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ABSTRACT

A real-time computer algorithm to control and optimize aircraft flight

profiles is described and applied tm a three-dimensional minimum-time

intercept mission.

The proposed scheme has roots in two well-known techniques: singular

perturbations and neighboring-optimal guidance. Use of singular-

perturbation ideas is made in terms of the assumed trajectory-family

structure. A heading/energy family of prestored point-mass model state-

Euler solutions is used as the baseline in this scheme. The next step is

to generate a near-optimal guidance law that will transfer the aircraft

to the vicinity of this reference family. The control commands fed to

the autopilot consist of the reference controls plus correction terms

which are linear combinations of the altitude and path-angle deviations

from reference values, weighted by a set of precalculated gains. In this

respect the proposed scheme resembles neighboring-optimal guidance.

However, in contrast to the neighboring-optimal guidance scheme, the

reference control and state variables as well as the feedback gains are

stored as functions of energy and heading in the present approach.

A detailed description of tM feedback laws and of some of the mathemat-

ical tools used to construct the controller is presented. The construction

of the feedback laws requires a substantial preflight computational effort,
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but the computation times for on-board execution of the feedback

laws are very modest. Other issues relating to practical

implementation are addressed as well.

Numerical examples, comparing open-loop optimal and approximate

feedback solutions for a sample high-performance fighter, illustrate

the attractiveness of the guidance scheme. Optimal three-dimensional

flight in the presence of a terrain limit is studied in some detail.



r ^

I^

iii

f

This research was supported by NASA Langley Research Center under

grant NAG-1-203. Dr. C. Gracey and Dr. D.B. Price of NASA Langley

served as technical monitors. Thanks are due to Dr. K.H. Well of

DFVLR, Oberpfaffenhofen, F.R.G., for kindly supplying the computer

program BNDSCO.



5

NCM6NCLATURE

a ............. Speed of Sound

CD ............ Drag Coefficient

CD ........... Zero-Lift Drag Coefficient
0

CL ............ Lift Coefficient

CL	......... Maximum Lift Coefficient
max

D ............. Drag

Di ............ Induced Drag in Straight-and-Level Flight

Do ............ Zero-Lift Drag

E ............. Specific Energy

g ............. Acceleration due to Gravity

h ..	 Altitude

hmin
	 Terrain Limit

K ..	 Efficiency Coefficient

H ..	 Variational Hamiltonian

L ..	 Lift

M ..	 Mach Number

n ..	 Normal Load Factor

nh............ n sine

nL ............ Aerodynamic Load Limit

r	 n	 Structural Load Limit
max

n 
	 ........... n cosu

q ............. Dynamic pressure

S ............. Wing Surface Area i

1
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t	 Time

T ............. Thrust

Tmax: .......... Maximum Thrust

V ............. Airspeed

W ............. Weight

x............. Down-Range

y............. Cross-Range

GREEK SYMBOLS

y ............. Flight-Path Angle

0 ............. Relaxation Parameter

{ ............. Lagrange Multiplier

n ............. Throttle-Setting

a ( ) .......... Adjoint Variable

K ............. Bank Angie

v ( ) .......... Kuhn-Tucker Multiplier

p ............. Air Density

o f ) .......... Lagrange Multiplier

x ............. Heading Angle

X'	 ............ ln(IXI/n)

SUPERSCRIPTS AND SUBSCRIPTS

(.) C .......... Value at Corner Point

s
	 (.) D .......... Value at Dash Point
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(.) e .......... Value at Entry Point

(.)E .......... Corresponding to Specific Energy

(.)h .......... Corresponding to Altitude

(.).. .......... Final Value

(.) fb	 Feedback Value

(.)o .......... Initial Value

(.) r .......... Reduced-Order Value

(.) ref ' "	 ' Reference Value

(.)T .......... Target Value

(.) x .......... Corresponding to Down-Range

(.)y .......... Corresponding to Cross-Range

(.) T .......... Corresponding to Path Angle

(.) x .......... Corresponding to Heading Angle

(.)	 .......... Optimal Value
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the motion of a point-mass-modelled vehicle), approximate closed-form

feedback solutions are sought.
1

h
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CHAPTER 1. INTRODUCTION

Since the early days of flight, optimization of aircraft trajectories has

been a challenging topic. The advances in sensing electronics and com-

puting technology made in recent years have tilted the direction of re-

search in trajectory optimization toward the exploration of a new and

interesting problem: the on-board generation of real-time guidance com-

mands to control and optimize aircraft flight profiles.

Due to the limited computational speed and storage capacity of current

airborne computers, relatively fast algorithms are required for this

purpose. Unfortunately, however, the nonlinear two-point-boundary-value

problems (TPBVP) which arise in the application of optimal-control theory

to atmospheric-flight-trajectory problems, are of tremendous computa-

tional complexity. Nevertheless, it is currently feasible to generate

accurate open-loop solutions using sophisticated numerical methods (1,2).

While such numerical optimization techniques are of considerable value,

they are usually rather intricate and computationally expensive, render-

ing them useless for real-time applications. On-board real-time guidance

generally requires the optimal-control solution to be expressed in a

closed-loop feedback form. Since it is usually not possible to derive

closed-form feedback solutions for the 
of
	 system (describing say,

1
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One way to obtain closed-loop control is to compute optimal trajectories

using highly simplified system models. For this reason reduceu order

concepts, in which fast dynamics, believed to have small effects on the

solution behavior, are neglected, have received considerable attention.

In problems dealing with atmospheric-flight-trajectory optimization, the

earliest and best-known reduced-order concept is that of energy-state.

In this concept the dominant state variable is specific energy (defined

as the sum of potential and kinetic enerbv per unit weight). When Kaiser

introduced this concept in connection with aircraft minimum-time climbs

in 1944, it was rather intuitive in nature (3,41. Although applied sys-

tematically to several aircraft performance optimization problems [5-101,

it remained an ad-hoc engineering approach until the early seventies when

it found a mathematical basis in the theory of singular perturbations

(11-151.

In saute applications the faster dynamics ignored in tits reduced-order

system models have a negligible effect on performance. In other cases the

solutions of these simplified system models may not be suffic:.ently ac-

curate, or may exhibit other undesirable features. In civil aviation,

where the prime mission performance criteria are fuel-consumed and direct

operating cost, reduced-order concepts generally provide an adequate ba-

sis for studying optimal flight trajectories (16-191. This is a evidently

• reflection of the fact that commercial aircraft generally maneuver in

• restrained fashion. In military aviation, fighter aircraft perform a

great variety of missions, bath air-to-air and air-to-ground. In order

to carry out their missions successfully, fighter aircraft often operate

r`
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at supersonic velocities and frequently indulge in rather violent maneu-

vering [20,21). Reduced-order concepts are of limited value in the anal-

ysis of optimal flight paths of high-performance fighters.

One area of resea.ich in military aviation currently receiving consider-

able attention is that of air-to-air-combat analysis. The field of air-

to-air combat analysis is characterized by many approaches to the prcblem,

some of which are fundamentally different from each other (22). The most

realistic mathematical model of actual air-to-air combat is the differ-

ential game approach (23-24). Most investigations of combat problems by

differential game theory have focused on analysis of deterministic, two-

player, zero-sum, perfect-information pursuit-evasion games. Although

attempts to study air-to-air combat on the basis of even more general

problem definitions have been made [25-29), the mathematical nature of

the analyses involved is generally so complex that it is virtually im-

possible to obtain useful results for realistic dynamic models. In order

to make the differential game approach tractable, simplifying assumptions

with respect to dynamic model and/or role-specification are imperative.

As a matter of fact a third-order system seems to be the highest order

nonlinear differential game currently manageable [30-35). Such highly

simplified dynamic system models may be useful for evaluating relative

aircraft performance; however, the resulting trajectories and optimal

controls are of little use in the development of on-board real-time

guidance schemes. The present research effort is limited to the early

well-separated phase of a minimum-time intercept of a non-maneuvering

target. Optimal-control theory provides an adequate framework wherein

3



such an initial phase can be studied. However, the end-game following this	 4

initial phase should allow for a maneuvering target. This end-game, not

considered in the present effort, could be analyzed either by a differ-

ential game approach with a highly simplified system model, or by an op-

timal control approach with a more realistic system model.

