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LARGE EDDY INTERACTIONS IN A TURBULENT CHANNEL FLOW
S. K. Hong¥*

Ames Research Center

SUMMARY

The dynamic processes of large eddies 1in a turbulent channel flow have been
examined by utilizing an orthogonal expansion of the velocity fluctuation, known in
the literature as the Proper Orthogonal Decomposition Theorem. The mathematical
form of these functions is unknown, in contrast to the Fourier analysis. Attention
is focused on the nonlinear, turbulence-turbulence interaction process in the dynam-
1cal equation for large eddies (the first term in the expansion). The nonlinear
interactions of the components of the first mode are treated exactly, but influences
of higher modes are modeled. This requires adjustment of both the skewness and the
effective Reynolds number so that the energy equilibrium of the large eddies is
ensured when the mean velocity distribution is assumed known from experiments.
Computational results show that the first mode contributes significantly to turbu-
lent intensities and possesses a structural and statistical character similar to
that of the entire flow.

INTRODUCTION

Important in the engineering predictions of 1inhomogeneous, turbulent shear
flows are the mean velocities and the local structures of turbulence under given
initial and boundary conditions. The most popular prediction methods first assume
that the Navier-Stokes equations are adequate for describing turbulent flow on an
instantaneous basis and then proceed to develop statistical equations for the vari-
ous turbulent moments, including the Reynolds stresses. However, these equations
involve more turbulent moments than equations that exist for them, forming an open
system., Various levels of closure schemes have been proposed: the zero-equation
model (Cebeci and Smith, 1974), the two-equation model (Saffman, 1970; Jones and
Launder, 1972), and the Reynolds stress equation model (Hanjalic and Launder, 1972;
Mellor and Herring, 1973). Each of the foregoing methods requires the introduction
of several empirical constants with respect to various turbulent processes and
provides only approximate predictions of the nature of 1individual turbulent pro-
cesses arising in a given flow. An approach that examines the dynamiecs of the
turbulence may require less reliance on modeling. Earlier, the author used the
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Proper Orthogonal Decomposition Theorem (PODT) (Loeve, 1960; Lumley, 1967) to
develop a framework for predicting turbulence structural quantities by modeling
nonlinear eddy-eddy interaction terms. At the same time, the framework was used to
study the implications of the modeling adopted. The framework, called the Large
Eddy Interaction Model (LEIM) (Hong, 1983), is based on the concept that a few
properly identified modes in the PODT may be used to represent the technologically
important quantities of the turbulent flow field.

It should be noted that Lumley's (1967) primary purpose was to define, unambig-
uously, the meaning of an "eddy." Given two-point velocity correlations from exper-
iments, the PODT has been applied to pipe flow (Bakewell and Lumley, 1967), a wake
(Payne and Lumley, 1967), and a flat plate boundary layer (Lemmerman and Payne,
1977) as a means of extracting the features of a dominant eddy. In a similar
approach using the results from a computationally simulated fully developed channel
flow, Moin (1984) specifically investigated the number of modes necessary 1in the
PODT to reproduce the turbulent intensities and shear stress. Moin (1984) shows
that, in the case of shear stress, 1t takes the first 15 terms in the PODT represen-
tation before the calculated stress distribution matches the value simulated earlier
(Moin and Kim, 1982) across the boundary layer. However, when only the wall region
1s examined, the sum of the first three modes yields the "experimental" results
quite well. This small number of modes needed to describe the turbulence gave the
author further encouragement to extend the PODT approach, as was done in the LEIM,
to be a predictive tool.

The Large Eddy Interaction Model has been applied 1n the past to variously
curved wall boundary layer flows (Hong and Murthy, 1983, 1984a, 1984b). The frame-
work has proved to be useful, among other features, 1n establishing directly the
manner 1n which (a) anisotropy can arise and change and (b) turbulent transport 1is
affected by the addition or removal of an extra strain in those complex flows. The
basic procedure of the LEIM consists of the following steps: (a) decomposing the
velocity fluctuations into orthogonal functions with random coefficients, (b) con-
structing dynamical equations for those functions, (c) identifying the first mode as
an organized structure that contributes most to the energy (Lumley, 1967, 1981), and
(d) evaluating the large eddy which interacts with the mean flow and the eddy-eddy
interactions. However, all the nonlinear terms in the LEIM were modeled in a linear
form utilizing either an anisotropic eddy viscosity or a diffusion velocity. In
this process, three empirical constants were introduced 1in the closure and were then
determined by matching shapes between normalized Reynolds stresses, calculated from
the first mode, and experimental measurements. In view of the emphasis of past
applications of the LEIM on evaluating the normalized structure of the first mode,
1t was primarily a diagnostic method.

In the present work to develop a predictive method, the turbulent transport
processes have been re-examined and retained in their nonlinear form. This mini-
mizes the dependence on turbulence modeling and allows evaluation of the maghltudes
of the moments. The applicability of the new transport model has been 1llustrated
in a channel flow that is inhomogeneous in the direction normal to the wall. How-
ever, the computed results shown here are restricted to the use of only a single



mode in the decomposition. As stated earlier, this forced the introduction of the
skewness and the effective Reynolds number as parameters of the problem. Although
the current work has not yet demonstrated the uniqueness of a set of these param-
eters, results based on different sets of these parameters (satisfying the energy
equilibrium of large eddies) yield Reynolds stresses that are less than a few per-
cent apart over the entire channel. Structural and statistical properties of the
large eddies are then studied from the solution of the first mode. Findings are
consistent with the earlier studies on the use of the PODT (that the first mode
exhibits the structural nature of the averaged turbulence moments and the statisti-
cal nature of the random turbulence). The long term objective 1s that the LEIM
framework be developed further, not only to gain the detailed phenomenological
insight into turbulence, but also to provide a means to predict turbulent quantities
of engineering interest.

The author appreciates the suggestions provided by Dr. M. W. Rubesin during the
course of the work, and his comments on the manuscript.

LARGE EDDIES AND THEIR INTERACTIONS

The mathematical definition of a turbulent eddy as proposed by Lumley (1967),
and the method of relating the structure of turbulence to that of a large eddy as
developed by Lumley (1967, 1981) and Townsend (1976, 1980), are applied here to
turbulent shear flow that is inhomogeneous at least 1n one spatial direction., A
closure assumption 1s introduced for the nonlinear eddy-eddy interaction term aris-
ing in the dynamical equation of the large eddies.

Proper Orthogonal Decomposition Theorem

One can consider a decomposition of the instantaneous velocity, ﬁl, into a mean
value and a fluctuation as

0. = U + u, (1
Here we assume that Ui 1s an ensemble average of {f.. Then 1t is possible to

wr't§ the velocity fluctuation 1in terms of orthogonal functions,
t6;", n = 1,2,3,...}. That is,

u (%,t) = 2 an¢§“)(§,t)

! n=1

(p#q;1=1, 2, or 3) (2)

1
o

(p), (q) =
fd)i ¢l dx dt =



where a,, a,, a,, ... are random coefficients with units of velocity and uncorre-
lated from one another, which means

a_ =0

(3)

-, (n)
aman = A smn

Gmn is the Kronecker delta function defined as
1 if m=n
6mn )
0 if m=+ 0
The overbar, (~), represents the expectation of the event, ( ), 1n the probability
theory and the ensemble average 1in the turbulence theory. Equation (2) is a gener-
alized Fourier series, accounting for the inhomogeneity of flows by means of dis-

crete functions. It is assumed by definition that Gyy Gny 03, ... are ordered
such that

(2) (3)

(1) > A > ... >0

A > A

If one assumes U, 1in eq. (1) to be a time-averaged velocity, one needs a slightly
different expansion from eq. (2) as described in appendix A. Equation (3) implies
that the coefficients are completely random so that the correlation between the same
coeffi?%?nts 1s perfect, and between different coefficients is zero. In addition

the ¢1 's are assumed to be orthonormal functions, that 1is

(p) (q) .» -
f¢1 6,7 dx dt = qu )

It 1s noted that the orthonormality condition 1s imposed only for the u-component
functions, and the limits of the integral in eq. (4) are quite arbitrary. The
orthogonality condition also implies that none of ¢(n 's is identically zero
(Tolstov, 1962, p. U41). To calcu%gge the coefficienés, @, both sides of eq. (2)
when 1 =1 are multiplied by ¢ , and the resulting equation 1s 1ntegrated
taking account of the orthonormality condition, eq. (4). The Fourier coefficients
are then given by the following form.

a = fu(;?,t)cpgn)(;,t)d; dt (5)
(n) It can b?nihown, utilizing the randomness in o and the orthogonality in
o that ¢, 1s related to the two-point velocity correlation, Rij' as
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ui(x,t)uj(x',t')

= T aMeMa, 00 e (6)
n=1
and
f“mi,i';t,t')d»ﬁ“)(i',t')di' dt' = x(“)tbin)(%,t) (1)
where ¢§n) are eigenfunctions with x(n) as their eigenvalues of the system.

