
NASA Contractor Report 177930

AUTOSIM

NASA-CR-I77930
19850027330

AN AUTOMATED REPETITIVE RUN SOFTWARE TESTING TOOL

Janet R. Dunham
Sam E. McBride

. Software Research and Development
Center for Digital Systems Research
Research Triangle Institute
Research Triangle Park, North Carolina 27709

Contract NAS1-16489
Task Assignment No. 24
September 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF00693

• '.,;11

. . .' ~ .' .' : \3 , .
j

I: ' ... I,', '~";:':'t .,~: ,'.:~/~

NASA Contractor Report 177930

AUTOSIM
AN AUTOMATED REPETITIVE RUN

SOFTWARE TESTING TOOL

Janet R. Dunham
Sam E. McBride

Software Research and Development
Center for Digital Systems Research

Research Triangle Institute
Research Triangle Park, North Carolina 27709

Contract NAS1-16489
Task Assignment No. 24

September 1985

TABLE OF CONfENTS

Page No.

I.lst of l<i~es .. 1ll

I.lst of Tables .. .iv
Acknowledgement .. v

1.0 ~OI>l1c:1rION ... 1
1.1 Background ... 1
1.2 Repetitive Run Testing ... 1
1.3 N-Version Error I>etection .. 2
1.4 The Need for AUfOSThi .. 2
1.5 I>efmition of Terms Related to AUTOSThi 2

2.0 OVERVIEW OF 1HE AUTOSThi TOOL .. .4
2.1 ~i~ <l1Jals ••••••••••••••••••••••••••••.•• 4
2.2 The AUTOSThi Algorithm .. 4
2.3 The AUfOS11v.[I>esi~ ... 6

3.0 IMPLEMENTATION OF 1HE AUTOSThi TOOL 7
3.1 <:()ntrol ~~ ... 7
3.2 ~criptiOIlS of AUfOSThi Functions ... 9
3.3 ~criptions of AUfOSThi Files .. 11
3.4 ~criptiOIlS of AUfOSThi Command Procedures 12

4.0 AUTOSThi IMPLEMENTATION I>EPENI>ENCIES 13
4.1 Management of the <:()de l1nder Test ... 13
4.2 <:()de l1nder Test FIX-Error Maps .. 13
4.3 N-VERSION CONTROLLER I>ependenices 17
4.4 VMS I>ependencies .. 18

5.0 AUfOSThi VALIDATION AND PERFORMANCE 19
5 .1 Validation Test Results ... 19
5.2 Performance Measures .. 19

6.0 USIN'G AUTOSW ... 20
6.1 Executing AUTOSThr e •••••••••••••••••••••• 2O
6.2 Libraries Needed ... 20
6.3 AUTOSW Error Files .. 2O

'7.0 ~~~N~ ... 21

APPENDIX A. AUTOSIM Schematic Logic Diagrams 22
APPENDIX B. AUTOSW File Descriptions .. 54
APPENDIX C. Listing of AUTOSW Command Procedures 81
APPENDIX D. Log of AUTOSIM Validation Tests 86

u

usrOFFIGURES
Page No.

Figure 1. Pseudo-code Description of AUfOSIM Algorithm 5
Figure 2. Structural View of the AUfOSIM Tool.. 6
Figure 3. AUfOSIM Global Control Flow ... 8

ill

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

usr OF TABLES

Page No.

CMS Code.Library for Oass An .. 14
CMS Code Library for Oass A 1'2•.........................•.......... 15
CMS Code Library for Oass An .. 16
ATl frlX-~rror Mal' .. 1'7
A1'2 frlX-~rror Mal' .. 1'7
An frlX-Wor Mal' .. ~.18

Iv

. - ,

ACKNOWLEDGEMENT

The authors acknowledge the technical direction of John Pierce during the design
and development of the AUfOSIM software. We also acknowledge the attention given
to this project by G. Earle Migneault of NASA-Langley Research Center and in particu
lar his recognition of our need to develop this software. Sam E. McBride coded and
tested the AUfOSIM software .

v

-,

1. INTRODUCTION

1.1. Background

Digital computers are having an increasingly important role in process control appli
cations, particularly those in which human life may be endangered such as space vehicle
and avionic systems, C3 I systems, and medical life-support systems. These systems
have stringent reliability requirements as system failure is potentially life-threatening.
An example is the working figure of 10-9 for a ten hour flight being used as a require
ment for system failure probability by NASA-Langley Research Center (NASA-LaRC).l

The need for predicting the reliability of the software components of these life
critical systems has become more apparent with the increasing functionality being
ascribed to them. The absence of a credible reliability prediction methodology for highly
reliable software makes the system reliability analyses chimerical at best. The develop
ment of this methodology is hindered by our lack of knowledge about the underlying
nature of the failure process for embedded real-time control software. This lack of
knowledge contributes to our inability to completely eradicate or tolerate faults and to
our lack of confidence in the extent to which we have approximated the goal of zero
defects. As evidenced by the first well-publicized Space Shuttle software bug, the failure
of the initialization logic in J. Garman's words resulted from a "very small, very improb
able, very intricate, and a very old mistake ... 2 .

This bug typifies the rare and convoluted combination of events which cause care
fully developed software to fail. It is this type of residual fault which surfaces infre
quently causing a rare event or small probability failure. To detect these faults requires
an order of magnitude longer time under test than the target mean time to failure. 3

To contribute to the development of a sound statistical methodology for estimating
software reliability, radar tracking software was tested using the repetitive run approach
for fault rate estimation and n-version programming for error detection.4 Four imple
mentations of a Launch Interceptor Condition (UC) module for a radar tracking appli
cation have been subjected to a long time under test with over 15,000,000 test cases
being executed. To expedite the collection of repetitive run failure data, the AUTOSIM
tool was developed.

1.2. Repetitive Run Testing

Repetitive run testing was first advocated by Nagel and Skrivan of Boeing Com
puter Services.5 The repetitive run test approach provides information about the proba
bilistic impact of detected software faults on subsequent fault detection. It involves
repetitively executing a software program using different sets of test cases from its initial
state or design stage (usually the code version at the end of acceptance testing) through
to the detection and correction of m faults. A code version is an instantiation of an
implementation of the code under test. During the repetitive runs, the sequence of pro
gram fixes result in several instantiations or versions of the code.

Repetitive run testing provides "better" estimates of the individual fault rates. On
subsequent runs or replications, the testing begins again with the initial version of the

1

~ ,

-,

code under test, and the faults are corrected again.. Replications continue until enough
observations have been collected to achieve the desired level of statistical accuracy for
estimating the program failure rates. Since the input stream of test data differs for each
replication, the order in which faults are diagnosed and the correction applied also
differs for each replication.

1.3. N-Version Error Detection

To detect output errors from the radar tracking software, the technique of n-version
programming was employed. N-version programming, fIrst widely publicized by
Avizienis6 and further discussed by Anderson and Lee,7 involves n programmers
independently coding the problem from the same specification. A software tool, the N
VERSION CONTROLLER, 8,9 which controls the execution of each of the n indepen
dently coded implementations of the code under test and signals discrepancies between
the n output vectors, was constructed for this purpose. The codes under test are the
software modules being tested for their reliability. We refer to each code under test as
an Application Taskj (ATJ where i=l, ... ,n. Using n-version programming for error
detection avoids reliance on a standard to determine output correctness.

1.4. The Need for AUTOSIM

The need for a system to automate the repetitive run test process became apparent
during the testing of the radar tracking software once we observed that diagnosing the
fault and correcting the code under test was a time consuming, error prone process. Per
forming the diagnosis-correction task requires an individual with at least one year of
programming experience. However, after repeating the task for several replications, it
becomes very mundane and the programmer begins to perform this task by rote making
it a tedious, error prone process. Moreover, the timely completion of the diagnosis
correction task is contingent upon the availability of the programmer. Since the programs
fail at random points in time, the speed with which the data is collected is inhibited by
the programmer's availability. For these reasons, we decided to develop the AUTOSIM
system which performs repetitive run testing with a minimum of human intervention.

1.5. Deimition of Terms Related to AUTOS 1M

Understanding nomenclature throughout the AUTOSIM report is essential to under
standing the purpose and functionality of the AUTOSIM tool. We use the following
terms throughout the report. The defInitions of failure, error, and fault are consistent
with those defIned in "Fault Tolerance by Design Diversity: Concepts and Experi
ments."lO

CODES UNDER TEST - The software modules being tested for their reliability which
are referred to as ATj for Application Taskj .

CONDmONS MET MATRIX (CMM) - The principal output from the Launch Inter
ceptor Condition (LIC) Application Tasks.

2

~I

-,

-,

CMS - VAX Iln80 Code Management System

DESIGN STAGE - Versions of the code under test during repetitive run testing

ERROR - The discrepancies noted (Le., the incorrect element(s) of the output vari
ables)

FAll..URE - 1HE N-VERSION CON1ROLLER signals a discrepancy in the output
variables of the launch interceptor condition software. For this problem, an application
task fails when it incorrectly disagrees with any of the other application tasks or the
extensively tested version.

FIXlFAULT - A FIX is the minimum code change required to correct a single error.
The FAULT is the conceptual flaw in the software which is corrected by a fIx and is the
cause of the error. For simplicity, we consider the fault to be defmed by the fIx and use
the term fault in lieu of the term fIx throughout the report although we recognize the
real fault is not uniquely defmed.

IMPLEMENTATION - An independently coded version of the same functional specifI
cation (Le., one of the n-versions of the code under test)

LAUNCH - Critical output variable from the DC code under test.

LAUNCH INTERCEPTOR CONDmON (DC) Problem - A radar tracking applica
tion which is the fIrst AUTOSIM test specimen.

N-VERSION CONTROLLER - Testbed used for testing n versions of an AT in paral
lel.

