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ABSTRACT 

This report examines the possible use of "rough," or nondiffraction- 

limited, reflectors for collecting optical signals. It is shown that in the 

absence of background radiation, the reflector's surface quality has little 

effect on the performance of a properly designed receiver, but that the pre- 

sence of even small amounts of background radiation can lead to severe perfor- 

mance degradation. Techniques are suggested for improving receiver performance 

in high-background environments, and bounds and approximations to the exact 

error-probability expressions are derived. 
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SECTION 1 

INTRODUCTION 

The development and eventual deployment of large, Earth-orbiting 

optical receivers is under consideration at the present time. Such receivers 

could be used to detect weak optical signals from distant deep-space vehicles, 

or to relay high-rate optical data from nearby planetary probes (and other 

near-Earth sources) to the ground. From a communications viewpoint, one of 

the most important parameters of an optical receiver is its effective aperture, 

which determines the amount of signal power the receiver can extract from an 

incident signal field. Diffraction-limited optical reflectors provide the 

greatest protection against background interference, allowing the minimization 

of the receiver's field-of-view. However, it is generally both difficult and 

costly to construct large, diffraction-limited reflectors at optical wave- 

lengths, hence our interest in the potential use of "rough" reflectors for 

optical communications. Thus, multielement reflectors designed for coherent 

operation at infrared wavelengths could be employed in a "photon-bucket" mode 

at much higher frequencies, or large, inexpensive reflectors with poor optical 

surface quality may at times be employed to collect signal energy. Since 

"rough" reflectors typically scatter a significant fraction of the incident 

signal field, special processing techniques must be used to recover the 

scattered signal energy to improve receiver performance. 

The following sections address some of the fundamental issues 

associated with the use of nondiffraction-limited reflectors for optical 

communications. In Section 2, a useful model for signal and background 

intensity distributions is developed. The structure and performance of a 

minimum error-probability, direct-detection optical receiver is derived in 



Section 3, along with bounds and approximations to the exact expressions. 

Finally, in Section 4, numerical examples are provided to illustrate receiver 

performance under various operating conditions of interest, and to provide in- 

sight into the use of bounds and approximations developed in the previous 

section. 



SECTION 2 

OPTICAL RECEIVER CHARACTERISTICS 

The class of optical receivers considered in this report consists 

of the following basic optical components: a reflector (of radius R and focal 

length f) designed to collect and .focus optical fields, a narrowband optical 

filter (passband [A, X + Ah)) designed to pass the signal fields but 

reject out-of-band background radiation, a spatial filter to limit the 

receiver's field-of-view, an optical detector array to convert the impinging 

optical fields into electrical signals, and a post-detection processor to 

attempt to reconstruct the transmitted message with the desired fidelity. The 

arrangement of these components is shown in Figure 2-1. 

The reflector's surface can be modeled as an isotropic random 

function with normal height distribution above and below the mean surface. 

Let the random variable h denote the deviation of the actual surface from its 

mean value at a particular point on the reflector, and let T be the 
C 

distance between two points on the surface. It is generally assumed [Refs. 1 

and 21 that h is Gaussian with probability density 

and that the correlation function along the surface is of the form 





Thus, o is the root-mean-square (rms) surface deviation, and T is the 
C 

correlation length averaged over all directions along the surface. 

A point in the focal plane can be specified by its Cartesian 

coordinates (x,y), or, equivalently, by its polar coordinates (0,$) (for small 

7 A A 
0, 0 - x + y / f  and 4 is the angle between the vector r = xi + yj and one of - 
the Cartesian axes). If a circular reflector with rms surface deviation o and 

correlation length T is illuminated by a normally incident plane-wave, then 
C 

the fraction of power passing through a circular aperture of radius 0f 

centered in the focal-plane is given by the expression [Ref. 21 

where 

(A is the center wavelength of the optical signal, and k A  2 ' r r / A . )  It is apparent - 
that F (0) is the contribution of the Airy pattern generated by the mean 

1 

reflector surface, attenuated by an exponential function that depends on o ,  

while F2(8) describes the distribution of power scattered out of the Airy 

pattern (note that F (0) is independent of the reflector radius). For a 
2 

"rough reflector" g >> 1, and F(8) can be approximated as [Ref. 21 

where 



The b e h a v i o r  o f  F ( 8 )  i s  examined i n  F i g u r e  2-2 f o r  v a r i o u s  combi- 

n a t i o n s  o f  R ,  a ,  and  T  a t  a  w a v e l e n g t h  o f  X = 1 urn. For  g  << 1 ,  t h e  e n c l o s e d  
C 

power depends  s t r o n g l y  on  t h e  r e f l e c t o r  r a d i u s  K ,  a s  shown i n  F i g u r e  2-Z(a) .  