Further, if one considers the 1integral of the turbulent kinetic energy from the
u-component over the whole flow field, then

/

u? dx dt

|-

1 5 ,(n),(n),(n) >
fzngx ¢y 0y dX dt

-2y (8)
n=1
Thus, xgn; represents the kinetic energy content of the e?t re flow associated
with ¢ ") _mode. The nth mode distributes the energy, X n , 1n space and time

according to its functional form.

Formulation of Large Eddy Interaction Model

In incompressible turbulent flow, decomposition of the Navier-Stokes equation
into the mean and fluctuating parts leads to the following dynamical equation for
the veloeity fluctuation,

u, u, U 32ui

N A G R S T (u,u, = u,u,) = - %E— + v
1

1
PR T B T T o i°] 0

(9)

ax

where p 1is the pressure fluctuation. Introducing the orthogonal decomposition of
the velocity fluctua%é?n, eq. (2), into eq. (9), a dynamical equation is obtained
for the eigenmode, ¢i , by the following procedure. First, u, 1s replaced by 1its
expansion; secondly, both sides of the resulting equation are multiplied by a random
coefficient, a i thirdly, an average 1s obtained by utilizing the relation,

(n)6 X(n)

aa = A ; and finally, the remaining equation 1s divided by

n%n n , which
leads to the ?ollow1ng as first given by Lumley (1967).



~(n) ~(n)
it S S W COR N SR SR - B O PICY
at J axJ axJ J axJ p=1 o] (X(n)l(p)x(q))1/2 i 7]
2~(n)
~(n) 3 o,
=3gx N 5 (n=1,23,..) (10)
i ax
J
where
;(n) = - % “n
) x(")
an
~(n) _ (n)
¢i = anui/ A

(1)

"(n) is also the nth mode 1n the series expansion of the pressure fluctuation,
that is,

21

P
It is noted that no constraints are imposed on “(n) other than determinacy.

» Equation (10) thus governs both the shape and intensity of each ¢, -mode. The
parameter, n, represents the order of modes where it is assumed that the first mode,
n=1, accoTW?dates most of the energy in a, and of structure i1n the dimensionless
function, ¢ Similarly, the(??cond mode, n = 2, 1s supposed to take up most of
what 1s left, that 1s, u, - a,¢. . The index, 1, may have 1, 2, or 3 corresponding
to the streamwise direction (x), the local normal to the wall (y), or the spanwise
direction (z), respectively. While it is of great interest to solve such a system
of equations in general, attention is focused here on the lowest mode for which the

dynamical equation becomes the following.

. (1)
2% A, Ui L1y s {i - ®1%% ~(p)~(q)}

+ U + T + —

1 $ $
at j axJ axJ ] axJ o1 qo1 (k(1)k(p)x(q))1/2 T
2~(1)
a§(1) 3760,
= _3T+ v 2 (12)
i axJ

The eddy-eddy interaction term 1in the above may be said to consist of interactions
of large eddy with large eddy, of large eddy with small eddy, and of small eddies
with themselves.



For the first eigenmode of pressure fluctuation appearing in eq. (12), one can
develop the following Poisson's equation.

~(1)
2~(1) 3¢ 2 o @ a0 o
T ] k 3 )> 1"pq ~(q)~(p)
ax"j ax, axJ axkaxJ {p=1 e (x“) (p) (q))1/2 j %k }

On the right-hand side of the Poisson's equation are contributions due to interac-
tion between mean velocity gradient and large eddy velocity gradient, and due to
interactions among eddies of all sizes. Or, alternatively to eq. (13), continuity
relation can be used in the form

ad
1 .9 (14)

??glon (12) with eq. (13) or (14) forms a system of equations for the first
The nonlinear eddy 1interaction term in those equations 1nvolves higher

(25 o) )

mode, ¢

m?q? v & «... Thus in order to close the system of equations for
sy 1t is necessary elther to drop the interactions associated with higher modes

or to model the contributions from them.

Transport Process

The nonlinear 1interaction between the first mode is r?talned in 1ts original
form but the interactions 1involving modes higher than ¢ are modeled. A simple
way of accounting for the effect of the higher modes is to group them together and
to relate this effect to a known quantity. An eddy viscosity 1s introduced for this
purpose (Townsend, 1976, 1980).

3 ~(1)
SRS ®1%% S(p)z(@) - _ %1 (1) 3¢, 1
pzz: Z G, (P),(@),172 %1 LR (1)372 op 0y T Vg T o%

(15)

which has also been suggested by Lumley (1967). In eq. (15), vy denotes an eddy
viscosity. In the present analysis, v, 1is kept equal to a constant which is inde-
pendent of mesh dimensions or the distance from the wall. This has an effect of
reducing the effective Reynolds number by a factor of v/(v + v_.). Although
improved models (with variation in the y-direction) may be required, for simplicity
we will use constant Vp to achieve a steady state solution.

Upon substituting eq. (15) into (12), one obtains a closed system of equations

(M,
e

for



a_ =(1) 8 (1) i (1) 3 =x(1D)=(1)
at ¢1 * Uj X ¢1 * ¢J + S ax (¢i ¢J )
J J J
2~(1)
3 ~(1) s
Tl + (v + vT) T (16)
i JJ
where S (= a3/(a2)3/2) is the skewness factor of the random coefficient, a,.

Assuming that the mean velocity is given, the system of equations involves then a
structural parameter, S, and a stability parameter, Vs which need to be chosen. In
order for the LEIM to be a completely predictive scheme, it requires incorporation
of the mean momentum equation for U; along with egs. (14) and (16). For the
present, however, emphasis will be placed on how the large eddies interact and react
to a known mean flow field.

APPLICATIONS TO CHANNEL FLOW

Fully developed turbulent channel flow has acquired a large data base over the
years. Accordingly, two-dimensional channel flow has been chosen to demonstrate the
validity of the approximation for nonlinear, eddy-eddy interaction terms, as pro-
posed in eq. (15), and to establish the contribution of the first mode to various
statistical turbulence quantities. In the fully developed region of the channel,
the mean velocity is one-dimensional. It 1s dependent only on the normal coordi-
nate, y, where y = 0 corresponds to the lower wall and y = H to the upper wall,
as shown in figure 1. Thus, the turbulent flow in the two-dimensional channel flow
can be regarded as homogeneous 1n both streamwise (x) and spanwise (z) coordinates,
while strong inhomogeneity is retained in the y-direction. For this c?ﬁ?, one can
define spectral functio?i)for the first mode of velocity fluctuation, o and of
pressure fluctuation, = , as follows.

1
(2n

;i(k1,y,k3,t) .[[m {/T¢§1)(x,y,z,t)}exp(-i(k1x + k3z)}dx dz

)2
(17)
1

(27r)2

“(k17Yvk3vt)

.[f {/Tn(1)(x,y,z,t)}exp(-£(k1x + k3z)}dx dz

A

where k, and k-, are wave numbers and i = /-1. The superscript indicating
mode (1) 1s omitted i1n the spectral functions. Applying these definitions into
eqs. (14) and (16), one obtains four complex equations with respect to the large

eddy spectra, ¢. and wn. These equations can be further divided into eight equations
for the real and imaginary parts defined according to the following notation.



