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ABSORBING BOUUNARY CONDITIONS FOR EXTERIOR PROBLKKS 

S. I Har1haran 

Univers1ty of Tennessee Space Institute 
Tullahoma, Tennessee 

Abstract 

In this paper we cons1der elliptic and hyperbolic problems in unbounded 

regions. These problems, when one wants to solve them numerically, have the 

difficulty of prescribing boundary conditions at infinity. Computationally, 

one needs a finite region 1n which to solve these problems. The corresponding 

conditions at infinity 1mposed on the finite distance boundaries should 

d1ctate the boundary condition at inf1nity and be accurate with respect to the 

interior numerical scheme. Such boundary conditions are commonly referred to 

as absorbing boundary cond1tions. This paper presents a survey and covers our 

own treatment on these boundary conditions for wave-like equations. 

Research was supported in part by the National Aeronaut1cs and Space 
Administration under NASA Grant NAG-l-527 and in part by NASA Contract No. 
NASl-17070 while the author was 1n residence at the Inst1tute for Computer 
Applications in Science and Engineering, NASA Langley Research Center, 
Hampton, VA 23665. 
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ABSORBING BOUNDARY CONDITIONS 
FOR EXTERIOR PROBLEMS 

by 

S. r. Hartharan * 

Many fOrlnuleLLlons elristng from physical Ildtllre YIeld problems Ifl Iln

bOllndt'd regions MdLht'matical formulatIons of such probh~rns ~ Ield govern

ing partlCll dilferentlel.l equations in or near a given domain in such a fashIon 

that.: i) the equations may Iw linear but \\ith non-constant coelficients, or 

ii) the equation., may be nonlinear, but at leLrge dl.,tances essentially be

have linearly and with comtdnt coelficients. ThIS note presents a survey 

of the treatment of ~Ilch problems, when the desired C;;ollltlonc;; are governed 

by elliptic or hyperbolIc partiell differential equation:, Thf'o.;e problem:, are 

called exterior problems and commonly artse In the field., of aerodynanllcc;;. 

mett'Orology. electromagnetIc c;;cattering, and atmospherIC acoustical \"a\(' 

propagation. The rIldUl difficulties with these probl(~ms are the boundar), 

condItIOn., that need to be preSCribed at large distances from the regIOn of 

intc'r('..,t. CSllaliy only an a...,ymptotic behaVIor is known Such conditions 

may 1)(' "ulficient to check the weli-posedness of the problem however. If 

one wants to compute the solutions of these problems numerically, inlirute 

distances need to be truncated to linite distances. The boundary condItion" 

imposed on the.,e finite distanct' boundartes should dictate the behaVIor eLt 

infinity dnd be c\ccurate \\ it h the illterior numencal scheme. furthermOrE'. 

the shorter tht' dic;;tann's. the mure efficipnt the solutions in term~ of (,0111-

putatioll ttnl(, rpcl'lin'd. ThIS con"iderat.ion is the (~ssential need tn ",{'\eral 

pl'Obl(,1I15. c\t'(>t>I1<iillg <HI t ~H> problprn and the klfld of romputer t.hat I" IN'(1. 

Typica.l of <;11("h ("cl"'C'''' c\rc' (J10c;;t thre(' dImensional problt'me;. The lfltt,rttiort 

here IS to pfe~<.'rtl "'Olllt-' <l'tclllable techniques to O't('fCOtrH' thic;; dtflklllt~. 111-

eluding applicatloll to "'ont(' lIlodpl prolJlerns. 

To begin, let IlS illustrate ..;orne concepts using simple one dimensiondl 

* rniv('rsity of TC'nnl's~(,(, "'JMel' Institute. Tulldhoma. TX 37:~R8. ('.~. \ 



model problems. First. let us consider an elliptic problem where the field 

equations are reduced wave equations. 

COfls:der a slab of thlckne""s L with a varying index of refraction n(.r) 
Left of tIllS slab, let th~ media be hornogl'neous with index of refraction L 

and right of the Slclb (x > L) let the index of refractIOn be no (> L), wluch 

is a constallt Such problems arc common In optics as well as geophysical 
wave:,. TIm, .,iLllcltlon is dlusl.raL('d m Figure 6. L The goverrllng equations 
are as follow,;. 

INCDENT WAlE 
~ 

EXP(jkX) 

It" + k~ IL 

U" + k./n 2 (x)u 
IL" + k 2 

n61L 

o 
REFLECTED 

WAVE 

=0 
=0 

=0 

L 

Figure 1 0111' dimensional model 

x<O 
O<x<L 

x> [, 

ARTIFICIAL BOl.H>ARY 

( 1.1) 

TRANSMITTED WIWE 

... 

x -=-

Then (1.1) Ileeds to be ~olved in [0, L'I ' (£' > L) say with bounddry cOlldl
tions 

u, u l contlnuous on lnterfaces, 

(I :!) 

( l.:~ ) 

(1 I) 

where ill and ill are boundaQ operators and 9 are given are to be cho",('11 

according to the physics of t tlf' prohlem. For example. If thert> I" a \Hill 



amplitude wave traveling from -00 Incident on the slab, then for x < 0 the 
solution may be written as 

(1 1) 

where R(k) is the rellcction coefficient and measures the part of the wave 
which h, reflected from the boundary x = 0 Elimtnating R(k) from (1.5) 
yields 

u'(O) + ~ku(O) = 2lk (1 6) 

which h, ('(1I\(,d cut inflow condition. Thus in view of (1.2) 8 I = d/d.r + 
ik clnu y = '!.tk. Now we can do a similar calculation to obtain a boundar) 
comittion at U For x > L all the Wclves transmit and do not reflect back as 

there are no other bounuaries for x > L. [n this region the solution may I,l' 
written as 

u(x) = T(k)e'knnx (1. 7) 

where T(k) is titt' tran1'>rtllssion coefficient which measures the transmitted 

part of the wave. f:liminating T(k) in (l.i) ~e obtain 

Ii (L') - lkn.o 11.( L') = o. 

Again comparing with (1.:l) we see that the operator 8 2 is 

d 
8 1 = - - lknO. 

dx 

( 1.8) 

(1 9) 

The boundary condition (1 8) IS the desired absorbing boundary condition 

for this problem, which is exact. 

We note that thi., condition could have been appllt-'d ('''{actly at J = "

and this. as \\(' will .,ct'. clop., not d.tways holu in high('r' dtnlf-msions. Tll<'rc i-; 

anoth('r t('chni( <11 difIi( IIlty in this type of problem. Ont' cr\n find t.hat ('\-('11 

if n 2 (x) = C'on.,t.lIIt t IH.'re ." a countable set of wave numbers {k,,} callt'd 
the interIOr reSOrlant l'ulue:1 for which the contlnUOIlS problem uocs not haH' 

solutions. When one ueab with higher uimensional problems, it is not ea5Y 
to ('alculatt' .,lIch frcqllcncic~ \\ hpn one has a general shaped region wiH'l'(' 

the solution is .,ought. 

