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ABSTRACT

The normal modes in an overmoded waveguide coated with a lossy material are

C
analyzed, particularly for

;I
their attenuation properties as a function of coating

'i
material,	 layer thickness, and frequency.	 When the coating material is not too

lossy, the low-order modes are highly attenuated even with a thin layer of

coating.	 This coated guide serves as a mode suppressor of the low-order modes,

j	 which can be particularly useful for reducing the radar cross section (RCS) of a

cavity structure such as a jet engine inlet.	 When the coating material is very

t;	lossy, low-order modes fall into two distinct groups:	 highly and lowly atte-

nuated modes.	 However, as a/X (a -" radius of the cylinder;	 a = the free-space

wavelength)	 increases,	 the separation between these two groups becomes less

E	 distinctive.	 The attenuation constants of most of the low-order modes become

small, and decrease as a function of a2/a3.



I. INTRODUCTION

In many applications, it is desirable to line the wall of a conventional

circular waveguide by a layer of dielectric or magnetic material. With proper

design, the lining can significantly alter the modal fields in the waveguide, so

as to achieve either less attenuation or more attenuation for certain modes.

The past studies of this problem are mostly connected with microwave/infrared

transmission over a long distance [1] - [5]. Two assumptions are usually made:

(1) The waveguide diameter is very large in terms of wavelength

(overmoded waveguide); and

(2) The coating material is either nearly lossless (2) - [4] or very

lossy [5].

These assumptions simplify the theoretical analysis and oftentimes bring out a

clearer physical picture. Nevertheless, in many practical situations, these

assumptions are too restrictive. A more general analysis of the coated circular

waveguide is needed.

It is the purpose of this paper to fill in this need. Instead of using the

perturbation theory [2], [3], [5], transmission-line model [1] - [4] or asymp-

totic theory [6], we solve the modal characteristic equation of a coated

circular waveguide exactly by a numerical method. This is feasible because of

today's fast computers and efficient subroutines for calculating Bessel func-

tions with a complex argument.

The organization of the paper is as follows: First, an overview of the

normal modes in a coated circular waveguide in comparison with those in an

uncoated waveguide is presented. In Section III, the exact characteristic

equation for the normal modes in a circular waveguide coated with a lossy

2
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material is given. 'three types of normal modes, i.e., the inner mode, the sur-

face mode and the interface mode, are discussed, along with their approximate

solutions. Numerical results and potent i al applications are discussed in
Section IV.

II. OVERVIEW OF MODAL FIELDS IN A COATED CIRCULAR WAVEGUIDE

Before presenting detailed numerical results, it is beneficial to explain

some unique features of the coated waveguide, which are absent in the conven -

tional uncoated waveguide. Figure 1 shows a circular waveguide with a perfectly

conducting wall, uniformly coated with a material of permittivity e2 e0 and per-

meability u 2 u0 . Both e2 and u2 can be complex, with their negative imaginary

parts representing material losses for the present exp(jwt) time convention.

The medium in Region I is assumed to be air, i . e., permittivity e0 and per-
meability uo• Our problem at hand is to study the normal modes in such a

waveguide.

A. Mode Classification

In an uncoated waveguide, the normal modes are either TE or TM with respect

to z. Here index m describes the azimuthal variation in the form of sin m^ or
	 r

cos m^, whereas index n describes the radial distribution in the form of

Jm(kpn p) or Jm ( k pn p). In the ascending order of their cutoff frequencies, the
dominant modes are

TE 11' TMOP TE21 , TM 11 !TE01 , ...

When the waveguide is coated with a dielectric layer, there are no longer pure TE

or TM modes. The modes are commonly classified into HE mn and EHmn modes in such

a way that, in the limiting case of a vanishingly thin coating [7],

HEmn + TEmn , and EH
mn + TMmn

3



There exist three special cases where HEmn (EHmn ) becomes identically or approxi-

mately TEmn (TMmn ), namely,

(i) circularly symmetrical modes (m . 0) such as TE On and TM On'

(ii) all modes at frequencies near their cutoff frequencies [8], (9),

and

(iii) the low-order modes in an overmoded waveguide coated with a lossless

material, ( in this limit HEmn + TMmn ,	 and	 EHmn + TEmn)'

E. Cutoff F_ requencies

Near the cutoff frequency, the normal mode is either quasi TE or TM. In

Figures 2 and 3, we plot the cutoff frequencies f a 'a of the normal modes in a

coated circular guide as a function of layer thickness T. f  is normalized with

respect to fco , which is the cutoff frequency of the dominant TE 11 mode in an

empty guide of radius a, and is given by

f	 1.84118 c
Co	 2tra

where c is the speed of light in free space. Figure 2 shows the modal inversion

between the TM 01and TE211 which has been previously reported [8], (9].

