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ABSTRACT

Linear filtering techniques currently used for the

restoration of noisy, blurred or otherwise degraded image

data are discussed and new techniques related to the

iterative techniques of Morrison and van Cittert are

developed and implemented. Prog&:!tms written for the

implementation are discussed in the appe;idices. it is shown

that the new techniques are convergent for any system

response function, and they are applied to the task of

restoring a severely blurred image.

A model of a linear shift-invariant optical system is

constructed and used to generate synthetic data

representative of the response of a simple optical

instrument to various types of input. Noise generated by

the instrument and by other phenomena associated with use of

an optical system is characterized and added into tie model

output in various amounts to test its effects on subsequent

data processing. Also included in the model '.s the effect

of severe defocusing of the optics on the optical transfer

function. Van Cittert's technique for deconvolution does

not converge for the defocused system. Application of the

new techniques for noise removal and deconvolution is made

and it is shown that the results are extremely useful when

both are applied together to no'Lsy data.

vii
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Application of known non -linear time -domain constraints

within the algorithm is discussed and tested. It is shown

that the bandwidth of the data may actually be increased by

applying these constraints. 	 Results of processing noisy

synthetic data indicate that the constraints are a very

useful feature of the method. A comparison is made of the

effects of using various combinations of constraints on

several	 types	 of data, indicating that the rate of

convergence is increased by the _ , tication of one or more

constraints and that the mos,: generally effective constraint

for a given set of data will be determined by the character

of the data. If the i,nage consists of objects appearing on

a black background, the most effective constraint should be

the non-negativity constraint. The peak height limitation

constraint will be most effective for objects with an extent

greater than that of the impulse response of the system.



One of the most common objectives in image processing

is the removal of degradations such as those caused by

atmospheric blurring, diffraction limited 	 optice,	 and

defocusing. This type of processing is termed image

restoration. It is the objective of image restoration

techniques to restore the image to the form it had before

the degradations occurred. Useful results can include an

increase in resolution and improved definition of the image.

Restoration techniques rely on a mathematical description of

the degradation and/or imaging system to apply the necessary

corrections for constructing a truer image of the object.

The term "object" here represents the real configuration of

light sources comprising a self-luminous or illuminated

object which is imaged by the optica l. system. The term

"image" refers to the distribution of light intensities

forming the output of the imaging system. The image will

normally be a close representation of the corresponding

object luminance distribution, but may suffer from various

degradations such as those mentioned above plus the addition

of noise.

This study is an application of a restoration technique

which is related to the noise removal and deconvolution

techniques of Morrison and van Cittert. It was formulated

to remove a major drawback of the older techniques; they

1
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failed to converge for a wide class of response functions.

Both Morrison's noise removal and van Cittert's

deconvolution techniques are iterative techniques applied in

the time domain. They are bas-1 on the representation of a

linear shift-invariant system as a convolution of the

impulse response of the system with the input to the syster. .

Morrison's iteration begins by first smoothing the system

output to remove incompatible noise. The effect of ',^e

remainiig iterations is to restore the data gradually t,a

their i..j.tf jl !3tate with only the incompatible	 noise

removed. The effect of a finite number of iterations of

Morrison smoothing is to perform a windowing operation on

the transform of the data. The window is clasely related to

the transfer function of the system to provide a greater

weight to components of the data with less attenuation and

probably higher signal to noise ratios. Van Cittert's

deconvolution technique begins by approximating the limiting

solution f p (x,y) with the system output g(x,y).	 The

limiting solution, if the method converges for the impul^r^

response h(x,y) , is f p (x,,y) .	 Intermediate	 iterations

provide partially restored results which again have a

spectrum weighted preferentially toward those components

corresponding to larger values of the system transfer

function H (u, v) .

Always-convergent versions of these two techniques for

two-dimensional image data are developed in chapter two and
N

implemented in chapter three.	 The advantage of these

7
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techniques over inverse filterin g is that they allow the

flexible application of function domain constraints such as

non-negativity of image data, peak height limitations, and

finite extent of the image in the process of iterating

toward the final solution. Since the constraints directly

affect the s ►.ectrum of the result by sharpening edges in the

image, it is possible to extend the transform of the result

beyond the bandwidth of the system. The addition of

constraints to the iteration makes the method non-linear,

and no theoretical treatment of the method with constraints

is attempted. Convergence requirements for the linear

version (no constraints) and experimental results indicating

the usefulness of the technique with and without constraints

are presented in chapters two and four. Chapter three

discussed the implementation of the method using digital

techniques.

Chapter one presents a mathematical model of an optical

imaging system and describes the generation of synth tic

data from the model for processing.	 Several	 special

functions are used in the first three	 chapters	 for

convenience in describing optical systems 	 and	 linear

filtering processes.. 	 Following is a table of special

functions and the notation used to describe an optical

ir°aging system.

S .'

p^
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Notation and g ecial Functions

(Bracewell (1965), Frieben (1979))

4

DFT discrete Fourier 	 transform

FFT fast Fourier	 transform

OTF optical	 transfer	 function

HSF point spread function

SNR signal	 to noise	 ratio

f(x,y) object	 irradiance

g(x,y) image	 irradiance

h(x,y) point spread function

n(x,y) random noise function

Capitalized function names

represent transforms of functions

F{f(x,y)}=F(u,v) ;Fourier transform of function f(x,y)

Fig (x,y)}=G(u,v)

F{h(x,y) }=H(u,v)



Rect(x,y)=	 1 ;{l x l <1/2 and jyj <1/21

0 ;flxl >1/ 2 or	 lyl>1/21

Rect(r)	 -	 1 11r1 <1i2

0 ;Irl >1/2

1 1 (r) = 1 st order Bessel function

Sinc (x) = sin (*,x)

Wx

delta(x)= impulse symbol

Shah(x) _	 delta(x-n) ;for n an integer

The integer N represents the number of sample

points included in the discrete 1-D Fourier transform

or across a square 2-D discrete Fourier transform.

The integers n  and n  represent the number

of sample points across the square space domain sampling

window used to record g(x,y) and h(x,y) respectively.

5



CHAPTER 1

OPTICAL IMAGING SYSTEM MODEL

3
Since this	 is	 a two-dimensional	 study with application

4-

to	 image data, a model	 of an optical	 imaging system	 is used

to	 generate	 realistic	 synthetic	 data	 for	 input	 to	 the

algorithm under	 test.	 The model	 selected	 is	 6.pplicable	 to

systems	 forming	 images	 of	 objects	 radiating	 spatially

incoherent	 light.	 The assumption of	 spatial	 incoherence	 is

nearly correct for most optical 	 imaging situations.	 Further

restrictions	 placed	 on	 the	 ir. .)del	 itself	 will	 be	 elaborated

below.

► a
In	 order	 to	 calculate	 appropriate	 instrument	 response

functions	 for	 applicati;:,n	 of	 noise	 removal	 anl'
w

deconvolution,	 the model	 system	 is	 represented	 in	 terms	 of

its optical transfer and Point	 spread	 functions.	 The	 ideal

point	 spread	 function	 ( PSF)	 and	 optical	 transfer	 function

(OTF)	 are	 computed	 and	 then	 degraded	 to	 represent	 a

defocused	 system.	 The	 PSF	 h ( x,y)	 is	 defined	 to	 be	 the

response	 of	 the	 system	 to a	 single	 object	 point	 radiator.

The OTF is related to the PSF by a Fourier	 transformation;
4	 W

it represents the	 transfer	 function of	 the	 system	 in	 terms

i 6

^
Ia

i
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of the spatial frequency components of the input.

Gaskill defines the (incoherent) diffraction image of a

general two-element lens system [Gaskill (1978)]:

I (x,y) =I' (x,y) *h (x,y) 	 (1. 1)

where I is the image plane irradiance, I' is the irradiance

of the geometrical image, and "*" implies convolution.

Since Eq.(1.1) represents the output (the diffraction image)

as the convolution of the geometrical image with the impulse

response of the system, we may regard this portion of the

optics as a linear shift-invariant system. This equation

does not account for any differences between the object and

geometrical	 image.	 Ea.(1.1) fails in the presence of

aberrations such as coma which tend to cause the PSF to

become shift-variant. Also, the shift-invariant property

holds only within the limits of the field of view allowed by'

the Fresnel conditions, which require that the sum of object

and image extents be small with respect to the distance

between object and image planes [Gaskill (1978)].

It can be shown that the	 PSF h(x,y)	 may	 be	 written	 in

terms of the aperture stop as

h(x,y) = a 2 IP(ax,ay)1 2/(area of aperture) 	 (1.2)

where a is a constant related to the physical parameters of

the system, and P(x,y) is the Fourier transform of p(x,y),

the complex amplitude transmittance function of the aperture

A

k
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stop. Using Eq.(1.2), h(x,y) may be computed for any given

aperture function p(x,y). Choosing a clear circular

aperture stop gives p(x,y)=Rect(r) and P(x,y) = F{Rect(r)I

in two dimensions. The Fourier transform of the

two-dimensional cylindrical Rect represents the complex

amplitude response of the system to spatially coherent light

if the stop is locrted at the Fourier transform plane of the

system [Gaskill (1978)).	 The squared magnitude of that

response is the impulse response for incoherent light input.

For the purpose of constructing a model of a sampled

data system, the PSF and OTF may be computed by means of the

fast Fourier transform (FFT) in the above equation. The

two-dimensional FFT used to implement this model is designer:

to maintain the origin of the transform near the center of

the sampled data array (see appendix 1). 	 The array size

R	

must be equal to a power of two for the simple

w

	

	 one-dimensional algorithm used in this implementation and a

choice of square data arrays 64 elements on a side is made
f	

for generation of the synthetic data.

The chosen aperture function, a circularly symmetric

Rect, is sampled such that it has a radius of 16 sample

points and then transformed into the function domain to get

,. the coherent PSF. The squared magnitude of this PSF is then

the incoherent PSF, and the OTF is computed simply by

inverse transforming (-i transform goes from space domain to

spatial frequency, +i transform performs in^ rerse) the
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incoherent	 PSF.	 By the convolution theorem, this operation

is	 identical	 to	 performing	 a periodic convolution of the
j

frequency	 domain aperture function with itself. 	 A periodic
w

convolution	 [Oppenheim and Schafer	 ( 1975)]	 is defined as the i

convolution	 of two replicated sequences such that there may
i

be	 overlap	 of	 the	 two	 functions	 around the ends of the

window	 defined	 by	 the	 finite extent of the sampled data.

