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Abstract

In this paper we consider elliptic and hyperbolic problems in unbounded
regions., These problems, when one wants to solve them numerically, have the
difficulty of prescribing boundary conditions at infinity. Computationally,
one needs a finite region in which to solve these problems. The corresponding
conditions at infinity 1imposed on the finite distance boundaries should
dictate the boundary condition at infinity and be accurate with respect to the
interior numerical scheme. Such boundary conditions are commonly referred to
as absorbing boundary conditions. This paper presents a survey and covers our

own treatment on these boundary conditions for wave-like equationms.

Research was supported in part by the National Aeronautics and Space
Administration under NASA Grant NAG-1-527 and in part by NASA Contract No.
NAS1-17070 while the author was 1n residence at the Imstitute for Computer
Applications 1in Science and Engineering, NASA Langley Research Center,
Hampton, VA 23665.

OESH- DOl lbr



ABSORBING BOUNDARY CONDITIONS
FOR EXTERIOR PROBLEMS

by

S. L. Hartharan®*

Many formulations arising from physical nature yield problems in un-
bounded regions Mathematical formulations of such problems yield govern-
ing partial differential cquations in or necar a given domain in such a fashion
that: i) the equations may be linear but with non-constant coelficients, or
ii) the equations may be noulinear, but at large distances essentially be-
have linearly and with constant coelficients. Tlus note presents a survey
of the treatment of such problems, when the desired solutions are governed
by elliptic or hyperbolic partial differential equations These problems are
called exterior problems and commonly arise in the ficlds of aerodynamics.
meteorology. electromagnetic scattering, and atmospheric acoustical wave
propagation. The main difficulties with these problems are the boundary
conditions that need to be prescribed at large distances from the region of
interest.  Usually only an asymptotic behavior is known Such conditions
may be sufficient to check the well-posedness of the problem however. if
one wants to compute the solutions of these problems numerically, infinite
distances need to be truncated to linite distances. The boundary conditions
imposed on these finite distance boundaries should dictate the behavior at
infinity and be accurate with the interior numerical scheme. Furthermore.
the shorter the distances. the more eflicient the solutions in terms of com-
putation time required. This consideration is the essential need in several
problems. depending on the problem and the kind of computer that s used.
Typical of such cases are most three dimensional problems. The intention
here 1s to present some available techuniques to overcome this difficulty. -
cluding application to some model problems.

To begin, let us illustrate some concepts using simple one dimensional
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model problems. First let us consider an elliptic problem where the field
equations are reduced wave equations.

Consider a slab of thickness L with a varying index of refraction n(r)
Left of this slab, let the media be homogrneous with index of refraction 1
and right of the slab (z > L) let the index of refraction be ng (> 1), whuch
is a constant Such problems are common 1n optics as well as geophysical
waves. This situation is lustrated in Figure 6.1 The governing equations

are as follows.

W + ku =1 r<0
u" + k?n?(z)u =0 0<r<L (1.1)
u' + Ic2n5u =0 z> [
ARTIFICIAL BOUNDARY
INCIDENT WAVE
————
EXPGkX) TRANSMITTED WAVE
u”+k2nixfu=0 >
u" + kzu = O I »
0 L L
X
E _— N
REFLECTED
R e e
WAVE

Figure 1 One dimensional model

Then (1.1) needs to be solved in [0, L], (L' > L) say with boundary condi-

tions

Biu(0) =g (12)
B,u(L’) = 0. (1.3)
u, u' continuous on interfaces, (1)

where B, and B, are boundary operators and ¢ are given are to be chosen
according to the physics of the problem. For example. if there 1s a unuit
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amplitude wave traveling from —oo ncident on the slab, then for £ < 0 the
solution may be written as

u(r) = e'** 4+ R(k)e 5= (15)

where (k) is the reflection coeflicient and measures the part of the wave
which is reflected from the boundary z = 0 Eliminating R(k) from (1.5)

yields
u'(0) + 1ku(0) = 2:k (16)

which is called an inflow condition. Thus in view of (1.2) B, = d/dr +
tk and g = 2ik. Now we can do a similar calculation to obtain a boundary
condition at L' For £ > L all the waves transmit and do not reflect back as
there are no other boundaries for z > L. [n this region the solution may le

written as

u(z) = T(k)etknoz (1.7)

where T (k) is the transmussion coefficient which measures the transmitted
part of the wave. Eliminating T(k) in (1.7) we obtain

u'(L') = ikngu(L') = 0. (L.8)

Again comparing with (1.3) we see that the operator Bj is

d
BzECE—LkTLQ. (lg)
The boundary condition (1 8) i1s the desired absorbing boundary condition

for this problem, which is exact.