However, the modal inversion between those two modes is not evident if the

coating is of a magnetic material ( u2 0 1) instead of a dielectric material

(Figure 3). Coating reduces the cutoff frequencies of the normal modes, espe-

cially for the magnetic—coated waveguide. This is due to the fact that, with

coating, the modal field distribution tends to concentrate near the air—material

interface. Note also that the degeneracy between the TM 11 and TE 01 modes near

their cutoff frequencies is not removed by the dielectric coating (see Appendix

1), but the degeneracy can be removed by the magnetic coating. The near

degeneracy of the TE01 mode with the TM11 mode in a dielectric —coated guide can

4
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cause a serious problem for a long -distance communication utilizing the lowly

attenuating TE CI mode because there may be a large mode conversion due to a

strong coupling between these two modes (21 - [4). 3Me magnetic coating can be	 }

very useful in this application.

C. Modal Propagation Constant and Power Distribution

When the coating thickness is small in terms of the free-space wavelength

(T/a << 1), the modal field distribution in the air region and the propagation
I

constant are not much perturbed. As the coating thickness is increased in the	 j

manner

i

T/a i m, for a fixed value of a

the low-order modes approach, one by one, their counterparts in the parallel-

plate waveguide. More precisely, the HEmn modes in a coated circular waveguide

Iapproach those modes in a parallel -plate waveguide formed by a perfect magnetic
k

conductor (PMC) and perfect electric conductor (PEC) as sketched in Figure 4a.

The EHmn modes approach those modes in a parallel-plate waveguide formed by two

PEC's as shown in Figure 4b.

?	 The propagation constant k  and modal power distribution of the dominant

HE 	 in a guide coated with a lossless dielectric material (e2 = 10,

U2	1) are shown in Figures 5 and 6. When the coating thickness is small

(T' /A - T/a2 < 0.05, where 12 = x/ s^ - wavelength in Region II), the trans-

verse wave number k pl in Region I defined by

2 - 2
kpl	 k0 kz

is real, where k0 = 27r/X, and both propagation constant and its power - intensity

distribution are very similar to those of an empty guide. When the coating

thickness T is much larger than 0.05 X2 , k p: is imaginary and its magnitude

5	 1



approaches k0 cA —" Consequently, the modal power distribution is largely

concentrated in the dielectric layer (Region II). In Figure 6, the total power

carried by the HE11 mode is normalized to 1 watt. In case (4) of Figure 6, more

than 99% of the power is confined in the dielectric layer, despite the fact that

the dielectric layer (1.06 < p/a < 1) covers only 12% of the waveguide cross

section.

Figures 7 and 8 are similar to Figures 5 and 6 except that the coating

material is magnetic (u2 ° 10 and e2 - 1). It is most interesting to observe

that the transition point where kz becomes imaginary occurs at a much smaller

coating thickness (T - 0.05 A2 in Figure 5 and T . 0.005 A2 in Figure 7). Thus,

in applications where large field concentration in the material layer is

desired, the magnetic coating is more effective (more discussion is given in

Section IV).

It is worthwhile to note that the normal mode at the transition point is

not TEM even though the radial wave number vanishes (see Appendix 2). Thus,

both the hybrid—mode method and the techniques for TEM modes fail to provide the

modal fields at the transition point. Only the direct method as discussed in

Appendix 2 is applicable in this case.

D. Transverse—field Distribution

The transverse fields of the five lowest—order modes in an uncoated circular

guide and in a coated (dielectric and magnetic) circular guide at the cutoff

frequencies and the high—frequency limits are shown in Figure 9. The TE (TM)

modes in a circular guide at the cutoff frequencies do not have transverse

magnetic (electric) fields, which are not shown in the diagrams. We notice that

the nonvanishing fields at the cutoff frequencies are similar to those in an

uncoated guide. At high frequency, the fields are confined within the coated

6



region, as shown in the diagrams where the blank space indicates thatht , fields

are negligible.

III. MODAL CHARACTERISTIC EQUATIONS, FIELDS AND CLASSIFICATION

The general problem is shown in Figure 1. Here both the permittivity

e2 co and permeability u2UO of the coating material are allowed to be complex.