A s  a ( a n d  hence  g )  i n c r e a s e s ,  t h e  c o n t r i b u t i o n  o f  t h e  A i r y  p a t t e r n  becomes 

l e s s  i m p o r t a n t  ( s e e  F i g u r e  2 - 2 ( b ) ) .  Fo r  l a r g e  v a l u e s  of  g  ( c o r r e s p o n d i n g  t o  

a = 0.2 m ) ,  t h e  c o n t r i b u t i o n  o f  t h e  A i r y  p a t t e r n  becomes n e g l i g i b l e  and t h e  

a p p r o x i m a t i o n  o f  E q u a t i o n  2.4 may be  u s e d .  Note t h a t  f o r  a  g i v e n  r m s  s u r f a c e  

deviation, t h e  amount o f  power s c a t t e r e d  o u t  o f  t h e  A i r y  p a t t e r n  d o e s  n o t  v a r y  

s i g n i f i c a n t l y  a s  t h e  c o r r e l a t i o n  l e n g t h  c h a n g e s ,  b u t  t h e  a c t u a l  d i s t r i b u t i o n  of  

s c a t t e r e d  e n e r g y  d o e s  ( s e e  F i g u r e  2 - 2 ( c ) ) .  

E q u a t i o n  2.3a c a n  be  u sed  t o  r e l a t e  t h e  power r e a c h i n g  t h e  d e t e c t o r  

a r r a y  t o  t h e  i n t e n s i t y  o f  t h e  o p t i c a l  f i e l d  a t  t h e  r e c e i v e r .  I f  t h e  i n t e n s i t y  

L 
o i  a  n o r m a l l y  i n c i d e n t  plane-wave a t  t h e  r e c e i v e r  i s  I W/m , t h e n  t h e  power r 

p a s s i n g  t h r o u g h  a  c i r c u l a r  a p e r t u r e  o f  r a d i u s  8f i n  t h e  f o c a l  p l a n e  i s  

P s ( e )  = A r I r  F (  0 )  ( 2 . 5 )  

2 
i n  w a t t s ,  where  A A t TI K i s  t h e  e f f e c t i v e  a p e r t u r e  o f  t h e  r e f l e c t o r  

r -  s 

( t s  i s  t h e  b u l k  power t r a n s m i s s i o n  f a c t o r  o f  t h e  r e c e i v e r ,  w i t h  0 < t < 1 ) .  
S 

Background r a d i a t i o n  may a l s o  e n t e r  t h e  r e c e i v e r  a l o n g  w i t h  t h e  d e s i r e d  s i g n a l  

f i e l d .  T h i s  t y p e  o f  r a d i a t i o n  i s  g e n e r a l l y  o f  t h e r m a l  o r i g i n ,  and i t  may be  

due  e n t i r e l y  t o  s e l f - e m i s s i o n  by h o t  s o u r c e s  ( s u c h  a s  s t a r s )  o r  i t  may be  a  

c o m b i n a t i o n  o f  s e l f - e m i s s i o n  and r e f l e c t e d  r a d i a t i o n  ( a s  f rom p l a n e t s ) .  With 

t h e  e x c e p t i o n  o f  t h e  Sun,  s t a r s  g e n e r a l l y  a p p e a r  a s  p o i n t  s o u r c e s  due  t o  t h e i r  

g r e a t  d i s t a n c e  f rom t h e  r e c e i v e r ,  w h i l e  p l a n e t s  a p p e a r  a s  d i s t r i b u t e d  s o u r c e s  

t o  r e c e i v e r s  c a p a b l e  of  r e s o l v i n g  t h e i r  d i s k s .  Here we c o n s i d e r  o n l y  e x t e n d e d  

background s o u r c e s  t h a t  a r e  c h a r a c t e r i z e d  by a  s p a t i a l l y  c o n s t a n t  s p e c t r a l  

2 
r a d i a n c e  f u n c t i o n ,  N(X) ( t h e  u n i t s  o f  N(X) a r e  W/m - m - s r ) .  The power 

