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ULTRASONIC INSPECTION OF CARBON FIBER REINFORCED
PLASTIC BY MEANS OF SAMPLE ~ RECOGNITION® METHODS

R. Bilgram
Messerschmitt-Bélkow-Blohm GmbH

1. Introduction yary
Non«local'defects such as manufacturing defects (e.g.
process irregularities[”material flaws) and aging defects
(e.g. chemical, physical, mechanical degradation) in carbon fiber
reinforced plastics (CFRPs) have previously been impossible to
detect by nondestructive inspection methods. A set of solutions
is ‘séen in expanding in improving extensively proven ultrasound
inspection (US inspection) with/methcds of signal processing and
pattern recognition so that such defects can also be detected and
moreover a detailed defect type’analysfé and classification can
be performed during US inspection of a component.

The fundamental idea is that the US signal contains informa=~

tion about the nature of the medium through»whfth the sound wave
has passed, or the kind of reflector from which it was reflected,
which information (Fig. 1) is not used in conventional US

inspection.

Since an analytical treatment of physical processes during
sound propagation in components is extremely complex, and hence
practical inspection of the component is hardly helpful, an
empirical route is taken to make this information useful: A
measurement system is provided with reference signals such as are
measured on material--samples_of._various qualities, with a signal
class assigned to each ‘quality class. Suitably "trained," the
measurement system checks while measuring the component whether
it recognizes certain reference signal patterns in the signal,

.Numbers in the margin indicate pagination in the foreign text.
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—and-assigns the pattern to the corresponding signal or quality
class.

Below we discuss briefly how such. a procedure can be
constructed, and what experience has been gained with it on
various CFRP laminates.

The method is founded on work by Rose et al. [1-7] and on
-general literature-on pattern-recognition [8]. /2

2. Method
2.1. _General » _

The US wave train transmitted by the testing head into the
test specimen at the respective measurement point is reflected
from the interfaces in the specimen according to the laws of
sound propagation, is absorbed in the material and scattered by
micro.ocopic interfaces so that after a certain time the wave
train can be received with a correspondingly reduced sound
pressure.as an echo or transmission signal (Fig. 2). In conven-
tional US inspection, the time and amplitude of the electronic-
ally smoothed and rectified received signal are evaluated, i.e.,
they are usually applied for "good/bad" judgments via a thres-
hold value discriminator within a Eiﬁe window. Interpretation is
thus limited to whether-a sufficiently high echo signal is
received within the selected time window.

But precisely with media such as CFRPs, which strongly danp
sound, how the received signal is constituted after passing -
through the material is a question of great interest -- i.e.,
what is the influence of various material quality features upon
the signal features. The consistent utilization of this connec-
tion requires application of known signal shape-analysis ard
pattern recognition techniques, and finally leads to an automatic
classification of US signals or qualities. The prerequisite is
that one must be able to verify (empirically) an interdependence

2




between signal features and material quality.

2.2. Measurement Systen o
A measurement system for-such a-pattern recognition method

in US inspection (Fig. 3) consists of the US transmitter/receiver
with the test head, coupled to the specimen manually via a
contact medium or in an immersion path via a water separation /3
space, and the analog/digital converter, which accepts the
received signals at a suitable scanning rate (up to 100 MHz) and
transmits them to the computer for further processing. The
results can be graphed or tabulated out via suitable peripher=-
als. Via a monitor the US signal can be observed directly for
supervision. '

The procedure for applying pattern recognition can roughly
be divided into three phases: ' A

2.3. "lLearning" Phase
Reference signals for the various quality classes are

recorded from suitably prepared CFRP patterns ("good" signals and
various "defect" signals). From the signals, suitable signal
features are calculated, e.d., rise time, pulse duration, decay
time of the envelope signal, various shape factors of the
envelope signal, the HF output -spectrum, the so-called analytical
spectrum and/or the phase spectrum. Here "suitable" means:
physically meaningful and useful for a class differentiation. - At
the end of the experiments, a data base is available containing a
suitable selection of signal feature values for each class to be
differentiated (e.g., 5), in a sufficient number for statistical
purposes (e.g., 10-20 or more measurement points for each class).

