General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



, RESER, Case Tech
c il
\\\\\V//% ;:35§§i§§: s g
875:3023:: o eo8se: B
; o :":: ::‘:ff.-_LO
”’:) S
]
ELECTROMAGNETIC WAVES AND
WAVE PROPAGATION REPORT
(NASA-CR=176189) PERTURBATION-ITBRATION N85-35321
THEORY FOR ANALYZING MICROWAVE STRIPLINES
{Case Western keserve Univ.) 137 p
HC ACT7/MF ACH CSCL 20N Unclas
$3/32_ 27,%5, ._
\‘\C"'E"J %’ .
\”C"la_,i:»

Department of Electrical Engirieering
and
Applied Physics
Case Institute of Technology
(Case Western Reserve University
University Circle
Cleveland, Ohio 44106

e T E e e i e A WA

N o
Ak TR

5-"'}‘".;._.,_\*4'_-.'-3: Ty
T §¥R A



PERTURBATION—ITERATION
THEORY FOR ANALYZING
MICROWAVE STRIFPLINES

By

BRIAN E. KRETCH
REPORT WGBR-8%-5 SEPTEMBER 1785

The research reported on in this report was supported by
NASA-Lewis Research Center, Cleveland, Ohio, under Grant
NCC 3-29.



Y

PERTURBATION-ITERATION THEORY FOR

ANALYZING MICROWAVE STRIPLINES

by

BRIAN EDWARD KRETCH

Submitted in partial fulfiliment of the
Requirements for the Degree of

Master »f S ience

Thesis Advisor: R. E. Cellin

Department of Electrical Engineering & Applied Physics
Case Western Reserve University
August 1985

et s i ke T S e Vet



PERTURBATION-ITERATION THEORY

FOR ANALYSING MICROWAVE STRIPLINES

ABSTRACT
by

BRIAN EDWARD KRETCH

A perturbation-iteration technique is presented for determin-
ing the propagation constant and characteristic impedance of an
unshielded microstrip transmission line. The method converges to
the correct solution with a few iterations at each frequency and
is equivalent to & full wave analysis. The perturbation-iteration
method gives a direct solution for the propagation constant with-
out having to rind the roots of a transcendental dispersion
equation.

The theory is presented in detall along with numerical
results for the effective dielectric constant and characteristic
impedance for a wide range of substr.Ze dielectric constants,

stripline dimensions, aad frequencies.

ot b v A N i .nz;.v..a.,l)‘.'.;‘



ACKNOWLEDGEMENTS

I would like to express my deepest thankas and appreciation to
my advisor, Dr. Robert E, Collin, for his help, guidance, assistance,
and above all, patience during my tenure as a student at Case.

I would like to thank Mr. Philip A. Legge and Dr. Paul C. Claspy
for the opportunity to pursue a Master's Degree at Case.

I would like to thank Ma. Victoria Gilbert for typing this
Thesis.

I would like to thank my family and friends for their love and
support while I pursued my Master's Degree.

The work of this thesis was supported by NaSA-Lewls Research

Center, Cleveland, Ohio under Grant NCC 3-29.

FR S T o B

R ¥ TR




Dedication

to

Walter Allan Kretch

Case Institute of Technology

1943

Edward Dennis Kretch
Case School of Applied Science
1913

- BG4 e i st S



ABSTRACT

TABLE QOF CONTENTS

ACKNOWLEDGEMENTS

CHAPTER 1
1.1
1.2
1.3
1.4
1.5
CHAPTER 2
2.1
2.2
2.3
2.4
CHAPTER 3
CHAPTER 4
REFERENCES

APPENDIX

Introduction

Quasi-TEM Analysis
Dispersion Model

Full Wave Analysis
Perturbation-Iteration Method
Perturbation-Iteration Theory
Introduction

Field Equations

Zero Order Solution

Higher Order Solutions
Calculations and Results

Conclusions

Computer Program

Page
i1

114

11
13
13
18
23
40
65
107
110

112

Mhlﬁﬂyi..sm,}.am



CHAPTER I

INTRODUCTION

1.1 Introduction

The analysis of infinite, straight, unshielded microwave strip-
lines 4s an area of great importance in microwave field theory.
Microwave striplines are used extensively in high frequency communi-
cation networks fer radar and satellite systems. Figure 1.1 shows
the cross section of typical unshielded and shielded microstrip
lines and also the related slot line. The effectiveness of
their use in circuits is contingent on how well the designer can
understand the striplines to know their properties and character-
istics. There has been a great deal of previous research in the
area of modeling and analysis of microwave striplines that encom-
passes three basic approaches: 1) static or quasi-TEM analysis,

2) dispersion modeling, and 3) fullwave analysis.

Wave propagation along a microwave stripline is similar to
pure TEM propagation. The differences arise due to the presence
of the ground plane and the dielectric substrate. At low frequen-
cies, these deviations are negligable so that the waves can be
analyzed as pure TEM waves. This is the foundation of the static
or quasi-TEM analysis. As the frequency increases, the frequency
effects become more predominant and the analysis must also include
these effects. This is tlie basis of the fullwave analysis. Models
of the microwave stripline can also be developed to siwplify the

evaluation of high frequency properties. Such is the method used
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Figure 1.1 (a) Unshielded Microstrip Line, (b) Shielded Microstrip
Line, (c) Slot Line, (d) Shielded Slot Line.
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in dispersion models.
The different approaches for analyzing the microwave stripline
all utilize the same basic boundary conditions. These boundary

conditions all emanate from Maxwell's Equations:

VxEs -jmﬁ
v = ﬁ - jwﬁ + 3
g . 3 = n

7.B=0 1.1)

The media will be assumed to be isotropic which permits the following

relations:

B= u (1.2)
The boundary conditions will thus encompass the following:

Et. Ez. H =0 at y =0 and on the microstrip

y
E,E,H, H are continuous across the air-dielectric
x' "z’ x
interface
H -0 = -J
x X z
H -H =J
z

+ .
EY Ey = /eo (1.3)

where Jx and Jz are the components of the total current density

and p 1is the total charge density on the microstrip.
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In Sec. 1.2 - 1,4, a brief review of past work on microwave
stripline propagation will be presented. This review will be
brief with further references provided so that a more complete

understanding of them may be acquired 1if desired.

1.2 Quasi-T:M Analysis
The first type of analysis examined will be t%a static, or

quasi-TEM analysis. As previously mentioned, the wave propagation
at low frequencies (up to lGHz) can be approximated by a pure TEM
wave. The foundation of this analysis is based on the previously
stated boundary conditions and contingent on a few basic assumptions,
Since the frequeney, w , 18 assumed to be small and approach zero,
the terms jmﬁ and jmﬁ i1 rtaxwell's equations (1-2) may be
assumed to equal zero. In a different sense, this assumption states
that as w approaches zero, the wavelength ) approaches infinity.
This assumption introduces negligible error into the stripline
analysis at sufficiently low frequencies. Thus, at any location

along the microstrip but net on the strip,
ng--jmuoﬁaﬁﬂ
vxi= 30 X0

On the strip, the condition still demands that

Vxﬁ-jwﬁ+j%}

Using the relatiomship



E = Y x K
along with the Lorentz condition
V-K - —jwuoeox@

the following two relationships can be developed:

vz L= -u°3

2

These asgsumptions and equations form the basis by which different
quasi-static analyses are developed and employed.

The essential quantities to be solved for in the quasi-TEM
analysis are the characteristic impedance zc and the propagation
constant 8 . These entities are obtained by first determining twe
static capacitances per unit length along the stripline. The first
capacitance Ca is found by replacing the substrate by air while
maintaining the same configuration. The second capacitance C
is defined as that of the stripline with the substrate present.
With these two quantities, the valuss of zc and £ may be solved

for by using the following equations:

2= (1/c)V 1/(:a C, (1.4a)
B =k v colca (1.4b)



where
¢ = Speed of light
k = W/e

o

An alternative approach to solving for Zc and g 1s to de-
dermine the static inductance per unit length of the microstrip

T..o using the relationship

LoIo - Az on the microstrip
where

Io =  total z-directed current

Aw = z-directed vector potential

and leading to the solutions

B =u/LC
oa

z-/b_
¢ C

From the solution for the propagation constant £ , an effective

o

dielectric constant K .. may be obtained. This is given by
a 22
Katf (ko)

The significance of «x is to have a simple direct relationship

eff
between the quasi-TEM wave with a dielectric and the quasi--TEM wave
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with a dielectric having an effective dielectric constant Kofg"
This pevmits easy calculations of B at various frequencies.

There are many techniques used for solving for zc and B
along the infinite line. The following summarizes the more prominent
methods and lists referenccs for further research 1f desired.

