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DECELERATION OF A SUPERSONIC FLOW BEHIND A
CURVED SHOCK WAVE WITH ISOENTROPIC PRECOMPRESSION

V.G. Dulov, V.A. Shchepanovskiy

This study investigates three-dimensional supersonic /72.

flows of an ideal fluid in the neighborhood of bodies formed by

an excision along the streamlines of an axisymmetric flow. The

uneven flow consists of two regions: regions of isoentropic

compression and regions of vortex flow. An exact solution with

variable entropy [i] is used to describe the flow in the vortex

region. In the continuous flow region an approximate solution is

constructed by expanding the solution in a series according to a

small parameter. The effect of excision shape and flow vorticity

on jet compression and the total pressure loss coefficient is

studied.

I. Reference [l] investigates solving axisymmetric equations

for an ideal gas with variable entropy. This flow is described

with a common differential equation for characteristic function

z(h):
.._,,:[_;.-J....':"_.."."'._ . ":.'_i._.,;," _'-'!:.':."';:_::"L_'_''';''".<,_._._,_'n_,-_'_.i,_:'.'._.,.

: . . az'"-}-h. "_-'-b4(cz-- z,' -- _ 2"-F_.--'_-ill(1-- h)"
2_r= ._ Z'

,..- - .. ,.- . ,,. , .4_z(×--I) , .. • ..... ..... ":
I _ " " " l . . " " :" :; ' " b Z _ "T" _, ' h _z z -- h Z=l _ . h ( X .-- h ) . ;; . _;:_ll_i.' .i ; ; . ! . .':[:...... ;..:+,:_'... ._,_... • ....j - . .. .... . . i_.,,....._.;: :. ..._._::.-!;_i:._ii.,_.j..:_.

"'a= h (l --:h).-!-4i×a.(cz--"1) -- z" (1 -F cc__1-- 4(×- 1) [c_×_,i_4.! (1.1)• L _". " • s • . =-- ° -

. : " , ,. _..':., _:'.',. " _..... "_" '_',_-':"z." .. _: ,_ [ ...

= (× 1)-- -7- ='j h, ,_:: i ."."
• i.... _"_ ; . .. '. 3 ] _."__' ' '.' '_ .

b= _'-_ h'-[h(×,_=.-4×=+ 3=:)-- 4=×(= l)], / .,X

._. and total pressure distribution along the streamlines is written
as po = C(_o - _)_ (_, c, and 9o are randonm constants). Here

and further all values are given dimensionless form: enfhalpy h

*Numbers in the margin indicate pagination in the foreign text.
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relates to heat content hm, values with velocity dimensionality

relate to the maximum velocity of steady outflow in a vacuum

%_mm, relates to total Under theseand pressure pressure po.

conditions, stream function 9 should be related to pol/_2h m

where 1 is the characteristic linear dimension.

Flow (1.1) is converted to plane (u, v) of a travel-time

curve and physical plane (x, y) with equations:

y.- Ihz', v "= 1 h z -- u --j- hz' "II "_- Z-- (X M.

h

x = Fdh y .-=]/[ 2 x - I '1",,- ¢ hz',. ' ' x p (1.3)

I, i x- I ×- I-7.+.z'-_ _ hzo_ --;-Z,
F=

l/2-7.
(

In general, it is impossible to make flow (i.i) adjacent /73

to the even flow by means of a curved shock because the solution

is not arbitrary. We will discuss the possibility of joining

(l.l) with an even flow through an intermediate region of uneven

flow _2 (Figure I). If this is set up as an exact problem, it

can only be solved numerically. To construct an analytic,

approximate solution we assume that leading shock AC (See Figure

I) is weak and the flow in D1 is isoentropic. In Q2, we have a

vortex flow. This flow is described with equation (i.I) and is

joined with QI by means of curved shock wave AB, which diffuses

in the uneven flow.



