
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

I	 !	

I

(uA^1-C^-1^19^n^	 SYSTEM	 GPATIO^';n	 3 Dennsylvan'ni+1.)	 REP;)PT
42 p f?C 4)3 /9F A ll

(- ` : CL)9R

*`85- 1 IR21

rincla s
G3/E 1	 274()5

^J

.^11f MOR...US

UNIVERSITY of PENNSYLVANIA

Department of Commuter and Information Science

The Moore School of Electrical Engineering
PHILADELPHIA, PENNSYLVANIA 19104

6ly^

System Integration Report

May 31, 1985

NASA Contract No. NAS9-18634

Norman I. Badler,
Principal Investigator

Jon Korein,
Research Specialist

Craig Meyer,
System Programmer

Kamran Manoochehri
Jane Rovins
Jeffrey Beale
Brian Barr

Department of Computer and Information Science
Moore School D2

University of Pennsylvania
Philadelphia, PA 19104

System Integration

Table of Contents
1. Introduction 1
2. Intersystem Analysis 1

2.1. Display Device Independence 2
2.2. Coordinated User Interfaces 5
2.3. Integrated Databases 7

3. The PLAID-TEMPUS Interface 7
3.1. State of Current Interface 8
3.2. TEMPUS Input: Clipping and Object Decomposition 8
3.3. TEMPUS Output to PLAID 10
3.4. Recent and Future PLAID Modifications 10
3.5. Recommendations 11

4. Shaded Graphics 13
4.1. Input to Crow's System 16
4.2. Object Data Structures in TEMPUS 18
4.3. Interfacing TEMPUS and Crow's System 18
4.4. Crow's Scene File Commands 20

5. TAN: The TEMPUS Animator 21
6. BUILD 23
7. Anthropometric Lab Integration 25

7.1. AML Measurement Databases 25
7.2. Reach (Workspace) Databases 26
7.3. Body Segment Databases 27

7.3.1. Segment Shape 27
7.3.2. Spine Sending and Torso Breathing 28
7.3.3. Multiple Levels of Detail 31

8. Support and Maintenance 31
9. Impact of UNIX and Local Workstations 33
10. Conclusions 34
11. Schedule and Resources 35
12. Bibliography 38

k

System Integration

List of Tables
Table 2-1: DI-3000 / CORE Comparison	 4
Table 11-1: Systems Integration Schedule	 36
Table 11-2: System Integration Resources	 37

l

I

1. Introduction

We view the long-term goal of the OSDS to be a set of application-oriented systems

with a common and consistent user and graphical interface. The primary function of a

good human interface is to provide access to information and capabilities without

burdening the operator with the internal details of the application system. In particular,

the specific databases used are not available directly to the user, but are always accessed

through insulating procedures. This idea promotes system integration without requiring

internal system homogeneity. PLAID, SurfsUP, and MCAUTO, for example, can co-exist

through standard geometric, topological, and attribute representations. Similarly,

though perhaps somewhat more easily, various sources of anthropometric, strength, and

motion data may be integrated through a common intermediate representation, while

each is actually obtained in a form specific to either an existing system (such as Selspot)

or gathered from previously published sources (such as population statistics).

Of course, reduction of data and representational redundancy is a desirable goal,

but not at the expense of tearing all systems apart to achieve commonality. We therefore

perceive system integration as more of an evolutionary than revolutionary process:

fitting pieces together within a carefully designed global framework with sufficient

modularity to grow as the applications and tasks require.

In this report we will examine several areas that arise from the system integration

issue. In the sections which follow we will discuss intersystem analysis as it relates to

software development, shared databases and interfaces between TEMPUS and PLAID,

shaded graphics rendering systems, object design (BUILD), the TEMPUS animation

system, anthropometric lab integration, ongoing TEMPUS support and maintenance,

and the impact of UNIX and local workstations on the OSDS environment.

2. Intersystem Analysis
Our experience with TEMPUS and SurfsUP has given us considerable insight into

potential design modifications for PLAID. As noted above, these systeTns should evolve

toward display device independence, coordinated user interfaces, and more integrated

databases.

j

System Integration

2.1. Display Device Independence

One of our strongest recommendations is to place all the graphics application

software in the OSDS on top of a device-independent graphics package. While we have

been developing our own CORE system for this purpose, it is becoming clear to us that

the future support and extension of our CORE to new devices is becoming less

attractive, both in terms of effective use of manpower and efficient support of a variety

of devices here and at JSC. Fither our CORE must be supported and extended, or a

commercially supported system should be engaged.

Each alternative has pros an,i cons. The continued development of our own CORE

system has the following advant ages:

• We control the source code version.

• New devices can be interfaced at low cost.

• New interactive devices can be interfaced even when those devices extend the
original CORE specifications (such as the six degree-of-freedom Polhemus
digitizer).

• Selective implementation of CORE features, while counter to the CORE
design philosophy, permits more efficient and cleaner code.

• Selective extension of CORE permits generally useful features to be added at
the graphical primitive level. So far, these extensions include segment
grouping to make viewport update more efficient, anti-aliased line style,
hack-to-front display, and depth-cueing.

The disadvantages are:

• We are (should be) responsible for maintenance of the source code.

• We are responsible for new device interfaces (though this could be performed
locally at JSC if necessary).

• Some desirable CORE features may not be immediately available.

• Some non-standard extensions may be convenient to code though limiting
pure portability.

• Features are added on an "as-needed' basis.

• Efficiency is not as important as reliability, ease of coding, and readability;
thus the choice of PASCAL as the implernentation language.

The use of a commercial software CORE package, such as DI-3000 from Precision

Visuals, Inc. has the following advantages:

2

System Integration

• The package is supported and maintainer' to the standard by a commercial
enterprise with facilities for handing customer inquires, bugs, and updates.

• A full CORE implementation is available.

• There is a good L. er manual.

• The implementation language is (in the case of DI-3000) standard
FORTRAN.

• The package is available on many common computers.

• A user community for that package exists.

On the negative side:

• The efficiency of the system is open to question. Since full CORE is
supported, an extremely large number of situations can arise which must
always be handled in a general. device-independent fashion.

• The program structure of DI-3000 may be less well structured than one might
desire in a large software package. In particular, it is reported that the
device interface is not as localized and clean as it could bp.

• New device drivers must be coded--based on a supplied skeleton driver-- and
interfaced to DI-3000 by the customer.

We urge that the OSDS systems be converted to utilize a CORE graphics software

system, such as our CORE or the DI-3000 package from Precision Visuals, Inc. At the

present we favor the latter choice. There are a number of reasons for this besides the

advantages cited above:

1. DI-3000 is a complete and presumably debugged CORE graphics system with
a number of off-the-shelf device drivers.

2. DI-3000, like our own CORE, is a fully 3-D system unlike the other available
standard, GKS. (We do not think the use of GKS i.4 warranted at this time
due to its inherent 2-D nature and the lack of consistent 3-D proposals.)

3. TEMPUS already runs on our own CORE system, so conversion to DI-3000
should take minimal effort, though some changes to functionality may be
required.

4. PLAID will probably have to evolve to a more device independent form
gnyway as new graphics display equipment with high performance and
additional features is installed or acquired at JSC. (We wound rather not
assume the maintenance function for PLAID systems built upon our own
CORE implementation.)

S. Our current support of CORE would cease and our energies could be applied

r

3

System Integration

to more fruitful body modeling, data display, OSDS modeling, and animation
tasks.

At the present time the University of Pennsylvania Graphics Research Facility is

contemplating the Purchase of a lie pnee for DI-3000 from another grant. In a companion

lab tLere is an implementation of DI-3000 running on a VAX-785 under UNIX, using an

Adage 3000 as the display device. In order to roughly assess the efficiency of DI-3000

against our CORE we benchmarked both on a simple task. Both systems wcfe running

on a VAX-785 under VMS version 4.1. The controlling routines were written in

PASCAL. Our CORE is written in PASCAL; DI-3000 in FORTRAN. Two groups of

tests were run, one to display BUBBLEWOMAN as about 0-000 polygons, the other to

display numerous vectors. Both experiments ran the primitives though the definition

and viewing pipeline using retained segments to force display list storage of all

primitives. The timings do not include any actual display device overhead. The results

are summarized in Table 2-1. As may be easily seen, our CORE runs at about 90 117c- of

DI-3000 speed on polygons, and about 70 1;c' of D1-3000 for lines. Thus conversion to

DI-3000 would represent an increase in speed of between 10%-30%, a savings we

consider very significant.

Table 2-1: DI-3000 / CORE Comparison

Time is in milliseconds.

Percentage is = DI-3000/CORE.

