DETERMINATION OF PRIMARY ENERGY IN NUCLEUS–NUCLEUS COLLISIONS
AND THE HIGH p_T TAIL OF α–PARTICLES

P. S. Freier and T. W. Atwater
School of Physics and Astronomy, University of Minnesota
Minneapolis, Minnesota 55455

Abstract. A determination of primary energy is required in order to study the energy dependence of meson multiplicity in A–A collisions in cosmic rays. Various procedures which estimate the energy of a primary nucleus from its interaction have been investigated. We have used an average of two methods, one using the pions and wounded protons and the other using spectator protons and α–particles. The high p_T tail observed for $Z = 2$ fragments requires a modification of the latter method.

1. Introduction. From accelerator studies of 1.7 and 3.7 GeV/amu of A–emulsion inelastic collisions, the distribution in p_T for projectile fragments has been measured for 12C, 14N, 16O and 56Fe beams. 1–4 Although the distribution in p_T for $Z = 1$ fragments is consistent with a Gaussian–like distribution

$$\frac{dN}{dp_T} = \frac{p_T}{\sigma^2} \exp \left(-\frac{p_T^2}{2\sigma^2}\right)$$

with $\sigma = 100$ MeV/c ($<p_T> = 125$ MeV/c), 3 for fragments of $Z \geq 2$ there is a marked deviation from this shape due to the presence of a tail of large momentum transfers. This high p_T tail results in $<p_T>$ being significantly larger than the $<p_T>$ expected from eq. (1). For $Z = 2$ fragments from 12C, $<p_T> = 241\pm 8$ MeV/c, 1 and from 56Fe, $<p_T> = 370\pm 10$ MeV/c. 3 $<p_T>$ seems to depend only weakly on target A, ($<p_T>^A$) but the dependence on projectile A is more pronounced ($<p_T>^A$). 3 This increase in $<p_T>$ is mainly due to the enhancement of the high p_T tail with A of the projectile. We shall show that the high p_T tail is also enhanced as the energy of the projectile is increased.

2. Measurements on Beam Projectiles. We have analyzed 105 55Mn–emulsion interactions at $<E> = 1.69\pm 0.3$ GeV/amu, measuring the emission angles of fragments, α–particles, protons, and mesons. The angular distribution of α–particles is shown in Fig. 1. The transverse momentum, p_T, is calculated from the angle assuming 4He is emitted at the same momentum per nucleon, p_o, as the projectile had at the interaction:

$$p_T = 4 \ p_o \ \sin \Theta$$

The peak in the angular distribution corresponds to p_T (peak) = 240 MeV/c, while $<p_T> = 356\pm 20$ MeV/c. This $<p_T>$ value agrees very well with the value 370±10 MeV/c measured by Chernov et al. 3 for α–particles from 56Fe at 1.7 GeV/amu.

The emission angles of α–particles from 179Au–emulsion interactions at 0.5 - 1.0 GeV/amu are also shown in Fig. 1. (The energy at each interaction was calculated by correcting for ionization loss of the
Fig. 1. Angular distributions of α-particles from A-emulsion interactions. Mn at 1.7 GeV/amu; --- Au at 0.5-1.0 GeV/amu; -- cosmic rays, $Z = 6-26$ at $E \geq 7.5$, $E_{1/2} = 11.8$ GeV/amu. The arrows show the angles corresponding to the measured $p_T(\text{peak})$ for Mn and Au and to $p_T(\text{peak}) = 240$ MeV/c at the median energy for cosmic rays.

There is a marked shift of the angular distribution to larger angles due both to the lower primary energy but also to an increase in $p_T(\text{peak})$ and an enhanced tail of high momentum transfers. The peak corresponds to $p_T = 350$ MeV/c but $<p_T> = 520$ MeV/c.

We have used the angles of emitted mesons, protons, and α-particles from ^{55}Mn-emulsion interactions to calculate the energy of the Mn projectile using two different methods: one uses the participant protons (WP) and produced mesons (M), and the second uses the spectator protons (SP) and α-particles. Paper HE 1.4-10 of these proceedings discusses the first method and the separation of spectator and participant protons. This paper discusses the second method and what adjustments are required in applying it to higher energy cosmic ray projectiles.

