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SUMMARY

Analysis of a flexible beam with displaced end-located inertial masses is
presented. The resulting three—-dimensional mode shape is shown to consist of two
one-plane bending modes and one torsional mode. These three components of the mode
shapes are shown to be linear combinations of trigonometric and hyperbolic sine and
cosine functions. Boundary conditions are derived to obtain nonlinear algebraic
equations through kinematic coupling of the general solutions of the three governing
partial differential equations. A method of solution which takes these boundary
conditions into account is also presented. A computer program has been written to
obtaln unique solutions to the resulting nonlinear algebraic equations. This
program, which calculates natural frequencies and three-dimensional mode shapes for
any number of modes, is presented and discussed. ‘

INTRODUCTION

With the advent of the Space Shuttle, a new class of spacecraft has been
emerging in recent years. This class of spacecraft, which includes large antennas,
platforms, space stations, etc., will require large lightweight space structures.
These systems will be highly flexible, and will have a large number of significant
vibrational modes which (unlike conventional rigid spacecraft) can no longer be
ignored while designing control systems. Because of small inherent damping and a
large number of elastic modes, these large flexible systems will need complex
control laws in order to accomplish the required degree of precision in their
pointing and maneuvering. These control laws, however, cannot be designed unless
accurate vibrational characteristics of the system can be obtained.

Many flexible space structures, as well as other terrestrial systems, can be
represented by a single one-span beam with masses at both ends. Two shuttle based
experiments which can be represented by this system are the Solar Array experiment,
which flew in September 1984, and the Spacecraft Control Laboratory Experiment
(SCOLE) (see ref. 1), which is a laboratory experiment in the design stage. For
those structures whose end-mass centers of mass coincide with the principal axis of
the beam, and have no product of inertia, simple one-plane vibrational analysis for
each of the two planes (i.e., =x~z and y-z planes) and one independent torsional
vibration analysis are sufficient. (See ref. 2 for analysis of these types of
systems.) However, if the centers of mass of the end masses do not lie on the beam
axis, or if the products of Inertia are not zero, then the three modes mentioned are
coupled into one complex three-dimensional mode.

This paper presents one method of approaching the problem of three-dimensional
vibration analysis of a uniform beam with offset inertial masses at each end. The
method assumes that the system is adequately described by three governing partial
differential equations (i.e., two one-plane bending and one torsional bending
partial differential equations). With proper boundary conditions, taking into
account the center of mass displacements, and products of inertia, the natural
frequency and mode shape can be obtained for any number of modes. This
paper presents such a set of boundary conditions as well as a computer
program that makes the solution readily obtainable for any given set of parameters,
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A cross sectional area of beam

A;,B;,C;,D; coefficients of x-z

SYMBOLS

plane mode shape equation

A9,B9,C9,Dy coefficients of y-z plane mode shape eduation

A4,B4 coefficients of torsional mode shape equation

CeMe center of mass

EI bending stiffness for beam when (EI)x = (EI)y

(EI), x~-z plane bending stiffness

(EI)y y~z plane bending stiffness

G modulus of rigidity

Ip polar moment of inertia

IXX,Iyy,Izz x-, y—, and z—axis moments of inertia, respectively

Iex0slyyorlzz0 %7
: z

y-—

} ]
0 on beam

and z-axis moments of inertia, respectively, at

IxxL’Iny’IzzL Xx—-, y—, and z—-axis moments of inertia, respectively, at
: z = on beam

Ixy xy product of inertia

Iey0 xy product of inertia at = 0 on beam

IxyL xy product of inertia at = 1L on beam

L length of beam

Mx,My,Mz moments about x-, y-, and z-axes, respectively

MxO’MyO’MZO moments about x—, y—, and z—axes, respectively, at
z = 0 on beam

MxL»MyL’MzL moments about x—-, y—-, and z-axes, respectively, at
z =L on beam

m mass at z = 0 on beam

my, mass at z =L on beam

p(t) common time solution of partial D.E's

px(t),py(t),pz(t) separate time solutions of xz-plane, yz-plane, and z-axis
torsional P.D.E's, respectively
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r.(z),ry(e) xz-plane mode shape

ry(z),ry(s) yz=plane mode shape

t
u(z,t)
v(z,t)

X'y

VxO’VyO

xL’VyL

8(z),0(e)

8y 05 (2, )
»0,(z,t)

P

¢(z,t)

w

W, s W

time

beam displacement in xz-plane

beam displécement in yz-plane

shear fopces in x~ and y-directions, respectively

shear forces in x— and y-directions, respectively,
at z =0 on beam

shear forces in x- and y-directions, respectively,
at z =L on beam

position variables

eigenvalue matrix

phase angle (rad)

mode shape variable for xz-plane

mode shape variable for yz-plane

mode shape variable for z-axis torsion

ce.m. displacements in x- and y-directions, respectively,
at z = 0 on beam

c.m. displacements in x—- and y—-directions, respectively,
at z =L on beanm

dimensionless position variable (¢ = z/L)
z—axis torsional mode shape
angular displacement about x-axis
angular displacement about y-axis
density of beam
angular displacement about z-axis
natural frequency common to all three governing partial D.E's

natural frequency of v1bratlon of xz-plane, yz—plane, and z-axis
torsional bending modes, respectively



THE GOVERNING DIFFERENTIAL EQUATIONS

The governing partial differential equations for the beam shown in figure 1 are
comprised of two one—plane bending equations and one axial torsion equation. These
differential equations all assume small displacements and slopes, uniform
distribution of stiffness EI and density  p, and the torsional equation is derived
specifically for a circular shaft. These three equations are the following (refs. 2
and 3):

- azu(z)t) =(EI)X a4u(z,t) (1)
2 pA 4
at dz
for x-z plane bending, and
_ aZV(Z,t) = (El)y aAV(Z,t) (2)
at2 pA 324 v
for y-z plane bending, and
2
22 6(z,8) _ G 3%4(z,t) 3y

atz e 322 '

for z—axis torsional bending. In equations (1), (2), (3), =z denotes the
independent space variable along the z-axis, t 1is the time, u, v, and ¢
respectively denote the x— and y-axis bending and torsional displacement. (EI),,
(E1),, G, P and A respectively denote the x-z and y-z plane bending
stiffness, the modulus of rigidity, the density, and the cross—-sectional area.

These three equations are solved by separation of variables with the following
substitutions (refs. 2 and 3):

u(z,t) = 1, (2)py(t) o (4)
and

v(z,8) = 1, (2py(t) | (5)
and

¢(z,t) = 8(z)p,(t) ' | (6)



e

Where r,, r, and 6 denote the bending and torsional mode shapes, and pg,
p, denote the corresponding functions of time. Substituting equationms (4), (5),
and (6) into equations (1), (2), and (3) and rearranging terms, equations (1), (2),
and (3) are transformed, respectively, into:

Py

o (0) |, ®D, | d'r (o) .

) dt2 px(t) oA rx(z) dz4 ' 7
o) | @D, | d'r@

- ge2 b (1) T A ry(Z) iz’ ®

and
a®p (t) 2

_ 1 z _G 1 d7e(z) : . (9)

pz(t) dt2 p 6(z) d22

Equations (7), (8), and (9) can be true if, and only if, both sides of eacg equa%ion
are equal to a constant. If the respective constants are chosen to be -u_, -w_,
and -y, the following six ordinary homogeneous differential equations are Y
obtained.

For the x-z plane bending:

dsz(t) 2
— wxpx(t) =0 (10)
dt
and
d4rx(t) 4
77— ~ B,r,(2) =0 (11)
dz
where
4 _ pA 2 '
Bx ~(ET) Wy ‘ (12)



For the y-z plane bending:

a’p (&)
— t wypy(t) =0 (13)
dt
and
d4r (z)
y4 -gr (z) =0 (14)
dz y
where
4 A 2
= P2 15
y
For the z-axis torsional bending: .
ap (&)
— u’zpz(t) =0 - (16)
dt
and
e(z) 2
- w, & e(z) =0 (17)
dz

The system which is being modeled will be considered to be vibrating with the same
frequency w 1in all three independent modes. This simplification gives all three
modes the same time dependent governing equation:

2
ﬂ;%%El + w2p(t) = 0 : (18)

[i.e., py(t) = py(t) = p,(t) = p(t)].
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The solution to equation (18) is (refs. 2 and 3):
p(t) = cos (wt + a) (19)

where « 1is a phase angle.

The solutions to the position dependent equations (11), (14), and (17) with

w =w =w =w are found to be (refs. 2 and 3):
X y z
r.(z) = A; sin B,z + B} cos Byz + C; sinh Byz + D; cosh B,z (20)
ry(z) = Ay sin Byz + By cos Byz + C, sinh Byz + D, cosh ByZ (21)
0(z) = A3 sin B,z + B3 cos B,z (22)
where
_ (_pA 2.1/4
_ (oA 2.1/4 ”
By ((EI)Y w) (24)

(25)

Nm

I

14
Ex

Equations (20), (21), and (22) are more convenient to use when the position variable
is transformed into a nondimensional form. For this reason the variable ¢ = z/L,
where L 1is the length of the beam, is used. . After substitution, equations (20),
(21), and (22) become:

rx(e) = Al sin Bie + Bl cos Bye + CI sinh B1e + Dl cosh B1€ (26)
ry(e) = Aj sin Bjge + By cos Bye + Cy sinh Bzé + Dy cosh 8ye (27)
8(e) = A3 sin Bye + B3 cos 835 (28)



where

—~

B

2
= zﬁ%y— w L4 (29)
X

4 _ pA 2_4

82 = (ET) w L (30)
y

2 _p 2.2

83 =G u L | (31)

Boundary Conditions for Three-Dimensional Vibrations of a Beam
With Displaced Inertial End Masses

The configuration being considered is a beam with inertial masses at both ends
with x- and y-axis offsets. (See fig. l.) The offset center of mass, along with
the product of inertia, cause kinematic coupling between the x-z and y-z plane
bending modes and the z-axis torsional mode. Figures 2 and 3 show the moment and
shear force reactions being considered in the configuration.