This	 replication	 is	 implicit in the finite Fourier domain

representation	 of a sequence, since sampling at some finite
{

a(

interval	 1/T	 in	 the	 frequency	 domain	 corresponds	 to

replication	 in	 the time domain with interval T-1/2s 	 The
c

^- relation	 of	 the	 coherent	 OTF	 (the aperture transmittance

function)	 to	 the incoheren t-- OTF is then given by tKa above
4

convolution,	 and	 it is obvious that the OTF will no longer

be	 flat.	 This	 will result in attenuation of high spatial

frequency components of the input signal. 	 It is of interest
w

^a to	 note that the incoherent OTF, 	 though not flat, has twice

the non-zero width of the coherent OTF.

^. In order to represent a further degradation of the

 input signal beyond that introduced by the focused system,

the OTF is modified to represent that of a severely

defocused system. The blur OTF for a severely defocused
aw	 A

lens is H=J l (ar )/( ar)	 [Goodman ( 1968)].	 This OTF	 is

..

	

	 multiplied by the OTF for the focused lens system to obtain

the overall OTF for the degraded system. Actual computation

' 	 was done by making use of the fact that the transform of

J l (r)/r is just Rect(ar)	 [Hecht	 and	 Zajac	 (1974)). i

v

,
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Computation of the defocused PSF is then done in the

E function domain simply as a linear convolution of Rect(r)

with the focused PSF. The radius of the defocusing Rect is

3 sample points, approximately twice the radius of the

focused PSF re ulting from the choice of a circular aperture

E	 with radius of 16 sample points in the frequency domain.

Perbpective plots of the focused and defocused model

PSF and OTF follow. Plots were done by the ASPEX program

written at the Laboratory for Computer Graphics and Spatial.

Analysis at Harvard University. Each plot gives a

perspective view of the 2-dimensional surface defined by the

data array representing the function. The lines drawn are

contours defining the amplitude of the PSF or OTF at the x,y

coordinates associated with each sample point. Note that

the defocused PSF shows a much wider maximum than the

focused PSF and a slight depression at the origin. This

corresponds to the defocuses; OTF being narrowed and given

negative lobes from the multiplication by JI(r)/r.

Since the problem of restoring an image without noise

present is a relatively simple one, and since the occurrence

of a noiseless image is rare, the system model must take

into account the generation of noise in imaging eq^iipment.

There are several sources of noise in typical imaging

systems. Electronic circuitry in photodetection apparatus

such as photomultipli.er and vidicon systems introduces shot

and thermal noise to the system output. Film grain noise is
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present in photographic systems, due to the random nature of

the distribution of silver particles in the processed film.

Quantization error may be regarded as noise introduced in

digitizing an analog signal (Pratt (1976)).

Shot noise generated in a photomultiplier may be

regarded as having an ordinate dependent gaussian amplitude

distribution. This is to say that the variance of the noise

is proportional to the signal amplitude. The actual

dependence of the noise on the signal is (Billingsley

(1979)1:

std. dev. s Q'5

where Q represents the average number of photoelectrons

released in a sampling period.

f Film grain noise is dependent on the film granularity,

which is a measure of the size of the silver grains in the

film. The noise resulting from this granularity is also

dependent on signal amplitude (transmittance of the film)

with a proportionality:

std. dev. T = std. dev.Tl(T(1-T)/Tl(1-T1))'S

where T 1 is a reference transmittance at 	 which	 the

granularity	 of	 the	 film	 is	 measured	 with	 a

r	
microdensitometer.

Thermal noise is one of the most common noise sources

in electronic imaging systems. It is generated by random

electron fluctuations in resistive elements of

photodetectors and amplifiers. This type cf noise may be
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represented by an additive random Gaussian process with a

zero mean and standard deviation independent of the input

signal. Although this noise is negligible compared to shot

noise in high gain detectors such as photomultip:.ers, it

will likely dominate in regions of low signal amplitude.

Quantization noise results from the conversion of a

continuous analog signal to a digital representation with a

finite resolution, or number of bits. If one assumes that a

fixed point binary representation is used, and that input

values are rounded to the nearest quantization level within

the range allowed by the digital number representation, the

a
error due to quantization must be within the range of +/-

one half of the quantization width. The quantization width

is the smallest number which may be represented by the fixed

point binary Lepresentation. Assuming that the sequence of

errors e(n) represents a stationary random process, that the

spectrum of the error sequence is flat (white noise), that

there is no correlation between the signal and the error,

and that the probability distribution of the error process

is uniform over the range of possible error, the mean of the

noise introduced will be zero, and the variance equal to the

square of the quantization width divided by twelve

R.	 [Oppenheim and Schafer	 (1975),	 Hamming	 (1962)].	 The

+ n assumptions made above are valid for a complex signal (one

with much structure) sampled with a quantization width which

is small relative to the first difference of the signal.

^M

V
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1 Quantization noise may be assumed to be present in the

model data due to the fact that they are represented by

digital numbers in a fixed point format for input to the

processing algorithms. The quantization width used is 10-3,

resulting in a variance of approximately 10 -7 . Since the

peak value of the synthetic g(x,y) is 137, the SNR of the

quantization error is then 92 dB. This is the amount of

noise on the "noiseless" g(x,y) used in the test runs of the

restoration algorithm.

A second set of model data is used to test two lower

SNR's. The model for thermal noise generation is used for

this Purpose. Program NO1'SE.FOR generates additive gaussian

noise in a set of image data (see Appendix 2). The two

signal-to-noise ratios chosen were 23 dB and 33 dR (200:1

and 2000:1). The lower SNR represents a high noise level,

while the higher SNR is typical of a visually "clean" image

(Andrews and Hunt (1977)).
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CHAPTER 2

IMAGE RESTORATION 'TECHNIQUES

A linear shift invariant system mry be modeled by a

convolution operation:

g(x,y)-f (x ► y)*h(;c ► y)	 (2.1)

where g(x,y) is the output of the system, f(x,y) is the

input, and h(x,y) is the impulse response of the system

(Bracewell (1978)). The aim of restoration is to eliminate

the smoothing effect of h(x,y) on the output g(x,y).

One technique often used for restoration of images is

the method of inverse filtering. If we define the principal

solution f  as having transform

Fp=G/H ; JHJ>0
	

(2.2)

Fp=0	 H=0

then F  will have been compensated for the attenuation

caused by H and will look like Rect(r) assuming an optical

system with a circular aperture and a delta function input

[Frieden (1979)]. The bandwidth of the system is defined as

the width of the band of frequencies for which JHJ>0, and it

14



is	 obvious	 that	
P 
	 will	 lack	 any components in F which

exceed	 the bandwidth of H.	 (For simplicity we are assuming

that	 there are no interspersed zeroes within the OTF.	 This

is	 true	 for	 any	 optical system having a clear aperture.)

This	 implies	 that the resultant point spread function will

be J l (r)/r	 (Hecht and Zajac	 (1975)].	 The properties of this

function will then define the resolution of fp .	 This is not

4- the	 highest	 possible	 resolution	 obtainable	 by	 linear

filtering	 within	 the available bandwidth	 (Andrews and Hunt

(1977)].	 The	 sidelobes	 exhibited	 by	 this	 point spread

' function	 are	 relatively	 large	 (on	 the order of 10%)	 and

alternating	 in	 sign, with the largest lobes being negative

and	 nearest	 the	 central	 maximum.	 Since	 intensities in

imagery must be non-negative, one would expert that this PSF

is	 not	 the	 optimum,	 since one would desire to reduce the

side	 lobes	 as much as possible and linear techniques exist

to perform this function optimally.

Consideration	 of	 the	 effect	 of	 noise	 on	 inverse

filtering also brine:, out difficulties in implementation 	 of

this method of image 	 restoration.	 Allowing	 for	 additive

noise in the model, Eq.(2.1)	 becomes:

g(x,y)sf(x,y)*h(x,y)+n(x,y) 	 (2.3)

where n(x,y) represents noise present is the output of the

instrument. Application of the inverse filtering technique

to noisy data results in output:



Fp(u,v)=F(u,v)+N(u,v)/H(u,v) I IH(u,v) >0

The inverse filtering operation will then emphasize the

noise wherever 1/H(u,v) is greater than 1. This will cause

severe degradation of overall signal quality at frequencies

for which the actual signal-to-noise ratio is low and H is

small. It is possible to define an optimum bandwidth for

inverse filtering (Frieden (1979)) based on minimization of

the mean square error in f  resulting from noise in g. For

an OTF which decreases monotonically to zero as freaiiency

approaches the cutoff point, and the assumption that the

actual signal-to-noise ratio is constant for all frequencies

within the bandwidth, the optimum bandwidth is determined by

the frequency at which the modulus of the OTF equals the

root noise to signal ratio. This indicates that knowledge

of the noise is critical in optimum application of inverse

filtering whenever the SNR is not high. Following is a

discussion of more sophisticated techniques which eliminate

the disadvantage of extreme noise sensitivity by allowing a

partial restoration and effectively allowing the choice of a

range of restored point spread functions logically related

to the impulse response of the system.

Another method for restoring image data	 is	 van

Cittert's iterative deconvolution technique. 	 This method

allows the use of powerful function domain constraints such

as the non-negativity constraint for images, and	 the

simultaneous application of other constraints such as peak

16
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height limitations and finite extent. Also an advantage of

van	 Cittert's iteration is the fact that it may be

terminated short of the oint that noise begins to renderp

the result unsatisfactory. Van Cittert's iteration:

^-	 fO(x ► Y)-g(x ► Y)	 (2.4)

fi(x,Y)-fi-1(x ► Y)+[g(xoy)-fi-1(x ► Y)*h(x ► Y)I

defines the initial estimate of f(x,y) to be the system

output g(x,y). The next approximation, f l (x,y), is taken to

be the sum of f 0 and the convolution of h with the

difference between g and the previous current estimate of f.

This process continues with the application of constraint,

being made at each iteration. In the transform domain, the

i th iteration of van Cittert's (without constraints) may be

represented as:

i
F i -G.2 - (l -H)n

s

where the term multiplying ^• may be viewed as a window

operating on G to produce F i . It has been shown that the

van Cittert iteration is convergent for 11- H(u,v)1<1. This

places restrictions on the forin of h(x,y) for which the

method may be used. One restriction is that the peak of the

Even part of h(x,y) must lie at the origin.	 In the

transform domain,	 11-u(u,v)l<1 requires that Re{H(u,v))

never become negative [Hill (1973), Hill and Ioup (1976)].