N-VERSION CON1ROLLER INTERFACE - Tool used for monitoring the execution
of the N-VERSION CONTROLLER and viewing stored test results.

REPLICATIONIREPETITIVE RUN - Repeats of the repetitive run test beginning
with the initial version of the code under test and using a different set of test cases. A
REPLICATION is sometimes referred to as a REPE1TI1VE RUN.

VERSION - An instantiation of an implementation of the code under test. During the
software fault diagnosis-correction process, the program fIxes result in several instantia
tions or versions of the code.

3

-,

- .~

2.0. OVERVIEW OF THE AUTOSIM TOOL

2.1. Design Goals

The automation of the error diagnosis-correction tasks requires a knowledge base
that contains information about the documented software faults and the associated code
fIxes, as well as knowledge about the fault diagnosis process. These requirements
categorize the AUTOSIM system as an "expert" system which replaces a low level of
programming expertise.

In designing the AUTOSIM system, we pursued the following goals:

• separate concerns by maintaining a clean interface with the N-VERSION CON
TROLLER and isolating the information specific to the code under test

• make the system general by storing the information specific to the code under test
and the error detection state information in generalized data structures

• minimize the complexity of the fault diagnostic task by defIning error classes,
which are handled separately, and developing an effIcient algorithm to minimize
the fault diagnostic time.

Accomplishment of the first goal is important if AUTOSIM is to be used with test tools
other than the N-VERSION CONTROLLER and with different application code under
test. The second goal minimizes the amount of overhead required when modifying the
system to test code from other applications and other error detection tools. The
existence of non-unique l-to-n mappings of faults to errors necessitates achievement of
the third goal.

2.2. The AUTOSIM Algorithm

AUTOSIM performs two principal functions: fault diagnosis and fault correction.
Fault diagnosis entails identifying which ftxes to apply to the failed code based on the
information contained in the N-VERSION CONTROLLER state vector. Critical to this
identification is the implementation of an effIcient algorithm for rapid identifIcation and
testing of the candidate fIxes. Fault correction entails installing the appropriate fIx and
resuming the n-version testing. The logic for fault correction is similar to the logic for
the testing of candidate fIxes. Figure 1 provides a pseudo-code description of the
AUTOSIM algorithm.

4

ON STOP OF TEST
FErCH TEST STATE
DETERMINE FAILED CODE(S)
FOR EACH FAILED CODE

TEST CODE VERSION WITH ALL KNOWN FAULTS CORRECTED
ON F All...URE SIGNAL USER

DETERMINE ERROR(S)

FOR EACH ERROR
DETERMINE ERROR CLASS

IF CLASS = ADDRESS
DETERMINE CANDIDATE ADDRESS FIXES
FOR EACH ADDRESS FIX

INSTALL AND TEST ADDRESS FIX
ON SUCCESS GET NEXT ERROR

CALL USER

IF CLASS=ABEND
DETERMINE CANDIDATE ABEND FIXES
FOR EACH ABEND FIX

INSTALL AND TEST ABEND FIX
ON SUCCESS GET NEXT ERROR

CALL USER

IF CLASS=ERROR
DETERMINE CANDIDATE ERROR FIXES
FOR EACH ERROR FIX

INSTALL AND TEST ERROR FIX
. ON SUCCESS GET NEXT ERROR
CALL USER

RESUME TEST

Figure 1.
Pseudo-Code Description of

Fault Diagnosis-Correction Algorithm

5

-, 2.3. The AUTOS 1M Design

Figure 2 provides a structural view of the AUTOSIM tool. The diagram shows the
quasi-static data structures, which remain relatively constant during testing, and the
dynamic data structures, which are updated by either the AUTOSIM software or the N
VERSION CONTROLLER software.

The contents of the quasi-static data structures depend on the code under test. The
overwrite, abend, and output error maps contain information on which code fIXes are
associated with different types of faults. These structures are quasi-static because they
are updated only when a new fault is identified. This identification results from the
human intervention required when AUTOSIM fails to diagnose the fault (Le., there are
no valid entries in the error maps described in Section 4.2 of this report).

r----l Quasi·static
L-J Data Structure
~ - - - , Dyna:nic
L ___ .J Data Structun:

r-----------,
: Replication :

Trace ;---+1
'- ___________ .J

Output
F1XlError Map

Abend
FIXIError Map

Overwrite
F1XlError Map

Figure 2.
A Structural View of the AUTOS 1M Tool

r-----------.,
: System :

State :
~ __ .. ________ .J

6

-,

~,

3. IMPLEMENTATION OF THE AUTOSIM TOOL

3.1. Control Flow

Figure 3 provides a high level description of the AUTOSIM control flow and the
associated data flIes. The three major functional modules which comprise AUTOSIM
are FIXID, MEAS_IMP, and RESTORE. The VMS command procedures invoked by
AUTOSIM (also depicted in Figure 3) are SIMBATCH.COM, FlXAPP.COM, and
vrnSf.COM. There are 7 major types of flIes used by AUTOSIM. These fIles are
ATGEN.DAT, EXECUTION.DAT, iABEND.DAT, iCLOBBER.DAT, iCMM.DAT,
iLAUNCH.DAT, and ERRORS.DAT.

The following sections describe the AUTOSIM functions, flIes, and command pro
cedures.

7

"

--I

-,

INPUT
FILES

An
~""rcc code

STATUS.DAT

SIM.DAT

EXECUTION.DAT

ATGEN.DAT

iCLASS.DAT

PROBli.FOR

EXECUTION.DAT

FUNCTION
OUTPUT

FILES

SIM.DAT

goto 1 with

end replication
(y) ATGEN.DAT

- iCLASS.DAT

(n)
I

EXECUTION.DAT

all ok
gote 1

with
PROBlA
PROBlB
PROBle

some improvement
gote3

with
SfATUS.DAT

nil
improvement

SfATUS.DAT

iCLASS.DAT

ATGEN.DAT

invokes CMS commands

PROBli.FOR

compiles,links,executes
Version Tester

EXECUTION.DAT

EXECUTION.DAT ==j-~r----'!'----'----- iCLASS.DAT
CMM..FILE(i) 7

restore
ATGEN.DAT-~.I-------....L----- ATGEN.DAT

goto 4

Figure 3.
AUTOSIM Global Control Flow

8

3.2. Descriptions of AUTOSIM Functions

The following alphabetical list provides brief descriptions of all AUTOSIM func
tions. Schematic logic diagrams which describe the interfaces between these functions
are provided in Appendix A.

ABEND_ERROR - FInds the CMS generation for ATj abend error.

APPEND - Adds flxes into the flx-list for ATj.

AUTOSIM - Keeps the simulator running by identifying errors and installing flxes in
the individual applications tasks.

B_SEARCH - Fmds the flxes associated with the last element generations that were
superseded into ATj's CMS class.

CLOBBER...ERROR - Fmds the CMS element generation to flx ATj overwrite.

CLOSEYILES - Closes AUTOSIM data fIles before spawning a subprocess.

CMMJ!RROR - Fmds the CMS element generation with a flx for a particular ATj
output error.

ECHOJ!RROR - Writes AUTOSIM error diagnostics to fIle AUTOERR.DAT.

FIXID - Identifies where an application task failure occurred and determines which ele
ment generation to supersede in the CMS class.

GET_S~ATA - Gets a snapshot of global memory and prepares for new design
stage or new replication.

IDYIXES - Identifies the flxes associated with any CMS element generation.

LAUNCILERROR- Fmds the CMS element generation for ATj launch error.

MAKE_ICLASS - Builds the file which communicates with the DCL command pro
cedure FIXAPP.COM. The file iCLASS.DAT tells FIXAPP.COM what elements are to
be superseded by new generations into the appropriate CMS class.

MEASURE_IMP - Measures the effect that the last fIx had on a particular ATj's
CMM.

9

OPENYllES - Opens the global input & output fIles.

PREP_GLO - Prepares global memory for either a new design stage or a new replica
tion and builds the command procedure FORLINREP.COM that will compile the modi
fied application tasks. Places the object module in the library SIMDISK:PROBILIB.OLB
and links a new executable image of the N-VERSION CONTROLLER.

READ-ATGEN - Reads ATj records from ATGEN.DAT.

READ_CMMFll..E - Reads the available fIXes contained in CMS element generations
from the iCMM.DAT fIle for the ATj under consideration.

READ~XECUTION - Reads the fIle ASIMJ)ATA: which serves as the communica
tion link between AUTOSIM and the spawned subprocess executing VIESf.COM.

READ_SIM.DATA - Reads last record written to SIM.DAT.

READ_TRACEBACK - Reads the ATj traceback from ERRORS.DAT after an abend
has occurred.

RESTORE - lbis module is executed in the event that a lame element generation was
superseded into the ATj's CMS library, Le., the element generation that was last
inserted did not contain the necessary fIX. Restores the last element generation that was
superseded into the ATj's class to its previous generation and fmd the next element gen
eration to install.

SET...MASK - Sets the fIX mask which is displayed by the INTERFACE to the N
VERSION CONTROLLER and allows the operator to know what fIXes are currently
installed.

SPY_GLOBAL - Accesses global memory and returns latest sequence number.

vrnSf - Tests an individual AT with the contents of the N-VERSION CON
TROLLER INPUT.DAT file and compares the CMM: and LAUNCH output to that
computed by the golden AT.

VOID_FDLLISf - Initializes the fIX list to zero.

WRITE_ATGEN Updates application task records in the fIle
ASIM_DATA:ATGEN.DAT. ATGEN.DAT is a direct access fIle containing

10

-,

information about the CMS class for each application task.

WRITE_EXECUTION - Writes to the me ASIM_DATA:EXECUTION.DAT.

ZERO_SUPER-EIE - Initializes the supersede section (the second group of N~TS
records) in the me ATGEN.DAT. This is to ensure that only the next
element/generation elected to flx an error will be superseded into the appropriate ATj
class in the CMS library.