The following relationships between shear, moment, and beam displacement are
used in the boundary conditions (ref. 4):

3
- 9 U(z’t)
Vp = —(ED) S=—Fe= (32)
YA
V. = —(EI) Ovz,t) (33)
y y az3
azv(z t)
= —(E1) 2002, -7 - (34)
MX y 322
W = 51y 229z, 0)
y X 2 (35)
9z
_ ) (Z,t) :
M, = GIP—%Z——— (36)
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When € = z/L 1is substituted into equations (32) through (36), the following

relationships are obtalned:

v - - (EI)X 33U(€’t)
% L3 383

V o= - (EDy 33(e,t)
y L3 383

v - (EI)y azv(e,t)
% L2 382

M = (EI)X Bzu(e,t)
Y L2 aez

M = GIP aé(s)t)
z L doe

(37)

(38)

(39)

(40)

(41)

Shear Forces at =z =0

Referring to figure 2, the first

boundary conditions involve the shears Vx0

and VyO which are described by the following relationships:

3
2, t B
Voo = —(EI)iiiﬁg%—g- at z =0 42)
3z
33v(z t)
Vg = —(EI) ——3>* at z =0 (43)
y y 3
9z .
Setting equations (42) and (43) equal to the mass m; times the corresponding
components of acceleration yields the following relationships.
2 2 ] 3
o | ulz,t) _ Ay 3" ¢(z,t) | _ ~(ET) 2 u(z,t) : (44)
0 2 0 2 X 3
at at 3z
a%v(z,t) 3% o(z ::)1 3v(z,t)
m| S VYRZE) 6y O OUZ,E) | _(pp) S VIZLE) (45)
0 at2 0 at2 X az3




The following substitutions will be used to transform equations (44) and (45) into

usable form:

ue,t) = r (e)p(t)

v(e,t) = ry(e)p(t)

(e, t) = 8(e)p(t)
. where

e = z/L

Using these four relationships, equations (44) and (45) become:

.3
2 (EI) d°r (¢)
d p(t) X X
nm———=— [r_(e) — Ay~0(e)] = - p(t)
0 dt2 [ X 0 ] L3 d€3
& at ¢ = 0.
3
2 (EI)_ d7r_(e)
d p(t) - y y
m——=== [r (e) + Ay 8(e)] = - p(t)
0 42 [ y 0 ) L3 de3

Equation (18) can be rewritten as:

a%p(t)
dt2 2

Using equations (52), equations (50) and (51) can be rewritten as:

3
(EI)_ d7r_(¢)
-wzmo[rx(e) - Aypo(e)] = - —3 = X3
L de

3
(EI) d°r (e)
2 - y y
-wm,fr (e) + ax,0(e)]| = -
olty 00(e)] 3 23

10

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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shears

or after rearranging terms:

3
d'r (e my ,
3 = oAt B1[Fx(e) + 8yp0(e)] at

de

where B8; is given by equation (29).

3
d ry(e) my 4
3 = DAL Bz[ry(e) + axy0(e)]  at

de

where B9 1is given by equation (30).

Shear Forces at =z

(55)

(56)

=1L

Again referring to figure 2, the next set of boundary conditions involves the

VxL and V, at z = L. on the beam.

These are derived with relationships

similar to those used for the first two (VXO and VyO)’ the only difference being

in the sign convention used in the derivation of
tions (ref. 3).

CED due,t)

the governing differential equa-

For the end z =L the following relationships apply:

\Y = at =1 (57)
xL L3 as3
and
EI 3
VoL = 31 3 v(;,t) at z =1L (58)
y L 3e
Setting equations (57) and (58) equal to the mass m;, times the corresponding
component of acceleration, the following relationships are obtained:
2 2 1 (D .3 N
_ 3 ule,t) _ " ole,t)| _ x 9 ule,t)
Var, = W = T T T 3 (59)
dt dt L Je
F at g =1
[ 2 2 1 (D). .3
VyL = mL 9 V(g)t) + AxLa Q(g,t) = 5 y ) V(E)t) (60)
| dt e | L 9e” ./

11



Using relationships (46) through (49) and (52) in equations (59) and (60) and
rearranging, the following boundary condition equations are obtained:

Pr () m
37— = ot Bl

-r (e) + Ay 0(e)] at ¢ =1 (61)
de

where B; 1is given by equation (29).

Fre) mo, |
T = i 8y (1, (e) - axp(e)] at =1 (62)

de
where B, 1is given by equation (30).
Bending Moments at z =0

Referring to figure 3 the next two boundary conditions involve the moments My0
and M¥O at z = 0 on the beam. Equations (34) and (35) are equated with the
W

following relationships (ref. 5) which ignore all nonlinear coupling and require
that all products of inertia except Ixy are zero:
My = T * Iyxyby (63)
M,=1I 6 +1I_ 8§ 64
y ery Xyex (64)

Combining equations (63) and (64) with equations (34) and (35), respectively, and
applying them to the end at 'z = 0 one obtains:

N
2
3 v(z,t)
-(EI) ——52>—= (65)
y azz . .

il

Meo = Ixerx + IxyOey

M I 8 + 1 .8 = (EL) 2u(z,0) (66)
y0 yy0'y xy0 “x X az2

12
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The angular displacements 6, and 6, can be approximated by the slopes of the y-

and x-displacements, respectively:
0 (z,t)
ey(z,t)

(The sign—-convention used for rotations is the one corresponding to the standard

right-handed coordinate system.) Using equations (67) and (68), equations (65) and.

(66) become:

y

_3v(z,t)
9z

gu(z,t)
9z

3v(z,t) 3u(z,t) _ 3%v(z,t)
Lo Tt Ly g = ~ED S
3z at 9z Jt 9z
> at z =0
32u(z,t) 33v(z,t) _ 5%u(z,t)
Iyyo 7 7 Ixyo 5 = ED
9z 9t 9z 9t 9z J

Using relationships (46), (47), and (49), equations (69) and (70) become:

\
dzp(t) _ L x0 dry(e> . Ixyo dr_(e) _ (EI)y d°r_(e) o
dt2 i I - de L de L2 dez

[ 2
d*p(t) | Iyyo dr, (e) _ Txy0 dry(E) - (EI), d7r (&) p(t)
dt2 L de L de L2 d€2

-

(67)

(68)

(69)

(70)

(7D

(72)

" Using equation (52) in equations (71) and (72), the following two boundary condition
equations are obtained:

dzry(e) ) B; dr (8) er(e)

dez

= -I + 1 ———— | at € =0
pAL3 xx0 de xy0 de

(73)

13



where B, 1is given by equation (30).

RO ar_(e) dr (e
- A a1 Y T a4 e=0 (74)
deZ pAL3 yy0 de xy0 de

where B; 1is given by equation (29).

Bending Moments at z =L

The fourth pair of boundary conditions involves the moments at the z =L end
of the beam (see fig. 3). This set uses equations very similar to those used in
set IIT. The only difference is in the sign convention necessary to satisfy the
governing partial differential equations (ref. 3). The x- and y-moments at z = L
are given by:

)
My, = (EI)yé—XS%LEl at z =1L _ (75)
3z .
2% u(z,t)
Myp, = =(BI) == at z =L | (76)

9z

Setting equations (75) and (76) equal to equations (63) and (64), respectively, and
using relationships (67) and (68), the following equations are obtailned:

3 3 2 '
_IxxLi_v(_z,_'ZQ + 1 L_a__l_lia,_;)_ = —(EI) .a_v<_§__tl at z =1L | (77)
3z Jt XYY 8z ot Y 5z »
3 3 2
3z at Y% 5z ot 3z

Using the relationships (46), (47), and (49), equations (77) and (78) become:

: 2
dzp(t) _ L dry(e) . IxyL dr_(e) ] (EI)y d ry(s) ey ar =1 (79)

dt2 | L de L de LZ dez

14



2
dzp(t) _ Iny drx(e) IxyL dry(e) _ (EI)x d rx(e) _
+ = p(t) at ¢ =1 (80)
2 L de L de 2 2
dt L de

Using equation (52) in equations (79) and (80) and reducing gives rise to the
following boundary condition equations:

a’r (&) B; dr_(¢) dr_(e)
Y- L. ﬁ - = |at e =1 (81)
de pAL € Xy €
where B8, 1is given by equation (30).
dzrx(e) B? [ dr_(e) dr_(¢)
i R R T (82)
de DAL |_yy € y €

where B8, 1is given by equation (29).

Torsional Moment at z = 0

The ninth boundary condition involves the z-moment at z = 0 (see fig. 3).
This moment is caused by the mass my and moment of inertia 1I,,, according to the
following relationship (refs. 3 and 5):

2 2 2
3" ¢(z,t) 3°v(z,t) 9°u(z,t)
M =1 + m Ax, — ———— Ay (83)
0
z zz0 dt2 0] dtz 0 dt2 0

This moment is countered by the internal beam moment given by equation (36).
Setting equation (83) equal to equation (36) gives the following:

2 2 2 :
Izan g(;,t) + m 3 v(;,t) g - 3 u(;,t) by, | = 61 3¢(z,t) (84)

dt dt dt » p 3z

15



Using the substitutions given by equations (46) through (49), the following is
obtained:

a%p(t) GL, 36(e)

dt? {T,500(e) + my[ry(e)xy - r (e)ayg]} = = S (o) (85)

Using the substitution given by equation (52) and rearranging terms, the folloWing
boundary condition equation is formed:

B2
de(e) - 3 [—I
de pLIp

»200(€) ~ myAx,r, (e) + myAy,r ()] at e =0 (86)

where B4 1is gilven by equation (31).