This requirement hinders the use of van Cittert's iteration

on a severely defocused optical system due to the presence



of negative lobes in the OTF. A comparison of the behavior

of van Cittert's technique witty that of the

always-convergent iterative technique f ,*)r h(x,y) nRect(x,y)

was presented by the author in a paper delivered at the 1981

meeting of the Louisiana Academy of Sciences. The effect of

the divergence, if slight, is to reduce the amount of

restoration possible before the divergence significantly

a affects the result (Ioup (1979)). Further drawbacks to

linear versions of this technique are the facts that for

moderate values of i and small values of H(u,v) the result

of the iteration without constraints is a linear version

(i+l)G(u,v) of the input G(u,v) plus a linearly enhanced

version (i+l)N(u,v) cf the noise (Frieden (1979)).

v
	 Since the presence of even small amounts of noise in

g(x,y) destroys the usefulness of inverse filtering

techniques, it is necessary to perform a noise removal or

attenuation operation prior to the application of any

deconvolution technique related to 	 inverse	 filterinq.

Morrison's iterative noise removal technique has 	 been

successfully used with the application of van Cittert's

deconvolution technique (Ioup (1968)).	 Morrison smoothing

is defined as an iteration in the function domain:

r	 90(x,y)-0
	

(2.6)

gi(xtY)=9i-l( xty) +19(`<ry)-9i-1O,,yil *h(x,Y)

where g i (x,y)	 is the output From the i th	 iteration of the

algorithm.	 The transform domain representation of the
ith
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iteration	 is:

^f

Gi (u,v) •G (u,v) { 1- [l-H (u,v)) i }	 (2.7)

.nd the output may be regarded as the result of performing a

windowing operation upon G ( u,v)	 in	 the	 transform	 domain.

The effects of this window are to remove incompatible	 noise

from g(x,y)	 and to attenuate all components 	 of	 g(x,y)	 for

which	 H ( u,v)	 is	 small	 [ Ioup	 (1968),	 Morrison	 (1963)).

Incompatible noisc is any noise having 	 spectral	 components

nonexistent	 in H(u , v)	 and compatible noise is	 that	 portion

W	 of the noise present with 	 spectral	 components	 with'n	 the
t

bandwidth of the OTF H ( u,v).	 The	 de -emphasis	 provided	 by

this noise removal technique where H(u,v)	 is small	 has	 the

effect of reducing the magnitude 	 of	 signal	 and	 noise	 in

regions of	 G(u,v)	 corresponding	 to	 small	 H ( u,v).	 This

de-emphasis provides a reasonable compromise	 of	 resolution

for decreased noise	 sensitivity	 since	 we	 know	 that	 the

optimum bandwidth for linear F iltering	 is	 related	 to	 the

actual SNR as a func*ion of --requency and	 the	 SNR	 may	 be

assumed to be lowest for spectral components associated with

small H(u,v)	 and additive white	 noise.	 Figure	 2.1	 is	 a
F

perspective plot of the window defined by Morrison smoothing

as a function of	 iteration	 number	 for	 a	 particular	 one

dimensional G(s).	 The iteration number, n,	 increases from 1

at the front to 63 at the back, and the 	 gradual	 change	 in

shape of the window from G ( s)	 to Rect(as)	 is apparent	 as	 n

increases.
.4i

4

'^^t



4
i

i	
20

A new method proposed by Ioup is implemented here in

two dimensions for the restoration of blurred image data and
6

to take advantage of the iterative application of

constraints in the space domain for extrapolation of the

input signal transform beyond the bandwidth of the OTF. The

method is similar to inverse filtering in that an estimate

of f(x,y) is made in the same way that fp (x,y) is defined

above. The method is also iterative to allow the gradual

application of constraints to the data as restoration is

performed.	 Also implemented is a modified version of

Morrison's iterative smoothing technique for reducing the

effects of noise on the iteration [Ioup (1979)]. In order

to assure convergence, a new windowing function is defined

in the transform domain by normalizing H m (u,v) to have a

maximum amplitude of one:

Hm(u ► v) IH(u ► v) I /IHmax(u,v) I	 (2.8)

The deconvolution iteration is:

f 0 (x, Y) =g (X, Y)	 (2.9)

f i (x ► Y)=f'* i-1 (x ► Y)+[fp(x ► Y)-f " i-1 (x ► Y) ] *hm(x ► Y)

f'i_1(x,y)=constrained{fi_1(x,y))

Convergence of this iteration is assured if, in the

transform domain, I1-Hm (u,v)I < 1. Due to the definition of

hm (x,y) convergen.ce is assured for any h(x,y) normalized by

,-	 Equation.	 (2.8).	 If	 h(x,y)	 is	 rion-negative,	 then
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normalization is done by forcing it to have unit area,

assuring a peak transform value of 1. The use of C i_l(x,y)

as the previous value for f i _ l (x,y) allows the application

of constraints to affect both the limit of resolution

possible with the method and the noise sensitivity of the

method. The addition of constraints to the process of

restoring g(x,y) to f p (x,y) makes the method non-linear,

increasing the difficulty of analytically describing the

results. This study simply applies the method to synthetic

data with and without constraints in order to ge:. a

qualitative measure of the effectiveness of the methoe in

the presence of varying amounts of noise.

Since this implementation of the convergent technique

utilizes transform domain convolutions, it is possible to

contemplate performing non-integral and multiple numbers of

iterations in one step. This is made possible by defining a

recursion in the transform domain:

(3.4)

Fi(u,v)=Fp(u,v)-[Fp(u,v)-G(u,v)]fl-Hm(u,v)li

F2i(u,v)=Fp(u,v)-[Fp(u,v)-Fi(u,v)][l-Hm(u'v)Ii

where i is any real number. The result of performing this

recursion a times is:

(3.5)

Fni(u,v)=Fp(u,v)-[Fp(u,v)-G(u,v)? [1-Hm(u ► v)lni
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recursion, performing any equivalent number of time domain

iterations in one step before returning to the function

domain to apply constraints. Input: parameters to the

program determine the number of equivalent iterations to he

performed and the interval at which constraints will be

applied.

Application of the non-negativity and finite extent

constraints is simply a matter of setting to zero any output

points which violate the constraint. In order to apply the

peak constrain:, however, one must have some knowledge

concerning the signal input to the instrument. If it is

possible to say that the input signal could not exceed some

upper limit in magnitude, then convergence and resolution

may be aided by application of a peak constraint between

iterations. Since computation of F  is done as a division

by H, it is possible that the magnitude of Fp (0,0) will have

been changed with respect to the magnitude of G(0,0). 	 This

is a result of our having placed no restrictions on the area

of h(x,y).	 If the area of h(x,y)	 is no* unity the

calculated f  will have been corrected for the amplitude

scaling to which this corresponds in the instrument. 	 Tn

order to use the above recursion with a peak constraint it

is necessary to correct g(x,y) for this scaling. 	 Dividing

g(x,y) by the area of h(x,y) ensures the proper

correspondence between the original f(x,y) (input to the

instrument) and g(x,y) for application of peak constraints.

Note that without the application of any constraints the
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limit of the iteration is fp (x,y) regardless of whether

g(x,y) is scaled prior to starting, although the rate of

convergence may be changed by the scaling.

1
Y



CHAPTER 3

IMPLEMENTATION OF CONVERGENT ITERATIVE TECHNIQUES

Implementation of the convergent iterative techniques

for noise removal and deconvolution requires a careful

consideration of the assumptions made in quantizing and

sampling signals for digital processing.p g	 g	 g	 p	 g	 Also to	 be
.. r-

considered are the various alternatives	 available	 in

implementation of	 each	 stage	 of	 processing.	 Each

alternative is considered here and, when possiblF:, analyzed

`	 to determine the relative efficiency of the technique. 	 The

basicroblems to be considered are the representation of a
l	

p	 p

continuous signal by a sequence of samples in space or time,

the quantization of a continuous quantity by conversion to a
3

finite precision digital number, and the limitations of the

discrete Fourier transform in representing the frequency

domain characteristics of a function. We are assuming here

r	 that for the purpose of treating the data analytically, the

,T
original process may be assumed to be mathematically

continuous. It is possible however that the phenomenon is

not truly continuous, but is experimentally sampled at a

larger interval than that characteristic of the process.
r

k

24
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The sampling theorem states that a band-limited

function may be sampled at discrete intervals in the

independent variable without loss of information if the

interval is no larger than the Nyquist limit for the

function. A band limited function has a Fourier transform

which is non-zero over only a finite portion of the domain

of the transform variable s. The Nyquist limit 1/2sc is

inversely proportional to the cutoff frequency, so , of the

function. The synthetic data generated from the model of

Chapter 1 inherently satisfies this requirement since Lhe

transform was specified to be band-limited and the space

domain function computed from the transform.

Quantization of a continuous quantity by digital

representation has already been considered in the discussion

of quantization noise in chapter one. It was shown that the

SNR for a resolution of 10 -3 is 92 dB. This SNR is already

relatively high, and all calculations are here performed

with a floating point representation having a 28 bit

mantissa. The SNR associated with this resolution is 158 dB

within the dynamic range allowed without a change of

exponent (28 bit fixed-point SNR). Due to the possible loss

of precision involved in differencing numbers of similar

magnitude, the accuracy of results is difficult to predict.

The relative error resulting from the representation of a

number x by the approximation x'=x(l+e), where e= (x'-x)/x is

	

the relative error of approximation, may	 be	 greatly

increased by summing two numbers of similar magnitude but

A



opposite sign (Knuth (1969)]. Since it is not convenient to

predict loss of precision resulting from a general.

calculation, an attempt will be made to estimate the number

of	 significant	 digits	 in the results given certain

characteristics of the inpkit date

In order to estimate the precision with which the

algorithm operates, some known characteristics of the :.nput

data will be used to take into account the relation between

the dynamic ra.ige of the input and the precision of the

algorithm output. The dynamic range of the function q(x,y)

r is roughly 6 orders of magnitude or 20 significant bits as

presented to the processing algorithm. If it can be shown

that the floating point computations preserve the 20 high

order bits of the mantissa, then the computation may he

f	 assumed exact within the precision of this set of input.
i

-

Since the FFT algorithm is the most used portion of the
f

actual program, we will examine its accuracy first. The FFT

computes the discrete Fourier transform of the input h^ , a

process of multiplication with phase factors W Nkn and

summations of these products. The phase factors all have a
i

magnitude of 1, therefore the multiplications involvea in

the FFT never tend to increase the magnitude of the result,

and roundoff error is significant at each stage only near

the least significant bit carried in the calculation. 	 This

being the	 case,	 the	 troublesome	 factor	 of	 error

magnification due to floating point multiplications changing

j	 exponents and thus perhaps incorporating erroneous data bitsl:

i

a
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into the significant portion of the next sum may be ignored

here. Making the assumption that each phase multiplication

does not increase the relative magnitude of the current

error, we may then say that the upper limit on calculation

error will be on the order of magnitude of the product of

the number of	 successive	 summations	 and	 half	 the

quantization width used	 in	 calculation.	 Since	 the

quantization width used here is 2 -28 , there may he on the

order of 256 successive summations before cumulative

roundoff error could begin to reduce the significance of

results. For the case of white noise input to the floating

point FFT, it may be shown that the output noise to signal

ratio is twice the number of summations multiplied by the

variance of the roundoff error in each operation [Oppenheim

and Schafer (1975)]. The SNR for this implementation with a

64x64 input array is then 169 dB for white input.	 The

floating point FFT may then be 	 trusted	 to	 provide

insignificant addition of noise to the calculations.

