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LARGE EDDY INTERACTIONS IN A TURBULENT CHANNEL FLOW 

s. K. Hong* 

Ames Research Center 

SUMMARY 

The dynamic processes of large eddies In a turbulent channel flow have been 
examlned by utilizing an orthogonal expansion of the velocity fluctuation, known in 
the llterature as the Proper Orthogonal Decomposition Theorem. The mathematlcal 
form of these functions is unknown, in contrast to the Fourier analysis. Attention 
is focused on the nonlinear, turbulence-turbulence interaction process in the dynam­
lcal equation for large eddies (the flrst term in the expansion). The nonllnear 
Interactions of the components of the flrst mode are treated exactly, but influences 
of higher modes are modeled. ThlS requlres adjustment of both the skewness and the 
effective Reynolds number so that the energy equilibrium of the large eddles is 
ensured when the mean veloclty dlstribution is assumed known from experlments. 
Computational results show that the fIrst mode contributes signiflcantly to turbu­
lent intenslties and possesses a structural and statlstical character simllar to 
that of the entire flow. 

INTRODUCTION 

Important in the engIneering predictions of Inhomogeneous, turbulent shear 
flows are the mean velocltles and the local structures of turbulence under glven 
inItial and boundary condItions. The most popular predIction methods first assume 
that the Navier-Stokes equations are adequate for descrlblng turbulent flow on an 
Instantaneous baS1S and then proceed to develop statlstical equatlons for the varl­
ous turbulent moments, including the Reynolds stresses. However, these equatlons 
involve more turbulent moments than equatlons that eXlst for them, formlng an open 
system. Varlous levels of closure schemes have been proposed: the zero-equatlon 
model (Cebeci and Smith, 1974), the two-equatlon model (Saffman, 1970; Jones and 
Launder, 1972), and the Reynolds stress equation model (HanJallc and Launder, 1972; 
Mellor and Herring, 1973). Each of the foregolng methods requlres the Introductlon 
of several empirical constants with respect to varIOUS turbulent processes and 
provides only approxImate predictions of the nature of IndiVIdual turbulent pro­
cesses arISing in a given flow. An approach that examInes the dynamics of the 
turbulence may requlre less reliance on modeling. Earlier, the author used the 
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Proper Orthogonal Decomposition Theorem (PODT) (Loeve, 1960; Lumley, 1967) to 
develop a framework for predicting turbulence structural quantities by modeling 
nonlinear eddy-eddy interactlon terms. At the same time, the framework was used to 
study the 1mplications of the model1ng adopted. The framework, called the Large 
Eddy Interaction Model (LEIM) (Hong, 1983), is based on the concept that a few 
properly ldentlfied modes in the PODT may be used to represent the technologically 
Important quantIties of the turbulent flow field. 

It should be noted that Lumley's (1967) prImary purpose was to define, unambig­
uously, the meaning of an "eddy." Given two-point velocity correlatlOns from exper­
iments, the PODT has been applIed to plpe flow (Bakewell and Lumley, 1967), a wake 
(Payne and Lumley, 1967), and a flat plate boundary layer (Lemmerman and Payne, 
1977) as a means of extracting the features of a dominant eddy. In a simIlar 
approach using the results from a computationally simulated fully developed channel 
flow, Moin (1984) specIfIcally investigated the number of modes necessary In the 
PODT to reproduce the turbulent Intensitles and shear stress. Moin (1984) shows 
that, In the case of shear stress, It takes the fIrst 15 terms In the PODT represen­
tatIon before the calculated stress dIstrIbution matches the value sImulated earlIer 
(Mo1n and K1m, 1982) across the boundary layer. However, when only the wall reg10n 
IS exam1ned, the sum of the fIrst three modes yields the "experImental" results 
qUIte well. Th1S small number of modes needed to descrIbe the turbulence gave the 
author further encouragement to extend the PODT approach, as was done In the LEIM, 
to be a predictIve tool. 

The Large Eddy Interaction Model has been appl1ed In the past to varIously 
curved wall boundary layer flows (Hong and Murthy, 1983, 1984a, 1984b). The frame­
work has proved to be useful, among other features, In establishing dIrectly the 
manner In which (a) anIsotropy can arIse and change and (b) turbulent transport 1S 
affected by the addit10n or removal of an extra stra1n In those complex flows. The 
basic procedure of the LEIM consists of the followlng steps: (a) decomposIng the 
velocity fluctuations into orthogonal functions wIth random coeff1cients, (b) con­
structing dynamlcal equatIons for those functions, (c) Identlfying the first mode as 
an organIzed structure that contrIbutes most to the energy (Lumley, 1967, 1981), and 
(d) evaluating the large eddy WhICh Interacts WIth the mean flow and the eddy-eddy 
1nteractions. However, all the nonlInear terms 1n the LEIM were modeled 1n a lInear 
form utilizing either an an1sotroplc eddy VlSCOS1ty or a diffUSIon veloclty. In 
this process, three empIrIcal constants were lntroduced 1n the closure and were then 
determined by matchIng shapes between normalized Reynolds stresses, calculated from 
the f1rst mode, and experImental measurements. In VIew of the emphas1s of past 
appilcations of the LEIM on evaluatIng the normalIzed structure of the first mode, 
It was prImarily a dIagnostIc method. 

In the present work to develop a predIctive method, the turbulent transport 
processes have been re-examined and retained in their nonlInear form. This ~inl­
mizes the dependence on turbulence modeling and allows evaluatIon of the magnItudes 
of the moments. The applicabIlity of the new transport model has been Illustrated 
in a channel flow that is inhomogeneous in the dIrectIon normal to the wall. How­
ever, the computed results shown here are restricted to the use of only a SIngle 
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mode in the decomposition. As stated earlier, this forced the 1ntroduction of the 
skewness and the effective Reynolds number as parameters of the problem. Although 
the current work has not yet demonstrated the uniqueness of a set of these param­
eters, results based on d1fferent sets of these parameters (satisfying the energy 
equ1librium of large eddies) yield Reynolds stresses that are less than a few per­
cent apart over the entire channel. Structural and stat1stical propert1es of the 
large eddies are then studied from the solution of the f1rst mode. F1ndings are 
consistent with the earlier studies on the use of the PODT (that the first mode 
exhibits the structural nature of the averaged turbulence moments and the statisti­
cal nature of the random turbulence). The long term objective 1S that the LEIM 
framework be developed further, not only to gain the deta1led phenomenological 
insight into turbulence, but also to prov1de a means to pred1ct turbulent quantIties 
of engineer1ng 1nterest. 

The author apprec1ates the suggest10ns prov1ded by Dr. M. W. Rubes1n during the 
course of the work, and h1S comments on the manuscr1pt. 

LARGE EDDIES AND THEIR INTERACTIONS 

The mathematical def1n1t1on of a turbulent eddy as proposed by Lumley (1961), 
and the method of relat1ng the structure of turbulence to that of a large eddy as 
developed by Lumley (1961, 1981) and Townsend (1976, 1980), are applied here to 
turbulent shear flow that is inhomogeneous at least 1n one spatial d1rect1on. A 
closure assumpt10n 1S introduced for the nonl1near eddy-eddy 1nteract1on term aris-
1ng in the dynam1cal equation of the large edd1es. 

Proper Orthogonal Decomposition Theorem 

One can consider a decomposit1on of the instantaneous veloc1ty, 01' Into a mean 
value and a fluctuation as 

Here we assume that Ui 1S an ensemble 
wrr~J the velocity fluctuatiO? In terms 
{$. , n = 1,2,3, •.. }. That IS, 

1 

average of 0 .. Then It is possible to 
of orthogonallfunctions, 

(p 1= q; 1 = 1, 2, or 3) 

3 
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where a 1, a2 , a
3

, ... are random coeffIcients wIth units of velocity and uncorre­
lated from one another, which means 

(3) 

0mn is the Kronecker delta function defined as 

= {o1 °mn 

if m = n 

if m * 0 

The overbar, (-), represents the expectatIon of the event, ( ), In the probab1lity 
theory and the ensemble average 1n the turbulence theory. EquatIon (2) is a gener­
alized Four1er series, account1ng for the inhomogeneity of flows by means of dis­
crete functions. It is assumed by deflnlt10n that a

1
, a2 , a3, ... are ordered 

such that 

If one assumes U1 in eq. (1) to be a tIme-averaged veloc1ty, one needs a slightly 
different expans10n from eq. (2) as descrIbed In appendIX A. EquatIon (3) Implies 
that the coeffICIents are completely random so that the correlation between the same 
coeffirijnts IS perfect, and between d1fferent coeffIcients is zero. In addition 
the $1 n 's are assumed to be orthonormal functions, that IS 

J~(P)~(q) d~ dt = 
1 1 

{4} 

It 1S noted that the orthonormality condItIon IS imposed only for the u-component 
functions, and the limIts of the integral in eq. (4)(a)e qUIte arbitrary. The 
orthogonality condItion also implies that none of ~ n 's is identIcally zero 
(Tolstov, 1962, p. 41). To calcut~re the coefficients, an' both sIdes of eq. (2) 
when 1 = 1 are mult1pl1ed by ~] ,and the resulting equatIon 1S 1ntegrated 
takIng account of the orthonormality condlt1on, eq. (4). The Fourier coeff1c1ents 
are then given by the follOWIng form. 

f + (n) + + 
an = u(x,t)~1 (x,t)dx dt (5) 

(n) It can bfnjhown, util1z1ng the randomness 1n a and the orthogonalIty In 
~l ' that ~1 1S related to the two-po1nt veloci~y correlation, Rij , as , 
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and 

where 4>(n) 
1 . 