2-4 
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Figure 2-2. Fractional Signal Power F(8) as a Function of 8 for 
Various System Parameters: (a) CI = 0.03 urn, Tc = 0.25 m, 
and X = 1 pm 



Figure 2-2. Fractional Signal Power F(9) as a Function of 9 for Various 
System Parameters: (b) R = 5 m, Tc = 0.5 m, and h = 1 um 
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Figure 2-2. Fractional Signal Power F(8) as a Function of 8 for Various 
System Parameters: (c) a = 0.07 urn, R = 5 m, and X = 1 urn 

2-7 



d i s t r i b u t i o n  i n  t h e  f o c a l  p l a n e  due t o  a  s p a t i a l l y  c o n s t a n t  background s o u r c e  

i s  a l s o  c o n s t a n t ;  hence t h e  background power p a s s i n g  through a  c i r c u l a r  

a p e r t u r e  of  r a d i u s  Of i n  t h e  f o c a l  p lane  ( o v e r  t h e  wavelength range [A, X + AX)) 

becomes 

i n  w a t t s .  Note t h a t  t h e  background power r e a c h i n g  t h e  d e t e c t o r  a r r a y  c o n t i n u e s  

t o  i n c r e a s e  w i t h  8 ,  whereas t h e  power due t o  a  normal ly  i n c i d e n t  plane-wave 

r e a c h e s  i t s  maximum v a l u e  a s  F(8)  approaches  one.  

An optical detector suitable for photon-counting applications 

g e n e r a t e s  a n  e l e c t r i c a l  s i g n a l  t h a t  can be r e l a t e d  t o  t h e  number of photons 

d e t e c t e d  i n  a  g i v e n  t ime i n t e r v a l .  I f  a n  o p t i c a l  plane-wave of i n t e n s i t y  I r 
2 

W/m i s  normal ly  i n c i d e n t  on t h e  r e f l e c t o r ,  t h e n  t h e  average  number of 

photons  d e t e c t e d  by a  c e n t e r e d ,  c i r c u l a r  d e t e c t o r  e lement  of r a d i u s  Of over  

t h e  t ime i n t e r v a l  [ t ,  t + At) can be expressed  a s  

w i t h  

- -  - n  A I A t  
Is hv r r 

where Is i s  t h e  average  number of s i g n a l  photons p a s s i n g  through t h e  

r e c e i v e r ' s  e f f e c t i v e  a p e r t u r e  i n  A t  s econds ,  n i s  t h e  d e t e c t o r  quantum 

e f f i c i e n c y ,  and hv i s  t h e  energy of a  s i n g l e  photon. S i m i l a r l y ,  t h e  average  

coun t  g e n e r a t e d  by multimode background r a d i a t i o n  over  t h e  same t ime i n t e r v a l  

i n  t h e  wavelength range [A, X + A X )  becomes 



with  

i n  c o u n t s / s t e r a d i a n  ( s r ) .  A s  a n  immediate e x t e n s i o n  of t h e  above r e s u l t s ,  n o t e  

t h a t  t h e  average  count  g e n e r a t e d  by a  c e n t e r e d  d e t e c t o r - r i n g  of o u t e r  r a d i u s  B2f 

and i n n e r  r a d i u s  8  f i s  s imply K(8 ) - K(8 ) .  This  e x p r e s s i o n  h o l d s  f o r  m u l t i -  
1 2 1 

mode b a c ~ g r o u n d  f i e l d s  a s  w e l l  a s  f o r  normal ly  i n c i d e n t  plane-waves. I n  t h e  

f o l l o w i n g  s e c t i o n s ,  t h e  above models w i l l  be a p p l i e d  t o  de te rmine  t h e  p e r f o r -  

mance of  o p t i c a l  r e c e i v e r s  employing rough r e f l e c t o r s ,  and t o  deve lop  t e c h -  

n i q u e s  f o r  improving r e c e i v e r  performance i n  t h e  p resence  o f  i n t e r f e r i n g  back- 

ground f i e l d s .  





SECTION 3 

OPTICAL RECEIVER PERFORMANCE 

3.1 DECODER STRUCTURE 

In order to transmit information over the channel, the transmitter 

modulates the intensity of the transmitted field, which results in a corre- 

sponding modulation in the intensity of the received field. For long-distance 

communications, the received field can be modeled as an intensity-modulated 

planewave. The receiver bases its decision on a fundamental array of observ- 

able~, called counts, generated by each element of the detector array over a 

suitable set of time intervals, in response to the modulated received field. 