The same assumption may not be made regarding the

portion of the algorithm which computes F p . In this case, a

floating point division is done with the magnitude of the

denominator being perhaps as small as 10 -6 , ,:his being the

limit set by the use of a tolerance factor in the

computation of 1/H. There exists the possibility here of

moving erroneous data bits of the numerator 20 places to the

left, thereby seriously affecting the significance of the

result.	 All other portions of the algorithm 	 use	 a

4
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normalized function (magnitude < 1) as a multiplier and

therefore are not as likely to aftect seriously the accuracy

of the result. It is fortunately the case that the portions

i of Fp which are most likely to contain calculation error are

also the ones which are given the least weight by the

restoration algorithm.

The last basic theoretical point to be considered is

that of the representation of a finite extent sampled signal

by its discrete Fourier transform. In order to make use of

the efficient algorithm available for computation of the

FFT, the program is written to operate on an image in the

transform domain whenever possible. The convolution theorem

states that the transform of the convolution of two

functions is the product of the transforms of the two

functions. This holds for the continuous infinite

representation of a function and its transform. Due to the

fact that we are using discrete finite representations in

both domains, several possible problems must be considered

in the implementation of convolution as a product in the

transform domain (Bracewell (1978)].

Implicit in the discrete representation of a function

as a set of samples taken at intervals 1/2s r , is the

replication of the transform at intervals of width s  in the

transform domain. By the convolution theorem. sampling in

the function domain is equivalent to convolution in the

tranoform domain of the transforms of the sampling function
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and the original function.	 Since	 the	 transform	 of

shah ( x/2sc ) is 2scshah ( 2scs), the transform of a sampled

function is the superposition of many copies of the

transform of the continuous function replicated at intervals

of 2s 
c o This superposition of replicated copies will only

be equal to the continuous function's transform if the
Y

function is band-limited with cutoff at or below 	 sc

(Bracewell (1978)). The phenomenon resulting when this is

not the case is referred to as aliasing, since the

superposition results in the addition of high frequency

components from one window to the low frequency components

of the neat, hence aliasing high frequencies as low ones.

In the function domain this corresponds to the fact that the

sampled representation of a signal is not unique for

frequencies beyond the Nyquist limit. The only way to avoid

aliasing when sampling data of unknown spectral composition

is physically to filter the data before sampling. This

fil;:ering is performed by the aperture stop in an optical

system and the electronic circuitry in electrical signal

detection apparatus.
F,

Due to ±he finite nature (in space or time) of the

i'	 sequence of samples representing the function, there is also
9

a sampling effect on the transform. The transform of any
f "

!	 finite continuous or discretely sampled function will be

'

	

	 defined only at intervals of 1/2T of the frequency variable.

This is a manifestation of the fact that the function is not
a

completely specified in space. 	 If one assumes that the

f

^a

a

n
a
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function is zero everywhere in space beyond the samplta

region, then the missing values between defined transform

values may be computed by interpolation based on sinc(s), or

by the equivalent operation in the function domain, that of

appending zero values to the sequence before performing the

discrete Fourier transformation.

A result of the implicit replication in one domain of a

function represented at discrete intervals in the other

domain, is that the convolution represented in the transform

domain as G(u,v)H(u,v) is a periodic convolution in the

space domain. We refer to the convolution of two sampled

finite extent functions g(x,y) and h(x,,:) as a linear

convolution when the operation is performed over an infinite

extent window by assuming g(x,y) and h(x,y) to be zero

beyond the region in which they are known (i.e., not

replicated). A periodic convolution results if the

assumption is made that the functions are replicated by

infinite repetition of the set of sample points. The linear

and periodic convolutions will give the same result only

when the sum of the number of samples in g and h (in each

dimension) is less than or equal to N+1, where N is the

number	 of	 samples	 used	 in	 the	 transform	 domain

representation of the result. This is equivalent to

appending enough zero sample values to g or h so that there

will never be simultaneous overlap of the two non-zero ends

of g and h during computation of the periodic convolution.
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Actual implementation of the convergent deconvolution

iteration begins by computing H(u,v) from h(x,y). Thp

experimenter must insure that aliasing does not occur in the

process of sampling to produce h. The number N, the size of

the FFT to be used (here ase , -,med square, in two dimensions),

must be chosen large enough such tnat n g +nh-1<N. This

insures that the periodic convolutions implemented in the

program will give the intended results.

Hm (u,v) is then calculated as

Hm (u,v)- IH(u,v)I /{area[h(x,Y))}
	

(3.1)

insuring that, for h(x,y) non-negative, IH m (u,v)I<l and

therefore that the iteration will converge. Eq.(3.1) makes

use of the fact that if the PSF is a real, non-negative

function it has a hermitian transform with peak magnitude at

the origin and equal to the area of h(x,y) 	 [Ioup (1968),

Bracewell (1978)]. This property is not, however, a

requirement for the convergence of the technique (see

Eq.2.8) .

Next, h(x,y) is normalized in order to maintain the

relationship:

area( f (x,Y) ) -area [g (x,y)
	

(3.2)

realizing that in sensing the data our optical system

	

performed the following modification of the area under 	
b

F (x,y) :



t,

32

areafg (x, y )l n farea(f(x,y)] )(areaft.(x,y)] ). 	 (3.3)

t	 This normalization is necessary when applying constraints

since we will compare F  to G within the iterat.'on. Any

required change in area can be implemented at the end of the

iterations.

Next the algorithm makes an attempt to minimize the

effects of noise in g(x,y) by removing incompatible noise

and attenuating compatible noise. A transform domain window

is used in the new method to perforn the noise removal

operation. This windowing operation is

Gs (u,v) RG(u,v)(1-fl-Hm (u,v)] n )	 (3.4)

where the new, smoothed g(x,y) is computed in the transform

domai,i by weighting the transform G(u,v) according to

11- 1%1-Hm(u,v))n]. This weighting is equivalent to

performing n iterations of Morrison smoothing in the time

domain with the function hm (x,y) in place of	 h(x,y)

(Morrison (1963), Ioup k1968)).

The new technique now makes an approximation of f.(x,y)

` (x, ) defined above, using a tolerance factor of. 10-6as fp y	 g

in computing 1/H(u,v) to avoid arithmetic overflows in the

computation of Fp (u,v) -, nd limit the effects of errors

introduced by the calculation. The to,.eeance is chosen much

smaller than the quantization interval used in sampling the

model output and therefore functions solely to prevent

ovcLflow and limit calculation error. This tolerance factor
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is applied simply by avoiding the division 1/H(u,v) whenever 	 a

IH(u,v)l<tolerance and substituting 	 zero	 for	 the	 result.

Due to	 the	 efficiency	 of	 computation	 in	 the	 transform

domain, all functions are	 represented	 in	 the	 program	 by

their transforms most of the time. 	 Only the application	 of

function domain constraints is done in the space domain.

Application of	 constraints	 is	 performed	 by	 inverse

transforming the current F i (u,v)	 and then forcing f i (x,y)	 to

meet the constraints input to the program.	 The time	 domain

function is corrected to meet the peak, non-negativity, 	 and

finite extent constraints and then written 	 out	 to	 a	 disk

file.	 Advantage	 is	 taken	 here	 of	 the	 fact	 that	 the

imaginary part of f i (x,y)	 should be zero,	 and it	 is	 cleared
ti

before continuing the iteration. 	 This should help to reduce

the propagation of roundoff errors through 	 the	 iterations.

The iteration then proceeds by transforming the 	 constrained

f i (x,y)	 back	 to	 F' i (u,v)	 and	 repeating	 the	 previous

procedure until the repetition count is exhausted.

a

j

e I:.
Y'.
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CKAPTER 4

RESULTS AND CONCLUSIONS

In order to test the usefulness of the iterative

smoothing and deconvolution techniques of chapter three for

image data, the algorithms are here applied to several sets

of synthetic input data generated by the model of chapter

one. The first set of data, used as an initial test for

convergence and symmetry, is the response of the defocused

model optical system to an input with 270 degrees of

circular symmetry. The intensity distribution of f is a

cylindrical Rect(r) with a smooth gaussian edge over 270

degrees of arc and a sharp edge over the remaining quadrant.

These data are processed both with and without the addition

of noise.

The second set of data used in testing the application

of constraints and the effects of noise on the method is

chosen to provide a qualitative measure of performance for

several types of objects. The first is a pair of delta

functions separated by approximately one half of 	 the

half--width of h(x,y).	 The second is a pair of narrow

gaussian peaks separated by the same distance. The third is

34
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a sharp right angle shaped object with arms fifteen samples

long and two samples wide. The fourth object is a right

triangular wedge with discontinuous sides. Each object has

unit peak intensity. Due to the lower resF-^nse amplitudes

generated by the model for sharp, narr^..4 objects, the

restoration of the deltas, Gaussians, and angle will require

raising the height of their peaks significantly. The peak

constraint will then be less effective on the first three

objects than on the large triangular object.

The third and fourth sets of data used in testing are

two different noisy cases of the second set. Approximately

white gaussian noise is added to both sets in different

amounts. The SNR for set three is 200:1 or 23 dB and for

set four the SNR is 2000:1 or 33 dB. The high noise level

corresponds to a relatively noisy image and the lower noise

level represents a fairly clean image (Andrews and Hunt

(1977)).

Presented in chapter one were the displays of the model

PSF and OTF. The same PSF and OTF are used	 for	 all.,	 of	 the

following data.	 These are the defocused PSF	 and	 OTF	 from

chapter one. Following is the set of plots representing the

G	 " n first set of test data.	 Figure 4.1	 is a display	 of	 f(x,y)

as input to the model to generate g(x,y). The	 sharp	 edge
im

and flat top will test the performance of	 the	 restoration

method. Figure 4.2 shows the Fourier transform	 of	 f(x,y).r

j
E

Note the ripples occurring parallel to the	 sharp	 edge	 (of
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f(x,y)) and extending out to high spatial frequencies. The

output of the system, g(x,y) is shown in Figure 4.3. Just

evident in the response is a flattening of one side of the

peak where the sharp edge of f(x,y) occurred. Also note

that the flat top has been completely rounded off. Evident

in G(u,v), Figure 4.4, is the attenuation of the high

frequency components of F(u,v) and the introduction of a

negative oscillation resulting from the multiplicative

negative lobe of the blur OTF in the model. Figure 4,5 is a

display of fp (x,y) computed for this g(x,y) and the model

PSF. Since there was no significant noise in g (x,y) ,

fp (x,y) is very close to f(x,y) although the effects of

calculation noise are apparent in the flat areas. Figures

4.6 through 4.7 present the results of performing 1,5, and

10 iterations of deconvolution on g(x,y). It is evident in

the first iteration that the technique is beginning to

restore the sharp edge to the data and to flatten the

rounded peak. The fifth and tenth iterations indicate that

the	 iteration	 is rapidly converging to f(x,y).	 The

non-negativ;'.;- constraint has been applied to these data at
{9

the end of each iteration.