The first method is the Conformal Transformation Method [1-3)
This method solves for Co and Ca using a conformal transforma-
tion. The difficulty with this method is that the uicrostrip
structure cannot be conformally mapped into a different form which
is easily analyvzed. Approximations would have tc .e incorporated
into the analysis which would decrease the accuracy of the method.
The second type of static analysis is the Variational Method [4-5]
In this method, a stationary expression for the capacitance in terms
of charge distribution ic formed. The charge distribution is
reprosented by 4 functional form containing one or more variational
parameters. The best appreximation to the capacitance is then ob-
tainec by choosing the variationa: parameters so as to make the
expression for the capacitance stationary. For a given accuracy,
the computations are of the same order of complexity as that of
other methods. The third method of analysis is the Relaxation
Method [6 ]. This technique divides the cross section of the strip-
line into a grid, assuming vaiues of potentials at all points,
and then modifying these values, or "relaxing" them, by using a
finite difference approximation to Laplacea's equation for the

potential field. The final method is termed the Integral Equation



Method [7]. This technique uses a Green's Function to formulate
an integral equation to soulve for the charge demsity. The capaci-
tances are then determined from the charge density and potential,
which has becn presumed to have sssigned a constant value on the
conducting strip. These amethods are the main ones employed in

soulving for the unknoun zc and B under static conditions.

1.3 Dispersion Models

The second type of analysis of the straight, infinite,
unshielded microwave stripline is developing and applying disper-
sion models. The static analysis is useful {n that it is an easy
approyach for studying the waves at low frequencies. Its prineipal
deficiency, though, results from its fallure to account for the
non-TEM nature of the waves at higher frequencies. 1In particvlar,
B is not a liilear function of w 80 the stripline is dispersive.
Also, the characteristic impedance increases slowly with frequency.
At sufficiently high frequencies, other modes begin to propagate.
Consequently, various ad hoc dispersion models have heen leveloped
which help to analyze the striplines and take into account‘these
non-TEM characteristics. Furthermore, they help to present direct
relationships for Zc and Y in accordance with a spucific
frequency. These models can thus contribute to a better understand-
ing of the wave propagation along the stripline over a more diverse
range of frequencies.

The first type of dispersion model is the Coupled TEM and ™

modes Model [ 81, This model developes a direct equation for Keff



based on the assumption that the norn-TEM characteristics can be
attributed to the lowest order surface wave THb mode. Empirical
Relations [ 9] have also been developed, based on various theor-
etical and experimental studies of wave dispersion which yield a
direct equation for the wave phase velocity. The Dielectric~

loaded Ridged Waveguide Model [10] and the Planar Waveguide Model
[11] alter the configuration of the microwave stripline structure
for ease of direct mathematical computation of ‘eff and zc while
maintaining the same dispersion characteristics as that of the
stripline. The final dispersiom model is the Coupled Transmiss on
Model [12]. T.is model describes the stripline in terms of coupled
TEM and TE modes using coupled transmission lines and basic circuit
analysis to solve for K £E and Zc. The consequences of using
dispersion models will be to cause the stripline to be easier to
mathematically analyze while sacrificing some accuracy in the results.
The various approximate dispersion models are useful in many
engineering applications but generally are not sufficiently accurate
in critical applications where the exact values of zc and g are

needed.

1.4 Full Wave Analysis

The final and most accurate microstrip analysis is the Fullwave
Analysis {13-17). This method makus no quasi-static assumptions while
analyzing the microstrip configuration exactly as given with no con-
version to analytically simpler, but less accurate, dispersion models.

The fullwave analysis employs an integral equation method in either
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the space or Fourier transform domain and is solvec using the method
of moments. These different techniques are initially based on equiva-
lent representations of the waves along the microstrip. The analysis
then assumes that the propagating wave is composed of hybrid TE and
T mrdes along the line due to two separate scalar potentials. The
individual wave entities due to separate modes are converted to the
Fourier Transform Domain tFTD) where they can be evaluated. By
applying the correct boundary conditions in conjunction with one of
the afformentioned methods of analysis, the waves can be selved far
along a stripline. The houndary conditions used are those given in
Sec. 1.1 with no sssumptions made concerning the waves or strip=-
line. The spatial domain solution applies the boundary conditions
using a Green's function integral in the space domain. The unknown
current is expanded in terms of a suitably chosen set of basis
functions. This will result in computation of the amplitudes of the
longitudinal and transverse currents using the method of moments.

The FTD solution uses a Green's function applied in the FID to sclve
for the current amplitudes. This is done using Galerkin's Method
along with an infinite weightad set of current density basis func-
tions. The fullwave analysis can thus be used to examine the wave
nature of the stripline with extreme accuracy with one important
consequence: the analysis is very complicated with a great deal of
numerical analysis required. The propagation constant # comes from
the dispersion equation that is obtained and since this dispersion

equation is a complicated transcendental equation, finding its roots

PRSERI SRt
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is quite compiux. The dispersion equation gives the propagation
constant of higher modes as well as that »f the quasi-TEM mode.
This important factor must be taken into account when choosing a

technique for stripline analysis.

1.5 Perturbation-Iteration Method

The methods for analyzing the infinite straight, unshielded
microwave stripline that have been previously developed each have
their usefullness as well as their deficiences. The quasi-TEM
analysis is adequate for analyzing the microstrip at low frequen-
cies in a simple manner but is not sufficiently accurate at high
frequencies. The dispersion model permits the analysis to be done
with mathematical ease while sacrificing accuracy due to the
approximations inherent to the models. The fullwave analysis is
very accurate at all ranges of frequencier but is extremely cumber-
some in computations. A new technique has been developed to
analyze the waves along the stripline which offers greater simpli-
city than existing fullwave analysis. This method, the Perturbation-
Itefation Method, initially solves for the field components at quasi-
TEM frequency values. As the frequency increases, the entities are
found using frequency dependent Green's functions and an iteration
method to successively yield greater accuracy. At each iteration
level the value of B as the previously determined one is used to
formulate the new frequency dependent Green's functions at the new
frequency. The iteration is then carried out to yield a new more

accurate B and a field solution that satisfies the fleld equations

FAPRRAEIS QORI ECY N T PRPRRCI [T
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at higher frequencies. The effective frequency range is theoret-
ically infipite which makes this technique attractive and useful.
The most important feature that distinguishes this method from the
full wave analysis described above 1s that §f 1s found explicitly

instead of being determined frow a complex dispersion equation.

The pertinent equations and techniques of the Perturbation-Iteration

Method will be developed for the couplete analysis of the waves
along the stripline in this thesis. The theory fs developed in
Chap. 2 along with the required Green's functions. Chapter 3
pregents extensive numerical and graphical results for the propa-
gation constant 8 as a function of dielectric constant of the
substrate, width to height ratio of the stripline, and frequency.
The corresponding results for characteristic impedance are also
presented. The final chapter is the concluding one and contains
suggestions for further work and a brief discussion of a pertur-
bation method that was initially developed but abandoned in favor

of the Perturbation-Iteration Method.

v
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CHAPTER 2

PERTURBATION-ITERATION METHCD THEORY

2.1 Introduction

The Perturbation-Iteration Method used for analyzing the
infinite, straight, umshielded, microwave stripline is a
straightforward approach which utilizes two static Green's
functions, three frequency dependent Green's functions, and
Fourier representations of the quantities associated with
the microstrip structura. As the theory is developed, certain
assumptions and approximations are made to help carry out the
procedure in a much easler and faster fashion. The stripline
structure is displayed again in Flg. 2.1 with an important
agssumption applied to it: ground plane sidewalls are put on
both sides of the microstrip structure to allow for Fourier
representation of the fields along the stripline. The valid-
ity of inserting the side walls is based on the assumption
that all of the fields decay to approximately zero at a reason-
able distance from the microstrip. The stripline is oriented
to allow for propagation of the fields in the +z direction
with a propagation constant 8 . The dielectric substrate is
considered to be uniform, linear, isotropic and possess a
dielectric constant k . The thickness of the stripline is
taken to be infinitely thin and therefore neglected. For
certain calculations, the stripline is assumed to be just

above the dielectric substrate in the air-filled region at a

13
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Figure 2.1

Unshielded Microstrip Line with Ground Plane Side Walls.
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height of y = H+.

The basic approach of the Perturbation-Iteration Method
begins with a static analysis of the fields by letting w = O,
This yields a static charge density p and +z directed
current density Jz being determined and used to solve for B
and the characteristic impedance Zc. The next step is to
increase the frequency by a small increment allowing B to
be approximated from the static analysis. New values of o
and Jz are subsequently determined which are used to solve
for new B8 and Zc at the given frequency and which are
more accurate than the previously approximate values. This
scheme may be repeated while maintaining w constant which
improves the values of B and Zc or by increasing w to
yield new values of B and Zc 80 as to cover a broader
range of frequencies. At any one frequency, three or four
iterations are usually sufficient to give values for B and
Zc that are essentially the exact converged values.

