m

[
|
|
[
[

™

STUDY OF ONE- AND TWO-DIMENSIONAL
FILTERING AND DECONVOLUT1ON ALGORITHMS
FOR A STREAMING ARRAY COMPUTER

NASA GRANT NO. NSG-1648

-
é¥£;2;§R617622Q) A STUDY OF DERIVATIVE
pinél‘ﬁ SING THFE DISCRETE FOURIER TRANSFORM
e eport M. S. Thesis (New Nrleans

V., La.) 19% p HC A06/MF AN1 CSCL N9R

G3/61

FINAL REPORT
Appendix 3

Dr. George E. loup, Principal Investigator
Department of Physics

University of New Orleans

New Orleans, LA 70148

Il

-~

-

N86-10825

Unclas
27513

»d

S,

A STUDY OF DERIVATIVE PILTERS
USING THE DISCRETE POURIER TRANSPORM

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the
requirements for the degree of

Master of Science

in

The Department of Physics

by
Kathleen Acomb Whitehorn

B. S., University of New Orleans, 1977
May, 1980

-

i

= | I =3

I aabac)
o ot

»r
fomlioneniil

"
o gt

S, T T A o AN e - T < o

- % -

ACKNCWLEDGEMENTS

I would like to express rincere appreciation to Dr.
George E. Ioup for his guidance and his encouragement,
without which this thesis would never have come to fruition.
Thanks also go to Dr. Charles E. Head snd Dr. Joseph E.
Murphy for their helpful suggestions. And 1last but not
least I would 1like +tn» thank my husband, Mark, for his

patient understanding and productive conversatione.

Part of the work associated with this thesis was funded
by a NASA grant, NSG 1648.

The three-dimensional plots were drawn using the ASPEX
plotting package obtained from the Laboratory for Computer
Graphice and Spatial Analysis, Harvard University.

ii

v
b *
At 5 ol

¥ T

e —
1 i

R Sk e, s, § TR, ot

Abstract
Introduction
Chapter I

Chapter II
Chapter III
Summary
Appendix
Bibliography
Vita

TABLFE OF CONTENTS

iii

Page
vii

24
27
35
T
96
97

o e

i g D

R I ootk ik

e

L R -

y
W imisamennd Sorcammeerdd

P n
bt

—

amon

S

e

LIST OF PIGURES

3tating the relationship between t and s

The sampling property of III(x)

The replicating property of III(x)

Incommensurate function with/without zeroes

Rearrangement of data

Rearrangement of data

Gaussian input data

x=derivative of Gausaian data

Cosine wave input data

x-derivative
x-derivative
x=-derivative
x-derivative
x=-derivative
x-derivative
x~-derivative
x=derivative
x-derivative
x=derivative
x-derivative
x=-derivative
x=-derivative
x-derivative
X-derivative

x=-derivative

of
of
of
of
of
of
or
of
of
of
of
of
of
of
of
of

Cosine
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.
Gauss.

Gauss.

data

SF=1.0E=4,
SF=1 .0E-3,
3F=1.08-4,
SP=1.0E-4,
3F=1.0E=3,
SF=1.0%-4,
SP=1.0E-3,
SF=1.0E~4,
SF=1 .0E-3,
SF=1.0E~4,
3P=1.0E-3,
SF=1.0E-4,
SF=1.0E-3,
SF=1.0RE-4,
SP=1.0E-3,

no filter
no filter
Pyr, M=4
Pyr, M=4 imag
Pyr, M=4
Pyr, M=8
Pyr, M=8
Cir, R=4
Cir, R=4
Cir, R=8
Cir, R=8
Rect M=4
Rect M=4
Rect M=8
Rect M=8

yage

11
16
20
20
40
41
42
43
44
45
46

48
49
50
51
52
53
54
55
56
57
58

- L

R 2

* \i’rv it

L il LD Sy 2
| S
L anad

ot

-

b 3 el

g

- TR T

x=-derivative
x=-derivative
x=-derivative
x=derivative
x-derivative
x-derivative
x=-derivative
x-derivative
x-derivative
x=-derivative
x=-derivative

x-derivative

of
ef
of
of
of
of
of
of
of
of
of
of

cosine
cosine
cosine
comine
cosine
cosine
cosine
cosine
cosine
cosine
cosine

cosine

SP=1.0E-4,
SP=1.0B-3,
SP=1.0E-4,
SP=1.0E=3,
SF=1.0E-4,
SFe=1.0B=3,
SF=a1.0E-4,
SPs1.0E=-3,
SF=1.NE-4,
SP=1.0E-3,
SF=1.0E-4,
SF=1.0E=-3,

Rect Mas8
Rect M=8
Cir, Re8
Cir, Rs8
Cir, R=4
Cir, Re4
Pyr, M=8
Pyr, M=8
Pyr, M=4
Pyr, M=4
no filter
no filter

%
o
M
-
B
Mu.
&
2]
-
3

Page

29
30

TABLE 1I

vi

oo SN v RS come BENE —— BN |

ABSTRACT

Important properties of derivative (difference) filters
using the discrete Fourier tra;sform are investigated. The

filters are designed using the derivative theorem of Pourier
analysis.

Because physical data are generally degraded by noise,
the derivetive filter is modified to diminish the effects of
the noise, ospecially the noise amplification which normally
ocours while differencing. The Dbasis for these
modifications is the reduction of those Pourier components

for which the noise most dominates the data.

The various filters are tested by applying them to find
differences of two-dimensional data to which varioue amounts
of signal dependent noise, as measured by a root mean square
value, have been addeqd. The modifications, circular and
square ideal low-pass filters and a cut-off pyramid fil.er,
are all found to reduce noise in the derivative without
significantly degrading the result. And the 1last also
reduces Gibbs oscillations for those data sets for which

these oscillations are present with low-pass filtering.

The TPORTRAN programs which perform the filtering
(DERIV4A.POR and PILT.POR) and the program which adds the
noise (GNOISE.POR) are given and discussed.

vii

x_y

JPRRRGIT .y o X

=y 1

P

it oy

INTRODUCTION

Piltering is the process of multiplying the Pourier
transform of data with some function. The mathematical form
of the multiplying function depends on the desired outcone.
One type of filter that is used to 1locate peaks, to
deternine the position of boundaries and locate edges, (and
to determine the derivative) is the derivative filter. The
drawback to using this filter is the sensitivity of the
derivative operation to noise, especially high frequency
noise. This problem can be alleviated by modifying the
derivative filter.

In this study a diecrete approximation to the
derivative of the input data is obtained by operating in the
transform domain using the derivative theorem. For data
with noise the transform is filtered a second time to reduce
the effects of noise. Results of these operations with and
without noise are compared in the function domain. Computer
programs are used to perform these manipulations of the

dat=a.

DERIV4.FOR is the PFORTRAN program that outputs the
transform of +the input data (two-dimensional data), the
transform of the x-derivative, the y-derivative, or the
gecond derivative with respect to x and y. DERIV4.FOR uses
the one-dimensional FFT program listed in Higgins' article
(Higgine,1976). And DERIV4.FOR accepts real (one input

file) input data or complex (two input files) input data,
1

- =3

. d

wvhile it outputs complex data. The progran that adds the
Gaussian noise to the data is GNOISE.FOR, and it accepts
only real data., (NOISE.FOR is based on a noise program
written by Bill Bivens (Bivens,1976) which has been modified
for two-dimensional data. PILT.FOR is the FORTRAN progranm
that performs the filtering, and was written by the author.
The thres filter choices are a circular filter, a square
filter (called a rect filter), and a flat-topped pyramid
filter. The filter consists of the multiplication of one of
three filter functions after the <transform has been
nultiplied by the derivative filter. The circular and rect
filter functions have the value of one inside the boundaries
of the respective geometric figures after which the filters
are named, and have tne value zero outside the boundaries.
The flat-topped filter function is one inside the square and
slopee linearly (with negative slope) from the edges of the
square to the end of the data matrix where the value of the
function is zero. PILT.FOR also allows for the size of the
filter function (the aize of the square or circls) to be

varied.