In order to demonstrate the effect of noise on the

results from this technique, the same run is repeated after

adding white gaussian noise to achieve a signal to noise

ratio of 700:1. As is evident from Figure 4.9, this amount

of noise is not readily visible on the data, yet the effect

on the principal solution is to render it useless as a final
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result (Figure 4.10). Even so, Figures 4.11 through 4,13

indicate that useful results may be obtained from the

iterative technique for small numbers of iterations even

without first performing noise removal.

The second set of test data contains four separate

objects to provide a measure of performance for various

r
	 types of input. Figure 4.14 is a display of this f(x,y).

Two of the objects are pairs of small, sharp objects in

order to test the resolution of the result. All objects

have the same peak intensity, but the total power radiated

by each object varies considerably between the pair of point

sources and the wedge. Vie output of the model system,

g(x,y), displayed in Figure 4.15, is greatest for the wedge

and smallest for the pair of point sources. 	 A plot of

;- log[l+g(x,y)] is shown in Figure 4.16 to indicate more

clearly the smoothing effect of the model. The objective of

restoring these data is to bring the amplitudes back to

their original levels by putting the spread-out power back

where it belongs, thereby sharpening the image also. Again,

i	 the data are first decorvolved without added noise in order

t:	
to verify the accuracy of the implementation, and to observe

the effects of various combinations of constraints.

Unfolding (deconvolution) iteration number ten, with

all constraints applied between each iteration, is shown in

•	 Figure 4.17. Obvious improvements have been made in the

sharpness of edges and the relative amplitudes of the small
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objects. Figure 4.12 displays the result of applying the

constraints only once, after the equivalent of ten

iterations performed in one step in the transform domain.

The lessened effect of the processing on edges and the flat

top of the wedge is apparent, but the deltas still show

about the same improvement over the input,	 Processing in

this manner is of interest due tc its possible savings in

computer time. Figures 4.18 through 4.37 provide a

comparison of results of processing with the application of

each constraint individually and all constraints together at

each iteration and at every tenth equivalent iteration for

10, 20, 50 and 100 iterations. A comparison of Figures 4.33

and 4.34 indicates that, for these noiseless data, only ten

applications of constraints (once every ten equivalent

iterations) has provided nearly the same result as the much

more expensive appV cation of constraints at each of the 100

equivalent iterations. Apparent from a comparison of the

four sets of processed data is the fact, that application of

constraints individually or jointly has a cumulative effect

on the result, the magnitude of which is dependent on the

number of applications. Most effective for these data is

the non-negativity constraint for speeding convergence and

increasing bandwidth.	 Also important for the "bright"

portions of the image is the application of the upper limit

constraint. It tends to provide a similar additional

advantage in regions of the image which approach maximum

brightness. For this image the main effect of the finite
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extent	 constraint	 is	 to limit the extent of Gibbs

oscillations resulting from the sharp edges of the objects.

The next set of data was generated by	 adding	 gaussian

noise to f(x,y)	 to obtain a SNR	 of	 200:1.	 The	 noise	 is

visible in Figure 4.38.	 A plot of log(l+g(x,y))	 is shown in
y

Figure 4.39 to indicate the actual SNR for each of the 	 four

objects.	 The actual SNR for the pair of	 point	 sources	 is

only 1.5:1, and this noise level 	 is therefore very likely to

obscure important details necessary for complete restoration

_ of these features.	 Five iterations of	 noise	 removal	 were

7 first performed on g(x,y)	 to achieve a large degree of nuise

"
removal	 (and high frequency attenuation).	 A total of thirty

LL

unfolding iterations and constraint applications	 were	 then

performed,	 the	 first	 10	 with	 an	 equivalent	 iteration

interval of 2, the next 10 with an interval of 	 5,	 and	 the

last 10 with an interval of 10.	 The	 final	 result,	 Figure

4.40, is significantly sharper than the original with little

detail lost in noise. Figure 4.41 shows the result of

applying only 20 iterations, the first 10 at an interval of

.5 equivalent time domain iterations, and the next 10 at an

interval of 4. Prior to deconvolution, 20 iterations of

smoothing were applied. Since this number of smoothing

iterations corresponds to significantly less high frequency

attenuation of G(u,v), the deconvolution converges more

f
quickly, though it also shows a greater amount of noise.

Figure 4.42 shows the result of continuing out to 105 ,v

equivalent iterations. It is apparent from this result that

R
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the optimum number of iterations is less than 105 since the

noise amplitude has increased without a significant

improvement in sharpness or amplitude of the restored point

sources.

i Figures 4.43 and 4.44 show the effect of not using the

._ upper limit constraint for two different numbers of

iterations of smoothing and unfolding. It is apparent from

these displays that the peak constraint is of great value

only for the wedge, it does not aid the restoration of the

lower power objects. The remaining test runs on these data

were all done after applying 20 smoothing iterations to

a g(x,y). These results show a definite correlation between

the speed of restoration and dominance of noise and the

number of times constraints are applied in computing the

result. Further study could be directed to determining an

optimum interval for application of constraints based on the

amount of smoothing and the SNR.

The last set of data processed had a SNR of 2000:1.

Again, f(x,y) consisted of the same four objects. In order

to show that inverse filtering is not adequate for even this

w_ low noise level, fp (x,y; is displayed in Figure 4.50.

Application of 60 iterations of noise removal, however,

improves fp (x,y) considerably to that shown in Figure 4.51.

Figures 4.52 and 4.53 show the results of deconvolving

g(x,y) an equivalent of 100 and 300 time domain iterations

with 20 and 40 constraint appl:lcations respectively. 	 Tn
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7

this set of data the point sources are being restored much

more rapidly due to the fact that less attenuation of high

frequencies	 is	 necessary in the smoothing operation.
i

	

Symmetry of the point sources is also good at this lower 	 a

actual SNR.

The results discussed above demonstrate the

effectiveness of the convergent iterative techniques in

accomplishing noise removal and deconvolution of optically
r

sensed data suffering from severe defocusing	 effects.	 For

the	 model	 studied,	 the	 PSF	 and	 OTF	 were	 accurately

determined,	 but	 this	 is	 not	 always	 possible	 with

experimental data.	 Since these methods do not rely	 heavily

on accurate knowledge of these	 system	 characteristics	 for

1= convergence,	 it	 is	 expected	 that	 useful	 restoration	 of

imagery could be obtained by estimating the system	 PSF	 and

OTF	 (Yoerger	 (1979)).	 Ability	 to	 use	 this	 technique	 to

apply constraints after any number of equivalent time domain

iterations makes it extremely flexible for using constraints

to remove noise from the image and 	 increase	 its	 bandwidth

while deconvolving. 	 The most effective constraint for 	 this	 3

particular	 f(x,y)	 was	 the	 non-negativity	 constraint,	 and

this	 suggests	 that	 the	 method	 could	 be	 applied	 to

astronomical data with 	 great	 success,	 since	 such	 images

of	 sources on a black field.often consist	 point

AW
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in addition to investigating means of determining an

optimum number of iterations of deconvolution and constraint

applications for the new convergent iterative deconvolution

technique, further study is indicated to improve 	 the

approximation fp (x,y) used in the iteration. Since this

function "pulls" the result toward an unacceptable limit in

the case of noisy data, it would be desirable to include the

effects of the constraints into f p (x,y) as the iteration

progressed. It is apparent from the results presented here

that random noise is attenuated by the application of

constraints. Creater benefit might be derived from these

constraints if a way is devised to incorporate their noise

cancelling properties into fp (x,y) while iterating in order

to allow a greater number of iterations to be performe!

before noise emphasis begins to dominate restorption.

Further study is also indicated to investigate the effects

of constraints on resultant bandwidth of processed data by

studying the spectrum of each iteration. Also of interest

is the effect of replacing the initial estimate f p (x,y) with

other reasonable estimates for the deconvolved image such as

the Wiener filter	 solution.	 It	 is	 possible	 that

intermediate iterations using this technique to apply

constraints will provide an improvement over the one-shot

filtering technique when it is used in this manner.
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APPENDIX ONE

The main routine, F5DCON.FOR, used to implement the

always-convergent iterative techniques for noise removal and

deconvolution is described in this appendix. Input to the

program must include a two-dimensional array of numbers

representing the system response function h(x,y) and another

array of sample values corresronding to the system output

g(x,y). The program is written in such a way that modifying

parameters DIM1 and DIM2 to reflect the dimensions of the

desired working arrays is all that is necessa:• y to change

the value referred to as N in chapters two and three. DIM1

must be assigned a value of N and DIM2 the value 2N before

the program is compiled. This program makes use of complex

data arrays and FORTRAN	 supplied	 complex	 arithmetic

functions in order to simplify the handling of complex

functions.	 Declared	 as	 complex	 quantities	 are

two-dimensional arrays G(I,J), H(I,J), and Hs(I,J), each

having dimension N by N. 	 Declared as real arrays of

dimension 2N by N and equivalenced to the co.,,plex arrays are

the arrays Gin(I,J), Hin(I,J), and Hout(I,J).	 The last

three arrays are used for convenience in doing I/O of the

real parts of the complex arrays and in applying

constraints. A complex array of dimensions N by N is

treated by FORTRAN as an array of real pairs representing

(real, imaginary) values of a single complex variable. 	 The

equivalencing done above simply makes the real and imaginary
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parts of each complex value accessible by subscripting

instead of by a call to a library function. All

multi-dimensional arrays are stored in core by FORTRAN in

such a way that the first index varies fastest. This is

diagrammed in the comments within the main routine.

Input to the program is mainly interactive. Operator

input is requested to supply the filenames for g(x,y) and

h(x,y) and the dimensions of g(x,y) and h(x,y). These last

dimensions are independent of N, which must be chosen such

that ng+nh-1<N. Here, the values of n  and nh represent the

largest dimension of y(x,y) and h(x,y), and the program

expects to read in square arrays for g(x,y) and h(x,y).

Also requested by the program is the FORTRAN format in which

the input data are organized.

The remaining input to the program determines the

processing parameters to be used. Requested are the total

number of iterations of smoothing and unfolding to be

performed, the interval at which constraints are to be

applied and the output interval for the unfolding iteration.