The characteristic equation for the propagation constant k  of a normal mode is

well known [10], [11], and we list the final expression, which is solved numeri-

cally using Muller's method (available in International Mathematical Statistical

Libraries subroutines):

2	
Fl(a)F3(a) kpl	 F1(a)F4(a) kpl

kp1 [F 1 (a) - E2	 F3 a	 kp2][F1(a) - U2	 F4 a	 kp21

- [kZm/(k0a)] 2 F2 (a) (1 — (k Pl /k p2 ) 2 1 2 = 0	 (Is)

where

kpl + k  = k0	 (lb)

kp 2 + kZ	 E2 u2k0	 (1c)

F l (P) - Jm(k p1 P)	 F1(P) = Jm(kpi p )	 (ld)

F30) - Jm(k p2 P) Nm(kp2b) — Nm(kp2 P) Jm(k p2b)	 (le)

F3 ( p ) = Jm(k p2 p) Nm(kp2b)
	

Nm(kp2 P) Jm(kp2b)	 (lf)

F4 (p) = Jm(k p2 p ) Nm(kp2b)
	

Nm(kp2 P) Jm(kp2b)	 (lg)

F4 (P) = Jr,(k p2 P) Nm(kp2b)
	

Nm (k p2 p ) Jm(kp2b)	 (lh)

7
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Here kPl and kp2 are the radial wave vectors of regions I and II, respectively;

w is the angular frequency; k0 ° 2n/a; and a and b are the radii of the air

region and the conducting cylinder, respectively. J  is the Bessel function and

Nm is the Neumann function of order m. The prime indicates differentiation with

respect to argument. The modal fields are given by

Ep 	 -((Akz/kO ) F l (P) + (Bia/k pl p) F l (P)] cos mo	 (2a)

EpI 	((Ckz/k2) F3 (P) i• (Dm/k p2 P) F4 (P)) cos m4	 (2b)

E 	 ((Akzm/(kOkplP)) Fl (P) + BF l (P)] sin m^	 (2c)

E 	 ({Ckzm/(k2 kp2 P)} F3 (P) + DF4(P)1 sin mo	 (2d)

EI	 j(AkPI/k0) F l (P) cos mo	 (2e)

EI I ° -j(Ckp2 /k2 ) F3 (P) cos MO	 (2f)

Hp ° -YD ((Am/k pl P) F l (P) + (Bk z/kC ) Fl (P)1 sin mo	 (2g)

Hp I Y2 ((Cm/kp2 P) F3 (P) + (Dkz/k2 ) F4 (P)] sin m^	 (2h)

HI ° -Y D (F l (P) + (Bk zm/(kCk Pl P)} F l (P)] cus m¢	 (20

HMI ° -Y2 (CF3 (P) + (Dkzm/(k2kp2 p)) F4 (P)] cos mm	 (2j)

HI ° -jY0(Bk Pl /kO ) F l (P) sin mQ	 (2k)

HI = -jY2 (Dkp2 /k2 ) F4 (P) sin mo (21)

The convention of exp(j(wt - k zz)] is understood and omitted; superscripts

I and II indicate Regions I and II (Figure 1), and subscripts p, ^ and z indi-

cate the radial, angular and propagation-directional components of the fields,

8



respectively; k2 t^ kO ; and YO is the free-space admittance,t— and

Y2 = YO .0 2/P2. A, B, C and D are the constants, which are determined by the

boundary conditions and the normalization requirement. Those constants are

related by

C - A e^ k p1F l (a)/Ik
P2

F 3 (a)]	 (3)

D - B p2k Pl F l (a)/[ k p2F4 (a)]	 (4)

B = _ kO
k pl a[F l (a)/F l (a) - t2k,j3(a)/{kp2F3(a)}]

(m * 0)	 (5)
A	 kzm[l - (kpl/kp.,)2]

(IAI << 1 for "quasi" TM modes)

Equation (5) can also be written as

A m _ k
0kpl a[F1(a)/F l (a) - u2k p1 F4(a)/(k p2F4(a))]

(m * 0)	 (6)

B	 kzm(l - (kpl/kp2)21

(JAI 
<< 1 for "quasi" TE modes)

and the elimination of A and B from Eqs. (5) and (6) gives the characteristic

equation (Eq. (1)), There is no mode coupling between the TE and TM modes for

m = 0. Thus, A = 0 and B = 1 for the TM On
modes, and A = 1 and B = 0 for the

TEOn modes. We note that there are two degenerate modes for each angular mode

index m except m = 0. In the above expression of the fields, we have

arbitraril y chosen one of those two modes.

There are three types of normal modes in an overmoded waveguide coated with

a lossy material. The properties of these modes are explained below along with

the approximate propagation constants and field distributions.

9



A. Inner Mode

When the coating material is sufficiently lossy and a/l is large, most of

the low-order modes become inner modes. The field distributions of these modes

are mostly confined in the air region. In the limit as a/a becomes infinite,

the characteristic equation is simplified to

(F1(a)/Fl ( a))2 - (m/x ) 2 = 0	 (7)

where

X - kpla

The solutions of this equation are

Jm-1(x0)	 0	
for	 EHmn	(8)

Jm+1(x0)	
0	 for	 EHMmn	 (9)

Superscript MS indicates the notation by Marcatili and Schmeltzer. This

superscript is used to distinguish this notation from the conventional notation.

