THE EFFECT OF THE RELATIVE NUCLEAR SIZE ON THE NUCLEUS-
NUCLEUS INTERACTIONS

I.N. Erofeeva, V.S. Murzin, S.Yu. Sivoklokov and L.N. Smirnova
Institute of Nuclear Physics, Moscow State University,
Moscow 119899, USSR

Abstract. The experimental data on the interactions of light nuclei (d, He4, Cl2) at the momentum 4.2 GeV/c A with the
carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the
spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pi-
on and nucleon components are presented. The results of investigation of the mechanism of nucleus-nucleus interactions
can be used to calculate the nuclear cascades in the atmosphere.

Experimental Data

We analyze 2400 dC, 1160 He4Cl2 and 1800 Cl2Cl2 events
detected in the 2-m propane chamber at the momentum of pro-
jectile nuclei P0 = 4.2 GeV/c A. The momenta of all proto-
ons and nuclear fragments with P > 150 MeV/c and charged π±
mesons with Pπ > 70 MeV/c have been measured. All negatively
charged particles were regarded as π±-mesons (the admix-
ture of other species < 1%). The event was identified as an
interaction on carbon if one of the following conditions was
satisfied /1/: a) n+ - n- (Zi + 1); b) nπ > 1; c) nπ > 1;
d) n+ > 2; e) n± is odd for the dC events. Zi is the inci-
dent nucleus charge, nπ is the number of slow (with P < 750
MeV/c) protons, nπ is the number of backward emitted pro-
tons in the lab-system, n± is the number of charged parti-
cles in the event. Using these criteria we selected 70 to 80%
of inelastic interactions on the carbon nucleus. The remain-
der events were statistically separated taking into account
the known cross sections on a proton and carbon /2/ and the
detection efficiency.

The spectra of protons are obtained by the subtraction
of the π±-meson spectrum from the spectrum of all positive
particles. The spectra of π± and π±-mesons were assumed to
be identical because of the isotopic symmetry of colliding
nuclei.

The Number of Interacting Nucleons

The distribution P(γ) in the number of interacting nu-
cleons of the projectile nucleus in dC and He4Cl2-interac-
tions was obtained on the basis of the data on the number
of stripping particles and on the multiplicity of π±-mes-
sons in the events with a different total charge of the
stripping particles. The stripping particles are those ones
with momentum P > 3 GeV/c and emission angle θ < 40°. The
production in the interaction of a nucleon of the projec-
tile nucleus is assumed to be independent of the other nuclide
on's interactions. The use of additional data on the multiplicity of \(\pi^\pm \)-mesons in pO and dC-interactions \(^3\) enabled us to obtain six equations with unknown \(P(\iota) (\iota = 1 \ldots 4) \) for He\(^4\)C interactions \(^4\). The obtained probabilities \(P(\iota) \) of the interaction of \(\iota \) nucleons of the projectile nucleus for dC and He\(^4\)C interactions are given in Table I together with the predictions of the multiscattering model (MSM) \(^5\). \(P(1) \) and \(P(4) \) in He\(^4\)C-interactions are in disagreement with the MSM results.

The interaction probabilities \(P(\iota) \) of \(\iota \) nucleons of the projectile nucleus \(A_i \):

<table>
<thead>
<tr>
<th>(A_i; \bar{A}_t)</th>
<th>(P(1))</th>
<th>(P(2))</th>
<th>(P(3))</th>
<th>(P(4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>dC</td>
<td>0.68±0.04</td>
<td>0.32±0.04</td>
<td>-</td>
<td>1.32±0.08</td>
</tr>
<tr>
<td>He(^4)C (^5)</td>
<td>0.24±0.06</td>
<td>0.33±0.15</td>
<td>0.20±0.13</td>
<td>0.23±0.05</td>
</tr>
<tr>
<td>He(^4)C (^5)</td>
<td>0.44</td>
<td>0.25</td>
<td>0.19</td>
<td>0.12</td>
</tr>
</tbody>
</table>

The mean characteristics of dC, He\(^4\)C and CC-interactions:

<table>
<thead>
<tr>
<th></th>
<th>dC</th>
<th>He(^4)C</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle n_\pi \rangle)</td>
<td>0.61±0.03</td>
<td>1.00±0.04</td>
<td>1.51±0.05</td>
</tr>
<tr>
<td>(\langle E_\pi \rangle)</td>
<td>0.62±0.02</td>
<td>0.64±0.02</td>
<td>0.64±0.02</td>
</tr>
<tr>
<td>(\langle \xi_\pi \rangle)</td>
<td>2.7±0.1</td>
<td>3.9±0.1</td>
<td>5.2±0.2</td>
</tr>
<tr>
<td>(\langle \xi_\pi \rangle)</td>
<td>0.67±0.06</td>
<td>0.80±0.06</td>
<td>1.11±0.06</td>
</tr>
<tr>
<td>(\langle E_p \rangle)</td>
<td>0.38±0.02</td>
<td>0.64±0.03</td>
<td>0.97±0.04</td>
</tr>
<tr>
<td>(\langle T_0 \rangle)</td>
<td>1.6±0.2</td>
<td>3.1±0.2</td>
<td>5.7±0.3</td>
</tr>
<tr>
<td>(\xi_p)</td>
<td>4.3±0.2</td>
<td>8.1±0.5</td>
<td>14.5±0.5</td>
</tr>
<tr>
<td>(\xi_N)</td>
<td>4.4±0.2</td>
<td>8.1±0.2</td>
<td>12.9</td>
</tr>
<tr>
<td>(\xi_N)</td>
<td>4.4±0.2</td>
<td>8.1±0.2</td>
<td>12.9</td>
</tr>
</tbody>
</table>

