MEASUREMENTS OF LIGHT BACKGROUND AT LARGE DEPTH IN THE OCEAN

Bannykh A.E., Beresnev V.I., Gaidash V.A.,
Gulkhandanyan O.M., Ivanov V.I., Markov M.A.,*Paka V.T.,
Shtranikh I.V., Surin N.M., Volkov A.N., Zheleznykh I.M.
Institute for Nuclear Research, the USSR Academy of Sciences, Moscow, USSR
*Institute of Oceanology of the USSR Academy of Sciences, Atlantic department, Kaliningrad, USSR

ABSTRACT

The mean intensity of Čerenkov emission from the products of K40 decay and bioluminescence was measured at depth to 5 km. The intensity of Ocean light background is found to depend upon depth and at the 5 km level is equal on average to 300 ± 60 quanta/cm2s into spatial angle of 2π steradians in transparency window. The amplitudes, duration and number of BL flashes were measured at various depths. The intensive flashes due to BL are shown to be observed rather seldom at depth over 4 km.

1. Introduction. Deep underwater Čerenkov detector of muons and neutrinos with the volume of 10^4-10^8m3[1] can serve as a tool of investigation of the fundamental properties of the microworld (neutrino microscope) as well as the structure and development of the Universe (neutrino telescope). Besides the problems of microworld and macrocosmos are closely connected with problems of Ocean Physics, sea-biology and deep underwater engineering. One of the main problems, required a preliminary solution, is an investigation of Ocean light background (LB) at large depths. The data on LB are essential for the choice of optimal parameters of registration system of short (10^8) light pulses due to Čerenkov emission of relativistic muons or electron-photon and hadron cascades from muons and neutrinos passed by a photodetector at a considerable distance. The main varieties of LB are: a) a background from radioactivity; b) a background from bioluminescence (BL).

LB from radioactivity in salt water arises from mainly at the expense of K40 decays. At the 25 m transparency the flux of Čerenkov emission from β-electrons and Compton electrons into the spatial angle of 2π steradians is 150 photon/cm2s in the wave range 400-600 nm [2]. At better transparency background from K40 will be greater. Background from BL can be divided into two types [3]: i) quasi-isotropic background from spontaneous BL of organisms averaged over large volume of water; ii) pulse flashes of BL close by the device, exited by its movement. At present time the dependence of structure of background from BL versus depth has not been clear yet completely. To obtain the complete information about LB of Ocean it is necessary to carry out the detail investigation of its structure: mean intensity of background at a given
depth, as well as duration and amplitudes of light flashes at various depths.

2. Block diagram of measuring apparatus of weak light fluxes. For the purpose of detail investigation of the structure of LB of Ocean a complex of measuring apparatus was developed and tested during the 40th cruise of the scientific-research Ship "Academic Kurchatov". The block diagram of a submerged device is shown in Fig. 1. The emission measuring apparatus is composed of the following blocks: 1 - a block of photodetectors (four PMT-130); 2 - a block of amplifiers; 3 - a block of discriminators; 4 - a block of counters; 5 - a summator; 6 - an electronic commutator and a code convertor; 7 - a time interval measurement system; 8 - a time pulse generator; 9 - a block of pressure detector; 10 - a block of data storage. The maximum intensity of light flashes registered by the measuring apparatus is equal to 10^6 pulse/s. The minimum duration of flash that can be measured is equal to 10^-3 s. The maximum depth of submersion equals 6 km. The device works in an autonomous regime with recording the information on a compact-cassette. Four PMT-130 are used as detectors of optical emission. The angle of aspect of each PMT is 120°. The construction of the advice allows to investigate Ocean optical emissions: a) in the regime of integral count of one-electron pulses simultaneously with determined of duration and intensity of pulse flashes; b) in the regime of count of coinciding events from various PMT-s.

3. Experimental results and discussion. The set of measurements of luminosity at various depths was taken in the central part of the Atlantic Ocean. Consider the results of the measurements made in the region 22°09'sl and 37°15'w.l. on the 7th of October, 1984. Detection of the light flux was made in the regime of one-electron pulses. The one-electron thresholds were set up for two PMT, but for another two PMT the value of the thresholds conforms to the amplitudes of two-electron pulses. Such experimental scheme allows to consider possible counting losses at the intensities more 10^6 pulse/s. The change of the mean intensity for a stay time at given depth of Ocean luminosity versus a device submersion depth is shown in Fig. 2a. The fluctuations of the mean intensity is seen to decrease considerably with depth. On submersion from 4 to 5 km the mean intensity decreases 1.5-2 times. The dependence of the mean intensity versus time at the 5000 and 4000 m levels are shown in Fig. 2b and 2c respectively. Here averaging is made over storage time of 32512 pulses. The counting rate of one-electron pulses due to background from K40 calculated for
a given device at the 20 m transparency of water is shown by
a dotted line. At the 5000 m level the mean intensity of Oce-
an luminosity changes slightly with time and twice exceeds
the calculated background from K₄₀. At the 4000 m level the
fluctuations of background intensity are far in excess the
fluctuations of the background at the 5000 m depth. The mean
intensity is approximately three times greater than the cal-
culated one for K₄₀.

![Fig. 2. 2a - a dependence of counting rate of one-
electron pulses versus depth of submersion,
averaged for stay time at given depth;
2b and 2c - a dependence of counting rate of
one-electron pulses versus time at the 5000 m
and 4000 m depths averaged for
storage time of 32512 pulses.]

The excerptions made at regular time intervals at the 5000 m
and 4000 m levels with the time resolution of 10⁻³s are shown
in Fig. 3. There are practically no intensive pulse flashes of
small duration (10⁻²-10⁻³s) at the 5000 m depth. There is
another situation for the 4000 m depth. Fig. 3b demonstrates
the presence of the narrow (0.02-0.03 s) intensive pulse
flashes repeated at irregular time intervals. One can suggest
that the quasi-isotropic background at depths more 4000 m is
causd mainly by Čerenkov emission from K₄₀ (the calculated
background for our device must be approximately 60 pulse/s
at the 20 m transparency) and from spontaneous EL of micro-

![Fig. 3. A dependence of counting rate versus time.
Time resolution is 10⁻³ s. 3a -5000 m, 3b-4000 m.]
organisms averaged over a large volume of water (at the
4-5 km depth the background from spontaneous BL minus the
background from K40 was 80-90 pulse/s). Small number of inten-
tensive pulse flashes at the 5000 m depth demonstrates
small concentration of glowing micro-organisms at large
depth.

4. Conclusion. Hense, the measurements of LB showed:
 i) the intensity of LB at the depth of 5 km order is
equal on average to 300±60 photon/cm²s into the spa-
tial angle of 2π steradian and is characterized by
comparatively high homogeneity (rather small number
of short pulse flashes). At the 20 m transparency of
salt water the background from K40 must be twice less
and hense there is also spontaneous BL of microorga-
nisms at large depths;

 ii) at the 2-3 km depth mean intensity is greater than
at the 4-5 km depth and is undergone by sharp fluctua-
tions. These flashes can be connected with BL of micro-
organisms nearby an device exited by its movement;

 iii) a comparatively low LB at the 5 km level makes these
depths promising for employment of large optical de-
tectors of DUMAND.

References

 Roberts, A., Stenger, V., Peterson, V., Learned, J.,