Using this data base, a computation rule (algorithm) is then
developed which using as few signal features as possible assigns
the measurement points of the data base to the right classes. In
principle this classification rule can be based on considerations

3
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of tabulated values and establishment of 1imit values, but
preferably it uses graphic/visual examination of population'
diagrams and evaluation of probability density functions of the
signal features of the classes being sought. Examples of this /4
are discussed further below. But since generally several classes
nust be distinguished and up to 5 signal features must be
considered, human visual cépacity'or abstraction capability is
exceeded and one lets a computer develop algorithms according to
‘preset blueprints (i.e., calculate the coefficients for so-called
discriminant functions), and then check the suitability of the
algorithm by inserting the values from the data base.

Here it must be noted that in this learning phase it is
possible to take account of the scattering of various parameters
from the areas of material characteristics and testing data,

. .which of course are reproducible only within limits, by fully
including the corresponding scattering ranges>in the base data.

2.4, Test Phase

L e T e SRR

Ascpatterns of known error'ciasses or quality features, by
measuriﬁg as many US signals as possible, deriving the feature
values andyinserting these values in the algorithm from the
learning phase, one checks how well the algorithm woxks at
arbitrary points of the known defect samples -- i.e., how high
the "hit rate" is. If it is not high enough, the learning phase
nust be repeated, either expanding the data base with further »
measurements, using other definitions for the signal features, or
if neceSsaryﬁgltering the testing boundary conditions (testing
frequency, scanning window, amplification, etc.).

2.5. Inspection—Phase-
Given sufficiently high accuracy in the testing phase,

testing can now be performed with the .developed. algorithm on
unknown laminates. The result of each testing process is the
classification“ofwthewrespective.measurementmpoint, with a i)

4
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certain probability < 100% (as with any non-~destructive test
result), which can be determined from the test phase.

3. Sample Applications
3.1. Delamination Test
2.2. Delamination Test

To illustrate the above description, a simple practical
example can be used, in which an algorithm was developed to
detect delaminations in a CFRP plate (5 mm thick, resin system
914 C, fiber-T~300). Figure 4 shows two US signals from this
example, as well as the HF spectrum, analytical spectrum, and
envelope of these signals. 1In the example ohly 2 classes, namely
the "good" range (Class 1) and "delamination" (Class 2) were to
be distinguished. Hence is was sufficient to consider the
relatively apparent features of the envelope, which are defined
as shown in Fig. 5. ' '

In the example in Fig. 6, one can see that feature No. 4 has
almost igentical probability density functions for both classes,
i.e., the same values are measured with’ high probability for the
"good" range and delamination. Consequently the feature cannot
be valuable for classification. Feature No. 7 (upper half of
Fig. 6) on the other hand, separates the two classes better,

But as with the other features there is a relatively large range
of overlap, meaning that a limit value that separates bc'
¢lasses 100% does not exist for any feature. Consequently 2

. features must be used,

Here it is useful to consider the population graphs in
qQuestion, i.e., the values are graphed in a coordinate network -as
in Fig. 7, formed by the feature axes. In the upper hailf, yA
features 5 and 6 were selected, and one sees that here it is
still impossible to separate Classes 1 and 2 100% by a line.

From the 45 possible pairings of the lO'features, the pairing 6/7
was found best. It is reproduced at the bottom of Fig. 7, and
rather than the centroid normal (solid line) drawn. by the
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computer, a line similar to the dotted line separates the two
classes best. ‘

The "blueprint" for the algorithm embodied in this separa-
tion line is a linear discriminant function with the general
form:

f = Co *+ €] « X +C2 . X #-r Cp . Xp (1)

where ﬁ are the feature values of the current measurement -point,
and ¢ are the coefficients to be determined by the computer
program.