Bafore the mathematical theory is developed, an enumer-
ation procedure is established to clarify the interpretation
of the various field quantities. This theory involves a
continuously iterating process which must be monitored so
that proper field entity values of particular iterative
levels are opecated on correctly. The various field entities,
such as E, ﬁ, K, j, $, and p, all contain a subscript to

signify the leavel of iteration being referred to. As an
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example, ¢ has an iterating enumeration of ¢°, ¢1. @2, ete.
The three Green's fumctions also contain an iterating enumerat-
ion that is signified by a superscript while being separately
designated by a subscript. Thus, the first Green's function has
i, Gi, ete. and similarly for

the seconu Creen's function. The third Green's functionm iter-

an iterating enumeration of G:. G

ates similarly except it begins with the 1 level iteration.
The © level iteration in all of the quatities are referred
to as the static values since at this iteration, the frequency
always equals zevo. Additionally, G; and Gg are static
functions while at further iterations, they become frequency
dependent {unctions. The propagation constant § has an
iterating enumeration of Bl' 52, 83, ete. There is no Bo
since there is no wave propagation on the stripline at w = O,
The characteristic impedance zc has an iterating enumeration

of Zc , etc. The frequency and frequency de=-

o Zc1. ZCZ
pendent variable (wave number)

Yo T e,

o 1100

also have an iterating enumeration. The frequency iterates in
the manner Wys Woy Way etc. while ko iterates in the
fashion ko,l k.m’2 ko,3' etc. Since the stripline is speci-
fied using cartesian coordinates, the subscripts x, y, and 2z

are added to signify particular components of vector quanti-

ties. As an example, A1y signifies the y-component of the

...
ey, - rtate il 2t Ak L B
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vector potential X in the 1 level iteration. Many of the
quantities are expressed by using Fourier series representa-
tion. Each particular Fourier component is assignzd a sub~-

script n  to mean the nth component. Examples of this nota-

tion are Jozn and GZn . Jozn denotes the nth Fourier

component of the static 2 directed current density while G;n

denotes the nth Fourier component of the second Green's

function in the 1 level iteration. Any Fourier componeats of
A
_1lyn

3y . Two

frequency dependent parameters which are defined later in the

derivatives will be designated as, for example,

theoretical Jevelopment also sequentially iterated. They are

displayed and iterate in the fashion w . etc.

[n) [
in,1’ "1n,2” "1n,3

and w, , ete. Certain . alues which are deter-

n,1’ “2n,5° m2n,3
mined are not exact values but are rather relative values which
are subsequentiy correctly s.aled. They are designated using

a subscript "r" as, for example, Abz,r' Where current and
charge densities are used to calculate the total currents and
charges, respectively, the subscript "T" 1s used to denote

a total quantity. Thus, IlT means the total 1 level

current. The del operator is also modified in certain sit-
uations to Vt to mean the operation is carried out with
reapect to the transverse components only. In this thesis,

it 1s always the x and y components which are transverse.

The basic field equations initially are developed in the gen-

eral case with no iterative subscripts. The iterating
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enumeration subsequently is applied to these equations while
developing the proper Green's functions and wave solutiona to
use in the Perturbation-Iteration Method.

A modification to the calculations is employed which
facilitates an easier and faster analysis. With reference to
Fig. 2.1, all dimensions of the microstrip structure are
measured relative to one-half of the width W of the stripline.
Therefore, the microstrip 1is considered 2 wunits wide, the
side ground walls extend from -a to a where a = % and
the he‘ght of the dielectric substrate equals o where o = %w
For certain calculations, the stripline is then located at a
height y = at. This modification permits this analysis to
apply to any size structure with proper scallng applied to the

dimensions of 1it.

2.2 The Field Equations

The analysis begins with the formulation of the fileld
equations. Since the fields are assumed to be propagating
down the stripline in the +z direction, they may be represented

as

-jBz -iBz -jBz
A = A(x, y)e E= ﬁ(x, yle p = p(x, ye

-18z -i8z

- - -8z
¢ = 3(x, ye H = H(x, y)e

- 3(x. yle

The field equations are developed by employing Maxwell's

equations

e g bead el
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fo--g—f--jmuoﬁ

Vxﬁ-%g+}-jweox(y)§+3

7.8 = uov-ﬁ =0
v-Da= snv-(n(y) E) =0
We let

vx ﬁ - -ui VxVx K - El— (W'K—sz)- jmson:(y)-f +3 (2.1)
0 o

Using the Lorentz condition:

VA= -jwuoeon:(y) ¢

773 = -jwuoeov(nc(y)w)-—jwuosol kK(y)V® + dVi(y) ]

and combining with (2.1) results in

-jmeo[nc(y)W + WV (y)] - T}'—VZK w jmeox(y)g +3 (2.2)
o

Combining (2.2) with E = -juk - V6 gives
-juwe kK(y)V¢ -juwe Uk (y)- 1 VZK -3+ wze x(y)K—jwe k(y)7¢
Ju oY o y By 0 oYY

which can be written as

2 2 2 2 2= 2 -
vk = Vtx + sz Vtz -pA -uo:f-m uoeoh:(y)A jwuoec.WK(y)

"
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Letting kﬁ - wzuoso gives the final equation for Z:

2

Ve

e 2 .2
A+ (x(y) ko-B ) A —uy ¥ —jmuoe°¢Vr(y) (2.3a)
The y component of this equation 1is

2 2 .2
vtAy + (K(y)ko~8 )Ay - ~jwuoeo(1-x)¢(a)6(y-a) (2.3b)

Vote that Tely) = 3}(1-:) §(y=a) gince «k(y) undergoes a

step change from x to 1 as y crosses the point y = a.

a%a
In vrder that the second derivative term '—~51- yields a delta
3 3A

function “erm, Ay must be continuous at y = a and 3y

must have a discontinuity of strength jwuoeo(l-n)¢ at y= a.

A similar equation for ¢ 1is developed. We begin with

V'ﬁ-p

7B = =
o

Substituting in E = -jmK -~ 9% yields

P
n(y)V-(—ij-W) - ~E+Tely)
)

By using the Lorentz condition we obtain

2 o eorid-a?) o = —f 4 ETEO)
v, & (K(Y)ko g7) ¢ K(y)eo + k{y)

R

P S
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E. (1-x)8(y=-a)
k(y)

2 2 2
V. - (:(y)ko -B8%)0 =

Since the stripline is assumed to be at y = u+, the source
Ey(l-K) §(y=a)

k(y)e, ¢ k(y)
at all points y ¥ o since &(y -a) = 0 at these points.

equals zero

This term may be eliminated from the partial differential
equation through use of an appropriate boundary coundition omn
3¢/3y at y = a, as we demonstrate below. We can replace

E-V:(y) by

WO L _riea + 2%y 8k(y)
By By 4 y ) 3y

and rewrit. the equation for ¢ in the form

29 32 2 2
<o 52 PRl 2 a ., 200

9x 3z 3y 3y
2 2
- k{y) 39, k(y) [.3_.9; + 228 +1<2(y)k2 ¢
ay 9y L %% Byz ¢

» - 2 4 JuA (k=1} § (y=a)
€ y
o
since A.Y is continuous at y = a. If we integrate this
equation once with respect to y about a vanishing small
interval centered on y = o and take note of the fact that

p 1s assumed to be just above the interface we obtain

tenYic 2
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+
e o
4+
3 ad 3¢
f_ay [m(y) 3y J3Y k(¥) o |
@ . a_
3¢ 3¢
3y € 3y jw(k=1) Ay(a)
a, a_
Thia ia the required boundary condition on 5%- at the

interface. 1In each region y <a and y>a we note that
Y (y)=0. Hence we can sclve for ¢ 1in each region and proper-
ly join the two solutions using the above boundary conditions.

Thus the equation for ¢ that is used is

2 2 _ .2 P
v ¥ (k(y)k, - 80 = - E: (2.4a)

along with the boundary conditions that ¢ i1s continuous

across the alr-dielectric interface and

= Juw(k-1) Ay(a) (2.4b)

+
lﬂ

In the lowest order solution Ay ia zero so k(y) -g-?? is

made continuous at y = g,

ol e s



2.3 Zero Order Solution

The Perturbation-Iteration Method commences with the
evaluation of the static field entities and Green's functions.
In the static analysis, w » 0 and therefore 8 = 0. Thus,

the wave equations reduce to Poiason's equations and are

2 us -. - +
v Ko uo‘jo(x)a(y a) (2.5)
2 X +
v, 0 == P—é:la(y-a ) (2.6)

At the static level there 1is oaly a D.C. charge and current on

the microstrip. This translates into the following condir’-n:

[
30 " JDZ az

Therefore (2.5) reduces te a gscalar Polsson equation

2 +
e Aoz - -quoz(x)é {y-a ) (2.7)
The two static Green's function, G; and GO, are now
developed to facilitate the solutions of the equations (2.7)
and (2.6), respectively. These functions will be developed
using Fourier series analysis. Only the odd harmonics are

f- required since the solution must be even about x = 0.

ETDMISPEOPARLYE o Tr s CL R

e i'w:.
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The Green's function ¢ is found first and 1is used to

1

solve for Joz in the integral equation:

L A
ZJ{. 6] (x,x',y,5") 3, (xhy') dx' = ;fg -1 (2. 8a)
0

obtained by setting Aoz equal to By on the strip. This
value of Abz 1s shown later te be a relative value that can
be correctly scaled to yield the true value of Joz'

Since relative values are used, the above is rewritten as

1
A
) ' oz,
Zf G1 Joz,r dx —'-'-—u = 1 (2.8b)
o
0
G; is chosen to satisfy the equation

vi 63 =-5 Gex" )8 (y-y") (2.9)

with boundary conditions

o
o aGl

Gl' -3?- are continuous at y =a
o

G1 is continucus at y = y'

ag =20 at y=0, w

GO

1=0 at x=a, -a
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Assume that the solution is:

-]

]
Z ansinhmnycosmnx ysy
GO - n-1.3ci
t
bne cosu X va2y
n=1,3..
urw
“a 2a

In solving for G;. the following Fourier series representation,

which is employed throughout the entire analysis, is used:

-]
- - L
2 An cosunx S(x~-x"')
n=1,3..

