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ABSTRACT

We analyze a system of parabolic nonlinear equations that describe the
diffusion of a fully collisional plasma across a strong magnetic field. We
demonstrate that the solution to this system tends to a time asymptotic
state which is of space-time separable form, ¢(t)f(x). Furthermore, £(x)
1s 1independent of the initial conditions and ¢(t) depends slightly on the
initial conditions. The rate of decay of the temporal part 1s governed by
a nonlinear eigenvalue problem. Since the equations are considered 1in a
bounded domain we are able to analyze the effect of boundary conditions on
the evolution of the system., Additional effects as radiation, heating, and
particle 1injection can also be accounted for. Essential differences
between the behavior of a fully-coupled system and a scalar equation are

observed.
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Derivation of Equations

We consider the problem of radial diffusion and transport of a
magnetically confined fully collisional plasma., We are interested in the
long term behavior of the solution subject to boundary conditions and
various forcing functions, We verify numerically that the long time
asymptotics are actually achieved within several transit times. Thus, the
solution quickly evolves into a universal pattern independent of initial
conditions.

In order to simplify the equations, we consider the case that the ions
and electrons have the same temperature. In this case the mass and energy
diffusion teunsor terms are essentially the one-temperature Braginskii

1 present some special solutions for the

equations. Rosenbluth and Kaufman
equations 1n an 1nfinite domain., In this study we shall, in contrast, only
consider bounded domains. Indeed, the effect of boundary conditions is
very important, We 1gnore topological changes of the plasma and assume

that the plasma extends to the wall.

The resultant equations are

n, + V-(nud) = Sp (la)

7 _ 2,
P+ Velpu,) = 5 Ve(KVKT) + S.. (1b)

We consider the equations in either a Cartesian or cylindrical frame of
reference. We then 1gonore all spatial derivatives except in the x or

radial direction. The diffusion drift velocity uqy 1s given by
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where n is the total (ion plus electron) particle density number, «T is the
temperature 1n ev, nl- is the perpendicular resistivity and B 1is the
magnetic field which 1s assumed to be constant and in the z direction.

We first consider these equations in slab symmetry, We shall see
later that the changes introduced by considering cylindrical symmetry are
minor. Temporarily ignoring the source terms S;, Sg and using normalized

units, (1) can be written as

- 3\ 1
L [DJ_ > 1/3]3x (npl/3y b, - (g ) / (2a)
9 2 3 ) -
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where

2m_ \ 1/
1) 2, a=1- (2¢)

1 7 ~ 7
K1=3(K0+?)’ Ko‘(Te X,

It follows from (2c) that a and K both depend on the ratio of 1on mass to

electron mass given by K,;, We shall consider two specific cases:



Hydrogen: K0 = 60,6, K1 = 20,78, a = 0.888 (3a)
Deuterium: K.O =~ 86, K1 = 29,25, a = 0.920. (3b)

The system (2) is augmented by initial conditions
n(x,0) = n,(x), p(x,0) = p,(x). (4)

We consider (2) in the interval 0 < x < 1, At x = 0 we impose symmetry

conditions while at the edge x 1 we 1impose convective boundary

conditions, Thus, we have

X 1 at x =1, (5a)
Py + h2 p=0
px = nx = 0 at x = 0. (Sb)

The boundary conditions at the edge (5a) simulate a plasma-wall
interaction., It follows from (5) that the temperature T at the wall

satisfies Tx = (h, - hz)T. Hence, h; > hy implies heat deposition while

1
hl < hyp implies heat injection at the plasma edge.

We can also rewrite (4) as a quasilinear system of equations

0 =% [D-LA%)E ()1 (6)

where



and

1 n/3p
A= -2aK *
1 . P 2 K
3 n 31

We note that the eigenvalues of A are constant and strictly positive. From
(3) we see that K; 1s a relatively large number between 20 and 30.

Considering the case of S large, the eigenvalues of A are

2
and
a =4+0 1/K
We conjecture that the long term behavior of the system (2) - (5) is

given by a time separable form independent of the initial conditions (4).
Thus, we conjecture that

1im n(x,t) = ¢1(t)N(X)

to

(7

lim p(x,t) = ¢2(t)P(x).

tam
Numerical experiments indicate that these asymtotic states are reached
quite quickly. For single nonlinear diffusion equations, this asymptotic
behavior is well known.?2 It is also valid for a 2x2 system when the

diffusion tensor is diagonal., 1In this study we indicate that it is still

valid for a 2x2 system with a nondiagonal tensor term.



2. Lypanov Functional

In this section we construct a Lypanov functional for (2) - (5) which
is a strictly decreasing function of time. Hence, in the absence of
forcing functions n(x,t) must approach zero. In some cases we can simplify

the algebra by assuming that K1 is large; however, the results are true for

all Kl »> 0.
Let
-1/K. \o
Q=(n2p 1), o> 0; (8)
then 1 1 ?L Q
d _ a) _ 1 (n\2 2
K f QdX = 20 P} [20(1 +§) l]nx +§ (E) X
0 o ™
1 o(3+a) n
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?L an 1
" o

We choose

[1 +a + °(13(+“) > a;l > 0.

It then follows that
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We, therefore, require that

a+ 7 + (3+a)o/K
o 1
20(l+§> 6

Since by (2¢), o =1 - 7/3K1, we require that

8 - 7/3K1
o >

- % 1+3% + O(Kf). (10)
16 - 10/1(1 + 7/3 Kl 1

We next treat the boundary terms using (5). We then conclude that

1 1
g?.g QdX(‘ZU.g D|Qéz-n}2<+—12-p)2{dx
4 n 6p
- 20(1 + a)D«L(I)Q(l)h1 (11)

where

o o+ 7 + (3+<1)(7/Kl
A=201+§- 3 > 0,

(12)



and o also satisfies the inequalities (10).

