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ABSTRACT

Lineer filtering techniques currently used for the
restoration of noisy, blurred or otherwise degraded image
data are discussed and new techniques related to the
iterative techniques of Morrison and van Cittert are
developed and implemented. Progroams written for the
implementation are discussed in the appeudices. It is shown
that the new technigues are convergent for any system
response function, and they are applied to the task of

restoring a severely blurred image.

A model of a linear shift-invariant optical system is
constructed and used to generate synthetic data
representative of the response of a simple optical
instrument to various types of input. Noise generated by
the instrument and by other phenomena associated with use of
an op-.ical system is characterized and added into tie model
output in various amounts to test its effects on subsequent
data processing. Also included in the model s the effect
of severe defocusing of the optics on the optical transfer
function., Van Cittert”s technique for deconvolution does
not converge for the defocused system. Application of the
new techniques for noise removal and deconvolution is made
and it is shown that the results are extremely useful when

both are applied together to no.sy data.

vii

i AN KL Lt nis s 3 i el PSRRI, B3, S G, % e 7 s e T ks e o Dhee otesi R e et

SRR T




ez B8
.

LR —
*

T, GO T
&WJ o

T

e, e e e T —————————

Application of known non-linear time-domain constraints
within the algorithm is discussed and tested., It is shown
that the bandwidth of the data may actually be increased by
applying these constraints, Results of processing nnisy
synthetic data indicate that the constraints are a very
useful feature of the method. A comparison is made of the
effects of using various combinations of constraints on
several types of data, indicating that the rate of
convergence is increased by the _ lication of cne or more
constraints and that the mos. generally effective constraint
for a given set of data will be determined by the character
of the data. If the inage consists of objects appearing on
a black background, the most effective constraint should be
the non-negativicy constraint, The peak height limitation
constraint will be most effective for objects with an extent

greater than that of the impulse response of the system,
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Introduction

One of the most common objectives in image processing
is the removal of degradations such as those caused by
atmospheric blurring, diffraction 1limited optice, and
defocusing, This type of processing 1is termed image
restoration., It 1is the objective of image restoration
techniques to restore the image to the form it had before
the degradations occurred. Useful results can include an
increase in resolution and improved definition of the image.
Restoration techniques rely on a mathematical description of
the degradation and/or imaging system to apply the necessary
corrections for constructing a truer image of the object,
The term "object" lLere represents the real configuration of
light sources comprising a self-luminous or illuminated
object which is imaged by the optical system, The term
"image" refers to the distribution of 1light intensities
forming the output of the imaging system. The image will
normally be a close representation of the corresponding
object luminance distribution, but may suffer from various
degradations such as those mentioned above plus the addition

of noise,

This study is an application of a restoration technique
which is related to the noise removal and deconvolution
techniques of Morrison and van Cittert, It was formulated

to remove a major drawback of the older techniques; they
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fajiled to converge for a wide class of response functions,
Both Morrison‘s noise removal and van Cittert’s
deconvolutioan techniques are iterative techniques applied in
the time domain., They are bas 3 on the representation of a
linear shift-invariant system as a convolution of the
impulse response of the system with the input to the syster.
Morrison’s iteration begins by first smoothing the syscem
output to remove incompatible rnoise, The effect of ‘hre
remaini g iteraticns is to restore the data gradually ¢to
their 1{..tial ostate with only the incompatible noise
removed. The effect of a finite number of iterations of
Morrison smoothing is to perform a windowing operation on
the transform of the data. The window is closely related to
the transfer function of the system to provide a greater
weight to cumponents of the data with less attenuation and
probably higher signal to noise ratios. van Cittert’s
deconvolution techr.ique begins Ly approximating the limiting
solution fp(x,y) with the system output gli(x,y). The
limiting solution, if the method converges for the impulse
response h(x,y), |is fp(x,y). Intermediate iterations
provide partially restored results which again have a
spectrum weighted preferentially toward those components
corresponding to larger values of the system transfer

function H(u,v),

Always-coavergent versions of these two techniques for
two-dimensional image data are developed in chapter two and

implemented in chapter three. The advantage of these
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techniques over inverse filtering {s that they allow the
flexible application of function domain constraints such as
non-negativity of image data, peak height limitations, and
finite extent of the 1image in the process of iterating
toward the final solution. Since the constraints directly
affect the srectrum of the result by sharpening edges in the
image, it is possible to extend the transform of the result
beyond the bandwidth of the system, The addition of
constraints to the iteration makes the method non-linear,
and no theoretical treatment of the method with constraints
is attempted. Convergence requirements for the linear
version (no constraints) and experimental results indicating
the usefulness of the technique with and without constraints
are presented 1in chapters two and four., Chapter three
discusses the implementation of the method using digital

techniques,

Chapter one presents a mathematical model of an optical
imaging system and describes the generation of synthetic
data from the model for processing, Several special
functions are used 1in the first three chapters for
convenience in describing optical systems and linear
filtering processes, Following is a table of special
functions and the notation used to describe an optical

iraging system.
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Notation and Special Functions

(Bracewell (1965), Frieden (1979))

DFT discrete Fourier transform
E FFT fast Fourier transform ‘
OTF optical transfer function
FSF point spread function
SNR signal to noise ratio

f(x,y) object irradiance

g(x,y) image irradiance
hi(x,y) point spread function

ni(x,y) random noise function

Capitalized function names

represent transforms of functions

e

-
F{f(x,y)}-F(u,v) sFourier transforr of function f(x,y) §
L
F{g(x,y)}=G(u,v) ;
- F{h(x,y) }=H(u,v)
v
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Rect (x,y)= 1 ;{|x|<1/2 and ]y|<1/2}
0 :{Ix|>1/2 or |yl|>1/2}
Rect(r) = 1 j|r|<1/2

0 ;lr|>1/2

Jl(t) n ISt nrder Bessel function

Sinc(x) = gin(rx)

L
delta(x)= 1mpulse symbol

N
Shah(x) = 25 delta(x-n) ;for n an integer

Nne =

The integer N represents the number ot sample

points included in the discrete 1-D Fourier transform

or across a square 2-D discrete Fourier transform,

The integers n_ and ny represent the number

9
of sample points across the square space domain sampling

window used to record g(x,y) and h(x,y) respectively.
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CHAPTER 1

1
|

OPTICAL IMAGING SYSTEM MODEL

AT g

Since this is a two-dimensional study with application

to image data, a model of an optical imaging system is used ;

sz
4

to generate realistic synthetic data for input to the

[P
A

algorithm under test. The model selected is applicable to
™~ systems forming images of objects radiating spatially
incoherent light., The assumption of spatial incoherence is
nearly correct for most optical imaging situations. Further
restrictions placed on the model itself will be elaborated g :

‘. below,

In order to calculate appropriate instrument response

- functions for application of noise removal and
: deconvolution, the model system is represented in terms of
g' its optical transfer and point spread functions. The ideal : a
- E

point spread function (PSF) and optical transfer function

(OTF) are computed and then degraded to represent a ;

[

defocused system. The PSF h(x,y) is defined to be the 3

-wnumm; P

oo

response of the system to a single object point radiator,

The OTF is related to the PSF by a Fourier transformation;

r

e

it represents the transfer function of the system in terms

4

I
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of the spatial frequency components of the input.

Gaskill defines the (incoherent) diffraction image of a

general two-element lens system [Gaskill (1978)]:
I(x,y)=I°(x,y)*h(x,y) (1.1)

where I is the image plane irradiance, I° is the irradiance
of the gecmetrical image, and "*" implies convolution.
Since Eg.(1l.1) represents the output (the diffraction image)
as the convolution of the geometrical image with the impulse
response of the system, we may regard this portion of the
optics as a linear shift-invariant system. This equation
does not account for any differences between the object and
geometrical image. Eq.(1.1) fails in the presence of
aberrations such as coma which tend to cause the PSF to
become shift-variant. Also, the shift-invariant property
holds only within the limits of the field of view allowed by
the Fresnel conditions, which require that the sum of object
and image extents be small with respect to the distance

between object and image planes [Gaskill (1978)].

It can be shown that the PSF h(x,y) may be written in

terms of the aperture stop as
. 2 2
h{x,y) = a“|P(ax,ay)|“/(area of aperture) (1.2)

where a is a constant related to the physical parameters of
the system, and P(x,y) is the Fourier transform of p(x,y),

the complex amplitude transmittance function of the aperture
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stop. Using Eq.(1.2), h(x,y) may be computed for any given

aperture function p(x,y). Choosing a «clear circular

PIRITT. WY TSR S NER SRR SR

aperture stop gives p(x,y)=Rect(r) and P(x,y) = F{Rect (r)}
in two dimensions. The Fouliier transform of the
two-dimensional c¢ylindrical Rect represents the complex

amplitude response of the system to spatially coherent light

if the stop is locatzd at the Fourier transform plane of the

system [Gaskill (1978)]. The squared magnitude of that

response is the impulse response for incoherent light input.

For the purpose of constructing a model of a sampled 1
data system, the PSF and OTF may be computed by means of the |
fast Fourier transform (FFT) in the above equation. The
two-dimensional FFT used to implement this model is designed
to maintain the origin of the transform near the center of

the sampled data array (see appendix 1l). The array size

must be equal to a power of two for the simple
one-dimensional algorithm used in this implementation and a
choice of square data arrays 64 elements on a side is made

for generation of the synthetic'data.

The chosen aperture function, a circularly symmetric
Rect, is sampled such that it has a radius of 16 sample
points and then transformed into the function domain to get
the coherent PSF. The squared magnitude of this PSF is then
the incoherent PSF, and the OTF 1is computed simply by
inverse transforming (-i transform goes from space domain to

spatial freguency, +i transform performs inverse) the
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incoherent PSF. By the convolution theorem, this operation
is identical ¢to performing a periodic convolution of the
frequency domain aperture function with itself., A periodic
convolution [Oppenheim and Schafer (1975)) is defined as the
convolution of two replicated sequences such that there may
be overlap of the ¢two functions around the ends of the
window defined by the finite extent of the sampled data.
This replication 1is implicit in the finite Fourier domain
representation of a sequence, since sampling at some finite
interval 1/T in the frequency domain corresponds to
replication in the time domain with interval T-1/2sc. The
relation of the <c¢oherent OTF (the aperture transmittance
function) to the incoheren: OTF is then given by th2 above
convolution, and it is obvious that the OTF will no longer
be flat. This wi1ll result in attenuation of high spatial
frequency components of the input signal. It is of interest
to note that the incoherent OTF, though not flat, has twice

the non-zero width of the coherent OTF.

In order to represent a further degradation of the
input signal beyond that introduced by the focused systenm,
the OTF is modified to represent that of a severely
gefocused system. The blur OTF for a severely defocused
lens 1is H=Jl(ar)/(ar) [Goodman (1968)]}. This OTF is
multiplied by the OTF for the focused lens system to obtain
the overall OTF for *the degraded system. Actual computation
was done by making use of the fact that the transform of

Jl(r)/r is just Rect(ar) [Hecht and Zajac (1974)] .
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Computation of the defocused PSF is then done in the
function domain simply as a linear convolution of Rect(r)
with the focused PSF. The radius of the defocusing Rect is
3 sample points, approximately twice the radius 5f the
focused PSF re ulting from the choice of a circular aperture

with radius of 16 sample points in the frequency domain,

Perspective plots of the focused and defocused model
PSF and OTF follow. Plots were done by the ASPEX program
written at the Laboratory for Computer Graphics and Spatial
Analysis at Harvard University. Each plot gives a
perspective view of the 2-dimensioral surface defined by the
data array representing the function. The lines drawn are
contours defining the amplitude of the PSF or OTF at the x,y
coordinates associated with each sample point., Note that
the defocused PSF shows a much wider maximum than the
focused PSF and a slight depression at the origin. This
corresponds to the defocused OTF being narrowed and given

negative lobes from the multiplication by Jl(r)/r.