., 
0' 



ARTIFICIAL BOUNDARY 

o L 

SLAB 

Figure 2 One dl ITH'nsiollal model 

L' 

TRANSMITTED 
WAVE 

As an example of hyperbolic problems and associated bo~ndary condi

tions, let u') consider ag<lIn a one dimensional model [n particular let us 

consider th~ following problem (.-.,ee figure 2): 

1 
2(-) l.Ltt = l.L xz 
C .I: 

1 
-2 Utt = lLxx 
C o 

O<x<L 

.I: > L 
, 

IL, IL x , ILt continuous on I = L 

1.L(O, t) = f(t) 

RI.L(L', t) = 0 (L' > L). 

(I 10) 

(l 11) 

(1 (2) 

(1 1;~) 

This problcm tells IlS thdt the wave is propagatmg from a 50uree at .r = 0 

and thp wme ~peed changes in 0 < x < L and for x > L the \\a\es do not 

reflpct in this region. Equation (l.l:~) dictates a no reflection condition In 

this region dnd B is an operator which is to be detcrmmed to fit thl'i phY<Hcal 

naturf'. For.I: > L the outgoing wave 'iolution can be written as 

n(.r. t) = r:>(x - cot) (l 11) 

wlu.ch yields 
COU x + Ut = o. (1 I:» 

Thus the absorbing condition to be i III posed at .I: = L' is (l.l:j) and 

,) a 
IJ = Co + --

J.r dt 
(1 16) 

4 



We see from both one dimensional examples thdt the absorbing boulld

ary conditions are exact and easy to obtain. The difficulties arise In higher 
dimensivfls as we will see. Nevertheless the first problem we described here 

serves as a modd for invers(' problems that can be investigated numerically 

to calculate n 2 (..r), if the no reflection condition B2 u = 0 is given. TillS is 
described in D.mn and lIariharan[61. 

The approdch tak(,11 I" as follows' In section two we describe a local 
boundary condition pro("(-ldllrp for exterior elliptiC problem:;. In section three 
we describ(' d nonlocdl boundary condition for simIlar problems In st'ctlOn 

four we d(>~cnbe d new method that combines the previolls t\\O procedures 

but 1.8 rrore accurate than either. Finally, in sect1.on f1.ve we describe 

the rrethods known for tl.ITe dependent problems and descrl.be therr use for 

a pract1.cal problem. 

2. Loc~t Doun<Jary Conditions Procedure 

We pointed out in the last section that the absorbing boundary condi

tions are exact In one dimenSion and do not hold in higher dimension" We 
want to inv('stlgate this statement a little further and provide a treatrrH'llt for 

this, that of Daylbs, Grunzburger,and TurkelYI For illustrative purposes let 

us consider th(> following problem that commonly arises in two dimemional 
acou~tic sc(\ttering. 

Let n be a !:limply connected, bounded domain \\ Ith boundary r and Its 

exterior n t. Tht'n the problem is (see figure 3): 

~u + k 2
/J, = 0 in n 

811, 
-a = g 011 r 

11, 

It o;atbfies a rddiation condition (2 :~). 

(2 l) 

(2 2) 

Oridly this problem ha., a physical meaning that there 1'5 a wave IrlC"ld(lnt on 

n whose boundary r IS a perfect reflector and the reflected wa\es all decay dt 

infinity. /1. measures the scattered part of the wave and g is the contrIbution 

from the incident wave. l{t'gardl('<;s of tilt-> bO\Jnddr~ condition on r, the I<;SII(, 

here is the radiation condition. :\"otP that the radiatIon condition is dllotlwr 

.J 



~WAVE 

1""'1 
I 

Jl,+ 

~ 
RADIATED WAVE 

t:.u + k2 
U = 0 

Figure 3 Two dill\('Il~lorl<ll ... cattering problem 

name for thp absorbing condition It i" known that dt large dIstances the 

solution of (2.1) oC'haves like 

) 

e-Ikr ( btU}) b2 (O) \ 
.. +-- bo(8) + - + - + "J ..jr r r2 

(2. I) 
The first part of this solution dictates outgoing waves and the spcond part 
cJictat<'s incoming waves, which can eastly be spen from the sign., e=:,'kr Thlls 

in order for tht' radIation condition to be satisfied "'.e rnu.,t pIck onl} the first 

part, J..e., 

elkr 
( al(O) a.z(8) 

IL '" - ao(8) + -- + ----- -- + . ..;r r r2 ) (2 j) 

Comparing this to the one dimenSIonal case lCl (1.7), sho\\s thdt lllstead of 

a single trammi.,slon coeffiCIent we have many coefficients a" l = n. 1 ? 

Thus the one dimensional way of eliminating the transmiSSIon cOt>ffiCient 

does not exact Iy \\ork In thIS ~itudtion This :,how~ the difficult), ill higher 

dimensions. However. If we settle for loss of accuracy, in particular elullInat

ing ao{O),we have 

(26) 

Thus we see that 
! 

r2(llr - tklL} = O(l/r} (.) -) .. , 
6 



or simply rL~: r ~ (tL r - zktL) = 0 which is Sommerfeld's radiation comlttion 
in two dirnem:ilons. 

Taking a c1o.,cr look at the right hand .,ide of (2.6), in particular, the 

first exprC'ssion, we sce that it is nothing more than -u/2r. Thus we have 

(2.8) 

Comparing (2 i) cmd (2 8) shows the error introduced in the boundary U)(l

dition at large distanccs is reduced by a factor of L/r Tllls was first studlcd 
in corlllt'ction wit.h nUlIlcrical implementation for tune dependent problern~ 
by Bayli~s and Turkel[31 and also by Engquist and \lajda[11 For time har
mOniC' casps with time dependence of the form e - ,kt, both of their boundary 
conditions reduce to the form (2.8). Bayliss, Gunzburger ,and Turkel[21 gen

eralized these conditions. They defined the boundary operator on the left 
side of (2.8) by 

Bt = :r -ik + 1/2r. (2.9) 

Wht'n (2.8) is explicitly written it has the form 

(2.10) 

They oh'H~rved that now the second coefficient al(O) can also be eliminated 

If one does that by setting v = BtU it is readily venfied thdt 

av. :) ( /) - - zkv + - v = 0 1/ r9 2 
ar r 

or 

( 
iJ :;) (() . 1 ) (1.)/2) lh IL = - - t k + - - - tA.· + - It = 0 1/ r . ar 2r ar 2r 

(2 (1) 

This process can be repeated to generalize 

(2 12) 



where 
Tn (a (2j - ~) ) 

8 m = IT -, + 2 - l.k • ar r 
J=I 

(2 13) 

Thus in crdcr to IInplement this approach the problem can be considered in 

a truncilL~d f<'gion (figure (l)) as follows: 

Seek W 'iuch thdt 

,6,w + k}.w = 0 in OT 
8w , 
ar = g Oil l 

8 m W = 0 on r 00 

Figure 4 Computational domam 

(2.11 ) 

(2.15) 

(2 16) 

Wlu'n' 1'= is a circle where the dpproxlfllate boundary conditions are 
to be i m pO'i('d. 