By analyzing optimal-control problems in the framework of singular per-

turbations, more general problem formulations have bec.,me possible.

Singular perturbation techniques have been extensively used to extend the

validity of energy-state models by correcting for the neglected fast dy-

namics (11-15, 36-421. This approach takes advantage of the time-scale

separation of the state variables, by separating the dynamics into fast

and slow modes (boundary-layer structure). This permits the solution of

a high-order problem to be approximated in terms of solutions of a series

of lower order problems. However, the application of singular-

perturbation techniques is by no means a straightforward procedure. There

is currently no rigorous method to identify time-scale separation in

nonlinear dynamic' systems. In most singular-perturbation analyses a

boundary-layer structure is assumed based on ad-hoc time-scale separation

judgment (43]. If all dynamical equations are ordered on separate time-

scales, then it may be possible to obtain a closed-form feedback solution.

This feature has attracted many researchers to cast trajectory-

optimization problems in this particular singular- perturbation form in

which there is a hierarchy of first-order boundary layers (44-50]. Un-

fortunately, in problems involving atmospheric flight, such distinct

time-scale separation between state variables is an exception rather than

31
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a rule. If, for instance, altitude and path-angle dynamics are considered

on separate time-scales, these dynamics are effectively decoupled. How-

ever, it is well-known that altitude and path-angle dynamics are actually

highly coupled (51]. On the other hand, if altitude and path-angle dy-

namics are considered on the same time-scale [14], the boundary-layer

solution is not obtainable in feedback form. These features clearly in-

dicate the limitations of singular-perturbation techniques. The occur-

rence of internal boundary-layers may further complicate matters (52].

Since time-scale separation is not complete the singular-perturbation

solution is only suboptimal. Improved accuracy may be obtained, but this

requires taking into account higher-order corrections. The method of

matched asymptotic expansions provides recursive equations from which

such terms can be computed [15,36]. Although feedback implementation of

these correction terms seems feasible for planar flight [53,54], the

prospects for 3-D flight are rather bleak.

Another approach to obtain approximate closed-fora feedback control for

realistic aircraft models is by neighboring-optimal-guidance technique

[55-59]. In this approach perturbation-feedback control, i.e. control

in the vicinity of a reference extremal, is considered. The resulting

linear neighboring-optimal feedback guidance law controls the vehicle so

as to follow a neighbor of the reference extremal. Most of the experience

with this technique has been in the area of vehicle guidance in space

flight (60-62]. In vehicle guidance in atmospheric flight, this technique

has not found widespread application. This is primarily due to the fact

that, in tactical situations, there is little a priori knowledge of the
Y
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flight path, which makes the selection of suitable reference paths dif-

ficult. In addition there are questions concerning the range of validity

of the linear- feedback laws. A third drawback concerns the problems as-

sociated with estimating the index-time.

Yet another approach to feedback control proceeds by flooding the state-

space with extremals (extremal -field approach). A closed-loop controller

is then synthesized from the open -loop results. The drawback of this

method is what has been termed the "curse of dimensionality". Even storing

the solution to a planar interception problem requires an enormous auount

of storage -space [631. Efforts to extend this concept to three dimensions

via energy -state approximation have been made ( 641. However, the weak-

nesses of energy-state modeling are retained in this approach.

With this as background it is the objective of this study to investigate

a concept for developing real-time computer algorithms to control and

optimize three-dimensional aircraft flight profiles. The proposed con-

cept, first sketched in Ref . 65, has roots in all three approaches just

mentioned: singular perturbations, neighboring -optimal guidance and ex-

tremal fields. By using elements of the three approaches in a more or

less complementary fashion, one hopes that many of the weaknesses can be

eliminated, and that a guidance scheme results that is still simple enough

to lend itself to on-board implementation.

i

r	
Use of singular-perturbation ideas is made in terms of the assumed hi-

F
	 erarchical trajectory-family structure. A heading/energy family of ex-
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tremals is used as the baseline in this scheme. However, in contrast to

the singular-perturbation approach, this "reference" family is not built	 j

up from reduced-order extremals, 	 but	 from point-mass-model extremals.

Some of the extremal-field ideas are used in establishing this reference

family. The next step is to generate a guidance law that will transfer

the aircraft to the vicinity of the reference family. The control commands

i
used for this purpose consist of the reference controls plus correction

terms which are linear combinations of the altitude and path-angle devi-

ations from reference values, weighted by precalculated gains. In this

respect the proposed scheme resembles neighboring-optimal guidance. How-

ever, in contrast to the neighboring-optimal-guidance scheme, the refer-

once control and state variables as well as the feedback gains are stored

as functions of energy and heading in the presently-proposed approach.

To demonstrate feasibility, the proposed concept is applied herein to a

long-range minimum-time intercept mission in 3-D. In this type of mission

the initial separation between the interceptor and the target is assumed

relatively large so that at least a portion of the interceptor's trajec-

tory is flown at maximum velocity, i.e. a dash or cruise-dash arc is

present. A guidance law is then developed providing the interceptor a

time-range-optimal turn-climb to the dash point on the flight envelope,

fairing into a steady-state cruise-dash.

The present effort was preceded by a study in which the concept was suc-

cessfully applied to a climb-dash intercept mission in 2-D [66-67). The

present extension to 3-D is far from trivial. The extension adds a great 	 j

7



deal of complexity to the numerical resolution of the TPBVP as well as

to the construction of the guidance laws, as will become apparent in the

course of the analysis.

The formulation of the three-dimensional intercept problem as a minimum-

time optimal-control problem is the starting point of the analysis. In

this formulation significant order-reduction is obtained by analytic in-

tegration of some of the adjoint equations. This is of great importance

in the numerical resolution of the TPBVP. The special form in which the

problem is formulated is motivated by the well-known unstable behavior

of state-Euler system solutions for a point-mass vehicle model. It is

shown in the following that using this particular form no serious sta-

bility problems arise in the numerical resolution of the TPBVP. A brief

description of the multiple-shooting algorithm (MSA), used to generate

the point-mass model state-Euler solutions is presented. In -,rder to

expose the essential features of energy-management, an energy-state model

is studied in some detail. The energy-state extremals are used subse-

quently to select the initial conditions for the point-mass-model ex-

tremals that span the reference family. The construction of the feedback

laws is then described and some of their characteristic features are ex-

amined. Extensive numerical investigations comparing open-loop optimal

and approximate feedback solutions, are presented. Some results on

three-dimensional optimal-flight trajectories in the presence of a

terrain-limit are reported in an appendix.

8
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CHAPTER 2. PROBLEM STATEMENT
K'r r

U

(1)

(2)

(3)

(4)

(5)

(7)

(6)

I 9

2.1 EQUATIONS OF NOTION

The equations of motion for a point-mass model of an aircraft can be

written as:

x = V COST coax

y = V COST sinx

h = V sinT

E _ (V/W) (T-D]

T = (g/V) [nv - COST]

x = (g/V) Inh 	 COST]

where:

V e (2g(E-h)) 1/2

is to be regarded as eliminated in terms of E and h. The reason for se-

lecting specific energy E as state variable is to obtain a better time-

scale separation, which is especially important s'.nce further order

reduction will be considered.

The equations of motion embody the assumptions of a constant-weight ve-

hicle with thrust directed along the flight path and a flat non-rotating
3i
4	 earth. The equations of motion are written here in a fixed coordinate
C:

frame that has its origin at the interceptor's final position and its

I
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x-axis aligned with the projection of the target's velocity vector on the

horizontal plane (see Fig.l). Heading is measured relative to the x-axis.

The target is assumed to be travelling on a constant-heading course. Note

that the present problem definition results in equations of motion which

are completely independent of the target's dynamics and relative posi-

tion. The control variables in these equations are q, n v , nh , where, n 

and n  are defined as (see Fig.2):

n  3 n cosu	 I	 nh a n sine
	

(8)

The use of n  and 
nh 

as control variables is not very common (the more

common choicas are e.g. n and µ or C L and µ,). The advantages of this .

selection for the present problem, will become apparent in the sequel.