Since the problem of restoring an image without noise
present is a relatively simple one, and since the occurrence
of a noiseless image 1is rare, the system model must take
into account the generation of noise in imaging eguipment.
There are several sources of noise in typical imaging
systems. Electronic circuitry in photodetection apparatus
such as photomultiplier and vidicon systems introduces shot

and thermal ncise to the system output. Film grain noise is

10
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present in photographic systems, due to the random nature of
the distribution of silver particles in the processed film,
Quantization error may be regarded as noise introduced in

digitizing an analog signal [Pratt (1978)]).

Shot noise generated in a photomultiplier may be
regarded as having an ordinate dependent gaussian amplitude
distribution., This is to say that the variance of the noise
is proportional to the signal amplitude, The actual
dependence of the noise on the signal 1is [Billinasley
(1979)]):
std. dev. = 0'5
where Q ‘epresents the average number of photnelectrons

released in a sampling period.

Film grain noise is dependent on the film granularity,
which is a measure of the size of the silver grains 1in the
film, The noise resulting from this granularity 1is also
dependent on signal amplitude (transmittance of the film)
with a proportionality:

.5
std., dev., = std. dev.Tl(T(l-T)/Tl(l-Tl))

T
where T1 is a reference transmittance at which the
granularity of the film is measured with a

microdensitometer.

Thermal noise is one of the most common noise sources
in electronic imaging systems. It is generated by random
electron fluctuations in resistive elements of

photodetectors and amplifiers. This type ¢f ncise may be

11
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represented by an additive random Gaussian process with a d i
( 1

zero mean and standard deviation independent of the input

signal. Although this noise is negligible compared to shot

i noise in high gain detectors such as photomultipl.ers, it

will likely dominate in regions of low signal amplitude.

Quantization noise results from the conversion of a

. continuous analog 3ignal to a digital representation with a

-
e o a we Lk meaiae Ll it

finite resolution, or number of bits. If one assumes that a
fixed point binary representation is used, and that Iinput
values are rounded to the nearest guantization level within
the range allowed by the digital number representation, the

error due to quantization must be within the range of +/-

i ke R e A e ot B bRt ks bk N -

one half of the quantization width, The quantization width
is the smallest number which may be represented by the fixed
point binary representation., Assuming that the sequence of
errors e(n) represents a stationary random process, that the
spectrum of the error sequence is flat (white noise), that
there is no correlaticn between the signal and the error,
and that the probability distribution of the error process
is uniform over the range of possible error, the mean of the

noise introduced will be zero, and the variance equal to the

square of the quantization width divided by twelve
[Oppenheim and Schafer (1975), Hamming (1962)]. The

assumptions made above are valid for a complex signal (one

with much structure) sampled with a quantization width which

is small relative to the first difference of the signal.
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Quantization noise may be assumed to be present in ttre

B S R

model data due to the fact that they are represented by

RS EEL

digital numbers in a fixed point format for 4input to the
processing algorithms, The quantization w~i1dth used is 10'3,
resulting in a variance of approximately 10'7. Since the

peak value of the synthetic g(x,y) is 137, the SNR of the

: ot BRI T L 4
i e i S g i e s

quantization error is then 92 dB, This is the amount of
noise on the "noiseless" g(x,y) used in the test runs of the

restoration algorithm,

j
|
5
i
A second set of model data ic used to test two lower ; j
SNR“s, The model for thermal noise generation is used for }
this purpose. Program NOISE.FOR generates additive gaussian ;
noise in a set of image data (see Appendix 2). The two
signal-to-noise ratios chosen were 23 4B and 33 dB (200:1

and 2000:1). The lower SNR represents a high noise level,

while the higher SNR is typical of a visually "clean" image
[Andrews and Hunt (1977)]. ;
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CHAPTER 2

IMAGE RESTORATION TECHNIQUES

A linear shift invariant system mey be modeled by a

convolution operation:
g(x,y)=£(x,y)*h(x,y) (2.1)

where g(x,y) is the output of the system, f(x,y) 1is the
input, and h(x,y) is the impulse response of the system
[Bracewell (1978)). The aim of restoration is to eliminate

the smoothing effect of h(x,y) on the output g(x,y).

One technique often used for restoration of images |is
the method of inverse filtering., If we define the principal

solution fp as having transform

Fp-G/H ; |H[>0 (2.2)

Fp-O : H=0

then Fp will have been compensated for the attenuation
caused by H and will look like Rect(r) assumirg an optical
system with a circular aperture ard a delta function input
[Frieden (1979)]. The bandwidth of the system is defined as

the width of the band of frequencies for which |H|>0, and it

14
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is obvious that Fp will lack any components in F which
exceed the bandwidth of H., (For simplicity we are assuming
that there are no interspersed zeroes within the OTF. This
is true for any optical system having a clear aperture.)
This implies that the resultant point spread function will
be Jl(r)/r [Hecht and Zzajac (1975)]). The properties of this
function will then define the resolution of fp. This is not
the highest possible resolution obtainable by linear
filtering within the available bandwidth [Andrews and Hunt
(1977)1. The sidelobes exhibited by this point spread
function are relatively large (on the order of 10%) and
alternating in sign, with the largest lobes being negative
and nearest the «central maximum, Since intensities in
imagery must be non-negative, one would expenrt that this PSF
is not the optimum, since one would desire to reduce the

side 1lobes as much as possible and linear techniques exist

to perform this function optimally.

Consideration of the effect of noise on inverce
filtering also brings out difficulties in implementation of
this method of image restoration. Allowing for additive

noise in the model, Eq.(2.1) becomes:
g(x,y)=f(x,y)*h(x,y)+n(x,y) (2.3)

where n(x,y) represents noise present in the output of the
instrument. Application of the inverse filtering technique

to noisy data results in output:
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Fp (Uyv)=F (4, v)+N(u,v)/H(u,v) 3 [H(u,v)[>0

The inverse filtering operation will then emphasize the
noise wherever 1/H(u,v) is greater than 1. This will cause
severe degradation of overall signal quality at frequencies
for which the actual signal-to-noise ratio is low and H |is
small, It is possible to define an optimum bandwidth for
inverse filtering [Frieden (1979)) based on minimization of

the mean square error in f_ resulting from noise in g, For

p
an OTF which decreases monotonically to =zero as frequency
approaches the cutoff point, and the assumption that the
actual signal-to-noise ratio is constant for all frequencies
within the bandwidth, the optimum bandwidth is determined by
the frequency at which the modulus of the OTF equals the
root noise to signal ratio., This indicates that knowledge
of the noise is critical in optimum application of inverse
filtering whonever the SNR is not high. Following 1is a
discussion of more sophisticated techniques which eliminate
the disadvantage of extreme noise sensitivity by allowing a
partial restoration and effectively allowing the choice of a

range of restored point spread functions logically related

to the impulse response of the system.

Another method for restoring image data is van
Cittert’s iterative deconvolution technique. This method
allows the use of powerful function domain constraints such
as the non-negativity constraint for images, and the

simultaneous application of other constraints such as peak
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height 1limitations and finite extent, Also an advantage of
van Cittert’s {iteration s the fact that it may be
terminated short of the point that noise begins to render

the result unsatisfactory. Van Cittert’s iteration:

£o(x,y) =g (x,y) (2.4)
£ (x,y)=f, (X, y)+[g(x,y)=£, 4 (x,y)*h(x,y)]

defines the initial estimate of f(x,y) to be the system
output g(x,y). The next approximation, fl(x,y), is taken to
be the sum of fo and the convolution of h with the
difference between g and the previous current estimate of f.
This process continues with the application of constraint:
being made at each iteration. 1In the transform domain, the
ith iteration of van Cittert®s (without constraints) may be

represented as:

i
Fi-cz;(l-m"
ns

where the term multiplying # may bhe viewed as a window
operating on G to produce F.. It has been shown that the
van Cittert iteration is convergent for |1-H(u,v)|<l. This
places restrictions on the form of h(x,y) for which the
method may be used. One restriction is that the peak of the
even part of h(x,y) must 1lie at the origin, In the
transform domain, |1-¥(u,v)|<l requires that Re{H(u,v)}
never become negative [Hill (1973), Hill and 1Ioup (1976)].
This requirement hinders the use of van Cittert®s iteration

on a severely defocused optical system due to the presence

17
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g of negative lobes in the OTF. A comparison of the behavinc §
- of van Cittert’s technique with that ot the
always-convergent iterative technique f»>r h(x,y)=Rect(x,y)
was presented by the author in a paper delivered at the 1981
meeting of the Louisiana Academy of Sciences. The effect of !

. the divergence, if slight, s to reduce the amount of :

- restoration possible before the divergence significantly
affects the result [Ioup (1979)]), Further drawbacks ¢to
lincar versions of this technique are the facts that for
moderate values of i and small values of H(u,v) the result S

of the iteration without constraints is a linear version

RO | Dol TR

. (1+1)G(u,v) of the input G(u,v) plus a linearly enhanced
‘ version (i+1)N(u,v) cf the noise [Frieden (1979)]. ‘
' Since the presence of even small amounts of noise in ;
~ g(x,y) destroys the usefulness of inverse filtering

techniques, it is necessary to perform a noise removal or
attenuation operation prior to the application of any

deconvolution technique related to inverse filtering.

; Morrison“s 1iterative noise removal technique has been :
- successfully used with the application of van Cittert’s :
| i deconvolution technigue [Ioup (1968)]. Morrison smoothing
E ? is defined as an iteration in the function domain:
;« ; go(x,y)-o (2.6)
i - T4 (Xey) =gy _q (x,y)+(9(%,¥) =g, _; %,y ] *h(x,y)

where gi(x,y) is the output from the ith iteraticen of the
th

~

algorithm. The transform domain representation of the i

E» L | B
e TR N




iteration is:
Gi(u,v)-G(u,v){1-[1-H(u,v)]1} (2.7)

.nd the output may be regarded as the result of performing a
windowing operation upon G(u,v) in the transform domain.
The effects of this window are to remove incompatible noise
from g(x,y) and to attenuate all components of g(x,y) for
which H(u,v) 1is small [Ioup (1968), Morrison (1963)].
Incompatible noisc is any noise having spectral components
nonexistent in H(u,v) and compatible noise is that portion
of the noise present with spectral components with'n the
bandwidth of the OTF H(u,v). The de-emphasis provided by
this noise removal technique where H(u,v) is small has the
effect of reducing the magnitude of signal and noise in
regions of G(u,v) corresponding to small H(u,v). This
de-emphasis provides a reasonable compromise of resolution
for decreased noise censitivity since we know that the
optimum bandwidth for linear filtering is related to the
actual SNR as a function of :requency and the SNR may be
assumed to be lowest for spectral components associated with
small H(u,v) and additive white noise, Figure 2.1 1is a
perspective plot of the window defined by Morrison smoothing
as a function of iteration number for a particular one
dimensional G(s). The iteration number, n, increases from 1
at the front to 63 at the back, and the gradual change in
shape of the window from G(s) to Rect(as) is apparent as n

increases.
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A new method proposed by Ioup is implemented here in
two dimensions for the restoration of blurred image data and
to take advantage of the iterative application of
constraints in the space domain for extrapolation of the
input signal transform beynnd the bandwidth of the OTF. The
method is similar to inverse filtering in that an estimate
of f(x,y) is made in the same way that fp(x,y) is defined
above. The method is also iterative to allow the gradual
application of constraints to the data as restoration |is
performed. Also implemented is a modified version of
Morrison®s iterative smoothing technique for reducing the
effects of noise on the iteration [Ioup (1979)]. In order
to assure convergence, a new windowing function 1is defined
in the transform domain by normalizing Hm(u,v) to have a

maximum amplitude of one:

Hm(u,v)=|H(u,v)|/IH (u,v) | (2.8)

max

The deconvolution iteration is:

fo(fo)=g(le) (2.9)
By (0y)=£7 ) (X, y)+ (%, y)=£7 5 (X,¥) ] *hp (x,y)

f‘i_l(x,y)=constrained{fi_1(x,Y)}

Convergence of this iteration 1s assured if, 1in the
transform domain, ]1-Hm(u,v)|<1. Due to the definition of
hm(x,y) convergence is assured for any h(x,y) normalized by

Equation (2.8). If h(x,y) is non-negative, then
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normaljzation is done by forcing it to have unit area,

assuring a peak transform value of 1, The use of f‘i_l(x.y) : ]

as the previous value for fi_l(x'Y) allows the application

of constraints to affect both the 1limit of resolution

R Py

possible with the method and the noise sensitivity of the
method. The addition of constraints to the process of ; 1

restoring g(x,y) to fp(x,y) makes the method non-lineer,

increasing the difficulty of analytically describing the

results, This study simply applies the method to synthetic

S I T

data with and without constraints in order to ge.L a
qualitative measure of the effectiveness of the method in

the presence of varying amounts of noise.

e e e e 3 g i

Since this implementation of the convergent technique { .
utilizes transform domain convolutions, it 1is possible to
contemplate performing non-integral and multiple numbers of
iterations in one step. This is made possible by defining a

recursion in the transform domain:

(3.4)

Py (0, v)=F_ (4,v) = [F, (,v) =G (u,v)] [1=Hp {u,v)]

£55 (4,v) =F (0, v) = [F, (4, v)-F, (u,v)] [1-Hp (u,9)) 1

where i is any real number. The result of performing this

recursion n times is:

(3.5)

Fni(U.V)=FP(U.V)-[Fp(u.V)-G(u,V)![l-Hm(U.V)]ni

It is possible to work in the transform domain with this
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recursion, performing any equivalent number of time domain
iterations 1in one step before returning to the function
domain to apply constraints. Input. parameters to the
program determine the number of equivalent iterations to be
performed and the interval at which constraints will be

applied.

Application of the non-negativity and finite extent
constraints is simply a matter of setting to zero any output
points which violate the constraint. 1In order to apply the
peak constrainz, however, one must have some knowledge
concerning the signal input to the instrument. If it is
possible to say that the input signal could not exceed some
upper limit in magnitude, then convergence and resolution
may be aided by application of a peak constraint between
iterations. Since computation of Fp is done as a division
by H, it is possible that the magnitude of Fp(0,0) will have
been changed with respect to the magnitude of G(0,0). This
is a result of our having placed no restrictions on the area
of h(x,y). If the area of h(x,y) is no*t unity the
calculated fp will have been corrected for the amplitude
scaling to which thls corresponds in the instrument. In
order to use the above recursion with a peak constraint it
is necessary to correct g(x,y) for this scaling. Dividing
g(x,y) by the area of h(x,y) ensures the proper
correspondence between the original f(x,y) (input to the
instrument) and g(x,y) for application of peak constraints.

Note that withcut the application of any constraints the
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limit of the iteration
g(x,y} 1is scaled prior

convergence may be changed

23

is fp(x,y) regardless of whether
to starting, although the rate of

by the scaling.
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CHAPTER 3

IMPLEMENTATION OF CONVERGENT ITERATIVE TECHNIQUES

Implementation of the convergent iterative techniques
for noise removal and deconvolution requires a careful
consideration of the assumptions made in quantizing and
sampling signals for digital processing, Also to be
considered are the various alternatives available in
implementation of each stage of processing. Each
alternative is considered here and, when possible, analyzed
to determine the relative efficiency of the technique, The
basic problems to be considered are the representation of a
continuous signal by a sequence of samples in space or time,
the quantization of a continuous quantity by conversion to a
finite precisinn digital number, and the limitations of the
discrete Fourier transform in representing the frequency
domain characteristics of a function. We are assuming here
that for the purpose of treating the data analytically, the
original process may be assumed to be mathematically
continuous. It is possible however that the phenomenon is
not truly continuous, but is experimentally sampled at a

larger interval than that characteristic of the process.
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The sampling theorem states that a band-limited

function may be sampled at discrete intervales in the

FEEIL NESNE S SRNCSR WAL S o S
5 . z

independent variable without 1loss of information if the
interval is no larger than the Nyquist 1limit for the

function. A band limited function has a Fourier transform

i

which is non-zero over only a finite portion of the domain
of the transform variable s. The Nyquist 1limit 1/25c is
inversely proportional to the cutoff frequency, Sqr of the ; ?
function., The synthetic data generated from the model of !
Chapter 1 inherently satisfies this requirement since ihe :

transform was specified to be band-limited and the space

domain function computed from the transform.

T

Quantization of a continuous quantity by digital
A representation has already been considered in the discussion
;l of quantization noise in chapter one. It was shown that the
E SNR for a resolution of 10™3 is 92 dB. This SNR is already
? relatively high, and all calculations are here performed
with a floating point representation having a 28 bit
mantissa. The SNR associated with this resolution is 158 dB
within the dynamic range allowed without a change of ? ;
exponent (28 bit fixed-point SNR). Due to the possible loss % ;

of precision involved in differencing numbers of similar

magnitude, the accuracy of results is difficult to predict,

L The relative error resulting from the representation of a

T

number x by the approximation x“=x(l+e), where e=(x"-x)/x is

the relative error of approximation, may be greatly

increased by summing two numbers of similar magnitude but }
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opposite sign [Knuth (1969)]). Since it is not convenient to
predict loss of precision resulting from a general
calculation, an attempt will be made to estimate the number
of significant digits in the results given certain

characteristics of the input dat:,

In order to estimate the precision with which the
algorithm operates, some known characteristics of the Input
data will be used to take into account the relation between
the dynamic ra:ge of the input and the precision of the
algorithm output. The dynamic range of the function g(x,y)
is roughly 6 orders of magnitude or 20 significant bits as
presented to the processing algorithm. If it can be shown
that the floating point computations preserve the 20 high
order bits of the mantissa, then the computation may bhe
assumed exact within the precision of this set of input.
Since the FFT algorithm is the most used portion of the
actual program, we will examine its accuracy first. The FFT
computes the discrete Fourier transform of the input by a
process of multiplication with phase factors kan and
summations of these products. The phase factors all have a
magnitude of 1, therefore the multiplications involved in
the FFT never tend to increase the magnitude of the result,
and roundoff error is significant at each stage only near
the least significant bit carried in the calculation. This
being the case, the troublesome factor of error
magnification due to floating point multiplications changing

exponents and thus perhaps incorporating erroneous data bhits
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into the significant portion of the next sum may be ignored
here., Making the assumption that each phase multiplication
does not increase the relative magnitude of the current
error, we may then say that the upper limit on calculation
error will be on the order of magnitude of the product of
the number of successive summations and half the
quantization width wused in calculation. Since the

quantization width used here is 228

, there may be on the
order of 256 successive summations before cumulative
roundoff error could begin to reduce the significance of
results. For the case of white noise input to the floating
point FFT, it may be shown that the output noise to signal
ratio is twice the number of summations multiplied by the
variance of the roundoff error in each operation [Oppenheim
and Schafer (1975)). The SNR for this implementation with a
64x64 input array is then 169 dB for white input. The
floating point FFT may then be trusted to provide

insignificant addition of noise to the calculations.

The same assumption may not be made regarding the

p* In this case, a

floating point division is done with the magnitude of the

portion of the algorithm which computes F

denominator being perhaps as small as 10'6, “his being the
limit set by the use of a tolerance factor in the
computation of 1/H. There exists the possibility here of
moving erroneous data bits of the numerator 20 places to the
left, thereby seriously affecting the significance of the

result, All other portions of the algorithm use a

27
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normalized function (magnitude < 1) as a multiplier and b

f : therefore are not as likely to affect seriously the accuracy 1
of the result, It is fortunately the case that the portions
g of Fp which are most likely to contain calculation error are

also the ones which are given the 1least weight by the 1

restoration algorithm,

The last basic theoretical point to be considered |is
that of the representation of a finite extent sampled signal
. by its discrete Fourier transform. 1In order to make use of ]
the efficient algorithm available for computation of the
FFT, the program is written to operate on an image 1in the
transform domain whenever possible. The convolution theorem ‘
states that the transform of the convolution of two

. functions is the product of the transforms of the two ;}
: . functions. This holds for the continuous  infinite 3
representation of a function and its transform. Due to the

fact that we are using discrete finite representations in

both domains, several possible prohlems must be considered
in the implementation of convolution as a product in the

- transform domain [Bracewell (1978)].

Implicit in the discrete representation of a function

o as a set of samples taken at intervals 1/2s_, is the
- replication of the transform at intervals of width Sc in the

transform domain. By the convolution theorem, samglina in

Mt b SO SRRl o i
] p S—
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the function domain is equivalent to convolution in the

g
R AT
-

transform domain of the transforms of the sampling function
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and the original function, Since the transform of
shah(x/zsc) is Zscshah(23cs), the transform of a sampled
function 1{is the superposition of many copies of the
transform of the continuous function replicated at intervals
of 25c. This superposition of replicated copies will only
be equal to the continuous function®s transform 1if the
function is band-limited with cutoff at or below 5.
[Bracewell (1978)). The phenomenon resulting when this is
not the case 1is referred to us aliasing, since the
superposition results in the addition of high frequency
components from one window to the low frequency components
ot the next, hence aliasing high frequencies as 1low ones.
In the function domain this corresponds to the fact that the
sampled representation of a signal 1is not unique for
frequencies beyond the Nyquist limit. The only way to avoid
aliasing when sampling data of unknown spectral composition
is physically to filter the data before sampling. This
filcering is performed by the aperture stop in an optical
system and the electronic circuitry in electrical signal

detection apparatus.

Due tn the finite nature (in space or time) of the
sequence of samples representing the function, there is also
a sampling effect on the transform. The transform of any
finite continuous or discretely sampled function will be
defined only at intervals of 1/2T of the frequency variable,
This is a manifestation of the fact that the function is not

completely specified in space. If one assumes that the
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function s zero everywhere in space beyond the sampl:?
region, then the missing values between defined transform
values may be computed by interpolation based on sinc(s), or
by the equivalent operation in the function domain, that of
appending zero values to the sequence before performing the

discrete Fourier transformation.