Equation (2.9) is integrated across the discontinuity vy',

taking Fourier components only, to give

Finally, by satisfying the boundary condition of G‘;

continuous at y', employing tne above, and taking only the

being

Fourier components, the Fourier coefficlents are solved for:

asinwy' = b e Wn¥
n n n

e T L e e s a2t M e
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-w ¥ coswnx'
-obe ~ w a coshw y' = -
no n'n nY a
Thus,
-mny '
e coamnx' sinhwny' cosmnx'
a = ’ bh =
n w.a n w a
u n

Since the source points of A are on the stripline,

oz,T
the convergsion y' = o will be made. Hence G; is given

by - O
ik e " cosw x'
n
E o a sinhuny cosw Xy §o
n=1, 3., n
GO = (2.10)
1 ® sinhmna cosmnx' ~w ¥
.y e cosw x ¥y T a
1.1."1,3-. n
w = 3L
n 2a
The Green's function G; is solved for in order to
solve the equaticn
1
2[ 8 (xm'yysy' )P (x',y') dx’ =€ ¢ =1 (2.11)

0

where @o is set equal to E}- on the microstrip. In the
o
same manner as Aoz' this value of @0 is nominal and is

used later to properly scale Abz,r and Joz,r.
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G; must satisfy the equation

v G; g (x=x")8(y=-y')

o B )

with boundary conditions

9G
y

W&

Gy K9

are continuous at y = a

or

G; is continuous at y'

cg-o at y=0, ®

GO

2-0 at x = g, -a

Assume that the solution 1is:

z a_ sinhw y cosw X ofy £a
n n n
n=1,3..

-]

=WnY wa¥
o z (bne +ce ) cosy X asysy
n=1,3..

= —uyy :
Z dne cosmnx ysy
n=1,3..

G m e

n 2a

As shown before,

Wi i . S L. PR S RO 'L,m,‘!L{SL‘Z‘#MZ.‘&,L}!{iﬁWﬁ&



28

o

o
aG
The boundary conditions of continuity of G2 and k(y) —2

Iy

at y = a, continuity of G; at y =vy', using the above,
and taking only Fourler components yields the following equa-
tions:

-mnu mna
a sinhw a = b e +ce
n n n n

—wna wnu
kw a coshw o= -y b e +w ¢ e
nn n nn nn

Wy w y' -y
be ® 4+ce® adge B
n
—mny' -w y' mny' cosu_x'
wde + wbe - w e e - -
nn nn nn a

Once agoin, by assuming that the source points are on the

microstrip and setting y' = a, the final solution becomes

»  cosw x'sinhw y
n n

£y ¢
w a(sinhw a + kcoshw a) cosa, x 0sys<a
o n-l|3&. u n
62 - W ~w y
i coswnx'sinhmnue e
:E: w a(sinhw a + xcoshw a) cosu, x a &y
n=1,3.. n n

(2.12)
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nfm
w o —
n 2a

The numerical solutions for Py and Joz r are next performed.

To accomplish this task, (2.8) and (2.11) are utilized

with the respective Green's fumctions G; and Gg. Since

the potentials are being fixed and measured on the microstrip,

the observation pointa of G: and Gg are at y = a, As
previously indicated, Abz r is fixed to the constant value
»

of ﬁ%- and ¢° is fixed to the constani value of €y¢ These
o
values are nominal and permit easier calculations of .Ioz .
»

and po. They basically represemnt the level of excitation on
the microstrip and can obviously be varied to any values.
The values of A and J are properly scaled at

QZ,T 0Z,T
a later point. A8 1is also shown, the amplitudes of
both potentials are independent of 8 and zc. The first
source to be determined is Joz e The process begins

»

with (2.8)

1 A
o] N - QZ,T -
2f 6} Iy, p o' =Bl
0 (o]

«1 -wnm
/ casw x' sinhmnu e

a3
'
Zj Z a cosu X Joz,r dx (2.13)
0 n=l1,3 n

= =]

Gi is simplified and approximated to permit an easier evalu-
o

ation. We rewrite the expression for G1 as follows:

o emane e b BT et e e eea s ks aia Bhm ko et e S mamiae s e e s 1 n
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- o
w© 1 n
° coawnx 1nhmna e
(;1 - Z — cosuw X
n
n-l » 3- + wna
-2 o
- = cosmnx' (l-.e %)
Z cosu X
n=1,3.. w a
i 1 ' : -Zmna
T [cosmn(x-x )+coswn(x+x Y)[i~e ]
n=1,3..

By applying the identity [ ]

2 Jjnu Ju
1 L+ e 1 u
Re E L - --Re[ln--———-—]---—ln tan =
nel 3., 2 1 - et 2 2

to Gg, the result is

0

Gy = - zl; In[tan fa—lx-x' |tan fglxi-x' 11

TQ T Ta s
cosh — + cos =—(x~x") |[cosh — + cos —(x+x'
2 1n [ a 2a ][ e; Za( x")
a

8

.o cosh -“ag- - COS 3’-'5(::-::') cosh - cos {;(:ﬁ-x’)
(o} o

G1a ¥ C1p

The series identity

1n| | = 1n|x| + ~’-‘-i+z-’-‘f—+
njtanu nx 3 90 s s @

is applied to G the dominant terms are retained, and the

la’

S T

[ YT S TR
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K}

result is
o . 1 . & _ 1 2,2, __w_ 2,2
Gla =% 075 =47 Wl GT-x"D) | - grr (54x')

.4, 4 2 2 Y4
180'rr (Ga) (% +6x"x )

The series ildentities

2 4
coshx = 1 + %T +-§T +

2 4
cosx -1-%‘7+%i-+. .

are applied to G;' the dominant termws arve retained, and the

b!
result is
cfb. % 1n a + 3;,- 1u{[(2m)2 + =x")2110w? + (xﬂ:')zl}

+ o Y 1eex)® + e
2 - E Dlandicdad

2 en? v 2= et
On the stripline,'§ and ‘% are very small provided a 1is
chosen to be greater rhan or equal to 10. The two functions

G;a and Gib are recombined and, after employing the fact
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that terms containing (Aia)a are negligibly small and thue dis-

carded, the final result is:

- - 7}?{ 1a | 2%~ 2] -3 1a{ (@)% (ex")?

2
[ea)%+ (x + 2)?) )+ % (ﬁ)2 (2u)2} (2.14)

The current density Joz is approximated by a series

T
of the form

I+1 x'2+ I x'a+ I.x
J (xl) - _l— L 3
0Z,T

12

.6

l-x

This form gives Joz the required singular behavior at

T

x » + 1. The coefficlents Io, Il’ IZ’ and 13 are solved

for to determine the current density Joz c By substituting
]

Q

G,

and Joz back into (2.13), the result is

o T

1
-k {lnlxz—x'zl - 2a{{2a)? + x -x' )2 [@a)? + x +x 2]

0
i 2 4 6
I +I.x""+I.x' + I.x'
e L e

Vl—x'2

Point matching on the microstrip is used to solve for the
four unknown current demsity coefficients by performing the

1 3
integrations, sequentially letting x = 7 %, g and 1,

v e e - e e et et et e e e B b e P S
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and then uaing the four equations to sclve for the four unknown

coefficients. The iIndividual integrals are solved utilizing the

implicit transformations:

x = ging

x' = ging’

xPex'?

-% (cos28' - cos28)

dx' = cose'ds'

ln[%(,cose' - cos8)]

Thus we find that

2I'/’ln(x - x' dx’
’ ,2

o«
1
° _; 2cosnbcosnd” _ 1n4
n
n=1,2..

R
|
-
2

21 2 2 1
- ___l ' ln(x X ) dx' - __L (2x2 + 1!14 - 1)
4 Jo 2 8
1 -x'
21 4 I
_on2 '1"(3"")dx'--l(xl'-i-xz-i-élnlo-l)
4n 0 3 8 4 8
1-~-1x
213 '61n(x x'%) dx' =
4o 0 3
1~ x'
Is 16 6. .4 37
E—-(-3—x + 4% +6x -3—4-51“4)
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£ 2L czu)zxf ax' =3 (&2,
L2 (1,209,y2 ! —_ -l( ) (20)2 1,
27 3 Ga’ 1 \/—— 3

o

1

12 2 1 2,. .2
3 (4a) (2a) Iz[ \(- dx' = 3 (g5)"(20)°1,

0 - X
A2 Hiawk, __x dx' = 2 )20’
27 3 a 5 3 ‘16a’ ‘%! %3

1 -x'

0

The integral terms

1
tflﬂﬂwz+@-xﬂﬁuhf+(x+WfJ

0
f:o + le'z + sz"‘ + .x'®

3 L ]
[ 1- x'2

dx
cannot »e solved in a closed form fashion and, thus are numer~

ically evaluated using a Simpson's Rule approximation. The
substitution x' = siné' is employed to avoid a singularity in
the calculation at x' = 1.