Thies theais is separated into <three chapters with =a
summary and an appendix. The three chapters are entitled
POURIER TRANSFORMS, TAKING the DERIVATIVE, and NOISE and
FILTERS. The appendix includes the FORTRAN code for the

programs that were used.

VRPN SO

I

[

v‘ﬂ- oy
-
4

~ETw
i ine o

|
eyt

n

CHAPTER 1
POURIER TRANSPORMS

1 1 SPECIAL FUNCTION3 AND THEOREMS

In one dimension the Fourier transform of a continuous

function, f(x), is :

B rAK
/("(n)c RS da

This integral is a function of s and will be called PF(s).
The independent variables i{n <the function and transform
domains are x and s, respectively. Here the term frequency
will be used to represent the independent variable in the
transform domain, regardless of the units of the function
domain independent variable. The inverse transform of P(s)

is

* .
¢(,, = / F(o)e VLA ‘/‘

The sign reversal in the exponential is necessary to ensure
that two successive transformations result in the original

function (Bracewell, 1965).

B i i e it o AP

il s abhic aiiiide. AR

The Pourier tranaform of a aontinuous function in two

dimensions is:
L J » - i (i ,’
Flu,v)s / / ch.’) . ai(ug + vy d"{]

where u is the indspendent variable in the transform domain
associated with the indopendent variable x of the function
domain and v of the transform domain is associated with y of

the function 4domain. The inverse transform is:

a?a (ux e vj, du v

‘%xty)= Z:? [::i Flav)e

PFirst I will define some common functions associated
with Pourier transforma and give their <transforms
(Bracewell, 1965).

In one dimension some common functions are

rect(x) = 1 abs(x) < 1/2
=0 abs(x) > 1/2
= 1/2 abs(x) = 1/2
tri(x) = 1 - abs(x) abs(x) < 4
= 0 abs(x) > 1

L. §

i

the impulse function
»
a(x): 1-‘/ a(x)dx 5 a(x) = 0, x # O
.

the sinc function
sinc(x) = sin(”x)/(7'x)

the replicating or shah function
III(x) = Zd(x-n)
A ~Np
even impulse pair
IT(x) = 1/2d4(x+1/2) + 1/2d(x=1/2)

odd impulse pair
I1(x) = 1/24(x+1/2) = 1/24(x=1/2)

e g

Gaussian

exp(-mx?)

COMMON TRANSPORM PAIRS

£(x) P(s)
rect(x) sinc(s)
tri(x) sinc?(s)
a(x) 1

III(x) I11(s)

II(x) cos(7rs)

2 o ol

am W T

e

SRR

"

. ® Te T3 3 B P oty e B T TR T T AT e R - =
T TR ' > P hied . y

I1(x) isin(7s)
exp(-7x*) exp(=-7s2)

In two dimensions the common functions are

rect(x,y)= rect(x)rect(y)
sinc(x,y)s sinc(x)sinc(y)
d(x,y)= d(x)d(y)

gaussians exp(=-m(x*+ y*))

COMMON TRANSFORM PAIRS

£(x,y) F(u,v)
rect(x,y) sinc(u,v)
exp(=M x4+ y*)) exp(-7(us+ v3))
cos(7x) II(u)d(v)

A few theorems play a basic role when dealing with
Pourier transforms. Therefore I will state these theorems
here for those unfamiliar with Fourier traneforms, but will
not give the proofs, which may be found in Bracewell, 1965.

A few of the basic theorems:

THE SIMILARITY THEOREM

If f(x) has the Fourier transform P(s) then £(ax) has
the Tourier transform laf@(s/a). Conceptually this states

that broadening a function in the function domain causes

B

oy . e el o A

O 2 -l

|
T T e oy

OO B

— <VK,MWH

o MR v R e

contraction of the transform and growth of its ordinate in

the tranaform domain, and vice versa.

THE ANDITION THREOREM

It £(x) and g(x) have the Fourier transforms PF(s) and
G(s), respectively, then f£(x) + g(x) has the Pourier

transform P(s) + G(s).

THE SHIPT THEOREM

I? £(x) has the PFourier transform F(as) then f£(x-a) has
the Pourier trarsform oxp(-27ias)P(e). This simply states
that shifting a function in the function domain is analogous
to giving the transform a frequency dependent phase shift.

THE CONVOLUTION THEOREM

If h(x) = /;(u)g(x-u)dx (h=f*g, £ convolved with g)
and f£(x) has -;ourier transform F(s) and g(x) has Pourier
transform G(s), then H(s) is the transform of h(x) where
H(s) = P(s)G(s). The convolution theorem is used quite often
gince it is usually easier to perform a multiplication or
division than it is to perform a convolution or

deconvolution.

THE DERIVATIVE THEOREM

Tf £(x) has the Pourier transform F(s) then <£'(x),the

derivative of f£(x) has the Pourier transform 27isPF(s). Here
is a method for obtaining the derivative of a function that
is not an approximation technique. And by successively
applying this theorem higher order derivatives can be
obtained.

Another theorem, although not a basic theorem in
continuous Fourier transform annlysis, is important in going
from continuous transforms ¢to discrete transforms. This
theorem, known as the sampling theorem, states that a
function whose transform is zero for 8 > s, (where s, is the
cutoff frequency in the transform domain) is fully specified
by samples taken at equal intervals not exceeding 1/(2s,)
save for any harmonic terms with zeroes at the sampling
points. Thus it is possible to reconstruct a function from
its samples if the sampling intervai is less than or equal

to 1/(2s,) . See Fig. 1.1 for graphical detail.

Pig. 1.1 Stating the relationship of t and s

T T g "~ ™ g ¥ t

™e shah fun~tion i3 useful in representing sampled
dntn. For when one multiplies a function f(x), by the shah
function, IIl(x), one is effectively sampling that
continuous function at evenly spaced intervals. The values
of the function, f(x), at integral values of x are preserved
(by the deltas) whereas information of the function between
the intervals of the deltas i3 not kept. Symbolically this

sampling property of the shah function is represented as:

L(/(x) p(x) = Z P(n)Ju-n)

A -0
-1 -
E e
1 .

A

1

1
,
y :
N)(]
1 o
) +
s
od
1
]
- -4
1 ll
LR 2B J 'I"

Fig. 1.2 The sampling property of T1II(x)

——

4

And this is graphically stated in PFig. 1.2,

Another important property of the shah function that is
closely nassociated with the sampling property is that of
replication. When the shah function s convolved with
another function the result is the function being replicated
at unit intervals to infinity in both directions. If +the
function 1is wider than one unit interval (or wider than the
replication interval when this is not unity) then <there is
overlapping of the replications. When this occurs in the
tranaform domain it is known as aliasing ~2nd can be e
serious problem. The replicating property symbolically
stated is:

L) K P(ﬁ) = i # (x-n)

Ax -0

The replicating property of the shah is shown graphically in
Pig. 1.3.

Discrete functions (data) can be viewed as sampled
continuous functions. That is, if the continuous function
is represented hy £(x) then the discrete (or sampled)
version can be represented by III(x/t)f(x), where t is the
sampling interval. And as a consequence of sampling, the

transform of 2 discrete function is |t|-III(ts)*F(s), where

Fig.

.3

"“]"'"T' L]

b rh
=2 ¥z0] 3

The replicating property of

"l""l""‘l

II1I(x)

11

-l

A ——

4

12

P(s) is the transform of the continuous function. Thus we¢

see that sampling in the function domein causes replication

'nln(
o it

in the tranaform domain. This can also be applied in the

!: DR ool

RN

!
reverse direction- sampling in the transform domain causes §

replication in the function domain.

[3 *aag

1.2 THE DIBCRETE FPOURIER TRANSPORM

eatun in 3

7 : .
bl o

The Fourier transform as previously stated operates on
continuous functions, whereas physical data are normally

discrete. Therefore one must shift gears and begin thinking

= e

in <terms of discrete functions. One method is to construct

discrete functions from continuous functiona ueing the

-

Lo

sampling function, and then to use the continuous Fourier

Do it

transform to obtain a representation for +the discrete

n} Fourier transform (known as the DFT).

