sin x at - cos x ail = sin x ot 

since time was normalized by c~l sin x. With the displacement of the shock 
normal from its mean position denoted by xs(y,t), the pressure perturbation by 
pi, the disturbance normal and tangent velocities by u(n) and u(t), respec­
tively, then the shock conditions, to first order in the disturbance quan­
tHies, are 

u(n) 
3 

°sxs _[(P - l)M~ sin
2
x - 2]~(n) ° x J ( ,) 

ot - 2 2 1 - ~t s + 2 ;, : 1 s t n x 
(lJ + 1) M, sin x .. 

U(t) u(t) 
3 - 1 

0//3 sin(x - &)] 
%'1 sin x 

ax 
s ay sin x 
s 

where, as indicated previously, the subscripts' and 3 refer to conditions 
upstream and downstream of the shock. When these relations are expressed in 
terms of the streamwise and cross-stream velocities in the upstream and post 
shock flows 
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u1 = u~n} sin x - u~t} cos x, v1 = u~t} sin x + u~n} cos x 

U (n) s~ ( ~) u(t} cos( ~} v = u
3
(t} s~n(x - ~} + u

3
(n} cos(x - ~) 3 = u3 In x - Q - 3 x - Q, 3 I Q Q 

they take the form 

(2 ) 

au 0 x axs 
u3 + 1 ~.2.......i+ K2 ay = Cl21 P1 + Cl22u1 + Cl23 v1 2 OJ/3 Dt s 

(3 ) 

'111 Os Xs ax s 
v3 + 13 (jj" Dt + K3 -a - = Cl31 P1 + Cl32u1 + Cl33v1 3 Ys 

(4 ) 

where we have equated tangential velocities at the shock wave to obtain 
cos(x - &}/cos x =~1/qr3' The coefficients 1m' Km, Clpq are the functions 
of the entrance Mach number and shock angle listed in appendix A. The quan­
tities on the right side are known from the solution for the unsteady flow in 
the upstream supersonic region which, as we indicated, is independent of the 
downstream flow. 

Solution in Region 3 

Carrier (ref. 6) developed the solution to the small amplitude, unsteady 
flow behind a shock wave attached to a wedge that is oscillating about its apex 
as Bessel series for the unsteady potential, vorticity and shock displacement. 
We adapt his solution to the region behind the oblique shock by generalizing 
the wedge motion and replacing a portion of the potential series representing 
the effect of the boundary condition on the blade by a form characteristic of 
duct solutions as, for example, in reference 1. The potential, stream func­
tion, and shock displacement in region 3 between the zeroth blade and the first 
blade (figure 3) are, in our notation, 

( 5) 

( 6) 
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where 

r2 2 2 Y ) 2 = (x3 + as 3) - B3 (s3 - 3 

e = tanh -1[ 63('3 - Y3>j 
(x3 + as 3) 

The potential ~b is given by 

~b = iWl [Ho cos 0 + Ao(x3 + 1 - d s - f)] f 1 (Y3 ;M3w3) 

in which the functions fl(Y;w) and f2(Y'w) are those already defined for 
region 1 in reference 1 and represent duct effects having contributions from 
all the blades. We have followed Van Dyke (ref. 9) in adding to the series 
for the shock displacement the term 

DoJo[k3~a2 - B; (s3 - Y3) ] 

which describes the change in shock position due to the motion of the blade 
leading edge. When the blade has both a plunging motion and an oscillation 
around an axis not at the apex, 

Do = eiO[Ho cos x - Ao~cf cos(x + Xo - a~~ 
The perturbation pressure and velocities are obtained from the velocity 

potential and stream function from the relations 

(7) 

( 8) 

s (a~3 a~3) a~3 a'l'3 a~3 a'l'3 
P3 = - s3 \-at + aX

3 
' u3 = aX

3 
+ aY3' v3 = aY

3 
- aX

3 (9 ) 

From the first of these and the periodicity relation (1) the pressure on the 
blade surface behind the oblique shock wave is 
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~ ~ (0), e -1 as { f. 
X JnLk3(X3 + 1 - ds~ - s3 (o)3LHo cos 6 

+ Ao(x3 + 1 - ds + s; - OJ + lAo} fl(s3;M3~3) 

The coefficients A, C ,Dn remaining unspecified in the solutions (5), 
n n 

(6), (7) must be determined from the shock conditions (2), (3), (4) in a manner 
to be described below. 

For convenience in the later computation of the lift and moment on the 
blade we record here the contributions to those quantities obtained from the 
foregoing expression for the pressure. 