We note that this condition could have been applied exactly at r = L.
and this. as we will see. does not always hold in higher dimensions. There is
another technical difficulty in this type of problem. One can tind that even
if n?(z) = constant there 15 a countable set of wave numbers {k, } called
the interior resonant values for which the continuous problem does not have
solutions. When one deals with higher dimensional problems, it is not easy
to calculate such frequencies when one has a general shaped region where

the solution is sought.
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Figure 2 One dimensional model

As an example of hyperbolic problems and associated boundary condi-
tions, let us consider again a one dimensional model [n particular let us
consider the following problem (see figure 2):

1
7 et = Ugr 0<zr<lL
c?(r)
[ (110)
— Ut = Ugy zr > L
o
w, g,y continuous on r = L (L1t)
u(0,¢) = f(¢) (L12)
Bu(L',t)=0 (L'>L). (L 13)

This problem tells us that the wave is propagating from a source at r =0
and the wave speed changes in 0 < z < L and for £ > L the waves do not
reflect in this region. Equation (1.13) dictates a no reflection condition in
this region and B is an operator which is to be determined to fit this physical
nature. For £ > L the outgoing wave solution can be written as

n{r.t) = o(r — cot) (11t
which yields
cour +uy=90. (L 15)
Thus the absorbing condition to be imposed at £ = L' is (1.15) and

J 9
B:L()JI +a—t (l 16)



We see from both one dimensional examples that the absorbing bound-
ary conditions are exact and easy to obtain. The difficulties arise in tugher
dimensions as we will sce. Nevertheless the first problem we described here
serves as a modecl for inverse problems that can be investigated numerically
to calculate n?(z), if the no reflection condition Byu = 0 is given. This is
described in Dunn and Ilariharan!®!.

The approach taken 1s as follows' In section two we describe a local
boundary condition procedure for exterior elliptic problems. [n section three
we describe a nonlocal boundary condition for similar problems [n section
four we describe a new method that combines the previous two procedures
but 1s more accurate than either. Finally, in section five we describe
the methods known for time dependent problems and describe their use for

a practical problem.

2. Local Boundary Conditions Procedure

We pointed out in the last section that the absorbing boundary condi-
tions are exact in one dimension and do not hold in higher dimensions e
want to investigate this statement a hittle further and provide a treatment for
this, that of Bayliss, Grunzburger,and Turkel.l?' For illustrative purposes let
us consider the following problem that commonly arises in two dimensional

acoustic scattering.

Let {1 be a simply connected, bounded domain with boundary [’ and 1ts
exterior 1 7. Then the problem is (see figure 3):

Au+k?u=0in0 (2 1)
du
_— = D
3, =9ou r (22)

n satisfies a radiation condition (2 3).

Brielly this problem has a physical meaning that there 1s a wave incident on
(1 whose boundary I 1s a perfect retlector and the reflected waves all decay at
infinity. u measures the scattered part of the wave and g is the contribution
from the incident wave. Regardless of the boundary condition on [, the 1ssue
here is the radiation condition. Note that the radiation condition is another

)
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Au+ku=0
Figure 3 Two dimensional scattering problem

name for the absorbing condition [t is known that at large distances the

solution of (2.1) behaves like

u ~ e;; <ao(9) + a‘r(o) + azr(;?) +- )+e:/‘: <b0(0) + b‘fo) + bzr(f) +-
(2.4)

The first part of this solution dictates outgoing waves and the second part
dictates incoming waves, which can easily be seen from the signs e=*" Thus
in order for the radiation condition to be satisfied we must pick only the tirst

part, 1.e.,

etkr

\/; (ao(o) +
Comparing this to the one dimensional case in (1.7), shows that nstead of
a single transmission coelflicient we have many coeflicients a,,¢ = 0.1 2

Thus the one dimensional way of eliminating the transmission coefficient
does not exactly work 1n this situation This shows the difficulty in higher
dimensions. llowever, if we settle for loss of accuracy, in particular eliminat-

o~
r r?

alf) , a:0) ) (2 5)

ing an{0),we have

e"" 01(0) (12(0)

stk = — e AL FIRCEA e AT
wy — tku s (ao(0) + — + ot )
e'*" (a\(0) | 2aq(6)
- e 9
VT ( re + r3 + > (26)
Thus we see that
ri(u, - iku) = 0(1/r) (2.7)



or simply rL_t[;lo ri(u, —1ku) = 0 which is Sommerfeld’s radiation condition

in two dimensions.

Taking a closer look at the right haund side of (2.6), in particular, the
first expression, we see that it is nothing more than —u/2r. Thus we have

L _ 5/2
u, —tku + 5 U= 0 (1/1' ) . (2.8)

Comparing (2 7) and (2 8) shows the error introduced in the boundary con-
dition at large distances is reduced by a factor of t/r This was first studied
it connection with numerical implementation for time dependent problems
by Bayliss and Turkell®! and also by Engquist and Majda!”! For time har-
monic cases with time dependence of the form e ~**¢, both of their boundary
conditions reduce to the form (2.8). Baylss, Gunzburger,and Turkel(?! gen-
eralized these conditions. They defined the boundary operator on the left
side of (2.8) by
d

When (2.8) is explicitly written it has the form
e* (a(0) 2a,(9)
- .. 2.1
Blu \/; < 2 + -3 + ) ( 0)

They observed that now the second coefficient a(8) can also be eliminated
If one does that by setting v = Byu it is readily verified that

(’)U ” 5 _ 9/2
5—;—kv+;u—0(l/r )

or

This process can be repeated to generalize

Bt = 0 (1/#”‘““) (2 12)



where

r

m o - 3
B,,.=H<8%+(—ZJ———2—)—2A:>. (213)
1=1
Thus in crder to implement this approach the problem can be considered in
a truncated region (fligure (1)) as follows:
Seek w such that

Aw + k*w =0in Qp (2.1t)
d
5?:—) =gonl (2.15)
B,ow =0o0n Iy (2 16)
[

Figure 4 Computational domain

Where ' is a circle where the approximate boundary conditions are

to be imposed.