A result of the implicit replication in one domain of a
function represented at discrete intervals in the other
domain, is that the convolution represented in the transform
domain as G(u,v)H(u,v) is a periodic convolution 1in the
space domain, We refer to the convolution of two sampled
finite extent functions g(x,y) and h(x,.)} as a linear
convolution when the operation is performed over an infinite
extent window by assuming g(x,y) and h(x,y) to be zero
beyond the region in which they are known (i.e., not
replicated). A pericdic convolution results if the
assumption is made that the functions are replicated by
infinite repetition of the set of sample points. The linear
and periodic convolutions will give the same result only
when the sum of the number of samples in g and h (in each
dimension) is less than or equal to N+1, where N 1is the
number of samples used in the transform domain
representation of the result, This 1is equivalent to
appending enough zero sample values to g or h so that there
will never be simultaneous overlap of the two non-zero ends

of g and h during computation of the periodic convolution.
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Actual implementation of the convergent deconvolution
iteration begins by computing H(u,v) from h(x,y). The
experimenter must insure that aliasing does not occur {n the
process of sampling to produce h, The number N, the size of
the FFT to br used (here ase'.ued square, in two dimensions),
must be chosen large enough such tnat ng+nh-1<N. This
insures that the periodic convolutions implemented i{in the

program will give the intended results,
Hm(u,v) is then calculated as
Hp(u,v)=|H(u,v)|/{arealh(x,y)]} (3.1)

~nsuring that, for h(x,y) non-negative, [Hm(u,v)[<1 and
therefore that the iteration will converge. Eg.(3.1) makes
use of the fact that if the PSF js a real, non-negative
function it has a hermitian transform with peak magnitude at
the origin and equal to the area of h(x,y) [Ioup (1368),
Bracewell (1978)]. This property 1is not, however, a
requirement for the convergence of the technique (see

Eq.2.8).

Next, h(x,y) is normalized in order to maintain the

relationship:
arealf(x,y)]=arealg(x,y)] (3.2)

realizing that in sensing the data our optical system

performed the following modification of the area under

f(x,y):
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arealg(x,y))={arealf(x,y)])}{area(r(x,y)]}. (3.3)

This normalization is necessary when applying constraints
since we will compare Fp to G within the iterat.on, Any
required change in area can be implemented at the end of the

{terations,

Next the algorithm makes an attempt to minimize the
effects of noise in g(x,y) by removing incompatible noise
and attenuating compatible noise. A transform domain window
is used in the new method to perform the noise removal

operation, This windowing operation is
Gg (u,v) =G (u,v) {1-1-H  (u,v)] "} (3.4)

where the new, smoothed g(x,y) is computed in the transform
domaias by weighting the transform G(u,v) according to
[1-(1-Hm(u,v))n]. This weighting is ejuivalent to
performing n iterations of Morrison smoothing in the time
domain with the function hm(x,y) in place of hi(x,y)
[Morrison (1963), Ioup 11968)]}.

The new technique now makes an approximation of f(x,y)

as fp(x,y) defined above, using a tolerance factor of 10'6

in computing 1/H(u,v) to avoid arithmetic overflows in the
computation of Fp(u,v) znd limit the effects of errors
introduced by the calculation. The to.etance is chosen much
smaller than the quantization interval used in sampling the
model output and therefore functions solely to prevent

overflow and limit calculation error. This tolerance factor
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is applied simply by avoiding the division 1/H(u,v) whenever
|H(u,v) |<tolerance and substituting 2zero for the result.
Due to the efficiency of computation in the transform
domain, all functions are represented in the program by
their transforms most of the time. Only the application of

function domain constraints is done in the space domain.

Application of constraints 1s performed by inverse
transforming the current Fi(u,v) and then forcing fi(x,y) to
meet the constraints input to the program. The time domain
function is corrected to meet the peak, non-negativity, and
finite extent constraints and then written out to a disk
file. Advantage 1is taken here of the fact that the
imaginary part of fi(x,y) should be zero, and it is cleared
before continuing the iteration. This should help to reduce
the propagation of roundoff errors through the iterations.
The iteration then proceeds by transforming the constrained
f‘i(x,y) back to F‘i(u,v) and repeating the previous

procedure until the repetition count is exhausted,
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CEAPTER 4

RESULTS AND CONCLUSIONS

In order to test the wusefulness of the iterative
smoothing and deconvolution techniques of chapter three for
image data, the algorithmes are here applied to several sets
of synthetic input data generated by the model of chapter
one. The first set of data, used as an initial test for
convergence and symmetry, is the response of the defocused
model optical system tc an input with 270 degrees of
circular symmetry. The intensity distribution of f is a
cylindrical Rect(r) with a smooth gaussian edge over 270
degrees of arc and a sharp edge over the remaining quadrant.

These data are processed both with and without the addition

of noise.

The second set of data used in testing the application
of constraints and the effects of noise on the method |is
chosen to provide a qualitative measure of performance for
several types of obiects. The first is a pair of delta
functions separated by approximately one half of the
half-width of h(x,y). The second 1is a pair of narrow

gaussian peaks separated by the same distance. The third is
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a sharp right angle shaped object with arms fifteen samples
long and two samples wide. The fourth object is a right
triangular wedge with discontinuous sides., Each object has
unit peak intensity. Due to the lower respnnse amplitudes
generated by the model for sharp, narr:s objects, the
restoraticn of the deltas, Gaussians, and angle will require
raising the height of their peaks significantly. The peak
constraint will then be less effective on the first three

objects than on the large triangular object.

The third and fourth sets of data used in testing are
two different noisy cases of the second set. Approximately
white gaussian noise is added to bhoth sets in different
amounts. The SNR for set three is 200:1 or 23 4B and for
set four the SNR is 2000:1 or 33 dB. The high noise 1level
corresponds to a relatively noisy image and the lower noise
level represents a fairly clean 1image ([Andrews and Hunt

(1977)].

Presented in chapter one were the displays of the model
PSF and OTF. The same PSF and OTF are used for all of the
following data. These are the defocused PSF and OTF from
chapter one. Following is the set of plots representing tae
first set of test data. Figure 4.1 is a display of f(x,y)
as input to the model to generate g(x,y). The sharp edge
and flat top will test the performance of the restoration

method. Figure 4.2 shows the Fourier transform of €£(x,y).

Note the ripples occurring parallel to the sharp edge (of
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f(x,y)) and extending out to high spatial frequencies. The
output of the system, g(x,y) is shown in Figure 4.3. Just
evident in the response is a flattening of one side of the
peak where the sharp edge of f(x,y) occurred. Also note
that the flat top has been completely rounded off. Evident
in G(u,v), Figure 4.4, 1is the attenuation cf the high
frequency components of F(u,v) and the introduction of a
negative oscillatien resulting from the multiplicative
negative lobe of the blur OTF in the model. Figure 4,5 is a
display of fp(x,y) computed for this g(x,y) and the model
PSF. Since there was no significant noise 1in g(x,y),
fp(x,y) is very close to f(x,y) although the effects of
calculation noise are apparent in the flat areas. Figures
4.6 through 4.7 present the results of performing 1,5, and
10 iterations of deconvolution on g(x,y). It is evident in
the first iteration that the technique 1is beginning to
restore the sharp edge to the data and to flatten the
rounded peak. The fifth and tenth iterations indicate that
the iteration is rapidly converging to f(x,y). The
non-negativi’, constraint has been applied to these data at

the end of each iteration.,

In order to demonstrate the effect of noise on the
results from this technique, the same run is repeated after
2dding white gaussian noise to achieve a signal to noise
ratio of 700:1. As is evident from Figure 4.9, this amount
of noise is not rezadily visible on the data, yet the effect

on the principal solution is to render it useless as a final
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result (Figure 4.10). Even so, Figures 4.11 through 4.13
indicate that useful results may be obtained from the
iterative technique for small numbers of iterations even

without first performing noise removal,

The second set of test Jata contains four separate
cbjects to provide a measure of performance for various
types of input. Figure 4.14 is a display of this €(x,y).
Two of the objects are pairs of small, sharp objects 1in
order to test the resolution of the result, All objects
have the same peak intensity, but the total pow2r radiated
by each object varies considerably between the pair of point
sources and the wedge., Tie output of the model systenm,
g(x,y), displayed in Figure 4.15, is greatest for the wedge
and smallest for the pair of point sources, A plot of
log[l+g(x,y)] is shown in Figure 4.16 to indicate more
clearly the smoothing effect of the model. The objective of
restoring these data is to bring the amplitudes back to
their original levels by putting the spread-out power back
where it belongs, thereby sharpening the image also. Again,
the data are first deconvolved without added noise in order
to verify the accuracy of the implementation, ard to observe

the effects of various combinations of constraints,

Unfolding (deconvolution) iteration number ten, with
all constraints applied between each iteration, is shown in
Figure 4.17. Obvious improvements have been made in the

sharpness of edges and the relative amplitudes of the small
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objects. Figure 4.12 displays the result of applying the
constraints only once, after the equivalent of ten
iterations performed in one step in the transform domain,
The lessened effect of the processing on edges and the flat

top of the wedge is apparent, but the deltas still show

n

(oS

about the same improvement over the input, Processing
this manner is of interest due tc its possible savings in
computer time, Figures 4.18 through 4,37 provide a
comparison of results of processing with the application of
each constraint individually and all constraints together at
each iteration and at every tenth equivalent iteration for
10, 20, 50 and 100 iterations. A comparison of Figures 4.33
and 4.34 indicates that, for these noiseless data, only ten
applications of constraints (once every ten equivalent
iterations) has provided nearly the same result as the much
more expensive aprlication of constraints at each of the 100
equivalent iterations. Apparent from a comparison of the
four sets of processed data is the fact that application of
constraints individually or jointly has a cumulative effect
on the result, the magnitude of which is dependent on the
number of applications. Most effective for these data is
the non-negativity constraint for speeding convergence and
increasing bandwidth. Also important for the "bright"
portions of the image is the application of the upper 1limit
constraint. It tends to provide a similar additional
advantage in regions of the 1image which approach maximum

brightness. For this image the main effect of the finite
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extent constraint is to limit the extent of Gibbs

oscillations resulting from the sharp edges of the oLjects.

The next set of data was generated by adding gaussian
noise to f(x,y) to obtain a SNR of 200:1. The noise is
visible in Figure 4.38. A plot of log[l+g(x,y)] is shown in
Figure 4.39 to indicate the actual SNR for each of the four
objects. The actual SNR for the pair of point sources is
only 1.5:1, and this noise level is therefore very likely to
obscure important details necessary for complete restoration
of these features. Five iterations of noise removal were
first performed on g(x,y) to achieve a large degree of nouise
removal (and high frequency attenuation). A total of thirty
unfolding iterations and constraint applications were then
performed, the first 10 with an equivalent iteration
interval of 2, the next 10 with an interval of 5, and the
last 10 with an interval of 10. The final result, Fiqure
4.40, is significantly sharper than the original with little
detail lost in noise. Figure 4.41 shows the result of
applying only 20 iterations, the first 10 at an interval of
.5 equivalent time domain iterations, and the next 10 at an
interval of 4. Prior to deconvolution, 20 iterations of
smoothing were applied. Since this number of smoothing
iterations corresponds to significantly less high frequency
attenuation of G(u,v), the deconvolution converges more
quickly, though it also shows a greater amount of noise.
Figure 4.42 shows the result of continuing out to 105

equivalent iterations. It is apparent from this result that

39

TIPS

i e T Ll

e

P CRNINCS PP

i ik B

[P

= e BRI NG T

E



I e 2 s i o - DR LAt AR St ie o dhck n TR e W e e T

40

E

the optimum number of iterations is lessg than 105 since the

e s s Th

noise amplitude has increased without a significant
improvement in sharpness or amplitude of the restored point

sources.,

e | B L |

Figures 4.43 and 4.44 show the effect of not using the :

upper 1limit constraint for ¢two different numbers of

&
R R TR VN I

iterations of smoothing and unfolding. It is apparent from
é - these displays that the peak constraint is of great value j
* only for the wedge, it does not aid the restoration of the %

lower power objects. The remaining test runs on these data E
were all done after applying 20 smoothing iterations to 3
g(x,y). These results show a definite <correlation between %
the speed of restoration and dominance of noise and the ;
number of times constraints are applied in computing the

result, Further study could be directed to determining an

e oo

optimum interval for application of constraints based on the

amount of smoothing and the SNR.