In this case, the field distributions are also simplified. Equations (6) (or

equivalently Eq. (5)) in this limit becomes

A/B - +1	 for	 EH MS	 (10)
mn

A/B - -1	 for	 EH MS	 (11)

and the modal fields in the air region are given by

E p = -BJm_ l ( kpO p) cos mo ,	 H p = -YOE^	 (12a)

E$ = BJm-1 (
kpop) sin mo ,	 H^ = YOEp	(12b)

10



EZ °HZ = 0 for EHMS	 (12c)
mn

t1

E P = -BJm+l (
kpO p) cos m¢ , HP ° -YOE^	 (13a)

E0 _ -BJm+1(kPOP) sin m^ , H^ = YOE P	 ( 13b)	
Ci

G

EZ = Hz	 0	 for	 EH 
MS
	

(13c)

it

where

Ii

kPO = 0
x / a ,	 k PO	 xO/a

Hare xO and xO are given in Eqa. ( 8) and ( 9), respectively, and B is a constant.

The fields in the lossy region are vanishingly small. The field diagrams of the

ER MS and EHMS modes in the air region are shown in Figure 2 in Reference [21.
mn	 -mn

When a / a is large but finite, the attenuation constants of the normal modes

are small and the fields decay very rapidly from the interface to the lossy

layer. In this case, the asymptotic forms of the Bessel functions can be used

for the field functions in the lossy region. The characteristic function of

Eq. (1) in this approximation is then simplified to

[ xF l (a)/F 1 (a)] 2 + .]x[xF l ( a)/F 1 (a)) ( k pl /kp2 )( e2 + u2)

m2 - x2 e2
11
2 (k Pl /kp2 ) 2 = 0	 (14)

where r.	 kP1a

Suppose x = xO + Ax where xO is the solution as a/X becomes infinite.
I

Taking the first-order terms in kPl/k p2 of the above equation, the attenuation

constant is given by

A.

11



amn = CE772 73 Re(vn )	 (15a)
a

where

e2/ E2N^
	 for TM 

On
modes (m . 0)	 (15b)

vn	 U2/ E2 —	 for TEOn modes (m m 0)	 (15c)

2 (t2 + u2)/, - 11	 for	 EHMS and EHMmn (m * 0)	 (15d)

Here 
^mn 

is the solution of

JO"Od = 0
	 for TMOn and TEOn modes (m = 0)	 (15e)

Jm-1 (9mn ) =
0	 for EHmn modes (m 0 0) (15f)

Jm+l"mn)
0	 for

EHMmn 
modes (m * 0) (15g)

This is almost the same as the result of Marcatili and Schmeltzer except that

the coating material is not restricted to a dielectric but can be magnetic as

well.

For the first-order approximation of the attenuation constant with m ^ 0,

we neglected the last term of Eq. (14). Even though this term is of the second

order in kPl /k p2 , the coefficient 1x2s21121 can be a large number for the higher-

order modes. Thus we expect that the agreement between our exact solution and

the first-order solution requires a larger value of a/a for a higher-order mode

(more discussion is given in Section IV).

B. Surface Mode

When the coating material is not lossy enough, some of the normal modes

become surface modes. The fields of those modes are confined within the thin

12



layer of the coating and the propagation constants are nearly independent of the

inner radius a. When a / A is sufficiently large, the characteristic equation is

approximated to

[1 + E2 kkPl cot(k p2 t)][1 - U2 Lai tan (k T)] = 0	 (16)
P2	 p2

where T is the layer thickness, b - a. Assuming IkPll >> k 0 , we obtain

[e2u2k2 - {[n - Z] It/T12]]2] 
1/2 

for TMsu 	(17)
mn

k =
z	

1/2

[e2 u2 k0 - (nn/T) 2 ]	 for TEmu	 (18)

where n = 1, 2, 3, ...

Superscript su indicates the surface mode. The fields in Region II in this

limit can be approximately shown to be

E P = C 1 cos It p2 - P)	 (19a)

Ez = -jC l (k p2/kz ) • sin k p2 (b - P)	 (19b)

H^ = C 1Y2 (k2 /kz ) cos kp2 (b - p)	 (19c)

E^ = H P = H z = 0	 for	 TMsu 	(19d)mn

E 0 = D l sin k p2 (b - P)	 (20a)

HP = -D
i 
Y2 (kz /k

2 ) sin kP2 (b - 
p )	 (20b)

Hz = -jD 1Y2 (k p2/k 2 ) cos k p2 (b	 P)	 (20c)

EP = Ez = H^ = 0	 for TEm^	 (20d)

13



where C l and D 1 are constants. Thus the TEmu mode can be approximated by a nor-

mal mode between two PEC slabs and the TM mn mode by a normal mode between PMC

and PEC slabs. The correspondence between the normal modes in a thinly coated

waveguide and the surface modes is not unique but depends on the type of

coating material. When the coating material is lossless, the HE mn (EH mn ) modes

become TMsu (TE su ) (except m = 0) as the layer thickness increases. The normal
mn mn

modes with m = 0 are pure TE or TM as indicated in Section II.