Torsion Moment at z = L

The tenth and final boundary condition involves the moment at z =L (see
fig. 3). This moment follows the same relationship given in equation (83) but the
countering moment changes sign as in the other cases at z = L. This countering
moment is given by:

- 3(z,t) -
M1 —GIp v at =z L (87)

The following equation is obtained, which is similar to equation (84):

2 2 2
m, ) v(;,t) s, = ) U(z’t) by, |+ I La g(;,t) - _g1 29(z,t) (88)
at ot Y p 3z
at z =L

Using the substitutions given by equations (46) through (49), equation (88) is
changed to:

dzp(t)

2

. GI
2 Laa(e) ey (e) = aypr ()]} = - 2 2e) o) (89)
t »

16



Using equation (52) in equation (89) and rearranging terms gives the following:

: 2
deCe) _ P3 -
dse - pLIp[IzzLe(E) + mLAKLry(E) - mLAyer(E)] at e =1

(90)

where B4 is given by equation (31).

By substituting equations (26), (27), and (28) and appropriate values of ¢
(i.e., =20

at boundary 1 and ¢ = 1 at boundary 2) into equations (55), (56),

(61), (62), (73), (74), (81), (82), (86), and (90), the following ten linear equa-
tions are obtained, respectively: '

B,m B,m 8.m.Ay

A, - |10 - (L9 10700, _

A <pAL>Bl ¢ <pAL>D1 + < AL >33 0 (oD
B4ym B,m B,m.AX
270 20 270770 -

Ay - <———pAL>32 +C, - <——pAL>D2 + <——-—DAL )133 =0 .(92)

B [ g,m
[_‘:TLHEL_ sin(Bl) - COS(BI{,AI +Iv-511rL£ cos(sl) + sin(sl)le1

B ' 8
+lip—i:—ri slinh(sl) - (:osh(fil)]c1 +[p:‘l\:L COSh(Bl) + Sinh‘BI{]Dl

-

B my Ay | 8ymy Ay
1"L™'L . 1" L™ L
¥ {_p.AL—— 31“(83>] I v °°S(33)}

B, = 0 . (93)

-
B.,m

B
2L 2L
{—p—Af— 31n(82) - cos([?,z)]A2 + LJL— cos(Bz) + sin(Bz):le

B "B
+I:;%im.l"—.31nh(82) - cosh(Bz)]Cz +[—‘)—§Tm1'- cosh(Bz) + sinh(32{|D2

[ Bom, AX B,m. Ax
2™ A% "L _
+ ‘__EA—L— s_1n(83{]A3 + l:-——-p—AIT— cos(83):\ B3 =0 (94)

17



(95)

(96)

(97)

2 3 3
By 8, By Byl
21§Y°(A1+c1)+ 2x§0A2 32+2x"002+02=0
pAL pAL pAL
3 3 2
g1 BT L B, 8,1
——1—13L°A1—B+ 1yy0(:1+1)1 12’3"‘0(A2+cz)=0
pAL pAL pAL™
)
'BZBlIsz :
5| {[cos(8]A; = [sin(B)]B; + [cosh(B;)]C; + [sinh(g,)]D,]
pAL ) ‘
3 3
821 BLL .
+ [— 2 3L 0s(8,) - sin(B,)|A, +| == sin(8,) - cos(8,)|B
3 2 27|42 3 2 2’ "2
l_ pAL pAL ’ .
3 3
8, T Byl '
+] - _2 xxL cosh(B,) - sinh(B.)|C, + |- 2 xxL, sinh(B,) - cosh(B,)| =0
3 2 L2 /] 3 2 2
3 3
By 1 - By L
| L
o L yyb y:};L cos(Bl) - sin(g,)|A; + Ly sin(8,) - cos(g,)|B,
pAL pAL .
3 3
871 81 : |
+ |- Lyl y):;L cosh(Bl) + Sinh(Bl) S ___1___Y%’£ sinh(Bl) + COSh(Bl) D)
pAL pAL™ -
9 A
BBy Tyl . '
+ ——-—XL-DAL3 {[cos(sz)]A2 - [s1n(82)]B2 + [.cos‘h(Bz)]C2 + [sinh(8,)]D,} = 0‘ (98)
370770 37070
_.Eﬁ.__-(B1 + D)+ —;tf——>(32 +D,)
P L
8.1 .
+ A 37220 B. =0

18
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By Ay my

pLIp {[sin(Bl)]A1 + [COS(BI)]BI + [sinh(Bl)]C1 + [cosh(Bl)]Dl}

B A
+ | iL:imL {[-sin(8,)]a, + [cos(8,)]B, + [-sinh(B,)]C, + [-cosh(8,)]D,]

B3IzzL _ B3IzzL

- —;ET;— sin(83) + cos(B3) Ay + —EET;— cos(83) - sin(33;]B3 =0

(100)

In equations (91) through (100), B;, By, and B4 are given by equations (29),
(30), and (31), respectively.

Obtaining Nontrivial Solutions

Equations (91)through (100) can be written in vector-matrix form as follows:

[Z(w)] =0 (101)

Where Z(w) 1is the 10 x 10 coefficient matrix whose entries are functions of
(see equations (29), (30), and (31) for By, By, and 33). Nonzero solutions
(Al’ Bl’ Cl’ Dl’ AZ’ B2, CZ’ D2, A3, B3) exist only when the determinant of
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Z(w) 1is zero. Therefore, the first step in obtaining nontrivial solutions is to
obtain the real solutions of the nonlinear equations:

det[Z(w)] = O ‘ (102)

where det[ ] denotes the determinant.

A solution * is substituted back into equation (101) and a degenerate system
(usually of rank 9) of algebraic equations is obtained. Choosing one coefficient
and equating it to an arbitrary value (usually unity) the remaining nine
coefficients can be uniquely determined for each solution p*. A computer program
(BEAM3D), which calculates the nontrivial solutions, is discussed below.

THE COMPUTER PROGRAM

The computer program BEAM3D was written to obtain nontrivial solutions of
equations (91) through (100) by the method discussed in the preceding section (see
appendix A for a listing). BEAM3D was written assuming a symmetric cross section.
Therefore, there is only one bending stiffness EI = (EI)X = (EI).. This was done
simply because the equations are more accurate for symmetric or, more specifically,
circular cross sections. This comes from the assumption used in deriving the
governing partial differential equation for torsional vibration (eq. (3)) described
in the first section. The only difference between the boundary condition equations
" used in the computer program and equations (91) through (100) is that B; = By in
the program (see eqs. (29) and (30) for relationships of 8; and 82) since
(D), = (ED)

The boundary condition equations (91) through (100) are contained in ten
separate subroutines named XSHR1, YSHRl, XSHR2, YSHR2, XMOM1, YMOM1, XMOM2, YMOM2,
ZMOM1, and ZMOM2, respectively. The large number of trigonometric functions in
these equations necessitated the use of additional variable names (for sin(g),

cosh(B), etc.).

The solution of equation (102) is computed in subroutine EIGEN. This sub-
routine obtains values of the determinant of the 10 x 10 coefficient matrix cal-
culated in the program external function FUNC. EIGEN checks for sign changes in the
value of the determinant as well as changes in sign of the slope to find regions of
possible roots. Once a region is found that contains a root, the root-solving sub-
program SECBI is used to calculate the exact root.

Subroutine SOLVE substitutes the root calculated in "EIGEN" into nine of the
original ten boundary condition equations with one of the ten coefficients set equal
to one to form a degenerate (rank 9) system. This system is then solved by using
the system subprogram GELIM (for Gauss (- Seidel) elimination).

Subroutine PHNORM divides the three mode shape equations by the appropriate
factor (i.e., the square-root of the sum of the integrals of the mode shapes
squared, integrated from zero to L over the space variable) in order to normalize
them. This is useful for obtaining dynamic response to external forces or moments,
or in control system studies. The only property of the mode shapes that changeq
because of normalization is the magnitude.
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PROGRAM OPERATION

Input.— A total of 22 input variables is needed to use BEAM3D. Use of a
consistent set of units is required (meters-kilograms-seconds or feet-—pounds—
seconds). A description of each input variable can be found in the listing (see
appendix A) in subroutine INNPUT. The only limitation on input is that at least one
of the products of inmertia I,,o or Iy, wmust be nonzero to avoid a lower than
rank 9 system. This is not really a limitation since the product of inertia
couples the three bending modes in the first place.