The lift developed on the blade surface from the leading edge to 
+ 

x3 -s3 is 

where 

9 



and 

,. 
The evaluation of ~n is made by expanding the Bessel function in its power 
series at n = 0 and integrating to obtain a sum of incomplete gamma functions 
y(2~ + n + 1,-1M3k3aS3}. 

Likewise, the moment contributed by this blade surface, measured about the 
leading edge, is 

where 

upstream Shock Quantities 

The unsteady pressures and velocities ahead of the shock wave can be 
obtained from reference 1 as 
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- (a)~ [HO + Ao(x - dO)]f,(Y;M,(a),) 

- 1Ao[a!, (a)~f,(Y;M,(a),) + (a)~f2(Y;M,(a),~ 

1(a)t ~ [ 1(M,k, - ~n)x + 1(M,k'+~n)x -J (n!Y) 
u,e = ~ e On + e On cos s + 1Ao(a),f,(y;M,(a),) 

n=O 

, L r. 1 
v, = 1(a), ay ~,(X,y) + u,(X,y~ 

In order to br1ng these quant1t1es 1nto a form appropr1ate for the shock con­

d1t10ns we wr1te them 1n terms of the argument ~ = k3 ,{a2 - B~ (s3 - Y3) of 
Carr1er ' s so'ut10n and transform them to Besse' series. 

On the shock locus 
x = (s - y)cot x 

y 

an argument of the functions f, and f2 of ~b becomes 

where 

± ... 12 2 
~M,(a),(y - s) = q,k3 Ya - 63 (s3 - Y3) + ak3M3(s3 - Y3) 

+ q- = 
1 

M (a) 
± ~ sin x + M3 cos(x - &) 

3 

If the generat1ng funct10n for the Bessel funct1ons, and 1ts parametr1c 
der1vative, 

CD 

e-1Mn 
= Jo(n) + Lit" + (-t)-"IJ,,(n), t = -1(M + 6), 6 = v'M2 - , 

,,= , 

~ +1Mn Ine t = 1(M + B) 



are 1ntroduced, 1t follows that 

wHh 

and that 

"'1 - M~ S1n
2
(x - cS) :t.1M1w1(y-s) 

1k3 cos x xe 

Consequently, the functions f1' f2' appearing in ~b, can be transformed to 
Bessel ser1es by us1ng the 1dent1t1es 

12 



The quant1t1 es (l)e± (l)e± (l)~! (l)~! are defined in appendix B.2 
m' m' m' m 

The Fourier cosine series appearing in each of Pl. ul. and vl is trans­
formed by again introducing coordinates of region 3 to obtain 

[Mlkl + },,~l)J x - ";Y = r*~ + ak3M3(s3 - Y3) 

Then. for example. in the pressure the Fourier series becomes 

~ 1 r M k -}" (l H x 1 r M k +)" ( 1 )1 x Ir ~ 
~ e ~ 1 1 n J R~ + e ~ 1 1 n J R~ cos \D;Yj 

n=O 

We approximate the summation in this last form by a least-squares fit to a 
polynomial of order 50. say. 

2The functions fl. f2 and expressions involving them are also listed in 
appendix B. 
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50 

LSJ1( 1) (s)m 
m=O m 2 

The polynomial is, in turn, converted to a Bessel series by using Gegenbauer's 
expansion (ref. 10) 

2n)r(p + n) J (z) 
n! lJ+2n 

with the result for the Fourier series in the pressure p, 

The alternate expression for the upstream pressure for application in the shock 
relations is, then, 

;0 r + (l )e-+ 
- e ~ n + Mls 

Q) 

= eiak3M3(S3-Y3) ~ In(~) (l)~~l) (10) 

n=O 

and similarly for the velocity fluctuations 
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u e1wt 
1 

v e1wt 
1 

+ 1A o 

[nl2] 

Recursion Relations 

(11) 

(12 ) 

To illustrate the method of preparing the downstream quantities for sub­
stitution into the shock relations (2), (3), (4) we compute the pressure along 
the oblique shock wave in its proper form. 
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From equations (5) and (9) 

By employing the relations 

cosh e, sinh e 
r 

and the derivative of the Bessel function we obtain for the derivative in the 
first term of P3, 

+ 1 la] 
Introducing a new summation index N = n - 1 in the second term in the brace, 
N = n + 1 in the third term, and adding the time-derivative term yields 

CD 

x Lcosh ne I n(k3r}[An_l (1 - 6nO )(1 - 6nl } - ~: An{l - 6nO } - An+ll 
n=O J 

For the term involving ~b we again use the generating function of the 
Bessel functions to obtain 
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and, on the shock wave, 

ik3 "';1 - M; sin
2
(x - 6) :t.iM3(a)3(Y3-s3) 

cos(x - 6) (x3 + as 3)e 

From these expressions all of the functions of x3 and Y3 in the potential 
~b may be represented as expansions in Bessel functions in the same way as the 
corresponding quantities in the upstream region. After considerable manipula­
tion one can write 

with (3)~ (l)defined as in appendix c. Thus, on the oblique shock where 
n 

- ~: An(l - &nO) - An. ~ • (3k~ 1) 