The last set of data processed had a SNR of 2000:1.
Again, f(x,y) consisted of the same four objects. In order 3
to show that inverse filtering is not adequate for even this
| p low noise level, fp(x,y} is displayed in Figure 4.50.

v Application of 60 iterations of noise removal, however,

improves fp(x,y) considerably to that shown in Figure 4.51.
Figures 4.52 and 4.53 show the results of deconvolving
g(x,y) an equivalent of 100 and 300 time domain iterations

with 20 and 40 constraint appl:ications respectively. In
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this set of data the point sources are being restored much
more rapidly due to the fact that less attenuation of high
frequencies is necegssary in the smoothing operacion,
Symmetry of the point sources is also good at this lower

actual SNR.

The results discussed above demonstrate the
effectiveness of the convergent iterative techniques in
accomplishing noise removal and deconvolution of optically
sensed data suffering from severe defocusing effects. For
the model studied, the PSF and OTF were accurately
determined, but this is not always possible with
experimental data. Since these methods do not rely heavily
on accurate knowledge of these system characteristics for
convergence, it 1is expected that wuseful restoration of
imagery could be obtained by estimating the system PSF and
OTF [Yoerger (1979)]). Ability to wuse this technique to
apply constraints after any number of equivalent time domain
iterations makes it extremely flexible for using constraints
to remove noise frcem the image and increase its bandwidth
while deconvolving. The most effective constraint for this
particular f(x,y) was the non-negativity ccnstraint, and
this suggests that the method could be applied to
astronomical data with great success, since such images

often consist of point sources on a black field.
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In addition to investigating means of determining an
optimum number of iterations of deconvolution and constraint
applications for the new convergent iterative deconvolution
technique, further study 1is indicated *to improve the
approximation fp(x,y) used in the iteration, Since this
function "pulls" the result toward an unacceptable limit in
the case of noisy data, it would be desirable to include the
effects of the constraints into fp(x,y) as the iteration
progressed, It is apparent from the results presented here
that random noise 1is attenuated by the application of
constraints., Creater benefit might be derived from these
constraints if a way is devised to incorporate their noise
cancelling properties into fp(x,y) while iterating in order
to allow a greater number of iterations to be performeAd
before noise emphasis begins to dominate restoration,
Further study is also indicated to investigate the effects
of constraints on resultant bandwidth of processed data by
studying the spectrum of each iteration. Also of interest
is the effect of replacing the initial estimate fp(x,y) with
other reasonable estimates for the deconvolved image such as
the Wiener filter solution. It is possible that
intermediate iterations wusing this technique to apply
constraints will provide an improvement over the one-shot

filtering technique when it is used in this manner.
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Figure 1.4

DEFOCUSED PSF - RUN NUMBER 1
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Figure 4.5




UNFOLDING ITERATION #1 - RUN NUMBER 1
Figure 4.6
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UNFOLDING ITERATION #5 - RUN NUMBER 1
Figure 4.7
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UNFOLDING ITERATION #1 - NOISE RUN #1

Figure 4.11




UNFOLDING ITERATION #5 - NOISE RUN #1

Figure 4.12
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UNFOLDING ITERATION #10 - NOISE RUN #1
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UNFOLDINS ITERATION 2X10 - ALL CONSTRAINTS
Figure 4.23




UNFOLDINS ITERATION #20 - UPPER LINIT CONSTRAINT
Figure 4.24




UNFOLDING ITERARTION #20 - LOWER LIMIT CONSTRAINT
Figure 4.25




UNFOLDINS ITERATION #20 - FINITE EXTENT CONSTRAINT
Figure 4.26







UNFOLDINS ITERATION 8X10 - ALL CONSTRAINTS
Figure 4.28




YWT -

/f}/////
iy )

/) K
// ’// l’ // /

7
%

UNFOLDING ITERRTION #850 - UPPER LIMIT CONSTRAINT

29

Figure







UNFOLDINS ITERATION #80 - FINITE EXTENT CONSTRAINT
Figure 4.31
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UNFOLDING ITERATION #100 - UPPER LINIT CONSTRAINT

Figure 4.35
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UNFOLDING ITERATION 10X2 - 20 SMOOTHINGS - SNR=200
Figqure 4.45
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UNFOLDING ITERATION 50X2 - ALL CONSTRAINTS - SNA=200
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UNFOLDINS ITERATION 4X30 - 20 SMOOTHINGS - SNR=200
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APPENDIX ONE

The main routine, FSDCON,FOR, used to implement the
always-convergent iterative techniques for noise removal and
deconvolution i{s described in this appendix. 1Input to the
program must include a two-dimensional array of numbers
representing the system response function h(x,y) and another
array of sample values corresponding to the system output
g(x,y). The program is written in such a way that modifying
parameters DIM1 and DIM2 to reflect the dimensions of the
desired working arrays is all that is necessa:y to change
the value referred to as N in chapters two and three. DIM1
must be assigned@ a value of N and DIM2 the value 2N Dbefore
the program is compiled. This program makes use of complex
data arrays and FORTRAN supplied complex arithmetic
functions in order ¢to simplify ¢the handling of complex
functions. Declared as complex quantities are
two~-dimensional arrays G(1,J), H(I,J), and Hs(I,J), each
having dimension N Ly N. Declared as real arrays of
dimension 2N by N and equivalenced to the co.plex arrays are
the arrays Gin(1,J), Hin(I,J), and Hout(I1,J). The last
three arrays are used for convenience in doing I/0 of the
real parts of the complex arrays and in applying
constraints. A complex array of dimensions N by N |is
treated by FORTRAN as an array of real pairs representing
(real, imaginary) values of a single complex variable. The

equivalencing done above simply makes the real and imaginary
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parts ot each complex value accessible by subscripting
instead of by a call to a library function. All
multi-dimensional arrays are stored in core by FORTRAN in
such a way that the flrst i.dex varies fastest., This is

diagrammed in the comments within the main routine,

Input to the program is mainly interactive. Operator
input is request:d to supply the filenames for g(x,y) and
h(x,y) and the dimensions of g(x,y) and h(x,y). These .ast
dimensions are independent of M, which must be chosen such
that ng+nh—1<N. Here, the values of ng and n, represent the
largest dimension of y(x,y) and h(x,y), and the program
expects to read in square arrays for g(x,y) and h(x,y).

Also requested by the program is the FORTRAN format in which

the input data are organized.

The remaining input to the program determines the
processing parameters to be used. Requested are the total
number of iterations of smoothing and unfolding to be
performed, the interval at which constraints are to be
applied and the output interval for the unfolding iteration.
Also requested is the name of the file containing the data
to be unfolded, and an initial numeric offset wvalue to be
used in naming the files output by the unfolding iteration.
Files output by the smoothing routine are named SMNNNN.DAT
where NNNN is a number representing ti,2 number of equivalent
time dcirain iterations performed on g(x,y} to generate each

one. Output files from the unfolding routine are named in
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the same manner, but are written onlvy {f the number of
constraint applications performed for the current iteration
is zero modulo the output iteration interval. The program
may be restarted in order to continue unfolding a previous
result by providing the appropriate filename offset and
replacing g(x,y) with the original h(x,y) and replacing
h(x,y) with the result from the last run. Output file names
are UFNNNN.DAT where NNNii = filename offset + (constraint
application interval)X(number of constraint applications).
This number represents the total number of equivalent time

domain iterations used in generating the result data.

The last control data input to the program specifies
the way in which constraints will be applied. The operator
must enter levels for application of the 1lower 1limit and
upper limit constraints. To specify the finite extent
constraint, the operator enters values corresponding to the
upper left and lower right corners of the non-zero region of
the image. Since the program always applies these
constraints at the end of each iteration, to turn one off
requires entering a value which makes that particular

constraint ineffective.

Subroutine DDFFT, a modified version of the
two-dimensional FFT routine written by Kathleen Whitehorn
[Whitei.orn, K (1980)), 1is wused by the main routine to
perform most oper _ions. Modifications include the use of

complex arrays and complex arithmetic, and reduction of the
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number of arguments to one complex array and two integers,
Also, to increase the efficliency of internally passing data
to the one-dimensional FFT (subroutine "FFT") within the
subroutine, the array passed to this routine is actually
just one row of the complex two~dimensional array used by
the main routine. This eliminates a large amount of data
shuffling which would be required to fill another input
array on every call to FFT. Large increases in efficiency
would result by converting to an FFT which makes use of the
symmetries of the hermitian transform ccrresponding to real
input data. Recognizing these symmetries allows the array
dimensions to be cut in half, and reduces the amount of

computation required by the same amount.

NOTE: =~ All programs in the listings wuse a slightly
different notation from that used in the body of this
thesis. In the proorams and the appendices, g(x,y) is used
to represent the PSF of the system and h(x,y) represents the
output of the system in response to the input f(x,y). This
amounts to a reversal of the roles of g(x,y) and h(x,y) in

the version of the notation used in the programs.
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PRSP,

PRI,
*

Wi

Crewdnadss GFORM and HFORM are variable format spec’s
Cowsnnnwands FIINAM {8 a variable file name
DOUBLE PRECISION GFORM(S) ,HFORM(5) ,FILNAM

DOUBLE PRECISION FILIN,GFILE,HFILE

PROGRAM i*5DOON . FOR

INTEGER UR,LR,LC,UC,MULT

REAL INTSM, INTUF

Craxddadddd A complex array is stored with the first
Crandnntrdt injex varying fastest.
Chadkkhiht® ocach array is a corresponding real array
Craxxsxssas for convenience in doing 1/0.

Cheasaaksddk Data arrays are assumed tu be arranged:

Chhhs ki
L T TR
Chhkdhahhhk
Chhhk ik ki
CHhrrNhARRhh
Chukkhhhhih
Chhhkmhddhh
Chhhhhhihh

Chkhhhkhhhd

OOMPLEX G(64,64) ,H(64,64) ,Hs(64,64)

DIMFNSTON Gin(128,64),Hin(128,64) ,Hout(128,64)
FQUIVALENCE (G(1,1),Gin(1,1)),(n(1,1),din(1,1))
EQUIVALENCE (Hs(1,1),Hout(1,1))

Chihkdkkdd® Array Gm is for storage of the magnitude of G

tc.'oIo..ollc.l.c-

row 1 .
row 2 .
row N-1

row N

cllcolooal.uI.o'oo'l..ono

REAL Gm(64,64)

TYPE 16

Equivalenced to
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16

17

18

FORMAT (“ Is this a restart? (0=NO) °,$)
ACCEPT 2,IRSTRT

TYPE 1

FORMAT (° Enter g filename “,$)

ACCFEPT 18,GFILE

FORMAT (21)

TYPE 17

FORMAT (° Enter h filename “,$)

ACCEPT 18,HFILE

FORMAT (A10)

TYPE 3

FORMAT (“ Enter g and h dimensions (21) “,$)
ACCEPT 2,NG,NH

TYPE 6

FORMAT (“ Enter g format (AS0) “,S)

ACCEPT 7, (GFORM(I),I=1,5)

TYFE 8

FORMAT (“ Enter h format (A50) “,$)

ACCEPT 7, (HFORM(I) ,I=1,5)

FORMAT (5A10)