2.2 AERODYNAMIC AND PROPULSIVE FORCE MODELS

The aerodynamic and propulsive forces are assumed to have the following

form:

T= gT 
max 

(M,h)	 0 5 g 5 1	 (9)

D D + (n2,„ nh2O	
v

)Di	 ,	 (10)

where Do is the zero-lift drag:
j

u

Do = gSCD (M)	 (11)
o	 i

{
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	 and D i is the induced drag in straight-and-level flight (nv=1; ahm0):

D i = K(M)W2/qS
	

(12)

In the numerical examples a realistic aircraft model, representative of

a high-performance fighter, is used. The fashion in which the functions

T max , CD and K(M) are represented is important in the computational work
0

(66,67]. In the present effort all aircraft data as well as the atmo-

spheric data have been represented by cubic splines and spline lattices

[68]. This representation is sufficiently smooth to be used in conjunctiion

with the 7-8th order Range -Kutta-Fehlberg integration routine of the NSA.

fhe Mach limit and dynamic-pressure limit are artificially enforced in

the aircraft model by gently fairing off the thrust data. The functions

T 
max 

(M,h), CD (M), K(M), p(h) and a(h) are shown. in Figs.3-7. It is noted
0

that the function Tm , ,!!,h) corresponds to full-afterburner operation.

Some of the other characteristic aircraft data are:

W = 37000 lbs , S = 608 ft 

The resulting steady-state flight envelope can be seen in Fig.8.

2.3 OPERATIONAL CONSTRAINTS

The following constraints on the control variables are specified:
,

11
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n 5 
nmax	

(structural limit)	 (13)

n 5 n L 3 (qS/W)CL	(lift limit)	 (14)
max	 s

Fig.9 shows CL	 as a function of M. The value of 
nmax 

is 7.33. The load
max

factor n is related to the control variables n  and n h by:

1

n ° (nv2 + nh2)1/2
	 (15)

It is noted that the bank angle V, related to n  and n h by:

tanu ° nh/nv	
(16)

is an unconstrained variable. In addition to the constraints on the

control variables, there are constraints on the state variables as well.

As indicated earlier, the Mach limit and the dynamic pressure limit have

been artificially enforced through data-manipulation in the present ef-

fort. The state-constraint remaining is the terrain limit:

h2hmin
	 (17)

This constraint, however, will be ignored in the trajectory computations

needed for the construction of the feedback laws. The obvious reason for

this is that, near the ground, flight-controls are dictated by consider-

ations of safety rather than optimality. In Appendix A the influence of

a terrain-limit on three-dimensional optimal flight trajectories is

12



studied. The results reveal some interesting features and may be useful

in providing some qualitative guidelines.

2.4.0PTIMAL-CONTROL FORMULATION

The optimal -control problem to be solved is to determine the controls n'`,

*
nv and nh

,t 
such that, starting from the initial conditions,

x(to) = X 
h(to) = ho	E(to) 	 E  (18)

T(ta) = To , X(to) = Xo , (19)

the interceptor reaches the final conditions (dash-point),

x(t f ) = 0	 Y(tf) = 0	 h(tf) = 
h 
	 (20)

E(t f) = ED r	 T(t f) = 0 ,	 (21)

in minimum -time, t f . The dash-point is indicated on the flight envelope

in Fig . 8, Note that the initial condition y(t 0) and the final condition

X(tf ) are not proscribed, this despite the fact that a final heading

X(t f ) = 0 is desired, in order to insure that the interceptor dashes in

the direction of the target. The reason for this seemingly inappropriate

formulation will become apparent in subsequent analysis; it will be shown

using this formulation it is still possible to	 reach

totically) the desired final heading x(t f) = 0.

13
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The necessary conditions for optimality include the adjoint differential

equations and transversality conditions:

lx 
= -8H/8x (22)

ay = - 8H/ 8y	ay(to) = 0 (23)

ih = -8H/eh (24)

X  = -eH/eE (25)

X  - -8H/8l (26)

a x = -Wax	 ax(tf) = 0 (27)

where H is the variational Hamiltonian:

H - axV coal cos% + ayV COST sin% + ahV sinT +

1E(V/W)[T-D] + 1T (S/V)[nv- COST] + a x (g/V)[nh/cos t ] +

vl[nmax - n] + v
2 [nL- u]	 (28)

Since the system is autonomous and the pay-off is the final time t f , there

is a first integral:

H=-1
	

(29)

.1

Substantial simplification of the TPBVP is obtained by closed-form inte-

gration of the adjoint Egs.(22),(23) and (27). Using the transversality

and final boundary conditions (20), the following expressions result

14



(33)

1

(64,69):

X = Constant
x

1 = 0
y

ax = lxy

Going one step further, one can solve for 
lx 

in terms of the parameter

x(t f) by evaluating the first integral (29) at the final condition, as-

suming this is an equilibrium point:

Hit = t f = axVDcosx(t f ) = -1	 ,

from which:

lx = -1/(VDcosX(t f )

Assuming that the velocity-set is convex and the Euler solution nonsin-

gular, the Minimum Principle can be used to express the optimal controls

in terms of the state and adjoint variables (69]. The optimal throttle

setting is given by:

A =1	 if AE<0

= 0	 if X  > 0	 (34)

The case 
lE
=0 is singular and occurs at switchings berwaen the throttle

limits. Singular arcs, along which l E=0 over a nonzero time interval, may
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(30)

(31)

(32)



' appear with some system models, e.g. fuel-optimal or fuel-constrained,

but are likely to occur for the present model only in isolated situations

[141. The optimal controls n  and nh are found from:

eH/8nv = 0	 0	 8H/8nh = 0
	

(35)

If neither of the load-factor constraints (13) or (14) is active, the

Kuhn-Tucker multipliers v 1 and v2 are identically zero and the following

control expressions result:

nv* = [8Wa y1 /[ 21ED iy2 1 	 (36)

nh* = [gW1X/cosy ] /[21EDiv21	 (37)

If instead of n  and ah , n and y had been used as control variables, the

resulting control expressions would have been more complex. This is a

consequence of the fact that such expressions would involve tan g rather

than 4 directly, with the obvious complication of multiple roots.

If one of the load-factor constraints is active, it can be used in con-

junction with the optimal-control conditions (35), to solve for n v , nh

and the multiplier corresponding to the active constraint (the multiplier

corresponding to the inactive constraint is identically zero). The opti-

ma/ controls n  and nh in the case of an active load-factor constraint

are:
i

r
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G	 r	 . 	 -n

C	 av* _ -[1 F )[inf(nL , %ax)]/[(lX/cosd)2+ 122[1/2
	

(38)

nh* = -(lX/cosT] [inf(n
L , nmax)[ /[(lX/cosT)2+ 122)1/2
	

(34)

If both load-factor limits are met simultaneously, Eqs. (13) and (14) can

be solved for the "corner velocity" at any given energy level:

V  = [2Wnmax/gSCL )1/2
max

By evaluating the corner velocity over the entire range of specific an-

ergy, a unique curve in the (V,h)-space called the "corner-velocity

locus", is obtained (see, e.g., Fig.10). The significance of this curve

is two-fold (14). Firstly, the corner-velocity locus features maximum

instantaneous turn rate at any given energy level. Secondly, this curve

separates two distinct regions in the (V,h)-space: above the corner-

velocity locus the load factor is constrained by the lift limit (14);

below the corner-velocity locus the load factor is constrained by the

structural limit (13).

It should be noted that only the multiplier v 2 is needed in the evaluation

of the right members of the adjoint equations (24) and (25). This is a

consequence of the fact that the structural constraint (13), in contrast

to the aerodynamic constraint (14), does not depend on the state variables

E and h. This feature, clearly advantageous in numerical work, would not

have been present if, e.g., CL had been selected as control variable.