Likewise, the unsteady velocities and shock displacement are given by 
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(
- -) (3) (3) + An+ 1 + An_1 sinh neO + ~n 

+ cO'(x - 6)~ - M~ ,1n2
(x - 6)(On+1 - On_1)1 

We can now substitute the expressions for P1, u1, P3, u3, v3 into the 
shock relations (2), (3), (4), multiply the first equation by 2s3M3/sk3, the 
other two by 2/k3, and by equating coefficients of the Bessel functions of 

like order obtain the following recursion relations for the An' Cn' and On: 

where 

JI. c(n+1) 
ij j 

C(n+1 ) 
j = 

A n-1 
C n-1 

An+ 1 

Cn+ 1 

°n+ 1 

c(n-1) 
j 

(1 + 0n1>'0n_1 

18 

ro c(n-1) _ £?len) 
+ ..z.ij j - i 

c(n) 
j 

!?I(n) 
i 

= 

2S 3M3 R(l) 
sk

3 
n 

-.1. R(2) 
k3 n 

-.1. R(3) 
k3 n 

(13) 



The matrices ~ij' JV;j' ~j and the vector al~1) are defined in appendix C. 
The recursion system is entered at n = 0 with 

and with Do given by equation (8). 

Channel Region 

The wedge-flow solution is valid up to the point where the shock wave in­
tersects the adjacent blade. At the intersection the flow is at the angle B3 
(see fig. 3). We construct a perpendicular to the blade at this point (in the 
Y3-direction) and designate the region downstream of it up to the normal shock 
wave as the "channel region". The passage diverges slowly from its initial 
width S(x3} = s3 to its final value S(x3} = s2. Provided dS(x3}/dx3« 1, 
it is appropriate to represent the mean flow as one-dimensional, i.e., 
~3 =~3(x3}· For the unsteady flow also to be slowly varying it is nec­
essary that the wavelength of the disturbance A - S(x3}. 

The slowly varying approximation for the unsteady flow is a straight 
channel solution modified to account for the slowly varying channel width. The 
potential and stream function respectively, are 

where the parameters M3, ~3 = ~c/~3' k3 = ~3M3/B~, and 

A~3} = ';k~ + (nff/B3S}2 vary slowly with x3. 

+ ~ s 

(14) 

(15) 

The additional potential ~s, appearing in equation (14), arises from 
the motion of the upper blade surface in following the disturbance of the 
oblique shock wave. In figure 5 the dashed line represents the displaced 
position of the model wall due to a displacement xs(O) of the oblique shock 
wave from its mean position. The displacement of the wall in region 3 normal 
to itself is 
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where from equat10n (7), 

The upwash cond1t10n on the blade, 

v = - 1(.0) W s 1 s 

1s satisf1ed, along w1th the convect1ve wave equat10n governing the flow 
(eq. (2.2), ref. 1) by 

COS[M3(0)(.o)3(0)(S3 - Y3)] 
~s = - 1(.o)lWs (.o)3(0)M3(0) s1n[M3(0)(.o)3(0)s3] 

(16 ) 

In order to f1nd the expans10n constants T~, B~3) in equat10ns (14), 
(15) we match the latter quant1t1es to the wedge solution (5), (6) at x3 = O. 
To expedite th1s we can, w1thout affecting P3, u3, v3, replace ~3 and ~3 
1n the wedge region by 

The vort1c1ty, ~3, contributes no normal velocity at the blade surface, a 
character1stic shared by equation (15). 
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In order to match pressures ~t x3 = 0, 1t 1s necessary to match both ~3 
and a~/ax3. Equat1ng ~3 and ~3 at x3 = 0, mult1ply1ng by s1n m~Y3/s3' 
1ntegrat1ng and employ1ng orthogona11ty propert1es of the tr1gonometr1c func­
t10ns y1elds 

where 

T; + T; = -S3-(-1-=~=---O -) (1,,- 112 - 113) 
mo 

( 17) 

- 1w3e1k3M3S3Q C 
2 2 w3 + (m~/s3) 

The 1ntegral dn,m appear1ng 1n III 1s evaluated 1n append1x D. 