In variables h and _, wave AB (see figure 1) can be

represented as h = H(_). From (1.3), we have the following in

the physical plane:

i ".;7.-i: .' .:_:.,::,_.-_..;_z -_.._,,_: ? _._,,_,_:,...

s Ix= _. c :,...,,:.,: ._. o (1 4)

2(x -- I) (¢,,- ¢Il-= ----_" ,:z /._:,':
y : l],/: _. c H._-'= y (_).:.:.:

We use _ to designate the square of the modulus of velocity in

_I; /9, _x, _2 are the slope of shock wave AB and velocity vectors

_i and _2 to the symmetry axis. Allowing for the fact that the

flow in _I is isoentropic, we can then write the laws of momentum

and energy conservation on wave (1.4) as:

•t "-^!t__;'.+""2x:l:_ Hl(l--li).:sin-(_--O,)._
"): g (,P:.-:':..()l)_-" _ - sin-l- 0 cos ' " "-_::"i:_".._::it:_:..:::..-i-. . P--. _,l _P,:.-:_,,).:".:..: '...... +'.: ": :","', :. x '._ . . : .-.."-;"../._.-,.",:" .:. (1 5 )

. . • • ... . . . . . .... . " --. ._ ,...:,: .'_"' . _ ,: .._,._" _ _ : -, •

The law of conservation of mass is satisfied, since the

coordinate of %P- stream function - is continuous during passage

through the shock. The ratio tg_9 = y'%p/x'9 gives the equation
for the wave

........ _' : . : " !'E.":;_:(_i':_.i:";h_%'_" .....
.... . _<:, .. ._...... ._...,:..q.,:,.,._._,_%._..;:.'_::"_,:.?.. ,._,:--,_.v_,w:.:.:.-,_.:.,::-.._.,._::..,.:._;.i:..:.._,<:.+_-_.,:_:..-"".'" I .-,,1"_ ", " • 'v':,'_7._",!_'_'e:,__;Vi7::_
_':" '" "<_"_ ""..... _" "; '<::_..... '_ _"" '_ " : " ' _" ' | ,, R "tf":.".'.2:'$_._'_!.':_'_i:_*_
(.dH :'i:'_:.''"_ i --.[= ;"-"::" ":'::: ....." " II "'5"- J/_ ! z H . :- . .....

." :r ,t,...f ;...'X . 12H)_:','z-''::<"x--,l_lJr_.:' ( 1. 6)

The set of equations, (1.1), (1.5), and (1.6), and ratio

:_ .: X -- I ',
-" ,: Z _ _..x z'H "

cosO_=" , (1.7)
,-_..q/VZ-T_.

obtained from (1.2) are a closed system of equations for z, H, B,

_, _2 and _. Solving this system defines flow in Q2, the

position of shock (1.4) and the distribution of gas dynamics

parameters on the wave front.
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2. To construct an approximate solution,we must make /74
the transition to travel-time curve variables in the gas flow

equations. For problems with axial symmetry, this transition is

usually useless when studying exact problems and methods, since

the equations become nonlinear. However, this transition can be

quite convenient when constructing and analyzing approximate
solutions.

In the statement for flow isoentropicity, i.e. h = h(p),

taken from the Eiler equation transformed to variables _ = u2 +

+ v2 = 1 - h, n = v2 = (I - h)sin2gi, it follows that there is a

function _(_,_) such that:

9_ = 2hp 2 lf_L-_ ' 9n = 2.lrt-:_. (2.1)

Any _ selected will satisfy the dynamic equations., identically,

.and from the equation for continuity we obtain the ratios which

determine coordinate x:

(t-n)l%-+l('_+q%)l-'N ," _/-_- "vn+2(_,-n)gtn
x_= l/'E-_p2 . . , .,_= _:,,"p--77--- _ ._ ,:-l/8:1(_-n)_#_+,p,_).- . :.._:., V_n(_-n)(,_+,_.)-
. : :".:"..'. .i . ... } ,"gv....: ,: ' h.. :v:": ;_::]i.r :<=:+>"-...,..-:_..:.
•. " • " -..:it-,:.?:?-:<:,,,.:(:".1[..=.../-...7.-_':"[.,..':'-:;-".:_;:.;::'_':?'i/.,_i,'%:':_'i.-?,':: ( 2.2 )

By excluding X from (2.2) with cross-differentiation,we obtain

the equation which contains only one function for 4:

:.9.(__ _)n(,p_- _ucp,,_):-I(2_,- n)q,,qL%_p:,l,p_- 2n(2_:+.2_.)_p_-
7-n{211-',_ : l " 9-" " °

...... . :-"'-.:: ..... .','i." .,....:..,......:,_,.::....,:... ,... - (2.3)

This is a Nonzh-Ampere type equation with a quasi-linear part.

All terms in the equation contain derivatives from the unknown

_ function as products of two partial derivatives, and coefficients

for the products are polynomials according to variable 11to no

more than the second power. These properties of equation (2.3)

make it possible to search for the solution as a series according,

to the powers of 11. We enter the parameter 8 = max I"/
_2z



and let

. no'",· , .", ... ...: '::1
;." .~.J ~" -'.:' , -.\
" cP - ~ E CPA (£. T}),; T} = 8'l1.
•.. ,,, 11=0 " . (2.4)

Inserting (2.4) in (2.3) gives the following equation for ¢k:

(2.5)

Function Fn is expressed through ¢k and their derivatives are

expressed with kin.