Each time interval should be chosen small enough to ensure that the intensity 

of the received field remains essentially constant over that interval. Con- 

sider a situation in which the transmitter sends one of M waveforms during 

every signal interval. Then, if each of M received symbols lasts exactly T 

seconds, N photodetectors responding to both signal and background fields over 

L time intervals (whose union comprises the interval [O,T)) generate the count 

array 

where, under hypothesis "it' (or Hi), the count k is a Poisson distributed 
R n 

random variable with average value 



i ,s 
(Here K refers to the average count due to the signal under H and K~ is 

Rn i ' R n 

the average count due to the background radiation over the nth detector element 

t h 
and R time interval. The dependence on 8 has been suppressed for the sake 

of notational simplicity.) 

Since Poisson counts generated by a deterministic signal field or 

multimode background radiation over disjoint space (or time) intervals are 

independent random variables, it follows that the joint probability density of 

the elemental counts, conditioned on hypothesis "i" being true, can be 

expressed as 

The "maximum a-posteriori" (MAP) decoder selects the hypothesis with the 

greatest probability of occurrence, given the observable array [k]. Using 

Bayes' rule and keeping only terms that depend on Hi, the decisions can be 

based on the set of log-likelihood functions {D.}, where each element of 
1 

this set is defined as 

Here the truncator g. keeps only hypothesis-dependent terms. For each 
1 

observable array, the MAP decoder computes {D~} and selects H if 
'I 

D = max {D.) 
i 

1 

= max logeP(Hi) - Ks + 
i I R=l n=l 

where i = 1 ,  2, ..., M. 



In case several decision functions are tied for largest, the 

decoder may employ any predetermined strategy to choose one of the candidate 

i i 
hypotheses. In Equation 3.5, K and w are defined as 

s R n 

and 

Therefore, the MAP decision is based on the a priori probabilities P(Hi), the 

i total signal energy K and a weighted sum of counts obtained from every 
s ' 

detector element over the entire observation interval. 

The decision function simplifies for the case of equilikely, equal- 

energy M-ary pulse-position modulated (PPM) signals. For this modulation for- 

mat, a r-second optical pulse in the ith r-second time slot ( r  4 TIM) 
i 

represents hypothesis "i" [Ref. 31. Now L = M, P(Hi) = l/M, and K = K (since 
S s 

K~ " = K:, independent of "i") . Furthermore, it can be seen from Equations 
Rn 

3.2 and 3.6b that if Kb does not depend on "R", then 
Rn 

Hence the decision functions reduce to 



where i = 1, 2, ..., M. 
In this case, the decision is based on the sum of weighted Poisson 

counts from all detector elements over each time interval [(i-l)~, i~), and the 

hypothesis corresponding to the time interval containing the greatest weighted 

sum is selected. 

Since each decision function is a discrete sum, several decision 

functions may take on the same maximum value with nonzero probability. When 

this occurs, the problem can be resolved by making a random choice among the 

decision functions, or by any other strategy that selects a hypothesis 

corresponding to one of the largest values. Decoder performance is not 

affected by the particular strategy employed to resolve ties. 

3.2 DECODER PERFORMANCE 

Prior to observation, each decision function is a random variable, 

since the individual counts are random variables. The statistics of the counts 

depend on which hypothesis is actually true. Given that H is true, the 
q 

probability of a correct decision is the probability that D exceeds all other 
9 

Di (i # q ) ,  plus the probability that the correct hypothesis is selected when 

several decision functions are tied for largest. In order to compute the 

average probability of a correct decision, the probability density of each 

decision function must be known. If the conditions of Equation 3.8 are 

t h 
satisfied, then the conditional probability density of the i decision 

function, Di, given that H is true, can be expressed as 
4 



A s  e x p l a i n e d  i n  Appendix A ,  p  ( i , H  ) i s  t h e  p r o b a b i l i t y  mass over  t h e  p o i n t  
k  q  

a when H i s  t r u e  and when t h e  we igh t s  a r e  accord ing  t o  H 
k ' q i ' 

When N d e t e c t o r s  a r e  used t o  obse rve  M-ary symbols,  t h e  average  

p r o b a b i l i t y  of a  c o r r e c t  d e c i s i o n  i.s 

I f  e q u i l i k e l y ,  equal-energy M-ary PPM symbols a r e  t r a n s m i t t e d ,  t h e n  by symmetry 