[n the region Q1 one can usc a finite element formulation of the problem
similar to the one used in the next section to seek the solution But there

are some difliculties.

First, the governing equation is a second order dilferential equation
Even the second order boundary condition involves second order derivatives
in the radial direction. And all the higher order conditions (2.13) have lugher
order radial operators. This can be overcome by appealing to the differential
equation itself. Rewriting the equation in cylindrical coordinates
d?w 1 Jw 1 9%w

J ow lodw . _ .
Jdré + r or + re 062 + k7w =0. (2.17)

(A + k%)w =



From (2.17) we sce that second order radial operators can be translated into
single first order radial derivatives plus derivatives in the tangential direction.

The second dilliculty is the following. [n comparing (2.1) - (2.3) and
(2.14) - (2.16) we sce that there is an a pricrs error introduced (irrespective
of the numerical scheme used) of the order 0(1/R*™ FY/2), where R is the
distance of |', from the origin. This of course depends on the order of the
operator too. The uestion is what can we say about || © — w || in a suitable
norm The answer is not available in two dimensions. [However, Bayliss,
Gunzburger,and Turkel were able to prove for corresponding operators B,,
in three dimensions for m = 1| and mi = 2 the following theorem. Let

w=u-—w, then

| @ ll(py=C/r™*Y, (2.18)

where C depends on k and ', and the norm is defined on the surface as

lwliey= [ 1w da.

This theorem tells that the error on the artilicial boundary in that given norm
is inversely proportional to 1/r™*! and this error remains the same in the
interior boundary too. The key point here is that this bound is dominated by
C which depends on the wave number k. For three dimensions as & — 0 this
estimate is still valid. [lowever, in two dimensions. even though it 1s possible
to get such an cstimate as the wave number becomes smaller, this constant
can grow larger. In fact. in two dimensions there is a logarithmic branch
point as & — () and the constant C can grow very large. For this reason, for
low frequency cases the problem must be examined very carefully. Such a
treatment is technical and it is available in [lariharan and MacCamy '?'

These difficultices are pertinent to the reduced wave equations. lowever.
other strongly clliptic cases can be handled without difficulties. For example
if we consider Laplace’s equation Au = 0, then the solution at infinity either
has to be bounded or behaves logarithmically with a given behavior. To
apply the above process let us consider the following problem:

Au=0 inQ7 (2.19)
9



u=g onl (2.20)
u ~logr as r =22 4+ y? — co. (2.21)

Solutions for this problem can be written as

u(r,0) = logr + Z :_l—: cosnf . (2.22)

n=0

This can be used to obtain boundary conditions on the artificial boundary
. Set v =1u - logr — ag. Eliminating a, we see that,

dv v \ (2.2:
or r r3/° )

Similarly eliminating a; we obtain

o 3 Jv v ]
—_— P — —_ p— — - 2‘1
(6r+r> (8r+r) 0(1'5) (224)

This process can be repeated to obtain higher order conditions. The constant
ag can be obtained by averaging the solution on ' ,. [n section 4 we provide
an alternative treatment to resolve the difficulties. In fact we implemented
the conditions (2.23) and (2 21) along with ours to compare the efficiency of

our procedure.

This procedure is a little more difficult to handle than the previous
one. But, it does not introduce an a prior: error due to placing the arti-
ficial boundary at finite distances. There are two different versions of this
procedure. The first one originated in the work of Fix and Marin'®' which
was done [or situations of wave guides and was made general in two dimen-
sions by MacCamy and Marin!!*3! The second version 1s due to Johnson and
Nedelee' ¥ which was done independently but has sumilarities i the ap-
proach. lixtension to three dimensions was done by Aziz and Kellogg.! Al
these procedures are done in view of implementing finite element methods
As a result, a reasonable amount of analysis is available for this method. [t is
almost impossible to summarize all of it here. We choose the method of Mac-
>amy and Marin and describe how the nonlocal conditions are treated. The

)]



Au+ k2nix)2y = f

Au+ Ky =0

Figure 5 Two dimensional interface problem

attractive feature of this method is that it is appropriate to interface prob-
lems analogous to the one dimensional model that we described in section
one. Let us present the model problem in two dimensions. Again this is a
scattering type of a problem, but this time tle scatterer is an inhomogeneous
penctrable body. The problem 1s as follows.

Au+k%n?(fu=f inQ (3.1)
Au+k*u=0 inQ* (3.2)
v =utonl (3.3)
du~ dut
e = 4
dn an " r (34)
u — u, satisfies Sommerfeld’s radiation at infinity. (3.3)

Equations (3.1) and (3.2) say that the index of refraction of the media in {1 is
n?(x),x = (z, y) and outside is just a constant. [n (3.5) u,(x) is a prescribed
incident field which satisfies (3.2). (3.3) and (3.1) are continuity conditions
of the solution on I' In many applications they may not be continuous, but
rather may have jumps. These jumps can be treated without much difficulty
To describe the procedure let us extend n?(x) in R2 so that

2 .
plr.y) = { "t (f'y) l:lél

and extend f in a similar manner, so that

y(f.y)={f(f,'y) i::‘QQ+ -



The governing equations will thus be
Au+ k®pu =g in R2 (3.6)

To do nunerical calculations let us truncete the infinite region by a circle
[ into a finite one as depicted in Figure 6. Denote the truncated region

by Qr.