'Fn = (nj - 1) (q>'.1)- 'l1(P'.1)1}) (P~-~.1) -: 2sT}rp~.r;.T\q>n-.;~tj+2T} l( 1.::- 2~n. cp'.t +.
+11i<P~~ 1)'+2~'l1q>,.dCPn~ •.t]1}~(2~(p~.t;~2Tjrp •. ~T\ -: llicp~~,~~,(1'~4tj) rp,.d <Pn'~~.1) + .
~g:+ 2ncp,.tI,q>n-•• tlt +'(2~q>..t'+ 'llIV••ll'- 211:!CPt.'IJtl)(Pn-s,t~:+(~,q>/.'11-t,2~jr~~,~;::-~:
~4i;'\1~~{:Bt(:i,:fi;(:''~;(~;~fi~;~JI\!;';" ct·- 1)j<r.~11) ~n~3. r;~~',:~r~~';:~~},~~J\~;':·\~:!),:i.;>.,~,:;3.:::/ :i'\;:.~3:.'<\if.~~;<~

""Here, repetitive index s indicates summation froJlL 0 to n. If

2'~j -.110 (Le. Mach numberM~l), formula (2.5) is a

recurrent ratio for ¢k' 'Obviously F-l = O. Then, from (2.5),

¢o = A2 x T}2/2 + B, where A and B are random functions of ~.

According to (2.1), the flow corresponding to this solution is

written with the following formulas:

.', \'1~ ,..... .
x".) 8{(2~j - I) ds. y~ ~ 2h JlA:!11,;
:".!. "'. . . .: .

.,' .;: {- (.:" ", .

These formulas determine flow in a channel with variable cross- 175

section area in a one-dimensional approximation (isobars for ~ =
= const are the straight lines for x = const). Further

.. F'~ '_I_(l~(N-:I)(A',/', .A·:!) i.3+n .tA·'_5J·~:],,~'I+njBf}·LI·~\:"
o:2-~2'1 A T A I 2 r '1':"'1' ,','t"", J, ,. '. . • '.

'~l,~·::'J'·..!,ni(l4£(~A,:'-A~2~+ (5 :T,~~!)~A' -T'3jA2j ~~ -i-l(~ r2;~~,~,~L;:.,:,~~,~:~~':1~·:::'

The flow corresponding to approximate solution ¢ = ¢o + E¢l is

described with the following equations:

7



.... -I"_ ,f= ':::!_ "'_:;I
:.... x-----J,,'__(A.4_A')'q-F ,.II _=,_(2-"1--])d_,.

• : ,., - ._ . ,F,.a • ; . .. _, .-. ...-.-: ... •

' " P 1[4_-(,1,_" ,!,_'_
_ ,,. ,,,,',,, --..-, , + 4(I'+ _i/AA'.-I- 3i.A_.I.q,+'. ... _/, .... (2.6)

Here S is set equal to one, which actually means a return to

undeformed variable _. According to (2.6), the isobars are

second order curves.

For an rough estimate of approximation process accuracy, we

compare it with certain exact solutions for gas flow equations.

Since the basic approximation is an expansion according to the

angle of flow divergence, a solution in which angle q remains

unchanged in the trajectories (i.e. the flow fro m_the gas source.

This flow, by the way, has the simplest structure_) is the natural

choice for comparison.

| .,....

• " ' ':"'..' I ._!

• i,. ' _,_ :._._.:
... i_.i_;i ' _ ,,_, •

0 ! s:'.. _{O,t ".;:. 0,2-,!._'_0,3 ", t !O.i.

Figure 2

Figure 2 shows graphs of the approximatesolutions' relative

deviation 6(_) from the exact solution as a function of the angle

4 of cone e for two Mach numbers at the inlet. Solid lines (x =

const) are a one-dimensional approximation and dotted lines are

approximation (2.6). As Figure 2 shows, the near-axial region is

described most exactly, the second approximation nearly doubles

accuracy, and when the Mach number at the inlet (and consequently



throughout the entire flow) increases, error decreases.