Also requested is the name of the file containing the data

•• to be unfolded, and an initial numeric offset value to be

used in naming the files output by the unfolding iteration.

Files output by the smoothing routine are named SMNNNN.DAT

where NNNN is a number representing t1,z number of equivalent

a_

	

	 time dt.,:zain iterations performed on g(x,y; to generate each

one. Output files from the unfolding routine are named in
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the same manner, but are written onlv if the number of

	

constraint applications performed for the current iteration
	

i

is zero modulo the output iteration interval. The program

may be restarted in order to continue unfolding a previous

result by providing the appropriate filename offset and

replacing g(x,y) with the original h(x,y) and replacing

h(x,y) with the result from the last run. Output file names

are UFNNNN.DAT where NNNN R filename offset + (constraint

application interval)X(number of constraint applications).

This number represents the total number of equivalent time

domain iterations used in generating the result data.

The last control data input to the program specifies

the way in which constraints wil1 be applied. The operator

must enter levels for application of the lower limit and

upper limit constraints. To specify the finite extent

constraint, the operator enters values corresponding to the

upper left and lower right corners of the non-zero region of

the image. Since the program always applies these

constraints at the end of each iteration, to turn one off

requires entering a value which makes that particular

constraint ineffective.

Subroutine DDFFT, a modified version of the

two-dimensional FFT routine written by Kathleen Whitehorn

[White,,orn, K (1980)], is used by the main routine to

perform most open _ions. Modification3 include the use of

s	 complex arrays and complex arithmetic, and reduction of the
s,

d-
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number of arguments to one complex array and two integers.

Also, to increase the efficiency of internally passing data

to the one-dimensional FFT (subroutine "FFT") within the

subroutine, the array passed to this routine is actually

just one row of the complex two-dimensional array used by
.

the main routine. This eliminates a large amount of data

shuffling which would be required to fill another input

array on every call to FFT. Large increases in efficiency

would result by converting to an FFT which makes use of the

symmetries of the hermitian transform corresponding to real

input data. Recognizing these symmetries allows the array

dimensions to be cut in half, and reduces the amount of

computation required by the same amount.

NOTE: - All programs in the listings use a slightly

different notation from that used in the body of this

thesis. In the prog rams and the appendices, g(x,y) is used

to represent the PSF of the system and h(x,y) represents the

output of the system in response to the input f(x,y). This

amounts to a reversal of the roles of g(x,y) and h(x,y) in

the version of the notation used in the programs.
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PAOGtiAM i?SDCON . FUR

C********** GFX M and HF'OEiM are variable format spec's

C********** FILNAM is a variable file name

DOUBLE PRECISION (	 1(5) ,HFORM(5) ,FIU M

DOUBLE PRDCISICN FILIN ,GFILE,HFILE

INTEGER tM,LR,LC,UC,MULT

REAL IMM, INTUF

C********** A c uplex array is stored with the first

C********** index varying fastest.	 Equivalenced to

C********** each array is a corresponding real array

C********** for convenience in doing I/0.

C********** Data arrays are assumed to be arranged:

C***r****** I............	 ............

********** row 1

C*****«*** row 2

C********** J

C**********

C**********	 row N-1

C**********	 row N

............ I ............

COWLEX G(64,64),H(64,64),Hs(64,64)

DIMRN,q xON Gin(128,64),Hin(128,64),Hout(128,64)

?^7QUIVALF.PICE (G(1,1),Gin(1,1)),(Fi(l,i),^Iin(1,1))

EQUIVAI,E M (Hs (1,1) ,Hoot (1,1) )

C********** Array Gm is for storage of the magnitude of G

REAL Gm (64 , 64 )

TYPE 16



16	 FORMAT(' Is this a restart? (O wW) ',S)

ACCEPT 2, IRS W

TYPE 1

1	 FORMAT(' Enter g filename ',$)

ACCEPT 18,GFILE

2	 FOIRMAT (2I )

TYPE 17

17	 FORMAT(' Enter h filename ',$)

ACCEPT 18,HFILE

18	 FORMAT (A10)

TYPE 3

3	 FORMAT(' Enter g and h dimensions (2I) ',$)

ACCEPT 2,NG,NH

TYPE 6

6	 FORMAT(' Enter g format (A50) ',S)

ACCEPT 7,(GFORM(I),I=1, 5)

TYPE 8

8	 FORMAT(' Enter h format (A50) ',$)

ACCEPT 7,(HFOR44(I),I=1, 5)

7	 FORMAT(5A10)

TYPE 4

4	 FORMAT(' Enter smoothings, unfoldings ',$)

ACCEPT 2,NHS,NUNF

TYPE 9

9	 POMT(' Entec unfolding oonTmtation interval ',$)

ACCEPT 507,INTLIF

TYPE 15



107

15

	

	 FORMAT(' Enter output iteration interval ',$)

ACCEPT 2,MJLT

r	
TYPE 10

10	 FORMAT(' Enter smoothing computation interval ',$)
r-

ACCEPT 507, IMSM

-	 TYPE 5

5	 FORMAT(' Enter filename offset ',$)

ACCEPT 2,INIT

TYPE 19

a	 19	 FORMAT(' Enter filename for unfolding ',S)

n-	 ACCEPT 18,FILIN

TYPE 11

11

	

	 FORMAT(' Enter black, white level constraints ',$)

ACCEPT 507,BLACK,PEAK

C********** Finite extent limits are entered as two pairs:

r- C********** first pair is lower numbered row,column (upper
3

G.
C********** left corner) second pair is lower right corner

TYPE 12

12

	

	 FORMAT(' Enter finite extent constraint limits ',$)

ACCEPT 13,LR,LC,UR,UC
• a

rt	 13	 FORMAT(4I)

'•	 C********** Set firm parameters

ISIZ=64
^a

TOLs.000001

507	 FORMAT(64G)

C********** Zero in t arra sPu	Y

M 105 I=1,ISIZ



DO 105 J-1,ISIZ

G(I,J)-0.

105	 H(1,J)-0.

C********** Input data

OPEN (UNIT-32,ACCPSS-'SDQIN',FIEE-MLE)

READ (32,GFM) ( (Gin(I,J) ,I-1,NG *2,2) ,J-1,NG)

C********O'* Canpite G (u,v) — ISIZ X ISIZ -i transform

ISIGN--1

CALL DDFFT(ISIZ,ISIGN,G)

C********** Cagpute Gm

DO 104 I-1,ISIZ

DO 104 J-1,ISIZ

104	 Gm(I,J)-CABS(G(I,J))

C********** Normalize Gm

G NW=1. /Gm (IS IZ/2+1, IS IZ/2+1)

DO 101 I-1,ISIZ

DO 101 J-1,ISIZ

101	 On (I , J) -Ckn (I , J) *GMMAX

WRITE (35,507) ((C1n(I,J),I-l,ISIZ),J-1,ISIZ)

C********** Caipute H(u v)

OPEN (UNI7=32,ACCESS-'SDQIN',FILE-HFILE)

READ (32,HFORM) ((Hin(I,J),I-1,NH*2,2),J-1,NH)

IF (IRSTRT.NE.0) GDTO 321

C********** Normalize h to f

DO 311 I-1,ISIZ

DO 311 J-1,ISIZ

108
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311	 H(I,J)=H(I,J)*004M

C********** Save normalized original h as SMO.DAT

321	 OPEN (UNIT-30,ACCESS- *SP7=',FIL• .-'SMO.DAT')

WRITE (30,507) ((Hin(I,J),I-1,ISIZ*2,2),Jsl,ISIZ)

CLOSE (UNIT-30,ACCESS-'SBQO TT',FILE- 'SMO.OAT')

C********'** Compute H from h

ISIGN-1

CALL MFFT(ISIZ,ISIGN,H)

IF ( NL .EQ. 0 ) OOTO 400

C********** Smoothing

C********** Compute Hn - H * [1-(1-Cimi)**n]

DO 107 K=1,N1S

DO 103 I-1„ISIZ

DO 103 J-1,ISIZ

103	 Hs (I,J)-H (I,J) * ( 1- ( 1- Gn (I,J) ) ** (rMSM*K) )

C********** Transform back to get hs

ISIGN-1

CALL DDFFT(ISIZ,ISIGN,Hs)

C********** Output smoothed h

KINP=K*INISM

ENCODE (10,501,FILNAM) KIM

501	 PDRMAT('SM",I4,'.DAT*)

TYPE 502,FILNAM

502	 FORMAT(lX,Al0)

OPEN (UNIT-30,ACXSS='SEQOUT',FILE=FIU4AM)

503

	

	 WRITE (30,507) ((HO(TT(I,J),I=1,ISIZ*2,2),J=1,ISIZ)

CLOSE (UNIT=30,ACCESS='SWOUT',FILE=FILNAM)
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107	 OONTINT-S

C********** UtMEDING

C********** read input to unfoldiryg routine

400	 TYPE 403,FILIN

j03	 FORMAT ( ' UNFOLDING FILE: ",AlA )

OPEN (UNIT=32,ACCESS-'SEQIN',FILFrFILIN)

C********** Zero Im part of Hs array

DO 404 I=2,2*ISIZ,2

DO 404 J-1,ISIZ

404	 Hout(I,J)=0.

READ (32,507) ((Hout(I,J),I=1,ISIZ*2,^),J=1,IS:Z)

C********** Compute Hs from hs input

ISIGN=-1

CALL ODFFT(ISIZ,ISIGN,Hs)

C********** Compute Fp = H/G

C********** Get (G*)/(Gm)**2 = 1/G first

401	 DO 305 I-1,ISIZ

DO 305 J-1,ISIZ

IF ( (3m(I,J) .LT. ML ) GOTO 303

TMP=G mMAX/ (Gm (I , J)) ** 2

GOTO 305

303	 TmP=0

305	 G(I,J)-CONJG(G(I,J))*TMP

WRITE(34,508)((G(I,J),I=1,ISIZ),J=1,ISIZ)

508	 FORMAT (128G)

IF (IRSTRT .BQ .0) GOTO 318

C********** Do H * (1/G) if this is a restart

i
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DO 306 I-1,ISIZ

DO 306 J-1,ISIZ

306	 H (I,J) -H (I,J) *G (1,J)

MM 320

C********** Do Hs * (1/G) if this is not r restart

318	 DO 319 1-1,ISIZ

DO 319 Jwl,ISIZ

319	 H(T,J) -Hs (I,J)*G(I,J)

320 WRITE(33,508)((H(I,J),I-1,ISIZ),Ju1,ISI7)

C********** H IS NOW Fp-(H/G) (PRINCIPAL SOLUTION)