Figure 6 Cowmputational domain

A standard way of handling this problem is to use variational methods
Suppose u is a solution and v is an arbitrary differentiable function in Qp
If we multiply (3.6) by v, integrate over {1 and use integration by parts we

find X 5 .
- Vu-Vu+ k2 / puv +/ e =/ gu. (37)
Qr Qr o an Qr

This variational form is the basis of a numerical method. But, in order
to implement this numerically, one should have enough information about
Jdu/dn on [o. This in fact requires the knowledge of the solution exterior
to [ in the region A, recalling that in this region u satisfies

A+ k%u=0.

This suggests that one may seek an integral representation of the solu-

tions. In particular let us consider

n(x) =/l o(y) Ge(x.y)dsy + u,(x) x€ s (3.8)

n

12



where G is the free space Green's function and has the form

Cr(x,y) = =2 (k[ x =y ). (3.9)

The representation (3 8) is known as the simple layer representation, which
satisties the lletmholtz equation and satisfies the radiation condition at in-
finity. These two facts are casily verified by applying the Helimholtz operator
to (3.8) and by realizing the asymptotic behavior of (3.9) for large values of
| x | which yiclds the form (2.5) [n order to calculate the normal deriva-
tive of u on 'w, (3 8) together with the standard jump relation in potential
theory yields
Jdu | d Ju,(x)

(E(x) = 2(r(x) -{-/ ) cr(y)anGk(x,y)dsy + g — X € - (3.10)
Thus du/dn can be calculated once o 1s known. One can use (3.8) to obtain
a singular integral equation of the tirst kind to determine ¢ when x is on

.
Ug D U— U, = / o(y)Gr(x,y)dsy, x€Tly (3.11)

Let us denote this equation in an operator form
us(z) =Groo(x), x€lx . (3.12)
Then o can be formally inverted to obtain its value of the form
o:G;lo Ug « (3 13)

But there is a technical difficulty here. G;l exists provided —k2 1s not an
eigenvalue of the operator A with zero Dirichlet condition on [. This result
is familiar in the dilfraction theory and it 1s analogous to the statement that
we made for the corresponding one dimensional problem. That 1s to say.
such values of & will be the interior resonant values of (7. But there 15
a way to treat this problem. Urselll'®' proposed to seek solutions in the
exterior not only by a simple layer operator as in (3.8), but combined with
a double layer representation. This slightly complicates the explanation of
the present method, but nevertheless can be done. For the moment we shall

13



assume k is not a resonant value so that (2.13) holds. Then (3.10) takes the
form (for x € I'o):

Ou,(x)

Ju |
(x,y)dsy + Vs (3.14)

oG
Zx)= ! “k
on (x) 9k © wa(x) + /l‘

(}k_l °1s(y) on

The right hand side of (3.14) is another integral operator acting on u, so
that (3.11) can be written (for x € ') as.

du,

. 3.15
on (3.15)

dufdn =Ty (u) — Te(u,) —

Thus, the normal derivative of « is a functional of u on ' A closer look
at (3.14) shows that to calculate du/dn at each point on ', we need the
knowledge of u on the entire boundary ['o,. Thus the boundary condition 1s
nonlocal. Properties of the operator T are discussed 1n detail in referencel!s!
[n particular it is a bounded lincar operator.

Returning to the variational formulation, (3.7) together with (3.15) one

has .
a(n.v) = —/ Vu-Vu+ k2/ puv + / vTi(u) =
Qr Qr S o
) du, ]
/ gu +/ (Tr(u,) + o= F(v). (3.16)
Q7 oo dn
To provide a brief numerical implementation of (3.16) we seek approximate

h

solutions ©™ such that

a(u®, vy) = F(va) (3.17)
for all v, € S*.

where u” and vy, are in a finite dimensional subspace Sh of an infinite di-
mensional space § whete u is sought. Then (3 L7) is made equivalent to a

matrix problem by selecting a basis {2, p,. 2y} for $h. This says u
can be approximated by v
wh = Z 4,9, (3.18)
=1
which satislies
a(ut. 2) = F(p). i=1.-- N, (3.19)

L



Then (3.19) is the matrix problem
kq=f (3.20)

where q = (7,,92, -+, qn)7 is the vector of weights in (3.20) and f is the

source terrm.

Vo, -V(p.+lc2/

klu = "'(IPJ‘QD') = -
Q

15 +/ 0. Te(p,).
T 0
(3 21)
We can now describe how the nonlocal boundary condition (3.15) 1s used.
We see ftom (3 21) that calculating (3.15) 1s equivalent to computing the

integrals

Qr

/ e Tk(p;)ds (3.22)
A

for the basis functions 2y, @2, - -pn of the approximation space S*. Thus
computation is carried out in a straightforward manner using (3.12) and
(3.11). First solve for oy,¢ = L,---- V.

[ aCuxy)s, = o) x €T (323)

and compute Ti(p,)(x) (for x € ['s) from

T(e)(x) = o)+ [ oyl z-Culxyidsy - (324

Jon

There are elfective procedures to implement (3.23) and (3.24) in two
dimensions which can be found in MacCamy and Marnnt!'S!, and also in
conjunction with an integral equation treatment to this problem when n2(x)
is a constant found in Hariharan and MacCamy'!?'