TYPE 4

FORMAT (“ Enter smoothings, unfoldings “,$)
ACCEPT 2,NHS,NUNF

TYPE 9

FORMAT (“ Enter unfolding computation interval “,$)
ACCEPT 507, INTUF

TYPE 15

A B AL &a kot - 0w e < mnee + one i ahe croene - o ottt torder e A errr et 1 e Ae s ae
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? l—- 15 FORMAT (* Enter output iteration interval *,$) |
‘ ACCEPT 2,MULT j
g’ TYPE 10
.- 10 FORMAT (° Enter asmoothing computation interval “,$)
g ACCEPT 507,INTSM
- TYPE 5 )
p 5 FORMAT (° Enter filename offset “,$) |
0 ACCEPT 2, INIT
| ) TYPE 19 F
3 19 FORMAT (“ Enter filename for unfolding “,$)
.- ACCEPT 18,FILIN ;
' TYPE 11
v 11 FORMAT (“ Enter black, white level constraints “,$) ' i
| ACCEPT 507,BLACK,PEAK
& Chaakisrdsdt Finjte extent limits are entered as two pairs:
- Chakasikdns first pair is lower numbered row,column (upper
Cakankdins Jeft corner) second pair is lower right corner
" TYPE 12
‘ 12 FORMAT (” Enter finite extent oconstraint limits “,$)
" ACCEPT 13,LR,IC,UR,UC
. 13 FORMAT (41) ‘
3- C*******i** Set fim parameters
:' 1S12=64
15 TOL=. 000001
L 507  FORVAT(64G)
H - Chaakdridds 7oro input arrays
k:»'gf i DO 105 I=1,1SIZ
igl I
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DO 105 J=1,1SI2
G(I,J)=0,
105 H(1,J)=0,
Chaddhddddd Inwt data
OPEN (UNIT=32,ACCESS="SEQIN”,FILE=GFILE)
READ (32,GFORM) ((Gin(I,J),I=1,NG*2,2),J=1,NG)
Chasddddnis Compite G(u,v) — ISIZ X ISIZ -i transform
ISIN=-1
CALL DDFFT(ISIZ,ISIMN,G)
Chrhhkhhkid Wte Gnm
DO 104 I=1,ISIZ
DO 104 J=1,1S12
104 Qn(I,J)=CABS (G(1,7))
Chhhhhhddhnn mmlize Gm

GmMAX=1./Gm (ISIZ/2+1,1S1Z/2+])

DO 101 I=]1,ISIZ
DO 101 J=1,ISI1Z
101 Qm(I,J)=Gm(I,J)*GnMAX
WRITE (35,507) ((Gm(I,J),I=1,1S1Z),J=1,1S1Z)
Chawwasdnns Compute H(u,v)
OPEN (UNIT=32,ACCESS="SEQIN”,FILE=HFILE)
READ (32,HFORM) ((Hin(I,J),I=1,NH*2,2),J=1,NH)
IF (IRSTRT.NE.O) GOTO 321
Crahihkdrt Normalize h to f
DO 311 I=1,ISIZ
DO 311 J=1,1S1Z

108
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311 H(I,J)=H(I,J)*QmMAX
Caasdndadtt Save normalized original h as SMO.DAT
321 OPEN (UNITw30,ACCESS=“SPQOUT”,FILF="SM0.DAT")
WRITE (30,507) ((Hin(I,J),I=1,1812*2,2),J=1,ISIZ)
CLOSE (UNIT=30,ACCESS="SEQOUT” ,FILE="SM0.DAT")
Chotrdthind cmpute H from h
ISIGN=-1
CALL DDFFT(ISIZ,ISI®N,H)
IF ( NHS ,BQ. 0 ) GOTO 400
Cheskdkawi® Smothing
CHa*aadsdss Compute Hn = H * [1-(1-Gm)**n)
DO 107 K=1,NHS
DO 103 I=],IS12
DO 103 J=1,1ISIZ
103 Hs(I,J)=H(I,J) * ( 1- ( 1- Gn(I,J) )**(INTSM*K) )
Chaxdartiks Transform back to get hs
ISIN=1
CALL DDFFT(IS1Z,ISIQN,Hs)
Cwaaakkiras Output smoothed h
KINT=K*INTSM
ENCODE (10,501 ,FILNAM) KINT
501 FORMAT (“SM”,14,” .DAT")
TYPE 502,FILNAM
502 FORMAT (1X,A10)
OPEN (UNIT=30,ACCESS="SEQOUT” ,FILE=FIiNAM)
503 WRITE (30,507) ((WOUT(I,J),I=1,ISI2*2,2),J=1,ISIZ)

CLOSE (UNIT=30,ACCESS="SEQOUT” ,FILE=FILNAM)
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QONTINLE

Coannsnenns [NFOLDING

Ceeswsdssdt read input to unfolding routine

400
03

TYPE 403,FILIN
FORMAT (° UNFOLDING FILE: “,Al0)

OPEN (UNIT=32,A0CESS="SEQIN” ,FILE=FILIN)

Cowarwawast 2¢ro Im part of Hs array

404

READ (32,507)

DO 404 I=2,2*IS1Z,2
DO 404 J=1,1SIZ

Hout (I,J)=0,

Chewaktass* Compute Hs from hs input

ISIGN=-1

CALL DDFFT(ISIZ,ISIGN,Hs)

Chwadkakews* Comoute Fp = H/G
Chwhuerand* Got (G*)/(Gm)**2 = 1/G first

401

303
305

508

DO 305 I=1,ISIZ

DO 305 J=1,1S12

IF ( Gm(I,J) .LT. TOL ) GOTO 303
T™MP=GMMAX/ (Gm (I,J) ) **2

GOTO 305

™™P=0

G(I,J)=CONIG(G(I,J))*T™MP

WRITE (34,508) ((G(1,J),I=1,1S12),J=1,1S12)
FORMAT (128G)

IF (IRSTRT.EQ.0) GOTO 318

Chwxidsswd* Do H * (1/G) if this is a restart

((Hout(1,J),I=1,IS12*2,.),J=1,1512)
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DO 306 I=]1,ISIZ
DO 306 J=1,ISiZ
306 H(I,J)=H(I,J)*G(I,J)
GOTO 320
Cramtnatddd Do Hs * (1/G) if this is not ¢ restart
318 DO 319 I=1,ISIZ ’
DO 319 J=1,ISIZ
319 H(1,J)=Hs(I,J)*G(I,J)
320 WRITE (33,508) ((H(I,J),I=1,1S12),J=1,1S17) *
Cwswwawsss H IS NOW Fp=(H/G) (PRINCIPAL SOLUTION) ;
Chesssnssns Compute (1-Gm)**INTUF | :
DO 309 I=1,ISIZ :
DO 309 J=1,1S12 ;
309 Gn(I,J)=(1-Gn(I,J)) **INTUF j
CHakddddstd Now ready to iterate 5
DO 301 K=1,NUNF
Chassassdds NOW GET Hs = Fp - (Fp - Hs)*(1-Gm) **INTUF ,,
DO 307 I=]1,ISIZ j
DO 307 J=1,ISIZ
307 Hs(I,J)=H(I,J) - ( H(I,J) - Hs(I,J) ) * Gm(I,J) 1
Chadadaditr Oompute time domain result hs
ISIN=1
CALL DDFFT(ISIZ,ISIQN,Hs)
Charnaadrss )oply time domain constraints
DO 208 I=1,2*ISIZ,2
DO 308 J=1,1ISIZ g

IF / Hout(I,J) .GT. 'EAK ) Hout(I,J)=PEAK

R e aEatenit 0f s AT S e Aieamn vt e erem e e o



308 IF ( Hout(I,J) .LT. BLACK ) Hou.(I,J)=BLACK o
Caaennansss Apply finite extent constraint !
IF ( UR .BQ. 0 ) QOTO 316
DO 312 Isl,2*LC,2
DO 312 J=1,ISIZ
32 HOUT (I,J) =0,
DO 313 I=2*UC+1,2*ISIZ,2

s et

DO 313 J=1,ISIZ

313 HOUT(I,J)=0.
DO 314 I=2*LC+1,2*UC,2 g
DO 314 J=1,LR
314 BT (I,3)=0, ‘
DO 315 I=2*LC+1,2*UC,2
DO 315 J=UR,I1SIZ “
315 HOUT (I,J)=0.
Chhakddadds Clear imaginary garbage
316 DO 310 I=2,2*1S1Z,2
DO 310 J=1,ISIZ
310 HOUT (1,J)=0.
IF (MOD(K,MULT) .NE. 0) GOTO 317

Chrhhhdhhhd mtwt hs

KINT=K*INTUF+INIT

ENCODE (10,505 ,FILNAM) KINT
505 FORMAT (“UF”,14,” .DAT")

TYPE 502,FILNAM

OPEN (UNIT=31,ACCESS="SEQOUT” ,FILE=FILNAM)
506 WRITE (31,507) ((Hout(I,J),I=1,1S1Z2*2,2),J=1,ISIZ)
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CLOSE (UNIT=31,ACCESS=“SPQOUT” ,FILE=FILNAM)
Coesewsntes If KaNONF quit
17 IF( K .BQ. NUNF) GOTO 301

Chaddandsss Transform back

ISIGN=-1
” CALL DDFFT(ISIZ,ISIN,Hs)
301 CONTINUE

y- ;
! END ]
‘ :

*i
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APPENDIX TWO

Program FILTER.FOR is a general purpose routine which
uses various subroutines to accomplish time domain
convolution and Fourier transforms. It (s the routine used
to perform most of the operations required to generate
synthetic data from the model of Chapter One. Input to the
routine is specified by interactive dialogue as described in
Appendix One for the program FSDCON,FOR. Function number
one czlls the subroutine CON2X.,FOR, which performs an
expanding time domain convolution. This implies that the
output array will be larger thar either of the two input
arrays, and the resultant dimensions are output to the
operator at runtime, The second function executes the
non-expanding conrolution subroutine, which queries for the
subscripts defining the origin of gl(x,y). This origin
determines which portions of the expanded output array will
not be cemputed, and the result will have the same
dimensions as the input array f(x,y). Execution of function
three results in a call to a version of DDFFT.FOR which
performs a FFT on f(x,y) and returns F(u,v) in the output

array H(I,J).

Following the listings of the above main program and
subroutines is a listing of program NOISE.FOR which performs
the addition of gaussian noise to a two-dimensional input
array. The number (I) which it requests at start-up is used

to generate (I) calls to the FORTRAN pseudorandom number

114




generator RAN {n order to allow for the production of
different sets of noise data on different runs. If I is the
same for any two runs, then the generated noise samplez ‘or
those two runs will also be the same. Output by the routine
are two data files, one containing the input data plus
noise, and the other containing the noise alone. The
numbers generated by the function RAN have a mean of .5 and
8 r nge of zero to one, Production of Gaussian noise from a
sequence of uniformly distributed randoin numbers |{s
performed by subroutine GAUSS.FOR. By the central-limit
theorem, the probability density distribution for a sum of
uniform random numbers approaches the normal distribution as
the number of terms in the sum grows large. Since the
variance of a uniform distribution of random numbers between
2ero and one is 1/12, GAUSS.FOR sums 12 random numbers to
achieve a nearly gaussian distribution with a variance of
one 1in the sum [Hamming (1962)]). It then adjusts the mean
of the sum back to zero and muitiplies the result by the

desired variance to compute the noise sample.