Further, 1f 
u-component 

( + +, t') Rij x,x ;t, 

~Ril(X,x';t,t'}4>~n}(X"t'}dX' dt' = x(n}4>~n}(X,t} 

are eigenfunct10ns with x(n} as their e1genvalues of the system. 
one cons1ders the 1ntegral of the turbulent k1net1c energy from the 
over the whole flow f1eld, then 

Thus, x~n~ represents the kinetic energy content of the e?~tre flow associated 
with 4>1 n -mode. The nth mode distr1butes the energy, X ,1n space and t1me 
accord1ng to 1tS functional form. 

Formulation of Large Eddy Interact10n Model 

(6) 

(7) 

( 8) 

In incompress1ble turbulent flow, decomposition of the Nav1er-Stokes equat10n 
1nto the mean and fluctuating parts leads to the follow1ng dynam1cal equation for 
the velocity fluctuat1on. 

au. 
1 

Uj a Xj 

aU 
1 

+ - U + aX
j 

j 

2 a u. 
1 

ax2 
J 

(9) 

where p is the pressure fluctuat1on. Introduc1ng the orthogonal decompos1t1on of 
the velocity fluctuarA~n, eq. (2), 1nto eq. (9), a dynam1cal equation is obtained 
for the elgenmode, 4>i ,by the follow1ng procedure. First, u

1 
IS replaced by 1ts 

expansion; secondly, both Sides of the resulting equat10n are multiplied by a random 
coefficient, a ; thirdly, an average 1S obtained by utilizing the relat1on, 

~ = x(n}o 7 and finally, the rema1nlng equation 1S div1ded by ~~, WhiCh mn mIl fA.· 
leads to the following as flrst gIven by Lumley (1967). 
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_1_ + U _1_ + _i ~(n) + _a_ E a~~n) a~(n) au { co 

at j aX j aX j j aX j p=1 

(n = 1, 2, 3, ... ) (10) 

where 

-en) 1T 

and 

( 11) 

(n) n is also the nth mode 1n the series expansion of the pressure fluctuat1on, 
that is, 

- ~ p = a
1

1T(1) + a
2

n(2) + a
3

n(3) + ••• 

It is noted that no constraints are 1mposed on n(n) other than determinacy. 
• Equation (10) thus governs both the shape and 1ntens1ty of each ~.-mode. The 

1 . 
parameter, n, represents the order of modes where it is assumed that the f1rst mode, 
n = 1, acco~9dates most of the energy in a 1 and of structure In the dImenSIonless 
function, ~1 • SImilarly, the(~jcond mode, n = 2, IS supposed to take up most of 
what IS left, that IS, u - a1~' The 1ndex, 1, may have 1, 2, or 3 correspondIng + 1 to the streamwlse dlrect10n (x), the local normal to the wall (y), or the spanwlse 
d1rectlon (z), respectively. While it is of great Interest to solve such a system 
of equations 1n general, attention is focused here on the lowest mode for WhICh the 
dynamIcal equation becomes the following. 

a {~~ a 1a pa g ~(P)~(q)} ax- ~ ~ (,(1),(p),(q»1/2 1 j 
j p= 1 q= 1 '" '" '" 

( 12) 

The eddy-eddy interaction term In the above may be said to conSIst of interactIons 
of large eddy with large eddy, of large eddy w1th small eddy, and of small eddIes 
with themselves. 
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For the first eigenmode of pressure fluctuation appearing in eq. (12), one can 
develop the following Poisson's equation. 

On the right-hand side of the POisson's 
tion between mean velocity gradient and 
interactions among eddies of all sizes. 
relat10n can be used in the form 

( 13) 

equation are contributions due to interac­
large eddy velocity gradient, and due to 
Or, alternat1vely to eq. (13), continuity 

( 14) 

Eq~tjion (12) with eq. (13) or (14) forms a system of equations for the first 
mode, ~ . The nonlinear eddy 1nteraction term in those equations involves h1gher 

1(2) (3) (4) . 
m?~js, ~i '~i '~i ' •... Thus 1n order to close the system of equations for 
~. ,it is necessary either to drop the interactions associated with higher modes 

1 
or to model the contributions from them. 

Transport Process 

The nonlinear 1nteract1on between the f1rst mode is rjtained 1n its or1g1nal 
form but the interactions 1nvolv1ng modes higher than. ~i1 are modeled. A slmple 
way of accounting for the effect of the higher modes 1S to group them together and 
to relate this effect to a known quant1ty. An eddy v1scosity 1S 1ntroduced for th1S 
purpose (Townsend, 1976, 1980). 

( 15) 

which has also been suggested by Lumley (1967). In eq. (15), vT denotes an eddy 
viscosity. In the present analysis, vT is kept equal to a constant WhiCh 1S 1nde­
pendent of mesh d1mens1ons or the distance from the wall. ThiS has an effect of 
reduc1ng the effective Reynolds number by a factor of vl(v + vT). Although 
1mproved models (with variat10n in the y-direction) may be required, for slmpl1c1ty 
we will use constant vT to achieve a steady state solution. 

Upon substituting eq. (15) into (12), one obtains a closed system of equat10ns 

for ~~~1). 
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a -(1) + U __ a __ ~(1) aU i -(1) 
at ~1 j aX

j 
~1 + aX

j 
'j + 

(16) 

where S (= a~/(a;)3/2) is the skewness factor of the random coeffic1ent, a 1• 
Assuming that the mean velocity is given, the system of equations involves then a 
structural parameter, S, and a stability parameter, vT' Wh1Ch need to be chosen. In 
order for the LEIM to be a completely pred1ctive scheme, it requ1res incorporation 
of the mean momentum equation for Ui along with eqs. (14) and (16). For the 
present, however, emphasis will be placed on how the large eddies interact and react 
to a known mean flow field. 

APPLICATIONS TO CHANNEL FLOW 

Fully developed turbulent channel flow has acquired a large data base over the 
years. Accordingly, two-dimens1onal channel flow has been chosen to demonstrate the 
validity of the approXImatIon for nonlInear, eddy-eddy interaction terms, as pro­
posed in eq. (15), and to establish the contribution of the first mode to various 
statistical turbulence quantities. In the fully developed region of the channel, 
the mean velocity is one-d1menslonal. It IS dependent only on the normal coordi­
nate, y, where y = 0 corresponds to the lower wall and y = H to the upper wall, 
as shown in f1gure 1. Thus, the turbulent flow 1n the two-dimensional channel flow 
can be regarded as homogeneous In both streamwise (x) and spanwise (z) coordInates, 
wh1le strong 1nhomogenelty is retaIned In the y-direction. For this Cf1j' one can 
define spectral functio~1)for the first mode of velocity fluctuation, 'i ' and of 
pressure fluctuat1on, n , as follows. 

where k1 and k3 are wave numbers and i =!=T. The superscript indicating 
mode (1) 1S omitted In the spectral funct1ons. ApplyIng these defin1tions 1nto 
eqs. (14) and (16), one obtains four complex equations WIth respect to the large 

A A 

(11) 

eddy spectra, ,. and n. These equations can be further d1v1ded 1nto eight equatIons 
for the real ana imag1nary parts defined accord1ng to the following notatIon. 
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.. 

4>1 = P1 + iP
2 

4>2 = P3 + iP4 
( 18) 

4>3 = P5 
+ iP6 

'IT = P7 + IP
8 

The nonlInear terms require the convolution theorem (Lumley and Panofsky, 1964) 
during the transformation of the system of equations, eqs. (14) and (16), Into the 
mixed, (k 1,y,k3,t), space. The spectral equations become 

( 19) 

(20) 

(21) 

(22) 

where ( )1 = d( )/dy and k2 = k~ + k~. From equations (19)-(22), we denote 

(23) 

where ,= (k 1,k3), '" = (k1,k~), and the double prime, ( )11, when pertaining to the 
wave number varIable denotes a dummy varIable for the integratIon. 
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From a consideration of two-point velocity correlations and turbulent 1ntensi­
ties, a relation can be found between the spectra of the double velocity correla-

A 

tions and the ~i's as derived in appendix B. 