Some final remarks are needed. We assumed u and du/dn are continu-
ous on the boundary . If they have jump discontinuities of the form

du du\" . e
ey <3,-’) =09 ((—37),) . (-3.2'))

Ly



The variational form should be modified. These modifications can be fourd
in reference!'! and in Bielak, MacCamy,and McGheel*! together with ni-

merical implementation.

4, Infinite order radialion condition procedure

[n this section we provide a description of a new method due to Canuto,
Hariharan,and Lustman(®. From the discussions of local boundary conditions
procedure, we saw that errors introduced in computations are twofold The
first one is the error which varies according to the farfield distance and the
order of the boundary condition used. The second one 1s due to implementa-
tion of finite element method. In the nonlocal boundary condition procedure
we see that error is essentially only due to the finite element method and
the solution of the integral equation on the boundary ',. No other error 1s
introduced. The local conditions can be improved by either 1acreasing the
distance of vhe artificial boundary or increasing the order of the operator
B, so that the dominating error will be essentially due to the finite element
implementation. Error estimates, in such procedures are usually at the best
of 0(h2) for this type of problem. A question which then can be asked 1s
whether we can improve the accuracy of the solutions by a method which
does not have an a prior1 error due to placing the artificial boundary
and at the same time achieve error in computation o(h) , where M is the
number of elements used. It 1s possible, if one uses spectral methods,
and a brief theoretical discussion of obtaining such accuracy 1s found
in Lustman [14] for simple one-dimensiocnal problems. The method we will
describe here does not have any theoretical error estimates yet. At this
point we only have numerical evidences. Theoretical error estimates are
available only 1in one dimenison, and extension to higher dimensions is
still much in need of work. The procedure we are going to describe here
works for a general second-order elliptic problem, exterior to a given

domain in two dimensions. The structure is as follows:

Lu=f inQ7" (41)
w=g onl (£2)
Bou=10 as |x|= 12+ y? — 00, (43)

where % and ' are same as that described in section 2. B is a boundary
16



operator at co. l'or illustrative purposes and to appraise numerical resuits
let us consider the problem given through (2.19) - (2.21), which we repeat

here.
Au=0 in Q7 (t.1)
u=g onl (4.5)
u~logr asr=vr?2+y? - (4.6)

Again the goal here is treat the condition (4.6) numerically Solution in the
farficld may be sought through scparation of variables of the form

: a
u(r.p) = log r + Z r—]:—| etke (4.7)
k

where (r, p) are the polar coordinates in the plane. Note that the right hand
side of ( 1.8) satislies the radiation condition (4.6) at infinity The coefficients
ax are unknown. The approach here consists of expressing each coefficient
ai, as a functional of u, rather than eliminating a finite number of them using
differential operations described in section two. From (4.7) we see that for
any r > 0,ax/rl* is the k-th Fouricr coefficient of the periodic function of
p — u(r,p). Thus we can invert the coefficient to obtain

ae _ L e ek dp = 1.8
il ] u(r,0) e = dg(r). (1.8)

If we differentiate (1.7) with respect to r

1 ar
wlre) = {1-2 k| ,—;L‘—.e"*’] (19)
k

and use ( 1.8), we obtain an integro-differential relation on circle of radius r.

as [ollows:

ar
ur(r, o) = } [l _ 1 /0 Z | k| etk(p—9) u(r,o)de] (t10)
k

2T

or
Kou (L.11)
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where K o u is the convolution of u with singular kernel

N | -

K(n) = E k cos kn . (4.12)
k=1

Again we counsider a truncated region {1 with an artificial boundary
[« where the condition corresponding to that of (4.11) will be imposed.
Note at this point that (¢ 11) is similar to the condition (3 15) except tt
is imposced on a circle of radius r = R. It is not a necessary restriction
that ', should be a circle. But the restriction guarantees accuracy, if the
approximate solution is a trigonometric polynomial on ', which is the case
if a spectral Fourier method is used in the angular direction Suppose the
approxtmate solution on ['s to be u?V, which is a trigonometric polynomial

of degree V

*

"N(Roo» p) = Z | & | ‘&Il:( (Ro) v (4 11)
lkISN

The asterisk in the summation indicates periodicity in the ¢ direction (1 e.,
i (Roo) = ¥ y(Rs)). Then (1.18) says that the integral operator A pro-
duces a new polynomial of degree [V, whose Fourier coeflicients are obtained
from those of u¥(Reo.-) by multiplication by the modulus of the wave num-
ber | k| . IF u¥ is known on ['s through its values uV(Ro,p,) at equally
spaced points j©/N, ) =0,1.---,2N — I, then K o u" can be computed
at the same nodes exactly and efficiently, first, by Fourier transforming the
values of u Y to get its cocllicients. then multiplying by the modulus of the
wave numbers and finally by Fourier transforming back to get the point
values of A o u¥. This takes order of Vlog,.V operations if one uses fast
Fourier transforms, which are always used in this type of calculations. Thus
the spectral solution s required to satisly the radiation condition

u,v=-|—[l—[\'ou.N] only . (t15)
oo

Unlike the family of conditions described in section 2, this is precisely the
same boundary condition satislied by the exact solution except for the trun-
cation error which comes from using a finite number of modes. No other error

18
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PHYSICAL DOMAIN COMPUTATIONAL DOMAIN
(r,e) (s,0)