(40)



The TPBVP, determined -by the system of state and adjoint equations with

the appropriate boundary and transversality conditions, can be solved in

open-loop form only. A closed-form feedback solution can be obtained if

the intercept problem is treated in reduced-order (so-called "energy-

state") approximation.

i
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CHAPTER 3. ENERGY-STATE MODEL 	

I

3.1 SINGULAR -PERTURBATION APPROACH

Xn the energy-state approach , it is assumed that there is a time-scale

separation such that (h,T) behave as fast variables as compared with

(x,y,E,x). This suggests order-reduction by letting h,8 + 0 in Eqs. (3)

and (5), resulting in the algebraic constraints [141:

T  0	 (41)

nvr = 1	 (42)

The remaining four state equations ( 1), (2), (4) and (6) form the

reduced-order system. The control variables in the energy-state model

are Ti, nh and h. Application of the Minimum Principle to the reduced-

order problem results in the following optimal-control expressions, as-

suming the load factor is within its permissible range:

nhr = [9W% X 1 /[ 21ED iv2 1	 (43)

h = arg [min H1	 ,	 (44)
h

where the expression (28) for H is still valid.	 As a result of the

c

	

	 order-reduction not all of the boundary conditions imposed on the state

variables in the original problem can be satisfied. Consistent with

19
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singular-perturbation theory, the boundary conditions on the "slow" var-

iables are retained, while the boundary conditions on the "fast" variables

are met by allowing discontinuities ("jumps") at t m to and

t m tf . Since the min-H operation (44) leads to the dash-point on the

flight envelope (8,14], no jumps occur at t = t  in the present formu-

lation.

Since nv (t) a 1, the load-factor constraints (13) and (14) are very simple

to enforce in the energy-state approach. The expression for the optimal

throttle-setting (34) for the point-mass model applies to the energy-

	

state model as well. Also, since the geometry of the intercept remains 	 ,`11

unchanged in the energy-state model, the expressions for the adjoints

(30)-(33) are still valid. As a result only one adjoint equation (gov-

erning lE ) needs to be integrated in the energy-state approach. If we

consider symmetric flight only (nh (t) a 0), no adjoint equations need to

be integrated at all. In Ref.8 it is shown that for the so-called

energy-range climb the energy adjoint is given by:

X  = (V - VD)/(VDE)
	

(45)

The right member of Eq.(45) is clearly singular when evaluated at the

steady-state dash-point. In the energy-state approximation the

equilibrium-point is reached only asymptotically.



3.2 EXTREMAL-FIELD SOLUTION

The particular form in which the energy -state model is written allows a

family of trajectories to be generated using an extremal-field approach.

Starting from the terminal manifold the state -Euler equations are inte-

grated backward in time, with an assumed value for the final heading. By

slightly varying the value of final heading, the state -space is flooded

with extremals. The only unknown parameter at the terminal manifold is

the final value of the energy adjoint. However, the parameter l E (t f) can

be obtained by evaluating Eq. (45) for the energy-range climb. This pa-

rameter can be used for the evaluation of the remaining members of the

family as well ( it is recalled that lx ( t f ) = 0 and as a consequence of
j

Eq.(43), ah (t f ) = 0 for all turn-climb trajectories).

3.3 GENERAL FEATURES

In Fig . 10 several extremals in the (V,hl space are sketched.	 In Fig.11
s

some ground tracks are shown. If final heading is chosen identically zero

the (symmetric) energy-range climb path is obtained. The remaining mem-

bars of the family (obtained by very small variations in final heading)
r

6 all reveal a similar behavior in retro-time: starting from the dash-point

the trajectories closely follow the energy -range path ( in near-symmetric
t^

flight), but, when the turn is initiated, altitude increases	 (possibly

discontinuously) until the corner-velocity locus is reached. The trajec-

tories will subsequently " ride" the corner -velocity locus, with aeading-

to-go increasing in retro-time. The	 optimal throttle -setting generally

Y

F
 s

21:F ,

a



is full thrust; however, for large heading-to-go, throttle-switching may

occur.

It is observed that the turn-climb trajectories lie almost entirely within

a corridor formed by the corner-velocity locus and the energy-range climb

path, A similar corridor was noted in the energy-modelled study of Ref.71.

The behavior demonstrated by the extremals is fairly transparent. In the

optimization process the optimal trade-off between the conflicting re-

quirements of a high turn rate and a high energy-range rate is estab-

lished. It is evident that, for large heading-to-go, the turn rate is

emphasized and hence control actions are such that flight is on or near

the corner-velocity locus. As heading-to-go is decreased the emphasis

shifts towards high energy -and range rates and the control actions are

such that the flight is directed generally towards the energy-range climb

path.

Fig.12 shows some extremals in the (X,E)-space. It is noted that the ex-

tremals provide simple covering of the region, i.e. the mapping is one-

(

	

	 to-one. In other words, the optimal-control solutions of the energy-state

family can be expressed as functions of specific energy E and heading

angle X , i.e. n r a n r (E,x), nhr = nhr (E,x) and hr = hr (E,X).	 The

energy/heading family of energy-state solutions, seemingly is an attrac-

tive candidate to serve as a "reference family" in a feedback-guidance
s

scheme. Unfortunately, however, the energy-state model exhibits several

undesirable features which impair its suitability for such an applies- ,

tion. One of the most unrealistic features in the energy-state model is 	 5
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the frequent occurrence of instantaneous jumps in altitude, not only at

the endpoints (to meet the the boundary conditions) but also internally.

Another weakness of energy-state modelling is that it results in a zero

path-angle approximation. It should be noted that a different path-angle

estimate is produced if a different selection of "slow" and "fast" vari-

ables is used in the energy-state analysis. This is shown for the sym-

metric range-open energy climb in Ref.72, where a transformation of state

variables is proposed with the objective of enhancing time-scale sepa-

ration. Although the fidelity of the reduced-order solution could be im-

proved with this technique for this particular problem, the approach will

sometimes be impractical for more complex system models, since the tran-

sformations involved are defined by complex partial differential

equations. Singular-perturbation techniques may be used to overcome some

of the weaknesses in the energy-state model. For example, boundary-layer

corrections can be used to generate smooth transients from the initial

conditions to what, in singular-perturbation theory, is termed the

"outer" solution (reference family). However, as pointed out in the In-

troduction, these procedures are not without problems.

23
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CHAPTER 4. POINT-MASS MODEL

4.1 REFERENCE FAMILY

The alternative procedure proposed in Ref.65, which avoids many compli-

cations but is nontheleas simple enough to lend itself to on-board im-

plementation, will now be applied to three-dimensional minimum-time

intercept. In the proposed scheme a hierarchical structure similar to

that of the energy-state model is assumed: trajectories of an

energy/heading family (reference family) funnel into a steady-state

cruise-dash; trajectories of an altitude/path-angle family (boundary-

layer transients) funnel into individual members of the energy/heading

family. The present 3-D scheme differs from the 2-D scheme of Refs. 66

and 67 only in that a family of reference extremals is used instead of a

single reference path.

Rather than to use energy-state solutions to build up the referenca family

(as in the usual singular-perturbation approach), one may employ a family

of point-mass-modelled state-Euler solutions. The energy-state solutions

are used to select the initial conditions for the individual point-mass-

model trajectories that form the reference family. Since we desire a

reference family extending over the widest range of energy and heading

possible, initial heading-to-go for the individual trajectories is se-

lected as 1800 (this choice provides a complete 360 0 range of heading,

due to symmetry). The energy-state solutions suggest a zero initial

1	 24
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path-angle and an initial altitude on the corner-velocity locus. Initial

range-to-go is selected sufficiently large to allow an asymptotic ap-

proach of the equilibrium point for each individual member of the family

(700 kft). Since one assumes the behavior of the point-mass-model tra-

jectories to be similar to that of the energy-state model, one anticipates

heading to asymptotically reach zero and with the prejudice of foresight

Eq.(33) reduces to:

1x = -1/VD	(46)

4.2 NUMERICAL SOLUTION OF THE TPBVP

Using the results (30)-(32) and (46) the TPBVP is reduced to a set of 10

differential equations, 9 of which are given by Egs.(1)-(6),(24)-(26).

A tenth differential equation results if the parameter t  is treated as

a state variable:

t  = 0
	

(47)

The 10 boundary conditions needed to solve these equations are given by

Egs.(18)-(21).