3. To construct the flow in QI we use approximate solution

(2.6). Wave AC (Figure I) is assumed to be weak, and the angles

of turn on it are small. It is precisely in this case that

expansion (2.4) is valid. In variables _ and _, weak shock AC is

described with the equation:

From the laws of conservation of momentum and mass and the laws

for joining the flow on AB, we obtain:

1":.".__ [_ _i_:e-x_, _,"*'_,n.,,,--.n._c_l--. _.,._,

• :;:.':.:: : .J<!...ii.::;'.:: (3.2 )$

• 2 B' '-. _v
B'_= '_-_'-+Z_ ._,;,,,+'_cA _i.-._. _(_.-_)" [ '_.t_' --.,_hp • TI,/I,._ --.,rlA ¢ .:: .:, .. ,

( " - " i •" _V_ _=_ _=_ _c, v=2B' _ (_')' _'c•V),c=x._h,; \ _,' _ _l 1,

where YAB and _AB are functions of _, determinable with /76

system (i.I) and (1.5) - (1.7); index _ relates to the

corresponding leading undisturbed flow parameters.

The general system of equations (1.1), (1.5) - (1.7), (3.1)

and (3.2) determines total flow, i.e. gives the solution to the

problem of joining vortex flow (1.1) with even flow.

Shock wave AB reaches the axis if y = 0 in (1.3), i.e. if

either 9 = 9o (a) or z' = 0 (b). In first case (a), we have #o =

= 0 for total pressure on the axis, which is impossible. We will



consider the second variation, z' = 0. For (1.l), this is a

singular point through which the single-parameter family of

equations z = _1 - ho + k(ho - h) 2 passes (ho is the value for

enthalpy on the axis and k is the parameter). Here, according to

(1.2), v = 0 on the axis. It follows that the shock wave reaches

the axis and approaches it at a straight angle.

Calculations are made from the axis. Given M_ and _, we find

parameter k, which fixes the integral curve in the family of

solutions passing through the antinode point. Further, departing

from the singular point according to the analytic solution, we

solve the general system of common differential and

transcendental equations (I.I), (1.5) - (1.7), and (3.1) - (3.2).

At each integration step for the differential equations, the

system of transcendental equations (1.5) is solv_ by iteration

[2]. Here a solution from the preceding step is Selected as the

initial approximation for the iteration process. Calculation

continues up to y = Ymax, whose value corresponds to flow lines

_max = _o - C-I/_.

4. The intensity of shock wave AB decreases as YAB increases

and falls to zero when y = Ymax" Intensity changes due to solid

wall distortion and uneven flow in _i. At values of _ ! i, the

unevenness of flow in _i is insignificant (when _ = 0.i, the

maximum value of _gi/_ on the external side of the shock is

0.06, and when _ = 0.01, _i/_ = 10-4 ) and shock distortion is

due basically to wall distortion. In this case leading wave AC

is almost a characteristic curve and the _i zone has significant

dimensions. As _ increases, the flow in _i becomes more uneven,

AC begins to differ from the characteristic curve, and zone Qi

_- decreases. Here the vorticity in Q2 can be explained not only by

wall distortion, but also by uneven flow in front of the shock.

Note that here the hypotheses on which the solution in Q1 are

based are met with decreasing accuracy.

i0



Figure 3

We use the solution obtained to describe the flow in

airscoops constructed by an excision along the st_eamlines of an

axisymmetric flow [3, 4]. We will discuss a sector excision with

angle 2_ (Figure 3 a). The combined loss coefficient for total

pressure is de_ermined according to the formula

. • ! - _ :_:...::

I'==IIpJS"_:_,, ... . .., (4.1)

where S is the area of the capturable gas jet.

The average recovery factor for total pressure for this

diffusor formula is

ll-" " / S _.(I--_) '.

. (4.2)

Figure 3 b shows _ as a function of the angle of sector # at /77

different values for S, and Figure 3 c shows _ as a function of

index d. The influence of d on the recovery factor increases

with _. In Figure 4 the values of _i are determined with the

equation #i = Si/Ymax, which shows that y ! Ymax'



To evaluate the level of compression for the gas jet entering

the airscoop, we determine pressure on AD (see Figure 1). On AD

h= con s t = hi' Then

We obtain the following for total compression

where ~x is determined in (4.1).

Figure 4

The characteristics of intake diffusors with other excision

shapes can be determined in a similar manner. Figure 4 shows a

diffusor with a rectangular excision which can be characterized

with two parameters: the area of captured jet S and angle ¢,

shown on Figure 4 a. Figure 4 b shows the curve for the ratio of

diffusor recovery factor (Figure 4 a) to the analogous value ~

(4.2) characterizing the influence of excision shape on

aerodynamic characteristics.
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