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ABSTRACT

This thesis studies Morrison's 1.erative noise removal
method, by characterizing 1its effect upon systems of

differing noise level and response function.

The nature of data acquired from a 1linear shift
invariant instrument 1is discussed, sSo as to define the
relationship between *he 1input signal, the instrument

response function and the output signal.

Fourier analysis 1is 1introduced, along with several
pertinent theorems, as a tool to more thorough understanding
of the nature of and difficulties with deconvolution. In
relation to such difficulties the necessity of a noise
removal process is discussed. Morrison's iterative noise
removal method and the restrictions upon its application are
developed. The nature of permissible response functions 1is
discussed, as 1is the choice of the response functions used

in this study.

Ordinate dependendent gaussian distributed noise and
constant gaussian distributed noise are discussed, along
with the method wused for their generation. Several
parameters for the characterization of added noise are
developed. Also developed are several parameters for
characterization of error in the data and convergence in the

method. The choice of experimental parameters is outlined.
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The experimental data are presented and interpretted,
Several figures containing the thrust of this work are
discussed. The optimum number of iterations for noise
removal 1is established under a variety of conditions, as is
the degree of noise removal by Morrison's method. The way
in which this work may be used for specific noise removal
applications is discussed, along with possible extensions to
the studv. In tLhe appendicies there are proofs of theorems,
and a discussion and listings of various programs wutilized

in this study.
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INTRODUCTION

Experimental observation of the physical universe |is
the foundation of modern science, When the phenomenon of
interest is not directly observable, inst‘ruments of great
delicacy and cunning have often been devised through which
to ohserve the phenomenon. However, no instrument,
regardless of the skill of its maker, is capable of
recviving a signal and translating that signal into a usable
form without in some way distorting the original

information.

There is an entire branch of learning devoted to the
techniques of enhancing experimental data and removing from
it the effects of the instrumentation, regardless of the
source of that data, or the nature of the instruments
involved. This thesis investigates one such technique,
Morrison's iterative noise removal method. It is the aim of
this study to establish the degree of noise removal
accomplished wunder various circumstances, and the optimum

utiliization of this method.

One method for removing the effects of instrumentation
is deconvolution. Unfortunately, deconvolution fails
r.pidly as noise is added to the signal. For this reason, a
noise removal technique, such as the one investigated in

this thesis, is often a valuable precursor to deconvolution.
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Chapter 1 establishes the foundations upon which this study
rests, which are convolution and deconvolution, and the

Fourier transform.

Chapter 2?2 outlines the body of the experiment. The
choice of initial parameters 1is discussed, along with a
Justification for those parameters ultimately selected. of
chief interest 1is the selection of appropriate instrument
response functions, and of a realistic (but practical)

algorithm for the addition of noise.

Chapter 3 presents the results of this study. The data
are categorized by their behavior, and that behavior is
explained in terms of the 1initial parameters selected.
Conclusions are drawn regarding the most efficient use of

Morrison's method.

Appendix 1 contains proofs of theorems which are
related to this study. Appendix 2 contains a brief
discussion about and listings of the programs used in this

study.
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CHAPTER 1

When an instrument measures data it inevitably subjects
those data to some distortion. It may lose those
mathematically defined Fourier frequencies that it {s unable
to register and it may broaden the signal. If the
instrument is linear and shift i{nvariant ¢the relationship

between the input signal and the _utput is as follows:

hea = S-: Qu‘,)g(rg)ds
* Sk quo

That 1is, h, the output signal, s equal to the
convolution of the 1input signal, f, witn the instrument's
respcnse function, g. The convolution integral 1is an
integral of the product of two functions , one of witich is
reversed and shifted across the domain of the other as the
domain of the output is varied. 1In this manner the result
is a weighted average of c¢ne function by the other (1). In
the 1ideal case the response function of an instrument would

be a delta function and

Q(x) * §)

Q(x“)

so that the output signal would equal the 1input signal,

"\ x)
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since §(x) is the identity operator under convolution. In
numerical work functions are often approximated as
sequences, and integrals as summations. Indced experimental
data i{s only known discretely although analog data may
require a large number of samples., The discrete analog of
convolution {s the serjial product, discrete convolution, or
convolution sum (2) denoted the same way as convolution,

i.e. , h=f%g, but with f, g, and h as sequences,

Having thus been able to characterize the relationship
between the {input and output signals (providing that g is
known, which {s not always the case) it would be desirable
to undo the convolution integral and to recover the actual
input signal f in terms of g and h. This {is known as
deconvolution. Prior to further consideration of
deconvoiution it would be advantageous to develop the
concept of the Fourier transform, as it affords several
3simplifications of, and greater insight into, the problem of

deconvolution.

One commonly used definition of the Fourier transform

is
‘ Qo -LAT XS
F(s) = V- ﬁmc d«

with the corresponding inverse transform (3)

o VAT XS
oo = dw Fave s

where f(x) and F(s) are said to be a transform pair. (Note:

S g
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In this paper small letters will be used to denote functions
and sequences, while capital letters will be used to denote
the corresponding transforms.) Perhaps the most common
example of a transform pair is a time domain waveform ¢ad
its corresponding frequency snectrum. For this reason the
function (t or x) domain {s often referred to as the time or
space domain, while the transform (s,f, or k) domain {s
often called the frequency oi spatial frequency domain. For
this work the frequency will be mathematically defined as
the reciprocal of the function domain variable and will not
necessarily be a physical frequency. While the information
content of a signal in either domain is equivalent, {n the
appropriate domain it may manifest that information in a
more usable aspect. Furthermore, several theorems relate
operations 1in one domain to the corresponding operutions in
the other. Chief among these theorems s the convolution

theorem: (Note: "2 " means "has transform")
¥(m.> F(sy, 3(0 2 Cr(s) =7 c(.x) * Q) O Fis) Greey

That is, the transform of a convolution is the product

of the transforms.

The proof of the theorem is as follows (4):

ook 2 F(a Gy =

3: 2 Foo *5‘“3 e Law“;x 2 FG(s)

5o T 5 Spainyray 3Ty,
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It i frequently advantageous to consider the transform
of a convolutian since a product of functions is often

easiar Yo visualize and manipulate than is a convolution.