The 1last 1listing 1is an example of a time-domain
implementation of the always-convergent techniques. The
g(x,y) input to the prog: am must be hm(x,y) as defined in
Chapter Two. This routine expects input files to be
unformatted, random access binary data dimensioned 64 by 64.
Output is in the same format. Here the record number serves
to indicate the iteration number, since no iterations may te

skipped.
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PROGRAM FILTER.FOR

DIMENSION F(100,100),G(100,100),H(100,100) ,FFORM(10) ,GFORM(10)

DOUBLE PRECISION FFILE,GFILE

INTBGER FX,F ,GX,CGY,HX,HY

ocoMN F,G,FX,FY,GX,GY,H,HX,HY,ERR, FFORM, GFORM
DATA FFORM(1)/1H(/,FFORM(10)/1H)/,GFORM(1) /1H(/,GFORM(10) /1H)/

MAINX=100
MAINY=100
TYPE 1

FORMAT( “ FNTER F DIMENSIONS, G DIMENSIONS “,$)

ACCEPT 2,FX,FY,GX,GY

FORMAT (41)

TYPE 3

FORMAT( “ ENTER F FILENAME °,$)
ACCEPT 4,FFILE

FORMAT (A10)

TYPE 5

FORMAT ( ° ENTER G FILENAME “,9%)
MWCCEPT 4,GFILE

TYPE 6

FORMAT ( “~ ENTER F FORMAT *,$)
ACCEPT 7, (FFORM(I),I=2,9)
FORMAT (10A5)

TYPE 8

FORMAT( “ ENTER G FORMAT °,S)

ACCEPT 7, (GFORM(I),I=2,9)
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21
27

22
28

20

Chikn

T PR T R T

NOW WE HAVE THE INFO NECESSARY TO DIMENSION F _G AND
READ THE INPUT' DATA...

READ F AND G

OPEN (UNIT=20,AO0CESS=“SEQIN”,FILE=FFILE)

OPEN (UNIT=21,A0CESS=“SEQIN”,FILE=GFILE)

READ (20,FFORM,END=21) ((F(I,J),I=1,FX),J=1,FY)
READ (21,GFORM,END=22) ((G(I,J),I=1,GX),J=1,GY)
GOTO 20 .

TYPE 27

FORMAT ( “ RAN OVER END OF FILE ON F °)

FRR=-1

Q010 16

TYPE 28

FORMAT( “ RAN OVER FND OF FILE ON G “j

ERR=-1

GOTO 18

CALL CRUNCH

IF (ERR.NE.0) GOTO 11

SUBROUTINE FUNCTION EXECUTES A SELECTED SUBROUTINE
AND COMMUNICATES VIA BLANK COMMON

CALL FINISH

SUBROUTINE FINISH FROVIDES GENERAL I/O FOR COMMON ARRAYS
END
END OF MAIN PROGRAM  #*#*(C
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11
12

13

SUBROUTINE CRUNCH
DIMENSION F(100,100),G(100,100),H(100,100)
INTEGER FX,FY,GX,GY,ERR

«(MON F,G,FX,FY,3X,GY,H,HX,HY,ERR

NOW THE DATA IS IN CORE, SO DO SOMETHING TO IT

TYPE 3

FORMAT( “ ENTER FUNCTION “r$)
ACCEPT 4,K

FORMAT (I)

GOTO (10,11,20) K

HERE IMPLIES INVALID K

TYPE 5

FORMAT( “ TRY A VALID FUNCTION “)

QOTO 6

CALL OON2X (F,G,FX,FY,100,100,Gx.GY,100,100,
H,HX,HY,100,100,ERR)

IF (ERR.NE.0) GOTO 6

RETURN

TYPE 12

FORMAT (© ENTER PEAKX,PEAKY “,$)

ACCEPT 13,PEAKX,PEAKY

FORMAT (21)

CALL OON2(F,G,FX,FY,100,100,GX,GY,100,100,

e SR ARSI L i min e ae s s s s i
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H,HX,HY,100,100,PEAKX, PEAKY ,ERR)
IF (ERR.NE.O) GOTO 6

RETURN

CALL DDFFT(F,G,FX,FY,100,100,G%,GY,100,100, \
H,HX,HY,100,100,ERR)

RETURN

END

SUBROUTINE FINISH 3

DIMENSION F(100,100* .G(100,100),H(100,100) |

INTEGER FX,FY,GX,GY,HX,HY,ERR

oMM F,G,FX,FY,GX,GY,H,HX,HY, ERR, FFORM, GFORM

DIMENSION FFOPM(10),GFORM(10) a
DOUBLE PRECISION OFILE,FFILE,GI'ILE
DIMENSION OFORM(10)

DATA OFORM(1)/1H(/,OFORM(10) /1H) /

TYPE 10

FORMAT (“ DO YOU WANT ¥ AND G OUTPUT? ~,$)

ACCEPT 11,ANS

FORMAT (AS5)

IF (ANS.NE.“YES") GOTO 20

TYPE 12

FORMAT (“° ENTER F,G FILENAMES ON 2 SEPARATE LINES “,$)
ACCEPT 3,FFILE

ACCEPT 3,GFILE

OPEN (UNIT=30,FILE=FFILE,ACCESS="SEQOUT")

OPEN (UNIT=31,FILE=GFILE,ACCESS="SEQOUT")

WRITE (3C,FFORM) ( (F(I,J),I=1,FX),J=1,FY)




-
i
]

1

20

(A8

WRITE (31,GFORM) ((G(I,J) ,I=1,GX),J=1,GY)
TYPE -1

FORMAT (“ ENTER H OUTPUT FILENAME °,$)
ACCEPT 3,0FILE

RORMAT (AL10)

™mer 2,HX,HY

FLUOAT(” HX=",I14,” HY=",14,” ENTER FORMAT SPEC “,$)

ACCIZPT 4, (OFORM(I),I=2,9)

FORMAT (10A5)

OPEN (UNIT=22, FILE=OFILE , ACCESS="SBEQOUT”)
WRITE (22,0FORM) ( (H(I,J) ,I=1,HX) ,J=1,HY)
RETURN

END
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PROGRAM NOISE.FOR
DIMENSION A(64,64),Y(64)
TYPE 31
FORMAT (“ ENTER A NUMBER (I)”,S)
ACCEPT 2,1IR
TYPE 1
FORMAT(” Input file “,$)
ACCEPT 2,1F
TYPE 3
FORMAT (“ Output file “,$)
ACCEPT 2,10
FORMAT (1)
TYPE 4
FORMAT (“ Alpha = “,$)
ACCEPT 5,ALPHA
FORMAT (G)
READ (IF.6,END=7) ((A(I,J),I=1,64),3=1,64)
FORMAT (64G)

OPEN (UNIT=60,ACCFSS="SEQOUT” ,FILE="NOISE.DAT")

CH#*¥* GENERATE GAUSSIAN NOISE

12
13
30

RMS=0.

AVG=0.

GOTO 13

TYPE 12

FORMAT (“ SHORT INFUT FILE?”)
DO 30 I=1,IR

P=RAN (1)
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3 - DO 9 J=1,64

1 DO 8 I=1,64
1 CALL GAUSS (ALPHA,0,Y(I))
RMS=RMS+Y (1) **2

AVG=AVG+Y (I)

1
E ‘ A(I,J)=A(I,J)+Y(I)

¥ 8 IF (A(I,J) .LT. 0.) A(I,J)=0.
9 WRITE (60,10) (¥ (K) ,K=1,64) §
: RMS= (RMS/4096. ) *+,5 ‘

|

AVG=AVG/4096.

TYPE 14,RMS

‘ TYPE 14,AVG 3
)‘ 14 FORMAT (1X,G) :
| WRITE (10, 11) ((A(I,J),I=1,64),J=1,64) ,
Li 10 FORMAT (64F)

Ei 1 FORMAT (64F8. 3) :
i

3 END
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PROGRAM GAUSS.FOR
Subroutine GAUSS

PURPOSE

Computes a normally distributed ' andom number with

a given mean and standard deviation

USAGE

CALL GAUSS (S,AM,V)

DESCRIPTION OF PARAMETERS

S - the desired standard deviation of the normal
distribution
AM - the desired mean of the normal distribution

V - the value of the ocomputed normal random variable

This subroutine uses a machine specific uniform

random number generator

METHOD

A\
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Cd B0 N

Uses 12 uniform random numbers to compute normal 3
riandom mumbers by central limit theorem. The resul’
is then adjusted to match the given mean and standard ‘
deviation. The uniform random rumbers computed within i
the subroutine are computed by the FORTRAN "RAN" function.

0O o 0o 0O 0o 0O 0o 0

SUBROUTINE GAUSS (S,AM,V)

A=0.0

Do 1 I=1,12

1 A=A+RAN (1) é
V= (A-6.0) *S+AM %
RETURN :
{ m
?

R
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PROGRAM DOONTU.FOR

INTEGER PEAK,OUTX,OUTY

DIMENSION G(64,64) ,H(64,64) ,HN(64,64) ,HNM1 (64,64)
TYPE 1

e ks sk pacay st o

1 FORMAT (° ENTER G AND H UNIT NUMBERS®)
ACCEPT 2,IG,IH
2 FORMAT (21)

TYPE 3

a 3 FORMAT (° ENTER G AND H DIMENSIONS (2I)°) |

ACCEPT 2,NG,NH
TYPE 4

4 FORMAT (° ENTER SMOOTHINGS, UNFOLDINGS®)

T S P

ACCEPT 2,NHS,NUNF
TYPE 5
- 5 FORMAT (“ ENTER REOORD  FOR UNFOLDING”)
ACCEPT 2, IREC
CALL DEFINE FILE (30,4096,10C1,0,0,0)
CALL DEFINE FILE (31,4096,L0C2,0,0,0)
c

Cw##%#* INPUT DATA

W3

c
READ (IG,10) ((G(I,J),I=1,NG),J=1,NG)

‘ READ (IH,11) ((H(I,J),I=1,NH),J=1,NH)

E« 10 FORYAT (32G)

3 11 FORMAT (32G)

{ c

- Ca#¥#4% NORMALIZE G
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c
‘ §M=0
DO 101 Is1,NG
DO 101 J=1,NG
101 SUM=SUM+G (I,J)
SUMINV=1, /SUM
DO 102 I=1,NG
DO 102 J=1,NG
102 G(1,J)=G(I,J) *SUMINV
| c
% C####¥% ZERD HNM1 ARRAY f
DO 103 I=1,NH |
DO 103 J=1,NH 3
E 103 HNM1 (1,.3)=0.
c
IF (NS.EQ.0) GOTO 700 |
“ c 4.,
c a
Cw##a## 1”5t MORRISON ITERATION
c
100 CALL OON2(H,G,32,32,64,64,32,32,64,64,HNML,
" QuTX,0UTY, 64,64,17,17,ERR)
L c
‘ C******_WTE SMOOTHED H

i c




v

WRITE (30 1) HNMI
c
c
CH####+ 2°n4 MORRISON ITERATION

C

DO 200 .10=2,NHS
C

ERR=0
C

CH##### H(N)=H - H(N-1)

C

DO 201 I=1,NH

DO 201 J=1,NH
201 HN(I,J)=H(I,J)-HNM1(I,J)
C

Chawddd H(N) = H(N-1) + [ H - H(N-1) ] *G

C

202 CALL QON2(HN,G,32,32,64,64,32,32,64,64,HNM1,
" ouTX ,0UTY, 64,64,17,17,ERR)

C

C

Ch#adds OOMPUTE RMS DIFFERENCE BETWEEN LAST 2 ITERATIONS

Cc
NH 2:8NH*NH

DO 203 I=1,NH
DO 203 J=1,NH

e A MR 215 1 L S e S e SR AL 8 AN < A pan B e e
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203 ERR=ERR+ (HNM1 (I,J)+HN(1,J)-H(I,J))**2
C

EFR= (ERR/NH2) #*,5
C

Cwwasws QUTPUT ITERATION

C
WRITE (30 I10) BNM1
200 WRITE (20,6) I10,ERR
6 FORMAT (X, “ITERATION  “,I,5X,"RMS CHANGE ~,G)
C
CH#w#*% UNFOLDING
C
C
700 READ (30 IREC) INM1
C
C
DO 300 Ill=],NUNF
C
C
DO 305 I=1,NH
DO 305 J=1,NH
305 HN(I,J)=H(I,J)-HNM1(I,J)
C