TEST	 CORE(ms)	 DI3000(an)	 Difference(as) Percent

Polygons

1 Woman	 78840
	

70470	 8370
	

89.4%
2 Women	 166680
	

141390	 16190
	

90.3%

Average
	

89.86%

Lines

2000 11980 8360 3630 69.7%
4000 23310 16480 6830 70.7%
8000 47670 32390 16280 67.9%
16000 94860 64770 30090 68.3%

--------	 Average	 69.16%

Any TEMPUS conversion to DI-3000 will require us to write a DI-3000 driver for

4

System Integration

the Grinnell d : ,,play and convert the graphics calls in TEMPUS to the DI-3000 routine

names. There will be a slight feature mismatch as noted, however, since:

• our CORE may have certain characteristics which vary from the strict
CORE standard proposal, each as the way we handle multiple viewports, the
grouping of segments for viewport erasure efficiency, the back-to-front
priority display, and anti-ahmed line drawing;

DI-3000 will have features we were unable to take advantage of in our
CORE, such as fully asynchronous input and device echoing;

e DI-3000 is written in FORTRAN while our CORE is written in PASCAL,
requiring some changes in the present parameter stru^ture of the calling
routines.

We do not anticipate major problems, however, since such conversions or

adaptations are what standards are designed to facilitate. The conversion task would

probably take several months, not only to convert code but to take advantage of

DI-3000. If NASA JSC approves the conversion to DI-M O we will continue to support

the CORE version until the conversion is deemed satisfactory.

As a potentially interesting aside, we will note that there is now an TM PC

implementation of DI-3000. Runnirg on a separate, on-board processor, this system

completely off-loads any graphics memory overhead from the host PC. All DI-3000

device drivers can be supported, making the PC into a true graphics application host.

Although neither TEMPUS ror PLAID will yet fit into a PC, it is useful to note that the

standardization process has finally touched on b very popular and capable system. We

have been unsuccessful in fitting our own CORE onto a PC for two reasons: there is no

PASCAL compiler that accepts the larg(number of procedures in CORE and produces

object libraries, and even if it did, these procedures would use up the processor's main

memory and squeeze out most of the application. 7 hie latter problem is somewhat

alleviated in the larger IBM-XT and -AT, but the former problem remains.

2.2. Coordinated User Interfaces

The recommended DI-3000 system also includes a much better (or at least cleaner)

implementation of the user input system. By shifting inputs to DI-3000, both PLAID

and TEMPUS would assume a common interactive device interface mechanism. With

the proliferation of input tools (tablets, mice, keyboards, dials, etc), maintaining clean

interfaces and common functions:; ..hcr^ for ^,ur group. The OSDS

environment should aim for transportability of input devices between displays and

Systam Integration

systems to maximize their usefulness.

One possible problem wit'" this arrangement is caused by the extension to CORE

we recently added for the Polhemus 6-axis digitizer. GORE (and GKS is certainly no

better on this matter) only supports input devices up to 3-D. The extension to 6-D is

straightforward, but should be made in order to fully utilize the Polhemus. It is possible

that future standards will be formulated to support the 6-D system; if not, the Polhemus

is unique enough than a separate subsystem for it can be accessed through the (standa y d)

escape mechanism.

Another area in which the user interface may be made more consistent is in the

standardization of input selection. Currently PLAID uses at least two kinds of command

inputs (strings and menu picks (in BUILD) from the keyboard), and locator (crosshair)

inputs for picking and coordinate selection. TEMPUS uses menu selection either from

the keyboard or from the graphics screen via a tablet- or mouse-based locator and pick.

Near future TEMPUS capabilities will also include valuators and locators based on the

Polhemus digitizer. The ideal situation would be to place TEMPUS, PLAID, and

especially the oft-discussed new BUILD under the same, consistent, user interface. The

process would probably hivolve changing both PLAID and TEMPUS interfaces

somewhat: TEMFUS would be extended to include a keyboard command mode which

bypassed menu selection (unless it was specifically requested in a learning, novice, or

help mode); PLAID would be converted to use the same interactive front end as

TEMPUS. The new BUILD could be constructed directly with existing TEMPUS

interactive routines, augmented by geometric positioning as presently exists or as will

exist when the combination of a real-time display with the real-time 6-axis control

becomes a reality.

In the near future we anticipate that TEMPUS will depend on only two non-

keyboard devices for input. One is the mouse which will replace the eternally flaky

tablets. The tablet has not been as useful for TEMPUS as we originally imagined. The

new generation mice are inexpensive, 'intelligent' enough to be connected directly to

the alphanumeric terminal, and do not require their own serial communications port to

the host computer. At $150 or so they are nearly disposable if they malfunction. The

second device is the Polhemus digitizer. At $20,000 this would have been an expensive

proposition, but now a $3,000 version, called the Isotrak, has been announced. At 1 his

cost, it is about the same as a large digitizing tablet and far more versatile. Al"hough its

6

System Integration

accuracy is about 5mm, this is quite sufficient for pointing and picking operations.

Given the finite resources available for software engineering, the conversion of the

input systems to a consistent user view interface is somewhat lower p-iority than the

integration of the graphical input and output systems.

2.3, Integrated Databases

As part of the current contract we were to examine the possibility of providing a

common geometric database for TEMPUS and PLAID. The candidate sytems were few,

and we ^onsidered IGES (Initial Graphics Exchange Specification) t he primary

contender [6]. After beginning to implement an IGES interface between TEMPUS

(SurfsUP) and PLAID, the project was shelved for lack of standards on topological

s'Suctures. IGES does not yet officially define the format of object topology: the vertex,

edge, face, solid (csurf), and collection of solids (psurf) strictures that pervade

TEMPUS and many other modeling systems, for that matter. Lacking this specification,

we were forced to abandon the IGES standard for now as the medium of communication

between PLAID, TEMPUS, and other CAD/CAM systems such as MCAUTO. There are

some effc:ts to remedy this situation, but they are in a very young stage of

development (9].

We have implemented a two-stage translator from PLAID COG and primitive

files to target files, and then into SurfsLTP peurf files. The inverse transformation from

psurjs to COG files also exists. This code should be integrated better into both

TEMPUS and PLAID, so that external processes need not be run to convert databases.

The status of this integration and current outStsnding problems are reviewed in the next

section.

. The PLAID - TEMPUS Interface

Our goal in this section is to outline the steps necessary to completely interface

PLAID and TEMPUS objects. It is not suggested that every indicated task be

implemented immediately. It is prudent to prioritize the most essential needs first. Each

item will include a brief discussion of its importance and the anticipated difficulty of the

implementation.

It is convenient to divide the discussion into four sections. The first reviews the

current state of the code. The second outlines what will be necessary to allow full PLAID

4

7

System Integration

input to TEMPUS. The third discusses TEMPUS output to PLAID. Finally, the fourth

summarizes how recent and future changes to PLAID may be accomodatcd.

3.1. State of Current Interface

COG objects can be read into the TEMPUS psurj hierarchy for use by all

positioning ad line-drawing display commands. Primitive files must be preprocessed

into target files, and all files for a given COG object must be in the same directory. A

utility program has been created for easily turning primitive riles into target files from

the VMS command level_ The main limitation is the inability to use eitheF the 1'EMPUS

shaded system or clearance commands on COG objects with holes or bow-ties. The

solutions to these problems are addressed in Section 3.2 below.

Currently, TEMPUS is able to output a body as a PLAID primitive. This gives

users the ability to position a body in TEMPUS, and then output the position to PLAID.

The body position may then be modified globally in PLAID and used for picture output,

but the joint angles are not adjustable. Extensions to achieve full TEMPUS output to

PLAID are discussed in Section 3.3.

3.2. TEMPUS Input: Clipping and Object Decomposition

Two tasks are necessary for TEMPUS to accept all COG objects a4 input to all

TEMPUS facilities. These are the clipping of objects for shaded output, and the

decom position of bow-tied objects and objects with holes for both the shaded system and

the clearance routines. The latte may also be necessary in the future for other TEMPUS

procedures, as it is difficult to even determine a surface Lormal for such .)jects. If

TLM, PUS is to use CORE's ever-improving polygon handling capabilities, decomposition

routines are essential.

Clipping must be done in two places. The first is in the polygon preparation

routine of the existing shaded code, which is used to prepare polygon output for the

Lexidata. The second is in Crow's rendering code (see Section 4), which currently lacks

back and front clipping planes. Both can be inte. faced to the Sutherland-Hodgeman

clipFer coded for our CORE system. The interface tasks will be of moderate difficulty,

since some modifications to the way the routines handle polygons will have W be made.

They are a high priority for both systems, since CC ,G objects m •lst often be clipped in

NASA task analyses.

L_	 8

System Integration

The simplest way to handle the decomposition process will be to interface to Ted

Kell's decompose routine. This routine is used by PLAID to create convex polygons for

input to the Lexidata, but it looks likely that we can e.dapt it to our purposes. i he main

interface problem is that Kell's routine works in the x-y plane, after the viewing

transformations have been applied. There are many advantages to s0ring the

decomposed polygons, possibly as an alternate data stru^t:::e is tY'r local coordinate

systems. TEMPUS has no structural modification capabilities, so the decomposition

process need only be done once. In addition, certain TEMPUS procedures, such as the

clearance routine, depend on a three-dim?usicnal, unproj:.cted, object coordinate space.