As mentioned earlier, state-Euler solutions are generated using a

multiple-shooting algorithm (MSA). The main advantage of this procedure

C'	
is that numerical-error growth is suppressed by dividing the integration

25



I with the initial conditions:

= 2j (52)

26
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interval into a number of subintervals. Since the state-Euler system as-

sociated with the point -mass model is highly unstable, this is an impor-

tant feature. The MSA is described in detail in Ref . l. Here only the

principles of the basic algorithm (without the complication of switching

functions) are briefly outlined.

The multiple -shooting algorithm can be used to solve nonlinear 'fPBVP's

of the form:

z = f(z,t)	 (48)

g [Z( t0 ), z(t f)1 = 0	 (49)

where z (t) is the n-vector of state and adjoint variables and g the n-

vector of initial and final boundary conditions. The interval is divided

into m subintervals by introducing the grid points:

0 = t0< t  < ... < tm= t f	 (50)

where, without loss in generality, it is assumed that to = 0. In each

subinterval t E [ t j , tj+l j, j=0,...,m-1 the initial-value problem:

z = f(z,t)	 ,	 (51)
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Starting with an initial guess 2 1 (0) , j =0, .... m-1, the problem then con-

sists of finding values for 21 such that the solutions are continuous

across the subintervals and the boundary conditions are satisfied. In

other words, the function:

r = ( rO , r l ,..., r
m-1 1 T 	 (53)

where:

r  = Z(t j+1' Zj ) - 
Zj
+1	

j = 0,...,m-2	 (54)

rm., SPO , z (tm , Zm. l ) 1 	 (55)

must vanish. The 1st m-1 components of r are the jumps across the grid

points. Applying the Newton method for adjusting the Z1 , the linear

system:

GO -I 0	 ...	 0	

AZ1	 J 0	 1	 1 r0	 1
0	 G -I	 0	 1 JAZ	 1	 1 r

0	
cm.2-I o	

I I°Zm-21	 I rm-21

A	 0 ...	 ... 0	
BGm-lj ^Azm-lj 	 I  rm-lj	

(56)

has to be solved for AZ  with:

G  = az(t1+1 , Z1 1/aZ 1 	(57)

A = ag/az ( t0 )	 B = ag/ az(t f )	 (58)

i
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and I is the identity matrix. After solving for AZ j , the new values for

Z  are computed from:

Z (k) o Z (k-1) + 6AZ
J	 j	 j

where 6 is the relaxation factor of the Newton method. The band structure

of the linear system (56) allows the system to be reduced in size. This

reduced system can be solved for AZ 
0' 

The remaining terms AZ  can then

be obtained from recursive equations. Although the reduced size of the

system appears to be an attractive feature, it is not used in the

presently-employed algorithm. The reason why solving the original large

system is preferred over solving the reduced system is that the large

system is much better conditioned. In the NSA a Broyden method is used

to update the Jacobian, thus largely reducing the computational burden.

One of the major advantages of the NSA is that it is well-suited to handle

multi-point-boundary-value problems which, for instance, arise in optimal

control problems involving state-constraints. 	 A disadvantage of the

method is that a relatively good initial estimate to the solution is re-

quired. However, by using the NSA in conjunction with a continuation

procedure (on the initial conditions), this problem can be substantially

alleviated. In the present effort the first turn-climb trajectory was

obtained by using the symmetric energy-range climb of Ref.67 as initial

guess and by gradually increasing the initial heading.

Stability considerations play not only an important role In the selection

of a numericai optimization method, but also in the formulation of the 	 r

fe
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TPBVP itself. Especially the formulation of a three -dimensional problem

requires carefull attention. problem. As mentioned earlier, in the

present effort the final heading is not prescribed, despite the fact that

that zero final heading is desired. The special form in which the problem

is formulated allows the desired final heading to be reached

asymptotically. If one were to specify final heading, then the initial

value of the heading adjoint would require iterative calculation. The

state-Euler system is extremely sensitive to this parameter and severe

stability problems result [671. 	 In the present approach the initial

cross-range is iterated upon, and no serious stability problems result.

One of the most important contributions of the present research effort 	
a.

is that the heading adjoint, a major source of stability problems, has

been completely eliminated from the problem by paying careful attention

to aspects as location and orientation of the reference frame, stipulation

of boundary conditions, closed-form integration of some of the adjoint

equations and use of first integrals.

Some of the point-mass trajectories of the reference family are shown in

Fig. 13. The energy-management features observed earlier in the energy-

state model are confirmed by these point -mass model results. It is noted

that all trajectories I n the reference family are flown with full throt-

tle. In Fig . 14 a typical 3-D trajectory is shown. The ground track of

this trajectory is sketched as well.
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CHAPTER S. FEEDBACK SOLUTION

5.1 GUIDANCE SCHEME

The next step is to generate a near -optimal guidance law that will

transfer the interceptor to the vicinity of the reference family. A

closed-loop controller, based on linear feedback of altitude and path-

angle errors (where error is defined as the difference between the actual

and the nominal value) is synthesized along the lines contemplated in

Ref.65. The resulting feedback laws are of the following form:

an
nvfb ° n 
	 (E,X') + —v(E,X') [h - href (E,X')1
ref	 ah
an

+ —v(E,X') [ I - E ref (E,X')]	 (60)
as

I^	 a
fb	

(E,X') +	 (E,X') [ h - h ref (E,x')[
ref	 ah

a
+ nh (E,X') [ T - T ref (E ,X')[	 (61)

ax

where X' is defined as:

X' = ln(lxl / v)	 (62)

Evidently the control commands 
nvfb 

and nh
fb 

must be subjected to the

constraints ( 13) and ( 14). The decision to initiate a left or a right

turn, i.e. the sign of nh^, depends on the sign of the measured heading



n__	
n ref 

cosu
ref

L..__

angle (-n 5 x 5 n). The sign of 
ahfb 

is selected such that I x I decreases

in time. The reference variables, i.e. altitude, flight path-angle, the

controls and the feedback gains, are functions of two variables, E and

x'. The particular choice of the non-dimensional variable x' accounts

for the exponential character of the heading transient and insures that

the reference variables can be accurately represented by spline-lattices

over the entire range of energy and heading.

5.2 REFERENCE-VARIABLE NAPPING

Figs. 15 and 16 show the maps of altitude, h ref (E,x') and of reference

path-angle F ref (E,x'). As far as the mapping of the remaining reference

variables is concerned, an indirect approach is used in the present ef-

fort. As indicated in the introduction, there is no unique choice of

control variables. It turns out that it is advantageous to use a different

set of control variables for the reference data. The disadvantage of

using n  and ah as control variables is that they are coupled by the

constraints (13) and (14). If on the other hand n and U are used as control

variables, only one of the variables (n) is affected by the constraints.

This is the reason why the set n and U is used for generating the database.

By using the following transformations, the reference variables needed

in the evaluation of the feedback laws (60) and (61), can be obtained from

the precomputed data:

'	 n 
ref	

n ref sinUref	
(63)
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(an v/ah) = cosp 
ref (an/ah) - n ref 

sinu ref (3p/ah)	
(64)

(an v/aa) = cosu
ref

(an/ax) - arefsinuref(au/ax)	 (65)

(anh/ah) = sinu
ref (

an/ ah) + nrefcosuref(au/ah) 	 (66)

(On v/ax)	 sinu 
ref 

(an/au) + n ref cosu
ref (

au/ a 8)	 (67)

At this stage one might wonder why the set n and u is not used directly

in the feedback scheme. As a matter of fact such a scheme has been exam-

ined; however, in numerical simulation runs it proved to be inferior to

the currently-recommended scheme, especially for large deviations from

the nominal state. For a certain type of maneuver (high-speed yo-yo), the

alternative scheme broke down altogether. This was a result of the fact

that the linear corrections terms caused the load factor to become nega-

tive for large deviations from the reference, which by definition is im-

possible (see Eq.(15)). For these reasons the set n v and nh 
was retained.

In Figs. (17) and (18) the reference control maps are shown. The regions

where the load factor is constrained (either by Eq.(13) or (14)) are

cross-hatched in Fig.17. The gap separating the two constrained-control

areas has been the subject of speculation. In this region the aircraft

accelerates through the transonic region with the aid of gravity, while

-- -'zg a rather hard turn at the same time. It is conjectured that load

Ls slightly reduced below its constrained level in order to temper
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the effect of the transonic drag-rise. For this reason this area will be

referred to as the "transonic region".