The determined algofithm reads:

f = -0.0262 - 3.9163 . xg + 1.8879 . xy (2)

~ s S~

The measurement values 6 and 7 determined at any given measure-
ment point (i.e., acccfding to Fig. 10 these are the position of
the centroid of theﬁenvelope and the standard dev%ation'of the
curve points) are inserted in Eq. (2) and the result £ is
compared with a threshold value & = 0.782 and classified:

if £ > 0.782 h Class 1 = "good"

if £ < 0.782 Class 2 = "delamination"

A correspondingly structured test program supplies the classifi-
cation within ca. 4 sec., with an accuracy of nearly 100%. yai

3.2. Manufacturing Defects in Multidirectional Laminates

—— ——

The actual domain of pattern recognition is US signals
that do not contain such obvious information as (e.g.) a delam-
ination—echo,—but-due-to-deviating material-properties present
only certain signal alterations compared to a '"good" standard.
These alterations may be due to deviations in process parameters
(pressure, temperature, time, etc.), contamination of the
laminates- (moisture, mold . lubricants, separation films, etc.). .and
aging effects (chemical, mechanical, physical).

6
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To give an example, plates of a 17-layer laminate type made
of unidirectional carbon fiber prepreg 914 C-/T300 were hardened
with various process defects. "Figure 8 -summarizes-the-8
classes. 1 measurement point each was set on the 16 '"“good"
samples, and 10 measurement points each on the other samples, so
that in this case a data base of 86 measurement points is ‘
available for the learning phase. The 10 features were defined

as in. Fig. 5.

-~

Here different studies were performed, i.e: linear discrimi-
nant functions per Egq. (1) were determined for 2 classes each.
At this point we introduce another type of discriminant function,

“ the hyperquadratic, with the general form:.

- -t - - ’
g (X) = XMW 1K 4 WiX & Wy (3)

~

feature vector
transposed feature vector

with = X
xt
[W,] = weight matrix
weight vector ‘
weight scalar = , /8

<ot il

v

woi
For each class i, the value g;(x) is calculated; for the

class in question, g;(x) is the maximum.
L

Computer programs were developed which automatically
determlne the best feature combinations for a given training data
set, i.e., the selection of signal features that- supplies a
required minimum quota of correct class assignments for this data
set. -In -the first step, an algorithm per Eqg. (3) is developed
for each signal feature and each class, and the accuracy is
determined by inserting the training values. If the minimum
quota (90%). is reached, it is reported and the computer recom-
mends using-this_algorithm to solve the inspection problem.
otherwise, in a second step all comblnatlons of two are tested,



then all combinations of three and so on, until avsatisfactory
accuracy is reached. Experience shows that it is enough to
include 2 or 3 features, but for 8 classes sometimes 4 or nore
features may be necessary. ’

An important question .is the quallty of a classificaticn
algorithm, i.e., what criterion should be used to evaluate which
of the possible algorithms or error finding allows the best
accuracy.

For this one considers the so-called "performance matrix" in
Fig. 9 as a way of showing classification results in which the
number of correct class assignments for each class, the total
accuraéy (= performance), detection quota (= detectability) and
"good" quota (= specificity) or Class 1 quota, are graphed.

vlghis reasonable to expect such an algorithm primarily to
detect "good" points and "bad" points with optimum certainty,
and only secondarily to name the kind of defect correctly.
'Therefore the mean of the quota for Class 1 (= "good") and ya)
the error detection quota (mean of quotas for error classes) is
used as the evaluation criterion. Only when several poss1b11~
ities yield the same total <& the total accuracy ‘used as a second

criterion.

In the present case, for example, the situation shown in
Fig. 10 developed. Using only one feature, features 5 and 8 each
yielded 87.8% as a mean crlterlon, the total accuracy of 37.7%
here favors feature 5. With 2 features, the pairing of Nos 12
and 19 with a mean criterion of 96.2% was the best, and here up
to 60.5% of all measured points could. be assigned coxrectly.