For these routines, we cannot arbitrarily project polygons onto a plans as we need

an accurate decompositiou in world space. Polygons whose normals are perpendicular to

the dir ,-ction of projection will project as lines and therefore not be properly

decomposed. It is possible, however, t-. rotate all polygons so that their normals are in

the poaitive z direction, and then decompose their projections on the z-y plane.

Afterwards the inverse transformation can be applied to bring the •".eccT-iposed polygons

back into local coordinates The result will be the decomposed polygon in it3 local

coordinate space. There wil! be some tricks to doing this process correctly and making

sure the decomposed polygons are oriented correctly, but they should not be too difficult.

In fact, this process strongly resembles the transfor matious that have already beLn coded

to map polygons onto textures.

The decompose routine must also be given a shell to allow an entire psurj to be

decomposed as a unit. Maintaining structural integrity should not be a major problem,

but it must be done carefully, since we are now dealing with polyhedral objects. It is

very likely that portions of Kell's code which eliminate collinear vertices will have to be

changed, since all original vertices must be maintained for TEN11PUS purposes.

It is recommended that decomposed peurfs be calculated the first time they are

need and stored internally afterward if they differ from the original rsur.r. If the

decomposition routine is slow enough, it may be worth storing them in a file i.J well. In

general, speed will win most trade-offs with storage.

The task thus may be reduced Lo the writing of the decompose psurf routine,

including the interface to Kell's code, the auxilliary routines necessary for storage and

retrieval, and the usual integration with existing code, in this case the shading and

9

System Integration

clearance routines. The project is fairly large, but also of very high priority.

3.3. TEMPUS Output to PLAID

Two modifications are necessary to allow full output to PLAID from TEMPUS.

The first addition required is a com —iand which will output a workstation part as a COG

object. This will allow an entire TEMPUS scene to be given to PLAID, !or display or

analysis purposes. While the workstation object and body global position would still be

adjustable, body joint angles will still be inaccessible. A procedure which does this

workstation output has been coded, but still has some bugs. Fixing it will be a minor

task.

The second change necessary for complete PLAID compatibility is the output of

TENIPUS bodies as COG objects, rather than primitives. This will give the PLAID user

the ability to adjust joint angles of scenes created in TEMPUS. Some of the low level

code used for writing out workstation part COG objects can be used for this, but a new

top level routine must be w-itten to call these procedures while traversing the body

structure appropriately. Writing this routine will be a medium level project.

Both tasks are of medium priority. It will be very nice to have TEMPUS be able to

output to PLAID, even though the usual flow of c:ata is from PLAID to TEMPUS.

3.4. Recent and Future PLAN Modifications

PLAID, like TEMPUS, is undergoing constant revision, usually w;th the goal of

crWing a more powerful system. It is important for TEMPUS to use this power as much

as possible. This section briefly discusses what PLAID changes are occurring which

TFMPUS will need to accomodat.e in the future.

PLAIT) has recently been changed to use a fairly sophisticated system for retrieving

file names. A detached process, which we shall call the task manager, uses predefined

tables to look u the appropriate directories in which PLAID users' files reside. This

process essentially takes s simple filename as input and returns a fully specified

(directory, etc.) filename ;, output. For full compatibility, both TEMPUS and our

preprocessing routines, which convert primitive files to target files (the 'targeting

process •), sl, »ild derive PLAID file specifications through the task manager. We would

recommend that this change also automate the targeting p-ocess so it would be

transparent to the user. This would require integrating it with the input COG command.

in

System Integration

Taken together, thi° set of tasks is a ;airly large project. It is of modf;rate priority right

now, but will likely become more important as TEMPUS is used with a greater diversity

of PLAID objects in varying places, and the inconvenien. - of copying all PLAID objects

into one directory becomes greater. The change should not begin, however, until PLAID

is running under VMS version 4.0 and we are able to get a version of the task manager

running at Penn.

Some sirapler, but equally important, changes to PLAID are planned in the near

future. These involve storing topological and color information about COG objects in the

COG record. The structural information will indicate whether an object is closed,

mostly closed, or open. This information can be used b y various procedures; the shading

, .,tem, for example, should treat backfacing polygons differently for closed and open

obj ects. The color information is stored as symbolic indexes into a predefined color

table, which will store the HLS values for the color. Clearly, this information can be

esvily retrieved by TEMPUS. Neither of these tasks are difficult, and both are medium

priority.

3.5. Recommendations

Our own assessments aside, it is important for users at JSC to look at these tasks

and prioritize them for us, recognizing that the ones that are put on top of the list are

the ones that will be completed sooner. Nonetheless, we shall make some tentative

suggestions. The changes needed for complete use of PLAID input, the clipping and

decomposition routines, are probably the most important. If there is a need for TEMPUS

output to PLAID, completion of these routines is a high priority; otherwise, adapting to

new PLAID features is more important.

In the longer term, the database for both PLAID and TEMPUS could be the same.

The features required of both could be merged into a single unified format. Both

systems require object structure as a hierarchic polygonal boundary representation, a

fact which leads to major commonality of form and purpose. The major TEMPUS

features required beyond those in PLAID are the graphics-related attributes of color,

texture, translucency, material, etc. TEMPUS and PLAID differ slightly on how smooth

edges are represented: PLAID has invisible edges; SurfsUP requires edges to be

specifically flagged as smooth transitions. SurfsUP graphics will also support the implicit

definition of a smooth edge if its dihedral angle is less than some given threshold.

R'^

11

System Integration

Upward compatibility of existing PLAID databases with any new formats is an

important issue and should be addressed with care. JSC should assess whether one-time

conversion of existing databases is justified in terms of future compatibility with a

common TEMPUS-PLAID format. It is not too difficult to write conversion programs

for a small number of existing formats and convert data as required.

One advantage to hard conversion is that errors and poor design characteristics

may be cleaned out. For example, it would be most useful to have geometric and

topological data conform to certain structural standards: consistent polygon tr. -fersal

(for consistent outward-facing normals), deletion of dangling edges, enforcement of

polygon planarity, insertion of intersection vertices, removal of degenerate (effectively

zero-area) polygons, etc. We understand that some effort to do this to the existing

PLAID database is already underway. Some of these problems may be tested

algorithmically by procedures already in place in SurfsUP (and possibly in PLAID). It

should be noted that raster (shaded) graphics displays and especially shadowing

algorithms are very sensitive to adequate input data.

Common database formats for lights and their attributes, cameras and their

viewing parameters, and people must also be agreed upon. Given the role of TEMPUS

to define and manipulate these objects, the TEMPUS formats can be adopted by PLAID

as needed. The format of this information, as well as the hierarchical polyhedral models,

has not benefitted from any substantial standardization effort. The IGES standard does

contain attributes which are specifiable by the application program, but it does not

appear to be useful to adopt only part of a standard when the important parts (for

topology) have not yet been stabilized. Moreover, the IDES format is extremely costly in

storage space even for relatively simple objects [9] and may be nearly impracticai for the

objects necessary to the NASA group. Other attempts to incorporate topological

information into IGES apparently are underway [7].

One alternative to IGES might be found in the formats for existing shaded graphics

rendering systems. Some inquiries into the most capable and respected rendering

systems ever written have pointed to two systemm: MOYIE.BYU from Brigham Young

University and a system written by Frank Crow when he was at Ohio State University.

The input formats for these systems have been used in several other systems, and may

eventually be adopted for certain hardware systems as de facto standards.

12

System Integr,, tion

Since human figures are fundamental to both PLAID and TEMPUS systems, a

representation both as COG and primitive objects and as a parameterized entity should

be supported. In the latter case, sufficient information is stored to enable the re-creation

of a specific body (and its suit) by name, statistics, or anthropometric parameters.

One strong recommendation which we must make here is the coordination of

design efforts between JSC and its contractors, including our group, to insure that re-

design of any of the various OSDS systems be reviewed by other concerned groups. We

should to asked to review any design specifications for contemplated PLAID database

changes; in turn we expect feedback from JSC and its staff and contractors on the

impact of our system design on their efforts. This coordination is essential to effective

database exchange and system integration.

4. Shaded Graphics

Our experiences with the development of the TEMPUS shaded graphics system

have given us an interesting view of graphical capability engineering. We have come to

appreciate the quantum leap necessary to turn good ideas into production software. The

difficulty with developing a shaded graphics rendering system is not in the conceptual

stages, but in the deta:: and efficiency coding that makes a system reliable, effective,

and, of course, fast.

Our present shaded graphics systems meets the NASA contract requirements in a

formal, but not really practical, fashion. To its advantage, the shaded system:

• Produces solid renderings of SurfsUP polyhedra or PLAID COG and
primitive target files,

• Interfaces to either a • standard` frame buffer (like the Grinnell)
Lexidata Solidview system using its inherent z•buffer capability,

• Uses a simple surface reflectance model,

• Allows arbitrary finite or infinitely distant multiple light sources,

• Allows a Gamer; position based on CORE viewing parameters.