A A 

~i(k1,y,k3,t)~j(k1,y,k3,t) (24) 

where 0 is the Dirac delta function and the superscript (1) indicates the contri-

bution of the dominant mode. is defined in 

For a flow which 1S homogeneous in (x,z)-planes, 

(26) 

where r1 and r3 are separat10n d1stances and ~ 1nd1cates slmple truncation after 
the first mode. When r, = r3 = 0 1n eqs. (25) and (26), the two-point correlat10n 
reduces to the usual Reynolds stress tensor uiuj(y,t). Thus, at t1me t, 

(27) 

where ( )* denotes the complex conjugate of ( ). 

The follow1n~structural~uantit1e~may~lso be calculated: (a) normal stress 

intens1t1es (u2/q2), where q2 = u2 
+ v2 

+ w2, (b) shear stress 1ntensity (uv/q2), 
(c) orientation

1
0f the principal axes of the large eddies (9), Wh1Ch 1S glven by 
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2 2 and (d) anisotropy (u Iv). 

1 -1 (-2Uv ) a = 2' tan _ _ 
2 2 

U - v 

CALCULATION PROCEDURES 

(28) 

The obJect1ve here 1S to calculate the f1rst mode of the veloc1ty fluctuation 
and to investigate how much the first mode influences the turbulent intensities and 
the various other structural quant1ties descr1bed in the forego1ng sect1on. Atten­
tion is paid to the skewness paramfrjr, S, that appears in eq. (16), and 1tS role in 
the solution for the f1rst mode, ~i ,and the structure of turbulence deduced 
therefrom. 

In order to solve eqs. (19)-(22), after adopting a numerical algor1thm one 
needs (a) the in1tial and boundary condit1ons, (b) the local mean velocity profile, 
and (c) the proper skewness factor as well as an eddy viscosity. In light of the 
diff1culty 1n specifying the boundary cond1tion for the pressure spectrum at the 
wall, the continu1ty relation 1S employed 1n the calculat10n over the Poisson's 
equation. Numer1cal results of the stat1stical quant1t1es can then be compared w1th 
the measurements from Laufer (1951), for example, from which a part1cular flow 
condition is selected as 

Uo = 7.574 (m/sec) 

u* = 0.2891 (m/sec) 

H = 12.7 (cm) 

Re = UoH/v = 61600 

where Uo, u*, H, and Re are the mean velocity at the channel centerline, wall­
friction veloc1ty, channel Width, and Reynolds number, respectively. 

Init1al and Boundary Condit1ons 

A numerical Solut1on for the large eddy spectra governed by the system of 
equat10ns (19)-(22) 1S determ1ned as an 1n1tial-boundary value problem 1n the (y,t)-

+ space for various values of wave number, k. The 1n1tIal1zat1on can be approximate 
because of the 1mplicit nature of the algorithm and the goal of achieving a steady 
solution 1n the presence of a fixed mean stra1n. The 1nitial condit1ons are chosen 
to possess reasonable spectral character and spat1al d1stributions. The chosen 
in1tial distributions are as follows. 
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P1 = Ay exp(-ky) 

P2 = Ay(0.5 - y)/k 

P3 = -P 1 

P4 = -P2 , 

P5 = A(l - y)/k/B 

P6 = P5 

where A 1S a constant In the order of 1, and the factor B In P5 
. t ddt h f 2 2 d 2, that 1n ro uce so as 0 make t e energy content 0 u, v ,an w 

1sotrop1c in1tIally. 

At the wall (y = 0), the no-slIp condition requires 

(29) 

has been 

is, 

(30) 

The boundary conditions for the pressure spectra (P1 and P8) are deduced from the 
v-component (normal to surface) equat10n appl1ed at the wall (Mo1n, Reynolds, and 
Ferz1ger, 1918). The spatial der1vative for the pressure fluctuat10n 1S then dIS­
cret1zed using a three-point one-sided formula beg1nning at y = O. 

For the other set of boundary condItIons, the flow fIeld has been assumed to be 
symmetr1c WIth respect to the centerlIne (y = H/2), glv1ng 

(31) 

(32) 

where ( )' denotes the derIvatIve WIth respect to y. It should be pOInted out that 
the flow field in the entIre channel from y = 0 to Y = H has been solved In a 
sIngle 1nstance with the no-slIp condit1on Imposed at both ends, y = 0 and y = H. 
The results show symmetrIc profiles for the u- and w-spectra, and antisymmetric 
prof1les for the v-spectra (P3 and P4) with respect to the channel centerl1ne. 
This Justif1es uS1ng the current boundary cond1tions at the centerline. 

The semi-implicit numerical scheme employed (Greenspan, 1914) utIlIzes a two­
pOlnt backward dlfferencing ln time and a three-po1nt central differencIng In y. 
The nonl1near convolut1on 1ntegrals are treated explic1tly by evaluat1ng them at a 
prevIous t1me step when the SolutIon 1S known. The numer1cal 1ntegrat1on for these 
terms is carried out emploY1ng the trapezoidal rule over the wave number space, 
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(k"k3), at a given pOint, (k1,y,k3,t). ThiS enables the formation of a system of 
matrix equations for all y at each advanced time level, where the coeffic1ent 
matrix becomes block-tridiagonal and diagonally dominant. The inhomogeneous y 
coord1nate is discretized as suggested by Murphy and RubeS1n (1979) and the half of 
the channel is divided by 35 nonuniform grids. 

The wave number space, (k1,k3), has also been divided 1nto strongly nonun1form 
meshes. The wave number plane is covered with (17,17)-grids where the values are 
equally spaced in the logarithmic scale for each wave number direction in the range 
between -10 and 10 (1/cm). It was found (from numerical experimentation) that wave 
numbers outside this range contribute so little energy to the first mode that they 
have negligible effect on the turbulent stresses. 

Mean Velocity Profile 

The mean velocity profile 1S approximated by a near wall Prandtl-Taylor model 
and a blending profile near the center plane. 

(a) U+ = y+ 

(b) U+ = 3.0 1n y+ + 5.5 

(c) U/Uo = 1.0 + 0.068 log(y/d) 

(y+ < 12) 

(12 ~ y+ < 760) 

(y+ ~ 760) 

+ + 
where U = U/u*, Y = yU*/v, and d = H/2. The mean veloc1ty prof1le 1n the outer 
layer, (c) above, has been 1ntroduced 1n th1S form for the purpose of matching w1th 
the law of the wall, (b) above, smoothly and, of course, w1th the exper1mental data. 

Parameter Effects 

During the computat1on, a fa1rly small t1me step (normal1zed by the mean veloc­
ity at the channel centerline and by the channel he1ght) of about 0.001 has been 
used to ensure numerical stability and accuracy. Slnce the current system of spec­
tral equat10ns 1S nonlinear, an 1nstab1l1ty in any part of the Solut1ons soon propa­
gates 1nto other solutions. Thus, 1f solutions for high wave numbers become 
unstable, even though solutions for low wave numbers are stable, the nonl1near 
integral causes the entire solution to grow 1nfinitely as the 1teration proceeds 1n 
time. 

Although ~., governed by eqs. (19}-(22), generally can vary in time, the fully 
developed, steady mean flow and boundary cond1tions used here cause the Solut1on to 
converge to a steady state which represents a stationary random field. We f1rst 
studied the effect of various values of S on the solution when vT = O. Only a 
narrow range around the value of zero is found for the skewness parameter, namely 
lSi ~ 0.03, for which the Solution does not grow rap1dly. In the current computa­
tion, the procedure has been cont1nued up to 200 1terat1ons 1n time to achieve an 
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accurate asymptotic solution. On a Cray operating system, the computation time took 
30 sec in the central processing unit for every iteration. 

NUMERICAL RESULTS 

First, this section will cover how the solut1on is affected by various values 
of the parameters, Sand vT' in eqs. (19)-(22). After a pair of those values 1S 
selected, numerical results obtained in the m1xed, (k l ,y,k3,t), space are integrated 
over the wave number space to yield Reynolds stresses as a funct10n of y. The 
computed stresses and structural quantities are compared with the experimental data 
of Laufer (1951). 

Parameter Determination 

The skewness parameter, S, can be regarded as a parameter affect1ng the struc­
ture of the solution,~. On the other hand, the pr1mary role of the eddy V1SCOS1ty, 
vT' 1S to stabilize the growth of the solution, subject to production 1n a fixed 
mean velocity field. We pick a value of S first and then determine a correspond­
lng value of vT Wh1Ch Y1elds a steady-state Solut1on. One may argue that a ch01ce 
of a particular set of Sand vT is not un1que on the ground that other combina­
t10ns of Sand vT could also produce steady-state results. It has been found, 
however, that the solution is rather insens1tive to the choices of the combinat1ons 
of Sand vT that Y1eld steady solutions (see below). 