C********** Compute (1-<3m)**INIW

DO 309 I-1,ISIZ

DO 309 J-1,ISIZ

309	 Gn(I,J)-(l-Gm(I,J))**INT(JF

C********** Now ready to iterate

DO 301 K-1,NUNF

C********** NOW (= Hs a Fp - (Fp Hs) *(l--Gm)**INTUF

DO 307 I-1,ISIZ

DO 307 J=1,ISIZ

307	 Hs(IOJ)-H(I,J)	 H(I,J) - Hs (I,J) 	 Gm (I,J)

C********** Compute time domain result hs

ISIGN=l

CALL MFTT(ISIZ,ISIGN,Hs)

C********** 1,Vply time domain constraints

DO 308 I-1,2*ISIZ,2

DO 308 J-1,ISIZ

IF ! Hout(I,J) GT. rW Hout(I,J)-PEAK
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308	 IF ( Hout (I,J) .LT. BLACK ) Hou.. (I,J) 3BLACK

C********** Apply finite extent constraint

IF ( UR .M. 0 ) GOM 316

00 312 I=1,2*LC,2

DO 312 J=1,ISIZ

312	 HOW U, J) =0.

DO 313 I=2*UC+1,2*ISIZ,2

DO 313 J=1,ISIZ

313	 HOW (IIJ)=0.

DO 314 I=2*LC+1,2*UC,2

DO 314 J=1,LR

314	 WM (I,J)=0.

DO 315 I=2*LC+1,2*UC,7

DO 315 J=UR,ISIZ

315	 HD(TI'(I,J)=0.

C********** Clear imaginary garbage

316	 DO 310 I=2,2*ISIZ,2

DO 310 J=1,ISIZ

3:0	 HOW (I,J)=0.

IF (MD (K,MULT) .NE. 0) WM 317

C********** Output hs

KINP=K*IN OF+IMT

ENCODE(10,505,FIINAM) KIM

505	 FL]AMAT ('UF' ,14 ,' . DiAV )

TYPE 502,FIINAM

OPEN (UNIT=31, ACCESS- 'SEQO ",FILE=FILNAM)

506	 WRITE (31,507) ( (Hout(I,J),I=1,ISIZ*2,2),Jxl,ISIZ)
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CUBE (UNIT-31 , ACCESSn'SB=' , FILEwFITNAM)

C********** If KEtIM quit

317	 IF ( K .HQ. NUNF) GM 301
1

C********** Transform tack
^ 	 a

ISIGN -1

CALL MM ( ISIZ,ISIGN,Hs)

301	 03frINUE

END
a
k

► •	 1

i
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APPENDIX TWO

Program FILTER.FOR is a general purpose routine which

uses various subroutines %o accomplish time domain

convolution and Fourier transforms. It is the routine used

to perform most of the operations required to generate

synthetic data from the model of Chapter One. Input to the

routine is specified by interactive dialogue as described in

Appendix One for the program FSDCON.FOR. Function number

one calls the subroutine CON2X.FOR, which performs an

expanding time domain convolution. This implies that the

output array will be larger than either of the two input

arrays, and the resultant dimensions are output to the

operator at runtime.	 The second function executes the

non-expanding con-olution subroutine, which queries for the

subscripts defining the origin of g(x,y).	 This origin

determines which portions of the expanded output array will

not be computed, and the result will hav , the	 same

dimensions as the input array f(x,y). Execution of function

three reiults in a call to v version of DDFFT.FOR which
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performs a FFT on f(x,y) and returns F(u,v) in the output

array H (I,J) .

Following the listings of the above main program and

subroutines is a listing of program NOISE.FOR which performs

the addition of gaussian noise to a two-dimensional input

array. The number (I) which it requests at start-up is used

to generate (I) calls to the FORTRAN pseudorandom number
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generator	 RAN	 in	 order	 to	 allow	 for	 the production of

different sets of noise data on different runs.	 If 1	 is the

same	 for any two runs, then the generated noise sampler for

those two runs will also be the same.	 Output by the routine

are	 two	 data	 files,	 one	 containing	 the input data plus

noise,	 and	 the	 other	 containing	 the	 noise	 alone.	 The

numbers	 generated by the function RAN have a mean of .5 and

a	 ► nge of zero to one.	 Production of Gaussian noise from a

sequence	 of	 uniformly	 distributed	 rando ►i	 numbers	 is

performed	 by	 subroutine	 GAUSS.FOR.	 By the central-limit

theorem,	 the	 probability density distribution for a sum of
a

uniform random numbers approaches the normal distribution as

the	 number	 of	 terms	 in	 the	 sum grows large.	 Since the
v

variance of a uniform distribution of random numbers between

zero	 and	 one	 is 1/12, GAUSS.FOR sums 12 random numbers to

achieve	 a	 nearly	 gaussian distribution with a variance of

one	 in	 the sum	 (Hamming	 (1962)].	 It then adjusts the mean

of	 the	 sum	 back	 to zero and multiplies the result by the

desired variance to compute the noise sample.

$
a

The	 last	 listing	 is	 an	 example	 of	 a	 time-domain

implementation of	 the	 always-convergent 	 techniques.	 The

g (x,y)	 input to the proga am must be hm (x, y)	 as	 defined	 in

Chapter	 Two.	 This	 routine	 expects	 input	 files	 to	 be

unformatted, random access binary data dimensioned 64 by 64.

Output is in the same format.	 Here the record number serves

9 Y-

to indicate the iteration number, since no iterations may to

Re

skipped.
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2

3

PI )GRAM FIITER.FOR

DIMENSION F(100,100),G(100,100),H(100,100),FTM(I-0),GP-U4(10)

EXIBIR PMCISION FFILElGFILE

lrlrlMGER FX,F GX,GY,HX,HY

COMMON F,G,FX,FY,GX,GYOH,HX,HY,E3;R,FTM,GMM

DATA FPOR4(1.)/1H(/,FTVM(10)/1H)/,GMM(1)/1H(:/lGFICM(10)/1H)/

MAINX-100

MAINY-100

TYPE 1

f	 ( " MCM F DIMENSIONS, G r)imENsicNs ",$)

ACCEPT 2, FX, FY, G-A, GY

FORMAT(4I)

TYPE 3

1*	 ( '* ENTER F FILENAME

4

5

IG

6

7

18

8

ACCEPT 4,FFILE

FORMAT(A10)

TYPE 5

FORMAT ( '* ENTER G FILENAME

ACCEPT 4,GFILE

TYPE 6

FORMAT( 'o ENTER F FORMAT ► $)

ACCEPT 7, (FEUM (1), 1-2,9)

FIMIAT (10A.5)

TYPE 8

FORMAT( '* EN= G FORMAT

ACCEPT 7, (GMR4 (I), I=2,9)

C

qRP
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I	
C	 NOW WE HAVE 'DIE INFO NDCFSSARY TO DIMENSION F _G AND

C	 MAD THE INM' DATA...

C

C

C	 READ F AND G

C

OPEN (UNIT=20,ACCESS='SDQIN',FILE=FFILE)

OPEN (UNIT=21,AOCESS='SDQIN',FTLE=GFILE)

READ (20,FFOAM,END=21) ((F(I,J),I=1,FX),J=1,FY)

READ (21,GFORM,END=22) ((G(I,J),I=1,GX),J=1,GY)

GOM 20

21	 TYPE 27

27

	

	 FORMAT ( RAN GM END OF FILE CN F ' )

EM-1

a= 16

22	 TYPE 28

28	 FORMAT(' RAN GM FWD OF FILE CN G 'I

ERR-1

GOTO 18

20	 CALL CRUNCH

IF (ERR.NE .0) GOTO 11

C	 SUBROUTINE FUNCTION EXECUTES A SELECTED SUBROUTINE
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SUBBOUrrNE CRUNCH

DIMENSION F (100,1OO),G(1OO,100),H(1OO,100)

DvrBER FX,FY,GX,GY,ERR

Cr.M W F,G,FX,FY,C!(,GY,H,HX,HY,ERR

C

C	 NOW THE DATA IS IN OGRE, SO DO SOMETHING TO IT

C

6	 TYPE 3

3	 FOPMAT ( B?MR FUNCTION	 ' l$)

AiOCEPT 4,K

4	 FaMP,T(I)

GOTO (10,11,20) K

C

C	 HERE IMPLIES INVALID K

C

r

TYPE 5

5	 FORMAT(' TRY A VALID FUNCTION ')

GOTO 6

10	 CALL CON2X(F,G,FX,FY,100,1OO,Ga;GY,1O0,100,

H,HX,HY,100,100,ERR)

IF (ERR.NE .0) GOTO 6

RETUlai

11	 TYPE 12

12	 Fa MAT (' E[JrER PFAKX , BEAKY

AOCEPT 13,PEAIIX,PEAKY

13	 FORMAT(2I)

CA,l OON2(F,G,FX,FY,1O0,100,GX,GY,1OO,100,
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t

k	 ^.

r ^o

LA . :.

H,HX,HY , 100,100,PF.AKX,PHAKY,E3;R)

IF (EM. NE . 0)	 6

RETURN

20	 CALL MM (F,G,FX ,FY,100,100 ,GX,GY,100,100,

'	 H,HX,HY,100 , 100,ERR)

RETURN

END

SUBROUTINE FINISH

DIMENSION F(100,100^;G(100,100),H(100,100)

IN EGER FX ,FY,GX,GY,HX ,HY,ERR

V F,G,FX,FY,GX ,GY,H,HX,HY, ERR, FRORM,GFORM

DIMENSION FFOPM (10),GFORM(10)

DOUBLE PRt7CISION OFILE,FFILE,WILE

DIMENSION OFOR4(10)

DATA OF0RM(1)/1H(/,OF0RM(10)/1H)/

TYPE 10

10	 FORMAT(' DO YOU MW F AND G OUTPUT? ',$)

ACCEPT 11,ANS

11	 FORMAT (A5)

IF (ANS.NE.'YFS') GOTO 20

TYPE 12

12	 FORMAT(' ENTER F,G FILMWIES ON 2 SEPARATE LINES ',$)

ACCEPT 3,FFILE

ACCEPT 3,GFILE

OPEN (UNIIN30,FILE=FFILE,ACCFSS='SEQC7ITT')

OPEN (UNIT-31,FILE-WILE,ACCESS='SMOUT')

WRITE (30,FF'ORM)((F(I,J),I=1,FX),J=1,FY)
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WRITE (31,MPOdiM) ((G (I,J) , I-1,GX) ,J-1,GY)

TYPE •1

FaMTC ERM H OUTPUT FILENAME

ACCEPT 3,OFILE

' ..mu (A10 )

7i'PF' 2,HX,HY

t ;t%T(' HX-',I4,' HY-',I4,' RMR FORMAT SPEC ',$)

ACC9!7T 4 ► (OFORM(I) rI-2r9)

FORMAT (10A5)

OPEN (UNIT-22,FILE-FILE, ACCESS- -SDQOUT')

WRITE(22 ►OFORM)((H(I,J) ► I-1,HX) ►Jn1,HY)

END
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PFOGRAM NOISE. FOR

DIMENSION A(64,64),Y(64)

TYPE 31

31	 FORMAT (' ENTER A NtHBER (I)',$)

ACCEPT 2,IR

TYPE 1

1	 FORMAT(' Input file ',$)

ACCEPT 2,1F

TYPE 3

3	 FORMAT(' Output file ',$)

ACCEPT 2,I0

2

	

	 FORMAT (I)

TYPE 4

4	 FORMAT (' Alpha = ' , $ )

ACCEPT 5, ALPHA

5	 FORMAT (G)

READ (IF,.6,END=7)((A(I,J),I=1,64),J=1,64)

6

	

	 FORMAT(64G)

OPEN(UNIT=60,ACCFSS='SDQOUT',FILE='NOISE.DAT')

C****** GENERATE GAUSSIAN NOISE

RMS=O.

