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THEIR FLUCTUATIONS IN ELECTRON-PHOTON CASCADES
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The paper presents Monte~Carlo simulated lateral dis-
tribution functions for electrons of EPC developing in lead,
at superhigh energies (.1=1 PeV) for depths t<60 c.u.

A t=1t, c.u. The higher moment characteristics, i.e. varia-

tion, asymmetry, excess, are presented along with analyti-

cal solutions for the same characteristics at fixed obser-

vation level calculated to theory approximations A and B

by using numerical inversion of the Laplace transformation.

The conclusion is made of & complex, usually non-Gaussian

- shape of the function of the particle number distribution
within & circle of given radius at fixed depth.

To analyse experimental data obtained by an X-ray
emulsion chamber technique, the detailed information on
mean EPC characteristics and their fluctuations in dense
media is necessary. Therefore, in the high energy region
The Landau-Pomeranchuk effect should be regarded, in the
low energy region ionization losses and the Compton effect
should be alléwed for, and it is necessary to describe ra-
ther correctly the scattering processes. The problem being
extremely complex requires the Monte-Carlo method to be
used. For a simplified problem(one-dimensional theory ap-
-proximations A and B, i.e. consideration of the number of
particles with energy higherthan the given energy), it is
possible now to analyse analytically the problem of the
distribution function for the particle number at fixed
depth using higher moments, unlike to /1/, where only the
second moment has been used. This approach allows qualita-
tive comparison with the Y¥onte-Carlo results and is of
interest in itself as.an approbation of the technique(e.g.
. when using the latter to analyse quark-gluon cascades).

1+« A cascade from a primary of energy E, wag Monte-
Carlo simulated up to energies about E=10-2-10"3E,, then
each branch of 130-150 branches of the cascade was ended
by statistically with a mean cascade from a previously
calculated data bank. In calculations the above mentioned
processes were regarded, and scattering at each segment
of the free path was considered in the Fermi approxima-
tion/2/. An estimate by the method of standards assuming
the initial distribution to be non~Gaussian/3/, showed
that, in the range (1/2+2)tp,., where tmax is the depth
of a mean shower maximum(tmex320to), & statistics of 100
events yielded an error(standard) of the mean to be 2-3%,
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of variation ~ 10%, of asymmetry 20-30%, and of excess
40-80%. Calculations were made on a net of 14 redii(1-400
um) given uniformly in logarithm of spatial variable, (lgr),
that mede it feasible to plot the &ifferential P(E,,r,t)
lateral distribution function: the particle number at dis-
tance r from the axis at depth t. The obtained differential
functions were integrated and approximated. :

Figs.1 and 2 compares our calculations (see the solid
lines) with the experiment/4/ for the differential ard in-
tegral distribution functions. The experimental 'reastlts are
presented for front-side film of a type C-chambers woth
delution factor d=1.18 leading to a decrease of the particle
number in cascade with increasing depth.

Fig.3 shows the results for 8 values of primary ef .
The bundles of curves are parametrized by the product ER.
The point in Fig.3 are for the results/5/. this figure il-
lustrates violation of the core approximation of the Landau-
Pomeranchuk effect. The investigation of fluctuations of the
particle number within a circle of given R substantiates the
general picture of evolution of the density distribution
function/6/ - at t £1/2 tyax and t%3/2 {imax, the distribu-
tlons are narrow-peaked and skewed towards the small par-—
ticle number (to the left), at 1/2 tmax <« t.£3/2 tmax these
distributions shift to the right transforming through sym-
metric distributions into asymmetric ones with a flat maxi-
mum(or several maxima), Gaussian distributions in the region
of tmax are rather an exclusion than a rule. The resultis
under consideration give & considerable qualitative clarifi-
cation of the earlier date and allow investigation of the
dependence on R or, what is the same, on the efficient
value of threshold eneﬁgy. Figs.4-6 flgws Var (E,,¢ )):‘ a’/m,

AREE)2ma Jo=3 Byl ) Mupaghere ms = NG, ut)-m

the rbabens’ Gt B n 1&145 ey veats in
um(b). The influence of the Landau-Pomer?ggggﬁ effect can -
be clearly seen in Fig.4 ~ the curve min E, 10 TeV
(see Fig.4a); degrading(see Fig.4b) with increasing R cor-
responds to a decrease of efficient threshold energy, i.e.
a weaker influence of the Landay-Pomeranchuk effect on a
cascade.

2. To analyse analytically the set of equations for
higher moments of the function of distribution over the par-
ticle number in approximation A, it is written in the simi-
lar form as in /1/. The solution of this set of equations
can be obtained to approximation A for homogeneous cross
gections and any moment using the Mellin transformation in
energy Eo,/1/. For the first, second, third etc. moments of
the functions of distribution over the particle number in a
shower induced by & primary electron the solutions can be
vepresented as follows /7/:
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n the cascade theory approximation B gimilar formuleae
for higher moments can be obtained. These integrals for a
moderate values (' n =1,2,3,4) can be calculated using the
numerical Laplace inversion. These calculational results are
listed in Table 1 and show qualitative agreement with the
simulation results. Around the shower maximum we can per-
form the detailed analysis of higher moments and structure
of the distribution function at E,/E(E./A) . Using the
saddle point method (S =1) it can be’shown that in the
region of shower maximBhP°

Vow ~ Az /10 E/ET -
i.e. Var decreased slowly, ashﬁEWE » With increasing ratio
B,/E/8/. Asymmetry and excess increases
‘ xNASf%h&»/Ey EX"’A‘//”E’_/E o

This behaviour of higher moments contradicts the assump-
tion of the Gaussian shape of the distribution functions for
the garticle number. C '

he investigation showed that fluctuations of the dist-
ribution functions for . the particle number within a
circle of fixed redius and those of the function of the num-
ber of particles with energy higher than the given energy
are of similar character, oscillations of higher moments
show evidence of a complex structure of the distribution
functions and indicate that Gaussian distribution is rather
an exclusion than a rule.
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_ Table 1
\ 2 2 / J—
t R vars A, B ver® A, B var® 4

2 64.8 .25 1.0 3041 17 192 21242 25 .99
4 415 .14 3 110.2 =11 =.12 1344 .15 52
g 982'07-1 “045 15709 048”1 '101 o45+4 094"1 “04-2
0

1333.31=1=,T8 145 331 =13 === === =241
1272.17‘1‘1.26 9109 076‘1 076'1 o12+5 024-1>-3034
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Table 1(continued)

2 = 2 e
t R Var® 4, ¥ Var® A & Var Ag

14 600 .9=1 €& 24.5 .49 1.75 .95+4 .15-1 .87
18 167 «43=1 .91 4.44 2.29 4.99 .40+4 .10 1.77
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