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I.	 INTRODUCTION

The research grant NAG 1-500 entitled "Semiconductor Superlattice

Photodetectors" was awarded to the University -)f Illinois by NASA-Langley

Research Center on June 27, 1984. Dr. Charles E. Byvik of NASA is the

Technical Officer, and Mr. John F. Royall is the Crants Officer. The total

amount of funds received by the University is $62,801 to cover the period from

July 1, 1984 to June 30, 1985.

This report is the second semiannual report.

1.	 Period

January 1,	 1985 to June 30,	 1985.

2.	 Reporting Date

July 5,	 1985 #

3.	 Technical Personnel

S. L.	 Chuang: Assistant Professor of Electrical and Computer

Engineering and TRW Assistant Professor of Electrical

and Computer Engineering

J. J. Coleman: Professor of Electrical and Computer_ Engineering and

Research Professor of Coordinated Science Laboratory

K. Hess Professor of Electrical and Computer Engineering and

Research Professor of Coordinated Science Laboratory

J.	 P. Leburton: Assistant Professor of Electrical and Computer

Engineering and Research Assistant Professor or

Coordinated Science Laboratory

Peter J.	 hares: Research Assistant of Electrical and Computer

Engineering
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II. TECdNICAL PROGRESS

We studied two novel types of superlattice photodetectors: (1) a

superlattice photomultiplier and (2) a photodetector based on the real-space

transfer mechanism. A summary of the results is given in this report.

1.	 Superlattice photomultiplier

The configuration of the device is shown in Figure 1. The optically

generated electrons are accelerated by the applied electric field and "impact

ionize" the electrons confined in the quantum wells. Thus it works as a solid

state photomultiplier. An outline of the theoretical formulation has been

given in our first Semiannual Report [ 1] and a detailed discussion will be

presented in a future publication [2].

We have calculated numerically the ionization rate in the computer. An

upper limit of the ionization rate <T> u is obtained easily by ignoring the

fact that the final momenta of the electrons need to be larger than a

threshold value. The exact numerical integration for the ionization rate

<1> takes into account the threshold value for the momenta and needs more
t

computer time. Both results have been calculated and shown in Figures 2 to 7

as functions of the incident electron energy E 0 . The necessary material para-

meters used here are taken from refs. 3 and 4.

The average ionization rate <t> involves the integration over the

incident energy EO and the distribution function. The function <
T

1 >

multiplied by exp( -E0 /kBTe ) is represented by the dashed line in Figure 2. One

sees that the main contribution arises from energies between the threshold

value and 0.6 eV where < t ^ I ) > exp(-EO/kBTe ) has decreased by about two orders
U

of magnitude from its peak value. If the electron temperature T  is



3

increased, the slope of the dashed line (-1/kBTe ) will be flatter, and the

average ionization rate will increase.

The upper limit of the impact ionization rate as a function of the energy

EO is shown as the dotted line in Figure 2. This curve is much easier and

faster to evaluate since analytical expressions could be obtained with
a

approximations. They also can serve as a means of checking the numerical

accuracy of the exact numerical integrations.

In Figure 3, we increase the doping concentration in the quantum-well

region to 1.0 x 10 18 cm 3 . Since there are more electrons in the quantum well

than those for the previous case in Figure 2, the ionization rate is larger

than that in Figure 2. In Figure 4, the width L z of the quantum well is

decreased to 360A. The other parameters are the same as those in Figure 2.

The impact ionization starts at lower threshold. This is because the momentum

of the electron in the quantum-well region has the component n/L z which is

increased. It becomes easier to be ionized. In Figure 5, the mol, fraction x

of ARAB in the AtxGa1-xAs region is decreased to 0.20. The band edge

discontinuity AE  is then smaller. Again the impact ionization rate increases

and starts at E0 equal to zero. Thus, AL  provides enough momentum for impact

ionization immediately. Note that we have taken into account the difference

of the effective masses in different regions. The energy due to the momentum

of the electron in the direction parallel to the interface provides part of

the energy required for ionization.

In Figures 6 and 7, we reduce the temperature to T - 77°K, T  = 3b5°K.

We have x = 0.2 for Figure 6 and x = 0.25 for Figure 7. The dashed line

decreases much faster compared with the previous cases with T  = 1500°K as

expected.

z
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In Figure 8, the average ionization rate <t> is shown as the
solid line as a function of the doping concentration. The upper limit <t>u

is shown as the dotted line. It is clear that the average transition rate is

increased generally because more electrons reside in the quantum-well

available for ionization. More calculations on various quantum-well sizes are

necessary since the quantization effect will be more important if the well

size is smaller than 400A.

2.	 Photodetector based on the real-space transfer mechanism

Photodetectors play vital roles in optical communication, laser range

finding, active laser imaging and picosecond light pulse measurement [5-81.

Today, photodetectors operate over a wide range of wavelengths. In our case,

the detection wavelength of interest lies in the micron range (2 to 12

microns) which corresponds to a conduction band edge discontinuity AEC:

AEC a 85% * AEG - 1.06 x	 (0 < x < 0.45)

where x is the mole fraction of the AXAs in the AL Ga 1 _xAs region, and AEG is

the energy gap difference between the two regions ;31. Through bandgap engi-

neering, i.e., proper selection of the AtxGa I _ xAs alloy composition, the pho-

todetector may be tailored to achieve desired wavelengths. For example, for

an atomic fraction of x - 0.1, AE C - 0.106 eV, the corresponding wavelength

for absorption is approximately 12 microns. If x - 0.45, AE C - 0.477 eV, the

absorption wavelength is 2.6 microns.