On the more negative side, several features are less useful or stable:

• Full polygon clipping, so that images of object interiors can be produced,
be available soon.

• Texture mapping facilities are not quite incorporated, though arbil

13

System Integration

textures may be generated and positioned onto polygons using IntSurf
functions.

• The shadow capab:hty exists in a very tenuous form: the code to find
silhouettes is restrictive and in need of further debugging. The algorithm
itself, while novel and published, is too massively inefficient in practice.

• The rendering code is too tightly interwoven into the SurfsiJP modeling
system; there should be a clean separation, via a file structure if necessary,
between objects generated for display and the display algorithm itself.

• The method of anti-aliasing by supersampling is acceptible, but not
particularly efficient.

These observations have led to the conclusion that we should search for available

source code rendering systems. There are two candidates that we have examined:

MOVIE.BYU and Frank Crow's system. The MOVIE.BYU system is a FORTRAN

source rendering system available for $1000. We have a version of it at the University of

Pennsylvania and have even used it to produce shaded images before our own shaded

was running. There are well over a thousand installations of MOVIE.BYU and therefore

a substantial user community with its own User Group. Among the advantages of

MOVIE.BYU are

• Low cost.

4, Wide distribution, including versions on all major computers and
supercomputers.

f) FORTRAN language based.

• Yearly updates.

• Anti-aliasing.

• Multiple light sources.

• Shadows.

• Translucency.

• Good user manual.

• Continuing development.

The primary disadvantages to MOViE.BYU are

• Fixed, inflexible input format.

e Unusual viewing parameters: all objects are assumed defined relative to a

14

System Integration

fixed origin and viewed down the z-axis; thus the object space must be
translated and rotated rather than the camera. Although awkward, the
CORE viewing parameters can be transformed into the correct MOVIE.BYU
parameters by straightforward matrix operations.

• Object storage size limits: these are due to FORTRAN array declarations and
limitations in marking unused polygons on a scan line by using a bit mask.

• No texture mapping facility (until at least 1988, according to the
MOVIE.BYU staff).

There is a reasonable expectation that only the last of these restrictions will be

removed in (near) future versions of MOVIE.BYU. The development group supporting it

at Brigham Young University has been expanded recently but they are not saying what

their priorities are. We continue to watch progress in this software system, but are

unwilling to perform extensive modifications to it on our own at this time.

The second system is a public domain shaded graphics renderer weitten in C under

UNIX by Frank Crow while he was working on an NSF grant at Ohio State

University [4]. Crow now distributes the code without charge. This code is now running

on a VAX-785 in a companion lab. Output is produced for an Adage 3000 display or a

generic frame buffer. In the latter case, the images are packed into a run-length encoded

format and transferred to our VMS VAX-785 where they are unpacked and displayed on

the Grinnell. To our knowledge (and based on comments from other computer graphics

experts) Crow's system is probably the most complete, tested, and capable renderer

available for polyhedral objects. The data file formats used by this system are quite

similar to those of SurfsUP; moreover the Crow format may become a de facto standard

interface for polyhedral model rendering systems. At least one workstation

manufacturer is considering supporting this format in its own software. The advantages

to Crow's system are

• Public domain code.

• Flexible input language.

• Unlimited database size.

Multiple light sources.

• Anti-aliasing.

* Texture mapping.

• Translucency.
[

y

'	 15

System Integration

The disadvantages to Crow's system are

• Not supported.

• Written in C for UNIX.

• No shadows.

• Small user community

We recognize that the • C on UNIX' characteristic may not, in fact, be a disadvantage.

For one thing, it permits the advantageous use of UNIX software tools to parse the input

language; for another, it permits computing graphics renderings on (distributed) systems

running UNIX.

We intend to proceed with future rendering systems in a three-pronged fashion:

1. Continue development of our ehaded system to the extent that it supports
the Solidview interface and polygon clipping for that and similar z-buffer
hardware display systems.

2. Maintain a MOVIE.BYU interface so that this system can be called upon to
produce images where there are relatively small numbers of polygons, and
shadows and anti-aliasing are important (but not textures). Note that the
input format restrictions require that we communicate with this system
through an ASCII, readable file. This is not a disadvantage, since it means
that the interface between TEMPUS and the renderer is forced to be
'clean.' This interface code will not be difficult to write since similar work
has already been done for Crow's system.

3. Maintain a Crow system interface so that this system can be called upon to
produce images where there are relatively large numbers of polygons, and
where textures and anti-aliasing are important (but not shadows). The
required conversions from TEMPUS psurfs to Crow objects have been done
(see the next Section). The Crow system will enable UNDO-type workstations
to crunch away at shaded image generation, off-loading the host VMS VAX.

Thus the system or the user can select au appropriate rendering system to optimize

efficiency, image features, and available auxilliary computers. In the medium- to long-

term development of TEMPUS we expect readily available (commercial or public-

domain) systems to meet the projected shaded graphics needs of TEMPUS.

4.1. Input to Crow's System

Crow's system needs three types of files to produce a shaded image. First, it needs

a scene description file (.,. n), which basically tells which objects are to be included in the

scene, where there are to be placed, where are we to be viewing the scene from, and

various other features of the scene. An example of the format of this file follows:

f6

.
System integration

call braach.obj by world
call branch.obj by all wstp

attach all wst_p to world at 0 0 0
call bras f-b.obj by b relbow
atta^h b--elbow to all wst_p at 0 0 0

rotate b__relbow about 0 0 0 0 0 1 by 	 24.999866696 then

about 0 0 0 1 0 0 by 	 29.999680071 then

about 0 0 0 0 1 0 by	 -44.999280162
call p lara.obj by p lars
attach p lars to b_relbow at 0 0 0

tali branch.obj by b rwrist
attach b_rwrist to b relbow at 0 0 0

place b rwrist at	 0.000000000	 -27.304999690	 0.000000000
call branch.obj by b fingers
attach b_fingers to b_rwrist at 0 0 0

call p ijnt.obj by p wjnt
attach p _yjnt to b rwrist at 0 0 0
call p ejnt . obj by p ejnt
attache ejnt to b_relbow at 0 0 0
place light at -100 . 000000000	 100.000000000 - 160.000000000
paint light with 1 . 00000 1 . 00000 1.00000
scale light by 4.9104e+11
place center-of-interest at	 0.000000000	 0.000000000	 100.000000000
Place eYepoint at	 0.000043711	 0.000000000	 600.000000000
set view anprle to	 0.088
render on bb 32 1

The next type of rile needed is an object detail file (std), which defines all of the

vertices and faces of a particular object in the scene. An example of a detail file follows:

data	 26	 34
-4.068462860 4.068462860 0.000000000

-6.741366189 0.000000000 0.000000000

0.000000000 6.741366189 0.000000000
-2.870682696 4.068462860 -2.870682696

-2.870682696 4.068462860 2.870682696
0.000000000 -4.068462860 4.068462860

0.000000000 -4.068462860 -4.068462860
2.870682696 -4.068462860 -2.870682696

8	 2	 1 3	 9 19	 22	 14	 6
4	 2	 1 4	 7
4	 6	 8 2	 1

8	 19	 9 3	 1 2	 6	 14	 22

4	 21	 13 9	 19
4	 19	 22 23	 20
4	 26	 21 19	 22

The last file type necessary for Crow's system is an object description rile (.obj),

1 which describes which rile contains the object's detail, default attributes of the object,

and which display routine will be used to render this object. An object description file

appears as follows:

Systsm Integration

title	 P_WJNT

display	 poly zsort

detail	 pp► jnt.det
type	 po176on

bounding_box	 -6.741366189	 6.741366189	 -6.741366189
6.741366189	 -6.741366189	 6.741366189

color	 0.72000 0.76200 0.80000
shininess	 1.00000

traasaittance	 0.00000 0.6

4.2. Object Data Structures In TEMPUS
The objects in TEMPUS are arranged in a hierarchical data structure. Object

transformations and attributes (color, gloss. etc.) are inherited from an object's parent in

the hierarchy. To compute a particular object's attribute value, traverse the hierarchy

upward until some object in that path has that particular attribute. To compute a

particuiar object's transformation, begin at the root object and traverse the hierarch

downward composing all transformations as you go along. This basically means that if a

parent object moves two units to the right, then the child object moves two units to the

right plus any transformations which apple locall y to the child object.

There are three types of objects in the TEMPUS hierarchy; branches,

transformations, and polygonal surfaces. Branches provide a means of widening the

hiciarcl ical tree, and giving a common name and common attributes to all objects

beneath them. Transformations are used so that all objects under them are translated,

rotated, or scaled according to the transfomation matrix stored with this object type

Polygonal surfaces are just collections of vertices, edges, and faces which describe real

objects in a scene.

4.3. Interfacing '-rEMPUS and Crow's System

Because all of the data structures must. be retrieved from TEMPUS, the interface

procedures are naturally included in TENIPUS. There is a command that is part of the

system facilities menu in TEMPUS, which calls the interface procedure This procedure

works as follows:

I. Open and initialize the scene description file.

2. Then, for each visible object in the object hierarchy:

e If the object is a transformation, just compose it with transformation
which have been passed down the hierarchy.