Figure 7 Mapping of physical domain to computational domain

is introduced, and this is why we call this form the infinite order radiation

coundition.
The actual implementation in a simplified form is as follows:

Suppose the boundary I' is polar representable as r = R(8). We use
Chebyshev polynomial approximation in the radial direction and Fourier de-
composition in the angular direction. For this we nced to make a coordinate
transform as depicted in ligure 7. [n particular the transformation is

() = 0
© (1.16)
r=r(s,0).
So that
r(=1,0) = R(0)
0<0< 2. (1.17)

r(l1.0) = Ry

he side (1) in the transformed plane will correspond to the boundary
[ and side (2) will be the boundary . Such a transformation can be done
in several ways. [n particular. the lollowing stretched one is very effective

r(s.0) = R(0) e*+V26) (1.18)
19



So that at s = —1, (- 1,0) = R(6). Demanding r(1,0) = R, we determiune
the stretciing parameter o(0) as

1
a(0) = 5 log (Roo/12(0)) . (4.19)
This transformation in turn changes the Laplace equation into the form

lu=A0Au=aug, +bugg + cugg + dug =0 (4.20)

where a, b, ¢ and « are functions of s and 0 obtained from chain rule. Seek

approximate solutions of the form

M "
wV(3,0) =Y Y itk Tm(s) e (4.21)
m=0 |k|<N

where T, is the mth Chebyshev polynomia! of the first kind, defined by
Tm(cos 8) = cos (m#f) (4.22)
and u" is determined by uf\; at the (M + 1) x 2N Chebyshev-Fourier nodes
(3:,0,) = (cos ir /M, ym [N) (t23)
t=0,----M
J=0,--2N8-1.

At ¢ = M the given Dirichlet condition should be imposed. At 1 =0,du/3ds
obtained from du/dr should be updated. Placing the inhomogeneous terms
arising from the boundary conditions in a forcing term f, let us rewrite the

final spectral operator as

(LypuY = f) (5.,0,) = 0. (4.21)

The matrix formed by L.u? is large and does not have sparse struc-
tures. Thus in order to solve (1.21), an iterative procedure is desirable. We
outline only the briel idea of implementing this procedure. Dropping the
superscript [V in (1.21) the method is as follows:

Un vy = Uy +an([11pun - f) (‘25)
20



where ay, is chosen so that the ¢4 norm of the residual

Tt =f— Lapun (426)
is minimum. This gives
(rny Lsprn)
= - 4.27
5T T (Loptmr Lap) (421)

where (, ) denotes an ¢, inner product

As a sanple comparison we can” generate a situation where the exact

solution is
u(x,y) = log [(z — 7)% + y?. (1.28)

For the geometry of a circle (r = R(8) = 1) and for a 33 x 32 grid, ¢;
errors are listed for dilferent values of Reo. Solutions are compared again:t
Bayliss, Gunzburger,and Turkel’s procedure (BGT) with their first order
(FO) and second order (SO) boundary conditions given in section two (Equa-
tions 2.23). [0 CIHL denotes the infinite order radiation condition of the

present method. (Canuto, [artharan and Lustman).

Reo 'O BGT SO BGT [0 CHL

1.2 A6 x 1072 031 x 1072 .00037 x 102

3 A5 x 1073 025 x 1072 Ol x 10~}

5 At x 1074 A6 x 1074 [tx 10"
TABLE 1

We sce from this table that in all cases the infinite order radiation
condition is superior. especially when the artificial boundary 1s near the body,
which is desired anyway. \s o increases the first order and second order
conditions become better and comparable to the infinite order condition.
This is because the grid size is lixed If the grid size is increased. the wnlinite
order condition will improve. Further illustrations can again be found in
ceferencel®!,
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Note further that this procedure can be easily extended to other types of
problems. If we consider the Helmholtz equation Au+k?u = 0 with radiation
condition &t infinity, we can write the oul going solutions as follows:

u(r,0) = Z an H D (kr)e™® (4.30)
n=0

where H,(;l) are the Hankel functions of the first kind and order n.

Il we take the radial derivative of (4.30) we have

%‘rf =Y ank HEY (kr)em?. (4.31)
n=0

Again we note that a, H,(il)(/cr) is the nth Fourier coefficient of u(r, -}, which

can be inverted to give

2
an H{V (kr) = L / u(r,0)e™"Pdyp . (4.32)
0

2r

Substitution of this in ( L.31) gives

du = kH(kr) [ (8=
ar - ‘T)(—) / u(r, p) e~ 2) dp (1.33)
o wVkr) o
or 6
-a-':- =Kou. (1.34)

This is similar to what we had in equation (4 11) except that a finite number
1 . .

of values of I[,(, ) and its derivatives must be calculated. To do this there are

well known recurrence relations and numerical evaluations available in the

literature.

5. Boundary Counditions for Time Dependent Problems

This has been the most diflicult problem to handle numerically. It is
still an open question if a nonlocal condition that is smitable for numerical
calculations can be obtained. We saw in section 1 that it is relatively casy
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to obtain an absorbing condition for a simple wave equation in one dimen-
sion. We proceed in the same fashion to obtain boundary conditions in two
dimensions. This process results in the procedure introduced by Engquist
and Majdal™ 8, Before we proceed to discuss the two dimensional case, note
that in three dimensions 1)’ Alambert’s solution holds. If we consider

l

Sl = s + tyy + Yaz (5.1)

then the general solution for spherically radiating and incoming waves can

be written as

u(r,t) = : f(r—ct)+ ;l g(r +ct)- (5.2)

This representation is well known and may be found in Morse and Feshback'*®!