F1gure 2 shows the growth of the turbulent kinetic energy, 1ntegrated over the 
channel, for var10US values of S as a funct10n of time 1n the absence of higher 
modes, vT = 0, and for a sl~gle case with vT = 18. W1th v = 0, the growth rate 
1ncreases with increas1ng S, and it was found for lSI > 0.03 the Solut1on grows 
so rap1dly that 1t becomes unstable. For S = 0.01 and- v = 18, however, the 
desired steady state 1n k1net1c energy 1S achieved. Also, For S = 0.03 a steady 
solut1on for k1netic energy occurs when vT = 22. 

In order to exam1ne further whether each component of the k1net1c energy has 
1ndeed reached a steady state for the above two sets of parameters, each component 
of the three turbulent 1ntens1t1es 1S 1ntegrated over the channel from y = 0 to 
y = d. The results are presented 1n f1gure 3 as a function of time. The results 
show that the u-component energy for S = 0.01 and vT = 18 mainta1ns a constant 
value, but for S = 0.03 and vT = 22 1t cont1nues to decrease Sllghtly. For both 
cases the w-component cont1nues to 1ncrease whereas the v-component decreases, 
aga1n at a slow rate. The behav10r of these d1fferent growth rates 1S bel1eved to 
be attr1buted to the use of an 1sotrop1c eddy V1SCOS1ty 1n eq. (15) and suggests the 
use of an anisotrop1c eddy V1SCOS1ty or some other alternative (Hong and Murthy, 
1984a). Nevertheless, in V1ew of the small growth rate 1n the v- and w-components, 
this behavior 1S bel1eved to be relatively unimportant and no attempt was made to 
el1m1nate this cont1nually vary1ng an1sotropy. The author favors the case of 
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S = 0.01 and vT = 18 because it yielded a steady solution, more nearly steady 
than the other case. However, the calculated Reynolds stresses for these two sets 
of parameters were well w1thin a few percent of each other as compared in f1gure 4. 
Thus, because the choice of which set to use is not cr1tical to the results shown 1n 
the rest of the paper, S = 0.01 and vT = 18 has been used. 

Eddy-Eddy Interactions 

The eddy-eddy 1nteractions affecting the net product1on of the first mode w1ll 
be shown as 

P(~~1» aU1 -(1) a {~(1)~(1)} 
a2~( 1) 

1 (33) = ax- eIl j + S-- - v 1 aX j 1 j T axjaX j ~ \. I ~ 'V 
" A" "B" "e" 

The term "A" governs 1n{1)afHon w1th the mean flow. The term "B" corresponds to 
the transport of the ell q, ,whereas the term "e" represents the effects of the 
higher modes modeled by1thejeddy viscosity. F1gures 5 and 6 1llustrate the nature 
of 1nteractlOns among the edd1es which are ident1fied w1th "B" and "e" 1n eq. (33). 
For 1llustrat1on, the large eddy-large eddy interaction 1n the Pl-equat1on (Wh1Ch 
is the real part of eq. (19» is used, and is shown in f1gure 5 for three sets of 
wave numbers, 0.2, 0.5, and 1.0 (l/cm). It 1S found that the values of "B" 1n 

eq. (33) for wave numbers the same as, or less than, 0.2 (l/cm) are predomlnantly 
negative 1n the inner part of the boundary layer. A negat1ve value of "B" refers to 
an energy supply; whereas a pos1t1ve value 1nd1cates an energy dra1n because the 
value of Pl itself 1n the inner layer is negative for those wave numbers. The 
prof1les of the nonl1near term show both types of behavior at the wave number about 
0.5 (l/cm) and posit1ve behav10r at h1gher wave numbers than 0.5 (l/cm). Thus the 
nonl1near eddy-eddy interact10ns for lower wave numbers cause energy ga1n, wh1le 
those for higher wave numbers diss1pate the energy. 

Shown 1n figure 6 are compar1sons between "B" and "e" terms 1n eq. (33) for 
the Pl -equat1on. F1gure 6(a) shows terms "B" and "e" at the low wave number 
k1 = 0.1 (l/cm) and figure 6(b) compares the same terms at the value of 
kl = 5.0 (l/cm), both for a f1xed value of the wave number k~ at 0.05 (l/cm). 
Profiles of the P1 are also prov1ded in the two f1gures to 1nd1cate the1r behav10r 
in y at the same wave numbers. An opposite sign 1n "B" or "e" from that of Pl 
1mpl1es energy loss, wh1le the same sign implies an energy ga1n. The value of 
k3 = 0.05 (l/cm) was chosen 1n these illustrations because 1t emphas1zes the differ­
ences occurrlng ln the alternative k l 's. Simllar results are expected of "B" and 
"e" for other values of k3 when kl 1S varied 1n the same manner. F1gure 6(a) 
shows that at the same wave number (k 1 = 0.1) and yld = 0.5 the turbulent energy 
transfer due to the first mode self-1nteractions 1S much smaller than that due to 
the rest of the modes when the latter are modeled w1th vT = constant. If other 
models were employed for the eddy-eddy 1nteractions, th1S emphas1s on energy loss 
m1ght be reduced. The magn1tude of the h1gher-mode 1nteract1ons cons1derably 
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exceeds that of the first mode self-interactions in both figures 6(a) and 6(b) in 
order to dissipate the energy gained not only from the large eddy but also from the 
mean flow (term "A" in eq. (33». Again from the signs of Pl' "B," and "C" ill 
figure 6, one can infer that the higher-mode interactions drain the energy consis­
tently for all wave numbers, while large eddy self-interactions either supply energy 
for lower wave numbers or remove it for higher wave numbers. 

Turbulent Stresses 

The real part of the velocity spectrum for the u-component, P" and that of 
the pressure spectrum, P7 , is shown at two different locations of y, which is 
obtained at tIme t = 0.2. In fIgures 7 and 8, the P,- and P7-spectra are gIven in 
the first quadrant of the (k1,k3)-space at fixed values of (a) y+ = 7 and 
(b) y/d = 0.09. Generally, one can observe a smooth behavior in the distribution 
of P1 and P7. The value of P, In figure 7 is greater at low wave numbers than at 
high wave numbers, and Its distribution falls toward zero with the increasing wave 
numbers. As the value of y changes from y+ = 7 to y/d = 0.09, the lower wave 
numbers contribute more energy to the P1-spectrum in the inner layer region than in 
the viscous domInant regIon. In fIgure 8, the P7-spectrum, unlike P" does not 
change its distributIon much as y varies from one position to another. From these 
determinIstic large eddy spectra, P, through P8' Reynolds stress components have 
been obtaIned as a function of (y/d) accordIng to eq. (27). 

In figures 9-12, the Reynolds stresses obtained as a functIon of (y,t) are 
gIven at every 25 tIme steps to show the development in tIme. The solutIon adjusts 
itself quickly in time and the effect of the Initial conditions appears to be 
mInimal. In order to s~ whether the Reynolds stresses in figures 9-12 change their 

2 2 prof1les, the u - and v -prof1les at t = 0.15, 0.175, and 0.2 are compared 1n 
figure 13 as a function of y/d. It shows that the u- and v-component Intensities 
have indeed achieved equilibrium profiles for t > 0.15. The same observation has 
been made for other Reynolds stress components. 

For a detailed comparison, the Reynolds stresses are gIven as a function of 
y/d at time t = 0.2 in figure 14 along with experImental distributions taken from 
Laufer (1951). The first mode contrIbutes approxImately 30% of the observed Inten­
SItIes, although the shape agrees In general trend WIth the experImental distrIbu­
tIon. The use of isotropic VIscosity has caused a spurIously higher proportIon of 
the calculated w-component (than eIther the u- or v-component) in the contrIbution 
to energy. 

Structural Quantities 

The single-point structural quantitIes defined In Applications to Channel Flow 
were calculated from the Reynolds stresses and are compared with correspondIng 
quantities obtained from the measurements of Laufer (1951). In spite of low 
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intensity levels of the large eddy as shown in figure 14, the normalIzed structural 
quantitIes 1n figure 15 agree well with the corresponding experimental quantItIes 
except for the anisotropy of the flow in the outer part of the boundary layer shown 
In figure 15(d). It IS believed that this latter result IS the consequence of the 
imposed symmetry at the channel centerline, that is, v = O. 

LARGE EDDY STRUCTURE 

An important quantIty in the study of turbulence structure is the two-poInt 
velocity correlation which depends on the distance separatIng the velocIties at two 
dIfferent positions. Other useful quantItIes Include the fluctuating velocIty 
vector and stream functIons from which a flow pattern may be constructed. We shall 
present these quantities as deduced from the large eddy computation and discuss 
theIr implIcatIons in this section. 