Thus a discrete function can be represented Dby
III(x/t)f(x), where £f(x) is a continuous function that
! corresponds to the discrete function. Also eince the

| i
‘) discrete function is taken +to have finite extent one can i

1 represent it as the continuous function times a rect

function. The rect function is often called a window since

when it multiplies a continuous function only that portion

}; of the function which falls under the rect is left non-zero.

Thus the discrete function can be represented by the product o

o
| E} III(x/t)rect((x-a)/c)f(x). The parameter + in the shah

-

b

function determines the sampling interval, the parameter ¢
in the rect function determines the width of the window, and
a determines the position of the center of the rect. TFrom
the convolution theorem the tranaform of a discrete function
can be viewed ans |tclexp(-27ias)ITI(ts)*sinc(cs)*P(s). Thus
the DPT of a discrete function is not exactly equal to u
sampling of +the Tourier +transform of +the analogous
continuous function. Due to the processes of sampling and
windowing the original function is altered somewhat and thus

its transform is affected also (Bracewell,1965).

Convolving the continuous Pourier transform with a sinc
broadens it, and the convolution with the shah function
causes replication. If any portion of a function that |is
replicated extends beyond the cutoff frequency then these
high frequencies mask as 1lower frequencies =and aliasing
oceurs. Since convolving with +the =&inc broadens the
transform this contributes further to aliasing. Convolution
with the sinc also causes Gibbs oscillations about any rapid

change in the transform (Bracewell,1965).

The following is a derivation of the DFT using the
representation of discrete functions hy continuous functions

multiplied with the shah function (Ioup,1978).

diserete fuaclion - Foa)

‘
ﬂ(x)’ 2 Pllax) d(x-kax) dx

kzo

F;("-‘»" [‘” p.(x"-.em'xs (X

JAETRPR

N=/ o
: Z f(kox) Ax/ d(x-kap)e T ¥ 4y
kto -

: kg *,(“x) e e (kax)s

5¢m/o(ca¢7 F;(s) 4'¥ critial aaa/o($-7 intervaf
/ufto‘

Flrasz 3, Plkon) ay o T (kerkras)

R
UAG re a4s = N ax

WIS K .

L3

The discrete Pourier transform of discrete data is =n

sampled function. The transform is sampled to allow
representation on, and caleulation using 2 digital computer.
Thus the dats in the function domain are replicated. The
fast Pourier transform technique is juast a quick method for
obtaining the DPT of a function. Therefore the fast Fourier
transform (PPT) and the DPT (both are the wuvame transform-
one is Jjust a faster approach to calculation for large data
sets) view the data from the function domain as one period
of the replication with the period of replication equal to
the width of the window.

As a result of this if the period of periodic 1input
dnta is incommensurate with that of the window, then it is
better to add zeroes to the end of one period of the
function +il1l +the periodicity of the function plus the
appended zeroes is commensurate with the window. Function
domain replication, implicit in the use of a sampled
transform, joins incomplete periods of the function together
causing discontinuities to be generated when the data is

incommensurate with the window. See Pig. 1.4.

- e e

e

T ——c
L3 -

16

.
R%

4

| S

,m.a Mot o7 Diadew poried -F window

l ﬁ
J
X

Pig. 1.4 Incommenaurate function without and with zeroes

The discontinuities could introduce Gibbs oscillations, in a
DFM rapresentation. These will be discussed in more detail

in the chapter on noise and filters.

The cutoff frequency in the transform domain is equal
to one-half the inverse of the sampling interval in the
function domain (i.e., =1/(2t)). Thus to include higher
frequencies and reduce =aliasing the eampling interval is

made as small as possible.

1.3 THE PAST POURIER TRANSFORM

The FPT algorithm reduces the number of operations
performed in the calculation of the DFT of a sequence. The
%' algorithm was rediscovered by Cooley and Tukey in 1964
F (Cochran et al). The significance of this algorithm is that
it reduces the time required to calculate the DFT of a
sequence. It takes N multiplications to compute the DPT in

the straightforward method, whereas the number of
Eg 3 multiplications performed using the FPT algorithm is
‘ epproximately 2Nlog,N. As N gets large the savings in

computation time becomes great. Por one-dimensional data 5

o R

N=1024 is common; for this example the savinges amsount to a

factor of one hundred reduction in the number of operations
required (Higrins,1976; Cochran et al,1967).

Basically the FF? algorithm can be understood by taking
an N point tranaform and splitting it into two N/2 point
transforms. Then these two transforms are each split in
half, and this process repeats itself until there are N one
point transforms. There are other FFT algoritms that work
on sequences of N points (N not prime) for N not two raised
to an integral power, but because the reduction to N one
point transforms can not be completed they are not as
orticignt. The PFT algorithm nlso uses the periodicity of

the exponential function to eliminate redundant operations.

To understand this process let A(r) be the value of the
trensform of X(k) at the <frequency rsras, vhere
r =0,1,2,...N=1. N is the number of points in the sequence
X(k). Then from the DFT

A(r) .gx(mexp(-zm;-k/n)

Then the data set is split into even and odd sequences, Y(k)
and 2(k).

Y(x)= X(2k) k=0,1,2,¢00,(N/2)=1.

©
4
b

a
£

Z(k)uX(2Kk+1) ku0,1,2,.00,(N/2)=1,

And let ’
A(r)s 2 [Y(k)exp(=4irk/N) + 2(k)exp(=2Mi(2k+1)r/N)]

n/ Nit=/
-2!(k)cap(-4mrk/u) + exp(=27ir/N) iz(k)oxn(%ﬁirklu)
where r= 0,1,2,...,N=1 e

-/
if K(r)s= %Y(k)oxp(-m'irk/l!)
Ko

A/a=1
L(r)-éézz(k)exp(-4wirklu)
ad

M(r)=s exp(=27ir/N)

then
A(r). K(r) + M(T)L(r) r!O,1,2,..-,(N/2)-1.
Since K(r) and L(r) are periodic in the half interval

(O<=r<N/2), A(r) can be generated for the second half
using the values of K(r) and L(r) for the first half.

A(r+(N/2))= K(r) - M(r)L(r)

The minus sign comes from exp(-27ir/N) as O<=riN/2 being

18

opposite in sign te exp(=27ir/N) as N/2<ar<M, (i.e.,
oxp(=27ir/N) = «exp(-27i(r+(N/2))/N)). Thus the N point
transforas has gono . two N/2 point transforms.

The FPT algorithm used (Higgine,1976) assumes that the
firet data point is the value of the function at the origin,
and that any values ascociated with negative x (abscissa)
are placed beyond the function value of the last positive x.
See Pig. 1.5. The data must either input ¢to the PM
progran in this form or a portion of the program must be
devoted to rearranging the data into the format required by
the PP subroutine. The program DERIV.FOR which performs a
one-dimensional FFT of a sequence does the latier. The
output of DERIV.FOR is in the same format as the input.
Though instead of rearranging the transform the input data
is multiplied by a phase factor (the input data can be
viewed as having been shifted to the center of the matrix).
"he result is the esame as if the rearrangement had been

performed (Andrews,1970).

When the number of data points is a power of two one
runs into difficulty in representing even functions that
have their origin eampled. Since the function |is
represented by an even number of points the window can not
be symmetric about the origin. Thus it is best to have the
function go to =zZero at both ends within the width of the
window. If this is not possible then the asymmetry and the

replication in the function domain which results from having

A e

S

38D JO juomoBuvliBAY G°| 14

®38BP JO juswafueddsay 9°| Iy

30—

» X

a sampled transform nust be carefully considered.

In two dimensions the DM is defined as:

Nl Mot

F(m,n)= 2, D x(3,k)exp(-271((m3/M) + (nk/N)))

{14 ‘.0

which can be rewritten as:

Mt

F(m,n)-g[g X(j,k)exp(=27inj/M) Jexp(=-27ink/N)

The term in the brackets is the transform of row (or column)
k. And the outer sum transforms the columns of the above
result. Thus a two-dimensional DPT can be obtained by first
performing a one-dimensional DPFT on each row (this amounts
to M one-dimensional DFT operations) and then executing a
one dimensional DPFT on each column of the matrix of
transformed rows (this amounts to N one-dimensional DFT
operations). Thie is equivalent to the result obtained when

columns and rows are interchanged in the above procedure.