Qutput.- The output computed by BEAM3D includes the natural frequency of
vibration, the normalized mode shape equations for x- and y~ bending and z-axis
torsion, and the plots corrésponding to these mode shapes. A sample case giving
both input and output is given in appendix B. :

CONCLUDING REMARKS

A method of obtaining the natural vibration frequencies and mode shapes in ,
three dimensions for a system comprised of a uniform beam with off-centered inertial
masses at both extremities has been presented. The equations of motion were derived
for this configuration taking into account the kinematic coupling resulting from the
product of inertia and the offset end masses. The boundary conditions resulted
in a set of nonlinear algebraic equations, the solutions of which yield the
modal frequencies and mode shapes for any number of modes. A computer program
was presented, which computes the modal frequencies and mode shapes for any
desired number of modes. Since the mode shapes are comprised of trigonometric
and hyperbolic sine and cosine functions, they can be readily differentiated
to obtain the mode-slopes, which are required in control system studies.
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APPENDIX A - COMPUTER PROGRAM BEAM3D



0000

OO OO0 OO O

OO0

10

PROGRAM BEAM3D(INPUT,OQUTPUT, TAPE?)
PROGRAM BEAM3D CALCULATES THE X-2 PLANE, Y-2
PLANE BENDING AND THE Z AXIS TORSION FOR A BEAM
WITH INERTIAL MASSES WITH *X® AND *Y" OFFSETS
AT BOTH ENDS. ) '
COMMON/BEAM/ROAL,L,EI M1,M2,1IX1,1IX2,IV1,1Iv2,IXYL,IXYE
1,121,122,R0LI,DX1,DX2,DY1,DY2,RHO,G,NMODE
COMMON/TRIGOS/OMEGAL ,OMEGA,BTAL,BTA2,SN,CS,SNH,CSH,SN2,CS52
COMMON/SOLS” A(10),DET,DETSAVE,AMTRX10(10,10),ANTRXS(9,9),
1COLUMN(S,1),DETDIFF
REAL IX1,IX2,1Yv1,1ve,IXYL,IXY2,121,122,L,Mi,M2
EXTERNAL FUNC
PSEUDO INITIATES THE PLOTTING ROUTINE
CALL PSEUDO : :
SUBROUTINE INNPUT IS WHERE ALL INPUT VARIABLES
ARE SIMPLY WRITTEN IN AS THE TEXT
‘CALL INNPUT '
OMEGA1 SETS THE STARTING POINT FOR THE NATURAL
FREQUENCY OMEGA1 (RAD/SEC)
OMEGA1=-,01 -
DETSAVE AND DETDIFF ARE USED AS WORK VARIABLES
IN SUBROUTINE EIGEN
DETSAVE=1,
DETDIFFs=0.
NATURAL FREQG’S. AND MODESHAPES ARE FOUND FOR THE
FIRST NMODE NUMBER OF MODES
DO 106 I=1{,NMODE
CALL EIGEN
THE NEXT LINE PASSES UP THE TRIVIAL ZERO FREQUENCIES
CALL SOLVE
CALL NORM(I)
CALL MPLOT
CALL OUTPT(I)
CONTINUE
CALL CALPLT(0.,9.,999)
STOP
END



7<
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QOO0

OO0

10

SUBROUTINE EIGEN CALCULATES THE EIGENVALUES OF THE
COEFFICIENT MATRIX

-SUBROUTINE EIGEN '
COMMON/TRIGOS/OMEGAL,OMEGA,BTAL,BTAZ,SN,CS,SNH,CSH, SN2, CS2
COMMON/SOLSs A(19), DET DETSRUE ﬂMTRXlO(iO 10) AHTRXS(S 8),
1COLUMN(9.1).DETDIFF '
COMMON/BEAM/ROAL,L,EI, ML, M8, IXL,IXE,IVL,IVYE,IXYL,IXYR
1,121,128,R0LI, DXi DXB DY1 DYE RHO G, NMODE
DIHENSION EPS(3)
FUNC IS THE EXTERNQL THAT CﬁLCULﬁTES THE DETERMINANT
OF THE 10 BY 10 COEFFICIENT MATRIX AMTRX10
EXTERNAL FUNC
REAL IX1,IX2,IYi,IYe,IXYL,IXvYe, IZl 122,L,M,M2
EPS(1)= 10**(-8.)
EPS(2)=10XX(-12)
EPS(3)=EPS(1)
THIS 1S WHERE THE FREQUENCY GUESSES ARE INCREMENTED
OMEGA1=OMEGA1+0.01
DET=FUNC(OMEGAL)
THE FOLLOWING TWO IF- STATENENTS LOCATE THE AREAS THAT
MAY CONTAIN A ROOT (WHERE THE VALUE OF THE DET. CHANGES
OR WHERE THE SIGN OF THE SLOPE CHANGES)
IF(DETXDETSAVE.LE.@.) GO TO 19
IFC(DETDIFFX(DET-DETSAVE)).LE.Q.) GO TO 19
DETDIFF=DET-DETSAVE
DETSAVE=DET
GO TO S
OMEGA2=0MEGA1-.03
DETDIFF«DET-DETSAVE
DETSAVE=DET
SECBI IS A ROOT FINDING ROUTINE IN FTNMLIB THAT USES
A COMBINED SECANT-INVERSE GUADRATIC INTERPOLATION
SAFEGUARDED BY BISECTION . (NOTEt THIS ROUTINE DOES
NOT WORK WELL ON DOUBLE ROOTS, IF YOU HAVE DOUBLE

ROOTS IT IS ADVISEABLE TO USE A DIFF. ROOT-SOLVU. ROUTINE

CALL SECBI(OMEGA2,0MEGA1,.001,FUNC,EPS,RO0T, IERR)



IF(IERR.EQ.3) WRITE(7,100)

IF(IERR.EG.8) WRITE(?7,200)

IF(IERR.EQ.9) WRITE(?7,300)

IF(IERR.EG.8) GO TO 5

IF(IERR.EG.8) GO TO &
100 FORMAT(1X,*SECBI TOOK MORE THAN 50 ITERATIONS TO FIND FREQ")
20e 1Fg§ﬂgrgix.'SECBI WAS GIVEN IMPROPER INITIAL COND’S. SEE UVUOL.2
300 FORMAT(1X,'A ROOT WAS NOT FOUND IN THE INTERVAL GIVEN TO SECBI®)

OMEGA=ROOT

CALL TRIG(OMEGA)

RETURN -

END "
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SUBROUTINE PHNORM CALCULATES THE FACTOR NEEDED TO
NORMALIZE THE MODE SHAPES

gU%EggTINE PHNORM(BETA,ARCQ,AC1,AC2,AC3,ELSQ,PHN,IM)
- A1=AC1/ACO $ AB=AC2/ACO $ A3I=AC3/ACO
S=SIN(B) 8 C=COS(B) 8 SH=SINH(B) 8 CHe=COSH(B) '
S2=SIN(2.%B) 8§ C2=C0S(2.XB) 8§ SHa=SINH(2.XB) 8 CH2=COSH(2.%XB)
PHN=(B-S2/2. )72.+A1XX2X(B+S2/2. )/2. +REXXSX (SHR/2.~B) /2.
1+A3xx2X (SH2/2.4B)/72.+A1X(1,.-C2)/2. +A2X (SXCH-CXSH)
2+A3X (SXSH-CXCH+1 . )+A1XA2X (CXCH+SXSH-1. )+AL1XAIX(CXSH+SXCH)
3+A2XA3X(CHe-1.)/2.
PHN=PHN/B
PHNsSQGRT(PHN)XELSQ¥ACO
URITE(?,201)PHN
C COMPUTE APPROX. NORM USING SHaCH
X=BX(1.+(A1+AB)IX(AL-AR2)+A3XXR) /2.
1-62%(1.+A1)X(1.~A1)74.+A1X(1.=-C2)/2.+A3-A1XAR~ R&*ﬁS/B.
A23=A2+A3
Y=sSHXAZ23IX(SX(AL+L.)+CX(AL-1. )+ﬁE3*SH/2 )
PHNi=X+Y
PHN1=SQRT(PHN1/B)XELSQXACO
WRITE(?,202 )PHN1
IF (IM.GE.6)PHN=PHN1
201 FORMAT(1X,XNORM USING EXACT FORMULQ'* Eie2.5)
202 FORMAT(1X,XQ@808APPX NORM PHNi= X,Eilg2. §)
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SUBROUTINE NORM DIVIDES ALL COEFFICIENTS BY THE
FACTOR *PHN" WHICH IT RECEIVED FROM PHNORM

SUBROUTINE NORM(N) :
COMMON/TRIGOS/ OMEGA1,O0MEGA, BTQI BTAB,SN,CS,SNH,CSH,SN2,CS2

COMMON/SOLS/ A(18),DET,DETSAVE,ARTRX10(108,18),ANTRXS(S,9),
1COLUMN(9, 1), DETDIFF

COMMON/BEAM/ROAL,L,EI, M1, M2, IX1, IX2, IV, Iv2, IXY1, IXY2
1,121,122,ROLI,DX1,DX2,DY1,D¥2,RHO, G, NMODE

REAL L

ELSQeSQRT(L)

CALL PHNORM(BTA1,A(1),A(2),A(3),A(4),ELSQ, XPHN, N)

CALL PHNORM(BTA1,A(5),A(6),A(7),A(8),ELSQ, YPHN,N)
B=A(10)/7A(9)

ZPHNSQG=A (9 )XX2XL/BTAZX ( (BXX2+1)XBTA2/2.+(BXX2~1)XSIN(2,.XBTA2)/4.
1-BXCOS(2.XBTA2)/2.+B/2. )

PHN=SGRT (XPHNX%2+YPHNXX2+2ZPHNSQ)

DO 10 K=1,10

ACK)=A(K ) /PHN

CONTINUE

RETURN

END
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21 DO 10 Je1,10

SUBROUTINE SOLVE CREATES AND SOLVES THE 9 BY 9
REDUCED COEFFICIENT MATRIX OBTAINED BY CHOOSING
AN ARBITRARY UARIABLE AND DROPPING ONE OF THE
EQUATIONS :