A photodetector based on the real-space transfer mechanism is shown in

Figure 9 [9,101. Hess et al. [11,12) have investigated this real-space
)

transfer mechanism for its negative differential conductivity and its fast

CO
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switching and storage properties. We have examined its optical applications.

In particular, the optical free carrier absorption coefficient, which is

related to the gain, the fast response time, and the detectivity of the

heterostructure photodetector, has been investigated.

.	 The real -space transfer mechanism is the key to the operation of this
'e=

t
photodetector. The basic structure of this device consists of a series of

	

t	 alternating GaAs and AtxGal-xAs multilayers ( Fig. 9). However, other lattice-

	

=	 matched materials having dissimilar bandgap energies and electron mobilities

x
may be used. The A t Ga 

l-x 
As is doped n-type. Before the photodetector is

=9^ exposed to an optical signal, the electrons from the At Ga l-xAs layers spill

into and reside in the well regions. When there is an applied field parallel

to the AAxGa 1-xAs - GaAs interface, they conduct essentially in the GaAs

quantum-well regions. When separated from their parent donors by more than

200A, these electrons experience strongly reduced impurity scattering

[9,13,141. As a result of this and due to the characteristics of GaAs, these

electrons experience very high mobilities. On the other hand, the mobility is

low in the At Ga 1 _xAs layers due to the high doping concentration. When the

device is optical'	 lluminated with photons whose energies are sufficient to	 ,.

excite the electrons out of the G£As quantum well, the majority of the then-

mionically emitted electrons will then conduct in the low mobility AtxGal-xAs

layers. This will cause a change in the conductivity and therefore a change

in the current density to occur as the electrons depart the GaAs layers. This

change in current is a consequence of the decreased population of electrons in

the GaAs layers and the lower mobility of the electrons in the AtxGa1-xAs

	

{	 layers. Hence, a distinct optical signal may be detected.

k

	

L	 1

.3
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The optical absorption coefficient was calculated from the free carrier

absorption. In this research, we applied a second-order time-dependent per-

tubation theory since a phonon is considered in the photon absorption process

[151. Intra-subband optical transitions in which the carriers either (1)

absorb a photon and then emit or absorb a phonon or (2) emit a photon and

then emit or absorb a phonon, account for the absorption of electromagnetic

radiation. The optical frequencies n are lower than those which give rise to

direct interband transitions in semiconductors, i.e., hn < E  where E  is the

bandgap of the semiconductor. Since III-V compound semiconducting materials

and the AtXGa1-XAs-GaAs system in particular are weakly ionic, polar optical

phonon scattering plays a part in determining the free carrier absorption.

Consequently, we have calculated the free carrier absorption for the case when

polar optical phonon scattering of the free carriers is dominant. For the

interaction with the radiation field, we considered the case where the

radiation field is polarized in the plane of the layer. For the scattering of

the carriers by polar optical phonons, we considered only the interaction of

longitudinal optical phonons with the carriers. The interaction between the

carriers and the transverse optical phonons and the screening of the interac-

tion by the free carriers are assLaed to be negligible. We considered the

case where the confined carriers are coupled to bulk LO phonons and assumed

that the bulk phonons are totally unaffected by the existing quasi-two-

dimensional structure. Consequently, the electron-polar optical phonon

coupling may be obtained from Frohlich's model.

The computation of the free carrier absorption from an initial bound

state where the electron is is the quantum well to a final free state where

the electron is out of the well (see Figure 10) was performed in two parts.

14A-\
€



First, we considered the absorption in which the intermediate step was a free

state, as shown in Figure 10a. Next, as shown in Figure 10b, we considered

the absorption for the case of an intermediate bound state. The total absorp-

tion coefficient is the sum of the absorption coefficients of each of the

respective parts. Having formulated the absorption coefficient, we performed

the calculations

aT M aA + aA - aE - aE

where aT is the total absorption coefficient. The subscripts A and H refer to

the absorption and emission of photons, respectively. Similarly, the

superscripts a and a refer to the absorption and emission of phonons, respec-

#	 tively. For example, aA is due to the absorption of both a photon and a pho-

non, and aA is due to the absorption of a photon and the emission of a phonon,

etc.

We have completed the sophisticated theoretical formulations. Studies,

which will include the numerical calculations and the transition without the

phonons, will be done in the future. 	 l

_ ^J
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Figure 2.	 The impact ionization rate '7
7 	

> as a function of the
0

incident hot electron energy E 	 solid curve. The

v

dashed curve, which is the ionization rate multiplied by

exp(-E0 /kBTe ), illustrates the trend of the integrand to obtain

the average ionization rate. The dotted line is the upper

limit of the impact ionization rate. The parameters used are

ND = 1.0 x 10 17 cm-3 , x = 0.25, L  = 400A, L = 1200 A,

*
T = 300°K, T  = 1500°K, m* = 0.073 m 0 , c10 = 0.0825 m0.
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i > =	 Initial	 State
!m> =	 Intermediate State
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Figure 10. (a) Transition involving intermediate free state.
(b) Transition involving intermediate bound state.
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