The two-dimensional discrete PFourier transform is also
sampled. The input data are now a matrix of values, where
the first index corresponds to the y coordinate values and

the second to the x coordinate values.

Since the one-dimensional FFT algorithm used in the
two-dimensional FPT is of the type discussed previcusly, the
two=-dimensional PFFT routine also expects data in a different

format than what might be expected. In addition, the

[FE

£33

o e

N

T® T3

transform is not arranged as expected. Instead of the
origin being located at or near the center of the transform
matrix (at point N/2 + 1, N/2 + 1) for an even matrix (where
N is the number of rows or columns in the matrix) the FFT
results in the origin being located at the top 1left corner
of the matrix with all the low frequencies in the corners
and the high frequencies in <the center. The same idea

applies to data in the function domain. Sce Pig. 1.6.

The two- dimensional FFT program used, DERIV4.FOR,
expects data with <the origin located at the center and
rearranges it into the format expected by the
two-dimensional PFFT subroutine. The two-dimensional
transform is also rearranged such that the origin is at the
center by the phase multiplication method mentioned

previously in the section on the one-dimensional FPFT.

Since the number of points is normally even, and in our
case N where N is a power of two, there is a missing bottom
row and a rightmost column if data with even symmetry and
with +the origin sampled are used. Since the transform is
sampled the input data are viewed as one period of the
replication. The one-dimensional discussion generalizes to

two-dimensions.

As in the one-dimensional case sampling in the function
domain causes replication in the transform domain. Though
now the replication is in two dimensions with the top row of

one period adjacent to the bottom row of another period and

22

s

s

Sl

—r,

the same for the left and right most columns.

\

R

CHAPTER 2
TAKING THE DERIVATIVE

Prom the derivative theorem the traneform of the
derivative of a function is Jjust 27is times the transform of
the function +to be differentiated. FPor higher order
derivatives the relationship is: ¢ (£”(x))= (27is)" F(e),
where ¢f (£(x))= P(s).

Thus the derivative theorem provides a method for
obtaining the derivative of continuous and discrete
functions without approximation other than any approximation
already made in treating a continuous function discretely.
This method, like any derivative technique, is sensitive +to
noise, especially since there is no smoothing due to the
approximations of normally used numerical techniques. But
if one is already using the FFT and the data are relatively
noigse-free then this method is definitely a viable
alternative +to derivative approximation methods. Also, if
the data are noisy very effective filters may be used as

part of the derivative process.

Since I have concentrated +this investigation on
two-dimensional functions most of the programs operate on
two-dimensional data with most of the results for <two
dimensional data. When it comes to explaining the theory I
will use one-dimensional functions for simplicity, reverting
to two-dimensional functions only to illustrate an important

point or a veiled implication.
| 24

"":‘%ﬂlvrﬁ' ——

-

The PORTRAN program DERIV4.FOR takes a8 input
two-dimensional data in the form of a two-dimensional square
natrix, with the maximum sige of the matrix being 64 X 64.
Most of the time though, the size of the data matrix was 32
X 32, a compromise between the number of points desired and
the 1length of time required to run the program. Using 32 X
32 matrices DERIV4.FOR ran in approximately one third of the

time compared to when 64 X 64 matrices were used.

DERIV4.FOR gives the user four choices of how the
transform will be manipulated. Once the transform is
obtained it is multiplied by 27iu, or by 2%iv, or by =47‘uv,
or it is untouched. Thus DERIV4.FOR can give the transform
of the x-derivative of the input data, the transform of the
y=-derivative of the input data, the transform of the second
derivative with respect to x and y of the input data, or the
transform of the data. Tc obtain the transform of the
second derivative with respect to x or y DERIV4.FOR is just
run twice, with the output from the first run being the

input for the second run.

Also DERIV4.PFOR performs either the minus-i or the
plus-i transform. The minus-i transform has a negative i in
the argument of the exponential whereas the plus-i transform

has a positive i in the argument of the exponential.

In multiplying by 27iu or 27iv, etc., the transform 1is
"centered" (as centered as can be using an even number of

rows and columns) about the origin. Thus in some cases the

25

L

riacrand

sign of the u or v is negative. That is, although any
replication could be used, we use the one centered about the

origin,

The sampled functions that were used to c¢heck
DERIV4.FOR were a two-dimensional gaussian and a cosine
wave. The gaussian used was exp[((17-1)a+ (3-17)*)/(4.0)].
Pigure 1.7 is the gaussian and Pig. 1.8 is the x-derivative
of the gaussian. PFirst DERIV4.FOR was run to obtain the
minus-i transform of the x-derivative of the gaussian. This
was then plus-i transformed to obtain the x-derivative of
the gaussian. The same sequence of events were followed to
obtain the x-derivative of the cosine wave. The relation
used for the cosine wave was 1 + coa(27(J=-17)/16) where the
addition of one was to produce non-negative data. Pigures
1.9 and 1.10 are respectively plots of the cosine wave and

its derivative.

CHAPTER 3
NOISE AND PILTERS

3.1 NOISE

Since noise in signals is very common, whether it Dbe
background noise, instrument noise, or another unwanted
signel, developing the method of taking the derivative using
the derivative theorem of Fourier transform analysis would
not be complete without including noisy data. The +type of
noise chosen was ordinant dependent Gaussisn additive noise,
i.e., noise with a Gaussian probabllity density function.
This choice was made since the noise associated with most
imaging sensors can be modeled as a Gaussian distributed

random process.

GNOISE.FOR is the FORTRAN program that adds noise to
the 1input data. The output is noise added onto the data.
If £(y) is the probability density function then £(y)

-37&*1
e . Now f(y) is the probability density

=
function of the noise. To determine the amplitude of the
noise at a particular point <the relation between the
amplitude and probability density function must be

determined.

l‘l
k
[,

It f(y) = _,ﬁ/’..‘
e
(m[p(y)] : ,;‘-"f:
< lu[ﬁ'(y] £ -yt
IE v.z-c‘Zn[i'?;ﬂ

Since f£(y) is evenly distributed, f(y) can be represented by

a uniformly distributed random number. Thus, if P is a

randon number between zero and one, y = YZ«*l[-] .

To describe ordinant dependent noise X is not =

constant but is equal to a scale factor times the ordinant

of the data point in question (X =SP.A(I,J), where A(I,J)
is the value of the function associated with the point
((3=17),(17=I))). The scale factor allows the root mean

square value (RMS) of the noise to be varied.

The amplitude of the noise is y. This is added to the
ordinant (or +the value of the function associated with the

point) by GNOISE.FOR. Additive noise was used since it 1is

PTG

I

'\ , common and the simplest to deal with mathematically.

[The synthetic data sequences to which noise was added

were the gaussian and cosine wave used before. The scale

factors used were 0.00001 and 0.0001. The following plots

s SR
S

show the data with noise and then its derivative. Por the

s+ ABROO

ROty err: e~ aat’ T

e e C3 .

L

Gaussian the derivative is real, thus the imaginary part
gives an idea of the round-off error. PFor example, the
nagnitude of the maximum and minimum values of the imaginary
part of the x-derivative of the Gaussian data are 42,349 and
=42.349 respectively for the scale factor equal to 0.00001.
For the maximum and minimum values associatel with the other
x=derivatives of the Gnussian data and the cosine wave data
with the associated scale factors of the noise; see Table
I.
TABLE I

d/dx of maximum minimum scale factor Re/Im

Gauss. 42.3 - 42.3 . 00001 Im
Gauss. 12492.0 =12655.5 .00001 Re
Gaues. 124.5 - 124.5 0001 In
Gauss. 12018.8 =13%681.5 0001 Re
cosine 274.2 - 274.2 .00001 Im
cosine 7589.0 = 7439.5 .00001 Re
cosine 772.4 - T772.4 0001 Im
cosine 11306.4 = 95%6.4 . 0001 Re

The RMS is the root mean square of +the noise amplitude.
That ise

A ' H, = rloise amfh l‘ud‘ u‘/’oiﬂf (',j
> ey -
RMS= || £_.1 > %/

y Nz number of lvdmfs

The SNR is the signal to noise ratio, which is

29

g L

30

SNR= PEAK SIGNAL VALUE o
RMS of NOISE

= ..