The precomputed feedback gains are in effect the partials of the control

variables n and y with respect to the "fast" state variables h and F, with

E and x held constant. They are obtained numerically in difference-

quotient approximation as the average of the forward and backward dif-

ferences (67). To this end, for each initial condition calculations are

redone with small perturbations from the reference values in altitude and

flight-path angle. The feedback gains are evaluated along the reference

trajectories by successively treating intermediate points as "now" ini-

tial conditions. From the viewpoint of computational efficiency as well

as accuracy, it is natural to use the grid points of the MSA (assuming

they are appropriately distributed over the interval) as the "new" initial

conditions. It should be noted that, in order to compute the feedback

gains accurately, highly accurate state-Euler solutions are needed (67].

The MU proved to be an extremely powerful tool in this respect.

The four gains are shown as functions of E and x' in Figs.18-21. In the

regions where the reference load factor is constrained, no partials of

the load factor are evaluated. As a matter of fact it may not even be

possible to evaluate those partials as they may not be defined. This is

for example the case on the corner-velocity locus where a discontinuity

in the partial of the load factor with respect to the altitude, appro-

priate to the values of lift and structural limit, is occasioned. Ref.55,

which deals with neighboring-optimal guidance, furthermore shows that the
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presence of inequality constraints on control variables generally leads

to nonlinear control behavior. This clearly is an unwelcome complication

and one may consider a simple alternative approach instead. This approach

entails the following: in those regions in the (x',E)-space where the

reference load-factor is constrained, the value zero is assigned to the

partials of the load factor. This amounts to using open-loop control (at

least with respect to n) as long as the reference load-factor is con-

strained.

5.3 REFERENCE-DATA REPRESENTATION

The reference variables are computed preflight, but arA to be stored as

functions of E and x' for on-board use. This requires bivariate or, pos-

sibly, linearly-interpolated fits for double-table-look-ups. Among the

many methods, bicubic-spline fitting is a commonly employed technique.

However, this method requires the use of a rectangular grid for the co-

ordinate variables. From Fig.12 it is clear that in the present case the

data points are irregularly distributed. There are two ways to go about

solving this problem. Firstly, a local splining technique, capable of

handling irregularly distributed data, can be used. Secondly, the

irregularly-distributed sample-data points can be used to estimate the

values of the mapped variables at the nodes of a specified rectangular

grid by interpolation between surrounding data points. Once the rectan-

gular grid has been generated, the bicubic spline technique can be used.

Both options have been examined to some extent. The bivariate fit, de-

scribed in Ref.73, calculates an interpolating function which is a
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fifth-degree polynomial in each triangle of a triangulation in the

coordinate-plane. The interpolating function is continuous and has con-

tinuous first-order partial derivatives. Unfortunately, however, the

routine implementing this method (741, did not perform satisfactorily for

the present problem and some very undesirable features, most notably ex-

cessive "wiggling" of the splined functions, were noticed. The second

approach proved to be much better in this respect. A rectangular grid was

generated using the nearest neighbor method, described in Ref.75. A

nearest neighbor method can be used to estimate the value of the mapped

variable at a specified grid node by searching for the n nearest sample

data points regardless of their radial distribution around that node. In

the present effort the value of the mapped variable at a grid-point is

estimated by a distance-weighted average of 8 nearby sample data points.

After gridding, the bicubic spline routine of Ref.74, implementing the

method of Ref.76, can then be used to represent the data. The maps

presently employed have been generated using this second approach.

It is evident that the number of data points has a profound impact on the

accuracy of the representation. For establishing the grid values of the

control and state variables approximately 1500 data points on 26 extremals

were used. In order to obtain a nearly uniform distribution of sample data

points across the map, the coordinate variable E is resealed in the

spline routine, so that it is of the same order of magnitude as x'. The

evaluation of the feedback gains requires the solution of five TPBVP's

at each sample point. It is evident that a tremendous computational effort

would be required if a density of sample points similar to that of the
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reference control and state variables were to be used for the gains. In

order to curtail the computational effort, approximately 100 data points

on 8 extremals, were used to estimate the grid values for the feedback

gains. The size of the specified grid-matrix is 27 x 21 (= 567 nodes),

with an equal spacing in each coordinate direction. This representation

proved to be satisfactory for the purpose of digital simulation of a

point-mass system model driven by the feedback laws.

5.4 IMPLEMENTATION ASPECTS

It is observed that the heading transient is rather fast and this suggests

that the assumed ordering of "slow" and "fast" variables in the energy-

state model may not be correct. This discrepancy has been noticed in the

literature. Ref.43 gives as reasons for treating x as a "slow" variable,

the fact that certain maneuvers such as "high- and low-speed yo-yo's",

can be better modeled and the fact that the inclusion of x in slower

subsystems is relatively easy, since the adjoint equation associated with

X can be analytically integrated. In the present approach a reason of at

least equal importance is that % varies monotonically during a maneuver,

which makes it such a suitable coordinate-variable for reference-variable

mapping in the first place.

Nevertheless, the fast behavior of the heading transient does hose some

serious problems in a 'real-world" situation. These problems stem from

the fact that the feedback laws require accurate measurements of the

heading angle. In an airborne implementation, where measurement errors
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are inevitable, it may therefore actually be required to replace measured

values of X by predicted values, in particular for small heading-to-go

when the relative measurement -errors are large. Such predictions can be

^ r made for instance by assuming that the heading transient can be described

by an exponential function of time, with a time-constant to be estimated

and updated on-line. In digital simulation of a point -mass system model,

the implementation of the feedback laws does not present any problems.

The range of the coordinate X' in the reference -variable maps extends from

-10 to 0. However, due to the exponential behavior of the heading tran-

sient, the value of x' will eventually move out of this range as the ma-

neuver progresses. The selection of the range of X' for the reference

variable maps., is not just arbitrary. The range of X' is selected such

as to insure that the altitude and path-angle transients can be as good

as completed within that range. If x' becomes too small and moves out of

the range, a simple switch to 2-D symmetric flight (nh = 0) is made. The

feedback law for 2-D symmetric flight is essentially the same as the one

described in Refs . 66 and 67, however wits av replacing CL as control

variable.

In the "transonic region" some of the feedback gains may vary rather

rapidly, reach high peak-values and even change sign (see Figs . 19-22).

As a result unstable flight conditions may occur for trajectories ema-

nating from or passing through this transonic region, if no preventative

measures are taken. Similar unstable situations may occur for trajecto-
x

-
ties emanating from the region in the (x',E)-space, where 8U/87f is nega-
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tive (see Fig . 22). One of the measures that could be taken to alleviate

i

such instability problems is to bound the magnitude of the

altitude/path-angle perturbations. However, such a measure would clearly

affect flight -paths originating outside the transonic region as well. For

this reason we have opted for another measure, namely to bound the feed-

back gains. The following bounds have been adopted:

anv/ah 5 10
-4 

(m-1 )	 I	 env/at 5 1 ( red. -1 )	 (68)

Janh/ahl 5 0.25 10
-4 

(m-1 )	 13nh/311 5 1 (red. -1 )	 (69)

The values of the bounds evolved from extensive numerical simulation of

the point -mass system modal, driven by the feedback laws. The values of

the bounds are such that the gains outside the indicated unstable regions

in the (X',E)-space are not or hardly affected, while undesired flight

conditions within those regions can be avoided. The occurrence of unstable

flight situations is one of the more unpleasant complications in the ex-

tension to 3-D. A more serious stability study of the point-mass system

model driven by the feedback laws clearly is of interest for future re-
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search.

It is noted that the control laws (21) are independent of the cross-range

y. Execution of these laws during an engagement may therefore actually

cause the interceptor to fly parallel to, rather than behind the target,

in the dash phase of the mission. Assuming that the initial cross-range
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is small compared to the total ra:.ge-to-go a simple offset correction can

be devised to overcome this problem. The offset correction is obtained

by adding a correction term:

AX = aretan(y/(x f- x)J	 ,	 (70)

to the measured heading angle. The effect of the correction term is very

limited if heading-to-go is large; however, if the heading error is almost

closed the correction term becomes dominant and actually dictates a new

course: a collision course. The coordinates of the collision point are

(xf) 0), where x  is the projected down-range position of the target. Fig.