SUBROUTINE SOLVE
COMMON/BEAN/ROAL,L,EI, ML, M2, IXL,IXE,IVE, IVE IXY1,IXYe
1,121,122,ROLI, DXI DXB DVi DVE RHO G, NMODE
COHHON/SOLS/ A(10).DEToDETSﬁUE.ﬁMTRX10(10.10).QHTRX9(9.9),
1COLUMN(9,1),DETDIFF
DIMENSION IPIVOT(S),UK(3)
REAL IX1,IXe,1IYi,Ive,IXYL,IXve,121,128,L,Mi,M2
NMAX,N,NRHS AND IFAC ARE ALL NEEDED IN GELIM
NMAX=9
N=$
NRHS=1
IFAC=0
CALL SET(AR)
IARBI?RB DESIGNQTES THE ARBITRARY VARIABLE.
ﬁRBﬁgn DESIGNATES THE VALUE GIVEN TO THE RRBITRQRV URRIGBLE
A(IARB)=~ARB
ONE OF THE FOLLOWING 1@ EQUATIONS IS COHHENTED
S0 AS TO BE IGNORED
CALL XSHR1(COLUMN(1,1))
CALL XSHR2(COLUMN(1,1
CALL YSHR1(COLUMN(2
CALL YSHR2(COLUMN(3
CALL XMOML(COLUMN(4
CALL XMOM2(COLUMN(S
CALL YMOM1(COLUMN(E
CALL YMOM2(COLUMN(?
CALL ZMOM1(COLUMN(S,
CALL ZMOM2(COLUMN(S
THE FOLLOUWING D@

KRR IEIEIS

P CALCULATES THE 9BY9 MATRIX
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10

101

30

40
2e

CALL SET(A)
éFEJ +.EQ.IARB) GO TO 10
IF(J.GT.IARB) K=K-1
A(J)=1.
- ONE OF THE FOLLOWING TEN EQUATIONS IS COMMENTED
S0 AS TO BE IGNORED
CALL XSHR1(AMTRXS(i,K))
CALL XSHR&(QHTRXQ(i.K))
CALL YSHR1(AMTRX9(2,K))
CALL YSHR2(AMTRX9(3,K))
CALL XMOM1(AMTRXS(4,K))
CALL XMOM2(AMTRX9(S,K))
CALL YMOM1(AMTRX9(6,K))
CALL YMOM2(AMTRX9(?,K))
CALL ZMOM1(AMTRX9(8,K))
CALL ZMOM2(AMTRX9(9,K))
CONTINUE
SUBROUTINE GELIM IS IN FTNMLIB AND SOLVES N BY N MATRICES XX
CALL GELIM(NMAX,N,AMTRX9,NRHS, COLUMN, IPIVOT, IFAC,UWK, IERR)
WRITE(?7,101) IERR
FORHAT(BX.'IERR 18",2X,13)
THE FOLLOWING LOOP ASSIGNS THE VALUES FOUND FOR THE
9 NON-ARBITRARY VARIABLES FOUND IN GELIM IN ADDITION
TO THE ONE ARBITRARY VARIABLE TO THE ORIGINAL ARRAY "A(10)

DO 20 I=-i,10
IF(I.EQ.IARB) GO TO 39
IF(I.GT.IARB) GO TO 40
A(I)=COLUMN(I,1)

GO TO 20

A(I)=ARB

GO TO 2@
A(I)=COLUMN(I-1,1)
CONTINUE '
RETURN

END
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SUBROUTINE MPLOT FORMS THE PLOTS OF THE THREE
INDEPENDANT MODE SHAPES FOR EACH MODE

SUBROUTINE MPLOT

‘COMMON/SOLS” A(10Q),DET,DETSAVE, AMTRX10(10,10), RNTRXQ(Q 8)
1,COLUMN(9,1)

COMHON/TRIGOS/OMEGﬁi OMEGA,BTA1,BTA2,S5N,CS,SNH,CSH, SN2, Cs2
DIMENSION XLAB(3), YLQB(S) XUER(S) YUER(S) TORLQB(3) TORUER(S)
XLAB(1)=10HTHE XZ-PLA

XLAB(2)=10HNE MODE SH

XLAB(3)=10HAPE (E)

XVER(1)=10HX DISPLACE

- XVER(2)=1OHMENT RX(E)

XVER(3)=10H

YLAB(1)=1@HTHE Y2-PLA

YLAB(2)=10HNE MODE SH

YLAB(3)=10HAPE  (E)

YVER(1)=10HY DISPLACE

YUER(2)=1QHMENT RY(E)

YUER(3)=10H |

TORLAB(1)=10HTORSIONAL

TORLAB(2)=10HMODE SHAPE

TORLAB(3)=10H  (E)

TORVER( 1 )=1@HANGULAR DI

TORVER (2 )= {@HSPLACEMENT

TORVER(3)=10H (E)

CALL CRUNCH(A(1),A(2),A(3),A(4),XLAB,XVER,BTA1)
CALL CRUNCH(A(5),A(6),A(7),A(8),YLAB,YVER,BTAL)
CALL CRUNCH(A(9),A(10), o..e..ToRLan.ToRuza BTA2)
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SUBROUTINE CRUNCH USES INFOPLT TO GENERATE PLOTS
FOR MPLOT OF EACH INDEPENDANT SUB-MODE

SUBROUTINE CRUNCH(A,B,C,D,HLABEL,ULABEL,BTA)
g}NENSION HLABEL(3),VULABEL(3),BTA(1),EPSLN(1010),R(1010)
=]
DLTX IS THE INCREMENT ADDED TO EPSLN TO OBTAIN
DE?INTgOEOR THE PLOT OF THE MODE SHAPE
X=,

IEC,N,KX,KY, XMIN, XMAX, YMIN, YNAX,PCTPTS,NXNC, NYMC,
ISYN SX SV XOFF AND YOFF ﬂRE ﬁLL URRIRBLES NEEDED
IN INFOPLT.

IEC=1

N=1001%1

KX=4

KYs=1

XMIN=0.0

XMAX=1,

YMIN=-,03

YMAX= .03

PCTPTS=0.00

NXMC=30

NYMC=30

1SYM=0

SXs=?.

SYsS,

XOFF=.75

YOFF=,.?75

EPSLN(JJ) IS THE HORIZONTAL COMPONENT OF THE PLOT
WHERE AS R(K) IS THE VERTICAL.

EPSLN(1)=0.

DO 20 K=1,N

R(K)-ﬁ*SIN(BTA(i)*EPSLN(JJ))+B*COS(BTR(1)*EPSLN(JJ))+C*SINH(BTQ(1)

1XEPSLN(JJ))+DXCOSH(BTA(1 )XEPSLN(JJ))



1XEPSLN(JJ))+DXCOSH(BTA(1)XEPSLN(JJ))
5 EPSLN(JJ+1)=EPSLN(JJ)+DLTX
JI=JJ+1
20 CONTINUE
CALL INFOPLT(IEC,N,EPSLN(1),KX,R(1),KY,XMIN,XMAX, YMIN, YMAX,
1PCTPTS,NXMC,HLABEL,NYMC,ULABEL, ISYM,SX,SY,XOFF,YOFF )
EE;URN ‘
N
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* SUBROUTINE TRIG‘FfNDS'URtUES OF THE TRIGONOMETRIC
'FUNCTIONS. 1IT DOES THIS ONCE FOR EACH UALUE OF OMEGA.

" SUBROUTINE TRIG(DLTA) L , '
- COMMON/BEAM/ROAL,L,EI, ML, M2,IX1,IX2,IY1i,1IV2,IXVL,IXY2

1,121,122,RO0LI,DX1,DX2,DY1,D¥e,RHO,G,NMODE
COMMON/TRIGOS/OMEGRL ,OMEGA,BTAL,BTAR,5N,CS,SNH,CSH,SN2,C53
REAL IX1,IX2,IY1i,1Iv2,IXY1,IXVE,121,122,L,Mi,M2
BTALi=(ROAL/EIXDLTAXX2XLXX3)XX.25
BTA2=*DLTAXLX(RHO/G)XX.5

SN=SIN(BTARL) o

CS=COS(BTAL)

SNH=SINH(BTAL)

-CSH=COSH(BTAL)

SN2=SIN(BTAR2)

CS2=CO0S(BTRE)

RETURN '

END
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- CALL

20
10

cee

- FUNC ' CALCULATES THE DETERMINANT OF THEvio'BYlio MATRIX

FUNCTION FUNC(DUM2)

COMMON/BEAM/ROAL,L,EI, M1, na.1x1 IXa,Iv1,1ve,IXYL,IXY2
1,121,122,R0OLI, DXi DXB.DYi DY&.RHO G.NHODE

COHHON/SOLS/ A(iO) DET,DETSAVE,AMTRX10(10,10), RHTRXQ(Q $)
1,COLUMN(S,1)

DIMENSION B(10),IPIVOT(10),UK(10) |
‘REAL IX1,IX2,1Y1,1IYE,IXVYL,IXYE2,121,122,L,M1, M2

NMAX=10G -
‘N=10

‘IDET=2
-CALL TRIG(DUM2)

DO ‘10 I=1,10
CALL SET(R)
All)e=1,
CALL XSHR1i(B
CALL XSHR2(B
CALL YSHR1(B
CALL YSHR2(B
CALL XMOM1(B
CALL XMOM2(B
CALL YMOM1(B
CALL YMOM2(B
ZMOM1 (B(
CALL ZMOM2(B(10))
DO 20 J=1,10
AMTRX10(J,1)=B(J)
CONTINUE :
CONTINUE
' DETFAC IS A DETERMINANT FINDING ROUTINE
CALL DETFAC(NMAX,N,AMTRX10,IPIVOT,IDET,DUM,ISCALE, UK, IERR)
FUNC-DUN!(10**(100*1509LE))
URITE(?,222) DUM2,FUNC, ISCALE
FORMAT(2X,E14.7,4X,E14.7,4X,12)
o