S1m1larly, match1ng a~/ax3 and a~/ax3 y1elds 

where 

t a 

and 

To evaluate 121 we use 

s1nh e 
r 

21 

(J + J ) ,n-l n+l 

(18 ) 



in the second term of the integrand, and 

in the third term, and 

to obtain 

ar I 1 ax- = cosh e, I n = 2 
3 

6 - J \ 
\ n-l n+ 1) 

Introducing a new summation index N, = n - 1 in the second term of the inte­
grand and N2 = n + 1 in the third term leads to 

00 

1k3M3s3a k3 ~ ( ~ ~ ~ 
I21 = e ~ ~ 21M3An + An+l - An_1 An,m 

n= 1 

When equations (16) and (17) are combined one finds 

Am,n 

22 
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Equating vort1c1t1es ~3 and ~3 at x3 = 0, multiplying by 
sin m~Y3/s3 = (_l)m+l s1n(s3 - Y3)m~/s3 and integrating across the channel 
yields 

or 

The integral 

is evaluated in appendix D. 

The pressure obtained from the potential ~3 of equation (14) is, on the 
upper surface of the blade, 
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where 

On the lower surface 

(3) -
+ R n 
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~ + w1th x3 = x3 - ds + s3· In ca1cu1at1ng the 11fts from these pressures we must 
allow for the d1fference 1n the slope of the curved blade surface 1n reg10n 3 
and the slope of the blade surface 1n reg10n 1. On the upper surface the 
contr1but1on to the 11ft 1s 

I 

cos 0 + f u(x3) s1n 0 
= 

~ 1 + [f ~(X3)]2 
Oef1n1ng the moment w1th respect to the tra111ng edge, we have 

(X3 - ds)P3(x3,O+)dx3 

~1 + [f~(X3)]2 
On the lower surface of the blade we also allow for the altered length of 

the channel (d l versus ds) and obta1n for the 11ft 
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I 

COS 0 + f p(x3) sino 

~l + [f~(X3)]2 
The corresponding moment about the end of the channel is 

. r:;+d
s X3P(X3.0-)(:~jldX3 (+dS 

P3(x3,O-)dx3 (::) M32 + (s; - d3) + 

~l + [f~(X3)]2 ~+ I 2 
-s3 s3 [fR,(x3)] 

Region 2 

The solution for the unsteady flow in the subsonic region that follows 
the normal shock wave proceeds as in reference 1 after allowing for the down­
stream displacement of the shock to the trailing edge of the blade and includ­
ing the effects of upstream vorticity. The downstream pressure is still given 
by equations (G1) and (G2) of reference 1, but now the coefficients B~2) of a 
downstream propagating wave are determined by the equation 

.-£ F n 

+ +(1-s -£: ) 
(2) in 2 0 

= Bn e s2 1 + 0 n,o 

rather than by equation (3.33) of reference 1. The small quantity £:0 repre­
sents the length of a nominal channel between the shock position and the end of 

+ 
the blade. The quantities a~, Kmn remain as defined in reference 1, and Fn 
is defined in appendix E. 

The pressure on the blade surface in region 2 is given by equations (G1) 
and (G2) of reference 1. The lift and moment derived from them are included 
in appendix E. 

Shock Lifts and Moments 

The unsteady displacements of the two shock waves where they impinge upon 
the blade surfaces contribute to the unsteady lifts and moments by shifting the 
boundary between adjacent regions of the flow and thereby altering the domain 
of influence of the mean pressures, as discussed in reference 1. The oblique 
shock, for example, forms the boundary between regions 1 and 3 on the top of 
the blade. From figure 5 it can be seen that xs(O)/sin x is the penetration 

of region 1 into region 3, for which (P~O) - p~O»Xs(O)/sin x is a correc­
tion to the downward pressure force normal to the surface in region 1. Since 
the dimensionless pressure difference is 
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• 

[1 _ tan(x - 0)] 
tan x 

1t follows from equat10n (18) that the 11ft due to the ob11que shock 1s 

Jf(l) = s1n 0 Os e1aM3(O)k3(O)S3 
s sin x aS 3 

The corresponding moment is 

~(1) = (s cot x - d )Jf(l) 
s 0 s 

where do is the value of x at which the elastic axis projects upon the sur­
face in region 1. 