The more features are considered, the hig*er the number of
right assignments, and the main question_.is how much computer
time per measurement point can: be.spent..on classification.

8
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The classification mechanism will be explained in more

-detail with this example. As noted above, for each class a

discriminant _function is--defined. In~Fig. 21, 4 such functions
are graphed as an example for 4 classes, vs. the feature value,
Each measurement process yields a certain feature value and the
task of classification is to determine which of the functions at
this point has the highest Value.

"Even with 2 features, this classification is still manage-
able (Fig. 12). Here the discriminant functions can be seen as
areas (with hills and valleys) intersecting at the classification
boundaries. Such intersecting lines are graphed in Fig. 12; the
numbers mean that épﬂthis point of the "feature" plane the

.respective function has the greatest value of all 8 functions./10

3.3.  Fabric Laminate Specimens

While the sample plate studied in the above section had a uniform
wall thickness; in another test series, 27 specimens of 2
laminate types with 3 wall thicknesses were used, in a further
step towards close-to-practice testing problems. Laminate type A

~ is made purely of .fabric Prepregs (6, 12.and 18 layers). Type B

is made of alternating fabric layers and unidirectional tapes

(7, 13 and 19 layers). For each of the laminates, the correspon-
ding classification algorithms were determined in which 10 very
simple signal features (involving simple software) were used:

... The first 5 features are defined like features 5-9 in
Fig. 5, applied to the rectified HF signal (software: f£(t) =
/£(t)/). A further 5 features with the same definition were
drawn from the HF output spectrum.

Although here we worked with greatly simplified signal

features compafed to the previous example, the defects were.
distinguished very clearly (close to 100%) using only 2 or 3




Y

features (Fig. 13).

There are two possible causes for the good classification
performance: First, the smaller number of classes (4 or 5), and
second the defects seem more severe than in the example with
multidirectional laminates (Sec. 3.5). ' /11

4. Summary and Prospects

The application of signal shape analysis and pattern
recognition methods opens new prospects for US inspection,
particularly of complex structures such as CFRPs. As was shown
with some simple laminate forms, signal features can be defined
and associated classification algorithms can be developed, with
which US signals can be assigned to certain reference signal

. classes. Since these reference.signals come from laminates with

certain quality classes ("good" class and various defect clas-
ses), it is possible to assign US signals to a defect class.

v A :
w3

The presented exampies demonstrate that a measurement
systemk{measurement technology and software) can be constructed
to fulfil the posed task of detecting non-local production
defects such as process irregularities, contaminat{bﬁs, pretreat-
ment defects, etc., at detection rates of over 90%.

It can be assumed that certain aying defects can also be
detected. Studies on this will begin this year.

At thepﬁbment, work is aimed at discovéring by steps the
requirements of a practical CFRP inspection, i.e. for detecting

~real-defects—with the necessary certainty in real components in

an economically reasonable_manner, even with more and more
complex -component geometries and laminate types.

. ‘The-next -steps are:

10




-- Search for a test that is independent of wall thickness
and if possible of geometry. /12

- Simplified operation and use of computer programs to
master many-sided inspection problems quickly.

- Incfeasedvcomputation speed using Assembler subprogranms.

-~ Collecting further experience from previous results
concerning signal feature "quality," such as: Which ones respond
especially sensitively to certain types of defects, or how can
the "quality" of features best be evaluated. :
Attempt at a physical explanation of the effect of
certain defects upon the US signals.

-~ Study of possibilities for automatic defect detection,

without having reference specimens available.
~- Producing self-adaptlng changes in the cla551f1catlon
algorlthms in _the test phase, so that these can be improved and

refined continuously with the number of testa.