R -~ 0
¢1 = P1 + 1P2
¢, = P, + iP
2 y
R (18)
¢3 = P5 + 1P6
T = P7 + 1P8 J

The nonlinear terms require the convolution theorem (Lumley and Panofsky, 1964)
during the transformation of the system of equations, egs. (14) and (16), into the
mixed, (k1,y,k3,t), space. The spectral equations become

ad ~

ggl + 1k1U;1 + U';Z +S - 3?{ i (¢11)¢§1) } 1k T - (v o+ )(¢" - k2;1) =0
J
(19)
Eﬁg + {k U; +S - 2 (¢(1) (1)) A' - (v +v )(;" - kZ; ) =0
at 192 g %, 02 ®y 7/ 92 2/ ®
(20)
m+§k0¢+s . (¢(1)(1))-Ek;-(v+v)(;"-k2;)-0
at 3 j J 3 T3 37 7
(21)
fejs, + 3y Begp = 0
(22)
where ( )' = d( )/dy and k? = k? + kg. From equations (19)-(22), we denote
© o a . do, (k") .
9 (1), (1) _ " AL s n i i n
+ 1k"¢ (k")¢3(k - k")dk" dkg (23)

where Kk = (k1,k ), k" = (kq,kg), and the double prime, ( )", when pertaining to the
wave number variable denotes a"dummy variable for the integration.



From a consideration of two-point velocity correlations and turbulent intensi-
ties, a relation can be found between the spectra of the double velocity correla-

tions and the ¢i's as derived in appendix B.

Rﬁ_‘,’(k’;,y,kg,t)uﬁ + k") = 0;(ky,y,kg,8)8(KY, Y, kY, t) (24)

where & 1is the Dirac delta function and the superscript (1) indicates the contri-

bution of the dominant mode. R, is defined in

i}

le(r1,y,r3,t) = J]zm RiJ(k1,y,k3,t)exp{i(k1r1 + k3r'3)}dk1 dk3 (25)

For a flow which 1s homogeneous in (x,z)-planes,

le(r1,y,r3,t) = ul(x,y,z,t)uj(x +0Y,2Z + r3,t)

— 2 (n) (n)
gg% a ¢ (x,y,z,t)¢J (x + LysYy2 + r3,t)

(1)
J

[}

a?¢§1)(x,y,z,t)¢ (x + £Y,2 + r3,t) (26)

where rq and r3 are separation distances and = 1ndicates simple truncation after
the first mode. When rq = r3 = 0 1n egs. (25) and (26), the two-point correlation
reduces to the usual Reynolds stress tensor uiuj(y,t). Thus, at time ¢t,

—(1) (" N
uiuJ (y,t) = J]zm ¢l(k1,y,k3,t)¢3‘(k1,y,k3,t)dk1 dk3 (27)

where ( )* denotes the complex conjugate of ( ).

'

The following structural_quantities may also be calculated : (a) normal stress

intensities (u2/q2), where q2 = u2 + v2 + w2, (b) shear stress 1intensity (EV/qZ),

(c) orientation of the principal axes of the large eddies (@), which 1s given by

10



-1 -2uv (28)

and (d) anisotropy (u2/v2).

CALCULATION PROCEDURES

The objective here 1s to calculate the first mode of the velocity fluctuation
and to investigate how much the first mode influences the turbulent intensities and
the various other structural quantities described in the foregoing section. Atten-
tion is paid to the skewness param???r, S, that appears in eq. (16), and its role in
the solution for the first mode, ¢i , and the structure of turbulence deduced
therefrom,

In order to solve egs. (19)-(22), after adopting a numerical algorithm one
needs (a) the initial and boundary conditions, (b) the local mean velocity profile,
and (c) the proper skewness factor as well as an eddy viscosity. In light of the
difficulty in specifying the boundary condition for the pressure spectrum at the
wall, the continuity relation 1s employed 1in the calculation over the Poisson's
equation. Numerical results of the statistical quantities can then be compared with
the measurements from Laufer (1951), for example, from which a particular flow
condition is selected as

Uo = 7.574 (m/sec)
u* = 0.2891 (m/sec)
H=12.7 (cm)

Re = UoH/v = 61600

where Uo, u*, H, and Re are the mean velocity at the channel centerline, wall-
frietion velocity, channel width, and Reynolds number, respectively.

Initial and Boundary Conditions

A numerical solution for the large eddy spectra governed by the system of
equations (19)-(22) 1s determined as an initial-boundary value problem in the (y,t)-
space for various values of wave number, k. The initialization can be approximate
because of the implicit nature of the algorithm and the goal of achieving a steady
solution 1n the presence of a fixed mean strain. The initial conditions are chosen
to possess reasonable spectral character and spatial distributions. The chosen
initial distributions are as follows.

1



P, = Ay exp(-ky) )

1

P, = Ay(0.5 - y)/k

P, = -P

3 1

> (29)

Pu = -P2\

Py = A(1 - y)/k/B

where A 1s a constant 1in the order of 1, and the factor B_ in P5 has been

introduced so as to make the energy content of u2, v2, and w~, that is,

1 —
2
J. ul dy

o
1sotropic initially.

At the wall (y = 0), the no-slip condition requires

P1 = P2 = P3 = Pu = P5 = P6 =0 (30)
The boundary conditions for the pressure spectra (P, and P8) are deduced from the
v-component (normal to surface) equation applied at the wall (Moin, Reynolds, and
Ferziger, 1978). The spatial derivative for the pressure fluctuation is then dis-
cretized using a three-point one-sided formula beginning at y = O.

For the other set of boundary conditions, the flow field has been assumed to be
symmetric with respect to the centerline (y = H/2), giving

Pa = Pé = Pé = Pé = P% = Pé =0 (31)

3 Pu =0 (32)
where ( )' denotes the derivative with respect to y. It should be pointed out that
the flow field in the entire channel from y = 0 to y = H has been solved 1n a
single 1instance with the no-slip condition imposed at both ends, y = 0 and y = H.
The results show symmetric profiles for the u- and w-spectra, and antisymmetric
profiles for the v-spectra (P3 and Pu) with respect to the channel centerline,

This justifies using the current boundary conditions at the centerline,

P

The semi-implicit numerical scheme employed (Greenspan, 1974) utilizes a two-
point backward differencing in time and a three-point central differencing in y.
The nonlinear convolution integrals are treated explicitly by evaluating them at a
previous time step when the solution 1s known. The numerical integration for these
terms is carried out employing the trapezoidal rule over the wave number space,

12
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(kq,k"), at a given point, (k1,y,k3,t). This enables the formation of a system of
matriX equations for all y at each advanced time level, where the coefficient
matrix becomes block-tridiagonal and diagonally dominant. The inhomogeneous y
coordinate is discretized as suggested by Murphy and Rubesin (1979) and the half of
the channel is divided by 35 nonuniform grids.

The wave number space, (k1,k3), has also been divided into strongly nonuniform
meshes. The wave number plane is covered with (17,17)-grids where the values are
equally spaced in the logarithmie scale for each wave number direction in the range
between -10 and 10 (1/cm). It was found (from numerical experimentation) that wave
numbers outside this range contribute so little energy to the first mode that they
have negligible effect on the turbulent stresses.

Mean Velocity Profile

The mean velocity profile 1s approximated by a near wall Prandtl-Taylor model
and a blending profile near the center plane.

(a) Ut =y* (y" < 12)
(b) U =3.0eny" +5.5 (12 < y* < 760)
(¢) U/Uo = 1.0 + 0.068 log(y/d) (y* 2 760)

where U' = U/u*, y+ = yu*/v, and d = H/2. The mean velocity profile 1in the outer
layer, (c) above, has been 1introduced in this form for the purpose of matching with
the law of the wall, (b) above, smoothly and, of course, with the experimental data.

Parameter Effects

During the computation, a fairly small time step (normalized by the mean veloc-
1ty at the channel centerline and by the channel height) of about 0.001 has been
used to ensure numerical stability and accuracy. Since the current system of spec-
tral equations 1s nonlinear, an 1instability in any part of the solutions soon propa-
gates 1into other solutions. Thus, 1f solutions for high wave numbers become
unstable, even though solutions for low wave numbers are stable, the nonlinear
integral causes the entire solution to grow infinitely as the iteration proceeds 1in
time.