C. Interface Mode

There exists an "interface" mode, which is unique to the waveguide coated

with a lossy material. The interface mode has large fields near the interface

between the air and lossy regions, and the fields decay exponentially to both

sides of the interface. Since the fields are limited to the interface region,

the attenuation constant is independent of the radius of the waveguide. As a/a

is sufficiently large a-.id the coating material is sufficiently lossy, the char-

acteristic equation for ^.he interface mode is well-approximated to

(1	 + E2kPl/kp2)(1 + P2k Pl /k p2 ) = 0 (21)

The propagation constants are then evaluated to be u

k0 I(eZ - s2 u2 M e2

1/2

-	 1)1 for	 TMln (22)

kZ =

k0 I(P2 -	 e2 p2 ) /(N2
1/2

-	 1)l for	 TE ln (23)	 i

The modal fields are given by
i

Ea = C 2 exp[Jk pl ( a. -	 P)] a	

EPI 
= ( C 2 / e2 )	 exp[-]k p2 ( P - a))

r

(24a)

EZ = -(kp1 / kZ ) Ep ,	 E II = - ( k p2 / ky ) EpI (24b)	
i

14
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H I ° (YO kD /kZ) E 	 ,	 HIII a (Y2k2/kz) 
EPI	

(24c)

for TM in

E l
 a D2 

exp[jk
P 1

(a - P)] , E 	 exp( -JkP2
( P - a))	 (25a)

HIP ° -(YCkZ / kO ) E 	
HPI	

(Y2kz /k2) 
EI^I	

(25b)

HZ ° (YDkPl /kO) E
I
	

HZI	
(Y2k p2 /k2 )E I	 (25c)

for TEin

where all other field components vanish and C 2 and D2 are constants. Here

superscript in indicates the interface mode. From the above results, we can see

that the interface mode is well -approximated to the normal mode on the surface

of a semi- infinite lossy material.

There exist two interface modes at most. The fields of the interface made

decay rapidly to both sides of the interface. The conditions for the interface

mode to exist are easily recognized from Eqs. ( 24) and ( 25) to be

Im(k Pl a) >> 1
	

(26)

and

Im(k p2 T) >> 1	 (27a)

Using the boundary conditions at the interface, Eq. (27a) can be rewritten

equivalently either

r	 -Im(kPle2T) >> 1	 for TM"	 (27b)

or
r

-Im(kplU2t) » 1	 for TE in	(27c)

15



Thus for dielectric coating, only TM in of the two modes can exist, and only the

TE in mode can be excited in a waveguide coated with a magnetic material.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Lossless Coating

When the coating material is lossless, the normal modes in the overmoded

coated waveguide become surface waves as the layer thickness increases, in the

order of HEml , EHml , HEm2 , EHm2 , ... (m ;1 0) and EH01 , HE01 , EH 021 HE021 ...

(m - 0) (4). These features of the normal modes are shown in Figure 10

(Figure 11) for a dielectric (magnetic) coating, where the radial wave numbers

are plotted as a function of the layer thickness. The large imaginary part of a

complex radial number indicates that the modal field shifts to the waveguide

wall and the mode behaves as a surface mode. Note that the HE 11 in the

magnetic-coated guide becomes a surface mode with a much thinner coating layer

than that in the dielectric-coated guide. Otherwise, the onset of a new surface

mode occurs around every quarter-wavelength thickness as the layer thickness

increases.

B. Slightly Lossy Coating

Figure 12 (Figure 13) shows the radial wave numbers of the normal modes in

a circular guide coated with a slightly lossy dielectric (magnetic) material.

The general trend of the normal mode with variation of the layer thickness

remains similar to that for the waveguide coated with a lossless material

(Figures 10 and 11). As shown in Figures 14 and 15, the mode with a large ima-

ginary part of the complex radial number of a surface-wave type has a large

i
	

attenuation constant. This is due to the fact that the surface mode has a large

r
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field concentration within the lossy region near the waveguide wall. It is

interesting to noto that the HE ll in the magnetic-coated guide acquires a very

large attenuation constant with a much thinner coating layer than that in the

dielectric-coated guide. The higher-order modes also become surface modes and

acquire large attenuation constants only at a much thicker coating layer.