Returning to he ©problem of deconvolution, one may

apply the convoluticon theorem as follows

heo = $00 %900 5 HeE@ = Fie) G

and it becomes apparent that it is much easier to solve for

F(s) than for f(x). Indeed

F(s) = o

when G(s) is not equal to zero. This {is an important

restriction, and in fact, deconvolution develops
difficulties in the regions where G 1is small, before G
actually goes to zero. Consider Figure 1 (5,6) where the
functions have been renormalized so that F(0)=G(0)=H(0)=1.
The Definate Integral/Central Ordinate theorem states (see

Appendix 1 for proof)

F(o) = S—: g(x) dx

R s 2



If the original f was nonnegative, for this case, then

IF(sy) & | Fl = ]

as follows (5):

o - L3RS
\F(s)l = |$-- ftxy e ‘ dx )

_Lrns

¢ S-: |fwoe ‘dv.

which, when f is real and nonnegative, becomes

_io.'wxs\ dx

= 3_: t le

S-: Q(x\o\x
F(0)

i

"

by the above mentioned theorem, thus
lE(a] ¢ \Fo)|

Since ideally H(s) is a product of F(s) and G(s) where
both are 1less than or equal to one,H(s) should be less than
or equal to either, and should be zero in whatever domain
either F(s) or G(s) is zero. However, the presence of noise
in H(s) can cause it to be nonzero beyond the cutoff
frequency of G(s) or at imbedded =zeros. This noise is
termed "incompatible". Noise contributions to H(s) below

G(s)'s cutoff (or more specifically, where G(s)=0) are



1 bt | pocnd ne

-

- o T i = By aanes | | Y A g .oy s i LA sy Rt

CUTOFF FREQUENCY

i INCOMPATIBLE NOISE

W

FIGURE 1

R e Y Al o



.

[

S

s

termed "compatible" noise. See Figure 1.

Deconvolution techniques are accutely sensitive in
regions of small G(s) (and consequently small H(s)). F(s)
is the ratio of ¢two very small numbers, and slight
fluctuations 1in the values of H(s) or G(s) can cause large
variations in the value of F(s). For this reason it |is
often advantageous to subject data to some initial
conditioning prior to attempting deconvolution. This thesis
examines one conditioning technique, Morrison Smoothing, and
attempts to characterize the effects of this technique
according to the nature of the instrument response function,
g, involved and the nature and amount of noise present in h,

the output data.
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CHAPTER 2

Morrison Smoothing is an iterative technique that
should perhaps be termed Morrison Smoothing and Restoration
The first iteration smooths the signal h, by convolving h

with g, and each subsequent iteration proceeds to restore h

back to h as follows (6):

hy = h#g
"‘n = L\n_,_-o- [\'\"\ﬁ“_,_] *3

It is important to note that the first iteration,
wherein h 1is convolved with g, results in a function (or
sequence) h, that has no frequency component higher than
those found in g, the instrument response function.
(Indeed, it has no component at any frequency for which G(s)
is zero.) Also, as h, is restored back to h, it is restored
by iterative convolution with g, so no higher frequencies
can be introduced. In this way Morrison Smoothing

eliminates incompatible noise from h.

To examine the convergence criteria for Morrison
Smoothing it is useful to consider the equivalent operations

in the transform domain.

H = HG

Hy = WG + [HG - HG"]
RlLG-G?)

10
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Hy = 2 HG —HG™ + LG ~3HGT 4+ NG
= H[ 3G - 3G> + G2

N (= [1-(1-G)™] W

For convergence Hn(3)=zH(s) which will ocecur if |1-G(s)| <1
(8) or by the identity 0=0 when G(s,=z0. Therefore, as was
pireviously stated, compatible noise is restored, weighted by
the G function, with each iteration (9). It is therefore
possible to cease restoration short of convergence and so to

trade off resolution for noise reduction.

The convergence requirement on g is 11-G(3)) <1
(10,11,12,13). For reasons to be discussed later the g
functions chosen were all symmetric and singly peaked. Such
functions have real transforms. Fourier analysia of several
such g functions showed that the degree of negativity of a
given G(s) correlated with the rate of divergence found for
Morrison Smoothing of an arbitrary but noise free h. See
Table 1. Since each g was normalized to have area 1, the
maximum value of G, G(0), was 1 for each functibn, by the
Definate 1Integral /Central Ordinate theorem. Thus the
minima may be compared directly. The measure of convergence
used was the variance between t'e original and the restored

h's. Convergence was assured for functions with G(s)>0, for

11
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all s, because G(s)<G(0), as discussed previously for

nonnegative f(x).

Table 1

14 g's minimum variance

20 iterations 100 iterations

-rix|) k)
e

U5 3 x 10 0
g~ M* .09 2 x 1071 2 x 10°"3
sine®(x) -.005 .022 .019
sine(x) -.058 . 156 24. 4
c0s(x) -.082 .523 1033

When two functions are convolved together the result is
a function broader than either. Considering the discrete
analog of convolution, the serial product, if a sequence of
m elements is convolved with a sequence of n elements the
result is a sequence that has m+n-1 elements. If the origin
for each sequence is located at the first element, the peak
of the resulting sequence will be shifted, and this
migration will occur at each 1iteration of Morrison
Smoothing. The way to overcome this inconvenience is by the
appropriate choice of origin for the g function. There are

advantages to having the origin at the sequence maximum, or

12



at the center of gravity. As the functions expand under
convolution it becomes difficult to 1locate an appropriate
origin. If the origin is at the rentroid it can be easily
located after convolutio: because abscissas of centroids add
under convolution (14) (See Appendix 2). However it has
been found (13, 14,15) that Morrison's method is more 1likely
to converge {f the origin of g is located at the maximum.
For this study g functions were restricted to singly peaked,
symmetric sequences (thus having the peak coincide with the
centroid) with an odd number of elements. These constraints
ensured a well behaved g function without being unduly

confining.

Returning briefly to the transform of the nth iteration

of Morrison Smoothing, recall that
n
H.(s)= H(® [1 ‘(l—(}(&\)

Hn(s) will be most like H(s) when the term [1-(1-G(s))"1~1,
For a constant n this will occur when G(s) is close to 1
(slightly less than or equal to 1). It 1is thus apparent
that g functions which will cause Morrison Smoothing to

converge rapidly are those possessing a broad transform.

Considering the above and the results of Table 1, three
g functions were selected. First, a narrow gaussian (which
has a broad transform) was chosen to represent functions
which will converge rapidly. Second, a broad gaussian

(whose transform is thus narrow) represents functions which

13




eonverge Sslowly. Third , a sinc squared function (whose
transform s slightly negative) was chosen to represent
functions which are slightly divergent. The 1last was
included to test whether a slowly diverging function can be

used for a few {terations bvefore divergence becomes too

accute.