The first part indicates outgoing waves. [f one wants to impose a radiation
condition, this part may be used to represent the solution as follows:

w(r ) = rf flr = ct). (5.3)

If we assume the sound speed is normalized to one, then it is easy to check
from (5.3) that
u
wyt+ug+ -=0 (5.4)
r

which is local, both in space and in time, but provides an exact description

of spherically radiating waves.

Thus in three dimensions a radiation condition similar to what we dis-
cussed in sections 2 through 3, in the time domain, will become exact if one
imposes (3.1) at sulliciently far distances. [n two as well as in three dimen-
sions analogous to (3.2) one wants a cylindrically or spherically radiating
waves at fimte distances and that causes problems, as we will see a little

later,

Let us begin the discussion of two dimensional wave equations. Consider
a wave traveling from left incident on the boundary z = L(L > 0) without
reflecting (see figure 8) and governed by

et = Ugr + Uyy -«

I
A

—
T )

. e
[ -



ARTIFICIAL BOUNDARY

utt = xx’uyy

— ——— » TRANSMITTED WAVE

INCIDENT WAVE

Figure 8 Two dimensional model

Let us pause for a moment and consider the one dimensional case dis-

cussed in section L. The equation for Co = 1 is
U = Ugg - (5.6)

This can be written as

J 3 J d
—_ — —_—— — = (). v
(i).z: + ()t) ((’)x ()t) =10 (57)

[y
- w

The operator B = d/dr + d/dt dictated the outgoing part of the wave
given by (1.16). The operator d/dr —d/dt dictates the incoming part of the
wave. To obtain a non reflective condition we set Bu = 0. Let us examine
if it is possible to do an analogous argument for two dimensions. Equation
(5.5) can be written as

o, [0 Y J 02 02 . 54)
— 4/ - - — === = |u=0. :
Jr dte Jyl Jr At dy? ‘ ’

We have indicated by arrows as in (5.7) that in (5 8) the resulting opeta-
tors may have a sinular meaning. Unfortunately we have a square root of an
operator. But this can be easily explained using the theory of pseudo differ-
ential operators. For this purpose let us take Fourier transforms of equations
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(5.5) with respect to ¢ and y and call the corresponding dual variables 7 and
¢. This gives

dre +(r2—¢Ha=0. (59)
Equation (5.9) is a reduced wave equation in the £ direction, whose solutions
may be written as

a(x;r,¢) = A(r,¢) e \/;2—’_‘—"’ + B(T $)e “w/ri=¢tz (5.10)

Arrows in (5.10) indicate the waves moving in the right and left directions
[n order to impose an outgoing solution we see that we must choose

a(z;1,¢) = A(T,g)e‘\/” Wi (5.11)

Now inverting the Fourier transform in (5.11), we have
u(L, y,t) = / / A7) et risy /1T =gt fdrdg - (5.12)

Even though (5.12) gives a perfectly nonreflecting condition at r = L it
is rather impractical to impose computationally. However, in the pseudo-
differential operator termmolog,) z\/r2 — ¢2 15 nothing but the symbol of the

pseudo dillerential operator / %5 — 25%. Engquist and Majda proceeded
! Jt Jy

with this guideline that the approximations of this symbol 21/72 — ¢2 yield
a lamily of approximate boundary conditions. [n particular, approximations
around ¢ = 0 (this has the physical meaning of near normal incidence) gives
the boundary conditions that we are seeking. For example. the zeroth order

approximation of i\/;r-—_? is
Wi —¢2air. (5.13)
Now dillerentiate (3.12) with respect to .
we(L y,t) = / / L\/rz -¢2.A(n¢)e -irt ey ay/ri—cte drdg. (5 11)
Substitute (3.13) into (3.11) and evaluate at £ = L to obtain

we(Lyy,t // _"t+'<y+\/ Il Ldrti(. (5.13)



The right hand side of (5.15) is nothing but the Fourier transform of —u,.
Thus (5.15) can be rewritten as

2,9
or Tat)

which is the one dimensional condition (1.15). Obviously this will not be
accurate cnough for high resolution to handle two dimensional effects. Lin-
gquist & Majda procecded to obtain higher order approximations of the
symbol i\/r.j_———_w{;. The next order Taylor approximation is

=0, (5.16)
<=L

'\/2 2_»\— Eg_z_ 7
AR Ml G . (5.17)

Substitution of (5.17) in (5.14) yields

2

Differentiating (5.18) with respect to ¢t we see that

L
Urp = Uy — .2 Uyy , atr=1L. (5 l())

[n this way higher order boundary conditions can be generated. One warning
should be given that the higher order Taylor approximants of the symbol
i\/r—z—:;'—i do not always yield stable boundary counditions. The proof of
this statement is difficult and will be found in reference”. Instead these
authors proposed Pade’ approximants and found out that they are stable
for all approximate boundary conditions. The second Taylor approximation
comcides with the first Pade’ approximation and from physical reasoning
both the boundary conditions (5 16) and (5.11) are stable

20 parallel to the

There is another independent work due to Reynolds
work of Fngequist and Majda which derives the boundary condition (3 19)
as a special case. Morcover, this work describes in detail on reducing edge
reflections. Recently, Keys ¢! proposed a new method again by decomposing

the wave cquation into incoming and outgoing components to obtain a family

26



of boundary conditions. In this work, he derived Engquist and Majda’s as

well as Reynolds’s conditions as special cases.