Once the currént density coefficients have been solved
for, the total current on the microstrip IoT r is evaluated

’

by using the integral on the following page:

b il J.x—h-

o BeSLE A
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and the subastitution x' = sind. This yfelds the result:

1 3 3
Iop,e " "I, +3 I +§ I+ 15 I3

The charge density p and subsequent total charge q_,, are
0 oT

solved for in a similar manner as Joz,r and IoT,r' The evalua-
tion begins with (2.11)
1
o t || -
.‘J G2 Py dx €, ¢° 1 (2.15)
0
Gg is simpiified by expressing it as a function of Gg.

G2 %

n-l,3- . 0

'
cosw x'sinhw acosw x
086, n n

a(sinhmna + xcoshwna)

o
a2 | 1 '
e [61 +n§3 oy coamnx sinhmnc:
»

- o
€+ 1 -2 M cosw X
sinhwnu + Kcoshmna n

g T i Bl B R me e me o eaa wae e o o ree b W e w I A e R A Rl R TS i her g maeed CFe o A R e e

S P i-ﬁ:
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The charge density po(x"') is approximated by the series

v 2 oy
x') = 9, + qlx + Yo¥ + q4%
o

12

l-1x

'6

which is similar to that used for the current density. Thus,
in the same manner as before, the four unknown charge density
coefficients are solved for by substituting the expressions
for Py and Gg into (2.15), performing the integrations, and
solving the four equations obtained by point matching at x =

% ’ —;’- ’ -Z" , and 1 for the unknown charge density coefficients

9, 5 93 » 95 » and 953 The integrals

1
2 o '
2-[’:+1Glp°dx

.are performed in the same way as before using the approxima-

o

2]

tion of Gl

and the Simpson's Rule approximation. The remaining

integrals

1
o 4 sinhw_o k +1 -w_a
Z = — -2e cosw %
a T e+ 1 sinhw a + kcoshw a
o] o

)

' 2 6
q°+q1x +q2x +q3x

dx'

]
COosWw_X
n

1-::'2

are carried out using a Simpson's Rule approximation and the

substitution x' = sind' to avoid the singularity at x' = 1.

ot fere e ANALTA L L‘.-.;lsi,-:i:iim:



37

The total charge qQup OO the microstrip is dstermined by

using the integral:

1

0
and the substitution x' = giné'. This yields

- 1 3 =N
Gor = "4, ¥ 79 * 5 9 *TF %)
With the results of IoT,r and A7 * the static zco and

K is determined. At w =0 , Bom 0. Therefore, B1 is in-

eff,o
corporated into the analysis with the frequency being set equal
to zero at the conclusion of the static case. Beginning with

the aquation

-
E_ = -ju & - Vo

Eoz = -ijbz + j61¢°

On the strip,

q
eT
E ., 0 -ijoz + j81¢° —ijOIOTq-jﬁl c, (2.16)

In this equation, Lo = A.oz/IoT is the static inductance per

PO X 0 [ TR ,.».u;,.ix».'ﬂd
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unit length of line and C° - qu/O° is the static capacitance

per unit length of line. Using (2.8)

it is evident that Abz and Joz are directly propertional to
Aoz,r and Joz,r , respectively. Thus, the valua of Lo can also

be determined from Lo = A /I

oz,r' LoT, ' This illustrates why the

values of Bl and Zco , as yet to be determined, are indepen-

dent of the nominal value of Abz » The value of Co is also

3

independent of the level of ¢° by the same reasoning. From the

continuity equation

j aJox
ved=3x - jBlJoz = ~duyo,

Integrating over the width of the microstrip yields

B (2.17)

1ot ® “1%r7

gince Jox = 0 across the strip. Combining (2.16) and (2.17)

finally reasults in

Gl = “’1\/1‘0% (2.18)

This is the value of the propagation constant in the zero

ST SR -t ATF N0 TN SPRE TN, T

f:l'j.\uﬂ
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frequency limit and is also used as the approximate value in
the 1 level iteration. As can be seen, Bl- 0 at W= 0 which is
consistent with all of the previcus theory.

A value of Keff,o is determined at w, = 0 by defining it

as follows:
B1 Loco
Keff,o - ko 1 - U, €y = cy LoCo (2.19)
»

The final parameter to solve for 1s the characteristic
impedance Zco of the stripline. This 1is easily determined by

the following:

BLIOT
o w, Gy T
= - = — (2 . 20)
co IOT IOT Co

The current and charge density coefficients are now
scaled correctly as they are needed, properly scaled, for fu-

ture calculations. Equation (2.16)

0z 1o

properly relates the levels of the potentials. lLet

oz 0zZ,r
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where K 13 the constant of proportionality which correctly

scales Aoz' As stated previously,

A
0Z,7T o

which, from (2.8), is also the constant of proportionality be-

tween JOz and J « Therefore, the current density and, fur-

0Z,T

thermore, total current Io'r is properly scaled by the relations

2

Joz ¢ \,Loco Joz,r (2.21a)
2

IoT - \’Loco IoT,r (2.21b)

2.4 Higher Order Solutions

The analysis continues with the calculation of Bz and ch
at a finite frequency ;. The value of wy should be low enough
to use the static solution as a good first approximation be-
fore calculating a better value of B. The procedure continues

with the calculation of the Fourier coefficients of s and

e e ke dl sl iRt e LCE SRS 0
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Joz' This is done using

1l
Pon ™ %[ po(x')coawnx'dx' (2.22a)
0 1
- -g- 1 L ] [}
Jon af Joz(x )coamnx dx {2.22b)
0

along with the substitution x' = sin6'. These integrals are
solved numerically using a Simpson's Rule approximation. A
sufficient amount of coefficients should be calculated until

p_ _ and Jon are very nearly equal to zero.

on

The Fourier representation of Aoz and @o are solved for
at any point in the cross-section of the stripline. A oz

satisfies (2.8)

2
vt Aoz - -quoz(x)ﬁ(y-a)

with the boundary conditions

oz

are continuous at y = q .

Aoz-O at y = 0,» ,

m -
Aoz 0 at x = a, -a .

A Tourier representation of Aoz is used. Assume

PR SOOI S 2 T35 CNRIL I

s

1
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k-]

E Ansinhmny coawﬂx ysa
n=1,3..
A -
[}/ - -wuy
2
Z Bne cosw X y=o .
n=l,3..

The coefficients, Ah and Bn' are 8olved for by invoking
continuity of Abz at y =q and integrating (2.8) over a small
region centered on y = a«, thus

~w @
Ansinhmna = Bhe

c‘+
aAozn -mna
e - ‘“ane - anAncoshwna = -quon

o

" - 0
A, -2 ¢ " 3
n 0

R uo

B » ~~ ginhw a J

n W n on

Therefore, the Fourier representation of Aoz is

hd u, -wa
:E: o e J__sinhw_a cosw x ysa
on n n v
A n=1,3,, 1
oz " . (2.23)
Z -2 sinhw o J e mnY cosw X
wn n “on : n y3a

n=1,3..

Jombhotui
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@o is found using (2.11)
2, .. % '
¢ % s S0-y")

o

with the boundary conditions

ad
o
°o’ x(y) 3y continuous at y = a

¢, continuous at y = y'
¢° =0 at y=0, =

¢° =0 at y = a, -a

Assume
[--]
ansinhwny cusw X Ogys a
n=1,3..
- -6y w_y
n o '
Qo Z (bne + c e ) cosw x asysy
n=1,3..
-] -w.Jy ,
<
Z dne. coswnx ysvy
n=1,3..

The equations used to solve for the unknown coefficients emanate
from the continuity of ¢° at y = a, the continuity of

3y
k{y)} 3;3 at y = a, the continuity of ¢° at y = y', and the

o ASCA AL i.t‘h:ﬂ.ﬁ&
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integration of (2.11) over y. Thus,

-wna mnu
sinhw a = b_e +ce
a4 n n a
-0, w0
o8 = -bwe + cwe
Ka w cosw a n“n
__mny | ] mny ] _wny ]
+ce wde
bne n n
] L] ]
-Ww - w
-dwe ny..(..bme. ny+¢::we.y)---—°r-'-
nn nn nn €

After solving the equations for the coefficients and letting the

source point y' = a , the result becomes

= Pon sinhmny
Z = cosw X y §a
- € w (sinhw a 4+ ccoshw a)
n=l,3.. on n -wny (2.24)
¢° - = ponemﬂasinhmna e n
Z coswnx yzaua
n_l’J..eown(sinhmna + Kcoahmna)

The analysis continues with the next iteration of field
entities. The frequency is raised to wy and the propagatiom
constant is approximated using the static solution of Bl. The
Green's functions are also redeveloped as they are now chosen to
be frequency dependent. All of the following theoretical develop-
ment will be enumerated as the 1 lewvel iteration. It should be
noted that all further iteration processes will be carried out in

the exact same format.

SRR CIRC PTRT = M. ST
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In the zero frequency limit on and Aby are both zero. At
W=y this is no longer true, but nevertheless the first correc~
tions for Alx and Aly are small. It 15 posaible to find both
Alx and Aly approximately by using the solutions for Aoz and
¢°. We can then find better approximations to Az and ¢, which
are labelled Alz and 01. We can then iterate again to obtain

improved solutions for Azx and A2y and then for A and ¢,.