The expression for the lift due to the normal shock is similar to that 
given in reference 1 with modif1cations required for the downstream displace­
ment of the shock and its impingement on the lower surface rather than the 
upper: 

The moment is 

RESULTS AND DISCUSSION 

A set of six blades which are examples of the two-shock model is shown in 
figure 6. For all blades the solidity 1s 1.4, the stagger angle is 62° and 
the entrance angle is 67°. The exit angle is 65° except in the first case for 
which it is 63°. The initial choices of entrance Mach number, M1, and pressure 
ratios, P21, were made to provide a distribution of flow conditions over the 
shaded reg10n of f1gure 4. S1nce f1gure 4 was constructed for the simplest 
geometry having straight surfaces and a boat-tail tra1ling edge (dashed lines 
in fig. 6) it is necessary to recompute the pressure ratio after the choice of 
boundary-layer thickness and exit angle to account for the isentropic expansion 
of the gas in the channel and the strengthened normal shock wave. The expan­
sion and the enhanced normal shock strength tend to counteract each other; thus 
the actual pressure ratios stay within 15 percent of the initial estimate and 
are sometimes much closer . 
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Each blade has been given a trailing-edge thickness to represent the dis­
placement effect of surface boundary layers. The displacement thickness on 
the upper surface is denoted by ou~b and the displacement thickness on the 
lower surface by o~lb. The values for 0u and o~ were chosen to yield a 
combined thickness of about 10 percent of ~b. In one case 0u = ol and in 
two cases o~ = O. In the remaining three blades o~ is actually negative, 
thereby reducing blade thickness, but simultaneously increasing the effective 
stagger angle. This suggests that in some applications it may be desirable to 
begin the model design with an initially undervalued stagger angle and to use 
negative boundary-layer thickness and the exit angle to bring it up to the 
desired value. 

Some representative pressure distributions on the blade surfaces are shown 
in figures 7 to 12, for blades pitching about their centers (f = 0.5). The 
pressures for four interblade phase angles are given in each case. On the 
upper surface, the pressures in the entrance region exhibit the same charac­
teristics that occur in the normal-shock configuration of reference 1, namely, 
that they are relatively uniform and low in magnitude over the full length of 
the surface -s+ < x < s cot x except, perhaps, for phase angles of ~/2 or ~, 
or at high frequency. The pressures on the additional surface 0 < x < s cot x 
now included in the entrance region have no unusual characteristics. In the 
second supersonic region behind the oblique shock wave, however, the pressures 
are sharply peaked, a characteristics observed previously (ref. 1) in the sub­
sonic region behind a normal shock wave, and now seen to be feature of the un­
steady flow behind a weak shock as well. These peaks appear to be even more 
predominant at low frequencies than at high. 

On the lower surface, as well, the unsteady pressure behind the oblique 
shock wave has generally several times the magnitude of the pressure in the 
entrance region, although it is likely to be more uniform in spatial distribu­
tion except at the high frequency. At the point on the blade surface where 
the curved surface of the channel begins, the pressures are usually strongly 
affected. There is often a sharp reversal in the magnitude of the pressure 
which then falls to a lower magnitude at the end of the channel, just preceding 
the normal shock wave. 

When the disturbances are transmitted through the second, normal, shock 
wave there is once again apt to be an amplification of their strength, espe­
cially when the blades are out of phase (0 = ~/2) or of opposing phase (0 = ~). 
When the blades are moving in phase (0 = 0) the pressure amplitude in the sub­
sonic region is likely to be low. In general, however, the effect of succes­
sive shock waves appears to compound, thus raising the disturbance magnitude 
to a high level. 

The dimensionless lifts and moments in regions 2 and 3 have been derived 
or recorded in the Analysis section. The lift and moment in region 1 can be 
obtained from the pressures given in equations (01) and (02) of reference 1. 
They are defined and recorded here in appendix F. The separate lift forces 
when added vectoria11y and referred to the normal of the entrance-region sur­
face yield for the total lift 

L ~ (L33 + L32 - L32 ) cos 0 + L21 COS(B~ - B~) - L1l + L~l) + L~2) COS(B~ - B~) 

28 



b1kew1se, after each moment M1j has been translated to a corresponding moment 
M1j referred to the elastic aXls, the complete moment is given by 

The total complex moment M is plotted for each of the blade models at three 
reduced frequencies, Wl, in figures 13 to 18. When Jm M in these figures 
is negative, the blade is receiving energy from the flow and flutter is the 
result. The 1nterb1ade phase angle a is the parameter along the curves. 
Black dots denote an interval of ~/8 in a. 

In all cases the figures indicate that there is instability in torsion at 
the moderate and low frequencies but in only one case at the high frequency. 
The exception is blade 4 which has the largest thickness ratio of all the 
blades. This progression to greater instability as the frequency is decreased 
was also the characteristic of the cascade with one normal shock wave in 
reference 1. The instability is more apparent in the double shock case with 
flow at the intermediate frequency being decisively unstable. The increased 
complication of the flow in the double-shock model is reflected in the more 
complicated stability figure than for the single-shock flow. The number of 
loops and crossings has increased and the moment wanders more erratically in 
the complex plane. 

The complex lifts are displayed in figures 19 to 24. A negative Jm L 
means that the blade is receiving energy from the flow and there is instability 
in bending. Qualitatively, the trend towards instability in bending at lower 
frequencies is the same as in torsion. Blade 4 is seen to be the most stable 
of the six examples, and, again, the figures display considerably more struc­
ture than in the single-shock model. 