AVG=O.

GO'TO 13

7	 TYPE 12

12	 FORMAT(" SHORT INPTTT F 1 E?' )

11	 nO 10 I=1.IR
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8

9

14

10

11

DO 9 J=1,64

DO 8 Im1,64

CALL GMSS (ALPHA, O,Y (I) )

M45-RMS+Y (I) ** 2

AVG-AVG+Y (1)

A(I,J)sA(I,J)+Y(I)

IF (A(I,J) .LT. 0.) A ( I,J)=0.

WRITE (60, 10)  (Y(K) IK=1,64)

FM- (RMS/4096.) **. 5

AVG-AVG/4096.

TYPE 14, FM

TYPE 14,AVG

FORMAT(1X,G)

WRITE(I0,11)((A(I,J),I-1,64),J=1,64)

FORMAT (64F)

FORMAT(64F8.3)

END



UF3CRIPTION OF PARAMETERS

S - the desired standard deviation of the normal

distribution

AM - the desired mean of the normal distribution

V - the value of the computed normal random variable

This subroutine uses a machine specific uniform

random number generator

METHOD

123

PROGRAM GAUSS. FIOR

C	 Subroutine GAUSS

C

C	 PURPOSE

C

C	 Oamputes a normally distributed • endom number with

C	 a given mean and standard deviation
U

C

C	 USAGE

C

C	 CALL GAUSS (S, AM,V)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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C	 Uses 12 uniform ramiom numbers to compute normal

C	 random numbers by central limit theorem. The resul^,

C	 is then adjusted to match the given mean and standard

C	 deviation. The uniform random numbers oamputed within

C	 the subroutine are =rputed by the FORTRAN "RAN" function..

C

C

C

SUBRCMNE GAUSS (S ► AM ►V )

Aw0.0

DO 1 1-1, 12

I	 A=A+RAN(1)

Vs(A-6.0)*S+AM

REMM

END

m,
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PFOMAM DOQITU . FOR

INTDGF.R PFAK,OUTX,OTTY

DIMENSION G(64,64),H(64,64),HN(64,64),HNM1(64,64)

TYPE 1

1	 FGRMAT (' MM G AND H UNIT N'JMF.RS' )

AST 2 IG IHr	 1

2	 FORMAT(2I)

TYPE 3

3

	

	 FORMAT(* ENTER G AND H DF MEZ IONS (2I) )

ACCEK 2,NG,NH

TYPE 4

4

	

	 FORT(" ENTER g4omNINGS, uNFoLDITNGs )

ACCEPT 2,NHS,NfUNF

TYPE 5

5

	

	 FORMAT(' ENTER FOMRD FOR UNFOLDING')

ACCEPT 2,IRDC

CALL UMNE FILE (30,4096,LflC1,0,0,0)

CALL FEFINE FILE (31,4096,LOC2,0,0,0)

C

C****** INPUT DATA

C

READ (IG,10) ((G(I,J),I-1,NG),J-1,NG)

READ (IH,11) ((H (I,J) ,I=1,M) ,J-1,NH)

10	 FORMAT (32G)

11	 Fa MAT (32G)

	

fl
	

C

	

I
	

C****** NDFOVJ IZF? G
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C

SI M-O

DO 101 I-1,NG

DO 101 Js1,NG

101	 SLM.StM+G (I, J)

SU41NV=1./"

DO 102 Inl,NG

DO 102 J-1,NG

102	 G (I , J) -G (I , J) *S(MINV

C

C****** ZERO HNM1 ARRAY

C

DO 103 I-1,NH

DO 103 Js1,NH

103	 HNM1(I,0)-0.

C

IF(NS.EQ.0) GDM 700

C

C

C****** 1'st moRRISON ITERATION

C

100	 CALL CON2(H,G,32,32,64,64,32,32,64,64,HW1,

"	 a=,CUTY,64,64,17,17,ERR)

C

C

C****** MITE SMJO'IUM H

C
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WRITE (30 1) H4M1

C

C

C****** 2'nd KMJSClN ITERATIC7N

C

DO 200 .t10-2,NHS

C

ERR-0

C

C****** H(N)-H - H(N-1)

C

DO 201 I-1,NH

DO 201 J-1,NH

201	 HN(I,J)-H(I,J)-HW1(I,J)

C

C****** H (N) - H (N-1) + ( H — H (N-1) ] * G

C

202	 CALL CON2(HN,G,32,32,64,64,32,32,64,64,HNM1,

"	 O TI'X,OU7Y,64,64,17,17,E.'RR)

C

C

C****** COWME RMS DIFFE MCE BETWEEN LAST 2 ITk:R MOMS

C

NH2-NH*NH

C

a

DO 203 I-1,NH

DO 203 J-1,NH



F.RR=ERR+(HW1(I,J)+HN (I,J)-H (I,J)) **2

EPP- (ESR/NH2) ** . 5

C

C****** OUTFJT PTERATION

C

WRITE (30 110) MM1

200	 MITE (20,6)Il0,ERR

6	 F FMAT(X,'ITERATION 	 ',I,5X,'IMS CHANGE	 ',G)

C

C****** UNFOLDING

C

C

700	 READ (30 IRDC) IRC41

c

C

DO 300 I11-1,NUNF

C

C

DO 305 I-1,NH

DO 305 J-1,NH

305	 HN(I,J)-H(I,J)-HNMl(I.J)

C

C****** H (N) _ (FP - HNMl)

C

301	 CALL CON2(HN,G,32,32,64,64,32,32,64,64,HNM1,

"	 OUTX,OUTY,64,64,17,17,ERR)
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r

C

C

C****** H (N) - H (N-1) + I FP - H (N-1; ) * G

C

DO 303 1-1,NH

DO 303 Jn1,NH

IF (HNMI (I,J) .GE.0) = 303

HNK1(I,J)-0.0

303	 CORrINUE

C

C****** COMPLTPE IM DEVIATION

C

ERR-0

C

DO 304 I-1,NH

DO 304 J-1,M

304	 ERR-ERR+(HNK1(I,J) -HN (I,J)+H (I,J)) **2

C

N 12nM*Ngi

ERR-(ERR/M2) **.5

C

Car***** OAT pur

C
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SUBR[TTINE 0UN12 (IN,FILT,INX,INY,IN?M,INYM,FILTX,FILTY,

FILTXM,FILTSM, OUT, OUTX,OUTY,OUTXM,OCTTYM,

PEAKX,PEAKY,ERR)

INTTEGER INX,IWFILTX ,FILTY,OM ,OUTY,HYr,,HYE,PEAKX,PFAKY

INTSGER IllXM,INYM,FILTXM,FILTYM,OU XM,OCTTM,GROW,GCOL

REAL INI,F-LT,OUT

DIMENSION IN(IM,INYM),FILT(FILTXM,FILTYM), OUT (OCTTXM,OUTiIM)

DIMENSION MXGR0W(64),MXGOOL ( 64),bNROW (64),MXROW(64),

MNOOL(64),MXOOL(64)

C	 ARRAY IN OONTAINS n4PUTT DATA, ARRAY FILT OONTAIN'S FILTER POINTS

C	 ARRAY OUT OONTAINS ^4ULT OF (IN*FILT)

C	 INX,INY,FILTX,FILTY ARE X AND Y DIMENSIONS OF INPUT AND FILTER

C	 PEAKX,PEAKY ARE ROW,COLUNN INDICES OF THE PEAK OF FILT(I,J)

C	 ROWS AND COLUMNS ARE ALWAYS N[MBERED FROM 1 UPWARD

C	 OUTX,OUT'Y ARE THE DIKI--'7,IOI;S OF THE 
OUTPUT 

DATA....

C	 INXM,INYM,FILTXM,FILMI,OCTTXM,OV M REPRESENT DIMENSIONS OF THE

C	 RESPECTIVE ARRAYS IN THE CALLING PROGRAM. THESE MUST BE THE

C	 DIMENSIONS FROM THE MAIN PROGRAM DIMENSION STATEMENT

C	 .. THE M SUFFIX IMPLIES ICIN DIMENSIONS ..

C	 .. WHILE THE OORRESPONDING VARIABLE IS THE VALID DATA DIMENSION

C

C	 ASSIGN OUTPUT DIMENSIONS (SAME AS INPUT)

OUTX-INX

OUTY°•u1Y

C	 OCMP TTE LIMITS OF SUMMATIONS

DO 40 L-PEAKX,OUTX+PEAF.X
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M RIOW(L) o*%XO (1, (L-FILTX+].) )

MaM (L) -MNO (L, IM)

40

	

	 MXG DW(L) OQNO (L,FILTX)

DO 30 L-PFAKY,WN+PEAKY

MVODL (L) -MXO (1, (L-FILTY+l) )

MXML (L) -WNO (L, MY)

30	 M OCOL (L) -MNO (L, FILTY)

C

	

	 PERFORM NONEXPANDING CONVOLUTION

NIX=PFAKX-1

MY=PEAKY-1

DO 10 LROW=PEAKX , aM+PEAiO(

GROW-MGAaa (LROW)

DO 10 IROW*%VROW (LROW) ,MXROW (LROW)

DO 20 LOOL=PEAKY,OUTY+PFAKY

GOOL MWOL (LODE)

DO 20 IODLoR%VWL (COOL) ,M CDL (LOOL)

OUT (LR0 i-M, COOL-MY) -OUT (LFOK7-MX, LOOL 4'.Y)

+IN(IROW,IOOL)*FILT(GROW,GOOL)

20	 OOOL-OOOL-1

10

	

	 GROW-GROW-1

ERR=O

RETURN

END
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