EXPERIMENTAL EVIDENCE OF THE DECREASE OF KINETIC ENERGY OF HADRONS IN PASSING THROUGH ATOMIC NUCLEI

Strugalski Z.

Institute of Physics of the Warsaw Technical University
ul. Koszykowa 75
00-662 Warsaw, Poland

and

Joint Institute for Nuclear Research, High Energy Lab.
Dubna, USSR

ABSTRACT

Hadrons with kinetic energies higher than the pion production threshold lose their kinetic energies monotonically in traversing atomic nuclei, due to the strong interactions in nuclear matter. This phenomenon is a crude analogy to the energy loss of charged particles in their passage through materials. Experimental evidence is presented.

1. Introduction

We have observed, in the 26 and 180 litre xenon bubble chambers that GeV pions can be deflected or absorbed in nuclei without causing particle production, without causing pion production in particular, when are falling on layers of nuclear matter thick enough, Strugalski Z. and Pluta J. (1974), Strugalski Z., Pawlak T., and Pluta J. (1982); the deflection or absorption is always accompanied by intensive emission of nucleons with kinetic energies from about 20 to about 400 MeV.

The energy and angular distributions of the protons in such deflected and stopped events are the same, and they are identical with the distributions of protons in collisions with particle production as well. It is remarkable and leads to the opinion that it is reasonable to think that hadrons lose their kinetic energies, in traversing nuclear matter, by causing nucleon emission.

The subject matter in this paper is to present shortly our results of experimental investigations of degradation of hadron energy through nuclei.

2. Experimental Evidence

We found experimentally that the number n_N of emitted nucleons which accompany the passage of a hadron through a nucleus along a path λ fm equals the number of nucl-
loons contained within the volume \(v = \pi D_0^2 \lambda \) \(\text{fm}^3 \) centered on \(\lambda \) in the target nucleus:

\[
n_N = \frac{\sqrt{\pi}}{2} D_0 <\varrho> \lambda,
\]

where \(<\varrho> \) \(\text{nucleons/fm}^3 \) is mean density of nucleons in the target nucleus along \(\lambda \), \(D_0 \) is approximately as large as the nucleon diameter, Strugalski Z. (1978,1979), Pluta J. and Strugalski Z. (1985).

Relation (1) may be rewritten in a more convenient form:

\[
n_N = \lambda S
\]

if the path length \(\lambda \) is expressed in nucleons per the area \(S \), and \(S = \pi D_0^2 \); the number \(n_p \) of the emitted protons is:

\[
n_p = \lambda S \frac{Z}{A} = \lambda \cdot S
\]

where \(\lambda \) is in protons per \(S \), \(Z \) and \(A \) are the charge and mass numbers of the target nucleus.

The simplest observable effects which provide crucial evidence and support for formulas (1) - (3) are: a) At energies high enough, higher than a few GeV, the mean number \(<n> \) of emitted protons in the deflected events is constant and almost equals \(<\lambda> S \), where \(<\lambda> \) is the mean thickness of the target nucleus in protons/\(S \). b) At some projectile energy, definite for a given incident hadron and a given target nucleus, the distribution of multiplicities of protons emitted in the stopped events is symmetrical and its maximum lies at the multiplicity \(n_p \), as large as \(D S \), where \(D \) is the diameter of the target nucleus in protons/\(S \). c) The probability of an appearance of the stopped events, in collisions of a given hadron with a given nucleus, decreases with the increase of the incident hadron energy; at energies high enough, the stopped events do not appear at all, only the deflected events present themselves in some portion of the collision events, Strugalski Z., Pawlak T., Pluta J. (1984).

An analysis in details of the experimental facts led to the conclusion that: A hadron of kinetic energy \(E \) larger than the pion production threshold loses its kinetic energy in passing through nuclear matter; the fraction \(\Delta E_h \) of the energy lost on the path length \(\lambda \) nucleons/s is:

\[
\Delta E_h = \varepsilon_h \cdot \lambda
\]

where \(\varepsilon_h \) MeV/(nucleon/\(S \)) is the measurable coefficient which depends on the hadron identity - for pions \(\varepsilon_h = \varepsilon_{\pi} \approx 180 \) MeV/(nucleon/\(S \)), for protons \(\varepsilon_h = \varepsilon_p \approx 360 \) MeV/(nucleon/\(S \)), Strugalski Z. (1983).
In support for this conclusion, some additional experimental facts of the crucial value may be adduced: a) The mean number \(\langle n \rangle \) of emitted protons in the stopped events is quantitatively predictable by simple relation

\[
n_p = \left(\frac{E_h}{\xi_h} \right) S
\]

which is valid for such values of \(E_h \) when \((E_h/\xi_h) S \leq DS \) where \(D \) in nucleons/S is the target nucleus diameter times \(Z/A \), Strugalski Z. (1983). b) The mean multiplicity \(\langle n \rangle \) of emitted protons is energy-dependent at the incident hadron energies \(E_h \leq D \xi_h \), and the energy-dependence is quantitatively predictable if formulas (3) and (4) are used for a given target nucleus and for a given incident hadron, Strugalski Z. (1984). c) Indirectly, the degradation of the incident hadron energy manifests itself in observed degradation of the kinetic energy and of the momenta of produced pions with the increase of the nuclear matter layer thickness \(n = \lambda S \) the incident hadron of a given kinetic energy interacted with, as it is shown in Fig.

Fig. Mean kinetic energy \(\langle E_{h,0} \rangle \), mean longitudinal momentum \(\langle P_L \rangle \), mean transverse momentum \(\langle P_T \rangle \), and mean cosine of the pion emission angle \(\langle \cos \theta_{\pi,0} \rangle \) of neutral pions produced in pion-xenon nucleus collisions at 3.5 GeV/c momentum, in dependence on the multiplicity \(n \) of emitted protons; the multiplicity \(n \) is connected with the nuclear matter layer thickness \(\lambda \) the incident hadron interacted with as: \(n = \lambda S \), where \(S = n D_0^2 \approx 10 \text{ fm}^2 \) and \(D_0 \) is the diameter of the nucleon. \(D/\langle \rangle \) are the normalized dispersions of corresponding quantities.

3. Conclusions

It should be concluded that, in studying hadron-nucleus collisions, we have met a phenomenon which may be regarded as a crude analogy to the phenomenon consisting in the energy loss of a charged particle in materials; simi
larly, hadrons lose their energies in traversing nuclear matter. But, the newly observed energy loss of hadrons is due to the strong interactions of hadrons with nuclear mater.

In many cases, when particle-producing reactions occur, the nucleon emission and therefore the incident hadron energy loss, due to this emission, is going in advance of the particle-producing reaction; the incident hadron covers firstly some path in the target nucleus without particle-producing reaction and then it causes this reaction in the nucleus; in many cases it may happen on the end of the hadron path in the target nucleus.

The effects caused by the hadron energy loss are observed clearly when the incident hadron energy is not larger than ϵD, where ϵ is in GeV/(nucleons/S) and D in nucleons/S is the target nucleus diameter.

References

Pluta J. and Strugalski Z., 1985, to be published in Communications JINR, Dubna.
Strugalski Z., Pawlak T., Pluta J., 1984, Communications JINR, Dubna, E1-84-855.
Strugalski Z., 1978, Communications JINR, Dubna, E1-11976.
Strugalski Z., 1979, Communications JINR, Dubna, E1-12086.
Strugalski Z., 1983, Communications JINR, Dubna, E1-83-850.
Strugalski Z., 1984, Communications JINR, Dubna, E1-84-268.