[n the f('glOn nT one can u~e a finite element fornmldtlon of the problem 

similar to thc onc used in the next sectIOn to seek the solution Out there 
are some difficulties. 

Fir'it. Lh(~ governing equdtlon is a second order dirfl'rentldl f'f{uallon 
Even the !)econd order boundary condition involves second ordE'r dprt\,ltiH'" 

in thc radial direction. And all the higher order conditions (2.1:~) have 11ighE'r 
order radial 0lwrators. TillS can be overcome by apppalmg to the differential 

equation it.,df. ftC\\ rlting the equation in cylindrical coordinates 

rJ 2 1t' low 1 a2 w 
(~+k}.)w= - +--+--+k2 w=O. rJ,}. , dT ,2 rJ()2 

(2.17) 

8 



From (2. L 7) we see that second order radial operators can be translated into 
single first order radid.1 dprivatives plus deriva.tives in the tangential direction. 

The second dilliculty b the following. [n comparing (2. L) - (2.3) and 

(2.11) - (2. W) we ~ee that there is an a przcrl error introduced (irrespective 

of the nurtl('rical ~d\(-'mt> IIM·d) of the order O( LI RJ.m r t/2), where R is the 

distance of roo from the origin. This of course depends on the order of the 

operator too. The question b what can we say about 111L - 11) 1\ in a sUItable 
norm The <ul:.wpr is not clvailable in two dimen<;lOns. However. Ilayli<;s, 
Gunzburg('r,cUlu Turkel were able to prove for corrC'c;ponuing opt>ratorc; Bm 
in thr('p dillH'II:.iolls for Tn = Land rri = 2 the folio\\- ing t.ll(>orem. Let 

w = u - w, then 

(2.18) 

where C dt'pends on k and r 00 and the norm is defined on the surface as 

II wilt r) = j~ I W 12 dA • 

This theorem tell" that lht' ('rror on the (~rtilicial boulldary in that given norm 

is inversely proportional to L I rm +1 and this error remains the same in the 

interior boundar) too. The key point here is that this bound is dominated by 

C which depends on the wave (Hllllber k. For three dimensions as k -- 0 this 

estimate is still \-altd. 1I0we\er, In two dimensions. even though it IS possible 

to get such an c<;tullate as the wave number becomes smaller. this constant 

can grow larger. [n fact. in two dimensions thert> is a logarithmic branch 

point as k - () and the constant C can grow very large. For this reason. for 
low frequency cases the problem must be examined very carefully. Such a 

treatment ~ technical and it is available in lIariharan and ~la("Camy 121 

Tht'se dilficultie.., are pertinent to the reduced wave equations. llowt'ver. 
otllt'r ..,troflAly ('Iliplic: cases can be hcmdled without dillicultH's. For exampl(! 

if we consider Laplace's equation ~u = 0, then the solutIOn at infinity either 
has to be bounded or behaves logarithmically with a gi\en bt>havior. To 

apply the above process let us consider the following problem: 

~1L = () in n+ (2.19) 

<) 



u = 9 on r 
u "" log r as r = J x 2 + y2 -+ 00. 

Solutions for this problem can be written as 

00 

I.L( r, 0) = log r + "" an cos nf) • L- rn 
n=O 

(2.20) 

(2.21 ) 

(2.22) 

This ('an 1)(, used to obtain boundary conditions on the artificial boundary 

roo. Set v = 1L - log r - ao. Eliminating a 1 we '5ee thdt, 

au v 1 -- + - = O( -). 
ar r rJ 

(') "'J) l1li_ ..,.J 

Similarly eliminating a2 we obtain 

( a :J ) ( au u ) ( L ) 
ar + ; ar + -;: = 0 r5 . (2 24) 

This process can be repeated to obtain higher order conditions. The constdnt 

ao can be obtained by averaging the solution on roo. In section 4 we provl<ie 
an alternative treatment to resolve the difficulties. In fact we implemf'nted 

the conditions (2.2:~) and (2 21) along with ours to compare the efficiency of 

our procedure. 

3. NOJ~9~al UoundarLQgnditions Procedure 

Thi::! procedure is a little more difficult to handle thdll the prevIous 
one. But, it doe., not introduce an a prlorz error due to placing the arti

ficial boundary at (inite distdnces. There are two different versions of tills 
procedure. The fir.,t one originated in the work of Fix and :\(ar1Il 191 which 
was dOll(' for "ituations of wave guides and was made general in t\\O dinlPrl
-;ions by ~lclcCarny and ~larinl151 The second version I'" due to .John"o(1 and 
~edell'c: 131, which was done independently but ha., "Hllllarlties III the c1p

pro.KIt. Extension to three dimensions \\as done by AZIZ and Kellogg,l .\11 
these procedures are done in view of unplementing finite f'lement methods 
As a result, a rf'Clsonable amount of analysis is available for this method. It is 
almost impossible to stllllrnari7.e all of it here. \Ve choose thE" method of ~la('

Carny and ~Iarin and dt'''crihe ho\\ the nOll local condition.;; are treated. The 

to 



~ L1u+k
2
u=O 

Figure 5 Two dimensional interface problem 

attractivf' rpatllre of thb method is that it is approprtate to interface prob
lems analogous to the OfU.' dllnensional model that we described in section 
one. Let us present the modd problem in two dimensions. Again this is a 
scattering type of a problem, but this time die scatterer is an inhomogeneous 
penetrable body. The problem IS as follows. 