Although ¢, governed by egs. (19)-(22), generally can vary in time, the fully
developed, steady mean flow and boundary conditions used here cause the solution to
converge to a steady state which represents a stationary random field. We first
studied the effect of various values of S on the solution when Vp = 0. Only a
narrow range around the value of zero is found for the skewness parameter, namely
S| < 0.03, for which the solution does not grow rapidly. In the current computa-
tion, the procedure has been continued up to 200 iterations 1n time to achieve an
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accurate asymptotic solution. On a Cray operating system, the computation time took
30 sec in the central processing unit for every iteration.

NUMERICAL RESULTS

First, this section will cover how the solution is affected by various values
of the parameters, S and v, in egs. (19)-(22). After a pair of those values 1s
selected, numerical results obtained in the mixed, (k1,y,k3,t), space are integrated
over the wave number space to yield Reynolds stresses as a function of y. The
computed stresses and structural quantities are compared with the experimental data
of Laufer (1951).

Parameter Determination

The skewness parameter, S, can be regarded as a parameter affecting the struc-
ture of the solution, ¢. On the other hand, the primary role of the eddy viscosity,
v.,, 18 to stabilize the growth of the solution, subject to production in a fixed
mean velocity field. We pick a value of S first and then determine a correspond-
ing value of v, which yields a steady-state solution. One may argue that a choice
of a particular set of S and v, is not unique on the ground that other combina-
tions of S and v.,, could also produce steady-state results. It has been found,
however, that the solution is rather insensitive to the choices of the combinations
of S and vy that yield steady solutions (see below).

Figure 2 shows the growth of the turbulent kinetic energy, integrated over the
channel, for various values of S as a function of time 1in the absence of higher

modes, Vp = 0, and for a single case with v, = 18. With v, = 0, the growth rate
increases with increasing S, and it was found for |S| > 0.33 the solution grows
so rapidly that it becomes unstable. For S = 0.01 and v.. = 18, however, the

desired steady state in kinetic energy 1s achieved. Also, for S = 0.03 a steady
solution for kinetic energy occurs when Vp = 22,

In order to examine further whether each component of the kinetic energy has
indeed reached a steady state for the above two sets of parameters, each component
of the three turbulent intensities 1s integrated over the channel from y = 0 to
y = d. The results are presented 1n figure 3 as a function of time. The results
show that the u-component energy for S = 0.01 and v, = 18 maintains a constant
value, but for S = 0.03 and Vp = 22 1t continues to decrease slightly. For both
cases the w-component continues to 1ncrease whereas the v-component decreases,
agaln at a slow rate. The behavior of these different growth rates 1s believed to
be attributed to the use of an isotroplc eddy viscosity 1n eq. (15) and suggests the
use of an anisotropic eddy viscosity or some other alternative (Hong and Murthy,
1984a). Nevertheless, in view of the small growth rate in the v- and w-components,
this behavior 1is believed to be relatively unimportant and no attempt was made to
eliminate this continually varying anisotropy. The author favors the case of
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S = 0.01 and v, = 18 because it yielded a steady solution, more nearly steady
than the other case. However, the calculated Reynolds stresses for these two sets
of parameters were well within a few percent of each other as compared in figure U.
Thus, because the choice of which set to use is not critical to the results shown 1in
the rest of the paper, S = 0.01 and vp = 18 has been used.

Eddy-Eddy Interactions

The eddy-eddy interactions affecting the net production of the first mode will
be shown as

2~(1)

(0, _ %Y () 3 ~(1)~(1) 370,
\_lv__J . ~— J \ J L
|IAH nnptt "C"

The term "A" governs 1n??sa?%}on with the mean flow. The term "B" corresponds to
the transport of the ¢l ¢J , whereas the term "C" represents the effects of the
higher modes modeled by the“eddy viscosity. Figures 5 and 6 1llustrate the nature
of 1interactions among the eddies which are identified with "B" and "C" 1in eq. (33).
For 1llustration, the large eddy-large eddy interaction in the Pj-equation (which
is the real part of eq. (19)) is used, and is shown in figure 5 for three sets of
wave numbers, 0.2, 0.5, and 1.0 (1/cm). It 1s found that the values of "B" 1in

eq. (33) for wave numbers the same as, or less than, 0.2 (1/cm) are predominantly
negative 1n the inner part of the boundary layer. A negative value of "B" refers to
an energy supply; whereas a positive value i1ndicates an energy drain because the
value of Py itself 1n the inner layer is negative for those wave numbers., The
profiles of the nonlinear term show both types of behavior at the wave number about
0.5 (1/cm) and positive behavior at higher wave numbers than 0.5 (1/cm). Thus the
nonlinear eddy-eddy interactions for lower wave numbers cause energy galn, wWhile
those for higher wave numbers dissipate the energy.

Shown 1n figure 6 are comparisons between "B" and "C" terms 1in eq. (33) for
the Pj-equation. Figure 6(a) shows terms "B" and "C" at the low wave number
kq = 0.1 (1/cm) and figure 6(b) compares the same terms at the value of
ky = 5.0 (1/cm), both for a fixed value of the wave number k, at 0.05 (1/cm).
Profiles of the P1 are also provided in the two figures to indicate their behavior
in y at the same wave numbers. An opposite sign in "B" or "C" from that of Py
implies energy loss, while the same sign implies an energy gain. The value of
k3 = 0.05 (1/cm) was chosen 1in these illustrations because it emphasizes the differ-
ences occurring 1n the alternative k1's. Similar results are expected of "B" and
"C" for other values of k3 when k4 1s varied in the same manner. Figure 6(a)
shows that at the same wave number (kq = 0.1) and y/d = 0.5 the turbulent energy
transfer due to the first mode self-interactions 1s much smaller than that due to
the rest of the modes when the latter are modeled with v, = constant. 1If other
models were employed for the eddy-eddy interactions, this emphasis on energy loss
might be reduced. The magnitude of the higher-mode interactions considerably
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exceeds that of the first mode self-interactions in both figures 6(a) and 6(b) in
order to dissipate the energy gained not only from the large eddy but also from the
mean flow (term "A" in eq. (33)). Again from the signs of P,;, "B," and "C" in
figure 6, one can infer that the higher-mode interactions drain the energy consis-
tently for all wave numbers, while large eddy self-interactions either supply energy
for lower wave numbers or remove it for higher wave numbers.

Turbulent Stresses

The real part of the velocity spectrum for the u-component, P4, and that of
the pressure spectrum, P,, is shown at two different locations of y, which is
obtained at time t = 0.2. In figures 7 and 8, the Py- and P,-spectra are given in
the first quadrant of the (k1,k3)-space at fixed values of (a) y* = 7 and
(b) y/d = 0.09. Generally, one can observe a smooth behavior in the distribution
of Py and P7. The value of Py 1n figure 7 is greater at low wave numbers than at
high wave numbers, and 1its distribution falls toward zero with the increasing wave
numbers. As the value of y changes from y* = 7 to y/d = 0.09, the lower wave
numbers contribute more energy to the P,-spectrum in the inner layer region than in
the viscous dominant region. In figure 8, the P7-spectrum, unlike P1, does not
change its distribution much as y varies from one position to another. From these
deterministic large eddy spectra, P4 through Pg, Reynolds stress components have
been obtained as a function of (y/d) according to eq. (27).

In figures 9-12, the Reynolds stresses obtained as a function of (y,t) are
given at every 25 time steps to show the development in time. The solution adjusts
itself quickly in time and the effect of the 1nitial conditions appears to be
minimal. In order to see whether the Reynolds stresses in figures 9-12 change their

profiles, the u2— and v2-prof‘11es at t = 0.15, 0.175, and 0.2 are compared 1n
figure 13 as a function of y/d. It shows that the u- and v-component intensities
have indeed achieved equilibrium profiles for t > 0.15. The same observation has
been made for other Reynolds stress components.