3.3. Descriptions of AUTOS 1M Files

The following alphabetical list provides descriptions of the AUTOSIM data meso
More complete descriptions can be found in Appendix B.

ATGEN.DAT - Contains the trace of CMS element generations that were installed,
indicates those that are presently installed, and those which can be superseded.
ATGEN.DAT is accessed by the functions READ~TGEN and WRITE~TGEN.

EXECUTION.DAT - Contains information pertaining to results of executing the code
in error with the diagnosed fIx. EXECUTION .DAT is accessed by the functions
READ_EXECUTION and WRITE~XECUTION.

iABEND.DAT - Contains a history of the abend failures which have been documented
for each ATj during the execution of the Launch Interceptor Code. The function
ABEND~RROR accesses iABEND.DAT.

iCLOBBER.DAT - Contains a history of the overwrite failures which have been docu
mented for each ATj during the initial execution of the Launch Interceptor Code. The
function CLOBBER-ERROR accesses iCLOBBER.DAT.

iCMM.DAT - Contain the fault-error maps for the documented faults. The function
CMM_ERROR accesses iCLOBBER.DAT.

iLAUNCH.DAT - are used when an ATj fails and the failure does not show up as an
abend, overwrite or as disagreement in the Conditions met matrix. The function
LAUNCfLERROR accesses iLAUNCH.DAT.

ERRORS.DAT - Contains all system trackbacks when a routine in the N-VERSION
CONTROLLER ends abnormally. The function READ_TRACEBACK accesses
ERRORS.DAT.

11

-,

-,

-,

-,

3.4. AUTOS 1M Command Procedures

The following alphabetical list provides brief descriptions of the AUTOSIM: com
mand procedures. Ustings of the command procedures can be found in Appendix C.

AUTOSIM:.COM - Submitted as a batch job to start the execution of AUTOSIM:.

FIXAPP.COM - Creates working versions of each of the AT's.

FORLINREP.COM - A dynamically created command procedure which compiles the
application tasks, places them in PROBILlB.OLB (the problem 1 object library) and
links the N-VERSION CONTROLLER.

SIMBATCH.COM - Submitted as a batch job to start the execution of the N
VERSION CONTROLLER.

VIEST.COM - Tests fIxed version of AT with error-invoking input case.

12

-,

4. AUTOSIM DEPENDENCIES

4.1. Management of the Code under Test

The VAXllnSO Code Management System (eMS) is used to manage the library
containing the code under test. ll CMS is a program library system "for software develop
ment and maintenance which operates as an online librarian by keeping track of the
source code fIles. Each CMS library contains elements, generations, and classes.

A CMS element is the basic structural unit in a code library. An element consists of
one or more ASCn fIles that represent a meaningful unit. An element is created and
named when a fIle (or fIles) is transferred from a working directory to the CMS library
via the eMS CRE;A1E ELEMENT command. The AUTOSIM elements are functionally
defmed modules of the each implementation of the code under test.

A CMS element generation represents a phase in the development of that element.
When an element is created and placed in the CMS library for the fIrst time, CMS
creates generation one of that element. Each time the element is reserved, modified, and
replaced in the CMS library, a new generation is created. The AUTOSIM generations
are the functionally defmed modules with different fIxes applied.

A eMS class is a set of generations of different elements. A class is established to
defme a set of generations that make up the whole of part of a software system at a
specific stage of development. The AUTOSIM classes pertain to the different codes
under test, Le., to the different ATj •

Tables 1, 2, and 3 depict the organization of the code library for the testing of the
Launch Interceptor Condition Software. The module names are the actual names of the
different software modules given by the programmers. A number identifies each fault in
an ATj •

In developing the AUTOSIM code library, we partitioned each AT into modules
which correspond to conditions of the UC problem and into modules which contain sub
routines common to the test condition modules. Modules with no fIxes were coupled
with modules that had corresponding fIxes (Le., placed in the same CMS element) to
save storage space. Subsequent generations of each element are the versions of the code
under test with different fixes applied. CMS stores the subsequent generations of a
CMS element by retaining the code differences from the fIrst generation element. The
update of the version of the code under test to correct a fault does not necessarily result
in the installation of the next generation of an element. For example, installation of the
fix associated with Fault S may be required for element A09 of ATl prior to installation
of the fIx associated with Fault 7.

4.2. Code Under Test Fix-Error Maps

FIx-error maps defme the relationship between code under test output errors (in this
case errors in the CMM and in LAUNCH) and fixes which correct those errors. Tables
4, 5 and 6 depict the fIx-error maps for the three implementations of the UC problem

13

TABLE 1. CLASS DESCRIPTIONS OF ATi

CLASS ELEMENT GENERATION DESCRIPTION
Module Name Faults Corrected

AT! A01 1 main
2 main 12

A02 1 cond1
2 cond1 9

A03 1 cond2
cond3

2 cond2
cond3 10

A04 1 cond4
cond5

2 cond4
cond5 2

3 cond4
--, cond5 4

4 cond4
cond5 2,4

A05 1 cond6
cond7

2 cond6
cond7 3

A06 1 condS
2 condS 6

A07 1 cond9
cond10

2 cond9
cond10 11

A08 1 cond11
- cond12

cond13
cond14
cond15
main

A09 1 anglea
2 anglea 1
3 anglea 1,7
4 anglea 1,8
5 an~ea 1,7,8

A010 1 dista
rad

2 dista
rad 5

14

-,

TABLE 2. Cl.ASS DESCRIPTIONS OF ATi

CLASS ELEMENT GENERATION DESCRIPTION
Module Name Faults Corrected

An 1301 1 prob1b
2 problb 1

-,

-,

-,

-,

-,

15

TABLE 3. CUSS DESCRIPTIO:SS OF ATj

G.ASS E.I..E.MENI GENERATION DESCRIPTION
Module Name Faults Corrected

AD an 1 main
cond1
cond2

2 main
condl
cond2 3

012 1 cond3
2 cond3 4

013 1 cond4
2 cond4 5

014 1 condS
2 condS 6

015 1 cond6
cond7

2 cond6
cond7 1

3 cond6
cond7 1,7

4 cond6
cond7 1,16

5 cond6
cond7 1,7,16

016 1 condB
2 condB 8

017 1 cond9
2 cond9 9

018 1 condlO
2 condlO 10

019 1 condll
2 cond11 11

0110 1 cond12
2 cond12 12

Olll 1 cond13
2 cond13 2
3 cond13 13
4 cond13 2,13

0112 1 cond14
2 cond14 14

0113 1 cond15
2 cond15 15

0114 1 radcir
2 radcir 18

0115 1 perdis
2 perdis 20

0116 1 aglcos
2 aglcos 17
3 al<lcos 17,19

0)17 1 abcisa
ordnat

dist
errstp
vfind
aretri
quad

I,
verin
verout

16

respectively. The rows in these tables identify the fault/fix number; the columns in these
tables identify bit errors in the CMM, LAUNCH, abend errors and overwrite errors.

4.3. N-VERSION CONTROLLER Dependencies

The functions PREP_GLO and GET_SIMJ)ATA comprise the two points of com
munication of AUTOSIM with the N-VERSION CONTROLLER.

PREP _GLO prepares global memory for either a new design stage or a new replication,
and builds the command procedure FORLINREP.COM that will compile the modified
application tasks. It then places the object module in the library
SIMDISK:PROBILIB.OLB and links a new executable image of the N-VERSION

TABLE 4. FIX-ERROR MAP FOR An

FIX CMM OUTPUr (i) ABENDS OVERWRITES

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RAD ANGLEA COMM:ON2

1 x
2 X
3 X
4 X
5 X
6 X ..
7 X X X X
8 X
9 X

10 X
11 X
12 X

X indicates an error in output CMM (i), an ABEND error, or an OVERWRITE error.

• indicates that FIX 6 is applied when simultaneous errors in CMM 8 and 13 occur.

TABLE 5. FIX·ERROR MAP FOR ATl

FIX CMM OUTPUf Ii)

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 LAUNCH
1 X

X indicates an error in output CMM (i), an ABEND error, or an OVERWRITE error.

17

TABLE 6. FIX-ERROR MAP FOR AD

FIX CMM en . ABENDS

1 2 3 4 .5 n 7 8 9 10 11 12 13 14 1.5 radcir alVcos perdis
1 X
2 X
3
4
.5 X
n X
7 X
8 X
9 X

10 X
11 X
12 X
13 X
14 X
1.5 X
16 X
17 X
18 X
19 X X
20 X

X indicates an error in output CM:M (i), an ABEND error, or an OVERWRITE error.

FIX 3 and FIX 4 constitute changes to perceived faults which were non-existent.

CONTROLLER.

GET_SIM_DATA, upon normal halting of the N-VERSION CONTROLLER, reads the
record corresponding to the last sequence number from the SIM.DAT me. H the halt
occurs during a replication, the module FIXID is invoked. H the halt occurs at the end
of a replication, the command procedure FIXAPP.COM is spawned.

4.4. VMS Dependencies

The VMS command procedures vrnSf.COM, SIMBATCH.COM,
AUTOSIM.COM, and FORLINREP.COM are critical to the execution of AUTOSIM as
described in Section 3.4. These procedures may change as a result of upgrading of the
VMS DEC Command Language. 12

18

--,

s. AUTOSl1\1 VALIDATION AND PERFORMANCE

5.1. Validation Test Results

Upon completion of unit testing of the AUTOSIM modules and white box functional
testing of AUTOSIM, we tested AUTOSIM by repeating eight of the repetitive runs or
replications executed during a previous conduct of the experiment.4 The test replications
selected were replications for which interacting faults were and were not observed. The
testing surfaced the following problems:

• AUTOSIM execution of replication 1 identified a fIX that should not have been
applied.

• AUTOSIM execution of Replication 2 surfaced an error in the subroutine
GENER of the N-VERSION CONTROLLER where an input (x,y) pair was not
re-initialized.