Cre##*## H(N) = (FP - HNM1)

C

301 CALL OON2(HN,G,32,32,64,64,32,32,64,64,HNM1,

" ooTX,00TY,64,64,17,17,ERR)
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CHe#%a® H(N) w H(N-1) + [ FP - H(N-1] ] * G

C

303
C

DO 303 I=1,NH

DO 303 J=1,NH

IF (ANM1(I,J).GE.O0) GOTO 303
HNM1(1,J)=0.0

QONTINUE

Ch#atds COMPUTE RMS DEVIATION

C
ERR=(
C
DO 304 I=1,NH
DO 304 J=1,NH
304 ERR=ERR+ (HNM1 (I,J) -HN(I,J)+H(I,J))**2
C
INH 2sNH *NH
ERR= (ERR/NH2) **,5
C
CH##we* OUTPUT
C
WRITE (31 Ill) HNM1
WRITE (20,6) I11,ERR
300 TYPE 6,I11,ERR

END
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SUBROUTINE OON2 (IN,FILT,INX,INY,INXM, INYM,FILTX,FILTY,
‘ FILTXM, FILTYM,OUT,OUTX ,OUTY ,OUTXM,OUTYM,
PEAKX , PEAKY , ERR)

INTEGER INX,INY,FILTX,FILTY,OUTX,0UTY,H=,HYE, PEAKX , PEAKY

INTEGER INXM, INYM,FILTXM,FILTYM,OUTXM,OUTYM,GROW,GOOL
REAL IN,FTLT,OUT
DIMENSION IN (INXM,INYM),FILT(FILTXM,FILTYM),0UT (OUTXM,OUTYM)

DIMENSION MXGROW(64) ,MXQOOL (64) ,MNROW (64) ,MXROW(64) ,

|

‘ MNOOL (64) ,MXOOL (64)

(@}

3
:
ARRAY IN CONTAINS INPUT DATA, ARRAY FILT OONTAIMNS FILTER POINTS 3
i

1
e

ARRAY OUT QONTAINS [ESULT OF (IN*FILT)

ks

0

INX, INY,FILTX,FILTY ARE X AND Y DIMENSIONS OF INPUT AND FILTER
PEAKX , PEAKY ARE ROW,OOLUMN INDICES OF THE PEAK OF FILT(I,J)
ROWS AND QOLUMNS ARE ALWAYS MUMBERED FROM 1 UPWARD j
QUTX,0UTY ARE THE DIMF’SIOIS OF THE OUTPUT DATA.... i
INXM, INYM, FILTXM, FILTYM, OUTXM,OUTYM REPRESENT DIMENSIONS OF THE
RESPECTIVE ARRAYS IN THE CALLING PROGRAM. THESE MUST BE THE

DIMENSIONS FROM THZ MAIN PROGRAM DIMENSION STATEMENT

.. THE M SUFFIX IMPLIES MAIN DIMENSIONS ..

o o o o o0 0o 0O 0

+» WHILE THE CORRESPONDING VARIABLE IS THE VALID DATA DIMENSION

(o NN}

ASSIGN QUTPUT DIMENSIONS (SAME AS INPUT)
OUTX=INX

OUTY=INY

c COMPUTE LIMITS OF SUMMATIONS

DO 40 L=PEAKX,OUTX+PEAKX




Ik S i i TR R AR RS TR LL Rnee TAETT e AR TRERCASgTA R S m e e

40
1 30
C
E
20
10

MNROW (L) *MAXO (1, (L-FILTX+]))

MXROW (L) sMINO (L, INX)

MXGROW (L) =MINO (L, FILTX)

DO 30 L=PEAKY ,OUTY+PEAKY

MNQOL (L) sMAXO0 (1, (L-FILTY+1))

MXQOL (L) =MINO (L, INY)

MXGOOL (L) =MINO (L, FILTY)

PERFORM NONEXPANDING CONVOLUTION

MX=PEAKX-1

MY=PEAKY~-1

DO 10 LROW=PEAKX ,OUTX+PEAKX

GROW=MYGROW ( LROW)

DO 10 IROW=MNROW (LROW) ,MXROW (LROW)

DO 20 LOOL=PEAKY,OUTY+PEAKY

GOOL=MXGOOL (LOOL)

DO 20 IOOL=MNOOL (LOOL) ,MXOOL (LOOL)

OUT (LROW-MX , LOOL~MY) =0UT (LROW-MX , LOOL~}TY )
+IN(IROW, IQOL) *FILT (GROW,GCOL)

GOOL=GCOL~1

GROW=GROW-1

ERR=

131

ki 8D R e BT

e e A i




132

LIST OF REFERENCES

Andrews, H.C. anid Hunt B.R. (1977), Digital 1Image

Restoration, (Englewood Cliffs: Prentice Hall, 1977).

Billingsley, F.C. (1979), "Noise Considerations in Digital

Image Processing Hardware," Topics in Applied Phvsics, Vol.
20pics 1in

6, Picture Processing and Digitil Filtering, ed. by T.S.

Huang. (New York: Springer-Verlag, 1979), pp. 249-280.

Bracewell, R.N. (1978) The Fourier Transform and 1Its

Applications, (New York: McGraw-Hill, 1978).

Frieden, B.R. (1979), "Image Enhancement and Restoration,"

Topics in Applied Physics, Vol. 6, Picture Processing an<d

Digital Filtering, ed. by T.S. Huang. (New York:

Springer-Verlag, 1979), pp. 179-246,.

Gaskill, J.D. (1978), Linear Systems, Fourier Transforms,

and Optics. (New York: John Wiley & Sons, 1978)

Hamming, R.W. (1962), Numerical Methods for Scientists and

Engineers, (New York: McGraw-Hill, 19€2).

Bill, N.R. (1973), "Deconvolution for Resolution
Enhancement, " (Unpublished master”s thesis, Dept. of

Physics, University of New Orleans, 1973).

ii-

e v ary L eaaam . e e as i . N mas e al el

-

e ek et S i



133

Hill, N.R. and Ioup, G.E. (1976), "Convergence of the van
Cittert iterative method of deconvolution,"” J. Opt. Soc.

Am.' vol. 66' No. 5' (1976) ppn 487-4890

Ioup, G.E. (1968), Analysis of Low Energy Atomic and

Molecular Collisions: Semiclassical Elastic Scattering

Calculations and Deconvolution of Data, Ph. D.

dissertation, University of Florida (1968).

Ioup, G.E. (1979), private communications.

Knuth D.E. (1969), The Art of Computer Programming, Vol.

2, (Reading, Mass.: Addison-Wesley, 1969).
Morrison, J.D. (1963), "On the Optimum Use of Ionization
Efficiency Data," J. Chem. Phys., Vol. 39, No. 1 (1963),

pp. 200-207.

Oppenheim, A.V, and Schafer, R.W. (1975), Digital Signal

Processing, (Englewood Cliffs: Prentice-Hall, 1973).

wWhitehorn, K.A. (1980), "A Study of Derivative Filters
Using the Discrete Fourier Transform," (Unpublished master”s

thesis, Dept. of rhysics, University of New Orleans, 1980).

it iaam i tent ekiarn s o8 e o v e ar SRMIRICIA £ et var a5 o e £ A S AT b 2 e et R A NP a8 e a8 Lo Dt 5 e 8 sl S50 T L 8 o i AL b L i sl i M




134

i | St By 1

VITA

T T g g T,

Mark Alan Whitehorn was born in _,
on _, to Jamie Nell Whitehorn and F. Sherman

Whitehorn, He graduated from Bonnabel High School in May

TS e L g

Ty YR < TR

1973 and entered the University of New Orleans in the fall

TR

[ of that year. He received the degree of Bachelor of Science
in physics in May 1977. On August 6, 1977, he married
Kathleen _, who now holds the degree of Master of

Science in physics.

From May of 1977 to the fall of 1978 he woiked as a
seismologist for Geophysical Service Incorporated. He left

GSI to accept a position as Systems Designer with the

Computer Resea-ch Center at the University of New Orleans.
{ He also entered the graduate school at UNO in the fall of

1978.

Following graduation he will be employed as a
Scientific Programmer by the Lockheed Missiles and Space

Corporation in Sunnyvale, California.




	1986001357.pdf
	0063A02.tif
	0063A03.tif
	0063A04.tif
	0063A05.tif
	0063A06.tif
	0063A07.tif
	0063A08.tif
	0063A09.tif
	0063A10.tif
	0063A11.tif
	0063A12.tif
	0063A13.tif
	0063A14.tif
	0063B01.tif
	0063B02.tif
	0063B03.tif
	0063B04.tif
	0063B05.tif
	0063B06.tif
	0063B07.tif
	0063B08.tif
	0063B09.tif
	0063B10.tif
	0063B11.tif
	0063B12.tif
	0063B13.tif
	0063B14.tif
	0063C01.tif
	0063C02.tif
	0063C03.tif
	0063C04.tif
	0063C05.tif
	0063C06.tif
	0063C07.tif
	0063C08.tif
	0063C09.tif
	0063C10.tif
	0063C11.tif
	0063C12.tif
	0063C13.tif
	0063C14.tif
	0063D01.tif
	0063D02.tif
	0063D03.tif
	0063D04.tif
	0063D05.tif
	0063D06.tif
	0063D07.tif
	0063D08.tif
	0063D09.tif
	0063D10.tif
	0063D11.jpg
	0063D12.jpg
	0063D13.jpg
	0063D14.jpg
	0063E01.jpg
	0063E02.jpg
	0063E03.jpg
	0063E04.jpg
	0063E05.jpg
	0063E06.jpg
	0063E07.jpg
	0063E08.jpg
	0063E09.jpg
	0063E10.jpg
	0063E11.jpg
	0063E12.jpg
	0063E13.jpg
	0063E14.jpg
	0063F01.jpg
	0063F02.jpg
	0063F03.jpg
	0063F04.jpg
	0063F05.jpg
	0063F06.jpg
	0063F07.jpg
	0063F08.jpg
	0063F09.jpg
	0063F10.jpg
	0063F11.jpg
	0063F12.jpg
	0063F13.jpg
	0063F14.jpg
	0063G01.jpg
	0063G02.jpg
	0063G03.jpg
	0063G04.jpg
	0063G05.jpg
	0063G06.jpg
	0063G07.jpg
	0063G08.jpg
	0063G09.jpg
	0063G10.jpg
	0063G11.jpg
	0063G12.jpg
	0063G13.jpg
	0063G14.jpg
	0064A02.jpg
	0064A03.jpg
	0064A04.jpg
	0064A05.jpg
	0064A06.jpg
	0064A07.jpg
	0064A08.jpg
	0064A09.jpg
	0064A10.jpg
	0064A11.jpg
	0064A12.jpg
	0064A13.jpg
	0064A14.tif
	0064B01.tif
	0064B02.tif
	0064B03.tif
	0064B04.tif
	0064B05.tif
	0064B06.tif
	0064B07.tif
	0064B08.tif
	0064B09.tif
	0064B10.tif
	0064B11.tif
	0064B12.tif
	0064B13.tif
	0064B14.tif
	0064C01.tif
	0064C02.tif
	0064C03.tif
	0064C04.tif
	0064C05.tif
	0064C06.tif
	0064C07.tif
	0064C08.tif
	0064C09.tif
	0064C10.tif
	0064C11.tif
	0064C12.tif
	0064C13.tif
	0064C14.tif
	0064D01.tif
	0064D02.tif
	0064D03.tif
	0064D04.tif
	0064D05.tif