I f  a  s i n g l e  d e t e c t o r  i s  employed, then  f o r  Po i s son  d i s t r i b u t e d  

counts, Equation 3.11 becomes 

(Ks and K a r e  t h e  average s i g n a l  and background g e n e r a t e d  c o u n t s ,  r e s p e c t i v e l y ,  
b  

i n  each  T-second t ime i n t e r v a l . )  Note t h a t  a s  K b  approaches  z e r o ,  t h e  average  

symbol e r r o r  p r o b a b i l i t y  r educes  t o  



which is just the probability of erring when attempting to decide between M 

empty slots by random choice. 

3.3 BOUNDS AND APPROXIMATIONS 

Lt is apparent from Equation 3.2 that the average count generated by 

any detector element is always at least as great as the average count induced 

b 
by the background radiation. As the smallest element of [K ] increases, the 

Rn 

envelope of the density of each elemental count approaches a Gaussian density 

with mean and variance both equal to the particular count-average [Ref. 4 1 .  

Thus, for large background levels, each detector output can be modeled as a 

Gaussian random variable. Since the sum of independent weighted Gaussian 

random variables is also Gaussian, the envelope of the probability density of 

the weighted sum defined in Equation 3.8, approximated as a continuous 

Gaussian random variable, becomes 

where, for equilikely, equal-energy M-ary PPM signals 

; i f q  



; i f q  

b 
In the above equations, K is the average count due to background radiation, K' 

n n 

the average count due to signal, and wn the weighting factor associated with 

the nth detector element. Ignoring count equalities, the average probability 

of a correct decision becomes 

P  ( C )  = N ~ M ( ~ ( ~  ) = N  M  q 

i f q  

which yields, after some manipulation, 

This last expression is considerably easier to evaluate numerically than the 

exact expression given by Equation 3.11, and can therefore be used to approxi- 

mate the average symbol-error probability when the intensity of the background 

radiation is sufficiently great. The accuracy of this approximation under 

various operating conditions will be examined in the following section. 



The performance of the single-detector receiver observing 

equilikely, equal-energy M-ary PPM signals can be bounded by the inequality 

P (E) < (M-1) P (E) (3.18) 
1 M 1 2  

which is proven in Appendix B. 

The single-detector binary error probability can be expressed as 

[Ref. 51 

whereA = J K  + Kb -%, $ = ~J(K +Kb)Kb, and E ($) = e-'I ($). Since 
s s n n 

for any + a 0 and n a 0, I,($) Uo(+), it follows that 

P (E) < e 
1 2  

n=O 

The upper bound on the binary PPM error probability, pU, can itself 
1 2  

be approximated accurately in the limit of small or large K Thus, for 
b ' 

Kb << 1, 

while for Kb >> 1, we have 



The approximation in Equation 3.21b generally yields accurate results even for 

moderate values of Kb (that is, K b L  1). These approximations can be easily 

evaluated with a calculator to provide the designer with quick, accurate 

estimates of receiver performance. 





SECTION 4  

NUMEKICAL KESULTS 

4.1 KECE I V E R  PERFOKMANCE 

I n  S e c t i o n  3 we showed t h a t  t h e  e r r o r  p r o b a b i l i t y  e x p r e s s i o n s  ( a s  

w e l l  a s  t h e  bounds and approx imat ions )  depend on t h e  average  s i g n a l  and back- 

ground c o u n t s  g e n e r a t e d  by t h e  d e t e c t o r  e l ements  over  t h e  s i g n a l  i n t e r v a l .  For 

a  g i v e n  wavelength  ( h e n c e f o r t h  we assume t h a t  X = 1  pm), t h e  average  s i g n a l  

and background c o u n t s ,  K and K b ,  i n  t u r n  depend on t h e  r e f l e c t o r  pa ramete r s  
S 

a, Tc ,  and K ,  and on t h e  a n g l e  8 (which d e f i n e s  t h e  r e c e i v e r ' s  f i e l d - o f - v i e w ) ,  

a s  was shown i n  S e c t i o n  2 .  I n  g e n e r a l ,  8 h a s  t o  be opt imized t o  a c h i e v e  b e s t  

performance ( t h a t  i s ,  lowes t  e r r o r  p r o b a b i l i t y )  a s  t h e  v a r i o u s  sys tem param- 

e t e r s  a r e  changed. Next we examine t h e  performance of  an  o p t i c a l  r e c e i v e r  

o b s e r v i n g  M-ary PPM s i g n a l s ,  f o r  v a r i o u s  r e f l e c t o r  pa ramete r s  and background 

environments .  