Some care was :equtred for an appropriate cholice of a
sinc squared function,. Since the data are discrete it is
implicit that the sampling interval between points is equal.
This is iwportant because a function with few points is then
narrow by definition, and vice versa, if all functions are
sampled at the same interval, as was the case for this
study., The width of a function determines (inversely) its
breadth in the transform domain, and so its rate of
convergence, as discussed above. It was necessary to sample
the main 1lobe of the sinc squared function coarsely enough
that its breadth in the frequency domain was similar to that
of the narrow gaussian (so that they might be compared) yet
sufficiently finely so that the essential characteristics of
the sinc squared function were retained. The Fourier
transform was used to analyze each prospective g function.
See Figure 2 for graphs of the transforms of the g functions
used. The maximum negative value 1in the sinc squared
transform (which determined the rate of divergence) was
-0.0079, compared to the peak value of 1.0. For comparison,

the transform of the broad gaussian is given in Figure 3.

14
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As was discussed inittally, data, h, from a 1linear
shift-invariant instrument {s the convolution of the input
signal, f, with the {inscrument response function, g.
Morrison Smoothing concerns ({tself only with g and h, but
for real data these two functions are related (since hsf%g).
For this study h functions were constructed as follows. An
arbitrary (but realistic) f sequence consisting of three
narrow gaussians was convolved with each g function in turn,
to produce the three basic h functions. See Figures 4210,

(note the difference in scale size.)

Having thus obtained the necessary g and h functions it
Wwas nhecessary to add noise to the h function to demonstrate
the ability of Morrison Smoothing to remove incompatible
noise. One goal of this study was to find if incomplete
restoration (i.e. not iterating to convergence) would be
useful,. Since the noise builds proportionally to G with
each restoration it was anticipated that the function might
over some range of iterations be restored faster than the
noise., Were this the case, it would be beneficial to
terminate iterations at the end of that range, and thus

achieve some noise reduction.

The types of noise considered were two, constant
gaussian noise and ordinate dependent gaussian noise.
Gaussian noise is that which has the bell curve (e'““‘)
distribution about any given data point. For constant

gaussian noise the width of that bell curve is fixed. For

17
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ordinate dependent gaussian noise the width of the bell
depends upon the ordinate size of the data point |in

question, and varies as the square root of the ordinate.

To add gaussian noise to the data, the gaussian
distribution must be sampled randomly. The technique used
was as follows. If y=e=§%1 then y can only assume values
between 0 and 1. By generating a random value for y in this
interval, one could solve for the corresponding x, which s
then gaussian distributed noise. The full expression for

ordinate dependent gaussian noise is

N =\/3. x SExhoo x (—103(3331

where n is the noise, SF a scale factor, h(x) the ordinate

to which n will be added, and y a random number (necessarily
less than 1, therefore log(y) is negative, preserving the
overall positive character of the square root). Constant
gaussian noise differs only by omission of the h(x) factor.
After the magnitude, n, of the noise has been calculated, a
separate (random) decision was made whether to add or
subtract the noise from the datum. Sometimes (especially
for data with small values) this would result in an overall
negative wvalue. In all such cases, desiring to keep the
data positive, the sign of the difference was changed. When
the data were essentially zero, small purely random noise

was added, in imitation of "white" background noise.
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Several measures were used to characterize the noise
added, The first, and most c¢rude, was the size of the
scaling factor used., The second was the root mean square
deviation between the noisy and the noise free h (hereafter
referred to as the RMS). The third was the signal to noise
ratio (SNR) which was the maximum ordinate value of each h

function divided by the corresponding RMS.

SNRs ranging from 1.0 to 2600 were used. Figure 11
illustrates how ordinate dependent gaussian noise can differ
from constant gaussian noise even when both have the same
RMS. Figures 12-15 show how noisy data(solid line) differs
from the noise free data (dashed 1line) at various SNRs,h
functions and noise types. Unless otherwise noted, the

noise imposed is ordinate dependent.

In an actual experiment the noise free h function would
not be known . In this case a reasonable test for
convergence of the process would bhe to compare in some
fashion each value of the current iteration with the
corresponding value in the previous iteration. Initially,

four measures of convergence were used. they were as

follows:
) (ha = gy 0)* 3
CON (1) é .i., o /N
CON(2) E D /N

31
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CON(3) =~ 2 i (hpexy = g Q) g/N

1 SL N
CON(H) = z i | ) = hy-a 00 g/N
T LW
where h,(x) is the current iteration, h _(x) the previous

iteration, and h(x) the original noise free h function. At
convergence one should find the differences between

iteration3 becoming varishingly small.

To characterize the noise level for each {teration it
Was necessary to compare each {teration with the noise free
h. Three measures were used here, as follows. (Note that

hn(x) is the current iteration, and h(x) is the noise free

h). ER(D) = ii \\n(x)-\r\“(x)\g/N

Xxw 4

ER®= {7 (hon- ha) { /N

PELY

ERM)=4/ERQ)

ER(1) tended to weight al ordinates equally, while
ER(2) and ER(3) tended to emphasize the larger ordinates
(with larger possible differences) by squaring all terms.
ER(1) can be characterized as the absolute difference, while
ER(2) is the variance between the noise free h and the nth
iteration, and ER(3) is the corresponding standard
deviation. Note that the RMS of the added noise is the same

g R T



a3 the standard deviation between the noise free h and the

initial noisy h.

The ordinate dependent noise case was examined first,
By adjusting the noise scale factor ‘nput to the program,
SNR values of h in the range of 1 to 2000 were obtained for
each g function. (See Appendix 2 for discussion of
MORRIS.FOR.) Convergence measures versus iteration and error
measures versus iteration were plotted for each
configuration. See Plots u48-74 and 1-27. Initially 100
iterations were used for each g type,but by examining the
convergence data it was determined that the broad gaussian
(with slow convergence) had not yet converged. The broad
gaussian runs were repeated for 200 iterations and
convergence was achieved. Unfortunately, the convergence
plots seemed to yield no further significant information, so

in the constant noise case none were plotted.

Next the constant gaussian noise case was examined.
Here SNRs were varied from 1 to 1000. The narrow (fast) g
and the diverging g functions were run for 100 iterations,
while the broad (slow) g runs went 200 iterations. Error
measure versus teration plots were produced for the

combinations of interest. Se. Plots 28-47.

33
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CHAPTER 3

The data of greatest interest proved to be the plots of
er.'or measures versus iteration. (See Plots 1-47)., Each
error measure related the current iteration h values to the
corresponding values of the noise free h. When any of those
curves exhibited a minimum the noise induced error was in

some sense minimized.

The error curves fell 1into three broad categories.
Characteristic of the first category is Plot 1.
Characteristic of the second category is Plot 3, while the
third category follows the pattern of Plot 7. See Figure
16.