18

r

System Integration

e If the object is a branch:

a. Write to the scene file a line in the format:

call branch.obj by <branch-name>

{branch.obj is a null object and is
only used to preserve the hierarchy}

b. If the branch has a parent, write a line to the scene file in the
format:

attach <branch-name> to <parent-name> at 0 0 0

c. Write to the scene file any local translations or rotations fcr this
branch. A transformation is local when an object's parent is a
transformation object.

e If the object is a polygonal surface:

a. Write to the scene file a command in the format:

call <object-name>.obj by <object-name)

b. If the polygonal surface has a parent, write the command to the
scene file:

attach <object-name> to <parent-name> at 0 0 0

c. Write to the scene file any local translations or rotations, and any
scaling which has been inherited from all parent objects in the
hierarchy.

d. Open a picture detail file and write out all vertices and faces of
this object.

e. Open an object description file and write out the object's default
color, transmittance, shininess, bounding box, and display routine.

3. Output all light source information to the scene file, including their locations
and colors.

4. Output all of the viewing parameters to the scene rile, such as center of
interest, eye or camera position, and view angle, which defines the window
the camera looks through.

Close the scene file.

The interface procedure has produced files which can be read and understood by

Crow's system. Presently the interface procedure only outputs workstation parts but not

any persons. This capability could easily be included by adding a procedure call in

19
w

System Integration

WriteCrow06j, which would output persons. This would give the system the capability

to render any scene which is created in TEMPUS.

Another improvement to the interface procedure would be the writing of vertex

and polygon color files. These additions would be placed in PuWrowPsurf. Since in

TEMPUS, a vertex or face can have a color which is different from the object's default

color, this capability will also be a necessary addition to obtain more accurate results.

One drawback of Crow's system is that only the color and transmittance attributes can

be attached to vertices and faces. In TEMPUS, attributes of all types can be attached as

far down in the data structure as the vertex and face levels. Therefore, if a particular

face, for example, has a glossiness which varies from the object's default glossiness, this

information cannot be input to Crow's system without some major revisions to his

program.

4.4. Crow's Scene File Commands

Since the Crow system format is quite readable and flexible, we present its syntax

here.

• call <filename> by <object-name>
read in object description from file <filename> and call it by <object-
name>.

• attach <object-namel> to <object-name2> at <point>
set up object hierarchy with object-1 the child of object-2.

• paint <object-name> with <color>
give an object a color (color = red green blue).

• place <objett-name> at <point>
translate object by the vector given in point.

e rotate <object-name> about <axial> by <thetal> [[then
about <axi-j2> by <theta2>] ... I

rotate object about an arbitrary axis by theta degrees. Up to 4 different
rotations allowed.

• scale <object-name> by < point>
scale an object in the x, y, and z directions specified by point.

• render on < device> [<f'rame-number >]
generate a full-quality image compatible with a ;pecified device.

20

System Integration

Detail File Format

data <# of vertices> <# of faces>
xvert #1 Yvert #1 Zvert #1

xvert #2 Yvert *2 Zvert #2
etc.
<# of vertices of face #1> <vert #1 of face #1> <vert #2 of face #1> ...
<# of vertices of face #2> <vert #1 of face #2> <vert #2 of face #2> .. .
etc.

Object File Format

title	 <object-title>
display	 <display routine used to render this object>
detail	 <detail filename>
type	 <object type (usually •polygon')>
color	 < red green blue >
shininess	 <gloss exponent>
transmittance <value> <rolloff>
bounding Sox <xmin> <xmax> <ymin> <ymaa> <zmin> <zmax>

5. TAN: The TEMPUS Animator

The TEMPUS animation system, TAN, has been undergoing an evolution in its

speciicatiuus over the iast two years. The goal is to have a graphical interactive system

with which to manipulate any TEMPUS entity, including people, workstation parts,

cameras, and lights. TAN will give the user very powefful and flexible control over the

timing of any of these motions. For people, the motions include positions, reaches, and

empirical (e.g.. from motion analysis) or computed (e.g., spline curve interpolation)

sequences.

The organization of TAN is based on the following concepts:

Score The complete set of information in .-n animated sequence. The score
contains tracks, actions, variholes, keyframes, dynamics, phrasing, and
any other associated structures.

Track Tracks are vertical lines which appear on the display screen along
which time increases, beginning with time zero at the top. Tracks
represent different things at different levels of display. At the object
level, each track generally represents a TEMPUS object, though there
are a set of non-object tracks for other aspects of the animation score.
TEMPUS objects may be people, cameras, light sources, or
'workstation objects,' our name for arbitrary parts of the polyhedral
object hierarchy. Non-object tracks include the captions and title
track, the sound track, a background track, and a track Simply for
holding global events that are not associated with any specific objects.
At the detail level, tracks are most often associated with the set of

L	 21

System Integration

individual degrees of freedom of TEMPUS objects. TLese tracks will
be displayed to the right of the object level track on which they
elaborate.

Event Defines a single thing that happens at an instant of time. An event
corresponds closely to a single TEMPUS command. At the most
detailed level it corresponds to that part of the command affecting the
variable a track represents. For example, the command Reach a y z on
a top level person track is a single event at that level. It does,
however, represent three events, one for each of the x, y and z
variables, at the detail level. All events will be represented as short
horizontal tick marks along the track at the time the event is to occur.

Variable A motion variable. The changeable aspects of an object. Each
variable reflects only one value: for instance, the translation of an
object is determined by three (X, Y and Z) variables.

Dynamics The pacing of motions. The relative timing of a sequence of
keyframes determines the speed at which actions occur. Thus
adjusting these timings, and thus their interpolation functions, will
control the attacks, decs ys, accelerations, etc. of an animated
sequence.

Keyframe Set A set of variables, over a specified period of time, having the same
time to keyfc ame function. The dynamics of these variables may be
adjusted simultaneously by adjusting this common time to keyframe
function.

Keyframe

	

	 The value of the set of variables of a Keyframe Set ai a specific
keyframe number.

Span A sequence of events applying to a single track within a specified time
span and all occurences between included events. For example, the
interpolation functions defined between events on variable tracks are
included in the span.

Action	 An arbitrary set of spans and events.

Group A named, parameterized action. This enables complex animation
sequences, once constructed, to be manipulated simply as a un'. In
addition to copy, move, and save, the top-level dynamics of a group
ran be manipulated by adjusting the dynamics of a group as a whole.
Parameterization is required so that a group can be a,)plyed to various
objects at various times.

Phrasing

	

	 The smooth continuation of one variable's value in one action into the
same variable's value in an immediately following action.

The current plan is to complete the specifications of TAN, then design a simple

command driven system that will take TEMPUS r-:acro files as input, interpolate the

22	 _	 A - . A

System Integration

inbetweens and output the results in a EMPUS macro format to be displayed through

TEMPLiS. We are also investigating the implementation of TAN in ROSS, an •obiect-

oriented • programming system written in LISP. The graphical components of TAN will

still use PASCAL and our CORE system.

Another open question is whether to implement TAN on the VAX or on a separate,

but communicating, co-proce^sor such as a graphics workstation. There is clearly an

advantage to the latter, as the user may be creating ob;ects and positions in TEMPUS

while simuitaneously manipulating the database for timing and synchronization; control.

Real-time motion playback and editing is then possible without exiting TEMPUS (1).

We currently lean toward this approach, though it means TAN may have to be

implemented in C on a UNIX system (see Section 9). This is the environment for the

high-speed graphics workstations such as the M 500 or the Silicon Graphics MIS 2400

we are considering.

d. BUILD
The use of a standard database interchange system (perhaps a future version of

:GES or a locally supported 'standard •) will also significantly aid the design process

when existing CAD models are available ;rom other NASA or contracted sources. At We

extreme, with body models generated through TEMPUS and workstations available from

CAD systems, the burden on BUIl,D may be significantly reduced or at least become

oriented toward modification of existing workstations.

Any contemplated re-design, of BUILD shoula address the common input and

output systems mentioned above, as well as the common database issue. At this time

there is no graphicaliy in f eractive analog to BLrILD in TEMPUS. S . irfsUI supports only

a string and textual comma. l system (IntSurf) for testing all TEMPUS routines prior to

their integration into the TEMPUS interactive system.

Useful extensions to the existing BUILD would include both new user actions as

well as various built-in system checks:

1. User s ecification of attributes such as color, translucency, material. etc.

2. User specification of shading method to be applied along an edge: smooth or
discontinu,)us.

3. User specification of texture maps for complex, es.SeLt.ially flat structures
(such as panels), and the assaciation and orientation of the maps with respect

System Integration

to she required polygons.

4. System checking to insure that all polygons are complete, planar, closed, and
consistently oriented.

5. System warnings to the user that a polygon might be too thin, contains an
excessive number of vertices, or lacks required vertices (at • T'-type edge
intersections).