~1L + kln2(,~)u = f in n 
~u + k2 u = 0 in n+ 

(3.1 ) 

(3.2) 

u- = u+ on r (3.3) 

8u- 8u+ 
-- = -on r (3.4) an an 

u - I.L, satisfics Sommerfeld's radiation at infinity. (:J.5) 

Equations (:J.l) and (3.2) say thclL the index of refraction of the media in n is 
n2 (x), x = (x,!J) and out"ide is just a constant. [n (:L;) u.(x) is a prescribed 
incident fi<,ld whi< h ~ati"ncs (:~.2). (3.:3) and (:3.1) are continuity conditions 
or the 'iolllLiol1 011 r In lIIall), applications they may not be continuous. but 
rath('r lila) have' jIlIllP'" '1'11<'''(' jlllllPS can 1)(' treatf'd without much difficulty 
To de.,aibe th<, procedure It't liS ('xtend nl(x) in ,~l "0 that 

( ) {
nl(x'!J) inn 

J.L x. Y = L In n+ 

and extcnd f in a similc.\r manner, so that 

Y(J'.!J) = { f(~. y) in n 
in n+ . 

I I 



The govemmg equatlonS wlll thus be 

(3.6) 

To do numerical calculations Ipt liS truncC'te the infintte region by a circle 

roo into a finite one as depicted in Figure 6. Denote the truncated reglon 

by DT. 

A. 

Figure 6 Computational domam 

A standard way of handling this problem IS to use vanatlOnal methods 

Suppose I/. is a solution and v is an arbitrary diITerentiable function in OT 
(f we multiply (:1.6) by IJ, lIItegrate over OT and use integration by parts we 

find 

- f' v u . V v + k 2 r J.L u v + r v aIL = f' gv. (3 7) 
In T 1 n T 1 r?O an 1 n T 

This variational form is the basis of a numerical method. But, m order 

to implement this numerically, one should have enough mformation about 

uu/un on roo' Thi., in fact requires the knowledge of the solution exterior 

to roo in the region ..1001 tecalling that in this regIOn I.L satlsfies 

This suggests that one may seek an integral repre~entatlon of the ~Olll

tioll~. In particular let II" cOlNder 

It(X) = { O'(y) Gk(x,y)dsy + ut(x) x E 100 (:t8) 
ll',., 

12 



where Ck is the free space Creen 's function and has the form 

(3.9) 

The represelltution (:3 8) b known us the simple layer representatlOn, wluch 

satislics Lhc lldmholtz equut,ioll and satlslies the radiation condition aL Irl

finity. Thl'::,e two facts are ea:,i1y verified by applying the Helmholtz operator 

to (3.8) and by rp,l!tzlIlg the u::'YlJlptotic behaVior of (:~.g) for large vulu('<; of 

I x I which yidds the form (2 . .")) [n order to calculate the normal deriva

tive of 11. on roo, (:~ 8) tog<'tlu.'r With the standard jump relation tn potential 

theory Yields 

OIL 1 j' a au,(x) 
-) (x) = .\a(x) -{- a(y)!)Ck(x,y)dsy + -a- x E fc:xJo 
( n ~ r"" un n 

(3.10) 

Thu::, iJlL/iJn ('.111 be calculated once a IS known. One can use (3.8) to obtatn 

a singlll.lr inlegrdl equation of the tirst kind to determine a when x is on 

roo· 
(3. 11) 

Let us denote this equation in an operator form 

lL,(X) = Gk 0 a(x), x E roo 0 ( ') 1") .). -

Then a can be formally Irlverted to obtain its value of the form 

C - I a = k 0 l.Lo! 0 ( ') 1')) ., .J 

But thNe is a t('chllical dilficulty here. G; I exbts prOVIded _k2 
IS not <til 

eigenvalul' o[ til(' op('ralor ~ wit h zero Dirichlet condItion on roo. Thi" r('sult 

is familiar in the dilfraction theory and it 15 analogous to the ..,tatemcnt that 

we rnud£' [or the ('orr(,!'Ipo!HJing olle dimensional problt'llt. That IS to <;c1). 

snch \allll'", o[ A' will be I he interior rp<;onant values of nT. But there I.., 

a way to tr('.lt tillS problem. Fr::,ell ll81 proposed to seek solutions III Ihe 

exterior not only by a simple 1[\yC'r operator as in (a.8), but combineJ With 

a double I.l)<'r rl'pn'sentatioll. This slightly complicates the explancl.tlOll or 
the preSt'nt nwthod. bllt 11<'\'C'rtt\('less can be done. For the moment \w"hdll 
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assume k is not a resonant value so that (3.13) holds. Then (3. LO) takes the 

form (for x E 1'00): 

The right hal\d sid<' of (3,1-1) is another integral operator acting on u, so 
that (:t I I) can be writ.ten (for x E roo) as. 

(:J.l!») 

Thus, the norlllal derivative of IL is a functional of u on roo A closer look 

at (3. H) shows that to cdlculate au/an at each POUlt on roo we need the 
knowledge of IL on the t>ntlre bOllndary roo. Thus the boundary conditIon IS 

nonloea!. Propt'lties of the opprator Tk are dIscussed In detaIl In reference! lsi 
In pclrticlll,Lr it is a bOllnd('d linear operator. 

Returning to the variational formulation, (3.7) together WIth (3.15) one 

has 

n("" 1..') = -1 Vu,· Vu + k2 
{ fLUV + /. ". Td u} = 

n r 10 r . ( '-' 

l' l du l • gv + (Tk {IL,) + -)v = f (I') • 
Or foo an 

(:J.16) 

To provide a brief numerical implementation of (:3.16) we seek approximat(' 

solutions nh "Ilch that 

a(ll\ Vh) = F(Vh) 

for all Vh E Sh. 

(3.1i) 

where uh and lIlt arc in a I1nitp dlnH'nsional subspace Sh of an infinite di

mensional "/Met' S \\ ~J('le IL i~ !'-ollght. Th('n (:J L i) is made equivalent to (\ 

matrix probl<'111 by ,,('Ieeling a h,1."lis {p l. P 2, P'v} for S h. This sa}., Ii 

can be apIH'oxilll,LL('d by 

which satislies 

1I 

V 

I,h = L tI)y) 

) = I 
(:3.18) 

(:t 19) 



Then (3.19) is the matrix probl<,rrt 

kq=f (3.20) 

where q = (Q"Q2, .. ·,qN)T is the vector of weights in (3.20) and f is tIlt:.' 

source term. 

kl,) = n(,p),ep,) = - j' \lep). 'Y'P, + k2 r 1l'P)p, + r 'PtTk('PJ)' 
OT JOT Jr,x> 

(:121) 
We can now c\<'scribe how the non local boundary condition (3. (5) IS u.,ed. 

We set' fl0111 (:~21) thdt cd\culatmg (3.15) IS t'quivalent to computing the 
integrals 

(.3.22) 

for the helSi., functions 'P., 'P2, .. ''P N of the approximation space 5 h. TillS 

computation b carried out in a straightfor~ard manner using (3. (2) dnd 

(3.11). First solve for 0'" i = 1,· ... N. 