For a detailed comparison, the Reynolds stresses are given as a function of
y/d at time t = 0.2 1in figure 14 along with experimental distributions taken from
Laufer (1951). The first mode contributes approximately 30% of the observed inten-
sities, although the shape agrees 1in general trend with the experimental distribu-
tion. The use of isotropic viscosity has caused a spuriously higher proportion of
the calculated w-component (than either the u- or v-component) in the contribution
to energy.

Structural Quantities

The single-point structural quantities defined in Applications to Channel Flow
were calculated from the Reynolds stresses and are compared with corresponding
quantities obtained from the measurements of Laufer (1951). In spite of low
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intensity levels of the large eddy as shown in figure 14, the normalized structural
quantities 1in figure 15 agree well with the corresponding experimental quantities
except for the anisotropy of the flow in the outer part of the boundary layer shown
in figure 15(d). It 1s believed that this latter result 1s the consequence of the
imposed symmetry at the channel centerline, that is, v = 0.

LARGE EDDY STRUCTURE

An important quantity in the study of turbulence structure is the two-point
velocity correlation which depends on the distance separating the velocities at two
different positions. Gther useful quantities include the fluctuating velocity
vector and stream functions from which a flow pattern may be constructed. We shall
present these quantities as deduced from the large eddy computation and discuss
their implications in this section,

Two-Point Velocity Correlation

To demonstrate the character of the velocity correlations that can be evaluated
from the computation of the first mode, four correlations, Ry, Ryy, R33, and Ry,
are presented here. The points are separated by rqy, ro, and rs 1in the x-, y-,
and z-directions, respectively, at a fixed time, t = 0.2. First, we have calculated
correlations between two velocity components which are separated by (r1 and r3) 1n
the homogeneous plane (y = constant). Then consideration 1s given to correlations
between velocities separated by r, 1in the y direction.

In figures 16 through 23, the two-point velocity correlations (obtained from
eq. (25) and normalized by the maximum value at each y location) are shown at two
planes across the channel, namely y" =7 and y/d = 0.5, as a function of separa-
tion distance (r1,r3). At y* = 7 1n the viscous sublayer the correlations fall
off rapidly to a zero value, but oscillate thereafter as the separation distance
increases in both x- and z-directions. A negative region in the correlation sur-
face indicates that the velocity fluctuation in that region 1s generally opposite
from the one at the origin. Thus, the distance between the two adjacent peaks 1in
figures 16-19 reflects a macro-length scale of motion in the region. On the other
hand, the correlations at y/d = 0.5 drops slowly over the distance of approxi-
mately a channel half-width. In general, one can infer that the normal velocities,
v, have shorter correlation lengths than the other velocity components. When the
correlations in figures 16-23 are compared with the ones observed experimentally
(Comte-Bellot, 1963), the distance for which the correlation changes 1ts sign or
reaches 1ts minimum 1s longer 1in the current calculations than in the measurements.
In general, these correlations exhibit the different character among the components
in Rl and between different locations in y. For example, the longitudinal
correlation, R11 in figure 20, and the lateral correlation, R22 in figure 21,
display the typical behavior of these quantities; that is, the R11 asymptotes to a
zero value while the Ry, crosses the zero line in a short distance and comes back



to R22 = 0. But all correlations are symmetric with respect to rq and ro for
all y's, which 1s consistent with the homogeneity assumption of the flow in the
(x,z)-plane.

An interesting way of examining the correlation coefficients is to introduce a
length scale, 55 deducible from the correlations in the form

23(}/) =f f Rii(r'1,y,r3)dr'1 dr3 (34)

(o] o]

Here the subscript, i, may be 1, 2, or 3 corresponding to the x-, y-, or
z-coordinates, respectively. The length scales obtained from eq. (34) for different
"1" are compared across the channel 1in figure 24. One observes the distinct anisot-
ropy in the length scales among the directional components. Also the magnitude of
the length scales 1is on the order of the channel half-width, d, with the largest
x-component and the least y-component scales. The length scales defined this way
represent the size of the large eddy (Townsend, 1976, p. 50) along y, where the
size in the 1th direction is proportional to each component of the length scale,

L .
1

Next, normal correlations of the velocities are examined as a function of
(y,r5) in the form

ui(y)ul(y + r2)
R, ,(¥yry) = (35)

{ul}max

In the calculation, the R,; are evaluated at t = 0.2 for every (x,z)-point in a
range which covers about two periods in each of the x- and z-directions. Then the
correlations are averaged over the (x,z)-plane. Such correlations are shown at two
values of y 1n figures 25 and 26. At y* = 7 1n figure 25, the u- and
v-correlations approach asymptotically a near zero value within a distance of about
0.1d, whereas the w-correlation drops to a zero value within 0.05d. On the other
hand, the correlations at y/d = 0.5 decrease mildly with 1increasing separation
distance as shown 1in figure 26. The shapes of the three correlations in figure 26
are also very similar to one another except in the region very close to the wall.
The anisotropy among the three correlations 1s more severe at y+ = 7 than at

y/d = 0.5, but the correlation 1s weaker 1in the viscous region than i1n the outer
layer. It means that the velocities are more likely to be in the opposite sign 1n
the viscous region than in the outer layer.

Again length scales are assigned to the correlation coefficients defined 1in
eq. (35) 1in the following form.

L, (y) = J:m R, (y,ry)dr, (36)
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The length scales, L;, then represent the degree of mixing of the fluid in the y
direction associated with each velocity component. Figure 27 shows the length
scales obtained from eq. (36) as a function of y/d. On the same figure, a mixing
length scale deduced from

GV = -pli (%)2 (37)

is provided for a qualitative comparison between L and 2 and is denoted by
points (e). The values of the scale, %, are taken from Goldstein (1950, p. 357)
for a pipe flow at the same Reynolds number as in the current channel flow. Thus
the length scales, L;, are comparable to the conventional mixing length scale 1in
magnitude as well as in distribution. But, as can be observed 1in figure 27, the
x-component length scale, L;, becomes locally negative in the viscous region. This
is perhaps because the effect of small-scale turbulence 1s excluded in that region
where the influence of small eddies is comparable to that of large eddies.

As an alternative to the integral scale, L;, as defined 1in eq. (36), one can
define a length scale as the distance for which the correlation crosses a zero
line. The slope of such a length scale may be found to be steeper (Glushko, 1965)
than the current slope of about 0.4 1n the 1inner region (y/d < 0.2) 1in figure 27.

Typical Velocity Fluctuations

Characteristics of the turbulent velocity field can be displayed, 1in the
ensemble-averaged sense, from the first mode. { ?ne writes a)typlcal velocity
field corresponding only to the first mode as u then u may be obtained
from

ugﬂ(x,y,z,t) z Vx“)cbi”(x,y,z,t)
= ff_m ¢1(k1,y,k3,t)exp{i(k1x + k3z)}dk1 dky (38)

Contour plots of the typical velocity fluctuations can then be drawn in a physical
domain between -0.5H and 0.5H for both x- and z-coordinates. To show the turbulent
motion in the near wall region, the contour plots of the three velocity components,
u(1), v(1), and w''’/, are presented at y* = 7 1n figures 28-30. In the figures,
solid lines indicate positive values and dashed lines indicate negative velocities.
The 1nner curves possess higher values than outer curves enclosing them, and the
increment between contour curves is uniform throughout the figures., The solid and
dashed lines appear alternatively in both x- and z-directions showing a periodic
occurrence of the "thumbprints." The contour curves are more circular than similar
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results from the direct simulation of the flow (Moin and Kim, 1982) where the con-
tour lines form elongated curves in the streamwise direction. The contour plots
exhibit periodiec formations in both directions and the spatial periodieity is shown
to be one-half of the channel height (H/2), although there are also weak secondary
periods within the principal period. This is a consequence of the Fourier transform
utilized in the calculation procedure. One advantage of the spectral method over
the finite difference method is that the latter requires a period length in the
homogeneous directions when imposing the boundary conditions while the former does
not need it. The magnitude of the period 1n the spectral method 1s determined
implicitly as a function of the large eddy spectral content and 1s dependent on the
nature of turbulence rather than artificial geometry. Since the flow domain in the
figures covers two periodie lengths in both directions, it is considered adequate in
studying any feature deduced from the region as a typical property of the flow as a
whole.