Hovopyp—
S

Each filter operated on data with the noise scals
%; factor equal to 0.0001 and 0.00001. Also the SNR and RMS ?
} for the Gaussian and cosine waves with noise scale factors
L of 0.0001 and 0.00001 are listed in Table II.
[TABLE 1T
- function scale factor SNR RMS

| Gauss. .00001 814.3 .123 B=2
| Gauss. 0001 285.6 .350 E-2
t cosine 00001 188.1 106 E-{
cosine 0001 66.7 .300 E=-1

3.2 PILTERING

The aim of any filtering is to reduce the unwanted

effects in data and enhance the wanted ones. We wish to

minimize the effects of the noise on the derivative of the

data. We accomplish thies by filtering in the transform
domain, because if any of the characteristica of the noise
in the transform domain are known then it is simpler to g
{’ design the filter in the tranaform domain. Most often the

only characteristics of the noise that are known are those

] which are simply given in the transform (frequency) domain.

L

g~
e
o s

=

In the transforam domain the transform of the dorivntivo
of the function is 27is F(s), where FM(s) 's the transform of
the function {tself. The multiplication by s amplifies high
frequency noise, therefore any filter should decrease this
effect. One method would be to cut off any frequencies
above a certain value. This is analogous to multiplying the
transform of the Aerivative with a two-dimensional rect
function, a two-dimensional circular tunction, or some other
geometric shaped plateau function. The drawback with ¢this
type of filtering is the introduction of Gibbs oscilla%ions
due to the abrupt windowing in the frequency domain by the
filter. To reduce any Gibbs oscillations a tail can be
added to the plateau filter. though this also increases the

effect of high frequency noise on the transform.

Gibbs oscillations are the oecillations <that result
around rapid changes in the function domain when the
function 1is represented by a <transform that has been
truncated (multiplied by a rect function in the simplest
case) (Bracewell,1965). A truncated transform translates in
the function domain to convolving the function with a sinc
function, if the region of a discontinuity in the time
domain is to be examined. The discontinuity can be
approximated with the sgn function(sgn(x)= 1, x>0; = =1,
x<0) . Now sgn(x)*sine(x) = 2/;1nc(t)dt , where
Zzginc(t)dt = (2/m)Si(rx) (Si is the si;e integral). This
function oscillates about =1 for large negative x values.

As the origin 1is napproached the amplitude of the

3l

R

.
f
]
;
;
|
b
}
[J
!
|
|
!
_

oscillations increases, passes though sero at x=0, shoots up
to a maximum of 1.18 and then oscillates about 1 as x
increases, with the omcillations dying out as x increases.
The amplitude of the oscillations about -1 and 1 remains the
same if the 3inc funciion is compressed by a factor of N and
strengthened by a factor of N (to preserve unit area) and
only the frequency of the oscillations ia nltered. It ie
increased. Thus changing N does not change <the amount of
overshoot which is approximately nine per cent of the amount
of the discontinuity.

Thus to reduce Gibbs oscillations a linear tail was
ndded to the rect function to form a flat-topped pyramid
function. This flat-topped pyramid filter function, the
circular filter function and the rect filter function were

used on noisy gaussian and cosine wave functions.

Dealing first with the x derivative of the Gaussian
data, the worst filters (woret in terms of affecting the
presence of the noise) were the circular filter with the
radius, R, equal to four and the rect filter with the length
of a side equal to nine (=2M+1, where M=4), with the
circular filter being worse. (Because the derivative of the
Gaussian should be real, even with noise, the non-zero
imaginary parts reflect round=-off error in the

calculations).

32

L e e o AT -

3 Pw
[m—— [

-y

PERSR .

¢ gl

™

Por the circular filter with Re4, the omcillations in
the derivative were quite 1large and were not dying down
within the period. While the oscillations in the derivative
from the rect filter with Ms4 were still rather large, they

were dying off some as x and y varied from gero.

With Re8 the osmcillations in the result using the
circular filter ars less and show some circular symmetry.
The result with the rtct filter with Ms8 has oscillations
vhich are 1less than fur Ms4, and die off more rapidly for
values of x and y off axis, Also the oscillations are
greatest in the x direction. This is the direction in which
the derivative is taken, and the derivative process %tends to

amplify the effects of any type of noise.

The pyramid filter adds a linear ramp to the rect
function that extends from the edge of replication (or edge
of the square containing all the data- not including the
extra row or column) to the edge of the rect. The
derivatives using the pyramid filter show no perceptable

oscillations.

For the cosine wave data the rect and circular filters
will work the best since the transeform of a cosine wave is
the even pair situated on the n axie with their aeparation
determined by the pe:.iod of the cosine. The transform of
the cosine wave chosen for this work is non-zero only close
$to the arigin. Therefore the rect and circuliar filters can

cutoff much of the transform (and thus much of the noise)

33

.
Po————.
W onromters

E AT

:
;
i
:
?

Ty
———
[se—

but still have only a amail effect on the even pair
(actually the even pair convolved with a sinc because of the

windowing in the function domain).

This was seen in the results of the circular, rect, and
pyramid filters., The pyramid filter was the worst since it
let in more noise. And as expected as R or M decreased in
the circular, rect or pyramid filtere the results showed

less effects of noise.

The cosine wave is representative of functions whose
spectrum is centered closely' about the origin and such
drastic measures (M=4,R=4) would eliminate important
information in the transform domain for functions which are
not 8o concentrated. Thus, since the Gaussian had a
spectrum which spread out over the entire period
(two-dimensional) in the transform domain, the pyramid
filter was Dbetter as it allowed more information of the

transform through.

34

SUMMARY

A study of derivative filters using the discrete PFourier
transform has been performed. As has Dbeen discussed a
filter multiplies the transform of the data to be filtered
with some funntion. Thus the derivative filter multiplies
the transform of the data with 27is, where 8 is the
independent variable in the transform domain. This result

is the derivative theorem of Fourier transform analysis.

But because the derivative process 1is aensitive to
noise, the filter must be modified +to reduce the noise
effects. This noise filtering can be done before, after, or
combined with the derivative <filtering =eince the
multiplication is commutative. In this case the noise

filtering was done after the derivative filters.

The input data were a two-dimensional cosine wave and a
two-dimensional Gaussian wave. The input data were entirely
two- dimensional, though in the theoretical portions of this
thesis reference was made to one-dimensional functions for
simplicity. And since the data were two-dimensional all the
computer programs were written to operate on two-dimensional

data.

.The Gaussian ordinant dependent noise was added to the
input data by the program GNOISE.FOR. This program uses the

random number generator in FORTRAN to determine the size of

the noise.

e[

DERIV4.POR was used to take the FFT of the input. The
filter program used was PFILT.FOR.

After a set of noisy data was filtered by DERIV4.POR
and PILT.POR the resultant output was transformed back to
the function domain in order to examine the derivative of

the noisy data after filterinp.

Of the three filters, the one employing a tail (the
function sloped down to zero rather than abruptly cutting
off) worked the best on data having a transform not
concentrated about <the origin. Gibbs oscillations in the
function domain are reduced by such filters and the
trade-off in 1letting more noise through to allow the
transform to go gradually to zero is definitely beneficial.

Por data with transform information centered about the
origin, the filters that cut off abruptly worked better than
the filter that employed a tail. This is due to being able
to get rid of the high frequency noise without destroying
any important transform information. Thus +the appropriate
filter depends on the type of data. Since the information
in the transform domain is generally not concentrated about
the origin, filter functions tﬁat are to be used for common

data need tails.