C. Very Lossy Coating

When the coating material becomes very losay, those features of the normal

modes in the waveguide coated with a lossless material disappear. In fact, the

propagation constant of the normal mode is independent of the layer thickness

if the lossy layer is thicker than the skin depth of the normal mode (Figures 16

and 17). There is a mode separation between highly attenuated and lowly atte-

nuated low-order modes. The highly attenuated modes in a dielectric-coated

guide are usually lowly attenuated modes in magnetic-coated guide and vice

versa (Figures 18 and 19). In general, the mode separation is less distinctive

for higher-order modes.

When a/a is large and the coating material is lossy enough, most of the

low-order modes are inner modes which are mainly confined in the air region and

the attenuation constants are small. Marcatili and Schmeltzer (51 evaluated the

attenuation constants using the perturbation theory under the assumption that

a/X is large and the fields within the lossy region are small (see Section III).

Figure 20 shows the comparison of the exact solutions with the approximate solu-

tions by Marcatili and Schmeltzer for the attenuation constants of the normal

modes in a dielectric-coated guide. Here the coating thickness T is fixed while

a/a is varied. We note that the exact and approximate solutions are in better

agreement at a larger value of a/a. The high-order modes usually require a

large value of a/a for good agreement between the exact and approximate solu-

tions (see Section IIIA). This result indicates that the low-order modes become

17



M

excluded from the lossy layer near the wall at a smaller value of a/% than do

the high-order modes.

Figure 21 shows the comparison of the exact and various approximate solu-

tions for the attenuation constants of the normal modes in a magnetic-coated

circular guide. Most of the low-order modes become inner modes at a large

value of a/A as in the case of the dielectric coating (Figure 20). However,

certain modes are confined near the wall. The EH 11 mode at a large a/a becomes

a surface mode (Section IIIB), whose fields are mainly confined within the lossy

region and have a large attenuation constant. The exact solution of the atten-

uation constant is well-approximated by the solution for the surface mode given

in Eq. (17). The existence of the surface mode in a waveguide coated with a

lossy material depends on whether the characteristic equation (Eq. (16)) has a

solution close to the value for a surface mode (Eq. (17) or (18)). Also note

that the HE 12 mode becomes an interface mode (Section IIIC) whose fields are

limited to the region near the interface between the air and lossy material.

The attenuation constant of the interface mode is well-approximated by that of

the mode on the surface of a semi-infinite lossy material.	 The criteria for

the existence of the interface modes in a coated guide are given in Eqs. (26)

and (27). Thus the attenuation constant of the interface mode is not as large

as that of the surface mode but much larger than that of the inner mode

(Figure 21).

In Figures 20 and 21, the mode names in the parentheses for the inner modes

correspond to the mode names by Marcatili and Schmeltzer (5] 0 where the field

diagrams of those modes are also shown. The surface mode does not exist when

the lossy layer becomes infinitely extended. However, the interface mode should

exist in a hollow lossy circular guide if the conditions in Eq. (26) and (27)

are satisfied.
18



A. Mode Suppressor

So far, we have seen that the attenuation properties of the normal modes in

a coated waveguide depend on the coating material, layer thickness and fre-

quency. When the coating material is not very lossy, the attenuation constants

of the normal modes strongly vary with the layer thickness. Since each mode has

its own region where the mode is significantly attenuated, the coated guide can

be used as a simple mode suppressor (12). The device will be especially useful

for eliminating low-order modes. Since low-order modes are mainly responsible

for the radar cross section (RCS) at a small incident angle from a cavity-type

structure, coating the cavity wall with a lossy material will be effective in

reducing the RCS due to the undesirable interior irradiation from the normal

modes in a cavity [131, [141. In a practical design, the transition region bet-

ween the uncoated and coated sections of the waveguide must be long enough to

prevent any mode conversion [151.

E. CP Antenna

When the coating material is sufficiently lossy and a/a is large, most of

the normal modes become inner modes if the coating layer is thick enough, i.e.,

thicker than. the skin depths of the modal fields. Both the magnetic and

electric fields of the inner mode are small near the waveguide wall. The

HE11 mode in the waveguide coated with a lossy magnetic material becomes an

inner mode at a much smaller value of a/X than that with a lossy dielectric

material. The boundary conditions of the HE 11 mode in this case are similar to

those of a corrugated waveguide [161 - [191; hence, this waveguide can be used

as an alternate to the corrugated waveguide to produce c+-cularly polarized

radiation or reduce the side-lobe level. Even though the loss of the HE 11mode

in the coated waveguide may be higher than that of a well-designed corrugated

19
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waveguide, the coated waveguide is cheaper to build and lighter in weight than

the corrugated waveguide, as explained in (201.