( ') ')'») 
.. J ." 

and cornpllt<' Tk ( P, )(x) (for x E r Xl) from 

(:3.2-1) 

There are effecthe procedures to implement (.3.2:~) and (3.24) in t\\O 

dimensions \\hi<h can hp fOllnd in MacCamy and ~lannllSI, and also in 

conjunction \\ itlt dB mt('gral equation treatment to this problem when n 2(X) 
is a con.,talll found in lIariharan ,mIl ~facCcuny; 121 

~oU\e final rCfl\c\rk., arc needed. We assumed IL and dlL/rJn are contlllll

ous on the boundary r. If they hd\oe jump discontinuities of the form 

(
8 )+ 

= °2 a: . (a.2.) ) 

I:) 



The variational rorm should be modified. These modifications can be four.d 
in reference llsi dud ill Bipldk, ~lacCamy ,amI McGhee[41 together with [1'J

merical irnp!crncntation. 

[n this ~ection we proviue a description of a new method due to Canuto, 

Hariharan,and Lustman[SI. Frolll the discussions of local boundary con<htlons 

proccdun', we <jaw that errors II1tro<iuced II1 computations are t\\<ofold The 
Hrst on£' i., t.he error which varies accordlI1g to the farfield distance and the 
order of LiH' boundary condition U1'l'd. The second one IS due to implementa
tion of fin itt:' ('I<'ment method. In the non local boundary condition procedure 
we see that error is essentially only due to the finite element method and 

the solution of the intf.'gral ('qllation on the boundary r 00' No other f'rror IS 

introduced. Th<' local conditions can be improved by eIther INcreasing the 
distance of "he artificic\1 boundary or tncreasing the order of the opf'rator 

Bm so that the dominating f'rror will be essentially due to the fimte eletnent 
implementation. error estimates, in such procedures are usually at the best 
of O(h2) for thlS type of problem. A questlon whlCh then can be asked lS 

whether we can improve the accuracy of the solutlOns by a method whlCh 

does not have an a prlorl error due to placlng the artlflclal boundary 

and at the same time achleve error in computatlon o (hM) , where M is the 

number of elements used. It lS posslble, if one uses spectral methods, 

and a brlef theoretlcal dlScusslon of obtalnlng such accuracy lS found 

in Lustman [14] for simple one-dimenslonal problems. The method we will 

describe here does not have any theoretlcal error estlmates yet. At thlS 

polnt we only have numerlcal eVldences. Theoretlcal error estlmates are 

avallable only 10 one dlffienlson, and extenslon to hlgher dlmenSlons is 

still much in need of work. The procedure we are gOlng to describe here 

works for a general second-order elliptlc problem, exterlor to a given 

domaln in two dlmenSlons. The structure is as follows: 

Lu = f in n~ 

/J, = 9 on r 
Booll. = 0 as / x /= J.x2 + y}. - 00, 

(·1 1) 

( 1 2) 

(·1 :~) 

where n+ and r .\rf' "allH' '\'" thcl.t d('scrilwd in 'icction 2. Boo is a boulldc\r~ 
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operator at 00. For illustrative purposes and to appraise numerical resuits 
let us consider the probl(>m given through (2.19) - (2.21), which we repeat 

here. 

~u = 0 in n+ 
u = g on r 

1J, "'" log r as r = /.r;2 +!J2 -+ 00 

(-t. I) 

(-L5) 

(1.6) 

Aga.in tht' go.t1 here b t.I('at the condition (,1.6) nurnericdlly Solution in the 

farfield IIlclY be -;ought through separation of variables of the form 

. ak 
lL(r. p) = log r + L ikf e1kp 

k r 
(4.7) 

where (T, p) arp the polclr coordindtes 111 the plane. Note that the nght hand 

side of ( 1.8) satisfies the radldtion condition (4.6) at infinity The coerTicients 

ak are unknown. The approach here consists of expressing each coefficient 

aA, as a functional of 11, rather than eliminating a finite number of them using 

differential operations described in section two. From (-t.7) we ~ee that for 

any r > 0, fLk/ rlkl is the k-th Fourier coefficient of the periodic function of 

'p ........ u( T, <p). Thus we can invert the coefficient to obtain 

L r27f 

~Zl = 211' Jo u(r, B) e-
1k9 

dB = 11k(r). ( 1.8) 

If We tlHferentiate ( 1. 7) with re<;pect to r 

( 1.9) 

and use (1.8). we obtain an int('gl'o-dilf(lrentlal relation on circle of radius r. 
as follow,,: 

Ilr(r.p) = ~ [1-.-!- {27f L I k I e,k(p-9) l1(r,B) dB] 
r 2il' Jo k 

(I 10) 

or 
l 1 

K 01J, (l.Il) 
r r 
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where [( 0 u is the convolution of u with singular kernel 

L 00 

K ( TJ) = - L k cos kTJ • 
1r 

k=l 

Again we consider a truncated region nT with an artificial boundary 

roo where til(' condition corresponding to that of (4.11) will he Imposed. 
Note at this point that (I (1) is similar to the conditIOn (3 15) except It 

is impo'H,d on a drclt' of radius r = floo . It is not a necessary restrictIOn 

that ['00 ~hould be a Circle. But the restriction guarantees accuracy, if the 

approximate .,olution is (1 trigonometric polynomial on r 001 which is the case 

if a spectral Fouri<'r method is used in the angular direction Suppose the 

approximate solution on ['.:10 to be uN, which is a trigonometric polynomial 

of degree N 

N( Ii ) ~ I k I ''''.kN (Roo) e,k,p • I./. 00,<P = ~ .... (4 11) 
Ikl:5N 

The asterisk in the summation indicates periodicity in the rp direction (I e., 

iL:~(Roo) = u~N(Roo)). Then (1.16) says that the intcgral operator f( pro

duces a new polynomial of degree N, whose Fourier coefficients are obtained 

from tllO~e of I./. N (Roo, .) by multiplication by the modulus of the wave nUIIl

ber I k I. If IL'
V is known on ['.:10 through its values /LN(Roc)ttp}) at equally 

spacpd points Jrr/S, J = 0,1.· ... , 'IN - 1, then f( 0 uN can be computed 

at the sanH' nodl"i exactly and efficiently, first, by FOUrier transforming the 

values of l.t v to get Its co<,fficients. then multiplying by the modulus of the 

wave nurni>C'r'i anJ finally by Fourier transforming hack to get the pomt 

valucs of 1\ 0 IL N. This takes order of N log2 ,V operations if one uses fdst 

FOllripr tl'(\Il~forms, \~ hich are alwr\ys useu in thiS type of calculation.,. Thlls 

the spectral solution I>; r<'<{ulr('d to "atisfy the rauiation condition 

v I. f~ Nj 
ILr = n:, [1 - \ 0 u on roo. (11.;) 

Unlike the family or conuitiolls described tfl section 2, this is preCisely the 

same boundary condition satisrit><J by the exact solution except for the trull

cation error which COItlP'i from Ilsing a finite number of modes. No othpr ('rror 
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PHYSICAL DOMAIN 
(r,e) 

2'7f a 

-1 o .1 

COMPUTATIONAL DOtv1AIN 
(5,e> 

s 

Figure 7 ~ra.ppillg of physical d(lmain to computational domam 

is introduc('d,and this is why we call this form the infinite order radirl.tion 

condition. 