• AUTOSIM execution of Replication 16 indicated that in the original replication a
program version being tested had a fIX to a previously corrected error inadver
tently removed.

Logs describing the validation testing are provided in Appendix D.

5.2. Performance Measures

Performance of AUTOSIM was of interest for two reasons. Frrst, we were
interested in the reduction in human effort actually achieved from using the AUTOSIM
tool. Replications of length 10,000 input cases executed without the use of AUTOSIM
averaged two days to complete. These replications required the availability of a pro
grammer who spent approximately four hours per day monitoring the system and instal
ling the appropriate fIXes. The AUTOSIM replications of the same length averaged six
calendar hours to complete and require a maximum of one-half hour of monitoring time
per day.

Second, we are interested in the efficiency of the AUTOSIM algorithm in diagnos
ing the appropriate fault. We are currently measuring the efficiency by number of
VTEST invocations per fIX required. The LOG.DAT and the CHART.DAT fIles con
tain the data required to compute this statistic.

19

~,

6. USING AUTOSIM

6.1. Getting Started

AUTOSIM: is executed through the N-VERSION CONTROLLER INIERFACE.9
To start AUTOSIM:, type SIM:1, select option 13, and answer the prompts.

6.2. Libraries Needed

The following libraries are needed to run AUTOSIM::

PROB1LIB.1LB - which contains the N-VERSION CONTROLLER and the AT source
code.

AUTO. liB - contains the AUTOSIM: source code.

MTRSRC.1LB- contains the N-VERSION INIERFACE source code.

These files presently reside on AIRLAB System 3::DRAO:[SIM:.PROBl. ..].

6.3. AUTOSIM Error Files

The AUTOERR.DAT fIle contains AUTOSIM: error information. Two types of
information are stored in this fIle. The VMS System error message number when a sys
tem level error occurs and an AUTOSIM: error message when AUTOSIM: cannot nor
mally execute its function. The former system level messages can be obtained by typing
"exit [msg. no.]". The latter AUTOSIM error messages should be completely self
explanatory.

20

7.0. REFERENCES

1. J. R. Dunham and J. C. Knight, eds., "Production of Reliable Flight Crucial
Software: Validation Method Research for Fault-Tolerant Avionics and Control Sys
tems Sub-Working-Group Meeting," NASA Conference Publication 2222, NASA
(1982).

2. John R. Garman, "The "Bug" Heard Round the World," Software Engineering
Notes 6 pp. 3-10 ACM Sigsoft, (October 1981).

3. Douglas R. Miller, "Some Statistical Issues in Assurance of Very Highly Reliable
Systems," IEEE Computer Society Woirlcshop on Laboratories for Reliable Systems
Research Ab strnct (April 1983).

4. J. R. Dunham and J. L. Pierce, "An Experiment In Software Reliability," NASA
CR - 172553, NASA, Langley Research Center (March 1985).

5. Phyllis M. Nagel and James A. Skrivan, "Software Reliability: Repetitive Run Ex
perimentation and Modeling," NASA CR-165836, NASA, Langley Resarch
Center, Hampton, Virginia (February 1982).

6. A. Avizienis, "Fault Tolerance: The Survival Attribute of Digital Systems,"
Proceedings of the IEEE 66(10)(October 1978).

7. T. Anderson and P. A. Lee, Fault Tolerance Principles and Practice, Computing La
boratory, University of Newcastle Upon Tyne, England PrenticelHa11 International,
London, England (1981).

8. William F. Ingogly, et al., "N-VERSION SIMULATOR IN1ERFACE Mainte
nance Guide Version 1.0," RTI Report No. 43U-2094-12b, Research Triangle In
stitute (October 1983).

9. William F. Ingogly, et al., "N-VERSION SIMULATOR IN1ERFACE User's
Guide Version 1.0," RTI Report No. 43U-2094-12a, Research Triangle Institute
(October 1983).

10. A. Avizienis and J.P.J. Kelly, "Fault Tolerance by Design Diversity: Concepts and
Experiments," Computer 17 p. 69 IEEE Computer Society, (August 1984).

11. VAX DEC-IllCode Management System Document Set, Digital Equipment Corpora
tion, Maynard, Massachusetts (May 1982). AA-M681A-TE

12. VAX/VMS Document Set, Digital Equipment Corporation, Maynard, Massachusetts
(September 1984). AA-Z101A-lE

13. M. Jackson, Principles of Program Design, Academic Press, New York (1975).

21

APPENDIX A. AUTOSIM SCHEMATIC LOGIC DIAGRAMS

~I

22

Each of the following pages corresponds to a single AUTOSIM module, or to part
of an AUTOSIM module. The module name is given in the upper left hand comer of
each page, and other AUTOSIM routines called by the module or module fragment are
listed in the lower left part of the page. Modules are numbered sequentially in order of
occurrence in the drawings, from fIrst drawing to last, and in left-to-right order within
each drawing. Arrows drawn from a subprocess box point to the number of a called
module or to a continuation page for the current module. Continuation pages are num
bered as fractional extensions of the module number; e.g., module n. would have its
continuation pages numbered n.l, n.2, and so on, and continuation page n.m would
have its sub-continuation pages numbered n.m.l, n.m.2, etc.

Each box on the diagrams represents a process or subprocess in the AUTOSIM, and
lines connecting the boxes represent program control flow. Subprocess execution is from
top of page to bottom, and from left to right within the same level. Conditionally exe
cuted boxes have a small circle drawn in the upper right hand comer, and the branch
condition is printed above the box. Boxes that are executed iteratively have an an aster
isk drawn in the upper right hand comer, and the iteration condition is printed above
the process box that controls the iterated subprocess. Null branches are indicated by a
horizontal line above the word "Null."

Data assignments are listed below a process box, if they're needed to understand
process logic. An escape on an error condition is indicated by an arrow leading from an
empty process box. Section 3.2 of this document contains an alphabetized list of all
modules, with brief descriptions.

Jackson,13 pp. 17-42 describes the notation used in these diagrams in greater detail.

23

opcn(AllEND_rILE(i»

externals:

ECI la_ERROR
READ_TRACEBACK

call
Rr:AD_ TRI\CEDACK

find a match he tween
the traceback

assign utgen variables

restorc_dc
acele

supecelc
and documented abends

read(AllEND_FILE(i»
unction,position,ele,gen

«function.eg.module)
.and. (position .eg. line))

does function
and line number
match traceback?

null

null

close(ABEND _rILE(i»

-,

module: APPEND

t(j,i) .ne. 0) do w bile «fix_lis
.and. U .Ie. MAX.. FIXES))

find first zero
element in flX_list

...
j=j+l

Externals:

function
APPEND

~o while (U .Ie.
.and. (k .Ie. 3

copy fixes for
last eleJgen installed

to fix_list

fix_list(j,i) = fixx(k) ...

j=j+l
k=k+l

MAX..FIXES)
))

25

",millie: AUTOSIM

,.,11
OPEN_FILES

cnd_rcpl =
GELSI~LDATA

assume no ali
errors:

crnrTLcrr(i) = 0
atLcrror(i) =0

Is thcre an alL
error or is it end
of replication?

Extcrnals:

SYSSASCEFC
SYSSSETEF
OPEN_FILES
GELSIM...DATA
FlXID
CLOSE...FILES
MEAUMP
LIDS SPAWN

N
0\

RESTORE
ECHO_ERROR
FlXAPP.COM
VfEST.COM
SIMBATCH.COM
PREP_GLO
VOIDJlX..UST
ID_FIXES

null

=

«a.Urror) .ar. (tnd...repl))

.0
create new au'

source file and
deal with it

<:'111
'YS$ASCEFC ('Er-_CLUSTEI~'

GIll
SYSSSElEF(64)

(code .<'1. BETTER)

o
Last clement gen-
cration installed

made some

last clement genet
ation installed made

no improvement

L1B$SPAWN
SIMDATCII.COM

module: B_SEARCH

variables

top=l
found=O

bottom = NJlliC(i)
middle = (bottom + top)/2

function
B_SEARCH

generation we
are looking
for the first ..

t

find a match for
the clement
generation

last installed

adjust top
and bottom till
match is found

(ele...gen.eq.ari_ele...gj"(rop,i))

found= 1 0
middle=top

else
(ele...gen.eq.arLele...gen(rop,i))

\:

found=l
middle=bottom

externals:

none

(ele...gen. (r.atLele...gen(middle ,i))
I

o bottom = middle
middle= (bottom + top)/2

do j=l,3

copy fixes for
this clement
generation

fixx (j) = fix_list
(j,middle,i)

else

•

(ele...gen. gr. atLele...gen(middle,i))
........

o top=middle
middle=(bottom+top)/2

J

o
found = 1

j

modll\c: CLOnBEICERROR

open
(CLOBBER_FlLE(i»

Externals:

read
(CLOBBElCFILE(i»

dob,cle,gen

read
(CLOBBElCFILE(i»

dob, cle, gen

)

set ATGEN.DAT
variables:
restore_cle
accle
super_cle

~)

close
(CLOBBElCFILE(i»

--,

module: CLOSE_FILES

Externals:

none

function
CLOSR-FILES

close (unit=l, SIMDISK:SIMDA1)
close (unit=3, ATGEN.DA1)

close (unit=4, EXECUTION.DA1)
close (unit = 10, AUI'OERR.DA1)
close (unit=l1, 1CLASS.DA1)
close (unit=12, 2CLASS.DA1)
close (unit = 13, 3CLASS.DA1)
close (unit = 15, FORLINREP.COM)

29

modllle: Cl\ll\LElUtOR

Read ncw
clcment index

rcad(clc(larget»
t_clc_i

o
call

RE~_CMMFILE(i)

Initializc local
variablcs:

largct, latchcd,
rem_clc_i, z

(ele(z) .ne. •••

read clcment index
read(cle(z)(2:3»

clc_i

(acele(l_de...i,i) .ne. \ -'1--
~ ______ ~~g~rn~~~+~I) ~

lbis clcment gcncra~ null
tion is not inslallcd

cle(z) is a
potential candidate

This clcment gcn·a
cration is inslallcd
consider ncxt onc

function
CMNLERROR

find a fix
candidatc

Was a cxit foroed
from (.not. latchcd)?