Two-PoInt Velocity Correlation 

To demonstrate the character of the velocIty correlatIons that can be evaluated 
from the computatIon of the fIrst mode, four correlatIons, R11 , R22 , R33 , and R12 , 
are presented here. The points are separated by r1' r2' and r3 In the x-, y-, 
and z-directions, respectively, at a fIxed time, t = 0.2. FIrst, we have calculated 
correlations between two velocIty components WhICh are separated by (r1 and r3) In 
the homogeneous plane (y = constant). Then consIderatIon IS gIven to correlatIons 
between velocItIes separated by r 2 In the y directIon. 

In figures 16 through 23, the two-poInt velocity correlatIons (obtaIned from 
eq. (25) and normalized by the max1murn value at each y locatIon) are shown at two 
planes across the channel, namely y+ = 7 and y/d = 0.5, as a functIon of separa­
tIon distance (r1,r3)' At y+ = 7 In the VISCOUS sublayer the correlations fall 
off rapIdly to a zero value, but oscillate thereafter as the separation dIstance 
increases in both x- and z-directions. A negative region In the correlation sur­
face indicates that the velocIty fluctuation in that regIon IS generally OpposIte 
from the one at the origIn. Thus, the distance between the two adjacent peaks In 
figures 16-19 reflects a macro-length scale of motion in the regIon. On the other 
hand, the correlatIons at y/d = 0.5 drops slowly over the dIstance of approxI­
mately a channel half-width. In general, one can Infer that the normal velocitIes, 
v, have shorter correlatIon lengths than the other velocIty components. When the 
correlatIons In figures 16-23 are compared with the ones observed experImentally 
(Comte-Bellot, 1963), the dIstance for WhICh the correlatIon changes ItS SIgn or 
reaches Its minImum IS longer In the current calculatIons than In the measurements. 
In general, these correlations exhIbIt the different character among the components 
In RIj and between dIfferent locatIons In y. For example, the longItudInal 
correlatIon, R11 In fIgure 20, and the lateral correlatIon, R22 In fIgure 21, 
display the typical behavior of these quantities; that is, the R11 asymptotes to a 
zero value whIle the R22 crosses the zero lIne in a short distance and comes back 
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to R22 = O. But all correlations are symmetric with respect to r 1 and r3 for 
all y's, which IS consistent with the homogeneity assumption of the flow In the 
(x,z)-plane. 

An interesting way of examlnlng the correlation coefficlents is to introduce a 
length scale, ~i' deduClble from the correlatlons in the form 

(34) 

Here the subscrlpt, i, may be 1, 2, or 3 corresponding to the X-, y-, or 
z-coordinates, respectively. The length scales obtalned from eq. (34) for dlfferent 
"1" are compared across the channel In flgure 24. One observes the distinct anlsot­
ropy in the length scales among the directional components. Also the magnltude of 
the length scales IS on the order of the channel half-width, d, with the largest 
x-component and the least y-component scales. The length scales deflned this way 
represent the Slze of the large eddy (Townsend, 1976, p. 50) along y, where the 
size in the 1th dlrection is proportional to each component of the length scale, 
~ . 

1 

Next, normal correlations of the velocitles are examined as a functlon of 
(y,r2) In the form 

ui (y)ul (y + r 2) 

2 
{ul}max 

(35) 

In the calculatIon, the Rli are evaluated at t = 0.2 for every (x,z)-point in a 
range WhICh covers about two perlods In each of the x- and z-directions. Then the 
correlatIons are averaged over the (x,z)-plane. Such correlatlons are shown at two 
values of y In figures 25 and 26. At y+ = 7 In figure 25, the u- and 
v-correlatIons approach asymptotlcally a near zero value wlthln a distance of about 
0.1d, whereas the w-correiation drops to a zero value wlthin 0.05d. On the other 
hand, the correlatlons at yld = 0.5 decrease mildly with Increaslng separation 
distance as shown In flgure 26. The shapes of the three correlations In fIgure 26 
are also very slm1lar to one another except in the reg10n very close to the wall. 
The an1sotropy among the three correlat1ons 1S more severe at y+ = 7 than at 
yld = 0.5, but the correlat1on 1S weaker 1n the V1SCOUS reg10n than 1n the outer 
layer. It means that the veloc1t1es are more likely to be 1n the OpposIte SIgn 1n 
the V1SCOUS reglon than In the outer layer. 

Aga1n length scales are ass1gned to the correlat1on coeffic1ents def1ned In 
eq. (35) In the followIng form. 
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The length scales, Li , then represent the degree of mixing of the fluid in the y 
direction associated with each velocity component. Figure 27 shows the length 
scales obtained from eq. (36) as a function of y/d. On the same figure, a mixing 
length scale deduced from 

uv = _ g,2 (au)2 
P m ay (37) 

is provided for a qualitat1ve comparison between L1 and g, and is denoted by 
pOints (e). The values of the scale, g, , are taken from G~ldste1n (1950, p. 357) 

m 
for a p1pe flow at the same Reynolds number as in the current channel flow. Thus 
the length scales, Li , are comparable to the conventional m1x1ng length scale 1n 
magn1tude as well as in distr1but1on. But, as can be observed 1n f1gure 27, the 
x-component length scale, Li , becomes locally negat1ve 1n the V1SCOUS region. Th1S 
is perhaps because the effect of small-scale turbulence 1S excluded in that reg10n 
where the influence of small edd1es is comparable to that of large edd1es. 

As an alternative to the 1ntegral scale, Li' as def1ned 1n eq. (36), one can 
define a length scale as the d1stance for which the correlat1on crosses a zero 
line. The slope of such a length scale may be found to be steeper (Glushko, 1965) 
than the current slope of about 0.4 1n the 1nner reg10n (y/d < 0.2) 1n f1gure 27. 

TYP1cal Veloc1ty Fluctuations 

Character1stics of the turbulent velocity 
ensemble-averaged sense, from the f1rst mode. 
field correspond1ng only to the f1rst mode as 
from 

(1) 
ui (x,y,z,t) 

field can be d1splayed, 1n the 
If1~ne wr1tes(t)tYP1cal veloc1ty 
u ,then u. may be obta1ned 

1 1 

(38) 

Contour plots of the typ1cal veloc1ty fluctuat10ns can then be drawn 1n a phys1cal 
doma1n between -0.5H and 0.5H for both x- and z-coordinates. To show the turbulent 
motion in the near wall region, the contour plots of the three velocity components, 
u(l), v(l), and w(l), are presented at y+ = 7 1n f1gures 28-30. In the f1gures, 
SOlld 11nes indicate positive values and dashed 11nes 1ndicate negative veloc1ties. 
The 1nner curves possess higher values than outer curves enclos1ng them, and the 
increment between contour curves 1S un1form throughout the figures. The SOlld and 
dashed lines appear alternatively in both x- and z-d1rections showing a per1od1c 
occurrence of the "thumbprints." The contour curves are more circular than slm1lar 
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results from the direct simulation of the flow (Main and Kim, 1982) where the con­
tour lines form elongated curves in the streamwise direct10n. The contour plots 
exh1bit periodic format10ns in both directions and the spatial periodicity is shown 
to be one-half of the channel height (H/2), although there are also weak secondary 
periods within the principal period. This is a consequence of the Fourier transform 
utilized in the calculation procedure. One advantage of the spectral method over 
the finite difference method is that the latter requires a per10d length in the 
homogeneous directions when imposing the boundary conditions while the former does 
not need it. The magnitude of the period 1n the spectral method 1S determ1ned 
impl1citly as a function of the large eddy spectral content and 1S dependent on the 
nature of turbulence rather than artificial geometry. Since the flow domain 1n the 
figures covers two periodic lengths in both directions, it is considered adequate in 
studying any feature deduced from the reg10n as a tYP1cai property of the flow as a 
whole. 