2z 2
After a few iterations the solutions converge to stable values, at
which point the frequency w 18 increased to Wy The solutions
obtained at w, are used in a similar iteration process to find
the converged solution at w = Wy

Aly is the first field entity to be found. Frow (2.3b), Aly

must satisfy

2 2 2 K
v, - (B; - K(y)ko.l)] Ay " Juu € 9 E;LZL (2.25)

where

T - - (k-1)6G-a)

Note that the known potential wo is used on the right hand side.

The solution for Aly is

a
Aly = f Gg [-jmuoeo(m-l) ¢o(,u)] dx'

-a

o TSNS TR e e i','d!.ﬁ
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The Creen's function G;' will be chosen to satisfy the equation

[v2- 82—k ()12 1)1 G = - &(x-x") 8 (y=y") (2.26)

with the boundary conditions

2G5

G1 - nti t =
3 3y are continuous at y o
ac%

o " 0 at y= 90

Gg =0 at x=a, -a

Assume
a
Z coamnx'
ot An =z coshmzn. 1Y cosw X y £a
’ [ }
G; " e cosw x' -
ZB —-—Leln’lycoamx Yy 0
. n a n -
n. » L
where
2_ 2 2 . \/ 2 _,2 2
“’zn.l'\["’n' “ky 1t & Win,1® N9 “kg 1 v 6

The unknown coefficients are determined by using equations satis~

fying continuity of Gl at y = a and the integral of (2.26) over

3
a small interval along y centered on y = a . Thus

Aluans e BT
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-w o
- in,1
AncoshmZn'l Bne
- a
in,1 —
“1n,18° Won, 148400, ja = = 1
Hence,
A = 1
n
mzn’lsinhmzn'la + uln.lcoahmz ’la
w a
in,l
5 - coshmzn’lae
n
w2 'lsinhmz .lu + ml 'lcoahwz '1a
and the solution Gg is
[ -] ¥
Z coswnx coshwzn. ly
—— coswnx ysa
) n=1,3.. a(wzn'lainhmzn’la + wln'lcoshwzn’la)
G, = w a =W y (2.27)
3 i cosw x'c¢nshw ae In,1 e In,1
n 2n,l
coswnx ¥y 2 a
n=1,3.. a(m2n,131nhm2n,la + wln,lc°3w2n,1a)
where

- 2 2 2 - 2 .2 2
mlu,l \[mn ko,l + B1 mZn,l \/ “n Kko,l + B1

poeult Bt e vl
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The solution for Aly at y=a is

Z -jwlpoeo(x-l)coshmzlhla @on(u)
n=1,3.. mzn’lsinhtuzﬂ.lu + mln’lcoahmzn’lu

cosw_X {(2.28)

Ay *

]
The quantity ??i can now be determined and is

+
ye=a
g3A d
1y - -
3y + Z mln.lAl yéa.)coswnx
y®"oc nml,3..

| i; jmlu"e“mln 1(K-1)c°sh“2ﬂ,1“ °°n(a) cosw x (2.29)
n

a=£73. .mzn’lsinhmm’ 1% + ®1n, lcoahwzn' 1°

The quantity @1(x,u+) is determined in terms of Alx' On the

microstrip, Elx = 0. Thus,

3@1

1x " CI0A o "0

E

Integrating over x yields

x
¢l(x,u+) = -jw];/’ Alxdx' + '#1(0,&)

0x x'
aAlx ' '
[ L]
jwl = dx''dx' + ¢1(0,a.) (2.30)

00
The term ¢1(0,a) represents the D.C. value of ¢1 which is maintained
at el , as used in the static solution, for this and all other

o

s -.n-.‘uwm.u:|m‘Mu‘.“MZ:k#A-‘.;,I\;S{\'h
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3
iterations. The function - is found using the Lorentz condition:

oA A A 3A A
.-—5 -—2- -——E.—ﬁ .._-l.. - -
v K ox + ay + :F4 x + )4 jBAz jwuosor(y)O
+ ]

At y = a , the solution for S becomes

A aal

1z - =X +

i jBlAbz Ty jwluoeo0o(x,a ) (2.31)

After representing (2.31) as a Fourier series, substituting it into
(2.30), and performing the integrations, Ql is expressed as

hod 3w 3A
*) - 1 . am
@1(3,0 ) :E: 2 (Jslaozn 3y jwluoso¢on)

(cosw x - 1) + -é“ (2.32)

QO

The next. step is to solve for the new charge density Py An
equation must first be developed to accomodate this task.

Consider a Green's function G% satisfyiug
2 2 _ 2 N
[Vt (Bl K(y)ko,l)] Gz §(x~x")E(y-y") (2.33)

with boundary conditions

1
1 oG

G2 y k(y) 3;2 are countinuous at y = g

e DT T YT L S e ‘ﬁi
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G; is continuous at y = y'

Gt=0aty=0, =

2
1
G2 =0 at x = a, -a
Agsunme
= cosw x!
:E: A sinhmZn.ly cosw X 6sysa
n=1,3..
1 b -wln,ly Wy ly coswnx '
Gy :E: (Bne +Ce ) " cosw_X e S$ySsy
. n=1,3..
-]
cosu x' mln,ly :
E D e cosw X y €Yy
n=1.7,

where

2 . 2 \j 2 2 P
+ = -
®n,1 " v g 0,1 TP Yon,1 wy =Kk, 1 T By

The equations employed ro solve for the unknown coefficients

use the boundary condition thatlcé is continuous at y = a, the
aG
boundary condition that k(r) 3;3 is continuous at y = a, the

boundary condition that G; is continuous at y = y', and the integral

of (2.33) over y. Thus, the equations are

L AL e
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-w o w a
- In,1 In,l
Ansinhmzn’la Bne + Cne
- a w a
- = In,1 ln,1
KWyn, 18000800y, 10 = = wy 1Be. * 990,1%¢
“9p,17 in,17 a1

B.e ' +Ce ’ =De '
n n n

04,1 ~Uyn,17" “n,17"
- mln,lnne - (- mln,IBne + wln,lcne )

= - 1

After solving for the coefficlents and letting the source point

y' = a, the solution for Gé becomes

o ]
cosmnx sinhmzn’ly

cosu X a3y
a(mln,ISi“hNZn,lu +k=w2n’lcoshm2n’1a) n

1 n"l,3.-
Gy = Wy 1Q -0y Ly (2.34)
@ ] 1n|1 ln’l
cosmnx sinhu:Zn 1ae e
t cosw X a £y
n=l3.. ﬂ(wln’lsinhmZn'lu +icm2n’1coshm2n’la) n
Next consider the following:
2 ]
E 2 2 2] 1
oln 2 ° (wn - K(Y)ko,l + Bl’ G2n -
L 3y i
1 [ 2 2 2 2.] .1
Gon 7 = (u, - K(y)ko,l + B %,
L Yy .
d r aG%n 1 a¢ln + 1 oln +
ay "0 By T Ty |77 Pl + Gy T, §(y=a’)
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Integrating over y yields

1
b-Te 9d © p
2n 1 in - - + .ol 4 ln
¢1n 3y - GZu 3y a+ ¢ln(u ) 4 G2n(u ) 12: (2.35)
1 , -
3G ad o
2n 1 In
an 3y - GZn 3y 5 0 (2.36)

Multiplying (2.36) by x and adding t: (2.35) gives

+
29 a o}
1 _ln - - + 1 ,+ “in
Gy k(y) iy - ¢m(a ) + GZn(a ) N
Using (2.4)
1,4, Pin + 1 +,

o

Summing the Fourier components (2.37) results in {y = u+)

[- -]

~ 1 1n - _ _ 1
ZA GZn €, cosuwgX 2 [°ln Juy (1-k) G2n "Lly'n]m:'e'mnx

23 n=1 3--
TV l' 3| - ’ (2‘38)
Equation (2.38) is thus equivalent to
1 0 ©
P S - 1
?f g, eo dx @1 jml(l-;c) E G2n Alyncosmnx (2.39)

) n-1,3o-

Equation (2.3%) is used to solve for the charge density Pye

The procedure in carrying out this assignment begins by substituting

.
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(2.32) for 01. Alyn is substituted by the equivalent Fourier compo-

nent in (2.28). G%n is substituted, letting y = a, by

Gl Binhmz 1a

-
Zn ln 1:.=.1.mhm n,l“ + xuw

2n, 16050, 40

As done previously, Py is represented by the form

4 + qlx'z + qzx'a + q3x'6

ql - x'2

The integral on the left side of (2.39) is carried out by

ol(x') -

making a substitution for G]2'. This subatitution allows a rapid and

accurate convergence of the integral. The substitution is as

follows:
1 1 1 o 1 L o
- LI -
2'[ Zp dx’ j Gzpldx + 2'[ (G2 Gz)pldx
0 0 0
1 S
a o ' 1 _ Lo '
’J- Gzpldx + 2 Z (GZn G2n)pldx cosw_X
n‘1|3.-
0 l 0
= 2
9 .
) f cosmnx ainhmzthla
n-1 ] a(mm,lsinhmzn,lm + "“’2n,1°°5h“’2n,1°)
co8w x 'sinhw n®
alun(sinhm a + kcoshy a) dx cosw, X

1 - 1
- o ' ' '
2'[ Gzpldx + 2 Z Cn[ p,co8w X dx cosw X (2.40)

n=1,3..
0
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1

The integrals involved in solving for %I' Ggpldx' are ideanti-
cal as the closed form approximation previouafi solved for in the
static solution. As n gets large, the value of Cn quickly approaches
zero which facilitates a rapid convergence of the Fourier series
summation. The integrals involved in the summation are evaluated
using a Simpson's Rule approximation.

