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LONG TIME ASYMPTOTICS OF A SYSTEM FOR PLASMA DIFFUSION 

Phih.p Rosenau 
Techn1on, Israel Inst1tute of Technology, Ha1fa 

Eli Turkel* 
Tel AV1v University, Tel Aviv 

and 
Institute for Computer App11cations in SC1ence & Eng1neering 

ABSTRACT 

We analyze a system of parabo11c nonlinear equat10ns that descr1be the 

d1ffusion of a fully coll1s1onal plasma across a strong magnet1c f1eld. We 

demonstrate that the solut10n to th1s system tends to a time asymptotic 

state which is of space-t1me separable form, 4J( t)f(x). Furthermore, f(x) 

1S 1ndependent of the initial cond1t10ns and 4J(t) depends sl1ghtly on the 

1n1t1al cond1tions. The rate of decay of the temporal part 1S governed by 

a nonl1near eigenvalue problem. Since the equations are considered 1n a 

bounded doma1n we are able to analyze the effect of boundary cond1t10ns on 

the evolut10n of the system. Add1t1onal effects as rad1at1on, heat1ng, and 

part1cle 1nJect1on can also be accounted for. Essential d1fferences 

between the behav10r of a fully-coupled system and a scalar equation are 

observed. 

Research was partially supported by the National Aeronaut1cs and Space 
Adm1n1stration under NASA Contract No. NASl-17070 wh1le the author was 1n 
res1dence at ICASE, NASA Langley Research Center, Hampton, VA 23665. 



Derivation of Equations 

We consider the problem of radial d1ffusion and transport of a 

magnetically conhned fully collisional plasma. We are interested in the 

long term behavior of the solution subject to boundary conditions and 

various forcing functions. We verify numer1cally that the long time 

asymptot1cs are dctually ach1eved within several transit times. Thus, the 

solution quickly evolves into a universal pattern independent of initial 

cond1tions. 

In order to simplify the equat1ons, we cons1der the case that the ions 

and electrons have the same temperature. In this case the mass and energy 

d1ffusion tensor terms are essentially the one-temperature Braginski1 

equations. Rosenbluth and Kaufman l present some special solutions for the 

equat10ns 1n an 1nf1n1te doma1n. In th1s study we shall, in contrast, only 

consider bounded doma1ns. Indeed, the effect of boundary conditions is 

very 1mportant. We 19nore topolog1cal changes of the plasma and assume 

that the plasma extends to the wall. 

The resultant equat10ns are 

s 
p 

(la) 

(lb) 

We cons1der the equat 10ns in e1ther a Cartes1an or cyl1ndr1cal frame of 

reference. We then 19onore all spatial der1vatives except in the x or 

rdd1al dlrection. The dlffusion drlft veloclty ud 1S glven by 



2 
-n c 

1.. 
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where n is the total (ion plus electron) part1cle density number, KT is the 

temperature 1n ev, n is 
1.. 

the perpendicular res1stiv1ty and B is the 

magnet1c field which 1S assumed to be constant and 1n the z d1rect10n. 

We first cons1der these equations in slab symmetry. We shall see 

lat:er that the changes introduced by cons1der1ng cy11ndrical symmetry are 

minor. Temporarily ignoring the source terms Sp, SE and uS1ng norma11zed 

units, (1) can be wr1tten as 

a n = a [n -1/3] a (n 1/ 3 ) "IT ax 1.. P ax p , ( 2a) 

(2b) 

where 

7 
1 -"3K • 

1 
(2c) 

It follows from (2c) that a and Kl both depend on the rat10 of 10n mass to 

electron mass given by Ko. We shall consider two specific cases: 
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Hydrogen: KI '" 20.78, a '" 0.888 (3a) 

Deuterium: KO '" 86, Kl '" 29.25, a '" 0.920. (3b) 

The system (2) is augmented by initial conditions 

p(x,O) ( 4) 

We consider (2) in the interval 0 .. x .. 1. At x = 0 we impose symmetry 

conditions while at the edge x = 1 we impose convective boundary 

condit10ns. Thus, we have 

n + hI n = 

: 1 
x at 1, x = 

Px + h2 P = 
(Sa) 

Px n 0 at x O. 
x 

(Sb) 

The boundary conditions at the edge (Sa) s1mulate a plasma-wall 

interaction. 

satisfies T 
x 

It follows from (5) that the temperature T at the wall 

Hence, hI > h2 implies heat deposit ion wh1le 

hI < h2 implies heat injection at the plasma edge. 