CONCLUDING REMARKS 

The model for a supersonic blade row with shock waves which has been pre­
sented here has extended the operating range of turbomach1nery for which 
stability calculations can be made. Based on the single geometry explored 
here, the model is appropriate at Ml ~ 1.3 at the lowest applicable stage 
pressure ratio and, for any pressure ratio, at higher entrance Mach numbers 
than the single shock model. The calculations for specific cases show that in 
this operating region the presence of shock waves has a strong influence on 
the unsteady flow and that the tendency for instability at low frequencies 
observed in the single-shock model of reference 1 persists in the two-shock 
model. Thickness ratio appears to have significant influence on stability of 
the flow at high frequencies. 
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APPENDIX A - COEFFICIENTS OF SHOCK CONDITIONS 

4 s1n x cos x 
(~ + 1) cos(x - 6) 

- "'0 cos X 

12 = 

"'0 = 

- '" 0 

2(M2 
1 

(~ + 

tan(x - 6) cos X 

s1n2x + 1) 

1)M2 2 
1 s1n x 

K2 = s1n X cos(x - 6) [1 - tan{x - 6>] tan X 

K3 = - s1n X s1n(x - 6) [1 - tan{ X - 6)] 
tan X 

2 
~ + 1 s1n2x s1n X - 4 

~ + 1 "'12 = ~ + 1 "'13 

"'22 = - '" s1n x s1n(x - 6) + cos 6 
0 

"'23 = - '" cos x s1n(x - 6) - s1n 6 a 

"'32 = - '" s1n X COS(X - 6) + s1n 6 
0 

"'33 = - '" cos X COS(X - 6) + cos 6 
0 
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APPENDIX B - FUNCTIONS IN THE UPSTREAM SHOCK QUANTITIES 

M1w1 
± -k--- sin w + M3 cos(x - 0) 

q± = _ _~3-;:::::::============-_ 
vf, -M~ s1n2(~ - &) 

(1 )e± _ ;m 
m - 2 

(1)- ± ;m 
e = 2( 1 + 0 ) 

rna 

(l )'l'± = 
m-1 cos x m; 

m 
2k3vf, 2 2 - M3 s; n (x -

(l)~ = cos X m;m-l 
m 

2k3vf, M2 2 
- 3 sin (w -

0) 

0) 
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APPENDIX C - MATRICES OF THE RECURSION RELATIONS 

2 2 
4 cos x tan(x - 6) 

A1 = ~ + 1 
2 (M1 s1n X + 1) cos X 

A2 = - 2 2 a = cot(X - 6) 

..,//= 

.%= 

!L'= 

(2.)£i'(1) 
n 

(~ + 1)n3M1 s1n X 

- ~1 -2 
-M3 cosh neo 0 n3 - m3A1 

t 2 13 2 - n-cosh neo -n3 1 - m3 (m3A2 a - 3 

-133 s1nh neo -~1 -2 -2 -0 - m3 (n3A2 - m3A3)/M3 

-21 cosh neo 0 -2 21( 1 - m3)A1 

2iM3 cosh neo - 21a/M3 -2i [(1 - m~)m3A2 + Tl3A3] 1M3 

0 
2 

- 2iB3/M3 - [ -2 -- 2in3 (' - m3)A2 - m3A3 ] 

-M3 cosh neo 0 -M - n3 1 - m3 A, 

- cosh neo _~a2 - B~ Tl3 .f, -m~ (m3A2 + A3) 

-133 sinh 0 ~1 -2 -2 -neo - m3 (n3A2 - m3A3) 

3 
R(1) __ ~ (1) -u(j) (3) -u(1) 

LJ Or.;j ~n - ~n 
n J= 1 

i=1,2,3 
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[n/2] 

L: 
(1 ) y( j ) m = 0 

= n 
~(j) 

0 

I (j) 
d n- 2m 

n ¢ 0 

( 3) 2'n (j) :: 0 

[
M tan x (1)i+ + (1)i-

1 1 n n 

- .10 ~; (')e~ + S.M.(.)e~)] 

fn(n - m - l)!] 
m! ' 

n ¢ 0 
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APPENDIX D - INTEGRALS ARISING IN THE MATCHING PROCESS 

In the integration across the blade passage at x3 a there arise 
integrals of the type 

where 

Letting 

puts these integrals in the form 

In succession one expands the Bessel function in its power ser~es. translates 
to a new coordinate n = n ± x and converts factors (n + 2X) to their 
binomial expansion (x = b/p). Then one has integrals of a standard type 

It follows that 

< b/2) 2k+m 
(m + k)! 