«renu: .It. REC~CMM)
...-___ L-__ .:.:;.and. (Ial<:hedl)

reITLclcj =clcj
z=z+l

else
«z .gt. I) .and.

(rem..ele..i .ne. ele...i))
s cement generatIOn

is not installed, ronsider
it as a candidate and

sav_z=z
sav _clc_i = clc_i

latchcd= Ycs
lar ct=99

latchcd=Ycs

read clcment index
read(clc(targct)(2:3)

clc_i

variables
restore_clc, acclc

supccclc

module: ECHO_ERROR

get time
ierr SYS$ASCTIME

-'.

Externals:

SYS$ASCTIME

-,

function
ECHO_ERROR

write (AlJfOERR.DA1)
the time

write (AlJfOERR.DA1)
the failure message

31

))

1lI0011llc: F1XID

(c!obbcr(i) ,nco 0)

Extcmals:

READ_ATGEN'
ZERO_SUPER....ELE
CLOBBER....ERROR
ABEND_ERROR
CM!\LERROR
WRffa.A TGEN
MAKE....iCLASS

clobbcr(i) = No

call
ZERO_SUPER....ELE

call
ABEND_ERROR

)

do whilc«alLcmm(j,i) .cq. cmm(j) ,

atLerror(i) = Yes

call
CMM....ERROR

call
MAKE_iCLASS

else

(.not. constraints_met)
,.-_-:-=--l._~_..,

if any of 0
constraints
1,2,3, or 4

atLerror(i) = Yes

is this generation •
one of this clement?

(acele(s,t) ne.l)

aLcle(s,t) = 1
supccc!c(s,t) = 1

rcstorc_cIc(s,t)= 1

externals:

o

READ_SIMDATA
READ_ATGEN
WRnc_ATGEN
MAK~iCLASS

WRHE_D .. "EClJnON

)

GELSIM.-DATA=O

null

null

-, module: ID_FIXES

read(iCLASS.DA T)
ELE_GEN

Externals:

function
ID_FIXES

call
APPEND

34

mndlllc: LAUNCI LERROR

open
(ATi LAUNClLFILE)

Externals:

rcad(ATiLAUNClLFILE)
clc,gcn

)

flinClinn
LAUNCILERROR

get clement indcx

rcad(elc(1)(2:3»
clc_i

update arguments

restore
acc\c,supecc\c

.J

close
(ATi LAliNCILFlLE)

module: MAKlLiCLASS

function
MAKa.iCLASS

rewind(iCLASS.DA 1')

Externals:

none

supecele(j ,i))

write(iCLASS.DA 1') formatted
string with element name
and generation number

do (j=1, N~(i))

consider each CMS
element for ATi

• write record containing
element name and
generation number

null

36

(

module: MEAS_IMP

read the results
from VfEST

call
READ_EXECUTION

function
MEAS_IMP

do j=1,15

count the differences between
theati's and the gold's cmms

(cmm(j) .ne.
aILcmm(j,i»

•
disagreement? i

"-difL VfEST=O null
n_difL VfEST + 1

Externals:

READ_EXECUTION
WRITE_EXECUTION

measure
improvement

call 0
WRITE_EXECUTION

MEAS_IMP=
PERFECf

(n_dife VTESf.It.Rem_ILdi
.......

call
WRITE_EXECUTION

MEAS_IMP=
BETTER

r (.

call
WRITE_EXECUTION

MEAS_IMP=
NO_BETTER

(

module: OPEN_FILES

Externals:

function
OPEN_FILES

open (unit= 1, SIMDISK; SIMDAT)
open (unit=3, ATGEN.DAT)

open (unit=4, EXECUTION.DAT)
open (unit= 10, AlJfOERR.DAT)
open (unit=l1, 1CLASS.DAT)
open (unit = 12, 2CLASS.DAT)
open (unit = 13, 3CLASS.DAT)
open (unit=15, FORLINREP.COM)

38

))

ntmlllk: I'IlEI'_(,LO

eum....casc=O
cum....cpu_gold = 0

replica tion =
replication + rep_scale

externals:

SELMASK
FORLINREP.COM
ECHO_ERROR

null

)

fix(j)=l
cpu_fail(O =0
casc_fail(j)=0

aLpointer(j)= 1
dcsigruta ge(j) = 0

write compile probli
write lib/replace

probli.obj in
PROBILlB.OLB

null

(atLaror(J1)

sct ati simulator
variables,sct F'IXJ,1ASK,and
write to FORLlNREP.COM

dcsign_stage(j) =
dcsigrutage(j)+ 1

write compile problj
write lib/replace

problj.obj in
PROBILffi.OLB

module: READ_ATGEN

ierri' 0

rca d (ATGEN. DAT,rcc = i)
. aCcle

check return code

null

Externals:

J

ierrfO

function
READ_ATGEN

rcad (ATGEN. DAT,
rcc= i + N_A TS)supcccle

check return code

null

icrr -1= 0

rcad(ATGEN.DAT,
rcc= i + 2 ·N_A TS)restore_cle

check return code

null

module: READ_CMMFll...E

open
(CWtLFILE(i))

Externals:

none

position pointer at
first record for

cmm(D

read
(~FILE(i))

•

read the REC_CMM
records for

cmm(j)

read
CWtLFILE(i))

cle, gen, nxt

•

41

))

module: READ_EXECUTION'

rewind
(EXECUTION. DAn

(ierri:O)

externals:

none

function
READ_EXECUTION

read
(execution.dat)
re~n_diff .

check
return code

o

(ierr;eO)

read
(execution.dat)

cmm

check
return code

(ierr;eO)

null

read
(EXECUTION. DAn

all_cmm

check
return code

null

module: READ_SIMDATA

function
READ_SIMDAT

~r---'---------l
r----r-d......::;la-----, read last record

In st written to
sequence number SThLDAT

sequence_num =

SPY _GLOBALO

Externals:

read (SIMDISK:SIM.DAT,
key = sequence_num)

check return code

(ierr .ne. 0) ~
o '----

null

43

)

module READ_TRACEBACK

open
(simdisk:errors.dat)

External:

none

if(abend(j)

num....abends = 0
num....abends+ 1

function
READ_TRACEIlACK

end of file

rca
(simdisk:errors.dat.

cnd=999)

baekspace(simdisk:
crrors.dat position
at previous record

buffer(1 :6) = KEY

beginning of a
traceback?

.--__::c.. __ -,

key_finds =
kcy3inds+l

null

rcad
(sim.disk:errors.dat)

buffer 1:6

read
(simdisk:crrors.dat)

buffer

module=
buffer(1:6)

linc_num=
buffer(52:53)

)

modllle: RESTORE

build skeleton 1 __ -----
for CMS
command

get latest state
for ati's CMS

class

cmd_string = 'ems insc~
.forlgen =~~classlsupcrscdc'

do while ((j .Ie. 15) .and.
(crrun(j) .eq. a11_cmm(j,i))

.....----:'--;:--,
get the fix

find where ati
and gold
disagree

candidates for
the cmm in

disagreement

call
REAlU~{MF11.E

do while ((at_ele
(clej,i) .ne.
gen (k)) .Dr.

(.nol. ,uper_de
(elej,i)))

find last element!
generution which
was superseded
into the ati_class
or this m

1.1

1.0

RESTORE

candidate

1.2 look ahead two
Co'lndidates

1.3

Are the clement
candidates gen
era tions of the
same clement?

1.4

call
WRITE~TGEN

Did we reslore
different
clements?

null

module: SELMASK

k=l

Externals:

none

function
SET_MASK

do while «k .Ie. MAX..FIXES)
,j) .ne. 0)) and (fix_list(k

set bit in
fix mask for

corresponding fix

fix(D=ibset (fix(D,fix_list(k,j)) ...
(j,i) =0
k=k+l

46

module: SPY_GLOBAL

function
SPY_GLOBAL

assign SPY_GLOBAL
last sequence number
from global memory

SPY_GLOBAL =
sequence_num

Externals:

none

47

module: VOID_FIX.....LIST

function
VOID_FIX.....LIST

do i=l,N

consider
each fix

do j=l,

initialize •
fiLlist

•
fixJist (j,i)=O

Externals:

none

48

module: WRfIE_ATGEN

(ierr .ne.D)

externals:

write(ATGEN.DAT,ree= i)
aCele

check
return code

null

function
WRfIE_ATGEN

write
(ATGEN.DAT,ree=N_ATS+i)

supeceJe

(ierr.ne.D)

check
return code

D null

(ierr.ne.D)

write
(ATGEN.DAT,

ree:::; 2 • N_ATS + i)

cheek
return code

null

))

module: \\'IUTE_EXECUTION

rewind
(EXECUTION.DAT)

(ierr.ne.O)

externals:

function
WRITE_EXECUTION

write
(EXECUTION.DAT)

rem.....n_diff

check
return code

o null

(ierr.ne.O)

write
(EXECUTION.DAT)

cmm

check
return code

o

(ierr.ne.O)

null

W1ite
(EXECUTION.DAT)

alLcmm

check
return code

null

function
ZERO_SUPEILELE

do j=l,N_ ELE(i)

initialize
super_ele

•
supecele (j,i)=O

Externals:

none

51

))

module: VI"EST.FOR

call
RF.AO_E>..T:CUI10N

call
PROBlA·

o

inputs =

ISPY_GLOBALO

call
PROBlB

• AUfOSIM SPECIFIC - reads from GLOBAL.DAT

Externals:

OPEN_Fll...ES
READ_EXECUflON
ISPY_GLOBALO
PROBli
GOLD
\VRnE-EXECUflON
CLOSE...Fll...ES

o

VIT~T.FOR

Find out whieh
application task we

arc dealing with

e1,e
(aLnllm .eq. 3)

call
PROBlC

o

save ati outputs

aILcmm(j.acnu~
cmm(j)

c.1ll
GOLD

c.,ll
CLOSE...FILES

eall
WRITF_F..>..T:c:unON

include
'(global)'

ISPY_GLOBAL=
inputs

53

APPENDIX B: AUTOSIM FILE DESCRIPTIONS

54

ATGEN.DAT:

purpose:
Keep track of what CMS element generations are presently installed in the
at i_class and what CMS element generations were previously installed in
the ati_class.

background:
Each of application task has its own CMS class, i.e. there are N_ATS
C~'lS classes defined within the CJ\'lS library AS Th-CCl\tlS_LIB. There are
N_ELE(i) elements in the C!vlS class corresponding to ATi. N_ELE is an
N_ATS integer*4 array defined in AUTO.INC along with other data variables.
ATGEN.DAT is organized into three different groups of records; each group
has N_ATS records. All application tasks have one record within group of
N_ATS records. Specifically, ATi has its records located at record
positions i, i+N_ATS, and i+(2*N_ATS). NOTE! To enable this random access
of records, ATGEN.DAT was created as a DIRECT access file. To insure
proper file integrity DO NOT EDIT ATGEN.DAT. Records within the file
ATGEN.DAT may be modified manually with the Fortran program MODATGEN.

reference:
ATGEN.DAT is referenced with unit number 3 in the open, read, and write
statements to this file. the open statement is as follows.

open(unit=3, fileATGEN.DAT, access='DIRECT', status='OLD')

data structures:
at_ele - a 17 by N_ATS element byte array containing the fisrt group

of N_ATS records. This group of records indicates what
generations of the CJ\IS elements are currently installed
in the CMS class for each application task.

super_ele - a 17 by N_ATS element byte array containing the second group
of N_ATS records. This group of records indicates what CMS
class elements are to be superseded with new generations.

restore_ele - a 17 by N_ATS element byte array containing the third group
of N_ATS records. This group of records indicates what
generations of the eMS elements were installed in the previous
version of the CMS class for each application task.

record formats:
first group: at_cle

aU's
at2's

-or-
(IOi3)
(Oli3)

55

at3's (17i3)
second group: super_ele -or-

atl's (lOi3)'
at2's (Oli3)
at3's (17i3)

third group: restore_ele -or-
atl's (lOi3)
at2's (Oli3)
at3's (17i3)

'-,

56

AUTOERR.DAT:

purpose:
log AUTOSIM errors of the nature (1) out fixes for an ATi, or (2) open,
read, or write errors.

reference:
AUTOERR.DAT is referenced with unit number 10 in the following open
statement.

open(unit= 10, file=' AUTOERR.DAT', access= 'SEQUENTIAL', status= 'OLD')

data structures:
module - character*(*), the module in which the error occurred

file - character*(*), the file that was be referenced when the
error occured

fail_msg - the message accompanying the failure (i.e. open, read, ...)

iostat - i*4, either the return status code from a open, read, ... , or
the CMM that did not have any more fixes

stamp - character*23, the time the failure occurred

record format:
stamp
-or- (a) !time in format dd-mmm-yyyy hh:mm:ss.cc
module file fail_msg iostat
-or- ("ERROR: <', a, '> " a, lx, a, '; iostat = " i10)

57

~,

EXECUTION.DAT:

purpose:
serves as the communication link between the spawned subprocess VTEST
and the AUTOSIM program. VTEST updates the last two records which
contain the output from the GOLD and the ATi's CMMs. MEAS_Th1P, a functi?n
of AUTOSIM, updates the first record which contains the number of
differences between the GOLD's and the ATi's CMMs.

reference:
EXECUTION.DAT is referenced as unit 4 in the following statement:

opeu(unit=4, file='EXECUTION.DAT', access='SEQUENTIAL', status='OLD')

data structures:
rem_n_diff - a three element integer*4 array containing the number of

differences between the GOLD's CMMs and a particular ATi's.
the valid range of values for these fields is a integer
greater than or equal to 0 but less than or equal to 15.

cmm - a fifteen element integer*4 array containing the GOLD's
CMM outputs. each element in this array has the value
of either a 0 or a 1.

all_cmm - an N_ATS by fifteen element integer*4 array containing
each of the ATis' CMM outputs. each element in this array
has t.he value of either a 0 or a 1.

record formats:
first. record: rem_u_diff (' " 3i3)
second record: cmm (", 15(il,','))
third record: all_cmm (", 45(il,','))

58

iABEND.DAT:

purpose:
The iABEND.DAT files contain a history of the abend failures
which have been documented for each ATi during the execution
the Launch Interceptor Code.

reference:
the iABEND.DAT files are referenced individually with unit number 30
in the following type of open statement:

open(unit=20, file=iABEND.DAT, access='SEQUENTIAL', status='OLD')

data structures:
function - a character string of length six. this variable contains the

the name of the module in which the abend occures.

position - a character string of length two. this variable contains the
where in the module the abend occurred.

ele(1) - a character string of length three. this variable contains the
CMS element with the source for the particular module under
consideration.

gen(1) - a byte variable. the generation of the CMS element with the fix
required to fix the abend in the given module.

record format:
function position ele(1) gen(1)
-or- (tl,a6, tn,a2, t13,a3, t18,i2)

59

iCLASS.DAT:

purpose:
the records of iCLASS.DAT indicate to the spawnned FIXAPP.COM which
CMS elements are to be superseded with new generations, i.e. which
fix to install.

reference:
the iCLASS.DAT files are referenced through the N_ATS integer*4 data
array AT_UNIT. each ATi's iCLASS.DAT file is assigned a unit number
which is stored in the ith element of the AT_UNIT array. currently,
AT_UNIT(l)=l1, AT_UNIT(2)=12, AT_UNIT(3)=13. the iCLASS.DAT files
are made available through the statement:

open! unit=AT_UNIT(i), file=iCLASS.DAT, access='SEQUENTIAL',
+ status='OLD')

data structures:
ele_gen - character*lO, the C~1S element name and generation which

is to be or was superseded in the eMS elass for the ATi
presently under consideration.

record format:
ele_gen -or- (lx, lal, li2.2, '.for(" IiI, ')')

60

iCLOBBER.DAT:

purpose:
The iCLOBBER.DAT files contain a history of the overwrite failures
which have been doucment.ed for each ATi during t.he execution of the
Launch Interceptor Code.

reference:
iCLOBBER.DAT files are referenced individually with unit number 20
in the following type of open statement:

open(unit=20, file=iCLOBBER.DAT, access='SEQUENTIAL', status='OLD')

data structures:
clob - integer*4, the clobber value indicating 'which common region

was overwritten

ele(l) - character*3, the CMS element containing this section of
code with the common region in which the overwrite occurred

gen(1) - byte, the generation of CMS element from above with the fix
to stop the overwrite from occurring again

record format:
clob ele(l) gen(l)
- or - (tl,il,t4,a3,t9,i1)

61

--,

-,

iCMM.DAT:

purpose:
The iCM~1.DAT files contain a history of failures and associated fixes
in the conditions met matrix which have been recorded for each ATi
during the execution of the Launch Interceptor Code.

reference:
iCMM.DAT files are referenced individually with unit number 40
in the following type of open statement:

open(unit=40, file=iCMM.DAT, access='SEQUENTIAL',
+ status='OLD', recl=24)

data structures:
ele(REC_CMM) - a REC_C~fM element character*3 array, the CMS elements

which contain the section of code in which it is
possible for this cmm to fail

gen(REC_CMM) - a REC_CMM byte array, the generation of the CMS elements
from above with potential fix(es) for the failed cmm

nxt(REC_CM\1) - a REC_CMM byte array; when searching for a fix, we find
the element/generation which is currently installed,

record formats:
ele gen nxt

and index off this 'nxt' field of the same record to
find the next potential fix, provided another fix exists.

-or- (t4, a3, t9, i2, t13, i2)

62

iLAUNCH.DAT:

purpose:
iLAUNCH.DAT files are used when an ATi fails and the failure does
not show up as an abend, overwrite, or as disagreement in the
conditions met matrix; a launch error is detected by the assertion
of a .not.constraints_met element and the index to the all_cmm array
being out of bounds.

reference:
iLAUNCH.DAT files are referenced individually with unit number 50
in the following type of open statement

open(unit=50, file=iLAUNCH.DAT, access='SEQUENTIAL', status='OLD')

assumptions:
only one launch error for any ATi

data structures:
ele{l) - a character string of length three. this variable contains the

CMS element with the source code where the launch error occures

gen(l) - a byte variable. the generation of the C~IS element with the fix
required to correct the launch error in the given module.

record format:
ele{l) gen{l)
-or- (t3, a3, t8, i2)

63

SIM.DAT:

purpose:
records a history of simulator failures by storing the environmental
parameters, generated inputs, and simulator and application tasks'
outputs. This makes it possible for an operator to determine why the
simulator failed by examining design stages of previous replications.

reference:
SIM.DAT is referenced as unit 1 by all modules in the Autosim, Interface,
and the Simulator. SIM.DAT is an indexed file; so, unit 1 is accessed with
the use of keys. The primary key is the sequence number, i.e. the
sequential number of a record in the file. Modules referencing SIM.DAT
have read and write privledges to the file. The file is expected to exist
in the SIMDISK: directory, and an error message will result if the file
is not found.

data structures:
the common regions of STh'LDAT:

inputs - the generated inputs consist of the following variables:

x,y,el,r,eps2,a,m,q,epsl,nl,n2,m2,n3,m3,n4,
m4,no, bigl, bigr, bige, bign,lcm,pumdia,p,ifou t

outputs - the simulator outputs consist of the following variables:

·cmm,fum,launch,pum

allouts - the application task outpts consist of the variables:

all_voterouts - ouput from the voters

all_v _cmm, all_v _fum, all_v _launch, all_v _pum,
all_v_comp_launch

record format:
the simulator writes a SIM.DAT record with the following statement,
the format is implied.

write(unit= l,iostat=iret)list,inpu ts,outputs,allouts,all

64

1.1 1.2

1.0

SIM.DAT

commons in
every record

1.3 1.4 1.5

J.l
INl'lJl'S

,·4
y()()O)

i*4
cmm(15)

i*4
fum(15)

1.2

outputs

i*4
pum(15,15)

log*l
launch

67

i*4
alLcmrn(15 ,ILats)

i*4
alLfurn(15,ILats)

1.3

allouts

i*4
alLpurn(15 , 15 ,ILats)

log*l
alLlaunch(ILats)

68

1.4

j-4
v_pum(1S ,IS)

log-}
v _romp_launch

j04

aILv_cmm(15.n_votcrs)

j04

aILv_fum(15.n_votcrs)

1.5

alLvolcrotlls

log01
aILv_launch(n_votcrs)

j04

aILv_pum(15.15.n_votcrs)

j'4

all_v_comp_launch(n_votcrs)

ATGEN.DAT

aCele supecele restore_ele
current generation elements to receive previous generation

of elements new generation of the elements

3 groups of N~ TS ecords in each group

10 i*4s 1 i*4 17 i*4s
first record in second record in third record in

each group is for each group is for each group is for
AT1 AU ATI

* the three groups of N_ATS records is independent of the N_ATS

71

first type
record

AUTOERR.DAT

char-(-)
error message

1. module 2. fIle
3. message

second tyPe
record

72

EXECUTION.DAT

record one record two record three
rertLILdiff CMM alLcmm

3 i"'4 15 i"'4 15xN_ATS i"'4

73

iABEND.DAT

each record

gen(l)
byte

74

iCLASS.DAT

each record

char-l0
ele-gcn

75

iCLOBBER.DAT

each record

-,

76

iCMM.DAT

each record

byte
gen

byte
nxt

77

-,

char*3
e1e(l)

iLAUNCH.DAT

one and only record

byte
gen(l)

78

....................
............... -._ _

SIMDISK:
SIM.DAT

READ_
EXECUTION

....................

.................... _ _

EXECUTION
.DAT

WRITE_
EXECUTION

. -............................ .

...

ICLASS.DAT

...

............ _

ATGEN.DAT

WRITE..ATGEN

Files referenced by more than one routine.

.

. .. .

FOR
LINRER

. COM

79

CLOBBER-ERROR

.................... --... _ -........

... __ __ -........... _-_ -............. _

iCLOBBER. iLAUNCH. iABEND. iCMM. iABEND.
OAT OAT DAT DAT OAT

LAUNClL.ERROR CMM....ERROR

Files referenced by only one routine.

80

APPENDIX C: LISTING OF AUTOSIM COMMAND PROCEDURES

81

AUTOSI~LCOM

$ assign nlnO: sys$input
$ assign out.dat sys$output
$ set default sim_auto_l
$ set rms/extencl=:3
$ cms set library asim_cms_Iib
$ cQ'[sim.prob l.auto. tools]bang
$ set process/name=autosim
$ run sim_auto_l:autosim
$ exit

82

FORLINREP.COM

$!!!!!!!!!
$ dtim = f$time{)
$open/append chart chart.til
$ write chart dtim
$ write chart "fodinrep.com"
$ close chart
$!!!!!!!!!!
$ delete vtest.map;*,vtest.lis;*
$ set rms / extend=3
$ fortran/list/continuations=gg probla
$ lib /rep simclisk :prob llib.olb prob la
$ fortran/list/continuations=gg prohlb
$ lib/rep simclisk:probllib.olb problb
$ fortran/list / con tin uations=99 prob 1 c
$ lib/rep simclisk:probllib.olb problc
$ lin/map simclisk:sim,probllib/l,opt/opt -

/exe=sim_auto_l:sim.exe
$ delete probl*.obj;*
$ purge/keep=.3 sim.exe,probl*.lis
$ exit

83

SIMBATCH.COM

$!!!!!!!!
$ dtim = f$time()
$ open/append chart chart.fil
$ writ.e chart dtim
$ ·t h t"· b t h " . wn ,e c 3r SIm 3,C .com
$ write chart. " "
$ close chart
$!
$ open/append log log.dat
$ write log "start simualtor: ", dtim
$ write log" "
$ close log
$!!!!!! !!!!!
$ set rms/extend=3
$ delete sim_3uto_l:out.dat;*,sim.map;,simbatch.log;,forO*.dat;
$ delete asim_data:*class.dat;*
$ purge simdisk:inputs.dat
$ set process/priority=.5
$ assign sim_auto_l:simbatch.log forOOG
$ set process /name=sim
$ run sim_auto_l:sim
$ exit

84

VTEST.COM

$!vtest.com - procedure to test a single version of an AT
$!!!!!!!!!!!!!!! !!!!!!!!!
$ open/append log log.dat
$ open/append chart chart.fil
$ 'Nrite log "vtest"
$ dtim = f$time()
$ write chart dtim
$ write chart "vtest"
$ close chart
$ close log
$!!!!!! !!!!!!!!!!!!!!!!!!
$ set nover
$ set rms/extend=3
$ sl = "a"
$ s2 = "b"
$ 83 = "e"
$ at = s'pl'
$ set ver
$ for/list/cont=99/cheek=all/obj=tmp probl'at'.for;
$ lin / map vtest.su b, tmp,simdisk:probllib.olb /l,opt / opt,sim_3uto_l:au to.olb /1
$ set nover
$ dele tmp.obj;*
$ open/write tmp_dat: tmp.dat
$ write tmp_dat: pI
$ close tmp_dat:
$ assign/user tmp.dat for$aecept
$ run vtest
$ dele tmp.dat;*
$ dele vtest.exe;*
$ exit
$

85

APPENDIX D. LOG OF AUTOSIM VALIDATION JESTS

86

-ATl- I -ATI- -AD- I
" Fix I Fix Fix

Rep. No. Seq. No. ns. Nos. , D.S. Nos. D.S. Nos. CASE ERROR

1 113 0 0 0 0 0 0 0 ATl: aIM (5)
ATI: launch error
AD: at.\l (7)

114
I

1 1,2
I

1 1
I

1 1,16 I 4 AD: CMllvl (5,9,10,11,
12,13,14,15)

I
2,6,9

115 2 10,11,12, 42 AT1: aIM (7)
14,15

116 2 3
I I

75 ABE.!.'m AD RADCIR
line 58

117 I 3 18 I 90 AD: (4,8,13)
118 I 4 5,8,13 100 AT1: aIM (8,13)
119 3 6 I 150 ABE.!.'mATl I

I RADline 30
120 4 5 I I 203 ATl: Qt.\l (10)
121 1 5 7 I I 1475 ATl: 0.[.\[(5)

122
I

6
I I

2641 AD ABE.!.'m

123 I
I I

5 17
I

2985 ABE.!.'m AT1
:

I 124 I ~ 7 8 i I 10,000 End of Rep.

I
I AT1: overwrite; Ot.\1 (5)

:; 125 1 0 0 0 0
I

0 0 0 ATI: launch error
I AD: QIM(7)

126 ~ 1 1,2 i 1 1 I 1 1 I 9 AD: OIM(7)

I 127 ! I 2 16 23 ABE.!.'m: ATl

I
128 ! 2 5 I I I

32 ATl: aIM (7)
, I AD: G.t.\1 (12)

129 3 I 3 I I 3 12 I 90 AD: at.\l (13)
130

I I I
4 2

I
135 AD: aIM (5,9,10,11

14,15)

I
131

I
5 6,9,10,11

I
150 AD: (4,8,13)

14,15
I 132 I I I 6 5,8,13 I 160 ATl: Ot.\1 (8,13) I

I 133 4 6 I ! I 176 ATl: at.\l (3)
134 5 I 7 II I I. 227 ATl: Ct.\l (5)
135 6 4 I I I 892 ABE.!.'m:ATl
136 7 8 I I 2351 ABTh'D: AD
137 I I 7 18 I 4201 ABE.lIo.oTI: AT3
138 I I 8 17 10000 End of Rep.

3 139 0 0 0 0 I 0 0 ! 0 ATl: overwrite, aIM (5)
140 1 1,2

II II
I 2 ATI: launch error
I AD: at.\1 (7)

141 I 1 1 1 1
II

21 AT3: (5,9,10,11,12
: 13,14,15)

I
142

I I I
I 2 2,6,9,10,11, II 68 I AT1: Q[.\[(7)

1 ! 12,14,15
143 2 i 3 !I i 77 ABE.!.'m: AT1
144 3 5 I! I I 94 I AT3: CMM (7)

i I 145 I II I ; 3 16 I 141 I AT3: 0.[.\[(4,8,13)
I I 146 I d 'I 4 I 5,8,13 II 279 ATl: Q[.\[(8,13)

I I 147 4 6 Ii I I 1 370 I AT1: Q[.\I (3) I 1

I I 148 I 5 7 II ! I :1 539 ATl: Q[.\((5)

149 6 4 II :) d 568 ABE.'\TI: AT3 I
I ! 150 I I il 1 :I 5 I 18 ! 2889 : ABE.'\TI: AT3 I I

151 6 17 4968 I ABE.'\TI: ATl
152 7 ! 8 I[10000 ! End of Rep.

87

I -ATl- I -ATI- I -AD- II

Seq. ~;. I Fix II Fix
I D.S.