The charge density coefficlents are determined sing (2.40) in
conjunction with (2.39), point matching at x -'% ,-% ,-% , and 1,
and solving the four resulting equations for the coefficients.

The current density le is determined by first solving for a

relative current density le . and then properly scaling it to give
r .

le. le,r has the familiar form
I + le'z + sz'4 + Iax'6
J (x') » e
lz,r 3
1-x'

From (2.3},

(9% - (8% - kK> )] --ud

t 1 o,1 A1z,r o lz,r

where Alz r is the relative value of Alz which is also correctly
»

scaled at a later point. Therefore, the sclution of le r satisfies
14

the equation

1
A
1 Vo LZaE
2f Gpdy, Ldx - (2.41)
0

e =oAL T sitaencasararhisil s W50
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The Green's fuaction Gi is next solved for. Gi must satisfy

the equation
19 - (83 - k(K2 ;)1 61 = - 6G-x")8(y-y") (2.42)

with boundary conditions

1
1 aG
Gl and 3y are continuous at y = g

Gi is continuous at y = y'
1 .
Gl =Qaty=0, =

=0 at x=a, -a

Q
e

Assume that (y' = a)

o coam x'
Z A —a sinhmzn’ly cosw X ysa
1 n=1,3..
G]. = “
z B cosm x' -mm.ly
———— cosuw x yza
n=1,3..
where

2 2 2 2 2 2
tl"11'1,1 an - ko,l + B1 m2n,1 aan - Kko.1+ B1

e T A PARLER A e i::i\';.-?dw.ﬂ!
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The unknown coefficients, An and Bn » are found using equations
satisfying the boundary condition that Gi is continuous at y = g

and the integral of (2.42) over y. Thus,

-ty a
- in,1
Ansinhmzn.la Bhe

“n,1°
- ’ L] -
“1n.13 e w, ,1A coahm2 ’lu - -]

The coefficlents are readily found to be

1
n Wy, g8inhwy o+,

lcosthn’la

3

“In,1%

Sinthn,l e

n wln.lsinhmzn’la + m2n,1c°3hw2n,1a

Therefore, Gi 18 expressed completely as follows:

- ™ 1}
S e o v < s
nel 3., o V1n,157MW2n,1% T Yon 1008, 4@ @

1
G w & - (2.43)
1 = coamnx'sinhwzn 1% In,1 e 1,1

* Cosw X ¥ 2 a
,.alz,;,. alwy, g8inhuy qa + w,) jcoshw, a) n

In (2.43) we let y = a and subatitute this into (2.41). The
1
integral {]ﬂ Gile rdx' is carried out by making a substitution
]
0
for Gi that gives a simpler evaluation. This substitution 1s as

follows:

B L P T U 7L Ut s S A e U VUSRI 7Y
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1 1 1
1 - L0 '
2] Gl 2[ G .I1 dx' + Z'I. f,Gl Gl)le rdx

0
0 1 .
o '
-2 G le,r +2 Z f Gll::)‘rlz,rdx
n=l 3.,
0 1 cosw X
n
- 2 Glle, +
0
, zf sinhm2n 1% )
n=1,3..Jp a(ml ,lainhmZn.lu + m2n,1c°5h“2n,1“)
-
sinhmnge n
1 1
au, le'rcosmnx dx cosmnx
1 @ 1
- o ' ' []
f Glle,rdx + 2 Z [ Dnle rcosmnx dx cosmnx
0 n=}1,3.. 2

The integrals involved in solving ?.-IqGIJl dx' are identical
as the closed form approximation previously solved for in the static
solution. As n gets large, the value of Dn quickly approaches zero
which enhances the rapid convergence of the Fourier series summa-
tion. The imtegrals involved in the summation are solved by using a
Simpson's Rule approximation.

The value of A is chosen to equal @l displayed in

lz,r

(2.32). This selection of A accomodates a simple solution to

lz,r

J and is showmn to be a completely arbitrary specification.

lz,r

The solution of J is8 carried out by performing the affor-

1lz,r
mentioned substitutions, creating four equations by point matching

at x = % .'% .'% , and 1, and and finally solving these equations

[OPPI TSI IRPRVPE CRCLE
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for the four unknown coefficients. Thus, le e i3 now determined.
?

The new and more accurate propagation constant Bz and charac-
teristic impedance ch are next determined. The first step in
accomplishing this is to calculate the total charge 9 and total

relative current I1 on the microstrip. These tasks are carried

T,r
out using the integrals

1
- )dx' = 1 3 5
Ur 2f pylxTydz’ = m(q, + 54 +F %2 ¥ 16 9

1
"Ydu! = Py 3 2
I, ™ j Jyg, (K& = w(I + 51 +5 I, + 75 Iy)

in conjunction with the substitution x' = sind'. On the

stripline,
Elz = -jmlAlz + 332¢1 =0 (2.44)
As has been previously defined,

Alz o KAlz,r (2.45)

where K is the scaling factor. By virtue of (2.41), it is seen that

le = Kle,r (2.46)

Combining (2.44) with (2.45) yields

Y
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mlkAlz,r - 82¢1 (2.47)
Using the previously chosen value

A =- ¢

1lz,r 1l

(2.47) becomes

K=— (2.48)

In the same fashion as (2.17), upon integrating the continuity

equation over x, it is required that

ByLyp = @197 (2.49)

Substituting ¢2.46) and (2.48) into (2.49) finally results in

U
1T,r

By =y [T (2.50)

This is the new and more accurate value of the propagation constant.

Using 82, a value of neff,l is solved:

2
e ™ (55
eff,l ko,l

The final entity calculated is ch at the given frequency Wy

e
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ch is defined as the ratio of the line integral of Ely along x = 0,
from 0 to a along vy, divided by the total z directed current IlT on
the microstrip. This line integral, which is the totul potential
difference between the ground plane and the microstrip, is found

from

o
-> e
vlT-jE- dy--f(- jok) - vo) - dF
0 0
“ 29, a
- ) (jmlAly + T Ydy = 0, (a) + fu, Alydy
0

The total current i3 solved using the previously determined Bz

and 1

1T,r’
)
IlT - KI1T,r - 'EI IIT,r
Thus,
&
Vip ml(wl(a) + jmll Alydy)
zZ, = - (2.51)
el Iy Bl1r,e

a
The expression for .I.Alydy is easily evaluated using the equation

0
for Aly and letting O £y £ a.

A property that should be noted is the independence of the

final results of 32 and Zc on the assigned value to Al . This

1 zZ,r

independence is evidenced in (2.47) where any assigned value of

Alz r would just adjust the value of K. The chosen value of ¢1
»



6l.

obviously simplifies the subsequent calculations. Once the value of
82 is determined, the scaling constant K can then be easily calcu-
lated.

Bafore the next iteration process begins for calculations of
new values of 8 and zc at a new or same frequency, certain proce-
dures are taken. The values of the current density coefficients

are properly scaled by using (2.46) and (2.48). This yields

The Fourier coefficients of le and p, are calculated using the

equations
1
- 2- T 1 []
“len af le(x )cosmnx dx
0

1
- 2- L ] 1
Pin aj‘ pl(x )cosmnx dx
0

along with the substitution x' = sinv' and a Simpson's Rule approx~

imation. An adequate quantity of these coefficients should be

calculated for proper convergence of future calculations using them.
An equation for Alz is determined using the properly scaled

version of (2.41). We begin with

1
1 ! = 3
Alz 2u fGlJldx 2 uG J cosmx

0 1,3.
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Therefore, at y = a,

L] u_J, sinhw
1In 2n,1
A, (x,a) = L L cosw x (2.52)
1z n-E;;.. wln,lsinhmZn,la + mZn’lcoahmzn'la n
where
- ]2 2 2 e 2 _ 42 2
“1n,1 \l"‘n - k1t B “a,1 \/“’n kkg,1 ¥ 81

The Fourier series of @l i3 next determined. Stating (2.39) in

complete Fourier series notation,

1 = 1
:E: Ganlncosmnx - jwl(x-l) :E: GZnAlyncosmnx

°1<3ra) - "el—
°© n=l,3.. n=1,3.. (2.53)

Upon substituting the previously solved Fourier coefficients into

(2.53), the final result is

(oyq - jwleo(m-l)Alm)

o, (x,a) = —_—
' n-E;;.. eo(wln-lsinhNZH,la * I':mZn,lcc’sm"Zn,lO‘)

cosu X
(2.54)
At thisg point in the analysis, the 1 level iteration hus been
completed. All entities which are required for the next iteratioun
have been solved for. The next iteration may fulfill one of twe
tasks: it may improve the values of B and Zc by solving all of the
equations again with 52 replacing B1 and keeping the frequency con=-
stant at wy or it may solve for new values of B and Zc by increasing

the frequency to a higher w, and using the approximate 52 at this

LR Lt e e, N S
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new frequency. The iteration repeats at tha location of the
gsolution of Aly with all enumerated iteration levels increased

by 1 and continues until the Fourier solution of the new 02
function is found. This iteration process may continue infinitely
with the frequency continuously increasing. Figure 2.2 summarizes
21d depicts the order of solution of the field entities in the
Perturbation-Itevration Theory.