We can also rewrite (4) as a quasi linear system of equations 

it (~) _ a 
[D1 Ak (n) 1 (6) -ax p 

where 
3 1;2 

D (~) 
.l.. p 
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and 

A 
p -n 

We note that the eigenvalues of A are constant and strictly pos1tive. From 

(3) we see that Kl 1S a relatively large number between 20 and 30. 

Consider1ng the case of Kl large, the eigenvalues of A are 

and 

We conjecture that the long term behavior of the system (2) - (5) is 

given by a time separable form independent of the initial conditions (4). 

Thus, we conjecture that 

lim n(x,t) 
t+"" 

lim p(x,t) 
t+"" 

~l(t)N(x) 

(7) 

Numerical experiments indicate that these asymtot1c states are reached 

qui te qU1ckly. For single nonlinear d1ffusion equat10ns, this asymptot1c 

behavior is well known. 2 It is also va11d for a 2x2 system when the 

diffusion tensor is diagonal. In this study we ind1cate that it is still 

valid for a 2x2 system w1th a nondiagonal tensor term. 
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2. Lypanov Functional 

In this section we construct a Lypanov functional for (2) - (5) which 

is a strictly decreasing function of time. Hence, in the absence of 

forcing functions n(x,t) must approach zero. In some cases we can simplify 

the algebra by assuming that Kl is large; however, the results are true for 

all Kl .. O. 

Let 

then 
1 

d f Qdx = dt 
o 

( 
2 -1IKl)0 

Q = n p , 

By the Cauchy-Schwarz inequality we have that 

(%) 

We choose 

It then follows that 

o > 0; (8) 
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2 
a + 7 + (3+a)0/K1] 2 Px l 

6 nx + 6p2 dx 

We, therefore, require that 

a + 7 + (3+a)0/K
1 

20 (1 + ~) > 6 

Since by (2c), a 1 - 7/3K
1

, we require that 

8 - 7/3K
1 

o > K2 = t 1 + 3~ + O(Ki)· 
16 - 10/K1 + 7/3 1 1 

We next treat the boundary terms uS1ng (5). We then conclude that 

d 1 1 
crt 1 Q dx ( - 20 I Dl Q ~ n; + ~ p2 dx 

o n 6p x 

where 

o > 0, 

a + 7 + (3+a)0/K1 
A = 20 1 + J - 6 > 0, 

(9) 

(10) 

(11) 

(12) 
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and cr also satisfies the inequalities (10). 

Note: 

(1) It is not necessary to choose the exponent of p to be -I/Kl in 

the definit10n of Q. In fact, one can choose the exponent so that the 

coefhcient of ~ Px in (7) 1S exactly zero. For large Kl this gives an 

exponent of the order of -I/Kl + O(I/KI). 

(2) The boundary term depends only on hI and not on h2 , 1.e., the 

decay of Q is affected by mass deposition but not by pressure boundary 

cond1tions. If the exponent of p in Q is not exactly -I/Kl , then h2 does 

enter into the energy inequality but with a coefficient of order l/Kl • 

We further note that the right-hand side of (11) depends on spatial 

derivatives of nand p. Hence, as long as nand p are not constant, the 

average of Q must approach zero 1n the absence of source terms. S1nce cr 1S 

arbitrary, subject only to the inequality (10), and the exponent of p need 

not be exactly -I/Kl (see Note 1), we conclude that nand p must decay to 

zero. 