1))
2))
3))
4))
5))
6))
7))
8))
9))
0)
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SUBROUTINE SET 1S USED TO SET ALL THE COEFFICIENTS
. OF THE MODE SHAPE EGUATIONS EQUAL TO 2ERO0

SUBROUTINE SET(A)
DIMENSION A(10) ‘
REAL IX1,IXa,I1vi, IVE IXVi IXYB.IZi IZB.L mt, na
DO 10 I'i 10 -
‘A(1)=0,-
10 CONTINUE
RETURN
END
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000000

| SUBROUTINE XSHRi CONTAINS THEABOUNDARY CONDITION
gsgcgégIgGoTHE SHEAR FORCE IN THE X-DIRECTION AT

5UBROUTINE XSHRL (UX1)

COMMON/BEAM/ROAL,L,EI, M1, M2, IX1,IX2,1V1, IVE;IXVI IXVE
1,124,1228,ROLI, DXI Dxa DVi DY2,RHO,G, NHODE :
COHHON/TRIGOSIOHEGﬁioOHEGQoBTﬂioﬂTﬂaoSNoCS:SNHoCSH.SNE;CSB
COMMON/SOLS/ A(10),DET,DETSAVE,ANTRX10(10,10),AMTRX9(9,9),
1COLUMN(S,1),DETDIFF

REAL IXI;IXE.IV&.IVB.IXYI.IXVB.IZI.IZB.L.Hi.HE
1UX1;;2;91*!4*(-3(10)*DY1+R(4)+ﬂ(a))*Hi/ROﬁL+R(3)*BTQ1*13-Q(1)*BTQ
RETURN

END

SUBROUTINE XSHR2 CONTAINS “THE BOUNDARY CONDITION
gsgcgﬁgIgGLTHE SHEAR FORCE IN THE X-DIRECTION AT

SUBROUTINE XSHR2(UX2)

COMMON/SOLS/ A(10),DET,DETSAVE, ANTRX10(10,10),ANTRX9(S,9),
1COLUMN(S,1), DETDIFF

COHHON/BEQH/ROQL L,EI,M1,M2,IX1,IX2, IV1,1IV2, IXY1, IXY2
1,121,122,ROLI, DXI DXa, DYi DVB RHO.G.NHODE

COHHON/TRIOOS/OHEﬁﬁl OHEGA.BTﬁl BTAB,SN,CS,SNH,CSH, SN2, Csa

REAL IX1,IX2,IVY1, IYB.IX?i 18?8.121 1Z28,L,Mi, M2
UXE'((9(4)*BTﬁi!*Q*ROﬁL+h(3)!BTRI!!4*H8)!SNH-R(9)XBTQ1¥!4*DY8*H8
1  XSN2+(A(2)XBTAL1XXIXROAL+A(1)XBTALXX4XMB)IXSN+ (A(IIXBTALXXIXCSH-
e h(i)*BTRl*!SXCS)*RORL+(-Q(10)!3751!!4*058*DV2+Q(4)*BTA1834805H+
3 A(2)XBTA1XX42CS)XM2)/ROAL



OOOO0

OOOOOOO

SUBROUTINE YSHR1 CONTAINS THE BOUNDARY CONDITION
gsgcgggIgGOTHE SHEAR FORCE IN THE Y-DIRECTION AT

SUBROUTINE YSHR1(UY1)
COMMON/SOLS/ A(1@),DET,DETSAVE, ﬂMTRXiO(iO 103, ﬂHTRXQ(Q.Q)o

1COLUMN(9,1), DETDIFF

COHHON/BEAH/ROAL L,EI,M1,M2, IX1,IX2,1V1,1Iva, IXVL, IXYE
1,121,122,ROLI,DX1,DX2, DV1 bpya, RHO.G NHODE

OOHHON/TRIGOS/OHEGﬁi OHEGAoBThi BTA2,5N,CS,S5NH,CSH, SN2, CSe

REAL IXi,IXa2,IVvi, IYE.IXYl IxXve,121,128,L, Hi Me
1UY1;;§T91**4*(A(10)*DX1+R(8)+ﬁ(6))3H1/R09L+h(7)*BTQI!*3-A(5)*BThi
RETURN

END

SUBROUTINE YSHR2 CONTAINS THE BOUNDARY CONDITION
DESCRIBING THE SHEAR FORCE IN THE Y-DIRECTION AT

THE END Z=L.

SUBROUTINE YSHR2(VY2)

COMMON/SOLS” A(10),DET,DETSAVE,AMTRX10(10,10),ANTRX9(9,9),
L1COLUMN(S,1), DETDIFF :
COHHON/BEQH/ROAL.L EI,M1,M2,IX:,IX2,1IY1,1Y2,IXVL,IXYE
1,121,122,ROLI,DX1,DX2, DYl Dye,RHO,G,NMODE

OOHHON/TRIGOS/OHEcﬁi OHEGR.BThi BTA&,SN CS,S5NH,CSH,SNg,Cse

REAL IX1,IX2,IVvi, IYE.IXYI ixva, 121 IZB.L.Hi ne
UY8=((R(B)!BTQI**SXRORL+A(?)337918*4XH2)!SNH+R(9)*3?91*842bX82H8
1 XSN2+(A(E)IXBTALXXIXROAL+A(EIXBTALXZ42M2IXSN+(A(7IXBTALIXRIXCSH~
2 A(S)*BTQIX*SXOS)!ROAL+(Q(10)!3?91*84!058!DX2+A(8)!BTQiX!4!CSH+

3 A(B)IXBTAL1XX4XCS)XM2)/ROAL

RETURN
END
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SUBROUTINE XMOMi CONTAINS THE BOUNDARY CONDITION
DESCRIBING THE MOMENT ABOUT THE X-AXIS AT 2=0.

SUBROUTINE XMOMI(MXi)

COMMON/SOLS/ A(10),DET,DETSAVE,AMTRX10(10,10),AMTRX9(9,9),
1COLUMN(9,1),DETDIFF
COMMON/BEAM/ROAL,L,EI, M1, M8, IX1,IX2,1IV1,1IY2,IXYL,IXY2
1,121,128,ROLI,DX1,DX2,DY1,DY2,RHO,G,NMODE
COMMON/TRIGOS/OMEGAL,OMEGA,BTA1,BTAR2,SN,CS,SNH,CSH,SNR,CS2
REAL IXi,IXa,IYi,1ve,IXYl,IXv2,121,122,L,M1,M3,MX1

Mx1

= BTALXX4X((A(?7)XBTAL+A(S)XBTAL)IXIXI-(A(I)XBTAL1+A(1)XBTAL)XI

XY1)7(LXX2XROAL)+A(B)XBTAL1XX2-A(6)XBTALIXX2

SUBROUTINE XMOM2 CONTAINS THE BOUNDARY CONDITION
DESCRIBING THE MOMENT ABOUT THE X-AXIS AT 2-=L.

SUBROUTINE XMOM2(MX2)
COMMON/SOLS/ A(10), DET;DETSQUE.AHTRXiO(10.10) AMTRX9(S,9),
1COLUMN(S,1), DETDIFF

con

HON/BEGH/ROQL L,EI,Mi,M2,1IX1,IXe,IVL,IYE,IXYL,IXYe

1.IZ!.IZB,ROLI,DXI,DXE.DYi.DYB.RHO.G.NHODE

1
e
3

coM
REA
MXe

RET
END

MON/TRIGOS/OMEGA1,0MEGA,BTAL,BTAR,SN,CS,SNH,CSH,SN2,CSe

L IX1,IX2,Iv1,1Y2,1IXYL,IXYR,121,1228,L,M1,M2,MX2

= BTAL1XX4X(IXY2X(A(4)XBTALXSNH-A(2)XBTALXSN+A(I)XBTALXCSH+A(L)
XBTALXCS)-IXBX(A(8)XBTALXSNH-A(6)XBTALXSN+A(7)XBTALXCSH+A(S )X
BTA1XCS) )/ (LXX2XROAL )+A(?)XBTALXX2XSNH-A(S)XBTALXX2XSN+A(8)XBTA
6::8*0$H-9(8)!BTA1818!05
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SUBROUTINE YMOM1 CONTAINS THE BOUNDARY CONDITION
DESCRIBING THE MOMENT ABOUT THE Y-AXIS AT 2=0.

SUBROUTINE YMOM1(MY1)
COMMON/SOLS/ A(10),DET,DETSAVE, AMTRX10(10,10),ANTRX8(9,9),

1COLUMN(S,1),DETDIFF ' _
COMMON/BEAM/ROAL,L,EI, ML, M2, IXL, IX2,IY1,1IVE, IXY1, IXYE
1,121,122,R0LI,DX1,DX2,DYs,DY2,RHO, G, NHODE

CONMON/TRIGOS/0OMEGAL, OREGA,BTAL,BTAZ,SN,CS,SNH,CSH, SN, CSa
'REAL IXi1,IX2,Ivi,Ive,IXvi,INva,124,122,L,M1,NH3,AY1
MY1=BTAL1X24X((A(3)XBTAL+A(1)XBTALIXIYL-(A(?)2BTAL1+A(B)IZXBTAL)IRIX
1 Y1)/(LXX2XROAL)+A(4)XBTALX%X2-A(2)XBTA1XX2

SUBROUTINE YMOM2 CONTAINS THE BOUNDARY CONDITION
DESCRIBING THE MOMENT ABOUT THE Y-AXIS AT ZsL.