Stream Function 

The veloc1ty vector of the f1rst mode 1S plotted 1n f1gure 31 1n the 
(y,z)-plane at two values of x, that 1S, x/H = 0.3 and 0.4. The cho1ce of 0.3 and 
0.4 IS not slgnlflcant Slnce the turbulent motlon is shown to be perlodic and repet­
Itlve In the prev10us sectlon. The two locatlons are chosen slmply because they 
seem to possess some character of the flow. The flow at 0.3 and 0.4 appears to be 
chaotlc 1n figure 31. In order to grasp the flow fleld associated w1th the veloclty 
vectors, a stream functlon, ~1' IS def1ned In the (y,z)-plane as follows. 

f y (1) 
~1(x,y,z) = - w (x,y,z)dy 

o 
(39) 

The stream function, ~1' represents the turbulent flux of mass between the surface 
and a pOlnt in space. A posltlve value Implles the bulk of the flow moving in the 
negatlve z-d1rectlon and a negat1ve value Implles movement In the posltive 
y-d1rection. The contours of the stream functlon are drawn 1n flgure 32 and, in a 
three-dimenslonal format, In f1gure 33, where the geometrlcal extent of the flow 
f1eld in the (y,z)-plant IS the same as 1n f1gure 31. The SOlld 11nes bear poslt1ve 
values, and the dashed llnes correspond to negative stream functIons. F1gure 32 
shows contour curves of ~1 obtalned at (a) x/H = 0.3 and (b) 0.34. The stream 
functlon contours when chosen at 0.3 and 0.34, Instead of 0.3 and 0.4, reveal 
clearly the turbulent mot10n 1n the spanwise d1rection as well as that In the 
streamw1se direct1on. F1rst, the bulk motions of turbulent flow push each other 1n 
the spanw1se direct1on, resultlng in a counter-rotat1ng flow. The centers of each 
bulk motion are located at the reg10ns of highest contour values in f1gure 32. 
Secondly, the llne connect1ng pOlnts A-E In figure 32 rlses to the llne A'-E,I 1n the 
adjacent downstream plane. The values of the stream functlon rema1n unchanged as 
the flow moves from A to A', and B to B', etc. The streaml1nes connectIng the two 
llnes are elevated by approxImately 0.06 1n y/H between 0.3 and 0.34 in x/H. 
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Thus one can estimate that the large eddy structure is inclined with respect to 
free-streamline by an angle of arctan(O.06/0.04) = 56 (degrees). 

In figure 33, the levels of the stream function contours remaln unchanged as 
the x/H progresses from 0.3 to 0.5. The streamlines at x/H = 0.5 have been 
added primarily to show the periodic nature of the motion ln the homogeneous dlrec­
tion. The main feature in figure 33 is the lifting of the streamllnes as the flow 
moves on from x/H = 0.3 to 0.4. If one compares figure 31 with 33, the flow ln the 
inner region (y/d < 0.3) at x/H = 0.3 lS more energetic than at x/H = 0.4. ThlS 
lS because the flow has gushed up toward the outer reglon by a movement of counter­
rotating vortices at x/H = 0.3 and as a result has lost ltS energy by the tlme lt 
reaches x/H = 0.4. The lower portlon of the flow fleld ln flgure 31 lS lndeed very 
quiet and represents a very weak motlon. After restlng briefly at around 
x/H = 0.4, the flow lS then ready agaln for another leap at around x/H = 0.5. 

When attention is focused on the streamllnes ln the V1SCOUS region, as ln 
figure 34 where physically the spanwise extent is SlX tlmes the vertlcal extent, two 
opposing streamline patterns emerge. The distance between the centers of the domi­
nant motions lS about 140 wall units (normalized by the wall-frlction veloclty and 
the molecular V1SCOSlty). This lS higher than the 50 wall unlts estlmated by 
Blackwelder and Eckelmann (1979) for the spanwlse dlstance between a pair of 
counter-rotating streamWlse vortices. Nevertheless, the W1 shown on figure 34 
agaln demonstrates the eXlstence of a counter-rotatlng vortex motlon which intrudes 
the viscous layer. These are the same motions which have been advocated by Bakewell 
and Lumley (1967) and by MOln (1984). 

In addltlon to the prevlously deflned stream function, w1' in the (y,z)-plane, 
a second stream function, w2' may be consldered in the (x,y)-plane to attempt to 
explaln the manner ln WhlCh the large eddy behaves ln the streamWlse dlrection. 
NOW, if the second stream functlon, w

2
, lS expressed ln the form 

w2(x,y,z) -- JY (1) u (x,y,z)dy 
o 

(40) 

then the w2 descrlbes the flux of the turbulent flow ln the streamwlse dlrectlon 
across a vertlcal llne from the wall (y = 0) to a pOlnt of lnterest (y). The curves 
pushed toward the posltive y-dlrectlon lmply that the flux of turbulent flow lS 
going into the posltlve x-dlrectlon, whlle the curves dlpped toward the bottom wall 
lndicate that the turbulent flow lS returning back agalnst the mean flow even though 
the total veloclty lS stlll posltive. In figure 35, lf one examlnes the flow reglon 
between x/H = 0.3 and x/H = 0.4 only, the streamllnes bounded by the flrst two 
(x,y)-planes from the low z values are lndented toward the bottom. On the con­
trary, the streamllnes surrounded by the last two (x,y)-planes show the Opposlte. 
One can infer, therefore, that the motlon of the large eddles pushes the fluld 
forward, stagnates, and then pulls lt backward, formlng a shape analogous to a 
horseshoe or hairpin (Willmarth and Tu, 1967). However, the structure inferred from 
flgures 33 and 35 covers a greater spatlal extent than the one suggested, for 
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example, by Hinze (1975), and virtually the whole flow field becomes affected where 
such structure arises. The structure occurs sporadically in space, with a pr1ncipal 
period equaling the channel half-width in the homogeneous directions. Within the 
pr1nc1pal period smaller, sub-harmonic motions are also observed. 

LARGE EDDY STATISTICS 

While correlation functions, vector plots, or stream functions of the first 
mode reveal an essential nature of the turbulenty motion, another slde of turbulence 
can be exposed by vorticity fluctuations and probab1lity funct1ons. To enhance our 
understand1ng of the large eddies, we further 1nvest1gate the veloc1ty fluctuat10ns 
from different p01nts of view and their respective stat1st1cal properties. We shall 
briefly exam1ne the hodograph transformation of the large eddy velocity components. 

Large Eddy Veloc1ty F1eld 

The same veloc1ty fluctuations, obtained from eq. (38) and d1scussed 1n TYP1cal 
Velocity Fluctuations, are then displayed in the (y,z)-plane ma1nly to show their 
var1at1ons 1n the 1nhomogeneous space, y, for succeSS1ve locat1ons of z. Most 
fluctuations are concentrated 1n the wall reg10n as shown in f1gures 36-38 where the 
energy production 1S large. One notable feature 1S how the fluctuation at the wall 
1S related to the outer edge of the boundary layer, Wh1Ch is rem1n1scent of the 
eject10n or inrush (H1nze, 1975, p. 666). The r1dges 1n f1gure 37 may be identif1ed 
w1th the eject10n or1ginating at the top of each hill, and the valleys can be 
related to the 1nrush. The two phenomena occur 1nterm1ttently 1n the horizontal 
(x,z)-plane but are connected throughout the y-d1rectlon. Thls shows that the 
turbulent transport transm1ts most of the energy or the momentum through the trans­
m1ttal routes 1n the normal d1rect1on. 

Vort1c1ty Fluctuat10n 

Although an eddy 1S a d1fferent concept from a vortex, efforts have been made 
to trace the eddy from the dynam1cs of the vortex motion. The vortic1ty is further 
d1st1nguished from the vortex but can be 1nd1cat1ve of turbulent mot1on, espec1ally 
through the format1on of a vortex tube. The streamW1se component of the vort1c1ty 
fluctuat10n is calculated from the large eddy and 1S shown 1n f1gure 39. For qual1-
tative study, however, the d1fferentiat1on of the veloc1ty 1S performed 1n the 
phys1cal space uS1ng a central d1fferenc1ng. If one w1shes h1gher accuracy, one can 
d1fferentiate the veloc1ty spectrum analyt1cally and then 1ntegrate 1t over the wave 
number space. The streamwise vort1clty reveals highly concentrated counter-rotatlng 
vort1ces along the spanw1se direct1on. The vortic1ty 1n the outer layer 1S surpr1s-
1ngly quiet 1n contrast to the energetic veloc1ty fluctuat10ns 1n that reg10n. 
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Hodograph Transformat1on 

With the anticipation that the hodograph transformation may hold a clue for the 
description of the large eddies, the velocity flow field of the first mode 1n a 
f1nite doma1n 1n the phys1cal space has been transformed into the so-called hodo­
graph-(u,v,w)-space. A flow volume taken from the (x,y,z)-space at a f~xed t1me, 
t = 0.2, as shown 1n figure 40, is represented by 35 grid p01nts along each of 
36 llnes sampled. Veloclty components at each grid point along the vertlcal Ilnes 
are then mapped Into the hodograph space, as shown in f1gure 41, and the pOlnts are 
connected 1n the dlrectlon of the arrows. The result 1S 36 tangled Ilnes In the 
(u,v,w)-space, form1ng a finlte reg10n 1n the new space. Each trajectory In the 
hodograph space cons1sts mostly of loops with relat1vely large radl1 of curvature. 
As noted by Deissler (1984) In the descrlpt10n of a flow w1th all Slzes of eddles 
transformed into a phase space, the trajectory for the small-scale turbulence m1ght 
have included loops w1th smaller rad1i of curvature than the ones shown In f1g-
ure 41. It IS also noticeable that there are no cusps In the trajectorles due to 
inherent large scales assoclated w1th the f1rst mode. In the f1gure, all the paths 
are heavily concentrated around the zero-veloclty pOlnt, and the trajectorles follow 
the curve, u = -v, when prOjected on the (u,v)-plane as shown 1n f1gure 42. 