Providing p_T is approximately independent of energy, we can estimate the primary energy from

$$P_{\text{primary}} = \frac{p_{\text{eff}}}{N_{\text{SP}}} \sum_i \frac{1}{\sin \Theta_i} + \frac{1}{4} \frac{p_{\text{eff}}}{N_{\alpha}} \sum_i \frac{1}{\sin \Theta_i}$$

where P_{primary} is the momentum per nucleon and the p_T are effective values of spectator and α-particle transverse momentum given in the
Table. This estimate of energy (eq. 3) will be dominated by spectator protons since $<N_{sp}> \approx 4 <N>$. The Table shows the peak values of p_T for α-particles and spectator protons measured in the interactions of the 55Mn beam. The p_T used for wounded protons and mesons (discussed in Paper HE 1.4-10) are also shown in the Table. The "beam" average and median energies are shown in columns 2 and 3 of the Table and can be compared to the calculated energies in columns 8 and 9. The calculated energies are simply averaged from the spectator and participant energy determinations. Figure 2 shows this average energy for the Mn beam. Some 70% of the particles have measured energies within $E \pm E/2$.

Fig. 2. The distribution in measured energy, $1/2[E (participant) + E (spectator)]$, for a 1.69 GeV/amu Mn beam.

<table>
<thead>
<tr>
<th>Beam</th>
<th>\bar{Z}</th>
<th>$<E>$</th>
<th>$E_{1/2}$</th>
<th>p_T^{eff} (MeV/c)</th>
<th>Energy (GeV/amu)</th>
<th>Tail/Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25.0</td>
<td>1.69</td>
<td>1.68</td>
<td>101 232 575 175</td>
<td>2.03 1.51</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>13.0</td>
<td>5.50</td>
<td>3.00</td>
<td>106 232 438 179</td>
<td>5.67 2.82</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td>19.60</td>
<td>11.80</td>
<td>255 680 691 384</td>
<td>19.90 12.40</td>
<td>0.218</td>
</tr>
</tbody>
</table>

3. Energy Measurements on Cosmic Ray Nuclei. Using the same techniques as used for Mn, we determined the energy of each cosmic ray primary from its interaction. For the 1000 nuclei measured over Texas where $E \geq 1.7$ GeV/amu, the p_T values determined from the Mn beam gave reasonable measurement of energy (see Table). However, for the 500 nuclei measured over India where $E \geq 7.5$ GeV/amu, the energies determined from the spectators using the same values of p_T were far too low. A remeasurement of many of the angles showed they were correct to within $\pm 0.1^\circ$. The observed peak in the α-particle angular distribution is consistent with the beam value $p_T(peak) = 240$ MeV/c and the median cosmic ray energy, $E_{1/2} = 11.8$ GeV/amu (see Fig. 1). However, the tail to peak ratio, where the cut is defined as six times the peak angle, is much larger in India (see Table). The result is too many low energy events. (For a higher angle cut there were no particles in the Mn tail; the tail to peak ratio for Au is 0.005.)

The effective p_T for the cosmic rays given in the Table were determined by the requirement that the calculated energies fit the cosmic ray energy spectrum as closely as possible. Figure 3 shows the resulting energy spectrum of the 500 particles measured in India compared to a power law in total energy of $E^{-1.7}$. The energy measured from 1000 particles at Texas ($E > 1.7$ GeV/amu) fits equally well.
4. **Conclusions.** Calculation of energies of primary cosmic rays using a method assuming constant p_T of fragments fits the known energy spectrum for a low energy data set ($E > 1.7$ GeV/amu). The required effective p_T for cosmic rays > 7.5 GeV/amu are high. The high p_T^{eff} for α-particles can be attributed to the high p_T tail. Since p_T^{eff} for protons must be increased by about the same factor to fit the cosmic ray spectrum, it appears that a high p_T tail must also be present for spectator protons. The high p_T tail increases with energy.

5. **Acknowledgements.** This work was supported in part by NSF Grant PHY-8405852 and NASA Grant NGR 24-005-050.

References