Note:

(1) It is not necessary to choose the exponent of p to be -1/K; in
the definition of Q. In fact, one can choose the exponent so that the
coefficient of n, p, in (7) 1s exactly zero. For large K, this gives an
exponent of the order of -1/K; + 0(1/K%).

(2) The boundary term depends only on h1 and not on h2, 1.e,.,, the
decay of Q 1is affected by mass deposition but not by pressure boundary
conditions. If the exponent of p in Q is not exactly —1/K1, then h, does
enter into the energy inequality but with a coefficient of order 1/K1.

We further note that the right-hand side of (11) depends on spatial
derivatives of n and p. Hence, as long as n and p are not constant, the
average of Q must approach zero 1in the absence of source terms. Since o 1s
arbitrary, subject only to the inequality (10), and the exponent of p need
not be exactly —1/K1 (see Note 1), we conclude that n and p must decay to

zZero.,

3. Decay of Solution

In the previous section we were able to get a priori estimates on the
decay of the functional Q, (8), (l1). 1In order to get further information
on the decay rates, we now assume that the time-separable conjecture (6) is

true. More exactly we set



n(x,t) = ¢1(t)N(X)
p(x,t) = ¢2(t)P(X)
and substitute this hypothesis into (2). As usual we
separation constants Al, Az. We then find that
dNﬁ:—)\ 2.5 —1/2
dt 141 %2
d¢
2 _ 1.5 Y
IE - "M %
and also
d - 1/3|d 1/3 _
= [Dl P ]H; (NP ) + Al N=20
d ad -a 3
K1 Hi'[Dl N 3% (PN )] t5 i, P= 0,
with boundary conditions
dN _
3§'+ h1 N=20
at x =1,
dp _
dN _ dP _ _
= - Ix " o, at x 0,

Dl = N3/2 P—l/zo

The solution to (14) 1is

where

given by

(13)

introduce two

(14)

(15)

(16a)

(16b)



- Q _
) ¢0 > ¢0 constant (17a)
and
¢, = (£, + A mt)—l/w t. = constant (17b)
1 0 * ’ 0
where
Q= 2,/r,w=03-2)/2 Ao = A /Y0y (17¢)

It follows that the temporal behavior depends on the ratio of the two
separation constants, It 1is easily seen that if one changes scales then

the values of A, and AZ change but the ratio  is invariant, Hence, @ is

1
essentially a nonlinear eigenvalue., The value of Q 1s determined by the
global existence of a solution. In practice Q is found by numerically

integrating the system (2) and then calculating the rate of decay.

It 1s shown in reference 3 there are four critical values for

=3, 7/6, 1,0.

For @ > 3 it follows that w < 0 and the diffusion process terminates in a
finite time. For Q = 3 we have exponential decay while for 2 < 3 we have
algebraic decay. The value Q = 7/6 is a bifurcation between processes for
which heat is added to the system through the boundary. Whenever h, > hy
then heat enters the system and Q > 7/6; conversely, when hy < h; then heat
leaves the system and Q < 7/6. Furthermore, if 1 < Q@ < 7/6 then all the
state variables decay and the temperature has an inverted profile. When

0 <2 <1 then there is a thermal instability, and the temperature grows in
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time even though the pressure and density decay. Finally, when @ < 0, then

both the temperature and the pressure grow while the density decays.

4, Computational Results

In this section we present some numerical results for the system
(2). All the computations were performed using an explicit four-stage
Runge-Kutta type scheme described in reference 3, For the all the graphs
used we have defined Ky as appropriate for hydrogen (3a). Results for
deuterium (3b) have been similar. Having fixed Ko the main free parameters
are h1 and h2 that appear in the boundary conditions at the edge (5a).

In Figure 1 we present a case in cylindrical coordinates with h; = 10,
hy = 20, and so hl < hy. A sequence of five times are plotted for density,
pressure, and temperature, The plots are at time steps 1, 100, 250, 500,
900. The initial profile is linear for the density and exponential for the
pressure. Other runs indicate that the asymptotic state is independent of
the initial profile. We see that the solution changes very fast near the
plasma edge. After 1000 time steps which correspond to a time of about .05
the asymptotic state is almost reached. In these plots the quantities are
normalized to be 1 at the center, x = 0. Hence, we only see the spatial
portion of the solution and have normalized out the decaying temporal
portion of the solution, We see that the approach of the pressure to the
steady state is not monotonic.

In Figure 2 we have increased h; to 21 without changing h, so that now
hy > hy. Comparing Figures 1 and 2 we see that the pressure now approaches

its asymptotic form more slowly than in the previous case, The final
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profiles for the density and pressure look similar to Figure 1, but now the
temperature has an inverted profile. It is interesting to note that the
temperature approaches its asymptotic form more rapidly than before. We
have also run this case in Cartesian coordinates and have 1included

radiation effects and the graphs look similar to Figure 2.
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1.

DENSITY

Figure la, Normalized plots of density, pressure, and temperature with

hl = 10, hyp = 20 for hydrogen in axisymmetric cylindrical

coordinates. The plots are shown at time steps:
1 -1 4 - 500
2 - 100 5 - 900
3 - 250
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-16-

DENSITY

P NI R N NI SN A B BT A
-.0 .1 .2 .3 .4 .5 .6 .7 .8 91.0

X

Figure 2a. Normalized plots of density, pressure, and temperature with

hl = 21, hy = 20 in axisymmetric cylindrical coordinates.
Same time steps as in Figure 1.
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