By the same way, streaml1nes passlng through the (x,y)-plane at z = 0 are 
projected 1nto the hodograph space. The gr1d p01nts from Wh1Ch velocltles are taken 
are shown 1n flgure 43, and the velocities are then mapped Into the hodograph space 
In figure 44. The transformed shape 1n figure 44 IS obtained after connecting all 
the pOlnts 1n both x- and y-direct1ons. The trajector1es again show very much the 
same shape as found earller in f1gure 41 from another volume of flow. It IS eVldent 
from the two flgures that any streaml1nes In the turbulent channel flOW, when con­
verted Into the hodograph space, would lie on the surface enclosed by the 36 arrowed 
llnes In f1gure 41. Thus the large eddy veloclty components 1n the channel flow 
form an el11ps01d In the (u,v,w)-space whose major axis 1S allgned w1th a dlagonal 
represented by u = -v = w. Th1S IS consistent wlth the proposed descrlption of a 
large eddy by Townsend (1956) and other experimental observatlons In WhICh correla­
tions between u and v, for example, are most llkely negative leadlng to negatlve 
shear stress. 

Probab1llty Dlstribution Funct10n 

In previous hodograph flgures as well as veloclty contour plots, It IS apparent 
that the veloclty fluctuatlons pass through the zero pOlnt (u = v = w = 0) more 
often than any other pOlnts. When 2601 (= 51 x 51) gr1d pOInts were sampled In an 
(x,z)-plane at y+ = 7 or y/d = 0.5, the number of pOlnts at WhlCh the veloclty 
falls Into a certa1n threshold between maxlmum and m1n1mum veloc1tles shows a tYPI­
cal near-Gauss1an distribut10n as 1n f1gure 45. The d1str1but1on 1n the homogeneous 
plane Sllghtly deviates from the GaussIan and the degree of departure from It Indi­
cates the degree of skewness of turbulence. The skewness is bel1eved to be a result 
of the nonl1near transport term 1n eq. (16) Wh1Ch was necessary for the energy 
balance of the large eddles. In f1gure 45, two propabll1ty dlstrlbutlon funct10n 
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(PDF) curves are presented for two different locations of y, and the skewness 
changes its sign as y increases. This agrees with experimental trends (Kreplin 
and Eckelmann, 1979). When the u-component velocity is sampled along a vertlcal 
line in y at two locations of (x,z) = (O,O) and (0.1,0.1) as lllustrated in flg­
ure 46, the resulting PDF is not even close to a Gaussian dlstribution, thereby 
confirming that the PDF in the inhomogeneous space is not normal as expected. 

The statIstical results discussed In thIS section are obtaIned from the first 
mode; nonetheless they disclose salient features of the entire turbulent mot1on for 
a given flow, either experimentally observed or derived from analysis. It is thus 
certain that the flrst mode retains most of structural and statistical 1nformat10n 
embedded in an actual flow. 

TURBULENCE CORRELATIONS 

The nature of the orthogonal decomposition of the veloclty fluctuation 1nto 
random and determln1stic var1ables In the Large Eddy Interactlon Model could ena~lj 
one t9 calculate varlOUS turbulent correlations dlrectly from the Solutlon of ~ n 
and n\n). As an lllustration, we now conslder two Important processes appearing

1
1n 

the Reynolds stress equations; that IS, the pressure-straln rate correlat10n, n
lJ

, 
and the rate of dlsslpation of the turbulent klnetlc energy, E. , where 

IJ 

n 
1J 

(sum for Index k) 

(41) 

(42) 

We recall the expanslon In the form 

where n(n) n = 
govermng ;~n) 

1 
orthogonal. 

u = ~(1) + 0 ~(2) + 0 ~(3) 
1 0, 1 2 1 3 1 + ••• (43) 

p p + ••• (44) 

" 2{nj' ... , are the solutions of the coupled dynamlcal equations 
and n (see eqs. (10) and (13», but are not necessarIly mutually 
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where 

Due to the randomness in the a 's one can express 
n ' 1rij and £ij 

... ] 

S(n) 
Ij 

in the form 

(45) 

(46) 

Concurrently with the homogeneity assumption in the channel flow case, nOj and £ j 
A 1 1 

can also be expressed as a function of spectra, ~o and n, as well (Hong and Murthy, 
1984b). 1 

Therefore the Large Eddy Interaction Model can be utIlized as a guide to test 
and to aid In closing various turbulence models. 

CONCLUDING REMARKS 

The current paper deals only WIth the fIrst mode and the balance of a large 
eddy regardIng its orIgIn, maIntenance, and destructIon. Therefore, the questIon 
still remains untouched as to the number of modes In the series requIred to repre­
sent the turbulence field sufficiently well to predIct engIneering quantities. The 
first mode is shown, however, to be so signifIcant that It supplies about 30% turbu­
lent kinetic energy and possesses a structural and statistical character that 
matches well with the experimental trends of the entIre turbulence field. 

When the turbulent transport IS truncated to only the interactions between the 
components of the first mode (vT = 0), It is found that the energy draIn through the 
first mode is insuffICIent to balance the energy gaIn from the mean motion. The 
kinetic energy of the first mode then grows monotonically without bound. The non­
linear Interactions of higher modes are thus necessary In the dynamics of the fIrst 
mode. However, the isotropIC eddy viscosity used in the current closure yields an 
anisotropic growth rate, though small, among the three normal intensitIes. To 
improve the closure With respect to the higher mode-interactions, an alternative 
approach may be to solve the first and second modes simultaneously and to model the 
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interactions resulting from the rest of the modes. In that case, the different 
roles of the first two modes in forming a complete flow should become clear and help 
answer, in part, the earlier question of the number of modes essential for the flow. 

It is briefly mentioned in the last section that the Large Eddy Interaction 
Model can provide an independent framework to check models for various turbulent 
processes. The soundness of such a test lies in the fact that the Large Eddy Inter­
action Model requires a closure assumption for only the nonlinear eddy-eddy interac­
tion terms,and the empirical parameters are chosen on the basis of physical consid­
eration of the large eddies. Now that the first mode is shown to represent the 
structural character of turbulence, it remains to be determined whether the flrst 
two modes are adequate to capture most of the turbulence energy. 
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APPENDIX A 

ALTERNATIVE EXPANSIONS FOR VELOCITY FLUCTUATION 

If the instantaneous velocity field is decomposed into a time-mean value and 
its fluctuation, then 

o. = U + U. 
1 1 1 

(A.l) 

<0. > = U. 
1 1 

(A.2) 

<Ui > = 0 (A.3) 

where < > denotes a time average. The velocity fluctuation can be expanded in 
terms of orthonormal functions as opposed to eq. (2). 

u. (x, t) 
1 

(A.4) 

Notice that the orthonormal functions depend on space. The random coefficients are 
functions of time and are subject to <a (t» = 0 by definition. Then the expan­
sion, eq. (A.4), satisfies the premise o~ eq. (A.3), that is 

a> 

a (t)cp~n)(x) <u. > = I: 1 n=1 n 1 

<X' 

<a (t»cp(n)(x) = I: 
n=1 

n 1 

= 0 (A.5) 

Thus, the expansion in eq. (A.4) is consistent With the definition of the velocity 
fluctuation in eq. (A.3). 

Similarly, if Ui in eq. (A.1) is a spatially averaged value, then 

{U i} = U 1 

{u } = 0 
1 

where {} represents a space average. The velocity fluctuation then can be 
expanded in the form 
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with 

u.(x,t) 
1 

so that the expansion in eq. (A.B) satisfies the definition of ui . 

Q) 

= E {Qn(x)}q,in)(t) 
n=1 

= 0 

(A.B) 

(A.9) 

Among the three types of expansions for ui' which are eqs. (2), (A.4), and 
(A.B), eq. (2) 1S the most "fundamental" way of expandIng the velocity fluctuations. 
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APPENDIX B 

RELATION BETWEEN VELOCITY SPECTRUM AND SPECTRUM OF TWO-POINT VELOCITY CORRELATION 

If mean flow is homogeneous in both streamwise (x) and spanwise (z) coordi­
nates, as is f~j case of two-dimensional channel flow, one can define spectra of 
first mode,~. ,and of the two-point spatial velocity correlat1on as follows. 

1 

the 

(B. 1 ) 

(B.2) 

or, inversely, 

(B.3) 

(B.4) 

Here all variables associated w1th ~i and RiJ depend on time implic1tly. 

Now, cons1der a product of ~i and ~J in the form 

.. 
~i(kl,y,k3)~J(k1,y,k3) 

x {_1_ iIa> n:~(1}(x",y,z"}exp[-i(k"x" + k
3
"z"}]dx" dZ'} 

(2n)2 _a> J 1 

.. 
X evp[ l' (k v + k Z + k"v" + k"z") ]dv dz dx" dz" 

A - 1'" 3 1'" 3 '" (B.5) 
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Let's set x" and z" as 

x" = 

z" = 

then 
A ... 