6. Conversion of the graphics component to standardized graphics software
(CORE or DI-3000).

7. Conversion of the interactive input component to standardized input (CORE
c: DI-3000), and possibly the Polhemus.

8. Conversion of the internal polygon database to SurfsUP procedures.

It is worthwhile noting that all of these features are more-or-less available through

SurfsUP. For example, our CORE now supports direct vertex picking from the screen,

IntSurf has a general sweep facility which could replace the BUILD surface of

revolution, and IntSurf also has general polyhedral intersection and union routines which

could possibly replace BUILD mill av, punch. It appears that most of the remaining

BUILD functions are available rather d irectly through IntSurf, though clearly without

benefit of a graphical interface.

It is our opinion, therefore, that it would be easier to convert the functionality of

BU,U,D into the SurfsUP environment than to attempt to duplicate the SurfsUP

capabilities in continued ad hoe extensions of the current BUILD. This effort could be

contracted out, but it might also be performed by available staff at JSC.

One open issue in this discussion is the impact of external CAD systems (such as

MCAUTO) on the design and encoding of polyhedral structures. Our perception is that

such turnkey systems are not expected to replace BUILD at NASA JSC in the near

future, though an increasing number of object models may become available to OSDS in

this fashion. !f this is indeed the case, the issue of a new BUILD may be secondary to

database conversion problehis in general.

24

System Integration
r

7. Anthropometric Lab Integration

Our discussion of the Anthropometr;c Lab (AML) integration will focus on three

issues: anthropometric measurement databases, reach databases, and body segment shape

utilization.

7.1. AML Measurement Databases
There are three categories of information that the AML could obtain that would be

usable by TEMPUS: anthropometric (size) measurements, joint limit data, and strength

data. The first two have corresponding database structures in TEMPUS which have

been reported on in earlier Progress Reports. The third, strength data, is discussed at

length in a separate report (2), though its integration will also be addressed here.

As presently constructed, all anthropometric parameters such as joint limits and

regression formulas are embedded in program code or files. In order to integrate the

AML data collection process into OSDS and TEMPUS, methods must be developed for

interactively obtaining AML data and transforming it into appropriate databases and

formulas. TEMPUS already has features to select among varying anthropometric

databases and joint limit databases. Keeping these databases updated could be

expedited by using a true database system (such as the VAX RDB system) to store

individual and generic anthropometric data. New information would be entered through

the database manager (or through TEMPUS, as is presently done) and the necessary

population statistics would be updated. There are no significant technical problems in

this process, only the responsibility must be placed on a .1SC staff member to manually

update the TEMPUS database as new data is collected.

In light of our recommendations for human strength models, the database approach

is also valid for this data [2]. Since the strength data would be indexed (at least) by

body part and joint angle, strength information as collected can be entered directly into

the database. Again, someone must be repsonsible for data entry and consistency, but

much of the essential information may be obtained from published data or (preferably)

direct experiment. Since the database approach permits strength data for individuals as

well as populations, the unique characteristics of AML subjects may be preserved and

utilized.

-	 25

System Integration

7.2. Reach (Workspace) Databases

There are three components to the creation and maintainance of reach databases:

1. Creating workspaces empirically (via PLAID REACH) or analytically (via
Jim Korein'F workspace generation code [51).

2. Creating, storing, retrieving, and utilizing reach data and workspaces in
TEMPUS.

3. Integration of both empirical and analytic databases.

Presently the reach workspace generation code is operable but not integrated

directly into TEMPUS. It is available through IntSurf and some additional testing and

development is needed. The code to perform a revolute sweep (and compute the

corresponding boundary) works on psurf objects of lc-,v to medium complexity, but more

complex figures must be tested. Some preliminary testing has also been done on the

spherical sweep of psurf objects. The testing of complex spherically swept objects will

follow when the revolute sweep is proved to be reliable.

One significant problem which has not yet been addressed is the overall efficiency

of the sweep and union operations. Presently, the computation cost (time) involved in

generating workspaces is quite high. It would be very advantageous to make this process

more efficient. This is particularly + rue with complex workspace generation (i.e. chains

f workspaces). There are a number of possibilities in this regard, none of which are

trivial. One might be to make sure that the resulting workspace from each sweep is

simplified as much as possible (perhaps at the user's discretion) before the workspace is

used as the next psurf object to be swept. Another possibility might be to increase the

efficiency of the face intersection routine (where the resulting psurf is 'self-

intersected'). Face intersection consumes a considerable part of the effort needed to

generate complex workspaces.

One direction which we have not pursued though it is worth mention is the

representation of reach spaces as volumes rather than surfaces. The advantage to this

approach is that the union operation becomes nearly trivial; the disadvantage is the

(typically) great storage requirements if considerable spatial detail (resolution) is

required. Methods used include various spatial subdivisions such as oct-trees or voxels.

Present technology limits these representations to relatively low resolution data

effectively 256 points in each dimension, for example (8).

26

System Integration

If workspaces are indeed stored as polyhedra (or even as volumes), the databases

for such information will be extremely large. Data for particular individuals might need

to be stored in separate, possibly even off-line, files. This database must be pre-

computed during slack usage periods because of the extreme overhead involved.

Otherwise there are no major problems involved in storing, retrieving, using, or

displaying reach workspace data.

Giv-n either a polyhedral or volume representation of an analytically-derived reach

workspace, the geometric region may be compared graphically with data derived

empirically via PLAID's Contour function. If these is close agreement, wonderful. More

likely, however, the empirical and analytic data may disagree. In this case the stored

information can be biased towards a liberal estimate by taking the union of the two

spaces, or toward a conservative estimate by taking the intersection. Both operations

are s ,:pported in SurfsUp.

7.3. Body Segment Databases

There are several topics that should be addressed to improve the shape and

structure of the bodies.

1. Acquisition of body surface data on a segment by segment basis.

2. Body surfaces which depend on joint parameters or body states, e.g. upper
arm under elbow flexion/extension; torso under breathing. This involves
interpolating between key shape positions. Different somatotypes can also be
constructed by this method.

3. Multiple levels of detail: BUBBLEpeopie, Polybody, 'Mr. T, • and stickman;
selected by user choice or by image size on displr.y.

We examine each of these in the following sections.

7.3.1. Segment Shape

TEMPUS capabilities in the area of segment shape have evolved slowly and we

realize that more effort is required. In particular, the body segments are created

manually; there are no automatic methods for computing segment shape from actual

surface data points. We expect that an existing convex hull algorithm will be useful,

given surface points on a convex segment. Fortunately, most body segments are roughly

convex. The surface points that lie inside a concavity may have to be • manually •

connected into the surface net in order to accurately portray the shape. One issue with

any approach to this problem is the use of such an accurate segment boundary. If its use

27

System Integration

is for graphical d ;9play, then any reasonable approximation will do. If its use is for

collision detection, then an accurate surface is more important. Note, however, that the

general flexibility and resiliency of body surfaces (due to the internal skeleton and fleshy

muscle masses) may render accurate surface models unduly restrictive. People are able

to tolerate a certain level of discomfort while pressing their segments beyond their

nominal shape. Thus the entire problem would seem of low priority.

7.3.2. Spine Bending and Torso Breathing

The work done so far in the area of segment shape adjustment according to local

body configuration is somewhat more important. In particular, our efforts have been

directed toward modifying the spine in the TEMPUS body to permit smooth bending

and to scaling the torso spheres to simulate the effects of breathing. In particular, the

BUBBLEPEOPLE display is varied in such a way as to simulate torso bending and

breathing. The pri,nary modification made was the variation of the size and shape of

the torso segments based upon the depth of the breathing and the position in the

breathing cycle. Also we incorporated a (temporary) method to simulate the raising and

lowering of the shoulders which typically occurs with breathing.

A module (DRBUBFIG) which had previously existed only as a skeleton was

fleshed out to display BUBBLEPEOPLE by traversing all of the segments of the body

and performing several manipulations on each of the spheres in every segment which had

to be redrawn. Since each segment has its own coordinate system, every sphere to be

drawn must first be converted to the world coordinate system. When this is done, the

sphere must be converted to a polygon (currently 12-sided) which approximates the

silhouette the sphere would produce from the current viewing direction.

Once BUBBLEPEOPLE could be displayed in TEMPUS we were able to convert

the old BODTEST capability of modeling a flexible spine. Since the TEMPUS body

spine is only represented by its two ends, everything between these points was assumed

to be straight. When a body is standing straight, this is fine. When the waist is bent,

however, the resulting figure looks very rigid and can develop discontinuities along its

sides. The curvable spine routines model the spine as a spline curve interpolated

between the waist and neck. It is important to note that this feature does not entail a

change in the representation of the body and only modifies the display o f the spheres.