Stream Function

The velocity vector of the first mode 1s plotted in figure 31 1in the
(y,z)-plane at two values of x, that 1s, x/H = 0.3 and 0.4. The choice of 0.3 and
0.4 1s not significant since the turbulent motion is shown to be periodic and repet-
1tive 1n the previous section. The two locations are chosen simply because they
seem to possess some character of the flow. The flow at 0.3 and 0.4 appears to be
chaotic 1n figure 31. In order to grasp the flow field associated with the velocity
vectors, a stream function, ¥y, 1S defined 1in the (y,z)-plane as follows.

y
w1(x,y,2) = -f w(”(x,y,Z)dy (39)

(0]

The stream function, by, represents the turbulent flux of mass between the surface
and a point in space. A positive value implies the bulk of the flow moving in the
negative 2z-direction and a negative value i1mplies movement in the positive
y-direction. The contours of the stream function are drawn in figure 32 and, in a
three-dimensional format, 1n figure 33, where the geometrical extent of the flow
field in the (y,z)-plant 1s the same as in figure 31. The solid lines bear positive
values, and the dashed lines correspond to negative stream functions. Figure 32
shows contour curves of ¢, obtained at (a) x/H = 0.3 and (b) 0.34. The stream
function contours when chosen at 0.3 and 0.34, instead of 0.3 and 0.4, reveal
clearly the turbulent motion in the spanwise direction as well as that i1n the
streamwise direction. First, the bulk motions of turbulent flow push each other 1in
the spanwise direction, resulting in a counter-rotating flow. The centers of each
bulk motion are located at the regions of highest contour values in figure 32.
Secondly, the line connecting points A-E in figure 32 rises to the line A'-E' 1n the
ad Jacent downstream plane. The values of the stream function remain unchanged as
the flow moves from A to A', and B to B', etc. The streamlines connecting the two
lines are elevated by approximately 0.06 in y/H between 0.3 and 0.34 in x/H.
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Thus one can estimate that the large eddy structure is inclined with respect to
free-streamline by an angle of arctan(0.06/0.04) = 56 (degrees).

In figure 33, the levels of the stream function contours remain unchanged as
the x/H progresses from 0.3 to 0.5. The streamlines at x/H = 0.5 have been
added primarily to show the periodic nature of the motion i1n the homogeneous direc-
tion. The main feature in figure 33 is the lifting of the streamlines as the flow
moves on from x/H = 0.3 to 0.4, If one compares figure 31 with 33, the flow 1in the
inner region (y/d < 0.3) at x/H = 0.3 1s more energetic than at x/H = 0.4. This
1s because the flow has gushed up toward the outer region by a movement of counter-
rotating vortices at x/H = 0.3 and as a result has lost 1ts energy by the time 1t
reaches x/H = 0.4. The lower portion of the flow field in figure 31 1s 1indeed very
quiet and represents a very weak motion. After resting briefly at around
x/H = 0.4, the flow 1s then ready again for another leap at around x/H = 0.5.

When attention is focused on the streamlines 1in the viscous region, as 1in
figure 34 where physically the spanwise extent is six times the vertical extent, two
opposing streamline patterns emerge. The distance between the centers of the domi-
nant motions 1is about 140 wall units (normalized by the wall-friction velocity and
the molecular viscosity). This 1s higher than the 50 wall units estimated by
Blackwelder and Eckelmann (1979) for the spanwise distance between a pair of
counter-rotating streamwise vortices. Nevertheless, the ¢, shown on figure 34
again demonstrates the existence of a counter-rotating vortex motion which intrudes
the viscous layer. These are the same motions which have been advocated by Bakewell
and Lumley (1967) and by Moin (1984).

In addition to the previously defined stream function, 2% in the (y,z)-plane,
a second stream function, by, may be considered in the (x,y)-plane to attempt to
explain the manner 1in which the large eddy behaves in the streamwise direction.
Now, if the second stream function, wz, 1s expressed in the form

Y (1)
w2(x,y,z) = u (x,y,z)dy (40)
o

then the by describes the flux of the turbulent flow 1n the streamwise direction
across a vertical line from the wall (y = 0) to a point of interest (y). The curves
pushed toward the positive y-direction imply that the flux of turbulent flow 1is
going into the positive x-direction, while the curves dipped toward the bottom wall
indicate that the turbulent flow 1s returning back against the mean flow even though
the total velocity 1s still positive, In figure 35, 1if one examines the flow region
between x/H = 0.3 and x/H = 0.4 only, the streamlines bounded by the first two
(x,y)-planes from the low 2z values are indented toward the bottom. On the con-
trary, the streamlines surrounded by the last two (x,y)-planes show the opposite.
One can infer, therefore, that the motion of the large eddies pushes the fluid
forward, stagnates, and then pulls 1t backward, forming a shape analogous to a
horseshoe or hairpin (Willmarth and Tu, 1967). However, the structure inferred from
figures 33 and 35 covers a greater spatial extent than the one suggested, for
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example, by Hinze (1975), and virtually the whole flow field becomes affected where
such structure arises. The structure occurs sporadically in space, with a principal
period equaling the channel half-width in the homogeneous directions. Within the
principal period smaller, sub-harmonic motions are also observed.

LARGE EDDY STATISTICS

While correlation functions, vector plots, or stream functions of the first
mode reveal an essential nature of the turbulenty motion, another side of turbulence
can be exposed by vorticity fluctuations and probability functions. To enhance our
understanding of the large eddies, we further investigate the velocity fluctuations
from different points of view and their respective statistical properties. We shall
briefly examine the hodograph transformation of the large eddy velocity components.

Large Eddy Velocity Field

The same veloeity fluctuations, obtained from eq. (38) and discussed in Typical
Velocity Fluctuations, are then displayed in the (y,z)-plane mainly to show their
variations in the inhomogeneous space, y, for successive locations of 2z. Most
fluctuations are concentrated in the wall region as shown in figures 36-38 where the
energy production 1s large. One notable feature 1s how the fluctuation at the wall
1s related to the outer edge of the boundary layer, which is reminiscent of the
ejection or inrush (Hinze, 1975, p. 666). The ridges in figure 37 may be identified
with the ejection originating at the top of each hill, and the valleys can be
related to the inrush. The two phenomena occur intermittently in the horizontal
(x,2)-plane but are connected throughout the y-direction. This shows that the
turbulent transport transmits most of the energy or the momentum through the trans-
mittal routes in the normal direction.

Vorticity Fluctuation

Although an eddy 1s a different concept from a vortex, efforts have been made
to trace the eddy from the dynamics of the vortex motion. The vorticity is further
distinguished from the vortex but can be indicative of turbulent motion, especially
through the formation of a vortex tube, The streamwise component of the vorticity
fluctuation is calculated from the large eddy and i1s shown in figure 39. For quali-
tative study, however, the differentiation of the velocity 1s performed in the
physical space using a central differencing. If one wishes higher accuracy, one can
differentiate the velocity spectrum analytically and then integrate 1t over the wave
number space. The streamwise vorticity reveals highly concentrated counter-rotating
vortices along the spanwise direction. The vorticity in the outer layer 1s surpris-
1ngly quiet in contrast to the energetic velocity fluctuations in that region.
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Hodograph Transformation

With the anticipation that the hodograph transformation may hold a clue for the
description of the large eddies, the velocity flow field of the first mode in a
finite domain 1n the physical space has been transformed into the so-called hodo-
graph-(u,v,w)-space. A flow volume taken from the (x,y,z)-space at a fixed time,

t = 0.2, as shown 1n figure 40, is represented by 35 grid points along each of

36 lines sampled. Velocity components at each grid point along the vertical lines
are then mapped into the hodograph space, as shown in figure 41, and the points are
connected in the direction of the arrows. The result 1s 36 tangled lines 1in the
(u,v,w)-space, forming a finite region 1in the new space. Each trajectory 1in the
hodograph space consists mostly of loops with relatively large radii of curvature.
As noted by Deissler (1984) 1n the description of a flow with all sizes of eddies
transformed into a phase space, the trajectory for the small-scale turbulence might
have included loops with smaller radii of curvature than the ones shown in fig-

ure 41. It 1s also noticeable that there are no cusps 1n the trajectories due to
inherent large scales associated with the first mode., In the figure, all the paths
are heavily concentrated around the zero-velocity point, and the trajectories follow
the curve, u = -v, when projected on the (u,v)-plane as shown 1in figure U2,