Prec1se1y concerning the aast aspect it. should be empha-
sized that our developmental work in pattern recognition proces-
ses for US 1nspectlon will not terminate in an independent systen
that has a possibly incomprehensible or even controlled existence
separate from physical considerations and practical inspection< ~
experience, but rather a system that is technically highly
developed, capable and versatile, yet as simple to use as a
conventional US device, a system to serve US inspectors as a tool
for evaluating CFRP materials with all requirements according to
the best knowledge and state of the art. This also includes
detection of manufacturing defects previouslymundetectable
without destruction, for which in our opinion pattern recognition

.offers..a.solution.

11
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Key to figures [pp. 15-27]

Fig. 1. Us signals, top: example of "good" signal, bottom:
example of "defect" signal.
a. smoothed and rectified b. time
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Fig. 2. Diagram of ultrasouhd testing

a. workplece b. defect

c. coupling agent ~d. testing head

e, (receiver only) f. (transmitter and receiver) .
g. screen image h. back wall echo

i. defect echo j. surface echo

Fig. 3. Measurement system

a. ultrasound testing device b. testing head

c. analog/digital converter d. computer

e. printer - - f.graphics terminal

Fig. 4. Examples of 2 ultrasound signals from delamination
example. _ :
a. '"good range'

Fig. 5. Definition of signal features of envelope signal

a. envelope signal - b. time

c. rise time d. pulse width at __ %
e. decay time ' f. area ratio

g. centroid position of area h. asymmetry

. standard deviation of curve points
j. deviation from Gauss bell curve  «
k. position of maximum :

Fig. 6. Probability density for feature values Nos. 4 and 5 in
delamination examples _

Fig; . Grouping of both classes for two different feature
pairings. The pairing 6/7 (below) is suitable to separate all
measurements of both classes with a line; the upper one is not.

Fig. 8. Compilation of values of 8 sanple classes with hardening
defects. [Commas in numbers = decimal points]

a. sample No. b. class
c. mean ILS value d. [expansion unknown]
e. quota f. finding rate
g. hardening pressure h. defective vacuum sack
i. hardening temperature 'j. tempered
k. untempered 1. cooled too quickly

. m. separating film between layers
n. silicone lubricant between layers
o. good p. (for moisture aging)
q. -(for weathering) r. (for adhesion defects ...
s. total t. manufacturing/defect

13
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Fig. 9. "Performance matrix" as means of representing results of
classification. [Commas in numbers = decimal points]

a. actual defect class b. found class
c. total d. gquota
e. detection f. mean

g. employed features

Fig. 10. Compilation of best features/feature combinations for
multidirectional laminates (8 classes) [Commas in numbers =
decimal points] ‘

a. number of features b. employed features

c. mean criterion d. total rate (accuracy)

Fig. 11. Example of 4 hyperquadratic discriminant functions for
1 feature. For x, = 1.01, e.d., class 4 is right.

Fig.-12. Decision plane for features 12/19 for multidirectional
laminates (8 classes)

Fig. 13. Compiiaﬁion of "hit quotas" for c;timum feature
combinations for the 6 types of fabric laminates. [Commas in
numbers = decimal points] -

~a. laminate type b. number of: layers
c. of énployed features d. classes

e. total criterion f. total rate (accuracy)