Puture work in this area might be to use different
tails such as a Gaussian tail for the circular filter or a

cosine wave tail for the rect filter. Also the filter could

|
|

a

;

|

]

]

]
[

i

be tested using another type of noise, rather than additive
Gaussian ordinant dependent. Along these lines of thought
the noise could be ordinant dependent for ordinants larger
than a certain value, while for ordinants less <than a
certain value the noise could be independent of the ordinant

P or depend on some other parameter.

37

o gy s

circular, flat-topped, and square filter fuactions,

respectively.

38
Perspective Plots a
The following are plots of the final results. SP 1is the
scale factor used to determine the amplitude of the
noise. Cir, Pyr, and Rect are abbreviations for the

1.7 Gaussian input data ;
1.8 x-derivative of Gaussian data
1.9 Cosine wave input data
1.10 x-derivative of Cosine data |
1.1 x-derivative of Gauss. SF=1.0E-4, no filter ;
1.12 x-derivative of Gausa. SF=1.0E-3, no filter
| 1.13 x-derivative of Gauss. SF=1.0E-4, Pyr, M=4 J
' 1.14 x-derivative of Gauss. SP=1.0E-4, Pyr, M=4 imag '
J 1.15 x-derivative of Gauss. SF=1.0E-3, Pyr, M=4 fmé
E 1.16 x-derivative of Gauss. SF=1.0E-4, Pyr, Ma8 L
1.17 x-derivative of Gauss. SP=1.0E-3, Pyr, M=8 1Qﬁ§f
[1.18 x-derivative of Gauss. SPF=1.0E-4, Cir, R=4 | o
F‘ 1.19 x-derivative of Gauss. SP=1.0E-3, Cir, Re4
; 1.20 x-derivative of Gauss. SF=1.0E-4, Cir, R=8
r 1.21 x-derivative of Gauss. SP=1.0E-3, Cir, R=8
1 1.22 x~-derivative of Gauss. SPF<1.0E-4, Rect M=4
E; 1.2% x-derivative of Gauss. SF=1.0E-=3, Rect M=4
E} 1.24 x-derivative of Gauss. SP=1.0E-4, Rect M=8

3 1.25 x-derivative of Gauss. SP=1.0E-3, Rect M=8 2

— e T T Y
T ET T

. 3 1
e . S

N T T

x=-dorivative
x-derivative
x-derivative
x-derivative
x-derivative
x-derivative
x-derivative
x~-derivative
x-derivative
x=-derivative
x-derivative

x=-derivative

of
of
of
of
of
of
of
of
of
of
of
of

cosine
cosine
cosine
cosine
cosine
coaine
cosine
cosine
cosine
cosine
cosine

cosine

SP=1.0E-4,
SP=1.0B-3,
SPs1.0B-4,
SP=1.0E-3,
SPai .0E-4,
SF=1,0E-3,
SP=1.0E-4,
SP=1.0E-3,
SP=1.0E-4,
SP=1.0E-3,
SPx1.0E-4,
SF=1.0E-3,

Rect M=8
Rect M=8
Cir, R=8
Cir, R=8
Cir, R=4
Cir, R=4
Pyr, M=8
Pyr, M=8
Pyr, M=4
Pyr, Ma4
no filter
no filter

39

ot o4

W

N

40

LT "btg

41

8°T -"btg

_

Z1°1 *b1g

.13

46

R - “._;___‘_X

—~ -8

48

ST'T °bra
. = N |

Fig. 1.21

54

C¢'1 "btg

56

€2°1 "btg

Fig. 1.25

Fig. 1.31

67

1.34

Fig.

Fig. 1.35

68

°g°"1 "brd

|
; m

70

i
LE*T "bta
_
|

Following is the code for the programs discussed 1in
this thesis. The order of the execution of these programs
is: step one-~ 1input the data to GNOISE.FOR and choose the
scale factor of the noise; step two- input the noisy datna
to DERIV4.FOR and choose the minua-i transform and the x,
second xy, or y derivative; step three- filter the output
of DERIV4.POR using PTLT.FOR with one of the three filter
functions after choosing 1its size; step four- plus-i
transform this result to obtain the x, second xy, or vy

derivative of the original data using DERIV4.FOR.

71

R i 2n e b

ey

The data files used by DERIV4.FOR, GNOISE.FOR,
FILT.FOR, are all unformatted binary random nccess files,
The sizv of the two dimensionnl {input «and output arrays
necessitated the use of gsuch files. Disc I/0 time was
reduced drnstically and thus execution time was greatly cut.
The record length of these datn files is equal to the number
of data points.

DERIV4.FOR 1is the TFORTRAN program that performs the
transformation of the x-derivative of the data, second
xy-derivative of the data, y-derivative of the data, or the

transform of the data. The run-time parameters are:

1. The size of the matrices that hold the input and output
data- the limit is 64 (for 64 X 64 matrices). Must input an

integer that is an integral power of two.

2. The operation to be performed. Enter 1 for +the
transform of x-derivative of the input, 2 for the transform
of the second «xy-derivative of the input, 3 for the
transform of the y-derivative of the 1input, 4 for the

transform of the input.

3. The type of data- real or complex. Enter 1 for renl

Aata, a 2 for complex data.

4. The sign of the transform- minus-i or plus-i. Enter -1

3

for the minus-i transform, 1 for the plus=i transform.

5. The output file unit numbers. BEnter the unit number for
the real part data file first, then the unit number for the
imaginury part d4atan file,

6. The input file unit numdber(s). Enter the unit number for
the real part. If the data is complex follow with the unit

number for the imaginary part.

|

e

556

557

558

5..

560

563

48

DERIV4.POR
DIMENSION A1(64,64),B1(64,64),DATA1(128)
DIMENSION C1(64,64)
TYPE 556
FORMAT(' HNTER SIZE OP MATRIX, LIMIT IS 64 ',$)
ACCEPT 557,121
FORMAT(1)
TYPE 558
PORMAT(' ENTER D/DU, D2/DUDV, D/DV, OR F(X) ',$)
ACCEPT 557,172
TYPE 559
FORMAT(' ENTER REAL(1) OR COMPLEX(2) DATA TYPE ',$)
ACCEPT 557,123
TYPE 560
FORMAT(' ENTER SIGN OF TRANSFORM (1, -1) ',$)
ACCEPT 557,125
12422%17%1
FORMAT(21I)
CALL DERIV(IZ1,1%2,123,1%4,1%5,A1,B1,DATA1,C1)
STOP
END
SUBROUTINE DERIV(IN1,IK,IL?1,IN3,ISN1,A,B,DATA,C1)
DIMENSION A(IN1,IN1),DATA(IN3),B(IN1,IN1)
DIMENSION C1(IN1,IN1)
LOGICAL FLAG,PLAG2
FORMAT(21)
IN2=IN1/2

Fra

Al e i T

75 a

P

IL2=IN1*IN1
TYPE 562 |
562 FORMAT(' FENTER OUTPUT FILE # S(RE,IM) ',$) |

| ACCEPT 48,1F1,IF2
FLAG2=.TRUE.
PLAG=.TRUE.
14 PORMAT (I)
60 TO (220,230) ILI
f 220 TYPE 565
) 565 FORMAT(' ENTER PILE # ',$)
ACCEPT 14, IFC
CALL DEFINE PILE(IFC,IL2,10C%,0,0,0)

666 READ (IFCH#1) A
[667 CALL REFRMT(IN1,IN2,A,C1)
| G0 TO 333
230 TYPE 566

| 566 FORMAT(' FENTER FILE # S(RE,IM)',$)
b ACCEPT 48, IFA, IFB
l, CALL DEFINE PILE (IFA,IL2,LOCt,0,0,0)
| CALL DEFINE PTLE (IFB,IL2,10C2,0,0,0)
READ (IFA#1) A
READ (IFB#1) B
CALL REFRMT(IN1,IN2,A,C1)
CALL REFRMT(IN1,IN2,B,C1)
333 DO 1 I=1,IN1
DO 3 It=1,IN3
DATA(T1)=0