Now suppose cylindrically radiating boundary conditions are imposed.
Then it is necessary to change the equation (5.5) into cylindrical polar co-

ordinates:

| |
Nep = lpp + =5 Uge + = Uy - (5 20)
r r

This has nonconstant cocllicients and needs sulficient modification to apply
the above theory. Again variable coelficient theory pseudo differential op-
erators can be used. It is difficult to summarize this procedure; however,
there is a similar approach to that which we have given above. First Pade
approximation of the resulting symbol yields the boundary condition

3} 13 1
4 = =0 > 21

<8r+é)t+2r)u (521)
to be imposed at sufficiently large distance r.

[t is interesting to note that this condition can be obtained from separa-
tion of variables analogous to that of the spherically outgoing solution (5 3)
[n this case we do not have a simple form of D'Alembert’s solution, rather

it has the lorm

u(r =f(t—r)_ a a1(6) . 3.
(r0.0) = = (0(9)+ =+ ) (5.22)

Eliminating ap(0) in (3.22) we see that

((—;)7+(-)d—t+zl;> w=0(1/r2). (5.23)
We see that boundary condition (35 21) agrees with the physical one (5.23)
Eliminating «(0),a2(0) etc., Bayhss & Turkel'? obtained a famuly of radi-
ation conditions, which agree only with (5.23) of Engquist & Majda Other
higher order conditions differ from each other. [ligher order conditions are
very appealing, but difficult to implement. [t will be of interest to both
applicd mathematicians as well as engineers to sce how ellective are these

25



boundary conditions. [lariharan and Bayliss!'® implemented three dimen-
sional version of (5.23),i.e., (5.1) to a practical problem described below.
[n three dumensions this boundary condition is asymptotically accurate to

0(:%).

The problem is to solve for sound radiation into atmosphere from a
cylindrical pipe. There is an incident wave on the left end of the pipe,and
sound radiates into atmosphere from open end of the pipe (figure 9).

Far Field Boundary Ty

X / \

\
Semi-Infinite Infet |
Inflow Boundary /(

Y

Figure 9 Computational plane of sound radiation problem

The incident pressure wave, in particular,has the form

o(r,0, p) ~ f(r,0) e™® (524)

where m is called the mode number. The governing wave equations have the
form

» +us+ v+ vt tmn 0 (5.25)
at T
WMy (5.28)

These equations are derived from Euler equations of the associated

. r
flow problem and are available in referencet!©!

28
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(which one can recognize from these equations) it is sufficient to solve the
problem in one plane. In this plane as in figure 5.2 the truncated boundari:s
are vy, yz2,and 3 together with the axis of tue pipe and the inflow boundary

where a source term is to be imposed,

There are boundary conditions on the inflow boundary, axis, and on
the walls of the pipe. But we shall be concerned only with the radiation
condition on Ay, vz,and v; For 1est of the details, the reader is referred to
relerencel !9 again. When the condition (5.23) is imposed for p, the acoustic
pressure, we have

dp dp  p (5.29)

ortortar =" >

Suppose a point on v,(f = 1,2,3) is at a distance R = v/z2 +r? from the
origin and tae line from the origin to the point makes an angle a with the

axis. Then

dp dp dp . .
op = 5, cos @ + 3, Sin e (5.30)

But from (5.26) and (5.27) we see that

dp _ du

dz ot

dp _ v

dr o’

Thus (5.29) becomes

P (vcos a + vsin a) + P =0 (5.30)
- = (veos ) = =0,
5 ) CO8 sin i 3.3

This condition. together with other boundary conditions. was used to
solve the system (5 25) through (5 28) by a fourth order finite difference
scheme to obtam solutions reported in figure 5 32. In this {igure the vertical
axis measures the sound pressure levels (dB) and the horizontal axis gives
angles 0 where the calculations were made at a distance of 10 diameters
of the pipe. For tlus situation when the inflow has a time dependence of

the form ¢ 7'*!, Weiner-Hopl solutions can be computed. We compared our
29



proceduse with the work of Savkar and Edelfelt!!”) which uses the Weiner-
Hopl technique. Also, we compared the solutions with some experimental
data fro:n Ville and Silcox!'®l. The comparison is shown in figure 5.3 for a
wave number k£ = 3 37 aund for azimuthal angular dependence of the solution
e*??. Weiner-Hopf theory and the numerizal solutions agree well. However,
there is a discrepancy with the experimental results, especially near the axis
for small values of 0. The reason is due to certain uncontrollable factors.
such as plane wave and lower order mode of €'? dependence, which arise 1n
the experimental situations. The main point of emphasis here 1s that the
radiation condition (5.23) is a suitable condition for a practical problem.

d8, Level 0 | O Experimental Data (ref 15)
-3 O  Savkar Theory (ref 13)
:(5) < Numerical
ka=3,3710
'_:‘; Mode = 2
-60
- RS N N SRR SN WU T B

0 10 20 30 40 S0 60 70 8 90
Angle, deg

Figure 10 Comparison of results
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