<-2)j<m + 2k - j)! 
(k-j)!j! 

[ k + < m-j - n] 
2 [ .1 2r+ 1 

x ~ <_nr(l + p)m+2k-j-2r-l - <-nnJ(L) 
~ (m + 2k - j - 2r - l)! n~ 
r=O 

The end quantity desired is 
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~ (~m+.n + ~m-.n) ~ (b/2)2k+m ~ (-2)j rm+2k_j ~.n == - - = ~ (m + k)! ~ (k - j)! j! 
3 2S 3 k=O j=O 

[m+2k2j-lj 

= ~ (-l{(m + 2k - j)! (}J/n'll')2r+l 
rm+2k _j - ~ (m + 2k - j - 2r - l)! 

r=O 

x [(1 + p>m+2k-j-2r-1 _ (1 _ p>m+2k-j -2r-1] 

To put ~m.n 1n a form conven1ent for calculat10ns we f1rst 1ntroduce a 
new summat10n 1ndex ~ = k - j and sum over all nonnegat1ve values of both ~ 
and j. In the ~,j matr1x we construct a f1nal 1ndex k = 2~ + j wh1ch sums 
over all nonnegat1ve values w1th 0 ~ ~ ~ [k/2]. Then 

[~ ~ k! (_l)r (lL
n
'll'\2r+1(1 + lJ)k-2r-l 

= ~ (k - 2r - l)! ~ ) 
r=O 

[j/2] 

=L (b/2)m+2j-2k 2j -2k 
(m + j - k)! k! (j - 2k)! 

k=O 

for the case n = 0, 

rk(±lJ,n'll') (1 + p)k+l 
n'll' ± lJ(k + 1) 

Another quant1ty ar1s1ng from the 1ntegrat1on across the blade passage 1s 
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n m 1:k! -s3(-1) i 1 
= 2 (k + m)! 

k=O 

x [r 
ak3(O)S3 

a = M3(O) 

B~ = M~ - 1, 

y is the incomplete gamma function. 

(2k + m + 1, a ~ nll') 

(a + nll')2k+m+l 

a = cot(x - IS) 
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APPENDIX E - EFFECTS OF UPSTREAM VORTICITY AND CHANGED 
SHOCK LOCATION ON SOLUTION IN SUBSONIC REGION 

Equation (3.33) of reference 1 must be modified to account for the 
presence of vorticity upstream of the normal shock wave and for the altered 
position of the shock wave. 

If vorticity Wl is present, it affects the derivation of the shock con­
dition (A2) (or (2.18» as given in appendix A of reference'. The expressions for 
vl and a~l/at must be augmented to read 

a~, aWl 
vl = ay - ax ' 

corresponding to the expressions in region 2, 

_ a~2 aW2 a~2 _ ~2) ~ I 

v2 - ay - ax 'at - - ~ P2 , 

aWl 
+­ay 

From these one can form a(v2 - v,)/at, employ Dw/Dt = 0 on both sides of the 
shock wave, and set the expression equal to the time derivative of equation 
(Alc) to obtain. 

When (Ala) and (Alb) are introduced, the augmented version of equation (A2) is 
found: 

] ~ )
2(2 2 2 ~ 2 _, 2 I M, M2 a W2 '1t, a W2 

(Ml + ~ 6,) p, = - (ll +') ifB -2- + -2- --2-
\: II , 2 ay cy 2 at 

4 (2 2) M, a w, a w, 
+(ll+l)- --+--

64 ai at2 
1 

(El) 

When the time differentiations are carried out and the time factor is can­
:e1r.ed. w~ :ave~qu:t)101 corresponding to equation (2.18) of reference 1. 

ay ~2 - \Ml + II + , 61 P~ 

M,M2 a ~2 2 M, a ~, 2 ( )2(2) 4(2) 
'(u+ 1) 6162 al-"'2"'2 +(u+l)(6J al-"'l"'l ( E2) 
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Again in the companion shock relations (eq. (2.17) of ref. 1) we allow for the 
occurrence of upstream vorticity and write 

a~2 a'l'2 
-+-= ax ay 

If 'l'2 is eliminated between (E2) and (E3) by differentiating (E2) with 
respect to y and obtaining the first and third y derivatives of 'l'2 
from (E3), the extra term in 'l'l in the combined equation is 

_ (. + 1) H~ r(M~ M~) a3
'l'1 (2 M~ M~ 2) a'l'l] 

B~ l~~ -B~ ay3 - ,w2 B~ - B~ wl ay-

Using the definition 

and the relations 

we find the vorticity term to be 

_(. + l) (~~2) 2 (:~ _ :D ~i a::~ + t~:l) 2 ::1] 