SUBROUTINE YmOMma(mye)

COHFON/SOLS/ A(10),DET,DETSAVE, AMTRX10(16,16),ARTRX8(9,8),
1COLUMN(9,1),DETDIFF .
COMMON/BEAM/ROAL, L, EI,M1,M2,IX1,IX2,IVi,1Y2, IXYL,IXKYE
1,121,122,R0LI,DX1,DX2,DY1,DY2,RHO, G, NFHODE
COMON/TRIGOS/0HEGAL, OHEGA, BTAL,BTAR, SN, CS, SNH, CSH, SNa, C52

REAL IX1,IX2,1v1,Iva,IXv1;IXva,121,128,L,M1,A2,AY2

MHY22BTA1XX4%2( IXY2X(A(8)ZBTALRSNH=-A(B )XBTALRSN+A(? IRBTA1XCSH+A(S)
{  2BTALXCS)-IV2X(A(4)XBTALXSNH-A(2)XBTALXSN+A(I)IXBTALIXCSH+A(1)XB
2 TA1%CS))/(LXX2XROAL)I+A(3)IXBTALRXREXSNH-A(1)XBTALXX2XSN+A(4)XBTAL
3  XX2%XCSH-A(2)XBTA1XX2XCS .

RETURN

END
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SUBROUTINE 2ZMOMi CONTAINS THE BOUNDARY CONDITION
DESCRIBING THE MOMENT ABOUT THE Z-AXIS AT 2Z=0.

SUBROUTINE 2ZMOMi(MZi)

COMMON/SOLS/ A(10),DET,DETSAVE, ﬁHTRXiO(iO 10),AMTRXS8(9,9),
1COLUMN(9,1), DETDIFF

COMMON/BEAM/ROAL,L,EI, ﬂi ma, IX1i,IX2,1I¥1,1Iva,IXY1,IXYE
1,121,122,ROLI, DXi nxa DYi DYB RH0.0.NHODE
COHHON/TRIGOSIOHEﬁﬁi onsea.nrnx.staa SN,CS,SNH,CSH,SN2,Cs2
REAL IX1,IXa2,IYi4, IVB.IXY& IxXyve, 121,122, L Hi Me,Mz1

Mzy = BTREX*E*((R(8)+A(6))!DXi*Hi/ROLI (ﬁ(4)+ﬂ(8))!DVi!Hi/ROLI+9(1
1 0)XIZ1/ROLIH+A(9)XBTAR

RETURN

END

SUBROUTINE ZMOM2 CONTAINS THE BOUNDARY CONDITIONS
DESCRIBING THE MOMENT ABOUT THE Z-AXIS AT 2Z-L.

SUBROUTINE ZMOM2(M22)

COMMON/SOLS/ A(10),DET,DETSAVE,AMTRX10(10,10),ANTRX9(S9,9),
1COLUMN(S,1), DETDIFF
COHHON/BEQH/ROQL.L.EI.Hl.HE.IXi.IXB.IYi.IVB.IXVi.IXVB
1,121,122,ROLI,DX1,DX2,DYL,DYe,RHO,G, NHODE

COMMON/TRIGOS/0OMEGAL ,OMEGA,BTAL,BTAR,SN,CS,SNH,CSH,SNe,CsS2

REAL IX1,IX2,1Y1,1v2,IXYL,IXYR,121,12¢2,L,M1,M8,N228
MZ2=-((A(7)XBTASXX2XDX2-A(3)XBTASXX2XDY2 )XMBXSNH+ (AC10)XBTA2XROLI+
1A(9)XBTARXX2X1Z2 )XSN2+ (A(5)XBTA2XXEXDX2~-A (1 )XBTASXXEXDYE )XM2XSN-A
2 (9)XBTA2XCS2XROLI+((A(8)XBTA2XXSXCSH+A(B)IXBTAZXX2XCS)XDXE+(-A(4)
3 SEIRQ!*EtCSH-A(E)tBTﬁE!*S!OS)*DVE)*H8+A(10)!BTAB*!B*OSB!IZE)/R
RETURN

END
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SUBROUTINE INNPUT
COMMON/BEAM/ROAL,L,EI, Hi M2, IX1, IXa,1v1,1Iva, IXYL,IXYS
1,121,122,R0LI,DX1, DX& DYi pyYe, RHO G,NHODE
REAL IX1,IX2,1v1, IYE.IXYi IXYB.IZi 122,L,M1,M2
*ROAL® IS THE MASS OF THE BEAM ALONE.
ROAL=12.42
L 13;L' IS THE LENGTH OF THE BEAM. _ _
"EI* IS THE BENDING STIFFNESS OF THE BEAM (SYMMETRICAL)
EI=4.X10%x7.
*M1* IS THE MASS OF THE LUMPED MASS AT 2'0. ON THE BEAM
Mi=6366.46
Ma 1;"3; IS THE MASS OF THE LUMPED MASS AT ZeL ON THE BEAM
IX1 AND IX2 ARE THE MOMENTS OF INERTIA ABOUT THE
X-AXIS AT Z=0. AND L RESPECTIVELY
IX1=905443.9
IX2=18000. '
IvV1 AND 1IY2 ARE THE MOMENTS OF INERTIA ABOUT YHE
. Y-AXIS AT 2=0. AND L RESPECTIUELY
IV¥1=6789100.,
I1Y229336.
IXY1 AND IXY2 ARE THE PRODUCTS OF INERTIA AT Z'O.L RESP.
IXY1-0.0
IXYa=-7570,
124 AND 122 ARE THE MOMENTS OF INERTIA ABOUT THE
Z-AXIS AT 2=0.,L RESPECTIVELY
121=7086601.
122=27407,
PI ;;g; IS THE POLAR MOMENT OF INERTIA ABOUT THE Z-AXIS
*RHO" 1S THE DENSITY OF THE BEAM.
RHO=.9089/P1 '
ROLI=RHOXLXPI
DX1 AND DY1 ARE THE X AND Y DISPLACEMENTS OF THE POINT
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c MASS AT Z2+0. DX2 AND DY2 ARE THE SAME FOR 2sL.
DXi=0.0
DVi=0.0
DX2=18.75
Dy2=-32.5
c *G * IS THE MODULUS OF RIDGIDITY
G=4,.E+7/P1

¢ NMODE SPECIFIES THE NUMBER OF MODES TO BE SOLVED FOR

NMODE =5

WRITE(?7,100) ROAL,L,EI,Mi,M2,IX1,IX2,1IY1,1Y2,IXY1,IXYe, 121,122
1,ROLI, DXi DX2,DY1, DYE RHO.G

100 FORHQT(iX.'THE BEAM CHARRCTERISTICS ARE*, /7,

11X, "MASS=*,EL14.7,/,1X,"LENGTH=" ,E14.7,/,1X, "STIFFNESS=" ,E14.7,/,
81X, "Mi=",E14.7,/,1X,'M2=" ,E14.7,/,1X, IX1=",E14.7,/,1X,"IX2=",EL
34.7,7,1X,°1¥1=" ,E14,7,7,1X,"1¥E8e"* ,E14.7,/,1X,  IXY]=" ,E14.7,/,1X,
4*IXY2=",E14.7,7,1X, 121" ,E14,7,/,1X,"122=" ,E14.7,/,1X, "RHXLXIP="
5,E14.7,7,1X,"DX1=",E14.7,7,1X,"DX2=" ,E14.7,/,1X,"DYi=",E14.7,/,1X
6.'DYB-'.514 107, 1X,'DENSITY-'.514 ?,7,1X,°G=",E14.7)

A
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SUBROUTINE OUTPT(I)

COMMON/BEAN/ROAL,L,EI,M1,M3, IX1,1IX2,IV1, IYE.IXYi IXve
1,121,122,ROLI,DX1, DXB,DY! Dv2,RHO, G.NHODE

OOMHON/TRIGOSIOHEGhi OﬂEGQ.BTﬁi,BTﬁE SN,CS,SNH,CSH, SN2, Cse

COMMON/SOLS/ A(10), DET DETSAVE, RHTRXIO(ie 10) AHTRXQ(Q 9)
1,COLUMN(S,1)

REAL IX1, IXB Ivi,1ve,IXvi,IXve,121,122,L,M1,Me

onscauz-onscn/(a X3.1415926)

WRITE(7,10) I,0MEGAHZ '

FORMAT(1X,*THE SOLUTION FOR MODE *,I2,///,2X,"THE FREQUENCY OF
1VIBRATION IS°,E14.7)

WRITE(?7,20) (A(J),J=1,4)

FORHQT(iX.'THE XZ-PLQNE MODE SHAPE IS5 *,/,2X,E14.7,"XSIN(BETAL1XX/L
1)+*,E14. 7.‘*COS(BETAi*Z/L)+'./,BX Ei4. 7,'!SINH(BET&i*Z/L)+'oEi4 (S
2" XCOSH(BETAL1XZ/L)"*

WRITE(?7,30) (A(WJ), J'S 8)

FORMRT(iX,'THE VZ-PLRNE MODE SHAPE IS ',// ax,E14.7, "XSIN(BETA1XX/
1L)+",E14.7,"XCOS(BETAL1XZ/L)+",/,
22X,E14.7, "XSINH(BETAL1XZ/L)+" ,E14.7, "XCOSH(BETAL1X2/L)")

URITE(? 40) (A(J),J=9,10)

FORHAT(!X.'THE TORSIONQL MODE SHAPE IS *,//,2X,El4. 7.'*SIN(BETAEXZ
1/L)+*,E14.7, "XCOS(BETABX2/L)")

WRITE(?7,50) BTAL,BTA2

FORHRT(iX.'BETQi".Ei4 7.7,1X,"BETA2=* ,E14.7)

EE;URN :



APPENDIX B - SAMPLE CASE USING BEAM3D

Figure B-1 shows the Spacecraft Control Lab Experiment or SCOLE (ref. 1)
configuration, which is the system to be analyzed in this test case. The following
list contains all the parameters of the SCOLE geometry needed by the computer program

BEAM3D:

Mass of Space Shuttle = my = 6366.46 slugs
' Mass of Reflector = my, = 12.42 slugs

Length of Beam = I, = 130 feet

905,443 slug-ft2

P~
il

xx0
: 2
Inertias of Shuttle Tovo = 6,789,100 slug-ft
at the Attachment Point 2
. I = 7,086,601 slug-ft
zz0
» 2
Ixyo = 0 slug-ft
I = 18,000 sl —ft2
xxL Siug
2
Inertias of Reflector Iny = 9,336 slug-ft
at the Attachment Point 2
I = 27,407 slug-ft
zzL
2
IxyL'= 7,570 slug-ft

Axo = 0. ft.
Shuttle CM Location {

Ayo = 0. ft.