Category 1 curves all exhibited &an initial minimum,
then quickly rose to a constant level. This pattern
occurred among low SNR runs. Morrison's method 1is a dual
process of smoothing, then restoration. For low SNR runs
(with high noise levels), the maximum improvement in the
data was obtained by ¢the initial smoothing iteration.
Subsequent restoring iterations quickly restored the noise

that had been smoothed out (along with some detail).

Category 2 curves had a local minimum then rose to a
constant 1level. For this SNR range, the initial smoothing
aided the data, as did the restoring iterations, up to the

location of the minimum. Following that point, further

34
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restorations continue to increase the sharpness, but noise

was restored faster than the function.

Category 3 .''rves declined monotonically, so that the
last iteration liud the least error value. The curves tended
to become asymptotic to a constant value. This behavior was
frequent for high SNR data. In this case the noise level
was so low that Morrison's method was ineffective 1in
removing noise, but by running to convergence all sharpness
was restored, so the data were not degraded. The previous
statement regarding noise removal does not hold for the

broad gaussian, as will be discussed subsequently.

The error curves for fast g with ordinate dependent
noise all fell into these 3 categories. Category 2 (local
minima) occurred for SNR=10 to 100.

Slow g with ordinate dependent noise exhibited each
kind of behavior, with local minima for SNR=5 to 15.

Diverging g with ordinate dependent noise never
exhibited Category 3 (flat curve) behavior, because each
ite: “tion caused the h function to diverge. The break
between categories 1 and 2 was at SNR=z10 to 25.

Slow g with constant noise had no perceptible SNR range
wherein 1local minima occurred. The transition between
Category 1 and Category 3 curves occurred at SNR=5. Indeed
at SNR=5 all error measures were quite flat for the full

range of 200 1iterations. There must have occurred

36

e it e

T



p-r

P

B

&rmend

S05Et

(accidentally) a nice balance between restoration of detail
and noise reduction, such that no one 1level of each was

preferable to any other.

Diverging g with constant noise plots all followed
categories 1 and 2, as in the ordinate dependent »ase, with

the break at SNR=10.

It was desirable to characterize ¢the ability of
Morrison's method to remove noise. Towards this end the
minimum value of ER(3), the noise RMS, was compared to the
initial RMS for each combination. Table 2 contains the
results. The entries are the percent improvement of the
minimum RMS over the initial RMS. A negative entry

corresponds to a worsening of the data.

Several features of Table 2 are noteworthy. The
figures quoted are subject to some error range, since they
arise from randomly generated noise. Were a different
random seed to be used the results could be slightly
altered. For each noise type at high SNR values the fast g
had no 1improvement (but no worsening) of the data. This
indicates that the process converged entirely back to the
noisy h function. This behavior is consistent with the
consideration of the transform of the fast g. The transform
is broad, so there is little range for incompatible noise.

All noise is compatible, and all noise is restored.
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Percent improvement of Minimum RMS over Initial RMS

Fast
SNR

10
25
50
100
500
1000

Fast
SNR

10
25
50
100
500
1000

Table 2

Ordinate Dependent Noise

6.3
38
27
14

6.9

1.8

0.0

0.0

8.6
6.8
3.6
1.6
.36
0.0
0.0
0.0

Slow
Iter.

1

100
100

Constant Noise

Slow
Iter.
1
1
3
1"
22
42
100
100

23
67
63
50
49
48
4o
31

20
24
25
26
26
24
16

Divergent
Iter. %
1 29
1 us
3 42
34 36
55 57
83 =140
200 =220
200 -313
Divergent
Iter. %
1 1"
3 4
25 13
55 11
79 9.7
99 6.9
200 -82
200 -185

Iter.

49

38

o s i

B e SRR

g



In contrast, all observed cases of the slow g resulted
in significant improvement of the RMS level. Even those
cases where the error measures became asymptotic (indicating
convergence) showed improvement, so the converged h differed
substantially from the original noisy h. Viewed i{n the
transform domain it became apparent that the narrowness of
the slow g's transform allowed for appreciable incompatible
noise. This noise was not restored at convergence, and
accounted for the difference between the two h values, The
diverging g case was not clear cut, except that in the SNR
value range of 1 to 50 this diverging g function could be
applied for a net improvement of the RMS level. Above
SNR=100 use of this diverging g in Morrison's method caused
rapid deterioration of the RMS level. It should be noted
that these results are probably highly dependent upon the

rate at which a g function diverges.

Within each g category there is a tendancy for

Morrison's method to cause more improvement in the ordinate

dependent noise case, than in the corresponding constant

noise case. This 1implies that the noise added in the
ordinate dependent case will have a 1larger high frequency
and a smaller low frequency content than the constant noise.
(See Figure 11.) (High frequencies are more 1likely to be
incompatible and so not to be restored.) This frequency
distribution 1is the result of several experimental

parameters chosen when deciding how to shape the experiment.
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First, the choice of f as three narrow gaussians means
that the large ordirates (with correspondingly large noise)
permits high frequencies, even after h {is produced by
convolving f with g. Second, and related to the first
point, data were not allowed to become negative. When noise
subtraction resulted in a negative signal the sign was
switched, rendering it positive. In this manner sharp
changes across the ¢c level were rendered less sharp (and so
had a larger low frequency content). This second point
affects mostly the constant gaussian noise, since the
ordinate dependent noise near the dc level was constrained
to be small. It is quite possible that were the previously
mentioned parameters to be changed, Morrison's method would
no longer work better for ordinate dependent noise than for

constant.

Having established that Morrison's method results in
noise removal for certain SNR ranges for each choice of g
function and noise type, it would be desirable to establish
the number of iterations necessary to achieve the optimum
result. Towards this end the minimum for each error measure
was tabulated as a function of iteration number. Since
ER(3) is the square root of ER(2), their minima coincide and
they were tabulated as one. Figures 17-22 show the results.
In each figure C1 is the curve for minimizing the absolute
difference and C2 for minimizing the variance or RMS (since

RMS=standard deviation=ER(3)).
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For ordinate dependent noise C1 and C2 track fairly
well, (In Figure 19 the SNR=z100 data points can be
disregarded since at this SNR level with the diverging g

function, Morrison's method no longer helps.)

For constant noise the absolute difference curve became
quite eriatic, and a poor predictor of iteration number. In
Figure 21 the large decline in C1 at SNR=110 is probably an
artifact of round off error. The minimum in ER(1) giving
rise to that data point occcurred in the eighth decimal place
of the data.

In all such cases the C2 (variance and RMS) curve was
smooth and similar to y=x’ in shape. For both cases of
noise the fast g reaches its cptimum RMS value in about half
the iterations the slow g requires. This is consistant with

the known convergence behavior.