This 1s the conclusion of the Perturbation-Iteration Method.
Chapter 3 presents data of various entities calculated from applying
the thecry to different structures. It also cowpares certain data
to estahlished theoretical and experimental dzta to axhibit the

validity and accuiacy of this technique.
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82 Now Used —-1

Input Calculate Calculate
Microstrip » A, , and A, , A, , and
Structure "'T:lx ly @2" 2y
Dimensions 1 2
Fix ¢° and Calculate Calculate
Aoz,r on ° and le,r pl and J?.z.r
Microstrip ]
Calculate Calculate Calculate
po and Joz,r BZ and ch 83 and Zc2
l ] |
Calculate Scale Scale
Bl and Zco le Jzz
Scale Calculate Calculate
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o w, or Keep w; 3 OF P W,
Input )
“1 B3 Now Used

Figure 2.2 Block Diagram of Perturbation-lteration Method.




CHAPTER 3

CALCULAT.ONS AND RESULTS

The Perturbation~Iteration Method was used to find the
effective dlelectric constant and characteristic impedance for
varioug combinations of x and dimension ratios '% over a range
of frequencies. In each instance, the dimension A equals 10W or
108, whichever is larger and H = lmm. This gives validity to the
assumption of using the side ground walls. The data is organized on
the following in tables which list the computed values of Kogf and
zc. Each table represents a specified combination of «k and %
ratios of the stripline structure over a range of frequencies.
Graphs of Kafg and zc are displaye ' to interpolate data hetween
calculated points and are organized with all combinations of the %
ratios at each value of k shown on each graph. These graphs are
labelled as Fig's. 2.3 - 2.14.

The evaluation of the accuracy of the numerical procedure used
in this thesis‘ia diff.cult because of the lack of good data to
compare the results with. Xuester and Chang have noted that there
are large variations ia computed values for the effective dielectric
constant as presented by different authors [18]. This 1;ck of data
has thus limited the verification of the accuracy of the numerical
procedure used to that of a few special cases.

Figure 2.15 illustrates a graph which compares data calculated

from the Perturbation-Iteration Method with data taken from the

65 e e e et e TR SR e 0l ot RS l.n}:’.‘iia;:
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following sources: a fullwave analysis by T. ILtoh and R. Mittra [14].

a dispersion model analysis hy W. J. GCetsinger [10], an improved
analysis of [10] by T. C. Edwards and R. P. Owens [19], and experi-
mental data J19]. The Perturfation-Iteration Method compares very
favorably with all of this previous work for the special case of
k = 10.15 and three values of -g— In the Table accompamying
the figure 2W and H are given in millimeters. In Fig. 2.11 the
regults are compared with computations made by Jansen for « = 9.9.
Jansen's results were read from the graphical data presented and
multiplied by 1.01 to make the results equivalent to those obtained
for k = 10 using the Perturbation-Iteration Method. The two sets
of results compare very well for '% = 1. For -% = 0.5 and 0.25
Jangsen's results appear to be approxtmately 1% higher (this com-
clusion is subject to the error in reading data from the curves
and may not e correct). The effective dielectric comstant at
zero frequency, as obtained from Wheeler's approximate theory, is
also shown for 4 = 0.5 and 0.25 in Fig. 2.1l. These values lie
below those calculated using the Perturbation-Iteration Method and
seem to suggest that the latter are most likely very accurate.
Examination of the tabulated data shows that for wide strips
and large dielectric constants at higher frequenci~s the numerical
procedure used converges to a value for the effective dielectric
constant that is larger than that of the substrate. This is a
clear indication that a 4 term expansion of the charge and current

distribution along with point matching at 4 points on the strip
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in the interval 0 to 1 1s inadequate for wide strips and large
dielectric constants. The region where the results become inaccu-
rate are mostly in reglons outside of those of practical interestt
For examplc with a substrate having x = 10 a substrate thickness
of 0.25mm would be appropriate in which case the 5 Chz data in
Fig. 2.11 becomes 20 Ghz data (the frequency scale must be multi-
plied by 4 because of the reduced height).

It can be seen that some of the dispersion curves for the
larger values of % in Fig's. 2.5, 2.7, 2.9, 2.11, and 2.14 show
a second inflection point. This marks the region where the numer-
ical solution begins to become inaccurate. The boundary of this
region has been marked by a broken curve in these figures. The
data teyond these boundaries is not believed to be accurate.

The limitations noted above are not due to any failure of the
Perturbation-Iteration Method but i1s due to the over simplified
numerical procedure adopted to solve the integral equations. By
using Galerkin's method or the method of least squares along with
additional terms in the expansions fecr the charge and current
distributions results that are valid over a wider range of
parameter values could be obtained.

In the region where the results become inaccurate the calculated
current and charge distributions no longer have the expected
behavior. This 1is seen in Fig's. 2.16 - 2.19 where graphs of the
charge and current are displayed for sufficiently accurate and inac~

curate expansions. The graphs only indicate one-half of the micro-

el Lok AL R i
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strip as the entities are symmetric around the origin. The Per-

turbation-Iteratfon Method is generally valid for values of «x if
e

up to approximately .9¢. The range of frequenciea where Kafs

is valid also contains valid values of zc.
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Figure 2.15

Comparison of

10 12 14 16 18

Frequency (FHz)

Kegg VS* frequency plots.

Experimental results

Dispersion model analysis [ ]

Fullwave analysis [ ]

Improved dispersion model analysis [ ]
Pertarbation-Iteration Method
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CHAPTER 4
CONCLUSIONS

This thesis has developed a Perturbation-Iteration Method for
analyzing microwave striplines. The theory began with the static
analysis being developed followed by the higher order analysis.

The static analysis was developed by using two static Green's
fuactions. The higher order analysis was developed using three
frequency depondent Green's functions and satisfying the frequency
dependent wave equations. Extensive tables and graphs of computed
values of Kagf and Zc over a range of frequencies was presented
for different structures. Data was also presented which compared
the method with previously developed methods and experimental data.
The comparison showed that the results were accurate to at least

12 over most of the parameter range of practical interest.

The Perturbation~lteration Method i3 a relatively easy method
to use as it contains no transcentental dispersion ecuations that
must be solved.  Rather, it employs a set of equations which, when
solved simultaneously, produce answers for 8 and Zc directly and
which satisfy the field requirements of the structure. The ease of
using this methed is also enhanced by the fact that it calculates

values based on ratios of the stripline dimensions. Therefore,

once one set of dimensions are used for computations, other structures

with the same dimension ratios can be directly analyzed by employing
a frequency scaling. An example of this feature is a structure with

microstrip width of 2 units, height above the ground plane of 1 unit
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and frequency of 1 GHz‘ has the Qame characteristics as a structure
of microstrip width 1 unit, height above the ground plamne of 0.5
units, and frequency 2 GHz. This scaling feature enhances the
value of the method greatly.

Over the course of developing the method, another method was
developed which proved inadequate. It used a perturbation series
which expanded B8 in odd powers of frequency. It initially solv;d
for a higher order solution. The static solution was identical as
used in the Perturbation-Iteration Method. The higher order
solution used the same static Green's functions as the static case
along with frequency dependent sources. The method proved to be
unsuitable as the computed values of B and Zc did not converge
to any exact values because they were dependent on the dimension a.
This dependence led to the abandonment of the metnod in favor of
tiie -Perturbation-Iteration Method.

The validity of the numerical procedure used, holds over a
broad range of frequencies but, becomes less accurate as the fre-
quency is raised to high values. As the width of the microstrip
is increased, the range of frequencies where the method is accurate
decreases. However, the range of frequencies where the method
hecomes less reliable 1s also the same range where higher order
modes propagate down the stripline. These ranges of frequencies
are not actuslly practical for use and thus are not a serious
limitation to the effectiveness of the procedure for practical

stripline structures.
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The Perturbation~Iteration Method is a very practical method
and can be applied in related areas. The theory can be modified
to accomodate different structures such as slotlines and coplanar
waveguides. The accuracy can ve enhanced by adding extra clef-
ficients to the charge and current demsity expansions which will
make the theory valid over a hroader range of fréquenciea. The
Theory could be extended to separate and then solve for each mode
of frequencies where multiple modes propagate. The method could
also be reformulated to solve for 3 and Zc in the Fourier
transform domain in a similar fashion as the fullwave analysis
referred to in Chap. 1. It is believed that the loss in accuracy
at very high frequencies is due to the use of a four term expansion
of the charge nd current distribution on the strip along with
point matching at four points along the strip. Other numerical
procedures can be used to remove this limitation. Never the less,
the simple procedure used {s adequate for striplines of the type

normally used in practice.
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