23 illustrates the effects of the offset correction incorporated in the

feedback strategy with xf = 0.

It is evident that the constant-weight assumption made in the formulation

of the point-mass system model is violated in actual flight due to fuel

expenditure. In particular, if the aircraft operates with full

afterburner, as in the presently considered mission, fuel consuusption

will, in fact, decrease the aircraft weight rapidly. Since weight vari-

ations obviously affect the aircraft's control strategy, cor^ective

actions are called for. Due to high fuel consumption, the aircraft can

operate with full afterburner for a very brief period only. Optimal con-

trol strategies are therefore imperative, if the airplane is to prove

effective during this brief period of afterburning operation. A very

simple way to account for weight variations is by computing the feedback

control laws for two different aircraft weights: a high weight and a low

s
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weight. The control commands for the (estimated) actual weight are then

determined by interpolation between the high- and low-weight solutions.

In eventual on-board real-time implementation of the scheme contemplated,

similar corrections for off-nominal ambient temperature and winds-aloft

are called for as well. Mother issue that has to be addressed before a

practical implementation of the controller could take place is to evaluate

and compensate for the effects of changes in the aircraft configuration,

due to the release of external stores for instance, on the guidance

scheme.
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CHAPTER 6. POINT-NASS SIMULATION

The guidance scheme was tested in digital simulation runs using a point-

mass system model. The range of validity of the feedback laws was examined

by comparing approximate feedback solutions to open-loop optimal sol-

utions for a wide variety of initial flight conditions.

In the present effort the initial flight-path angle for the reference

extremals was selected as zero. As indicated in Chapter 3 a different

selection, for example the path-angle corresponding to unaccelerated

flight, can be argued. This raises the question as to what extent this

choice influences the performance of the controller. To address this

issue the following numerical experiment was conducted. 	 For a given

reference extremal (Eo= 70 kft) the initial path-angle was varied while

the remaining initial conditions remained unchanged. Using the feedback

laws the point -mass model was simulated, starting from the very same ini-

tial conditions. For the open - loop optimal as well as the closed-loop

approximate solutions, the performance index ( time-of-flight) was re-

corded. The results are presented in Fig . 24. From the results it is ev-

ident that the feedback laws perform quite satisfactorily even for large

initial deviations from the zero reference value of path angle. It

theref,)re seems safe to state that the effect of a particular choice of

the initial path-angle for the reference extremals on the performance of

the controller is limited. It is interesting to note that the local max-

9
imam on the curve in Fig . 24 corresponds to the state -Eular solution with

t
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the initial path-angle free (u = 90°). State-Euler solutions with very

large initial path-angles are difficult to obtain. This is caused by the

singularity in the equation of motion (6) for F = t90°. The convergence

of the MSA is very poor for near-singular values of the flight-path angle

occuring anywhere along the extremal. The singularity in the equations

of motion defined by Euler angles can be avoided by using quaternions

instead (77). However, by doing so the possibility of additional singular

subarea in the optimal- control solution is introduced, a clearly unwel-

come complication. The present equations of motion (1)-(6) are adequate

to describe most 3-D maneuvers of interest, as will become clear from the

examples presented.

The feedback laws do not only perform satisfactorily for large perturba-

tions in path-angle, but also for large perturbations in altitude as well

as for combined path-angle/altitude perturbations. To illustrate this,

five numerical examples featuring a variety of maneuvers are presented.

Fig.25 shows the solutions in the (V,h)-space for the five examples. For

each of the examples the characteristic features will be shown in more

detail. The initial conditions for example 1 are:

xo= -700 kft , ho = 7.5 kft , S  = 10 kft

To= 0° 	 Xo = -170°

The results are shown in Figs.26-32. There is only a small initial devi-

ation in path-angle from nominal (see Fig.27), but the initial deviation

in altitude is about 3000 ft above nominal (see Fig-26). The optimal- 	 )
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control histories are shown in Figs.28 and 29; however, these results are

perhaps better understood if the load-factor and bank-angle histories

(Figs.30 and 31) are examined first. Since the trajectory starts above

the corner-velocity locus, load factor is constrained by the lift limit

in the initial phase. The feedback load-factor history shows an overshoot

which is compensated for by an earlier onset of the decay. The "wiggles"

in the load-factor history are caused by the aircraft passing through the

transonic region. The initial bank-angle is close to 180°, which is

characteristic for maneuvers starting at altitudes far above nominal.

In particular at high energy levels, when transients are not as rapid,

the initial phase of such maneuvers tends towards a split-S (also see

example 2 of Ref.78), reaching path-angles close to -90°. At low energy	 j

levels, as in this example, heading transients are generally rather fast,

as can be observed in Fig.32. The time-of-flight for the optimal tra-

jectory is t f=374.20 sec. The feedback trajectory takes about 0.80 sec

(or 0.2e) more. The initial conditions for example 2 are:

xo -700 kft , ho = 0 kft , E0 = 25 kft

F°= 00 	 X° = -150°

Some of the results are shown in Figs.33 and 34. In this example the in-

itial altitude is about 16000 ft below nominal. The aircraft executes a

rather steep climbing turn, losing speed, before fairing into the refer-

ence flight-path. The optimal-control solution of this type of maneuvers

has some very distinct features. This will be demonstrated by example

4, which has similar, but more pronounced features. The difference in
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time-of-flight between the optimal solution and the feedback approxi-

mation is only about 1.03 sec (or 0.36). The initial conditions for ex-

ample 3 are:

xo= -700 kft	 ho = 40 kft , E 0 = 48 kft

Fo= 00 	 xo = -1450

This particular example serves to demonstrate a trajectory that origi-

nates in the transonic region. Maneuvers of this type are among the most

difficult to be performed by the guidance scheme. Figs.35-37 show some

of the results for this example. The initial devlazions from nominal are

considerable, both in altitude and path-angle. The most striking feature

of a "transonic maneuver" as presented in this example can be seen in thn

load-factor history of Fig.37. The optimal load-factor history has two

very distinct peaks. The feedback solution "reproduces" those peaks ac-

tually rather well. As a result the difference between the optimal sol-

ution and the feedback approximation is only about 1.8 sec (or 0.56).

The initial conditions for example 4 are:

xo= -700 kft , ho = 27.5 kft	 Eo = 70 kft

Fa 45 0	Xo = -1350

Example 4 is representative for another category of "difficult" maneu-

vets: high-speed yo-yo's. Several interesting details of the solution for

this particular example are shown in Figs.39-43. Initial altitude is about

12000 ft below nominal, while the path-angle is about 65 0 above nominal.
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Similar to example 2, the maneuver starts out with a climbing turn with

speedloss. However, unlike example 2, the aircraft subsequently converts

altitude back into kinetic energy (see Fig.38). From the viewpoint of

energy management such behavior is perfectly lo bical: by converting

kinetic energy into altitude, the flight is directed towards the corner-

velocity locus, resulting in improved turning performance. Once the turn

has been nearly completed, the excess potential energy (altitude) can be

reconverted into kinetic energy (velocity) in order to improve range and

energy rates. Fig.40 shows that the feedback .ontrol n  lags the optimal

control nv . From Figs.42 and 43 it is clear that this is mainly caused

by a lag in bank angle. The bank-angle history of Fig.43 ir, typical for

a high speed yo-yo maneuver: initially bank angle is below 900 , followed

by a brief period in which bank angle is above 90 0 and finally bank angle

decays to zero. The behavior of the optimal bank-angle history is quite

different f- the reference bank-angle history which probably accounts

for the fact iat this type of maneuver is difficult to perform. Never-

theless the guidance scheme is capable of handling this type of maneuver

quite satisfactorily. A difference in time-of-flight of about 2.6 sec (or

0.8%) for this particular example clearly supports this claim. The ini-

tial conditions for example 5 are:

• 4

, E0 = 110 kftx = -700 kft0

T=000

h0 = 55 kft

X0 = - 1400

The purpose of this particular example is to demonstrate a maneuver

starting at a high energy level. Like example 1, the initial altitude is
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substantially above nominal (about 9000 ft for this example). The initial

path-angle is about 25
0
 above nominal. Some of the results are shown in 	 i

Figs.44-48. One interesting feature that can be observed is that the

transients of this maneuver are much slower than the transients for sim-

ilar maneuvers initiated at much lower energies (compare for instance to

example 1). Mother interesting feature is that the control variable n 

behaves rather mildly. The time-of-flight for , the optimal trajectory is

t f=330.67 sec. The difference in time-of-flight between the optimal sol-

ution and the feedback approximation is about 0.33 sec (or 0.1%).