Thc actudl implementation in a simplified form is as follows: 

Suppose the boundary r is polar representable as r = R( 0). Wt> use 

Cheby~hev polynomial approximation in the radial direction and FourIer (if'
composition ill the angular direction. F'or this we need to make a coordinatp 

transform as depicted in figure i. In particular the transformation is 

So that 

'P=o 
r = r(05,O). 

r( - L, 0) = R(O) 
() < 0 < 2iT " 

r( L. 0) = Roo - -

( 1.16) 

(1.Ii) 

he side (L) in the transrormed plane will corre.,pond to the houndarj 

r and side (2) will be the bou"ndary roo' Such a transforrndtlon can be dOlle 
in several ways. [11 particular. 'the rollowing stretched one is very elfectl\e 

(1.18) 

Hl 



So that at s = -1, r( -1,0) = R( e). Demanding r( 1, e) = Roo, we determine 
the stretchi IIg pclrarnet('r 0(0) as 

I 
0(0)= ilog(Roo/R(O)). (1.19 ) 

This transformation in turn changes the Laplace equation into the form 

( 4.20) 

where a, b. C ellHl d dre functions of sand 0 obtained from chain rule. Seek 
approximat.e' soilltion., or the form 

AI .. 

/.£N (.'3,0) = L L Umk Tm(s) elkS 

m=O IklSN 

(4.2 L) 

where Tm is the rnth Chebyshev polynomia~ of the first kind, defined by 

T m(cos e) = cos (me) ( 4.22) 

and /.£N is detcrmined by I'£~ at the (AI + 1) x 2N Cheby~llt~v-Fourier nodes 

( I 23) 

i = 0, .... 1\t[ 

j = 0.···· 2N - 1. 

At i = ol[ the given Dirichlet condition should be imposed. At 1 = 0, iJu/as 
obtained from (JIL/,)r should be Ilpdated. Placing the inhomogeneous terms 

arising from the boundary conditions in a forcing term I, let us re\\ rite the 
final ... pcctral operator dS 

(-I. 2 I) 

The malri'( rormed b) {.I ~p IL'
V is large and dops not have spar.,e .,truc

tures. Thus ill order to '\olve (1.2 t). an iterative procedure is deslrabl~. \Vt> 

outline only the brh.f id<'fl of ,implcmenting this procedure. Dropping the 

superscript tv in (1.21) the m~thod is as follows: 

( 1.2i) 
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where an is chosen so that the f'J. norm of the residual 

( 4.26) 

is minimum. This givE's 

Ct.27) 

where ( , ) d('lIol,('s an f l illner product 

As a Ilalllplc comprlrison we caB" generate d situation where the e'Xact 
soilltion is 

For the geometry of a circle (r = R{O) = L) and for a ~3 x 32 grid, £2 
errors are Ibt.ed for different values of Roc), Solutions are compared agaiw t 
Bayliss, Gun7.bllrg('r, dnd Turkt'l's procedure (BCT) with their first order 

(FO) and secoml order (SO) boundary condItions given 1[1 section two (Equa

tions 2.2:J). [0 CHr... denote:, the infinite ordt'r radiation condition of the 

pre~ellt method. (Canuto, Harthdrarl and Lustman). 

10'0 BCT SO BGT [0 CHL 

L.2 .16 X LO- 2 .031 X 10- 2 .00037 X 1O- l 

.15 X 10-3 .025 X 10-3 01 X 10- 1 

. H X 10- 4 .16x1O-4 

TABLE 1 

We "'('(' from this table t hat in all cases the infinite o-rder radiation 

condition i., ""periol'. e.,pt'cially witf'n t hE' artlficidl bound,lry IS (war the body, 
which is de~il'ed anyway .. \.., Uoc illcrcrl"t's the fil'<;t order dnd second order 

conditions lwcoml' better and cOlIIlMrable to the infinite order condition. 

This is because tilt' grid :,i7.e i-; li'Xl'd If the grid size is increased. the Infinite 

order condition Will improve. Further illustrations can agam be fOlllld in 
referencel ') I. 
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Note further that this procedure can be easily extended to other types of 
problems. Jrwe cOllsider the Helmholtz eq,lation ~u+k2u = 0 with radiation 

condition ;.L infinity, we can writt' the oul going solutIons as follows: 

00 

u(r,O) = ~ anf1~1)(kr)em8 ( 4.30) 
n=O 

where lJ~l) are the Hankel functions of the first kind dnd order n. 

rf w(' take the radidl d<'rivative of (4.30) we helVe 

B'!. = ~ a k f/( 1)1 (kT) e1n9 • ar L- n n 
n~O 

( 4.31) 

Again we note that anfl~I)(kr) is the nth Fourier coefficient of u(r, .), WhlC11 

can be inverted to give 

Substitution of this in ( l.:~ 1) gives 

or au 
--=[(ou. aT 

( 4.32) 

( 1.34) 

This is "imilelr to what we had in equation (4 11) except that a finite number 
of value'i of 11,\1) and its ck'rivatives must be calculated. To do thiS there are 

well known recurrence relali()n~ cllld numerIcal evaluations available in the 

literature. 

This hrut be('n the most difficult problem to handle numerically. It is 

still an open question if a nonlo('cll condition thclt is sUItable for numerical 
calculations can be obtailH'11. \\(' "aw in section 1 that it is relatively eclS~ 
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to obtain an absorbing cOfl<Jition for a simple wave equation in one dimen

sion. We proceed in the same fashion to obtain boundary conditions in two 

dimensiofl'i. This process resllits in the procedure lfltroduced by Engquist 

and Majda[71,1 8 1. Bprore we proceed to discuss the two dimensional casc, note 

that in three dimensiou'i D' Alambert's sulution holds. If we consider 

1 
-2 ILtt = l.L xx + 'U yy + !Jzz 
c 

(5.1) 

then the' g('u('ral "'OllltloU for ..,plH'rically radiating cUld Incoming waves can 

he wriHE'n as 

u(r,t) = ~ f(r-ct)+! g(r+et). 
r r 

(5.2) 

This repr<'senta.tion is W(,lI known and may be found in Morse and Feshback,'61 

The first pa.rt indicates outgoing waves. [f one wants to impose a radiation 

condition, this part may be used to represent the solution as follows: 

1 
u(r, t) = - f(r - et}. 

r 
(5.3) 

If we assuflw the sound speed is normalized to one, then it is easy to check 

from (f).a) that 
U 

IL r + l.Lt + - = 0 
r 

(.104) 

which is loca.l, both in space and in time, but provides an exact description 

of spherically radiating waves. 

