EXPERIMENTAL STUDY OF THE SPACE-TIME DEVELOPMENT OF THE PARTICLE PRODUCTION PROCESS IN HADRON-NUCLEON COLLISIONS, USING MASSIVE TARGET NUCLEUS AS A DETECTOR

Strugalski Z.
Institute of Physics of the Warsaw Technical University
ul. Koszykowa 75
00-662 Warsaw, Poland

and

Joint Institute for Nuclear Research, High Energy Lab.
Dubna, USSR

ABSTRACT

Experimental study of the space-time development of the particle production process in hadronic collisions at its initial stage was performed. Massive target nuclei have been used as fine detectors of properties of the particle production process development within time intervals smaller than 10^{-22} s and spatial distances smaller than 10^{-12} cm. In hadron-nucleon collisions, in particular in nucleon-nucleon collisions, the particle production process goes through intermediate objects in $2 \rightarrow 2$ type endoergic reactions. The objects decay into commonly observed resonances and particles.

1. Introduction

In searches for plausible mechanisms to explain the particle production in hadron-nucleon collisions, in nucleon-nucleon collisions in particular, characteristics of the collision reaction products appeared after relatively long time after the collision - not shorter than the life times of resonances - are usually analysed. It cannot be excluded a priori that the known particles and resonances are the decay products of some super-particle or super-particles created firstly as well.

Now experimental information is needed, adequate and of a new quality - relevant to the time intervals τ of the most short-living particles known up to now, and within the spacial distances z much smaller than $\tau c \gamma^2$, where γ accounts the Lorentz dilatation of the lifetime in the laboratory.

The shortest decay times of the known resonances are $\tau \approx 10^{-23}$ s which corresponds to the smallest spacial distances z of some 10^{-13} cm in the laboratory, when $\gamma \approx 1$. So, the qualitatively new and adequate information which has to be used for elucidation of the process in question should be obtained at the times
The atomic nucleus used as the target in hadron-nucleus collisions serves as a fine detector. Its size r_A can be roughly up to about 10 fm, Elton L.R.B. (1961). The basic physical process underlying the operation principle of this fine detector is the emission of nucleons, Strugalski Z. (1983, 1984). Information in details about the method can be found in one of my papers, Strugalski Z. (1985).
It has been shown that the above presented mechanism of the particle production process allows to derive formulas which in a convincing manner can account for hadron-nucleus data in terms of our knowledge of hadron-nucleon data, Strugalski Z. (1982 b).

4. Remarks

The consequences of the picture of the particle production process, presented above, were proved experimentally, Strugalski Z. (1982 a), Sredniawa B. and Strugalska-Gola E. (1983, 1984), in hadron-nucleus collisions within incident hadron energy values from a few up to a few thousands GeV. Quantitative agreement of the predictions based on the picture presented with corresponding experimental data has been found.

References

Bannik B.P. et al., 1980, Communications JINR, Dubna, R1-13055.
Elton L.R.E., 1961, Nuclear Sizes, Oxford Univ. Press
Famino V. et al., 1979, CERN-HERA, 79-01, 79-02, 79-03.
Sredniawa B. and Strugalska-Gola E., 1984, Communications JINR, Dubna, E1-84-411.
Strugalski Z. et al., 1981, Communications JINR, Dubna, E1-81-578.
Strugalski Z. et al., 1982, Communications JINR, Dubna, E1-82-718, E1-82-719, E1-82-841.
Strugalski Z., 1980, Communications JINR, Dubna, E1-80-548
Strugalski Z., 1981, Comm. JINR, Dubna, E1-81-576, 81-577
Strugalski Z., 1982, Comm. JINR, Dubna, E1-82-401, 82-287