Fix
·1 Rep. No. D.S. Nos. I D.S. Nos. Nos. CASE ERROR

13 314 0 0
I

0 0 0 0 0 ATl: overwrite
ATI: CMM(7)

315
I

1 1
I I

1 1 1 ATl: CMM(5)
ATI: launch error

316 I 2 2 I 1 1 4 ABEl'ill: ATl I

317 3 I 5 ! 20 ATl: aL\l (7)
318 4 3

I
41 ATl: CMM (10)

ATI: ON (12,13)
319 5 7 2 2,12 53 ATI: CMM(7)
320

I I
3 16 57 ATI: DIM (4,5,8,9,10

11,13,14,15)
321

I
4 5,6,8,9,10 86 ATl: CMM (8,13)

11,13,14,15
322 6 6 I 318 ATl: CMM(5)
323 I 7 I 4 3970 ABE..'ill: ATI
324

I I I
5 18 4159 ATl: aL\l (10)

ABTh'D: ATI
325 I 8 11 I 6 17 4159 ATI: aL\l (10)
326 I 7 19 6605 ABE.."'D: ATl
327 I 9 8 I I I 10000 End of Rep.

I

I
I I

ATl: overwrite, aiM (5)
14 328 0 0 I 0 0 0 0 0 ATI: launch error

I ATI: 0IM(7)
I 329 I 1 1,2 I 1 1 1 1 I 2 ATl: aiM (7)

330 2 3 II I I I 38 ATI: DUvl (12,13)
331 I I I 2 2,12 60 ABEl'ill: ATl I

I 332 3 5 110 ATl: aiM (8,13)
ATI: CMM(7)

I
333 4 6 I 3 16

I
117 ATI: 0L\1 (5,9,10,11

I 14,15)

I
I

334
I I I II

4 6,9,10,11,
I

133 ATI: aL\l (4,8,13)
I 14,15

I 335 5 5,8,13 I 149 I ATl: 01.\1 (3) I

336 II 5 7 I II 237 ABEl'ill: ATI

I 337 I 6 I 18 I 1077 ATl: Ollif (5) I

338 I 6 4 I I I 1899 ABEl"'D: ATl
339 I 7 8 il 10000 End of Rep.

I

I II

ATl: overwrite
15 340

I
0 0 0 0 0 0 0 ATI: launch error

ATI: arr-.l(7)
341 I 1 I 1 1 1 I 1 1 II 1 ATl: aIM (5)

II I
I ATl: aIM (5)

342 2 2 3 ATI: aiM (4,6,8,9,10,
11,12,13,14,15)

I I

I I
5,6,8,9,10

II
343 ! 3 4 2 11,12,13, 13 ABEl'ill: ATl

I 14,15

I 344 II 4 5 ! il I 16 I ATl: OL.\f (7)
I 345 II 5 I 3 I I i I I 23 ATl: OL.\f (8,13) I I

346 i 6 I 6 I II I II 38 ATI: 0L.\1 (7)

i I 347 II II I ! 3 16 II 316 ATl: 0L.\1 (10)
i 348 II 7 7 II II I II

II 507 ABE."'D: AT3
I I 349 II I Ii II 4 I 17 II 844 , ABE.'ill: ATI

I 350 II I II I' ,I 5 18 II 5234 ! ABE.'ill: ATl
I I 351 !I 8 8 II ! I Ii 10000 ! End. of Rep.

88

·ATl· I ·AU· ·AD·

I D.S.
Fix I Fix Fix

Rep. No. Seq. No. Nos. D.S. Nos. D.S. Nos. CASE ERROR
16 352 I 0 0 I 0 0 I 0 0 I 0 ATl: overwrite

353 1 1 I 1 ATl: CMM(5)
354 I 2 2 I I I 3 ABEi.'ID: ATl
355 3 5

I
5 AU: launch error

AD: CMM(7)

356 1 1 1 1 7 ATl: CMM (10)
AD: CM.\l (12,13)

I
ATl: CMM(5)

357 4 7 2 2,12 12 AD: CMM (5,9,10,11,
14,15)

358 5 4
I

3 6,9,10,11, 31 ATl: Ot\! (7)
14,15

359 I 6 3 116 ATl: aiM (8,13)
360 7 6 173 AD: Ot.\l (7)
361 4 16 182 AD: CMM (4,8,13)
362 I 5 5,8,13 183 ABEi.'ID: ATl
363 I 8 8 1322 ABEND: AD
364 I 6 18 2137 ABEND: AD
365 I I 7 17 10000 End of Rep.

ATl: overwrite, aIM (5)
17 366 0 0 0 0 0 0 0 AU: launch error

AD: Q.L\f (7)
367 1 1,2 I 1 1 I 1 1 I 10 AD: OL\J (13)
368 I I 2 2 I 19 ABEND:ATI
369 2 7 I 29 ATl: G\L\J (7)
370 3 3 I II 34 AD: aIM (12)
371

I I
3 12 35 AD: OIM (4,5,8,9,10,

11,13,14,15)
372

I I
4 5,6,8,9,10, 49 ATl: Ot.\l (8,13)

11,13,14,15
373 I 4 6 I 78 AD: OL\! (7)
374 I I I 5 16 372 ABE.!'ID: ATl
375 5 5 I I I 453 ATl: aL\f (5)
376 .1 6 4 I I 836 ABE.ND: AD I

377 I I 6 18 4812 ABE.!"'D: ATl
378 I 7 8 I I 6634 ABE."'D: AD
379 I ! 7 17 10000 End of Rep.

I I

ATl: overwrite, Ot\l (5)
18 380 0 0 0 0 0 0 0 AU: launch error

I AD: 01M(7)
381 I 1 1.2 I 1 1 1 1 I 14 AD: aIM (12,13)

I 382 : II I 2 2,12 I 15 ABE.!'ID: ATl
383 2 7 I I I 43 AD: OL\f (7)

I 384 I, I !I I 3 16 II 80 ABE"TI: ATl I

I 385 II 3 5 II I I 112 ATl: aIM (8,13)
386

I
4 6

I I I
133 AD: aIM (5,9,10,11,

14,15)
387

! I I 4 6,9,10,11,
I

166 AT1: G\L\I (7)
I I 14,15

I 388 II 5 I 3 I 'I I 323 AD: at\1 (4,8,13) I

I I 389 II ! I 5 I 5,8,13 ! 979 ATl: OL\f (5)
I I

390 I 6 I 4 I I 1142 ABE.""TI: AD I I

I I 391 I I d 6 I 18 ! 4401 ABE'ID: AD I

I 392 II i I 7 I 17 if 10000 I End of Rep.

89

, I -ATl- -ATI- I -AD- I
i

Seq. No.1
Fix Fix Fix

i Rep. No. D.S. Nos. D.S. Nos. D.S. Nos. CASE ERROR

I
25 628

I
0 0 0 0 0 0

I
0 ATl: (fler\\'rite

AD: CMM (12,13) - 0
629

I

1 1 1 2,12

I
2 ABEND:ATl

RAD line 31
ATl: G.\iM: (5)

630 I 2 5 2 ATI: launch error
I I AD: G.\IM (7) .. 0

631 3 2 1 1 2 1 7 AT1: aIM (7) .. 1
632

I
3 3

I
20 AD: CMM (4,5,8,9,

10,11,13,14,15) ,. 1
633

I
3 5,6,8,9

10,11,13 36 ATl: DIM (8,13) - 1
14,15

634 4 6 I I 103 AD: CMM (7) .. 0
635 I 4 16 110 ATl: G.\1M: (5) .. 1
636 5 4 688 ATl: aIM (3) .. 0
637

I
6 7 978 ABEND:ATl

RADCIR line 58
638 4474 ABEND:ATl

I ANGLEAline 27
639

II
7 8

I
5553 ABEND: AD

AGLCOS line 26
640 I 6 17 8358 ATl: aiM (1) .. 0
641 I 8 9

90

1. lIIeQOft No. I 2. eo-,.,.,.,.,t .t.cn.ion No. l. lllee,_I" u~1ot No.

~ASA CR-177930
4. T,tle and Subtitle 5. .. eQOf1 0. tI

AUTOS 1M: An Automated Repetitive Software September 1985
Testing Tool I. I'wiOfm"'9 O<~"'II"on Code

7 thot(., J. R. Dunham I. I'wiOfmionv Or~niUlion lIIeQOrl No.

S. E. McBride
10. WCI'k Unit No.

I. P'w'CI'mint OrgltliLilion ~ and Mdr_

Research Triangle Institute 11, ConUK"t Of (;'.,,1 No.

Research Triangle Park, NC 27709 NASl-16489
Il. Type of ReQOf1 In<! /'w,od Cowr~

12, ~int ~y ~ In<! Add, ... Contractor Report
National Aeronautics and Space Administration 14. Spontoring A9fnCY CodI
Washington, DC 20546

505-34-13-32
15. Supgjementwy Not"

Langley Technical Monitor: Gerard E. Migneault

11. ~trlCt
I

AUTOSIM is a software tool which automates the repetitive run testing of software.
This tool executes programming tasks previously performed by a programmer with one
year of programming experience. Use of the AUTOSIH tool requires a knowledge base
containing information about known faults, code fixes, ~nd the fault diagnosis-
correction process. ~UTOSIH can be considered as an "expert" system which replacea
a low level of programming exper~ise.

The report contains reference information about the design and implementation of
the AUTOSIH software test tool, provides flowcharts to assist in maintaining the
software code, and documents how to use the tool.

t 7. Kwy WOfds ISuwnted by Authorl," II. OlStribution S~t_

Software reliability Unclassified - Unlimited
Software error rates Subject Category 61

111. s.:~ily OHaif. (of this reportl 20. Security OHIof 1of t!lit ~I 21. No. of '91 22. Price

Unclassified Unclassified 97

")OS For sale by the Natronal Technical Information SerVice, Splln2fleld, Vlr21nla 22161

End of Document