( E3) 

In reference 1 the region before the normal shock wave was region 1; here 
it is region 3, and we substitute for 'l'l the expression in equation (15) for 
'l'3, evaluated at x3 = ds : 

Substituting M3(d s) for Ml everywhere in the shock condition and introduc-
+ ing the shock position x = 1 - s2 - Co into the expressions for the poten-

tials where they appear in the shock relation, we find the condition on the 

coefficients B~2) of the duct waves in the subsonic region, 
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f. Fn 
s2 1 + IS no 

a±n:: r).,(2)]2 ± 2M k ).,(2) + (k2)2 
~ n 2 2 n \"'3 

The inhomogeneous term Fn has the additional term 

n1f( 1 + 

(E4 ) 

Equation (E4) replaces equation (3.33) of reference 1. In it &0 is the 
length of a nominal duct ahead of the trailing edge in which the flow is sub­
sonic. In the calculations made for this report &0 has been set to 0.01. 

r 1 = 
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= 222 22' 
n 11' /S2 - Mjwj 
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L21 = [': P2 dx, 

1-2s2 

+ H" c(j) 
Wj 0 n 

" Ho = H cos 0 + A (1 - f) o 0 

+ 

M21 
= ;-'2 

+ 1-2s 2 
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There 1s a factor s/s2 appear1ng 1n L21 and M2l wh1ch ar1ses from 
the norma11zat1on of the pressure 1n reg10n 2 and wh1ch merits explanat1on. 
Because time, velocities and pressure are nondimensionalized with respect to 
the chord, the density p, and velocity ~l' whereas the material der1vat1ve in 
region 2 introduces the velocity ~2' the ratio of mass fluxes p~2/Pl~2 
appears in the nond1mens1onal1zat1on of the momentum equation. Where the blade 
passage is of .constant width, as is the case in reference 1, the ratio is 
unity; but when the blade passage varies 1n width, as it does here, the ratio 
is just the reciprocal of the channel w1dths, s/s2. This explains the appear­
ance of the latter ratio in the 11ft and moment as well as the appearance of 
s/s3 in equation (9). 
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APPENDIX F - LIFT AND MOMENT IN REGION , 

2 [- s(cot X - 13,>J 
= - s (13, + cot x> ~ f, (0; M, ("), > Ho + Ao 2 J 

K,(M,k,> 
I + 

KJvn> 

HO - A d o 0 
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s cot x 
M" = 1 + xP, dx 

-s 

-i(A -M k )s 
+ cot x en' , 

e-i(An-M,k,)SB, _ e-i(An-M,k,)s cot x] 
An - M,k, 

i (A +M, k, ) scot xl 
+ cot x e n J 

+ S t 
n=-<XI 

+ U- -n = -
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Schock location determined 
from the LA measurements. 
15 percent span 

Figure l. - Relative Mach number contours measured with the LA at 
15 percent span from the tip (ref. 3) . 

• Direction of rotation 

100% Speed (Near design) 

Figure 2. - Rotor blade tip static pressure contours. Inlet Mach number. l. 493 
(ref. 5), 
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Figure 3. - Blade-passage regions and notation. 

Small shock 
angle 

2 

Strong oblique shock 
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P21 

Figure 4. - Domain of validity of flow model. Solidity· 1.4; stagger 
angle' 6~; entrance-flow angle' 67°. 
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Region 1 

,r- Mean position of shock 
,/ 

Region 3 

Figure 5. - Displacement of blade wall due to incremental change 
in oblique shock position. 

(b) Blade 2: 

Ml"I.6; P2l"2.76; 
6ut b = 0.0042 P 21; 6t = 0; 

~ • 670
: Xo· 6zO: ~. 650

: 

6· 12. 9470 : estimated P21• 2.4. 

Ic) Blade 3: 

Figure 6. - Blade models for six flow conditions. Entrance angle, 6"fl; stagger angle, 620 ; solidity, 1.4. 
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Figure 13. - Moment coefficient for pitching motion about center of blade 1. (MI'!. 4; P21' 2.11.) 
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Figure 18. - Moment coefficient for pitching motion about center of blade 6. (MI·!. 8; P21 " 3.68.) 
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Figure 19. - Lift coefficient for plunging motion of blade 1. (MI· 1. 4; P21' 2.11.) 
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Figure 21. - Lift coefficient for plunging motion of blade 3. (Mi' 1. 6; P21' 2. 81. ) 
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Figure 23. - Lift coefficient for plunging motion of blade 6. (MI' 1. 8; P2I' 3.68. ) 
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Figure 24. - Lift coefficient for plunging motion of blade 5. (M1 = 1. 8; P21 = 3. 61.) 
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