4.1.1 No Background R a d i a t i o n  

F i r s t  c o n s i d e r  t h e  l i m i t i n g  c a s e  Kb = 0 ,  and d e f i n e  Kso a s  t h e  

average  s i g n a l  coun t  o v e r  t h e  e n t i r e  d e t e c t o r - p l a n e .  I n  t h i s  c a s e  no advan tage  

can  be ga ined  by u s i n g  m u l t i p l e  d e t e c t o r s ;  hence ,  we need o n l y  c o n s i d e r  t h e  

s i n g l e  d e t e c t o r  c a s e  (N = 1 ) .  Now NPM(E) i s  a  f u n c t i o n  of  R ,  a ,  Tc, M ,  K s o ,  

and 8. The v a r i a t i o n  of  P ( E )  w i t h  8 f o r  s e v e r a l  v a l u e s  o f  a i s  shown i n  
N M 

F i g u r e  4-1, w i t h  K = 20 m ,  T  = 1  m ,  M = 3 2 ,  and K = 10. The l i m i t i n g  e r r o r  
C S O  

p r o b a b i l i t y  o f  ( ( M  - l)/M)exp(-Kso) can  be approached a r b i t r a r i l y  c l o s e l y  by 

i n c r e a s i n g  8 f o r  any  c h o i c e  of  a ;  however, i t  i s  approached most r a p i d l y  by 

t h e  d i f f r a c t i o n - l i m i t e d  r e f l e c t o r  ( a  = 0.Opm). T h e r e f o r e ,  i n  t h e  absence  of  

background r a d i a t i o n ,  t h e  o n l y  d i s a d v a n t a g e  of  poor r e f l e c t o r  s u r f a c e  q u a l i t y  



8, prad 

Figure 4-1. Symbol Error Probability NPM(E) as a Function of 
0 ,  with No Background Radiation 



is that the larger field-of-view required to achieve a given performance level 

increases the chance that nearby stars, or other background sources, might 

enter the receiver's field-of-view. 

4.1.2 The Effects of Background Radiation 

As the background level Ib increases from zero, optimization over 8 

becomes necessary to minimize the error probability. (The units of Ib are 

-1 2 counts per 10 steradians, or counts/pico-sr, referenced to an arbitrary 

timeslot. Hence, the average noise-count observed over any M-ary time-slot is 

2 
taken to be K = I  IT^ .) This relationship between 8 and I is illustrated 

b b  b 

in Figure 4-2, where the optimum 8, 8 is displayed for various background 
0 ' 

levels, with the other relevant parameters held fixed (Kso = 10, R = 20 m, 

T = 1 m, a = 0.1 pm, and M = 32). The dependence of 8 on I is quite evident 
c o b 

from this figure: when the background level is increased, the optimum angle, 

OO, 
decreases as the receiver attempts to exclude the interfering background 

radiation while collecting signal energy. However, the minimum error probabil- 

ity also increases with background level, because even with an optimized field- 

of-view, less signal energy is collected in a noisier environment. 

The minimum symbol error probability is shown in Figure 4-3 as a 

function of K for various background levels and rms surface deviations 
S 0 

(R = 20 m and T = 1 m). A single circular detector of radius 8 f is used in 
C 0 

both cases (of course, 8 is a function of both I and a, and hence must 
0 b 

be determined separately for each computed point on these graphs). Note the 

rapid performance degradation as the rms surface deviation increases, even for 

the relatively low background level represented by I = 0.04 counts/pico-sr 
b 

(this level corresponds roughly to an average of 0.13 counts for a field-of- 

view half-angle of 8 = 1 prad). 