V. CONCLUSION

The normal modes in a circular guide coated with a lossy material are

classified and analyzed, emphasizing the attenuation properties of the normal

modes. It is shown that the coating material should not be too lossy for the

low-order modes to be significantly attenuated. A much thinner coating layer is

required for the attenuation of the HE 11 mode when the coating material is

magnetic rather than dielectric. The coating technique is especially useful in

reducing the radar cross section from a jet engine inlet, a subject that will be

reported by us in a future communication.

Wher a/A is large and the coating material is very lossy, most of the low-

order modes become inner modes, which have small fields within the lossy region

and small attenuation constants. An interesting application of the HE 11 mode in

an open-ended waveguide coated with a very lossy magnetic material is that it

can be used for circularly polarized radiation 1201.
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APPENDIX 1.

DEGENERACY BETWEEN THE CUTOFF FREQUENCIES OF fHE TM 11 AND TE01 MODES IN A

DIELECTRIC-COATED CIRCULAR WAVEGUIDE

At the cutoff frequency (kz = 0), the characteristic equation in Eq. (1)

becomes

J 1 (kCMa)(J 1 (kCM2a) Nl(kCM2b) - 
N 1 (kCM2a) J1(kCM2b))

	

,2
	 J1(kCria)[Jl(kCM2a) N1(kCM2b) - N 1 (kCM2a) J1(kCM2b)) = 0

for TM 11
	

(A1.1)

or

J 0 (kCEa)[JO (kCE2a) N0(kCE2b) - 
NO (kCE2a) JO(kCE2b))

	

V11 	 J0 (kCEa)(J0 (kCE2a) NO(kCE2b) - 
NO (kCE2a) JO(kCE2b)1 = 0

for TE01
	

(A1.2)

where

_
kCM Lc fCM kCM2 - kCMVC202

2n
kCE 

a
 c fCE kCE2 = kCE e
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Here 
fCH 

and fCE are the cutoff frequencies for the TM 11 and TE01 modes,

respectively.

Using the recurrence relations of Sessel functions [21], the derivative

expressions in Eqs. (A1.1) and (A1.2) can be eliminated, and we obtain

J1(kCMa)[JO(kCM2a) N1(kCM2b) - NO (kCM2a) J1(kCM2o))

- [ V^ JO (kCMa) - (1/ e^ - 1̂ )/kCMa)[J 1 (kG42a) N1(kCM2b)

- N 1 (kC142a) J1(kCM2b)) = 0	 (A1.3)

for TM11

and

ilNEa)[J ONCE2a) N1(kCE2b) - NONCE2a) J1(kCE2b)

p2	 JO(kCEa)[J1(kCE2a) N1(kCE2b) - N 1 (kCE2a) J1(kCE2b)) - 0

for TE01	(A1.4)

When u2 = 1, the two characteristic equations are identical, and the cutoff fre-

quencies of the TM 11 and TEG1 modes are the same. On the other hand, when the

coating material is magnetic (u 2 0 1), the degeneracy of these two modes at

their cutoff frequencies is not present.
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APPENDIX 2

FIELDS OF THE NORMAL MODES IN A COATED CIRCULAR GUIDE
WHEN kPl - 0 (DIRECT METHOD).

From Maxwell ' s equations, we obtain four equations for the normal modes in

a circular guide,

V x 7 x E-k1)E=0	 (A2.1a)

V • E = 0	 (A2.1b)

First consider the case for m # 0. Due to the symmetry of the problem, we can

assume that

E P = RP ( p) cos m^ e -jk z z	 ( A2.2a)

E^ = R^ ( P) sin mo a 3kzz	 ( A2.2b)

-jk
E z = Rz ( P) cos m^ e	 zz	 ( A2.2c)

Since kPl = 0, from the dispersion relation

kz = k0	(A2.3)

Substituting Eq. (A2.2) in Eq. ( A2.1), three linearly independent equations are

obtained:

P dp [P( dR dp
(p) 

	 m2 Rz ( A)	 0	 (A2.4a)

mP dP IPR^(P)) + m2RP (P) - jkOp2 

dR 

dP

(p) 
= 0	 (A2.4b)

.