By the same way, streamlines passing through the (x,y)-plane at z = 0 are
projected into the hodograph space. The grid points from which velocities are taken
are shown 1in figure U43, and the velocities are then mapped into the hodograph space
in figure 44, The transformed shape 1n figure 44 1s obtained after connecting all
the points 1n both x- and y-directions. The trajectories again show very much the
same shape as found earlier in figure 41 from another volume of flow. It 1s evident
from the two figures that any streamlines in the turbulent channel flow, when con-
verted 1nto the hodograph space, would lie on the surface enclosed by the 36 arrowed
lines 1n figure 41. Thus the large eddy velocity components in the channel flow
form an ellipsoid 1in the (u,v,w)-space whose major axis 1s aligned with a diagonal
represented by u = -v = w. This 1s consistent with the proposed description of a
large eddy by Townsend (1956) and other experimental observations in which correla-
tions between u and v, for example, are most likely negative leading to negative
shear stress.

Probability Distribution Function

In previous hodograph figures as well as velocity contour plots, 1t is apparent
that the velocity fluctuations pass through the zero point (u = v = w = Q) more
often than any other points. When 2601 (= 51 x 51) grid points were sampled 1n an
(x,z)-plane at y+ =T or y/d = 0.5, the number of points at which the velocity
falls into a certain threshold between maximum and minimum velocities shows a typi-
cal near-Gaussian distribution as 1in figure 45. The distribution i1n the homogeneous
plane slightly deviates from the Gaussian and the degree of departure from 1t indi-
cates the degree of skewness of turbulence. The skewness is believed to be a result
of the nonlinear transport term in eq. (16) which was necessary for the energy
balance of the large eddies. In figure 45, two propability distribution function
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(PDF) curves are presented for two different locations of y, and the skewness
changes its sign as y increases. This agrees with experimental trends (Kreplin
and Eckelmann, 1979). When the u-component velocity is sampled along a vertical
line in y at two locations of (x,z) = (0,0) and (0.1,0.1) as 1llustrated in fig-
ure 46, the resulting PDF is not even close to a Gaussian distribution, thereby
confirming that the PDF in the inhomogeneous space is not normal as expected.

The statistical results discussed in this section are obtained from the first
mode; nonetheless they disclose salient features of the entire turbulent motion for
a given flow, either experimentally observed or derived from analysis. It is thus
certain that the first mode retains most of structural and statistical information
embedded in an actual flow.

TURBULENCE CORRELATIONS

The nature of the orthogonal decomposition of the velocity fluctuation into
random and deterministic variables 1in the Large Eddy Interaction Model could ena?%?
one t?n$alculate various turbulent correlations directly from the solution of ¢l
and w . As an 1llustration, we now consider two important processes appearing in
the Reynolds stress equations; that 1s, the pressure-strain rate correlation, =«

?
and the rate of dissipation of the turbulent kinetic energy, EiJ’ where HJ
u Ju
Ty p \ 3x * ax (51)
J J 1
au au, \
€ = 2v (——l ~—~1) (sum for index k) (42)
1]} ax ax
k k
We recall the expansion 1in the form
() (2) (3)
U= oage o+ aye T s a3¢1 + ... (43)
- % p = a1n(1) + a2n(2) + a3n(3) + ... (44)

where n(n),(n)= 1, 2( ?, ..., are the solutions of the coupled dynamical equations
governing ¢."’ and '™’ (see egs. (10) and (13)), but are not necessarily mutually

orthogonal.
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Due to the randomness in the an's, one can express “ij and eiJ in the form

2,5, @

Tiy (ayn ij * % ij
= -5 (fatmh sy, (45)
n=1
(n) (n) (n) (n)
o (a2 o) aWr e
i
., = 2V (46)
elj nz=:1 axk axk
where
(n) (n)
S(n) = 34’]-_ + a¢j
1] axJ axi

Concurrently with the homogeneity assumption in the channel flow case, "ij and Elj

can also be expressed as a function of spectra, J and v, as well (Hong and Murthy,
1984b).

Therefore the Large Eddy Interaction Model can be utilized as a guide to test
and to aid in closing various turbulence models.

CONCLUDING REMARKS

The current paper deals only with the first mode and the balance of a large
eddy regarding its origin, maintenance, and destruction . Therefore, the question
still remains untouched as to the number of modes 1n the series required to repre-
sent the turbulence field sufficiently well to predict engineering quantities. The
first mode is shown, however, to be so significant that 1t supplies about 30% turbu-
lent kinetic energy and possesses a structural and statistical character that
matches well with the experimental trends of the entire turbulence field.

When the turbulent transport 1s truncated to only the interactions between the
components of the first mode (v. = 0), 1t is found that the energy drain through the
first mode is insufficient to balance the energy gain from the mean motion. The
kinetic energy of the first mode then grows monotonically without bound. The non-
linear interactions of higher modes are thus necessary in the dynamics of the first
mode. However, the isotropic eddy viscosity used in the current closure yields an
anisotropic growth rate, though small, among the three normal intensities. To
improve the eclosure with respect to the higher mode-interactions, an alternative
approach may be to solve the first and second modes simultaneously and to model the
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interactions resulting from the rest of the modes. In that case, the different
roles of the first two modes in forming a complete flow should become clear and help
answer, in part, the earlier question of the number of modes essential for the flow.

It is briefly mentioned in the last section that the Large Eddy Interaction
Model can provide an independent framework to check models for various turbulent
processes. The soundness of such a test lies in the fact that the Large Eddy Inter-
action Model requires a closure assumption for only the nonlinear eddy-eddy interac-
tion terms,and the empirical parameters are chosen on the basis of physical consid-
eration of the large eddies. Now that the first mode is shown to represent the
structural character of turbulence, it remains to be determined whether the first
two modes are adequate to capture most of the turbulence energy.
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APPENDIX A

ALTERNATIVE EXPANSIONS FOR VELOCITY FLUCTUATION

If the instantaneous velocity field is decomposed into a time-mean value and
1ts fluctuation, then

Ui = Ul + ui (a.1)
(Ui) = Ui (4.2)
u;> = 0 (4.3)

where < > denotes a time average. The veloeity fluctuation can be expanded in
terms of orthonormal functions as opposed to eq. (2).

u(5,6) = % a (0)s! ™) (A.4)

1 n=1

Notice that the orthonormal functions depend on space. The random coefficients are
functions of time and are subject to <a (t)> = 0 by definition. Then the expan-
sion, eq. (A.4), satisfies the premise o? eq. (A.3), that is

Y o (06l (%)

<u.>
i
n=1

n§ <an(t)>¢£n)(§)

=0 (A.5)

Thus, the expansion in eq. (A.l4) is consistent with the definition of the velocity
fluctuation in eq. (A.3).

Similarly, if U; 1n eq. (A.1) is a spatially averaged value, then

U (4.6)

{u;} 1

0 (A.7)

{ul}

where { } represents a space average. The velocity fluctuation then can be
expanded in the form
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ay(F0) = 3 @ (@elM (o)

with

fa (X)} = 0 (.8)

so that the expansion in eq. (A.8) satisfies the definition of ;.

{Z o (x)¢‘")(t)}

{ul}

2: {a (x)}¢(n)(t)
n=1
=0 (4.9)

Among the three types of expansions for wuj;, which are egs. (2), (A.4), and
(A.8), eq. (2) 1s the most "fundamental" way of expanding the velocity fluctuations.
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APPENDIX B

RELATION BETWEEN VELOCITY SPECTRUM AND SPECTRUM OF TWO-POINT VELOCITY CORRELATION

If mean flow is homogeneous in both streamwise (x) and spanwise (z) coordi-
nates, as is ?q? case of two-dimensional channel flow, one can define spectra of the
]
i

first mode, , and of the two-point spatial velocity correlation as follows.
¢.(k,,y,k,) = ! /T¢€1)(x,y,z)exp{-;(k X + k,z)}dx dz (B.1)
it™ 3 2 i 1 3
(27) -
- 1 ® :
RlJ(k1,y,k3) = z;;;i J]zm RiJ(r1,y,r3)exp{-1(k1x + k3z)}dx dz (B.2)

or, inversely,

AoV (x,y,2) = ff 0, (ky ¥ kydexp(i(k,x + kz)dky dkg (8.3)

Rij(r1,y,r3) = J]:m Rij(k1,y,k3)exp{i(k1x + k3z)}dk1 dk3 (B.4)

Here all variables associated with ¢i and Rij depend on time implieitly.