&
=

e, orv . Ay

k. T—— NN

52

ey

11

110

100

1Nt
11

210

200

201
211

241
240

[P (FLAG) GOTO 100
DO 110 K=1,IN1,2
A(T,K)=-A(T,K)
CONTINUE

GOTO 111

90 101 K=2,IN1,2
A(I,K)==A(T,K)
CONTINUE
FLAG=.NOT.PLAG

DO 4 J=1,INt
DATA(2%J-1)=A(1,J)
IF (IL1.EQ.1) GO TO 240
IF (FLAG2) GOTO 200
DO 210 K=1,IN1,2
B(I,K)=-B(I,K)
CONTINUE

GOTO 211

DO 201 X=2,IN1,2
B(I,K)=-B(I,K)
CONTINUE
FLAG2=.NOT.FLAG2

DO 241 J=1,1IN1
DATA(2%J)=B(I,J)
CALL MRKFPFT(IN1,ISN1,IN3,DATA)
DO 5 J=1,INt
A(I,J)=DATA(2%J-1)
B(I,J)=DATA(2%J)

76

LI LTl

| .
,% 1 CONTINUE i
| DO 60 I2=1,INi- |

: DO 60 J=I2+1,INd ;
- TMP=A(12,J) ;
:‘ A(12,J)=A(J,12) :
1 A(J,12)=TMP |

60 CONTINUE !
1 DO 61 I3=1,IN1-1 ‘
R DO 61 J=I3+1,INt
! T™MP=B(I13,J)
gy B(13,4)=B(J,13)
- B(J,I3)=TMP
L 61 CONTINUR
|| DO 2 I=1,INt

DO 6 J=1,INt ,

L DATA(2%J-1)=A(I,J) ;

6 DATA(2%J)=B(I,J) §
e CALL MRKFPT(IN1,ISN1,IN3,DATA) E, |
| O 7 J=1,INY ‘“‘g
) A(I,J)=DATA(2%J~1) I
‘% 7 B(1,J)=DATA(2*J) f
E_ 12 CONTINUR ‘
5{ 2 CONTINUE

DO 70 I2=1,IN%-1

RS

DO 70 J=I2+1,1IN1

3{% TMP=A(12,d)
ifj A(12,d)=A(J,12)
e .Qa,:v

70

T

49

41

42

43

44

A(J,12)=TMP

CONTINUE

DO 71 I3=1,IN1-1

DO 71 J=13+1,INd

T™P=B(13,J)

B(13,J)=B(J,I3)

B(J,I3)=TMP

CONTINUE

GO0 70(49,39,59,777)IK

DO 41 I=2,IN2+1

DO 41 J=IN2+1,IN1
A(1,d)=A(I,J)*6.28%18531%(J-(IN2+1))
B(1,d)=B(I,J)*6.28%18531%(J=(IN2+1))
DO 42 I=2,IN2+1

DO 42 J=2,IN2
A(1,d)=A(1,J)*6.28%18531%(J~(IN2+1))
B(1,d)=B(1,J)*6.28318531%(J=(IN2+1))
DO 43 I=IN2+2, 1INt

DO 43 J=2, IN2+1
A(1,d)=A(1,J)*6.28318531%(J=(IN2+1))
B(1,J)=B(1,J)*6.28318531%(J-(IN2+1))
DO 44 I=IN2+2,INY

DO 44 J=IN2+2,INt
A(I,J)=A(1,J)*6.28318531%(J~(IN2+1))
B(I,J)=B(1,J)*6.28318531%(J-(IN2+1))
A(1,1)=A01,1)%(=(IN2+1))*1.57079633
B(1,1)=B(1,1)*(-(IN2+1))*1.57079633%

78

Xl eed AN

yevry -l P

o e

T ew WED|m

R —t e T f anitcon

68

39

k2

32

33

34

DO 68 J=2, (N1
AC1,J)=A(1,J)*(J=-(IN2+1))*3.14159265
B(1,J)=B(1,J)*(J=-(IN2+1))*3.14159265
DO 69 I=2,INt
A(I,1)=A(1,1)%3.14159265%(~(IN2+1))
B(I,1)=B(I,1)%3.14159265%(~(IN2+1))
GO TO 777
DO 31 I=2,IN2+1
DO 31 J=IN2+1,INt
A(I,J)=A(1,J)*6.28318531+

! (J=(IN2+1))*(ABS(I-(IN2+1)})
B(I,d)=B(I,J)*6.28318531*(ABS(I-(IN2+1)))
DO 32 I=2,IN2+1
DO 32 J=2,IN2
A(1,J)=A(I,J)*6.28318531+*

! (J-(IN2+1))*(ABS(I-(IN2+1)))
B(I,J)=B(I,J)*6.28318531

! #(J~(IN2+1))*(ABS({I-(IN2+1)))
DO 33 I=IN2+2,INt
DO 33 J=2,IN2+1
A(I,J)=A(I,J)*6.28318531*%(J~(IN2+1))*((IN2+1)-1)
B(I1,J)=B(I,J)*6.28318531%(J=(IN2+1))*((IN2+1)-I)
DO 34 I=IN2+2,IN1
DO 34 J=IN2+2, INt
A(1,J)=A(I,J)*6.28318531 *(J=(IN2+1))*((IN2+1)~1)
B(I,J)=B(I,J)*6.28318531%(J~(IN2+1))*((IN2+1)-1)
DO 67 J=2,INt

79

- L T e s ik

e~ WL

o el

R - R o - .

. L
R .
e s A W L e

80

A(1;J)=A(1,J)*3.14159265*(1N2+1)*(J-(IN2+1))
B(1,J)=B(1,J)*3.14159265%(IN2+1)*(J=(IN2+1))
DO 66 I=2,INt
A(T,1)=A(T,1)%3.14159265%(T~(IN2+1))*(IN2+1)
B(I,1)=B(I,1)%3.14159265%(1~(IN2+1))*(IN2+1)
A(1,1)=A(1,1)*(IN2+1)*(=(IN2+1))*1.57079633
B(1,1)=B(1,1)*(IN2+1)*(-(IN2+1))*1.57079633
GO TO 777

DO 51 I=2,IN2+1

DO 51 J=INZ2+1,IN1
A(I,J)=A(1,J)%6.28%18531%(ABS(I-(IN2+1)))
B(I,J)=B(I,J)*6.28318531%(ABS(I-(IN2+1)))

DO 52 I=2,IN2+1
DN 52 J=2,1IN2

A(1,d)=A(1,J)*6.28318531 *ABS(I-(IN2+1))
B(I,J)=B(I,J)*6.23318531%(ABS(I~(IN2+1)))
| DO 53 I=IN2+2,IN{
ig ‘\ DO 53 J=2, IN2+1
‘ {‘ A(T,J)=A(1,J)%6.28318531%((IN2+1)-1)
53 B(I,d)=B(I,J)*6.28318531*((IN2+1)-I)

DO 54 I=IN2+2,INi

DO 54 J=IN2+2,IN1
. i A(T,d)=A(1,J)*6.28318531*((IN2+1)-I)
B(I,J)=B(I,J)*6.28313531*%((IN2+1)-1)
AC1,1)=A(1,1)*(IN2+1)*1.57079633
B(1,1)=B(1,1)*(IN2+1)%1.57079633
DO A5 J=2,IN1

T, e

—

R - — .

id

[‘ 65
64

777

- 700

[
Q Q

aQ O Q Q

A(1,d0)=A(1,J)%3,.14159265%((IN2+1))
B(1,J)=B(1,J)*3.14159265%(IN2+1)

DO 64 I=2,INI

AL, 1)=A(I,1)%3,14159625%(I~(IN2+1))
B(I,1)=B(T,1)#3.14159625%(I~(IN2+1))
THE REAL PART OF THE TRANSFORM IS IN 21
THE IMAG. PART OF THE TRANSFORM IS IN 22
CALL DEFINE PILE(IF1,IL2,L0C4,0,0,0)
CALL DEFPINE FILE(IF2,IL2,L0C5,0,0,0)
WRITE (IF2#1) A

WRIT? (IF1#1) B

ARTUAN

ENL

SUBROUTINE MRKFPT(NN,ISIGN,IQ1,DATA)
DIMENSION DATA(IQ1)