The routines which performed the spine curve calculations had to be modified

28

System Integration

slightly to conform to TEMPUS conventions. The routines formerly just calculated the

spine curve and drew the spheres in the torso segments offset from this curve depending

on their relative position to a straight spine. Since DRBUBFIG is already being used to

draw the spheres, the routines in BODYSPINE had to be changed to take a sphere as a

parameter and return a new sphere offset from the spine curve without displaying

anything. DRBUBFIG then only had to call the routine to first calculate the spine

curve and then pass the spheres of the torso segments to the procedure

(FROJTORSOSPHEREI which translated the spheres appropriately. The resulting

display after the modifications were made was a BUBBLEWOMAN whose torso

segments curved smoothly as the waist bent.

We were now able to formulate the changes in torso segment girth appropriate to

breathing. First we had to acquire some rough data approximating the changes in girth

of the torso as a person inhales and exhales. For the sake of generality, all the data were

calculated relative to the torso size so that the numbers would represent percentage

deviation from a normal (relaxed) position. Data were obtained for only three locations

representing the tops of the upper, center, and lower torso.
Location	 Scale Factor

Top of Upper Torso	 0.038

Top of Center Torso	 0.045

Top of Lower Torso	 0.008

These data represent thi maximum percentage change in the torso size, and it was

assumed that the maximum increase during inhale was the same as the maxim!im

decrease during exhale. The only surprising fact is that the top of the center torso

changes slightly more than the top of the upper torso.

The first idea to simply use these values as the scaling factors of each torso

segment was rejected because of the possibility that discontinuities could develop along

the boundaries between segments. A way was needed to be able to scale the spheres

continuously along the entire torso, and having incorporated the curved spine routines

provided just the needed knowledge. Since the spheres returned by the curved spine

routine (PROJTORSOSPHERE) were all in the lower torso's coordinate system, the z-

value of the sphere- could be used to calcuate the relative distance of the spheres from

the bottom of the lower torso (ReIZ = 0) to the top of the upper torso (ReIZ = 1).

However, it was decided that the scaling for breathing should be done before the spine

curve transformations, so a function was written (GetzReMrso) which returned the

relative z-vaiue given the actual z-value and the segment in which the sphere resides.

i

20

System In -ation

Using this idea, a function was written which returns an appropriate scaling factor

depending on the relative z-value of the sphere. The method used was a simple linear

interpolation of the scale factors between the known values. The value for the bottom of

the lower torso was assumed to be zero.

To increase the efficiency of this system, a procedure (Breathlnit) was written

which would only have to be called once for each display of a body. This procedure

takes two parameters, the depth of the breath (from 0=none to 1=maximum) and the

position in the breath cycle (an angle in degrees), and from these it calculates many

variables which will be used repeatedly for all of the spheres in the torso segments.

Using Breathlnit to calculate frequently used expressions only once for each display

ensures that at most one floating point multiplication and two floating point additions

will be needed for each sphere to scale the torso segments.

To model the raising of the shoulders which normally accompanies breathing,

Breathlnit also calculates the amount by which the upper torso is raised or lowered.

Another procedure (BrArmRaise) is then passed all spheres in the segments representing

the arms and the hands. This procedure simply changes the height (z-value) of these

spheres by the amount last calculated in Breathlnit. This method, however, is

temporary since it has some definite shortcomings. Since the entire arm is raised (or

lowered) slightly, the hand will raise and lower as well. This will normally cause no

problems, but if the hand were meant to be stationary on some object in the scene, one

might become annoyed to see that in the animated version of the scene, the hand is

drifting up and down past the object. One way which this problem could be fixed would

be to raise and lower the arms by changing the joint angles of the clavicles. If this %Vere

done, then when a person wants to be sure that the hand stays in one position, both key

frames would have to place the hand at the proper place using a position reach. Then,

although the shoulders may be going up and down between these key frames, the

TEMPUS animator would interpolate the position reaches with other position reaches

(which depend on the shoulder position), thereby keeping the hand where it belongs.

The maximum scale factors for breathing have been left 04,htly higher than the

data values obtained because the user can always select a depth of breathing less than

the maximum, but if the maximum were set too low, the user could not select a depth

higher that that value without recomviling the breathing module and relinking

TEMPUS.

J

System Integration

Since it had been decided that the breathing changes should only affect the display

and not change the actual stored representation, the breathing parameters currently only

affect the display of BUBBLEPEOPI.E. This is not much of a shortcoming because it is

unlikely that the other body representations (STICK figures and POLYBODY figures)

would benefit from the added realism of breathing. There is no way to get the torso

segment of a STICK figure to expand (it is only a line), and POLYBODY figures already

are a coarse surface approximation.

7.3.3. Multiple Levels of Detail

Our work on multipie levels of detail in TEMPUS has been very vale- -.ble. There

should be a mechanism in TEMPUS for automatically selecting the most efficient model

based on its projected image size on the display screen. The techniques to do this are

simply based on determining image height sizes where one representation is to be

changed to another. TEMPUS already supports manual changes in body display type, so

the automatic feature would not be difficult to add.

S. Support and Maintenance

We have been providing ongoing support and maintenance for all software

provided to NASA under the terms of contract NAS9-16634. In the long run it is in

NASA's best interests to transfer some of the TEMPUS code to the jurisdiction of local

JSC support staff. The most likely components are the graphics interface (through

DI-3000, if possible), and the geometry system SurfsUP. We see the latter as a possible

base for future PLAID and especially BUILD systems. There is still work that can be

done on SurfsUP to make it a production system, most notably the incorporation of

better (i.e. relative rather than absolute) error-bound checking, but it is basically a

stable, debugged, and highly capatie hierarchic object representation system. We

believe that SurfsUP can more than adequately substitute for most of the geometric code

extant in PLAID. While its existance in PASCAL code might be deemed a disadvantage,

it seems hardly worth the effort to re-write its highly structured environment as flat

FORTRAN arrays. Very significant resources were dedicated to SurfsUP, and we would

hope that the results are usable outside the TEMPUS system.

There are numerous projects that we would like to do in order to turn TEMPUS

into the highly flexible and useful system we have envisioned it to be. These include

both the introduction of new features as well as the ref:air or maintenance cf existing

ones. Among the priority items on our list are:

31

System Integration

• Improvements in reach and positioning:

o Implement a f fitment commands. These will allow degrees-of-freedom
of one object to be attached, at the user's discretio,i, to other objects.
Thus the motions of objects can be constrained to one another, such as
when a movable object is grasped in the hand.

o Position/orientation reach. The orientation component has not been
adequately integrated into TEMPUS yet.

o Positioning aids using object faces, vertices, and edge,- (e.g., line up two
faces, place on, etc.). These can be used for many purposes, including
sit and stand on type commands.

o Put in actual limits for joint potentiometers.

o Incorporate the six Polhemus digitizer input values into the reacu
parameter specification.

o Allow optional picking of moved object type and reference frame a-
part of each global motion command.

• Macros

o Allow the user many options in the way macros are run, including a
step option, abort on error option, bell off option, etc.

o Make macros and picture files impervious to obsolescence.

o Make macros editable.

• Menus

o Provide the user with an hierarchical list for fast workstation part
picking.

o Generalize menu systems (top level and device) to be more truly device
independent.

o Allow sets of items to be selected from list menus. This is especially
important for the extended clearance command, which needs a set of
body segments as input.

f Shaded

o Adapt clipping to SolidView output.

o Adapt object decomposition routines for routines that need them
(Lexidata SolidView output, shaded output, clearance routines, etc.).

• View

o Put in a better person's view command. This involves more accurate
determination of the parameters of people's views and ways of showing

32

I;
System Integration

these (e.g., foveal fields of view, setting of degree of perspective, etc.) to
the user.

o Put in a view saving and restoring command.

• Workspace generation and use.

• Assorted bug extermination.

9. Impact of UNIX and Local Workstations
We have been investigating the operating system environment for TEMPUS on a

VAX to assess the impact of UNIX and UNIX-based workstations. The present facts in

this case are noted:

• TEMPUS presently consists of over 5000 Pascal modules. PLAID is a system
of commensurate scope written in FORTRAN. Neither FORTRAN nor
Pascal has a satisfactory compiler in the VAX environment. In the case of
FORTRAN, the resulting code is significantly slower than for VMS
FORTRAN. For Pascal, the essential software engineering tools we have
come to rely on are not present (such as Modules and Environments) and the
Pascal is only ISO standard (a restriction for us). The effort required to
convert to UNIX Pascal would be considerable and essentially non-
productive.

• There are no plans that we know of to have VMS Pascal converted to run
under the VAX UNIX environment. This may occcur, either through actions
of DEC or a third party software vendor, but we are unaware (through the
Vax Users' Group) of any current effo°t.

The conversion of TEMPUS to C would be a m;1_ Jo;, two year undertaking
which would serve no useful purpose to anyone and only retard progress and
research in essential areas for all of us including the contract officers.

• Distributing some of the functions of TEMPUS (and PLAID) to UNIX
workstations is feasible, desirable, and even underway. For example, the
graphics visible surface rendering system we have obtained from Frank Crow
is written in C and runs on a UNIX system. This code is running right now
on the UNIX VAX in the GRASP Lab here in our Department. Also, the
real-time animation software is being written for the IMI 500: a UNIX
workstation which drives a high performance vector display system.