Now, consider a product of L and ¢J in the form

¢i(k11y’k3)¢J(k'{,y,k§)
1 ﬂ“” Aot (x,y,2)expl-1(k % + ky2) 1dx dz
(27)% Yo i T 1 3
x {(2:[)2 f‘[m /)?d)fl])(xll’y,zv')exp[-;'\_(k[]'x" + k'3'Z")]dx" dz"}

(21)” fﬂr rofV(x,y,2008 D ixty,2")
L -

X exp[-i(k1x + k3z + k?x" + kgz")]dx dz dx" dz" (B.5)
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Let's set x" and 2" as

" =z X + r, (B.6)
z" =2 + ry (B.7)
then
¢l(k1,y,k3)¢J(k",y,k")
s [ [ P e
(27) -o | (27) -
x exp[—l(k?r1 + k§r3)]dr1 dr%} . exp[-i(k1 + kq)x - i(k1 + kg)z]dx dz (B.8)
The 1integrand in the last expression can be replaced by the two-point velocity
correlation, le, by way of
1 1 1
le(r1,y,r3) = x( )¢§ )(x,y,z)¢§ )(x +ryY,2 + r3) (B.9)
" yielding
0, (ky, ¥, kg)0 (Y, k3)
I e L
= . y,r5) - exp[-1(k"r, + k"r_)ldr, dr
(2r)° ‘“{(21r)2 o T3 B L
x exp[-l[(k1 + kg)x + (k3 + kg)z]]dx dz
- ok Sy, k) ff exp(-il(k, + K1)x + (kg + k3)z])dx dz (B.10)
(2n)2
Fourier transform of a constant 1is then the Dirac delta function, that 1is
s(k + k") = ff exp{-;.[(k + k")x + (k, + k")z]}dx dz (B.11)
(20)2 - 175 3773

or

—_
"

ff S(E + E")exp{(E + k") - X1d(E + &)
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By substituting eq. (B.11) into eq. (B.10), one arrives at
- N " "y _ o " " A el
¢i(k1,y,k3)¢J(k1,y,k3) = Rij(k1,y,k3)6(k + k")
or

Rij('k17y)‘k3) = ¢i(k1,y,k3)¢J(—k1,y,-k3) (B.12)

which is given in eq. (24) and leads subsequently to the following via egs. (25)
and (26).

uiuj(y) = J]:m ¢l(k1,y,k3)¢j(-k1,y,-k3)dk1 dkg (B.13)

Here one can utilize the following symmetry condition implied in egs. (B.3) and
(B.4) for the integration.

N NS -
¢l(k1,y,k3) ¢i( k1ryy k3)
6,(-k1,¥,k3) = o¥(k,,y,-K3)

Ry 1 (Kq,¥k3)

RTJ(-kA] ’y,"k3)

That is, the real parts of ¢ and R are even functions, and the imaginary parts
are odd functions with respecé to the“wave number, K.

Another way of obtaining uluJ(y) may be to (a) calculate ¢§1)(x,y,z) and

¢§1)(x,y,z) separately from eq. (B.1), (b) multiply them directly 1in the (x,z)-plane

for ¢€1)¢(1), and (c) take a spatial average over a period which the product would
possess 1njboth X- and z-coordinates. Thus, the alternative will be more tedious
than the analytical methods in the above, eq. (B.13), and the solution depends on
the averaging technique which 1s unnecessary in the spectral method.
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Figure 1.- Coordinate system for a two-dimensional channel flow.
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Figure 2.- Turbulent kinetic energy vs ¢t (= tUg/H) for various values of skewness
parameter, S.
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Figure 3.- Turbulent energy growth in time among three components for two sets of
parameters: solid line for (S = 0.01, v, = 18); dashed line for (S = 0.03,
Vp = 22)..
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Figure 4.- Comparison of Reynolds stresses calculated, based on two sets of param-
eters: S = 0.01 and v, = 18 (solid line); S = 0.03 and vp = 22 (000).
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Figure 6(a).- Profiles of large eddy self-interactions and modeled higher mode
interactions versus y/d for k4 = 0.1 and k3 = 0.05 (1/cm) at t = 0.2.
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Figure 6(b).- Profiles of large eddy self-interactions and modeled higher mode
interactions versus y/d for k; = 5.0 and k3 = 0.05 (1/cm) at € = 0.2.
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Figure 7.- Distribution of Py in the (k;,k3)-space at (a) yt = 7 and
(b) y/d = 0.09. t =70.2.
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Figure 10.- Development of normal turbulent intensity (v2/U§) in (y,t) space.
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Figure 11.- Development of spanwise turbulent intensity (wzlug) in the (y,t)-space.
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Figure 12.- Development of shear stress (ﬁV/Ui) in the (y,t)-space.

!

n2



3X 10_3 T T T T T T T T

X
O,
1

INTENSITY

Figure 13.- Comparison of three u® and v profiles at t = 0.15 (o), 0.175 (x),
and 0.2 (&).
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Figure 16.- Two-point veloecity correlation, R
funetion of (r1,r3) at y*=7.
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Figure 17.- Two-point velocity correlation, R22 obtained from eqg. (25), as a
function of (r1,r3) at y* = 7.

Figure 18.- Two-point velocity correlation, Rq2 obtained from eq. (25), as a
function of (rq,r3) at yt = 1.
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Figure 19.- Two-point velocity correlation, Ry, obtained from eq. (25), as a
function of (r1,r3) at y* = 1.

Figure 20.- Two-point velocity correlation, Ry obtained from eq. (25), as a
function of (r1,r3) at y/d = 0.5.
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Figure 21.- Two-point velocity correlation, R,, obtained from eq. (25), as a
function of (r1,r3) at y/d = 0.5.

Figure 22.- TWwo-point velocity correlation, R33 obtained from eq. (25), as a
funetion of (r1,r3) at y/d = 0.5,
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Figure 23.- Two-point velocity correlation, R
function of (r1,r3) at y/d = 0.5.
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Figure 24.- Integral length scale of large eddy defined by eq. (34) vs. y/d.
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Figure 25.- Two-point velocity correlations obtained from eq. (35) as a function
of r, at yt = 7.
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Figure 26.- Two-point velocity correlations obtained from eq. (35) as a function
of r, at y/d = 0.5.
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Figure 32.- Stream function contours in the (y,z)-plane at (a) x/H = 0.3 and
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Figure 33.- Stream function ¢, (eq. (39)) contours in the (y,z)-plane at
x/H = 0.3, 0.4, and 0.5.
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Figure 3U4,- Stream function ¥, contours in the (y,z)-plane in the viscous region.
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Figure 35.- Stream function v, (eq. (40)) contours in the (x,y)-plane at four
locations of 2.
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Figure 36.- Large eddy velocity fluctuation, u(1), in the (y,z)-plane at
x/H = 0.12.
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- Streamwise vorticity fluctuation of large eddy in the (y,z)-plane at

Figure 39.

Figure 40.- A volume of the flow represented by 36 lines in the physical space.
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Figure 41.- Traces of velocities along the lines shown in figure 40 at £ = 0.2.
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Figure 42.- Projection of velocity traces in figure 41 onto the (u,v)-plane, at
t =0.2.
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Figure U45.- Probability distribution function of the u-component of a large eddy
in the homogeneous space: (a) y* =7, (b) y/d = 0.5.
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Figure U46.- Probability distribution function of the u-component of a large eddy
along y at (a) x =2 =0 and (b) x = 2 = 0.1H.
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