8, prad 

igure 4-2. Symbol Error Probability NPM(E) as a Function of 8 
the Presence of Background Radiation 



Figure 4-3. Minimum Symbol Error Probability as a Function of Kso 
for: (a) Various Background Levels 



Figure 4-3. Minimum Symbol Error Probability as a Function of 
Kso for: (b) Various rms Surface Deviations 



4.1.3 Focal-Plane Detector Arrays 

In high background radiation environments, receiver performance can 

often be improved by using several detector elements to partition the field-of- 

view, followed by the MAP processing developed in Section 3. For the cir- 

cularly symmetric signal intensity distributions under consideration, the 

detector elements take the form of concentric rings designed to collect signal 

energy from roughly equal-intensity contours in the focal plane. The output 

of each detector element is multiplied by the appropriate weighting factor 

(Equation 3.6b) and summed to obtain the decision functions defined by 

Equation 3.5. Now, Equation 3.11 must be evaluated to determine receiver 

performance (recall that Equation 3.11 applies only to equilikely, equal-energy 

M-ary PPM signals). We have seen in Section 2 that the signal intensity 

distributions under consideration here can be roughly divided into diffracted 

and scattered components. Therefore, it seems reasonable to divide the field- 

of-view into two regions by using concentric detector elements matched to each 

component. The inner detector element (of radius 0 f) collects mainly 
1 

diffracted signal energy, while the outer detector ring (of outer radius 0 f 2 

and inner radius 0 f) collects scattered signal energy. Best performance 
1 

is obtained by finding the two radii that minimize the probability of error, 

subject to the constraint 0 > e l .  (Of course, further improvements are 

possible by using more than two detector elements; however, for the type of 

intensity distributions under consideration, the additional improvement is 

generally not significant.) The improvement over the optimized single- 

detector configuration can be seen in Figures 4-4(a) and (b). (Note that in 

Figure 4-4(a), M = 2.) The greatest relative improvement is obtained in 

Figure 4-4(a), where most of the signal energy is in the scattered fields, but 



Figure 4-4. Minimum Error Probability as a Function of Kso for 
Optimized Single-Detector (N = 1) and Partitioned 
Field-of-View (N = 2) with: (a) Moderate Background 
Level, M = 2 



Figure 4-4. Minimum Error Probability as a Function of Ks0 for 
Optimized Single-Detector (N = 1) and Partitioned 
Field-of-View (N = 2) with: (b) High Background Level, 
M = 32 



Figure 4-4. Minimum Error Probability as a Function of Ks0 for 
Optimized Single-Detector (N = 1) and Partitioned 
Field-of-View (N = 2) with: (c) Fractional Signal 
Power vs. 0 for Cases Considered in Figures 4-4(a) 
and (b) 



a significant amount of essentially noise-free signal energy remains in the 

diffracted field. A lower bound on the achievable performance is also shown 

for comparison (I = 0). Note that significant signal power savings can be 
b 

realized by using two detector elements (N = 2) relative to the single-detector 

case (N = l), but the noiseless performance bound cannot be reached, even as 

the number of detectors grows without bound. Less favorable situations are 

illustrated in Figure 4-4(b), where the noise level, and the distribution of 

diffracted and scattered signal components are such that no significant 

advantage can be attained over the optimized single-detector case. The signal 

intensity distributions corresponding to the performance curves of Figures 

4-4(a) and (b) are shown in Figure 4-4(c). 

4.2 PERFORMANCE BOUNDS AND APPROXIMATIONS 

The bounds and approximations developed in Section 3 can often be 

used to obtain quick answers without extensive numerical computation. The 

approximate expression given in Equation 3.17 yields excellent results for both 

single- and multiple-detector receivers as the background intensity becomes 

sufficiently great. This approximation is based on the fact that the envelope 

of the Poisson probability density approaches a Gaussian density as the average 

count-rate grows without bound. It is apparent from Figure 4-5 that for the 

single detector case (N = l), the agreement between the exact solution and the 

Gaussian approximation is very good when K > 10, but the approximation tends 
b - 

to become unreliable for small background counts (i.e., when Kb 1). When 

two (or more) detectors are employed, the Gaussian approximation continues to 

yield good results as long as all detector elements observe high background 

counts. In Figure 4-6, condition "A" is defined as Kbl = 10, Kb2 = 5, 

Ks2 = 2 Ksly and condition "B" as K = 2, Kb2 - - 1, Ks2 = 2 Ksl. Note 
b 1 
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Figure 4-5. Performance Bounds and Approximations with: (a) M = 



Figure 4-5. Performance Bounds and Approximations with: ( b )  M = 32 



Figure 4-6. Symbol Error Probability Approximations for a Partitioned 
Field-of-View with: (a) M = 2 



ERROR PROBABILITY 



that the exact result and the Gaussian approximation are in good agreement 

under condition "A" for M = 32 as well as for M = 2, but that the approximation 

tends to become erratic under the weaker background condition, "B." Thus, care 

must be exercised when using this approximation in regions where the Gaussian 

assumption may not apply. 