This thesis has demonstrated the ability of Morrison's
iterative noise removal technique to reduce noise under
certain circumstances. This result is quantified in Table
2. It has also established a relationship between minimum
variance and iteration number for certain SNR levels. These
relationships are given in Figures 17-22. These results may

be used in the following manner.

It is necessary to know the speed of convergence for
the g function under consideration. The easiest way to

characterize this is by Fourier transforming the g function
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and examining its width in the transform domain. On this
basis it should be possible to «classify (roughly) the g
function as "fast", "intermediate", "slow", or "diverging".
Then it is necessary to know the SNR of the h function. In
this study SNR was calculated :* the maximum ordinate
divided by the RMS cof the noise. Ii the SNR is not «nown,
it could be determined by taking a statistical number of
measurements at the peak, and at a 1low point of ¢the h
function. From these measurements one could determine a
mean value for the maximum ordinate, the RMS of the noise,
the corresponding SNR, and whether the noise is constant or

ordinate dependent.

Knowing the characteristics of the g function and the
RMS one way consult the appropriate graph in Figures 17-22.
If the g function 1in question has been classified as
intermediate an average of the values specified for the
number of iterations for the fast and the slow cases |is
recommended. If the SNR of the data is not in the range
plotted, Morrison Smoothing will not help the data, except
for slow g, where beyond this range Morrison's method is
still beneficial when run to convergence. By finding the
iteration number corresponding to the SNR in question for
curve C2 one may determine how many iterations of Morrison's
method to use to minimize the variance between the actual h
and a noise free h. It is not recommended to wuse C1 to
determine the appropriate number of 1iterations, as this

measure exhibited some disturbing inconsistencies. It is
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not really necessary to classify the noise of the experiment
in question as ordinate dependent gaussian or as constant
gaussian, as in most <cases the C2 curves were remarkably
similar for both noise types. The fast g rcsults were the
orly ones to show significant variation between the noise

types in minimum error iteration number.

There are several interesting ways in which the scope
of this work might be expanded. A few of the possibilities

are as follows.

One rationale for Morrison Smoothing is the benefits
obtained when the function is ultimately deconvolved. It
would be .nteresting to compare deconvolutions of the same h
function when it has been subjected first to the minimum
error number of iterations of Morrison's method and second,
to a significantly different number of iterations. It is
hoped that the first case would result in a better

deconvolution.

It would be enlightening to repeat this study after
changing the seed for the generation of random noise. This
would help establish the consistency and the fluctuations of

the results.

The noise cases studied, ordinate dependent and
constant represent extremes in the types of noise occurring
in data. It would be interesting to study the effects of

Morrison Smoothing on h functions with combinations of each
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APPENDIX 1

Proof of Theorems

i Definate Integral, Central Ordinate Theorem

Theorem:

f 2F) - S: foydx = o)

Proof:
-C 51
Fis) = 3.2 fmae dx
- ~ LA XD
F(eb\sso = [S-. fe dx] \s-o
had -0
Fo) = §..tene dx
= S:, Foxy dx
ii Abscissas of centroids add under convolution,
Theorem:
(x)g-*% = <ﬁ>c + (x)s
where -
oy = $.= xFardx
§_2 fo0dx
= ;E-:Xg‘(ﬁ)d%
Ag
Proof (15):
125
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<X - _S___; X {S-: c(u) g(x--u\\ du dx

taq = Lo ES_: C(u\%“"‘n du Jd»
S8l S5 xatx-wdx] du

(5.2 foadx X $-3 g dx)

S-;g(u)[<°§q3 + \AA:_']‘ du

U

Ag AS
= PR3P GA Ay

A Ay

= <><>3 + <{xX>p
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APPENDIX 2

Programs Used

The following prog- ams were written by the author in
the course of this study.
FFT.FOR (16)
CONVOL.FOR
MORRIS.FOR

GRAPH.FOR

FFT.FOR is a program which takes the fast Fourier
transform of a data set. It was used to ascertain the
transforms of the g functions used, so that their rates of

convergence could be determined.

CONVOL.FOR takes the serial product of two sequences.
It was wused to convolve the chosen f function with each g

function to produce to corresponding h function.

MORRIS.FOR is the primary processing program. It takes
a g and an h sequence as input, adds the specified gaussian
noise type (ordinate dependent, constant, or both) to the h
then performs Morrison Smoothing upon the noisy h function.
Several measures of convergence and error are calculated and

stored for each iteration.
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OF POOR QUALITY 1,28

GRAPH.FOR is actually a small wutility program that
sorts the data stored by MORRIS.FOR into a form easily
accessible to ICP. The Interactive Graphics Program was

actually used to produce all graphs in this thesis.

Listings of each program comprise the last part of this
appendix. The following 1is a brief overview of how those

programs may be used. In each case the quantities

underlined are those that were being entered.

FFT.FOR

The following is an example of how data is entered into

FFT.FOR



129
The first entry is the length of the real or complex

sequence to be transformed. It must be of length 2%8pm,
where m {8 an integer. If the data are real, enter 0, zero
for each imaginary part. The third input is either -1,
specifying thu forward transtorm, or +1 for the inverse

transform.

The complex output is the Fourier transform.

CONVOL.FOR

The following is an example of the use of CONVOL.FOR

O A A P I IR NV E AP IFAR N 1 | A R SR

NG R P

i REHEL T 18
FLOOOOGG
Jo000000G
1000007
FLOOOOC
VOGO Gy
SLO000 0
L DGOONe
bk QU FILE RS

R



The first entries are lengths sequence

involved. prompted, the elements of each

sequence, in the order specified in entry 1. The result

printed program requests a number for the

output file. If file storage i{s not required, type CONTROL

If it is needed, enter an integer between 21 and 63.
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OR QUALITY
MORRIS.FOR OF. POOR Q

The following is a sample of MORRIS.FOR.
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The first entry is for labelling purposes only. Enter
a 1 if the g function to be used will converge quickly, 2 if
slowly and 3 if it diverges. The second entry is the number
of elements in the h to be considered. The third is the
number of elements of the g used, which for this program
must be an odd number. The fourth entry requests the file
number for the file containing the g and h functions. The
fifth entry asks the user to specify the type of noise that
MORRIS.FOR will add to h. 1 is for ordinate dependent
noise, 2 for constant noise and 3 for both. The sixth entry
requests a scale factor for the noise. This factor |is
highly empirical but as the value entered increases, 8o does
the noise, as shown later by the corresponding increase 1in
the RMS and decrease in the SNR. The seventh entry asks for
the number of restoring iterations desired. The eighth
entry is for the file number wherein the data will be
stored. A sample of the data follows. The convergence and
error measures referred to are those discussed in the body

of the thesis, in the order they were presented.