3. Decay of Solution 

In the prev10us section we were able to get a pr10ri estimates on the 

decay of the functional Q, (8), (11). In order to get further information 

on the decay rates, we now assume that the time-separable conjecture (6) is 

true. More exactly we set 
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n(x,t) 4>l(t)N(X) 

( 13) 

p(x,t) 

and substitute this hypothesis into (2). As usual we 1.ntroduce two 

separation constants AI' A2• We then find that 

d4>l 
- A 4>2.5 -1;2 

Cit = 1 1 4>2 

(14) 

d4>2 
- A 4>~.5 1/2 

--= 4>2 dt 2 

and also 

(15) 

with boundary conditions 

dN + 
hI N 

:l dx 

dP + 
h2 P dx 

at x = 1, (16a) 

dN dP 0, dx = dx = at x 0, (16b) 

where Dl = N3/ 2 p-1/ 2• 

The solution to (14) 1.S given by 
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~o constant (17a) 

and 

-l/w 
(to + A* wt) , constant (l7b) 

where 

(3 - n)/2, (l7c) 

It follows that the temporal behavior depends on the ratio of the two 

separation constants. It is easily seen that if one changes scales then 

the values of Al and A2 change but the ratio n is invariant. Hence, n is 

essent1ally a nonl1near eigenvalue. The value of n 1S determined by the 

global existence of a solution. In practice n is found by numerically 

integrating the system (2) and then calculating the rate of decay. 

It 1S shown in reference 3 there are four critical values for 

n 3, 7/6, 1,0. 

For n > 3 it follows that w < ° and the diffusion process terminates in a 

finite t1me. For n = 3 we have exponential decay while for n < 3 we have 

algebraic decay. The value n = 7/6 is a b1furcation between processes for 

wh1ch heat is added to the system through the boundary. Whenever h2 > hI 

then heat enters the system and n > 7/6; conversely, when h2 < hI then heat 

leaves the system and n < 7/6. Furthermore, if 1 < n < 7/6 then all the 

state variables decay and the temperature has an inverted profile. When 

° < n < 1 then there is a thermal instability, and the temperature grows in 
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time even though the pressure and density decay. Finally, when n < 0, then 

both the temperature and the pressure grow while the density decays. 

4. eo.putational Results 

In this section we present some numerical results for the system 

(Z). All the computations were performed using an explicit four-stage 

Runge-Kutta type scheme described in reference 3. For the all the graphs 

used we have defined Ko as appropriate for hydrogen (3a). Results for 

deuterium (3b) have been similar. Hav1ng fixed Ko the main free parameters 

are hI and hZ that appear in the boundary conditions at the edge (Sa). 

In Figure 1 we present a Cdse in cylindr1cal coord1nates with hI = 10, 

hZ = ZO, and so hI < hZ• A sequence of five times are plotted for density, 

pressure, and temperature. The plots are at time steps 1, 100, Z50, 500, 

900. The initial profile is linear for the density and exponential for the 

pressure. Other runs indicate that the asymptotic state is independent of 

the initial profile. We see that the solution changes very fast near the 

plasma edge. After 1000 time steps which correspond to a time of about .05 

the asymptotic state is almost reached. In these plots the quantities are 

normalized to be 1 at the center, x = O. Hence, we only see the spatial 

portion of the solution and have normalized out the decaying temporal 

portion of the solution. We see that the approach of the pressure to the 

steady state is not monoton1C. 

In Figure Z we have increased hI to Zl without changing hZ so that now 

hI > h2• Comparing Figures 1 and Z we see that the pressure now approaches 

its asymptot1c form more slowly than in the prev10us case. The final 
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profiles for the density and pressure look similar to Figure 1, but now the 

temperature has an inverted profile. It is interesting to note that the 

temperature approaches its asymptotic form more rapidly than before. We 

have also run this case in Cartes1an coordinates and have included 

radiation effects and the graphs look similar to Figure 2. 
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hI = 21, h2 = 20 in axisymmetric cylindrical coordinates. 

Same time steps as in Figure 1. 
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