P(PRP (P) j + mR O(P) - jkopRz (z) = 0	 (A2.4c)
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Solving these coupled equations, the fields in Region I (m 0 0) are given by

I
E P = (C1 Pm+1 + C 2 Pm-1 ) cos m^	 (A2.5a)

E  _ (CipM+1 - C2Pm-1) sin m¢	 (A2.5b)

I	 2(m + 1) C1 m
E
l
 = -- ^k P cos m^	 (A2.5c)

0

HP = -yO [Cl e+1 + %	
2

2m(m + 1) C 
1 
_ C2) Pm-l ^ sin m^	 W. 5d)

k0

2m(m + 1) C l
ll^ = 

YO
I
C1Pm+1 _	

2 
	 - C2^ PM-1^ cos m^	 (A2.5e)

k0

e
L	 I	 2(m + 1) C1 m

F	 HZ = -YO	 k	
P sin m^	 (A2.5f)

4 0

Using Eq. (A2.3), the fields in Region II (m # 0) are obtained from Eq. (2):

s	
EII= — Dom— G3 (P) + 

D mP 
G4(P) cos m^	 (A2.6a)

2

E$I =	 Emkp2P 
G3 (p)+ D2G4 (P) sin m$	 (A2.6b)

	

EZI = Dllkk-P-? G3 (p) cos m^	 (A2.6c)

2

HPI = - Y2 DlmP G 3 (P)+ D
	

Gs,(p) sin m^	 (A2.6d)

P2	 2u2

D m
H	 -1Y2 D1 G3+ e 2 kp2p 

G4 (P) cos m^	 (A2.6e)
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7

ii
D k

HzI = 
Y2 ^kp2 G4 ( p ) sin m4	 ( A2,6f)	 h

2

where

G3 (P) = Jm ( k p2 p) Nm(k p2b) - Nm ( k p2 p ) Jm(kp2b)	 ( A2.6g)

I

G3 ( p) - Jm ( k p2 P) Nm(kp2b) - Nm(k p2 P) Jm(k p2b)	 ( A2.6ih)

I

G4 (P) - Jm ( k p2 P) Nm (k p2b) - Nm(kp2 P) Jm(k p2b)	 (A2.6i)

G4 ( p ) = Jm ( k p2 P) Nm(k p2b) - Nm(k p2 p) Jm(k p2b)	 (A2.6j)

Note that the convention of a'j(wt - kOz) is understood and omitted. Here

kp2 =e 2̂ k0 , and C l , C2 , D 1 and D2 are constants to be determined by

imposing the boundary conditions at the interface between the air and material

regions. These constants are related by

G (a) k D

C l =	
3	 P2 1	

(A2.7a)

e^ 2(m + 1) am

G (a)

D2	 - u	 G3 a D
l 	 ( A2.7b)

4

D m G (a)

C= a2C -	 1	
3	

+ D 	 (a) /am-1	 W .7c)
2	 1	 e^ kp2a 2

G,

The coating thickness is determined by the-characteristic equation,

( kp2a ) 2 	 G3(a)	 G4(a)

m + 1 + (kp2a) G3(a) e2 + G4 (
a) u2 - m(e2N2 + 1) = 0	 (A2.8)

i
Note that the fields are neither TE nor TM and the fields in Region I do not

^r

show a Bessel- function dependence of radial distance.
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The fields for m . 0 can be similarly shown to be

I	 3kOC 10 	 II	 3 C20E P 	 2	 p , EP ° - e^ G30(P)	 (A2.9a)
z z	 ;^

HP ® YOEP	 , HMI	YO E2EPI	(A2.9b)
if

t

Ez = C 10	 ' EzI 
a 

C20G3O ( P)	 for TM On (A2.9c)

and

I	 jkOD 10	 II

=H	 H

J D20	 ,
P	 2	

P	
,	 P -	 G40(p)=2-

W. 10 a) 

E	 _ -H P/YO 	,
	

E -02HPI/YO
W. 10b) 

Hz = 
D 10	 '	 F,	

.
D20G4O(P)

for TEOn ( A2.10c)

where G
30 (p), G30 (p),	 G40 ( p) and G40 

( P)	 are G3 ( P), G3 (P), G4 (P) and G
4 

( P)with

m	 0, respectively.	 All other field components vanish, and C10' C20' D10 and

DL0	 are constants which are related by

C10 = C20G3O ( a)
(A2.11a)

D 10 - DZOG40(a)
(A2.11b)

The coating thickness for m 0 is determined by the following characteristic

equation,

2e 2
G

30 
(a) +	 G

- 1 3D 
(a) = 0 for TMOn (A2.12a)

k0 a E2 U2
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or

2N2	
^

G40(a) 
.f k

0a e2P2 G40 (
a) . 0	 for TEOn
	 W. 12b)

The fields are either TE or TM and the fields in the air region show a linear

dependence of radial distance instead of the usual Sessel — function dependence in

the case if an uncoated guide.
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Figure 1.	 A coated circular waveguide.
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Figure 4.	 Mode transition in a coated circular guide at the high-frequency
limit. The HEmn modes approach modes in a PMC-PEC guide, and the
EHmn approach modes in PEC-PEC guide.
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