The behavior of the binary upper bound pU defined in Equation 
1 2' 

3.20, is shown in Figure 4-5(a) as a function of K for the case of inter- s ' 
mediate (Kb = 1) and large (Kb = 10) background counts. The M-ary bound 

(M - 1) pU is shown in Figure 4-5(b) for M = 32. It is apparent that these 
1 2  

bounds are tight at low error probabilities, for intermediate as well as large 

background counts. The approximation to the binary bound defined in Equation 

3.21b uses the first term of the asymptotic expansion of Io($); therefore, 

it is accurate as long as 9 >> 1, a condition that is guaranteed to hold if 

Kb >> 1. (For the high-background case shown in Figure 4-5, the approximation 

cannot be distinguished from the bound in the region K > 5.) However, the 
S - 

low background count approximation to the binary bound (Equation 3.21a) should 

only be used in situations involving extremely low background counts, as it 

tends to become inaccurate in intermediate-background cases. 



SECTION 5 

CONCLUDING REMARKS 

The possibility of using "rough" reflectors for the purpose of receiving 

optical signals has been examined in the previous sections. It was shown that 

reflector surface quality has little effect on receiver performance in the 

absence of background radiation, as long as the receiver's field-of-view can 

be increased sufficiently to collect most of the scattered signal energy. 

However, background radiation may cause serious deterioration in receiver per- 

formance when rough reflectors are employed. This problem can be ameliorated 

by partitioning the receiver's field-of-view to obtain independent samples of 

the distorted signal field, and resorting to more complicated schemes for pro- 

cessing the field samples to improve receiver performance. It was found that 

under favorable circumstances adequate performance can often be maintained 

using nondiffraction-limited receivers, possibly leading to significant savings 

in cost and receiver complexity. Bounds and approximations to the exact error- 

probability expressions have also been developed to aid in system design 

without the need for extensive numerical computation. 
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APPENDIX A 

In this appendix, a useful form of the conditional probability 

density of the ith weighted count, given H is derived. Let zi denote 
9  ' 

the sum of all elemental counts weighted according to hypothesis "i": 

Since the elemental counts are independent, the characteristic function of z i 

can be expressed as the product of the characteristic functions of the 

individual weighted counts. If the counts are governed by hypothesis "q," then 

the characteristic function of zi, given H , becomes 
q  

L N 

1 I = exp (C E:n [exp ( j w  .in) - 11 1 @z.( q  
R = l  n=l 

The conditional probability density of zi, given H can be expressed as 
q  ' 

the inverse transform of @ ( w  ( H ~ )  : = i 

1 j wci 
PZ ( u p q )  = - dw 

2v 
i 

Note that p ( a l ~  ) is a discrete density, since it can be viewed as the 
z : 4  
I 

convolution of a finite number of discrete densities. Therefore, this condi- 

tional density can always be expressed as 



where p (i,H ) represents a nonzero probability mass defined over the point 
k q 

i 
a = a With no loss in generality, we can assume the ordering 

k ' 

i 
so that for any "i," {ak} is an ordered set of points along the nonnegative 

i 
real line. The value of the probability mass over some point a depends on 

k 

the distribution of signal and background energy over the detector array. Given 

H the values of pk(i,H ) can be computed for any k, once the distribution of 
4 ' 4 

signal and background energy is specified. 



APPENDIX B 

This appendix is devoted to the proof of the inequality shown in 

Equation 3.18. By symmetry, it suffices to prove that 

P (E I HI) < (M-1) lP2(E 1 H1) 1 M - 

Write the conditional error probability as 

where 

and 

'M 2 
= Pr {committing an error when attempting to resolve ties 

among maximal counts including the signal count I H .) 1 

If 

and 

then it follows that Equation B.l is true. But Equation B.3a is true because 

the probability of the union of events is upper-bounded by the sum of the prob- 

abilities of the constituent events (union bound). To show that Equation B.3b 

is true, let 



k 
K -K 
b e b  

Xk = k! 

and 

and write PM2 as 

where 

Since Z C(KbyKs;k) = 2 P22y it suffices to prove that 

But 

Theref ore 

Hence Equation B.l is true as asserted. 
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