In all more than a hundred simulation runs were made for a variety of

initial conditions. All examples examined (with -45° 5 Yo 5 45°) had an

accuracy of 1; or better, a rather impressive result.
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CHAPTER 7. CONCLUSIONS

An automatic guidance scheme for a three-dimensional aircraft intercept

mission has been developed. Tk,e scheme employs state -Euler solutions for

a point-mass model, but makes use of singular -perturbation ideas in terms

of a hierarchical trajectory - family structure. Indeed the turn-climb

schedules that emerge fair gracefully into a cruise -dash. Numerical ex-

amples revealed that, despite their linear nature, the feedback laws

perform accurdtely even for large departures from the nominal state.

The flight paths for the sample aircraft, representing a high-performance

fighter, revealed some surprising features. One of the most striking

features was that all examined trajectories with a heading -to-go of 1800

or less were flown full -throttle. A second surprising feature was the wide

range of flight -path angles observed in many maneuvers. It is believed

that these characteristics may be the result of the ,articular aircraft

model used, featuring a rather high thrust-to -weight ratio.

Several attempts to develop an automatic guidance scheme for three-

dimensional intercept missions have been made in recent years, mostly

using singular perturbation techniques ( 47,48). The singular -perturbation

procedures employed essentially decompose the original 3-D problem into

vertical and horizontal sub-problems. The resulting guidance laws are

vectorial compositions of the orthogonal 2-D guidance laws. However, such

guidance laws have some serious deficiencies. First of all, the decom-
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position of the 3-D problem into two 2-D sub-problems can be justified

only if the assumption coal Q 1 holds, which is clearly not the case, as

our results bear out. Secondly, relating to the vertical subproblem, the

artificial time-scale separation between the strongly coupled altitude

and path-angle dynamics is difficult to justify. And thirdly, there is

the problem of altitude jumps in the outer solution, calling for separate

internal boundary layers. Some ad-hoc engineering approaches to allevi-

ate some of these deficiencies have been suggested recently (79). However,

the validity of all of these feedback laws is still largely untested.

The presently proposed scheme does not suffer from any of these defi-

ciencies. Moreover, its validity is demonstrated by comparison with exact

solutions. Nevertheless there are some weaknesses in the present approach

as well. Unlike the nonlinear feedback laws obtained using singular per-

turbatinn techniques, the present scheme is rather inflexible with re-

`( spect to variations in design factors, operational constraints and

atmospheric conditions. Corrective measures along the lines of Chapter 5

are possible, but do require a significant amount of storage space. Due

to this lack of flexibility the present scheme is also less suitable for

applications involving rapid systematic parametric studies, such as pre-

liminary design or performance estimation. Another weakness is that the

missions considered are restricted to long-range operations. On the other

hand the concept does hold promise for extension to other mission per-

3
formance indices, such as a weighted combination of time and fuel-

consumed.
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On the indication of the results presented herein, the guidance scheme

constitutes itself as a very attractive candidate for real-time imple-

mentation on-board advanced fighter aircraft. The potential of the in-

flight trajectory algorithm could be fully evaluated by real-time

simulation experiments, such as the pilot-in-the •,00p simulations re-
s-

ported in Ref,.80, and eventually by actual flight testing.



APPENDIX A. OPTIMAL 3-D TRAJECTORIES IN THE PRESENCE OF A TERRAIN LIMIT

Despite its simple form, the enforcement of the altitude constraint (17)

is a far from straightforward procedure. This is a consequence of the fact

that the altitude constraint is a pure state constraint, i.e. the controls

do not enter explicitly. The altitude constraint:

S = hmin- h 5 0 ,	 (A-1)

is of second order, as follows from:

S=0 y T=0	 (A-2)

S = 0	 '	 T = (g/y)[nv - COST] = 0	 (A-3)

The last expression actually determines a control law for the variable

n  on the constrained arc: n  °- 1. Following Bryson and Ho [70), the

constraint (A-3) is formally adjoined to the Hamiltonian using the mul-

tiplier t. Since this constraint is adjoined in the same way as the system

equation (3), the computational procedure is largely simplified. The

optimal control expression for n v given by Eq.(36) is simply modif' `-

n  = gW[1T + Cl/[ 2V2Di %E l ,

from which for n =1:
v
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{ = [ 2V2D i aE J/[ gW1 - ay 	(A-5)

Note that 4=0 in the case that the altitude constraint is not active.

The adjoint equations are modified by simply replacing a y by a^+{. The

en r conditions for a constrained are are:

hmin- h = 0
	 9	 T = 0	 (A-6)

The entry conditions, treated as interior-point constraints, give rise

to the following "jump conditions" at the entry time t a :

ah (ta ) = lh ( ta - ) - 
a 

	
(A-7)

1'J(te ) = x T ( ta ) - e2
	

(A-8)

where 
a  

and o2 are constant multipliers. At the exit point the following

condition applies:

{ = 0	 (A-9)

Due to the lack of uniqueness of the adjoints on the constrained arc, a

different set of conditions can be arrived at [70). In the above analysis

the existence of a constrained are is assumed. However, typical of second

order state constraints, there can be optimal paths that touch the con-

straint boundary at only one point. Such touch -point problems are actually

more simple, since there are fewer conditions to be satisfied at the touch

point:
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hmin - h 0
	 (A-10)

T = 0	 (A-11)

ah(te) = lh (te ) - 0 1	(A-12)

The constrained -arc and touch-point conditions have been incorporated in

	

the control logic of the NSA algorithm. Since the lift and structural
	

i

constraints may be active as well, the control logic is quite complicated.

A

The possibility of throttle -switching complicates matters even further.

1

The NSA is extremely well-suited to handle state constraints. The only

disadvantage is that the sequence of constrained arcs (or touch points)

and unconstrained arcs needs to be known (or assumed) a priori. Also the

program has no capability to test whether there will be a constrained are

or a touch point. This information has to be specified a priori as well.

As a result some trial -and-error efforts will generally be required.

Our research efforts concerning state constraints have focussed on ma-

neuvers taking place below the corner-velocity locus. Consequently the

lift limit does not come into play, thus simplifying the problem signif-

icantly. Our results bear out that most of the altitude -constrained ma-

neuvers are of the touch -point type. As a matter of fact it was quite

difficult to generate examples featuring constrained arcs. The only way

such examples could be generated was by stipulating very large values for

the terrain limit.

The boundary conditions for the example selected are:

i
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1

x  = -620 kit , he= 44.3935 kit , Eo = 88.95 kit

To= -16.82930	X  = -1800

x f 0 , Yf ° 0	 h f = h D , E f = E D , Xf=0

The altitude history for the unconstrained problem can be seen in Fig.

49. In this figure two constrained solutions are indicated as well. The

solution corresponding to 
hmin	

30.5 kit features a touch point. The	 5

solution corresponding to hmin = 31.5 kit features a constrained are. The

}
constrained are has a duration of about 3 see. It is evident that the 	

yy
values used for the terrain limit have no physical meaning; however, they 1

si

do illustrate the occurrence of constrained arcs. For more realistic

values of hmin (corresponding to sea level, for instance), the constrained

solution will always feature a touch point. This is achieved by shifting

the emphasis in the initial phase of the maneuver from turning in the 	 't

horizontal plane to turning in the vertical plane. It is believed that

for less powerful aircraft or for lower initial speeds the possibility

of constrained-altitude arcs at sea level does exist.
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Figure 1. Horizontal plane geometry.
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Figure 2. Definition of nh and nv.
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Figure 14. A typical 3-D trajectory and its ground track.
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