~1(kl,y,k3)~j(kl,y,k3) 

The Integrand in the last expression can be replaced by the two-point velocity 
correlation, R1j , by way of 

R1j (r"y,r3) ~ A(')~~')(X,y'Z)~j')(X + r"y,z + r 3) 

yielding 
... A 

~1(k"y,k3)~j(kl,y,k3) 

= -'-2 iIOJ{~ iT OJ 

RiJ (r"y,r3) . exp[-l(k'i r , + k3r 3)]dr, dr3
1 

{2n} _OJ {2n} _OJ ~ 

x exp[-~[(kl + k'i)X + (k3 + k3)z]jdX dz 

= -'- R (k" y k") iTa> eXP{-l[(k, + k")x + (k + k")z]}dx dz 
(2lT) 2 IJ '" 3 _a> ' 3 3 

Fourier transform of a constant 1S then the Dirac delta function, that IS 

or 

f.-rOJ .... .... .... .. , = J o(k + k")exp{(k + k") . x}d(k + k") _OJ 
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By Subst1tuting eq. (B.11) 1nto eq. (B.10), one arr1ves at 

;i(k"y,k3);j(k~,y,k~) = ~ij(k~,y,k~)6(~ + ~") 

or 

Rij (-k"y,-k3) = ~i(k"y,k3)~J(-k"y,-k3) (B.12) 

which is given in eq. (24) and leads subsequently to the follow1ng V1a eqs. (25) 
and (26). 

(B.13) 

Here one can ut1l1ze the following symmetry condition implied 1n eqs. (B.3) and 
(B.4) for the 1ntegration. 

~1(k1,y,k3) = ~!(-k1,y,-k3) 

~1(-k1,y,k3) = ~~(k1,y,-k3) 

RiJ (k 1,y,k3) = R~J(-k1,y,-k3) 

That is, the real parts of ~ and R are even functIons, and the 1maglnary parts 
l. 1J .. are odd functions w1th respect to the wave number, k. 

Another way of obtain1ng u u (y) may be to (a) calculate ~(1)(x,y,z) and 
(1) 1 J 1 

~j (x,y,z) separately from eq. (B.l), (b) multIply them dIrectly In the (x,z)-plane 

for ~~1)~(1}, and (c) take a spatIal average over a perIod WhICh the product would 
posses§ 1njboth x- and z-coord1nates. Thus, the alternatIve wIll be more ted10us 
than the analyt1cal methods in the above, eq. (B.13), and the solutlon depends on 
the averaging technique which IS unnecessary in the spectral method. 
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Figu~e 1.- Coo~dinate system fo~ a two-dimenslonal channel flow. 

15~------~-------.--------.-------~ 

\l 5 = 0, I'T = 0 

o 5=001, "T=O 

• 5=001, "T= 18 

o 5 = 003, "T = 0 0'_ .... . ..;y-.... 
> 
" .N 

-be" 10 
• O~ •• .J:1-­. .;..~'-

_0 

5L-______ ~ ______ -L ______ ~ ______ ~ 

o 05 10 
TIME, t 

15 20 
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eters: S = 0.01 and vt = 18 (solid line); S = 0.03 and vT = 22 (000). 
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FIgure 6{a).- ProfIles of large eddy self-interactions and modeled hIgher mode 

interactIons versus y/d for k1 = 0.1 and k3 = 0.05 (1/cm) at t = 0.2. 
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Figure 6(b).- Profiles of large eddy self-interactions and modeled higher mode 

interactions versus y/d for kl = 5.0 and k3 = 0.05 (l/cm) at t = 0.2. 
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Figure 7.- DistributIon of P, in the (kJ ,k3)-space at (a) y+ = 7 and 
(b) y/d = 0.09. t = 0.2. 
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Figure B.- olstrlbution of P7 In the (KJ,K3l-space at (al Y· : 7 and 
(b) y/d = 0.09. t = 0.2. 
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Flgure 9.- Development of streamWlse turbulent lntensity (u2/u~) ln (y,t). 
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Figure 10.- Development of normal turbulent intensity <v2/U2) ln (y,t) space. o 
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Figure 11.- Development of spanwlse turbulent Intensity (w2/U~) in the (y,t)-space. 
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- 2 Figure 12.- Development of shear stress (uv/Uo ) in the (y,t)-space. 
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Flgure 13.- Comparlson of three u2 and v2 profiles at t = 0.15 (0), 0.175 (x), 
and 0.2 (b.). 
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4 mode to (a) U2, (b) v2 , (c) w2 , and (d) Figure 1 .- Contribution ~rom the first uv, 
divided by Uo ' versus y/d at t = 0.2: •• Laufer (1951). 
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Figure 15.- Structural quantities calculated from the first mode versus y/d at 
- 2 - ... 12 ... 0 t = 0.2: eeLaufer (1951); (a) uv/q , (b) uV/lu lV , (c) e in equation (28), 
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Figure 16.- Two-point veloOity correlation, R" obtained from eq. (25), as a 
function of (r"r3) at y+ = 7. 
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Flgure 17.- Two-point velocity correlation, R22 obtained from eq. (25), as a 
functlon of (r 1,r3) at y+ = 7. 
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Figure 18.- Two-point veloclty correlatlon, R33 obtained from eq. (25), as a 
function of (r1,r3) at y+ = 7. 

46 



10 0 

Flgure 19.- Two-polnt veloclty correlatlon, R12 obtalned from eq. (25), as a 
function of (r 1,r3) at y+ = 7. 
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Flgure 20.- Two-polnt veloclty correlation, R11 obtained from eq. (25), as a 
functlon of (r1,r3) at y/d = 0.5. 
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Figure 2'.- Two-paint velocity correlation, R22 obtained from eq. (25), as a 
function of (r"r3) at y/d = 0.5. 
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Figure 22.- Two-paint velocity correlation, R33 obtained from eq. (25), as a 
function of (r"r3) at y/d = 0.5. 
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Flgure 23.- Two-point veloclty correlatlon, R'2 obtalned from eq. (25), as a 
functlon of (r"r3) at y/d = 0.5. 
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Figure 24.- Integral length scale of large eddy deflned by eq. (34) vs. y/d. 
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Flgure 25.- Two-polnt velocity correlations obtalned from eq. (35) as a function 
of r 2 at y+ = 7. 

Flgure 26.- Two-polnt velocity correlations obtained from eq. (35) as a function 
of r2 at y/d = 0.5. 
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Flgure 27.- Integral length scale of large eddy deflned by eq. (36) vs. 
•• Goldstein (1950). 
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Figure 28.- Contour plot of 
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u(1) in the (x,z)-plane at 
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FIgure 29.- Contour plot of 
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Figure 30.- Contour plot of 
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v(1) In the (x,z)-plane at 
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w(1) in the (x,z)-plane at 
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Figure 31.- Velocity vector of large eddy in the (y,z)-plane at (a) x/H = 0.3 
(b) x/H = 0.4. 
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FIgure 32.- Stream function contours In the (y,z)-plane at (a) x/H = 0.3 
(b) x/H = 0.34. 
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Figure 33.- Stream function 
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contours In the (y,z)-plane in the VISCOUS region. 
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Figure 35.- Stream function W2 (eq. (40» contours in the (x,y)-plane at four 
locatlOns of z. 

5 

Figure 36.- Large eddy velocity fluctuation, u(1), in the (y,z)-plane at 
x/H = 0.12. 
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Figure 37.- Large eddy velocity fluctuation, v(1), ln the (y,z)-plane at 
x/H = 0.12. 
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Flgure 38.- Large eddy velocity fluctuation, w(1), in the (y,z)-plane at 
x/H = 0.12. 
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Figure 39.- Streamwise vorticity fluctuation of large eddy in the (y,z)-plane at 
x/H=O.12. 
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Figure 40.- A volume of the flow represented by 36 lines in the physical space. 
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Figure 41.- Traces of velocities along the lines shown in figure 40 at t = 0.2. 
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Figure 42.- Projection of velocity traces in figure 41 onto the (u,v)-plane, at 
t = 0.2. 

59 



50 .. ~ 

y/H 

25 

o ' 
-5 

x/H 0 

o z/H 

5 

, 

, 

, 
, 

F1gure 43.- A plane 1n the physical space at z = o . 
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Figure 44.- Traces of velocit1es taken from every gr1d point 1n f1gure 43, at 
t = 0.2. 
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Figure 45.- Probab1l1ty d1str1but1on function of the u-component of a large eddy 
1n the homogeneous space: (a) y+ = 7, (b) y/d = 0.5. 
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Flgure 46.- Probablllty dlstrlbutlon function of the u-component of a large eddy 
along y at (a) x = z = 0 and (b) x = z = O.1H. 
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