The Partial Coefficients of Inelasticity of Pions and Nucleons

Table 2 lists the mean multiplicities and energies \(\langle E_\pi \rangle \) of \(\pi^\pm \)-mesons, the multiplicities and kinetic energies \(\langle T_0 \rangle \) of protons and also the mean energy of all \(\pi^- \)-mesons \(\xi_\pi \) and protons \(\xi_p \) in an event.

Assuming that the mean multiplicities and energies of all species of \(\pi^- \)-mesons and nucleons are equal (\(\langle n_\pi^- \rangle = \langle n_\pi^+ \rangle = \langle n_\pi \rangle \), \(\langle E_\pi^- \rangle = \langle E_\pi^+ \rangle = \langle E_\pi \rangle \), \(\langle n_p \rangle = \langle n_n \rangle \), \(\langle T_0 \rangle = \langle T_n \rangle \), \(\xi_\pi = \xi_\pi \)) we can determine the total energy of all secondaries: \(\Sigma \xi = 2 \xi_p + 3 \xi_\pi \). This value must coincide with the initial kinetic energy of interacting nucleons \(T_0 = 3.37 \langle \iota \rangle \cdot A_C \) (GeV) to within the energy of particles below the detection threshold. For CC-interactions the magnitude \(\langle \iota \rangle \cdot c_C = 3.83 \) was taken from ref. \(^3\). Table 2 presents also the partial coefficients of inelasticity for pions \(\alpha_\pi = 3 \xi_\pi / T_0 \) and protons \(\alpha_p = 2 \xi_p / T_0 \). The fraction of energy transferred to \(\pi^- \)-mesons is considered to be the same for all reactions in question. It is
much lower than the value of $\sigma \pi$ for the nucleonic interactions at the energies > 20 GeV /6/.

The Momentum Spectra of Protons

The momentum spectra of protons in dC, He4C and CC-interactions in the lab-system are presented in fig.I. The spectra are normalized to the mean number of protons in an event. Approximation of the spectra by the function $\exp(-\beta P)$ at $P = 1-3$ GeV/c gives the following values of the parameter β: 0.62 ± 0.04 for dC, 0.49 ± 0.05 for He4C and 0.29 ± 0.03 for CC-interactions. At the momenta >3 GeV/c the spectra tend to steepen slightly, which is well seen in the case of CC interactions, yet, they are everywhere well outside the value $P_0 = 4.2$ GeV/c. If in dC-collisions the part of the plot $P > P_0$ is due to the errors in measuring of the particles momenta and to the cumulative particles contribution the increased yield of fragments with $Z=1$ in this part in He4C and CC-interactions requires an additional mechanism. The interacting many-nucleon fragments of the projectile nuclei with $P > P_0$ can contribute to the high-momentum part of the spectrum in these interactions.

The mean momenta of protons in dC, He4C and CC-interactions are plotted in fig.2 versus the ratio of atomic weights of the colliding nuclei A_t/A_n. The mean value of $<P_\rho>$ increases by a factor of 1.5 in the transition of A_t from d to C, approaching the estimated value of the mean momentum of a proton in pp-collisions at 4.2 GeV/c. This implies that the cascade becomes less important inside the carbon nucleus for secondary nucleons in He4C and CC-interactions. This effect is seemingly present in any collisions of the nuclei with comparable sizes.

Conclusions

The chief results are the following: 1) the distribution in the number of interacting nucleons of the He$^+$ nucleus in the carbon nucleus is nearly uniform which is in contradiction to the MSM results /5/; 2) the partial coefficients of inelasticity for pions and nucleons are actually the same for dC, He4C and CC-interactions; 3) the momentum spectra of protons and the mean values of their momenta are different for each type of interactions. The experimental results permit us to infer the presence of many-nucleon fragments in the spectrum of interacting particles and the minor role of cascade in the interactions of nuclei with identical atomic weights.

References

Fig. 1. Momentum spectra of protons in dC, He^4C and CC-interactions

Fig. 2. Mean momentum of protons versus the ratio of atomic weights of colliding nuclei.