Fa
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L ILs-vert | @ rate
N/mm2 % x
c211 ' ¥ 2 62,4
Cel 11 50 % Aushartedruck9 2 69'8 80,0 93,3
22 1 ' h .3 48,2
lczz 1 Vdefekter Vakuumsack 3 48’5 90,0| 100,0
€23 1 |Hartetemperatur 150°, ge- 4
C23 11 |tempert  i,3 4 67,2 100,0| 100,0
€24 1 HSrtetemperatur,ISOO. un- 5 - »
€24 11 |getempert ik 5 66,1 80,0 90,0
€25 1 . 6 50,8
1¢é2s 1 Abkihlung zu schne1] 1 6 503 70,0{ 100,0
€26 1 . .., 2./3. Lage 7 66,6
<26 11 Trenn§911e TS Lage 7 55,9 de’ 80,0 : 100, 0
€271 eiys . 2./3. Lage 8 62,3 | -
c27 11 S\]lk%nfett. Z‘w.s./g. ‘Lage\ 8 46,9 vol 90,0 100’0
c3l | N
Egg gut (fur Feuchtealterung) , 1 73,0
€34 °,p '
€35 1
4
Egg il gut (fir Klimaalterung) 1 72,8
€36 11 °.qd
? 87,5! -
c4l 1 . .
Eﬁ} };I gut (fiir Klebfehler I) » 1 71,0
‘ca1 1v o,r
caz2 1
(a2 11 lout (fiir Klebfehler 1) | 1 7,3
c4z2 1v o,r J
- s
Summe 84,71 97,6
Fig.
- —Bi1d-8:

Zusammenstellung der Werte der 8 Probenklassen mit Aushdrte-

fehlern
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. tatsichliche Fehlerklasse:”
ORIGINAL PAGE (3 |
OF. POOR QUALITY 1 2 3 4 5 & 7 8
1 15 1 0 0 0 0 0 0
2 1 9 0 3 1 3 1 0
¢ 3 0 0 -9 0 0 | 1 1
srig )| P 4 o o 0 5 4 1 0 0
e || 2 5 o o o 1 3 5 2 0
i %
‘g k3 6 0 0 0 0 0 0 0 1
feed =
) 7 0o 0 0 0 0 0 6 1
31 . 8 0 0 1 1 2 0 0 7
giat _
Summe: © 1 10 10 1 10 10 10 10
¢ - :
Quote:® % 60,5 93,7 €,0 90 5,0 300 00 6,0 70.0
11 petext™: % 98,6 0,0 100,0 100,06 100,0 100.0 100,0 100,0 |
(¢}
. verwendete Merkmale: # 12,19
M s 96,2 |

Bild 9: nperformance-Matrix” als Darstellungsweise flr
Fig. 9 Klassifikationsergebnisse
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-Zshl | benutzte Mittelwert- Gesamt-
der Herkmale; kriterium_ | quote
Merkmale
a
5 87,8 % 37,7 %
8 87,8 32,7
17 87.1 36, 4
1 6 86,3 35,2
16 86,3 35,2
12 19 9,2 ' 60.5
5 14 92,3 52,2
2 8 9 92,3 50,9
12 19 25 9.9 63.0
8 14 96, 2 60,5
| 1114 96, 2 71,7
3 19 24 96, 2 63,0
12 19 24 96, 2 65,5

~Bi._llcu_.c);, Zusammenstellung der besten Merkmale/Merkmalskombinationen
" Fig, 10 fUrGItd GiGaat Laalnate (8 Klassen)
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8ild 12: Entschetdungsebene fur merkmale 12/19 fir
Fig. 12 nultidirektionale Lanirate (8 Klassen)
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typ, zahl der benutzten rerkmale
6 76,3 86,3 86,3 97,5
A g 12 91,7 96.9 99,0 100, 0
(5 Klassen) 18 78,8 92,5 98,8 100,0
¢ 7 85,0 98,3 100. 0 -

B 13 91,7 100,0 100,0 -
fiig ]| (4 Klassen) 19 93,3 100, 0 - -
it
P~ i ©,

:35;% e SumENkriterium (%)
1
i
’ﬁg 6 620 740 83,0 %,0
Bezs A gl 12 81,7 91,7 9,3 100,0
@ (5 Klassen) | g 740 8,0 %, 0 100,0
7 82,5 97,5 100,0 -
B 13 67,5 95,0 - 100,0 -
""" (4 Klassen) | 49 77,5 100,0 - -
£ Gesamtauote (%)
Bild13: Zusammenstellung der Trefferquoten der optimalen Merkmals-
. Fig. 13 kombinationen fir die 6 Gewebelaminattypen '
8i/2M l
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