GRAPH.FOR

GRAPH.FOR 1is ©poorly named. This program merely
arranges the data output by MORRIS.FOR into a form
accessible to IGP , the system's own graphics package.

Regardless, here is a sample of its use:
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ORIGINAL PARE 15
OF POOR QUALITY

LD A SRR 1 DD <2 I
‘
s
HECS B O I ¢ T B A ' CHeL . 1
o T ST S TN S FEL TS DA SR Ut NS

AT R SR I O L S
Y B I O S TS T I I AN IR N 3 A Bt S Y U R

RN S T RN ATEE 4 COUR N B R O I AT N
TR R RS T U S T BN ST O O T DY AR U TS

SerorHik T et FOR G0N 4

The first entry is the desired output file number from
MORRIS.FOR. There follows a heading, giving the specifics
of the file accessed. The second entries are output file

numbers for each measure, as prompted.
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20

25

30

35
40

4s

FFT PROGRAM

DIMENSION DATA(256)

INTEGER N,NN,ISIGN

TYPE 15

FORMAT(* ENTER DATA PTS, POWER OF
ACCEPT 20,NN

FORMAT(I)

N=2%NN

DO 40 I=1,N,2

J=(I+1)/2

TYPE 25,J

FORMAT(' ENTER RE(DATA(',I3,'))',$)
ACCEPT 30,DATA(I)

FORMAT(G)

TYPE 35,4

FORMAT(' ENTER IM(DATA(',I3,'))',$)
ACCEPT 30,DATA(I+1)

TYPE U5

134

2',%)

FORMAT(' ENTER -1 FOR FWD FT, +1 FOR REV FT',$)

ACCEPT 20, ISIGN
J=1

DO 5 I=1,N,2

IF (I.GE.J) GOTO 2
TEMPR=DATA(J)
TEMPI=DATA(J+1)



DATA(J)=DATA(I)
DATA(J+1)=DATA(I+1)
DATA(I)=TEMPR
DATA(I+1)=TEMPI
M=N/2

IF (J.LE.M) GO TO 5
J=J-M

M=M/2

IF (M.GE.2) GO TO 3
J=J+M

MMAX=2

IF (MMAX.GE.RY GO TO 10

ISTEP=2%MMAX

THETA=6.2831853/FLOAT(ISIGN#MMAX)

SINTH=SIN(THETA/2.)
WSTPR=-2.%#SINTH#SINTH
WSTPI=SIN(THETA)

WR=1.

WI=0.

DO 9 M=z1,MMAX,2

DO 8 I=M,N,ISTEP

J=T +MMAX
TEMPR=WR*DATA(J)-WI%DATA(J+1)
TEMPI=WR*DATA(J+1)+WI*DATA(J)
DATA(J)=DATA(I)-TEMPR
DATA(J+1)=DATA(I+1)-TEMPI
DATA(I)=DATA(I)+TEMPR

135
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10
50

55
60

DATA(I+1)zDATA(I+1)+TEMPI
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR
WI=WI*WSTPR+TEMPR®*WSTPI+WI
MMAX=ISTEP

GO TO 6

TYPE 50

FORMAT(' THE FT IS')

DO 55 I=1,N,2

TYPE 60,DATA(I),DATA(I+1)
FORMAT(G,' + I',G)
STOP

END
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CONVOLUTION PROGRAM

DIMENSION FI(0/255),G(0/255),H(0/255)
INTEGER A,B,C,D,E,F,OFL
ENTER SEQUENCE LENGTHS
TYPE 10
FORMAT(' ENTER LENGTHS OF F_G')
ACCEPT 20,M
ACCEPT 20,N
FORMAT(I)
M=M-1
N=N-1
ENTER SEQUENCE MEMBERS
TYPE 30
FORMAT (' ENTER F TERMS')
DO 40 I=0,M
ACCEPT 70,FI(I)
TYPE 50
FORMAT(' ENTER G TERMS')
DO 60 I=0,N

137

R el L AT

60 ACCEPT 70,G(I)
70 FORMAT(G)

S e e



twy oum @B
(@]

L = -%i

90
100

.

110

By e g
.

120

chwrs

130

140

L% Loy
.

; 150

MAIN PART OF COMPUTATION
K=M+N
DO 100 I=0,K
H(I)=0.
A=0
B=I-N
CALL MAX(A,B,C)
D=1
E=M
CALL MIN(D,E,F)
DO 90 J=C,F
TEMP = FI(J)®*G(I-J)
H(I)=H(I)+TEMP
CONTINUE
OUTPUT SECTION
TYPE 110
FORMAT(' THE RESULT IS')
DO 120 I=0,K
TYPE 130,H(I)
FORMAT (4G)
TYPE 140
FORMAT (' ENTER OUTPUT FILE ',$>
ACCEPT 20,0FL
FORMAT (U4G)
WRITE(OFL, 150),(H(I),I=0,K)
WRITE (OFL, 150),(G(I),I=0,N)
STOP
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END

SUBROUTINE MAX(A,B,C)
CHOOSES LARGER PARAMETER

IF (A.GT.B) C=A

IF (A.LT.B) C=B

IF (A.EQ.B) C=A

RETURN

END

SUBROUTINE MIN(D,E,F)
CHOOSES SMALLER PARAMETER

IF (D.LT.E) F=D

IF (D.GT.E) F=E

IF (D.EQ.E) F=E

RETURN

END
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C MORRISON SMOOTHING

c THIS PROGRAM USES THE FOLLOWING ITERATIVE TECHNIQUE
TO SMOOTH

C AND RESTORE DATA

C (H=F*G)

C H1=H®*G

C HN=HN-1 + (H - HN-1)%G

C G IS THE RESPONSE FUNCTION.

DIMENSION

H(0/255),G(0/255),HP(0/255),HZ(0/511),HN(0/511)
DIMENSION ER(1000,3),CON(1000,4),HOLD(0/511)
INTEGER P,Z,ANS,GTYP,OFL

C ENTER THE DATA
TYPE 5
5 FORMAT(* ENTER 1 FNPR FAST G, 2=SLOW, 3=DIVERGING')

ACCEPT 20,GTYP
CALL INPUT(N,M,H,G)
C ADD NOISE

-t
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TYPE 10
FORMAT(' CHOOSE 1 FOR ORD DEP

NOISE, 2=CONSTANT, 3=BOTH"')