Ax_ = 18.75 ft.
Reflector CM Location {

Ay, = 32.5 ft.

PA = .09554 slugs/ft
EI = 4. x 107 1b-ft>
Material Properties

pI = .9089 slug-ft

GIp = 4. % 107 lb—ft2

-]
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“Figure B-1: Drawing of the SCOLE, Shuttle/Antenna Configuration 45’
' modelled for the Sample Case ' :
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THE SOLUTION FOR MODE 1

THE FREGUENCY OF VIBRATION IS .28740493E+00 HZ.

THE XZ-PLANE MODE SHAPE IS
+1616907E+00XSINCBETAL1XZ/L)+ ~.1964167E+00XCOS(BETALX2/L)+
-.1688419E+00XSINH(BETALIX2/L)+ ,1958759E+00XCOSH(BETAL1%X2/L)

THE YZ-PLANE MODE SHAPE 1S
-.3957009E-01XSIN(BETALXZ/ L)+ .6906827E-01XCOS(BETALIXZ/L)+
+5842914E-01XSINH(BETAL1XZ2/L)+ -,6890796E-01XCOSH(BETA1X2/L)

THE TORSIONAL MODE SHAPE IS - |
-.3199889E-01XSIN(BETA2X2/L)+ .1581162E-04XCO0S(BETARXZ/L)

BETAls .1192552E+01
BETAZ= .3374271E-01

Figure B-2a: Natural Frequency and Mode Shapes calculated '
: : by BEAM3D for Mode #1.



Ly

X DISPLACEMENT r,(e)

2]

4

£ llﬂll”llﬂlH”ﬂlf””””[”HHIHI

...‘

o
.
n
L]
o=
o
o

8 1.0 1.2
THE XZ-PLANE MODE SHAPE (&)

E )
.
o=

Figure B-2b: Projection of the first mode shape, calculated using BEAM3D,
' : onto the xz-plane where the displacement r, is plotted
versus the nondimensional position variable €.
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Figure B-2c: Projection of the first mode shape, calculated using BEAM3D,
onto the yz-plane where the displacement r, is plotted
versus the nondimensional position variable €.
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nondimensional position variable €.
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~ THE SOLUTION FOR MODE &

THE FREGUENCY OF  VIBRATION IS .3229025E+00 HZ.

THE XZ2-PLANE MODE SHAPE IS
.7265880E-01 XSINCBETA1X2/L )+ ~-.8441782E-01%C0S(BETALX2/L)+
.75068015-01*51NH(BETQi*Z/L)+ +8419519E-01XCOSH(BETAL1X2/L)

THE YZ-PLANE MODE SHAPE IS
.1257088E+00XSIN(BETAIX2/ L)+ —.1965677E+00XCOS(BETA1XZ/L)+

-.1676755E+00XSINH(BETA1XZ/L)+ .1961255E+00XCOSH(BETA1XZ/L)

THE TORSIONAL MODE SHAPE 1S ,
-2599605E-02XSIN(BETA2XZ/L)+ -.1090200E-@5XCOS(BETARXZ/L)

BETAl= ,1294490E+01
BETA2= .3975783E-01

Figure B-3a: Natural Frequency and Mode Shapes calculated
by BEAM3D for Mode #2.
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Figure B-3d: The torsional twist of the second mode shape where 8 (in rad.)
is plotted versus the nondimensional position variable €.
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_THE-SOLUTION FOR MODE 3

THE FREQUENCY :OF VIBRATION ‘1S -+ 7487723E+00 H2.

“THE X2-PLANE MODE 'SHAPE IS

+2297884E-01XSIN(BETAL1X2/L)+ -.59119885-01*003(BETQl!Z?L)+
~.2345591E-01X¥SINH(BETALX2Z/L)+ .5907393E-01%XCOSH(BETAL1X2/L)

~THE 'YZ-PLANE MODE .SHAPE IS -

+8543413E-01XSIN(BETALIXZ/ -L)+ ..3862716E-02XCOS(BETALXZ/L)+
-.2523513E~-01XSINH(BETALXZ/L)+ -.33128E61E-02XCOSH(BETAL1X2/L)

" THE “TORSIONAL HODE SHﬁPE'IS'

< 7256298E~01XSIN(BETARXZ/L)+ ~-.1312307E-04XC0S(BETARX2/L)

“BETAL= - .1971232E+014
"BETA2= .9219366E-01

Figure-B-4a:  Natural Frequency and  Maode Shapes calculated
‘by BEAM3D for Mode :#3.
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THE SOLUTION FOR MODE 4

THE FREQUENCY OF UIBRATION IS .1244013E+01 HZ.

THE XZ-PLANE MODE SHAPE 18
.6875555E-01XSIN(BETAL22/L )+ ~.6385600E-01%C0S(BETALXZ/L )+
-.6899607E-01 XSINH(BETAL1XZ/L)+  .6375024E-01XCOSH(BETA1X2/L)

THE YZ-PLANE MODE SHAPE IS
-, 1050247E+00XSIN(BETAL1X2/ L)+ .9400610E-01%XCOS(BETA1XZ/L)+
+1076795E+00XSINH(BETALIXZ/L)+ -.9384879E-01*00$H(BETG!*Z/L)

THE TORSIONAL MODE SHAPE IS -
.1139088E-01!SIN(BET08*2/L)+ -.18399395-05!005(BETQE*Z/L)

BETAi= ,2540828E+01
BETA2= .1531709E+00

Figure B-5a: Natural Frequency and Mode Shapes calculated
' by BEAM3D for ‘Mode #4.
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variable €.
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Figure B-5c: Projection of the fourth mode shape onto the yz-plane where the
displacement r, is plotted versus the nondimensional position

variable €.



8(e)

ANGULAR DISPLACEMENT

8

LTV TTTTT

~.03

8 8
'

{llll (fl!{Tll!(fle{l(lllll

.
o
-

.
Q
Prerd

{lf[(f!l(l

Lllljlllllllllllll,lllll[llllllllllljjlll!llllll]lllllillllllllll!l[!
o 3L . 29 43 87 71 +88 1.00
TORSIONAL MODE SHAPE (eg) .

Figure B-5d: The torsional deflection of the fourth mode shape where 6 (in
rad.) is plotted versus the nondimensional position variable ¢.
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THE SOLUTION FOR MODE &

THE FREGQUENCY OF VIBRATION IS ,2051804E+01 HZ.

THE XZ2-PLANE MODE SHAPE 1S
.9723593E-01XSIN(BETA1X2/L)+ -,9063536E-01XC0S (BETALX2Z/L)+
=.9739713E-01XSINH(BETA1X2/L)+ .90519005-01*005H(BETGi*Z/L)

THE YZ2-PLANE MODE SHAPE IS
+S767110E-01XSIN(BETALIXZ/ L)+ -.5459663E-01*C05(BETﬂl*Z/L)+
-.5839917E-01XSINH(BETAL1X2/L)+ .5452724E-01%XCOSH(BETA1XZ/L)

THE TORSIONAL MODE SHAPE IS
-.4658896E-03XSIN(BETASX2/L)+ .3074803E-@7XCOS(BETARX%2/L)

BETAl= .3263103E+01
BETA2= .2526313E+00

Figure B-6a: Natural Frequency and Mode Shapes calculated
by BEAM3D for Mode #5.
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Figure B-6b: Projection of the fifth mode shape onto the xz-plane where the
displacement ry, is plotted versus the nondimensional position

variable €.



- ¥9

A0
-
-
06—
-
-
e
.02-::-
s E
> E
"I =
E -.02:-.
8 -
5 -
& o
- aad
A -
> ""06':_:-_—"
-.10ft |
o 2 4 K: 8 1.0 1.2 14

THE YZ-PLANE MODE SHAPE (&) -
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Figure B-6d: The torsional deflection of the fifth mode shape where 6 (in
rad.) is plotted versus the nondimensional position variable €.
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Figure l: Beam with end-located inertial masses
with x and y ca.displacements
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Figure 2: Anticipated sheeir reactions at both ends of
the beam (z-forces are assumed negligable).




69

X
\ﬁ/ﬁ\MXO
MzO My1
N = :
- =
' M}’O MyL #

Figure 3: Anticipated moments at both ends of the beam
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