Thlls in three dinH'n'iion~ a ('adiation condition similar to what we dis

cussed in :i('dimls 2 t.hrough ,j, in the time domain, will become exact if one 

impo.,(,., (:). I) at ..,ullici('ntly far distances. [n two as well as in three dimt-'n

sions a.nalogous to (.;.2) one waflts a cylindrically or spherically radiating 

waves at filllte distance., and thd.t causes problems, as we Will see a little 

Icltt'r. 

Let us b('gin the discll"~lon of two dimensional wave equations. Consider 

a wave trav('ling from Idt indd('nl on t.he boundary x = L( L > 0) without 

renecting ("pc ligllrc 8) and gOH'rll<'cJ hy 

ILtf = /L,u + ILIJY • 



AHTIFICIAL BOUNDARY 

TRANSMITTED WAVE 

INCIDENT WAVE 

L 

Figure 8 Two dimensional model 

Let us pause for a moment and consider the one dimensional case dis

cussed in :wctioll 1. The equation for Co = 1 is 

Utt = /J. xx • (;).6 ) 

This can 1)(' written a..<; 

(5 7) 

Thc ofJcrcltor B = a/r).r + dial dictated the outgomg part of the wave 
given by (I. W). The operator ()/().r; -a/at dictates the incoming part of the 
wave. To obtain a non reflective ('ondition we set 8/1, = O. Let us exarlllne 

if it is po~~ihlc to do an analogolls argument for t\\O dimensions. Equation 
(5.5) Ciln he' \\ ri t ten as 

cJ (Jl I)l J
-- ----

(iJJ: + ;Jt' - ,Jy' ) 
• 

(.j 8) 

We havE' indicated by arrows as in (5.7) thdt in (:> 8) the resulting opt'la
tors may have' a o;illlliar llH'aniitg. Unfortunately we ha\e a square root of (\11 

operator. Bllt this (,dn bc ea . .,ily explained using the theory of pseudo differ
('ntialoperators. For thi" pllrpo<;c let liS take Fourier tran:,forms of f'quulioll'i 

:?I 



(5.5) with resp('ct. to t and y and call the corresponding dual vanables T and 
,. This giv('~ 

. + (2 J)" 0 Ux.r; r -, U = . (59) 

Eqtlation (!Ul) is c\ reduced wavp ('quation in the .c direction, whose solutions 

may b(' written as 

(5.10) 

Arrow:, ill (!i. LO) indicctt.l' the wav('s moving ill the right and left directions 

[II order t.o ilIlpo!:lc all outgoing "iolution we see that we must choose 

(.5.11) 

Now illv('rtillg the Fourier tran::,form in (5.lI), we have 

U(..c, y, t) = j' j' A( T,~) e- 1Tt t"1s"Y+IJ~2:.;2.r; drd, • (5.12) 

Even though U>.l2) gives a perfectly nonreflecting condition at r = L it 
is rntht'r impractical to impose computationally. However, m the psetldo

dilfcrentltll operator terminology 1 VT2 - ,2 IS nothmg but the symbol of the 

pseudo differential operator J:rt22~ :},,',. Engquist and Majda proceeded 

wit.h thi ... gllid(,llI1e thtlt the approximations of this symbol tv'T2 - \2 )' leld 

a ramily or clpproximatc boundary conditions. [n particular, approxuuatlOIl"i 

around, = 0 (thi-; has the p\tY!'ilcal meaning of near normal incidence) give" 

til<-' boundar)' conditions thrlt w(' are seeking. For example. the zeroth order 
appro'(imation of i Jrl - ,J. is 

~ow dilf('r('lItiatel:;.12) With rt-"'Iwct to ..c. 

IL.r;(..c,Vlt) = j' j' lVr}. _,·.l.\(T,~·)e-'rt'-"!ltIJr2-<;2.r;dTd,. 

Substitute (.3.1:Q into (.l.ll) dud evaluate at ..c = L to obtain 

IL%(L, V, t) = j' / /7' \( i. ,) e-lrt+a<;ytaJr2 _.;2 [, ciTd,. 

(> 11) 

.,-
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The right hand side of (5.15) is nothing but the Fourier transform of -Ut. 

Thus (5.15) can be rf'written as 

.~_ + .r__ u 
(

OJ OJ ) 

;-).r: () t 
=u, 

..:=L 
(5.16) 

which is the or1t' dirnent'lional condition (l.15). Obviouhly thIs will not bf> 
accurate enough ror high r('solution to handle two dInlenSlonal effects. En
gquist <'V ~Iajd(l pro('{'t'd('d to obtain higher ordt>r approxlrnatlons of thf' 
symbol i J r1. -~'~.i. The next ordN Taylor approximation is 

(5.17) 

Substitution of (5.17) in (;'. H) yields 

Differentidting (5.18) with respect to t we see that 

1 
11It = /ttt - 2 Ilyy, at.r: = L . (.5 19) 

In this way higher order boundary conditions can be generated. One warnIng 

should 1)(' givl'n that the' higlwr order Tc\ylor approxirnants of the symbol 

i# - ~.J. do not always yield stclble boundary conditions. The proof of 

this statpl1I('nt is difficult and will be found in reference l71 • Instead these 

author:, proposed Pade' approxil1lants and found out that the} are stable 

for all tlpproximat(' boundary conditions. The second Taylor approxllnation 

cOlflcidt'.., with t 1)(' first Pade' approximation and from phY''Ical reasontng 

both til<' boundar), conditions (.j 16) and (5.1t) are stable 

There h-. another indept.'lIdl'lIt work due to Reynolds 20,. parallE'l to the 

work of r~ng<tubt and ~IclJda which derives the boundary condItIon (;j lU) 
as a special case. Mor('ovt'l'. this work describes in detail on reducing t'dge 

f('f1ections. Itt'cently. Ke)':,·~tl pl'oposeJ ,1 new method again by decompo"lflg 

the wave ('<luation into incoming and outgoing components to obtalll a family 
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of boundary conditions. In this work, he derived Engquist and Majda's as 

well as Itcynold5's conditions rlS special cases. 