• Given that high-speed communication between computers running different
operating systems (e.g. VMS and UNIX) is not difficult using existing
networks (e.g. Ethernet) and protocols (e.g. TCP/IP), there is no reason to
oppose migration of various software components onto a variety of network-
compatible machines. They can cc_:.municate as needed by shared files or
actual file transfer. The major benefits of this arrangement are the
possibilities of using each machine to advantage with particular software, and
the overall advantage gained from parallel (distributed) processing. Thus as
long as there is at least one network node running VAX VMS, the other

33

System Integration

computers in the network may be utilized for graphics rendering, real-time
motion display, database storage and management, user input processing, etc.

On the basis of these facts we recommend the following:

1. At least one of the Crew Station Design Section VAX computers remain
running VMS for the forseeable future,

2. Any conversion to UNIX be made in local workstations running particular
s ,ibprocesses or tasks of the overall OSPS software such as shaded graphics
or real-time animations.

3. UNIX workstations may be usid proritably and effectively for system
software development as they provide a flexible and usually graphically-
oriented interface to the programmer.

4. All computers should be tied together on a local area network, preferably
Ethernet, in order to accomodate the volume of information flow between
machines necessitated by the transfer of graphical data and physical object
databases.

5. Choice of workstations should reflect the 'types of activities to be factored out
of ODDS: for example, VAXSTATION U to run existing VAX software, M
500 or Silicon Graphics IRIS 2400 to run real-time line drawing animation
graphics, Sun or Apollo workstations for general software developement, etc.

10. Conclusions

The development of TEMPUS and its integration with PLAID into a powerful and

flexible OSDS facility will require dedicated resources over the next few years. The tasks

ahead, however, appear to be mostly clear and the evolutionary directions consistent

with concurrent trends in computer and computervraphics technology. In particular,

there are three general thrusts in the system integration area:

• Better interfaces between TEMPUS and PLAID both for geometric objects
and graphics input and output.

• Better databases for a wider range of anthropometric data such as segment
sizes, reach spaces, and strength data.

• Better utilization of computer resources including distributed computation
and graphics workstations.

The the TEMPUS and PLAID interface we must evolve a common database or at

least user-transparent conversions between geometric objects created in PLAID and

manip^iated in TEMPUS. Botiu systems should rely on the same standard CORE-like

graphics input and output code, and may eventually share a common user interface.

The TEMPUS system should continue to evolve necessary task analysis interfaces and

34

"	 System Integration

interactive enhancements. The shaded graphics %stems should be based on externally-

supported systems if at all possible, since such products are apt to become readily

available within tb , - next few yea.:, as competitive systems emerge. The geometric

subsystem of TEMPUS, SurfsUP, could be adapted for use in later versions of PLAID.

A more natural interactive object building and design system would be desirable,

including high-level design aids to check object validity during the data generation

process.

In the anthropometric area, there should be movement toward use of a supported

database system such as DEC's RDB for all AML and strength data. Such a system

would have its own database manager and would facilitate the regular updating of

TEMPUS anthropometric data. There must be someone identified at JSC as being

responsible for data entry and validity. Reach data should be analytically computed for

common body chains and geometrically compared and combined with empirically-

obtained data from SELSPOT data and PLAID's Contour program. Body modeling

from the database should be improved to handle the automatic selection of display

method from the multiple levels of detail available in TENIPUS. The bodies themselves

should be enhanced with full girth and somatotype scaling along the lines of the efforts

done for torso bending and breathing.

Finally, the massive sizes of TEMPUS and PLAID motivates the move to

distributed systems to take advantage of parallel computations and special purpose

programs. For example, the TEMPUS animation system and the shaded graphics

rendering systems can run independently from the primary TEMPUS program, yet

communicate with it to share files and pass commands and parameters. VAXSTATION

11, Ethernet communications, and high-performance, real-time graphics workstations such

as the M 500 and the Silicon Graphics IRIS 2400 are prime examples of the type of

available systems that will mold the shape of the OSDS of : !ie late 1980's.

11. Sched • tle and Resources
The tasks outlined in the Conclusions could be realized over a three year period if

suitable personnel v..ere directed to its implementation. The schedule would, of course,

differ if othe ► directions were taken. In particular, tighter integration will take longer

initially but will pay off eventually in easier, coordinated development. ALso, there

should be a long term plan to provide ongoing maintenance for TEMPUS during its

lifetime. The approximate timetable for the systems integration effort is given in Table

35

System Integration

11-1.

Table 11-1: Systems Integration Schedule

Time Milestone

I Task (per staff somber)

year 0.6

1 TEVUS to PLAID object interface and vice versa.

I DI-3000 and Shaded era"hics interfaces.
I Convert to database sy.cem (RDB) for AML and strength rata.

----------------+--

year 1 1	 Improve TEKFUS interactive inte.face.

I	 Interactive BUILD using Polhcmus.

I Full girth and somatotype scaling; multiple levels of detail.
----------------+--

year 2 I Complete animation system.
I Complete TEMPUS reach databases.

I TEKFUS running on VAXSTATIOM II in distributed :votes.
----------------+-- ---------------

year 3 1 Geometric object input validity testing.
I Integrate TEMPUS and PLAID reach databases.

I Common input and graphics system for PLAID and TOWUS
----------------+--- ----------------

The time milestone is the length of time from project inception (not a duration) to

the completion of the indicated taeke. The tasks are a summary of the work needed to

fulfill the system requirements discussed in the Conclusion. Each task refers to either

the full-time Research Specialist or one graduate research assistant. For the litter, this

is a half time load (20 hours/week). Thus midtiple tasks for one time milestone are

assumed to proceed in parallel, and a total of three individuals for three years are

required.

The resources required are summarized in Table 11-2. The monetary estimates are

based on solely on 1985 University of Pennsylvania rates including employee benefits,

tuition, and overhead as applicable. There is no provision for inflation; that may be

projected by NASA as necessary.

System Integration

Table 11-2: System Integration Resources

1 Research Specialist ..$6V7year

2 Graduate Research Assistants for duration of project 60K/Tsar
Faculty supervision time (10% of academic year)ICK/Tear

Equipment:
VaxStation II20K

Travel, current expense, duplicating, eV34K/year

Totals:

Year 1: 1176K

Year Z: 1166'!
Te-r 3: 11668

37

System Integration

12. Bibliography

1. Norman I. Badler, Paul Fishwick, Nina Taft, and Mukul Agrawala. Zero-Gravity
:Movement Studies. Dept. of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA, 1985. (For NAS9-16634).

2. Norman I. Badler, Philip Lee, and Sui Wong. Strength Modeling Report. Dept. of
Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 1985.
(For NAS9-16634).

3. Lynne S. Brotman and Norman I. Badler. 'Generating Soft Shadows With a Depth
Buffer Algorithm'. IEEE Computer Graphics and Applications 4, 10 (October 1984),
5-12.

4. Frank C. Crow. 'A more flexible image generation environment'. Computer
Graphics 16, 3 (Ju;y 1982), 9-18.

6. James U. Korein. A geometric investigation of reach. NET Press, Cambridge, MA,
1985.

6. M. H. Liewald and P. R. Kennicott. 'Intersystem data transfer via IGES'. IEEE
Computer Graphics and Applications 2, 3 (May 1982), 55-V.

7. National Bureau of Standards. Experimental Solids Proposal.

8. R. A. Reynolds. Fast methods for 3-D display of medical objects. Ph.D. Th., Dept.
of Computer and Information Science, University of Pennsylvania, Philadelphia, PA,
1985.

9. P. R. Wilson, I. D. Faux, M. C. Ostrowski, and K. G. Pasquill. 'Interfaces for data
transfer between solid modeling systems'. IEEE Computer Graphics and Applications
5, 1 (January 1985), 41-51.

	GeneralDisclaimer.pdf
	0123A02.pdf
	0123A03.pdf
	0123A04.pdf
	0123A05.pdf
	0123A06.pdf
	0123A07.pdf
	0123A08.pdf
	0123A09.pdf
	0123A10.pdf
	0123A11.pdf
	0123A12.pdf
	0123A13.pdf
	0123A14.pdf
	0123B01.pdf
	0123B02.pdf
	0123B03.pdf
	0123B04.pdf
	0123B05.pdf
	0123B06.pdf
	0123B07.pdf
	0123B08.pdf
	0123B09.pdf
	0123B10.pdf
	0123B11.pdf
	0123B12.pdf
	0123B13.pdf
	0123B14.pdf
	0123C01.pdf
	0123C02.pdf
	0123C03.pdf
	0123C04.pdf
	0123C05.pdf
	0123C06.pdf
	0123C07.pdf
	0123C08.pdf
	0123C09.pdf
	0123C10.pdf
	0123C11.pdf
	0123C12.pdf
	0123C13.pdf
	0123C14.pdf
	0123D01.pdf