20

30

40

35

ACCEPT 20,ANS
FORMAT(I)
TYPE 30
FORMAT(' ENTER NOISE SCALE FACTOR')
ACCEPT 40, SF
FORMAT(G)
IF (ANS.EQ.1) CALL ORDNOI(H,HZ,HP,SF,RMS
# , SNR,M.N)
IF (ANS.EQ.2) CALL CONST(H,HZ,HP,SF
* RMS,SNR,M,N)
IF (ANS.EQ.3) CALL BOTH(H,HZ,HP,SF,RMS,
* SNR,M,N)
PERFORM SMOOTHING OPERATION
CALL SMOOTH(N,M,HP,G, HN)
SET UP RESTORATION LOOP
TYPE 35
FORMAT(' ENTER NUMBER OF RESTORATIONS')
ACCEPT 20,2
IF (Z.EQ.0) GO TO 50
RESTORING LOOP
DO U5 K=1,2
CALL RESTOR(N,M,HP,G,HN,HOLD,HZ)
COMPARE HN TO H
CALL ERROR(K,M,N,H,HN,ER)
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50
60

110

120

130

COMPARE HN TO HN-1
CALL CONVER(K,M,N,HN,HOLD,CON,H)
CONTINUE
TYPE 60
FORMAT(' ENTER FILE FOR OUTPUT FILE
ACCEPT 20,0FL
OUTPUT RESULTS
CALL OUTPUT(K,M,N,H,G,ER,CON,SF,RMS,

® SNR,GTYP,ANS,OFL)

STOP
END

INPUT ENTERS THE DATA

SUBROUTINE INPUT(N,M,H,G)
DIMENSION H(0/255),G(0/255)
INTEGER IFL

TYPE 110

FORMAT (' ENTER SIZE OF H')
ACCEPT 120,M

FORMAT(I)

TYPE 130

FORMAT(' ENTER SIZE OF G,0DD')
ACCEPT 120,N

M=M-1

N=N-1

TYPE 140

'$)

142
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160

200

143
FORMAT(' ENTER THE INPUT FILE 'vs)
ACCEPT 120, IFL
READ(IFL,160)(H(I),I=0,M)
READ(IFL, 160)(G(I),I=0,N)
FORMAT (4G)
RETURN
END

ORDNOI ADDS ORDINATE DEPENDENT NOISE

SUBROUTINE ORDNOI(H,HZ,HP,SF,RMS,SNR,M,N)
DIMENSION H(0/255),HZ(0/255),HP(0/255)
REAL MAXIM

INTEGER Q,L

Q=N/2

RMS=0.

MAXIM=H(0)

DO 210 I=0,M

P=RAN(15)

S=RAN(10)

IF (H(I).LT..0000001) V=RAN(5)%.000001
IF (H(I).LT..0000001) GO TO 200

IF (H(T).GT.MAXIM) MAXIM=zH(I)
V=SQRT(2.%SF#H(I}*(-ALOG(P)))

IF (S.GT..5) Vz=V

HP(T)=H(I)+V

IF (HP(I).LT.0.) HP(I)=-HP(I)
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L=1le0

HZ(L)=HP(I)
RMS=(HP(I)=-H(1))®#P2,RMS
CONTINUE
KMS=SQRT(RMS/(M+1))

IF (RM5.EQ.0.) GOTO 215
SNR=MAXIM/RMS

RETURN

END

CONST ADDS CONSTANT NOISE

SUBROUTINE CONST(H, HZ,HP, SF, RMS, SNR, M, N)
DIMENSION H(0/255),HZ(0/511),HP(0/25%)
REAL MAXIM

INTEGER Q,L

Q=N/2

RMS=0.

MAXTM=zH(0)

DO 230 1=0,M

P=RAN(15)

S=RAN(10)

IF (H(I).GT.MAXIM) MAXIM=zH(I)

V=S . T(2.%SF#*(-ALOG(P)))

IF (S.GT..5) V==V

HP(I)=H(I)+V

IF (HP(I).LT.0.) HP(I)=z-HP(I)
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L=1+Q

HZ (L )=HP(I)
RMS=(HP(I)~H(I))*#24RMS
CONTINUE
RMS=SQRT(RMS/(M+1))

IF (RMS5.EQ.0.) GO TO 235
SNR=MAXIM/RMS

RETURN

END

BOTH ADDS BOTH KINDS OF NOISE

SUBROUTINE BOTH(H,HZ,HP,SF,RMS,SNR,M,N)
DIMENSION H(0/255),HZ2(0/511),HP(0/255)
REAL MAXIM

INTEGER Q,L

Q=N/2

RMS=0.

MAXIM=H(0)

DO 250 I=0,M

P=RAN(15)

S=RAN(10)

R=RAN(12)

IF (H(I).LT..0000001) VP=0.

TF (H(I).LT..0000001) GO TO 240

IF (H(I).GT. MAXIM) MAXIM=H(I)
VP=SQRT(2.%SF#H(I)*(-ALOG(P)))

[
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IF (R.GT..5) VP=-VP

T=RAN(8)
240 V=SQRT(2.#SF#(-ALOG(T)))
IF (S.GT..5) V==V
HP(I)=H(I}+V+VP
IF (HP(I).LT.0.) HP(I)=-HP(I)
L=I+Q
HZ(L)=HP(I)
RMS=(HP(I)-H(I))*#24+RMS3
250 CONTINUE
RMS=SQRT (RMS/(M+1))
IF (RMS.EQ.0.) GOTO 255
SNR=MAXIM/RMS
255 RETURN
END
c
C CONVER CHECKS THE DIFFERENCE BETWEEN
ITERATIONS
o AS A MEASURE OF THE CONVERGENCE.
c

SUBROUTINE CONVER(K,M,N,HN,HOLD,CON,H)

DIMENSION HN(0/511),HOLD(0/511),CON(1000,4),H(0/255)
INTEGER P,Q

P=N/2

TEMP=0.

TEMP1=0.

TEMP2=0.

Sk s
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TEMP3=0.

M=M+1

DO 550 I=P,M+P

Q=I-P

IF (H(Q).EQ.0.) GO TO 545
TEMP=TEMP+(HN(I)-HOLD(I))**#2/H(Q)
TEMP1=TEMP14+ABS (HN{I)~HOLD(I))/H(Q)
CONTINUE

TEMP2=TEMP2+ (HN(I)-HOLD(I))#*#2
TEMP3=TEMP3+ABS(HN(I)-HOLD(I))
CON(K, 1)=TEMP/M

CON(K, 2)=TEMP1/M

CON(K,3)=TEMP2/M

CON(K, 4)=TEMP3/M

MzM-1

RETURN

END

SMOOTH DOES THE INITIAL SMOOTHING, AND STORES THE

RESULT IN HN

C
C

405

HN =H *G

SUBROUTINE SMOOTH(N,M,HP,G,HN)
DIMENSION HP(0/255),G(0/255),HN(0/511)
INTEGER A,B,C,D,E,F

FORMAT (4G)

DO 420 I=0,M+N
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HN(I)=0.