Now supposc cylindrically radiating boundary conditions are impose,j. 

Then it is 1l('Cl'SSrlrY to chdnge the equation (5.5) into cylindrical polar Lir 

ordinates: 

L L 
Iltt = Itrr + -2 11,89 + - lJ,r· 

r r 
(5 20) 

This has nonconstant to('Hidcllts ~lrHl needs surrkient modification to apply 

the above theory. Again variable coefficient theory pseudo differential op
erators can be used. rt is diUicult to summarize this procedure; however, 

there is a ~imilar approach to that which we have given above. First Pade 

approximation of the resulting symbol yields the boundary condition 

(
iJ () L) -+-+- u=o 

iJr at 2r 

to he illlpo..,('d at sufficicnt.ly large distance r. 

(:J 2l) 

[t is int('r(,.,ting to note that thic; condition can be obtained from c;epara

tion of variables analogotls to that of the spherically outgoing solution Ui :~) 

In this ca.'H! we do not have a simple form of D'Alembert's solution, rather 

it has the form 

( 0 ) - f( t - r) ( (0) a 1 (0) 
u r, . t - . / - ao + -- + 

vr r 
) . (.).22) 

Eliminating fLo(O) in (.;.22) we see that 

-( + -- + - n = 0 ( L / /' / 2) . (
J () L) 

or (Jt 2r 
(- .,.,) 

,} . .,.) 

We "'('(' t.hat hOllnd<lrY condition (.) 21) agrees with the ph)-c;ical one (:J.:!:q 
Eliminatill~ fLl (0), a2(O) etc., Bc\yh.,s &: Turkel '2J obtained a famIly of radi

ation condition~, which agree only with (5.2a) of Engquist &, Majda 0, her 

higher ord('r conditions dilTt'r rrom each other. Higher order conditions an' 

very apP('aling, bllt difficult to IInplement. [t will be of int('re-;t to both 

applied mathematician'i as well a" ('ngineprs to "ce how elfective an' t 1H':,e 
.,-, 



boundary conditions. lIariharan and Bayliss l101 implemented three dimen

sional version of (5.23),LE'., (5.1) to a practical problem descnbed below. 
(n three dlllll'n~ions this boundary condition is asymptotically accurate to 

0(;\ ). 

The problem is t.o solvp for sound radiation into atmosphen' from a 

cylindrical pipe', There is an incident wave 011 the left end of the plpe,und 

sound radial.t"i into atmosph<'re from opE'n end of the pIpe (figure 9). 

Far Field Boundary 12 

-- ..... ' ..... , 

'" Directivity Measurement '" '" , 
: /\ I \ 

Seml-Inllnlte Inlet I D \ 

I "flow Boundary //' \ 
--~--------~~L-------~_z 

~,' 
,,'y 

Figure 9 Computational plane of sound radiation problem 

The incidpnt prt's~ure wave, in particular, has thc form 

p(r,O,p) ~!(r,(})e'mrp (5 21) 

wht'rp In b ca.lled the mode number. The governing wave equations have the 

form 

rJp IJ + imw at + 11.: + Vr + --r-- = 0 

aIL rJp 
--+- =0 
rJt rJ:: 
()1J Jp 
--+--=0 
elt (Jr 

cJw im 
-+-p=o at r 

(5.25) 

(5.26) 

( - .,-) 
.1 .• ' 

( 5.28) 

Tlwse (''Illations an' derivf'd from Euler t'<illations of the associated 
flow problem and are m U11.\hlt, in ref('rt:'llce~ 101 Due to cylindrical s~ m lIIf'tQ 
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(which one can rt'cognize rrom these eqllations) it is sufficient to solve tlte 

problem in Of\(' plalle. (n this plane as in figure 5.2 the truncated bounuari~s 

are 1'1, 1'2,arH1"lJ togcth('r with the <Lxis or tile pipe and the inflow boundal y 
wh('re a. I'IOllrce t(,rm is to 1)(· imposed. 

There arC' bOlluuary conditions on the inllow boundary, a/\lS, and on 

the walls or the pipe. Bllt we 'ihall be concerned only WIth the rauidtion 

condition on "I1,"I2,all<l "I~ For 1f'",I, or HIP details, the r('ader is rprern'd to 

rderence1101 agclin. When the conuition (5.2:~) i'i illlposeu ror p, the acoustic 
pressure, we have 

up up p --- + -- + - = o. ar at 2r 
( 5.29) 

Suppose a point on "Il(i = 1,2, :l) is at a dIstance R = J:;2 + r2 rrom the 

origin and tile line rrom the origin to the point mdkes an dngle a with the 

axis. Then 

ap 8p ap . 
all - J; cos a + ar sm a. (5.~O) 

Uut rrom (5.2(») anu (.j.2i) we see that 

iJp au 
-=--
(}z at 
ap au 
-- = --~ 

iJr at . 
Thus (5.29) becomes 

up p 
~j t - (IJ cos U + IJ 'i ina) + R = 0 . 

Thb condition. tog('t hl'r \\ ith ot.llPr houndaQ conditions. \\as u,,('d to 

solve the "'y"'I«'1II (.") :!.")) through (5 :!R) by <l fourlh orupr finite uirrt'rPIICC 

scheme to obtalll ",()llllion~ r('ported in ligure .j :~2. (n this ligllre the \Nti<-cll 

axis measures th(' ~olll1d pr<'~:'llre levels (UU) and the hOrizontal axb gl\e~ 

angle., 0 where the calculat ioil"i \\ere made at a uistdnce or 10 dldmpter., 

or the pipe. For tIllS situat ion \\ hen the inflow has a time uependence of 
the form t> -lwl. \\(~iner-Ilupr "ollltiolls can be computt'd. We compared our 

:!t) 



procedu;c with the work of Savkar and Edelfelt!t 71 which uses the Welner

Hopr tC( hlliqllc. Also, w(' cornpart'd the solutIons with some experimental 

<.lata fro:n Ville and Silcox! lql. The comparIson is shown in figure 5.3 fO[ a 

wave !lumber k = a :l7 and for md IJIllthal angul<lr dt.'pC'ndence of thp solution 

e120
• WCHler-Hopf til<'ory and the Ilumeri':al solutlolls agree well. HoYtever, 

there is a discrq>ancy with the' experimPlltal results, especially near the aXlS 

for smelll values of O. The IPa.-,on is due to certd.1I1 uncontrollable factors. 

such as pl'lIH' wa\(' (lIld lower order mode of e'o dependence, whIch arise III 

the t'xP('l'iIllClltdl -,itll(\tioll<;. The main point of ernphc\sis here IS that the 

radiatloll (olulitioll (!j.2:~) is a suitable condition for a practical problptn. 
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