A=0

B=I-N

CALL MAX(A,B,C)
D=I

E=M

CALL MIN(D,E,F)
DO 4,0 J=C,F
TEMP=HP(J)#G 1-J)
HN(I)=HN(I)+TEMP

410 CONTINUE
420 CONTINUE
RETURN
END
C
C MAX RETURNS THE LARGR VALUE
c

SUBROUTINE MAX(A,B,C)
IF (A.GT.B) C=A
IF (A.LT.B) C=zB
IF (A.EQ.B) C=A

RETURN

END
C
C MIN RETURNS THE SMALLER VALUE
C

SUBROUTINE MIN(D,E,F)
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IF (D.GT.E) F=E

IF (D.LT.E) F=D
IF (D.EQ.E) F=D
RETURN

END

RESTORE DOES RESTORING ITERATIONS
HOLD=HN -1
HN=HOLD+(HZ -HOLD) *G

SUBROUTINE RESTOR(N,M,HP,G,HN,HOLD, HZ)
DIMENSION

S(512),v(1000),HP(0/255),G(0/255),HN(0/511),

* HOLD(0/511),HZ(0/511)

INTEGER P
P=N/2
C SET UP BRACKET S=(HZ-HN), AND UPDATE HN,
HOLD=HN-1
DO 300 I=0,M«+N
S(I)=HZ(I)-HN(T)
300 HOLD(I)=HN(I)
c DO CONVOLUTION V=S*G

DO 330 I=0,M+2%N
V(I)=0.

A=0

BzI-N

CALL MAX(A,B,C)
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D=1

E=M+N

CALL MIN (D,E,F)
DO 320 J=C,F
TEMP=S(J)*G(I-J)

320 V(I)=V(I)+TEMP
330 CONTINUE
C ASSEMBLE HN, HN=HOLD + V

DO 340 I=0,M+N

340 HN(I)=HOLD(I)+V(I+P)
RETURN
END
C
C ERROR COMPUTES THE ABSOLUTE DIFFERENCE, VARIANCE
o~ AND DEVIATION BETWEEN EACH ITERATION AND THE
NOISE FREE
c ORIGINAL H.
C

SUBROUTINE ERROR(K,M,N,H,HN,ER)

DIMENSION H(0/255),HN(0/511),ER(1600, 3)

INTEGER P,Q

P=N/2

SUM=0.

SIGMA=0.

DO 500 I= O,M

Q=I+P

TEMP=H(I)-HN(Q) !
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SUM=SUM+ABS(TEMP)
SIGMA=SIGMA+TEMPH*TEMP
ER(K, 1)=3UM/(M+1)
ER(K,2)=SIGMA/(M+1)
ER(K,3)=SQRT(SIGMA/(M+1))
RETURN
END

OUTPUT

SUBROUTINE OUTPUT (K,M,N,H,G,ER,CON,SF,RMS,
* SNR,GTYP,ANS,OFL)
DIMENSION H(0/255),G(0/255),ER(1000,3),CON(1000,4)
INTEGER GTYP,ANS,OFL,GFUN,NTYP
K=K-1
IF (GTYP.EQ.1) GFUN='FAST CON'
IF (GTYP.EQ.2) GFUN='SLOW CON'
IF (GTYP.EQ.3) GFUN=z'DIVERGE'
IF (ANS.EQ.1) NTYP:'ORD.DEP'
IF (ANS.EQ.2) NTYP='CONST'
IF (ANS.EQ.3) NTYP=z'BOTH®
TYPE 700, GFUN
FORMAT(' THIS G FUNCTION IS ',A8)
TYPE 710,SF, NTYP
FORMAT(' THE SCALE FAGT0Q> WAS ',G,' WITH NOISE TYPE

TYPE 720, RMS, SNR



720
740

760

745

755

770

780

790

795
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FORMAT(' THE RMS WAS ',G,' AND THE SNR WAS ',G)
FORMAT (4G)

TYPE 760

FORMAT(' THE MEASURES OF CONVERGENCE WERE ')

TYPE 745,(I,CON(I,?),CON(I,2),CON(I,3),CON(I,H),

% I=10,K,10)

FORMAT(I4,4G)

FORMAT (14, 3G)

TYPE 770

FORMAT(' THE AD,VAR, STD.DEV. WERE ')
TYPE 755,(I,ER(I,1),ER(I,2),ER(I,3),I=10,K,10)
TYPE 780,0FL

FORMAT(' THE OUTFILE IS ',I4)
WRITE(OFL,790) GFUN,NTYP

FORMAT (2A8)

WRITE (OFL,795) SF,RMS,SNR,K
FORMAT(3G, I4)

WRITE (OFL,T740)(CON(I,1),I=1,K)
WRITE(OFL,740)(CON(I,2),I=1,K)
WRITE(OFL,740)(CON(I,3),I=1,K)
WRITE(OFL,T740)(CON(I,l4),I=1,K)
WRITE(OFL,740)(ER(I,1),I=1,K)
WRITE(OFL,740)(ER(I,2),I=1,K)
WRITE{OFL,740)(ER(I,3),I=1,K)

RETURN

END
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160

180

190

145

1000

153

GRAPH

DIMENSION CON(1000,4),ER(1000,3)
INTEGER GFUN,NTYP, IFL,OFL

TYPE 100

FORMAT(' ENTER INPUT FILE NUMBER')
ACCEPT 110, IFL

FORMAT(I)

READ(IFL, 120) GFUN,NTYP

FORMAT (2A8)

READ(IFL,130) SF,RMS,SNR,K

FORMAT (3G, I3)

FORMAT (4G )

TYPE 150, GFUN,NTYP

FORMAT(' THE G IS ',A8,' WITH NOISE TYPE ',A8)
TYPE 160, SF,RMS,SNR,K

FORMAT(' SF=',G,' RMS=',G,' SNR= ',G,'K= ',IU)
DO 180 J=1,4

READ(IFL, 140)(CON(I,J),I=1,K)
CONTINUE

DO 190 J=1,3

READ(IFL, 140)(ER(I,J),I=1,K)
CONTINUE

FORMAT(G)

TYPE 1000

FORMAT(' DONE READING IN')
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DO 210 J=1,4

TYPE 200,

FORMAT (* ENTER THE OUTPUT FILE FOR CON ',I2)
ACCEPT 110, 0FL

WRITE (OFL, 145)(CON(I,J),I=1,K)

DO 230 J=1,3

TYPE 220,

FORMAT (' ENTER OUTPUT FILE FOR ER ',I2)
ACCEPT 110,0FL

WRITE(OFL, 145)(ER(I,J),I=1,K)

STOP

END

P
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