N« Z~NN

FAST FOURIER TRANSFORM ROUTINE

J=1

DO 5 I=1,N,2
IF(I-J)1,2,2
TEMPR=DATA(J)

T T X T

T

-

p——
PR

- am

TEMPI=DATA(J+1)
DATA(J)=DATA(I)
DATA(J+1)=DATA(I+1)
DATA(1)=TEMPR

DATA(I+1)=TEMPI

M=N/2

IP(J-M)5,5,4

Jud=M

M=M/2

IF(M-2)5,3,3

J=J+M

MMAX=2

IF(MMAX-N)7,10,10
ISTEP=2%MMAX
THETA=6.2831853/FPLOAT(ISIGN*MMAX)
SINTH=SIN(THETA/2)
WSTPR=-2*3INTH*SINTH
WSTPI=SIN(THETA)

WR=1

WI=0

DO 9 M=1,MMAX,2

DO 8 I=M,N,ISTEP

J=I+MMAX

TEMPR=WR*DATA(J)~WI*DATA(J+1)
TEMPI=WR*DATA(J+1)+WI*DATA(J)
DATA(J)=DATA(I)-TEMPR
DATA(J+1)=DATA(I+1)=-TEMPI

R

82

it R Sonsnc SN wunvoce B

R Lo ‘,,W _M._.”!

3

Q

10

39
21

60

o1

62

63

DATA(I)=DATA(T)+TEMPR
DATA(I+1)=DATA(I+1)+TEMPI
TEMPR=WR
WR=WR*WSTPR-WI*WSTPI+WR
WIsWI*WSTPR+TEMPR*WSTPI+WI
MMAX=ISTEP

GO TO 6

RETURN

END

SUBROUTINE REFRMT(IS,IS2,A,C)
DIMENSION C(IS2,182),A(IS,IS)
FORMAT(T)

DO 60 I=1,IS2

DO 60 J=1,IS2

c(1,d)=A(1,J)

DO 61 I=IS2+1,1S

DO 61 J=IS2+1,1IS
A(1-182,J-182)=A(1,J)
A(1,J)=C(1-182,J-182)

DO 62 I=1,IS2

DO 62 J=1,1S2
C(I,J)=A(1,J+IS2)

DO 63 I=1,IS2

DO 63 J=1,1S2
A(I,J+182)=A(1+1I82,J)
A(1+I82,d)=C(I,J)

P e

50

PORMAT (8F)
RETURN
END

84

Mvmﬁ_wmww~“"~w,"mmm__wmmwmww~ww~w~wv-"W"””“”'““W“””“““!db’!

{f PILT.POR is the PORTRAN filter program. The choice of
filter “functions i{s {deal square and circular low-pass
filter lfuantions, and a flat-topped filter function. The
extent of the filter function can be varied by changing the
value of M for the square and flat-topped filter function
and R (radius) for the circular filter function. The

run-time parameters are:

1+ The size of the square matrices- same conditions hold ac

in DERIV4.PFOR.

2. The input and output files. The data type is assumed to

: T d e
Wt

be complex, therefore a total of four logical unit numbers

! must be entered. The input unit numbers must be first, and

for each pair of unit numbers the real unit nurber is first.

TR 3. The filter function desired. Enter 1 for the square

af filter function, 2 for the circular filter function, 3 for
the flat-topped pyramid filter function.

4. The size or extent of the filter function- 1limit 1is
one-ralf the size of the matrices used by the program to

hold data.

——

e I s

]’
w

l} PILT.FOR |
DIMENSION A1(64,64),B1(64,64)
. TYPE 10
10 PORMAT(' ENTER SIZE OF MATRIX ',$)
ACCEPT 11,1821
11 FORMAT(T) ,
IS22=1821/2+1
CALL PILTR(A1,B1,IS21,I1522)
i, STOP
END
ff SUBROUTINE FILTR(A,B,IN1,IORIG)
, DIMENSION A(IN1,INt1),B(IN1,INt1)
h IL2=IN1*INY
‘; 401 FORMAT(I)
402 PORMAT(21)
TYPE 460
460 FORMAT(' ENTER INFILES,OUTFILES(RE,IM) ',$) ;
| {‘ ACCEPT 461,IF1,IF2,IF3,IF4 ; |
i ’, 461 FORMAT (41) b
CALL DEFINE FILE(IF1,1L2,10C1,0,0,0)
CALL DEFINE FILE(IF2,IL2,L0C2,0,0,0)
CALL DEFINE FILE(IF3,IL2,L0C3,0,0,0)
CALL DEFINE FILE(IF4,IL2,10C4,0,0,0) |
READ(IF1#1) A
READ(IF2#1) B
TYPE 410
410 PORMAT(' IS PFILTER SQ(1),CIRC(2),CUT PYRAM(3) ',$)

QA dnagit M4

87 i
. i
E ACCEPT 401, ISHAPE 1
G0 T0 (420,430,450) ISHAPE
420 TYPE 421 ,
421 PORMAT(' ENTER M(SIZE=2%M+1) ',8) %
, ACCEPT 401, IMM2
| G0 TO 440 %
‘ 430 TYPE 431 :
3 431 PORMAT(' ENTER RAD ',%) |
f ACCEPT 401, IRAD ?
i 440 IF (ISHAPE.EQ.1) IMID=IMM2 5
L IF (ISHAPE.EQ.2) IMID=IRAD
DO 441 I=1,IORIG-IMID-f

DO 441 Jal,INt
A(1,J)=0.0
B(I,J)=0.0
a8 441 CONTINUE
| DO 442 I=IORIG+IMID+1,INt ?
| DO 442 J=1,INt |
| I A(I,d)=0.0 Ry
B(I,J)=0.0 ;
442 CONTINUE
k! DO 443 I=IORIG-IMID,IORIG+IMID
N DO 443 J=1,I0RIG-IMID-1
A(1,J)=0.0
| B(I,J)=0.0
1 443 CONTINUE
tE DO 444 I=IORIG-IMID,IORIG+IMID

¢ ,

DO é44 J=IORIG+IMID+1,INY
A(1,J)=0.0
B(I,J)=0.0 2
444 CONTINUE '
IP (ISHAPE.EQ.1) GO TO 490 |
g K1=IN1/2+TMID+2
J3=(IN1/2-IMID)*2 !
K2=IN1/2-IMID+1 i
J4=J3+4 % IMID+2 1
K3=K1 =1 %
J5=J3+1
J6=J4/2
X RIGN=IORIG
r DO 140 I2=IORIG-IMID,IORIG+IMID
| DO 140 I3=IORIG-IMID,IORIG+IMID §
L1=I2-IN1/2-1 5
L2=(13+1)/2-IN1/2-1 j
s XR=(I2-RIGN)#*#2 %
YR=(I3-RIGN)#*#2 b
R=IMID
IP (SQRT(XR+YR).LE.R) GOTO 140
A(12,13)=0.0
- B(12,13)=0.0
140 CONTINUE
GO TO 490
o | c CIRCLE FILTER IS PINISHED

.,M
N el

[ESS—

“d

S sa Pt W o

DN IR S

450 TYPE 451
451 PORMAT(' ENTER MID(PLATEAUs2¢MID+1) ',$)
ACCEPT 401, IMID
IRMP=(IORIG=1)=(IMID+1)
| XDEL=1.0
DO 22 1s3,IORIG-IMID-1 '
DO 23 Js=I,IN1=(I-2)
A(I,J)=(XDEL/IRMP)*A(T,d)
B B(I,J)=(XDEL/IRMP)*B(I,J) ?
- 23 CONTINUE | §
Fi XDEL=XDEL+1 .0 | é
[22 CONTINUE 7
‘ XDEL=1.0
! | K=0
o DO 24 IsIN1-1,IORIG+IMID+1,-1
B DO 25 J=3+K,IN1-1-K :
;l A(1,J)=(XDEL/IRMP)*A(I,J)
| B(I,J)=(XDEL/IRMP)*B(I,J)
| 25 CONTINUE | t‘“g
XDEL=XDEL+1.0 i
i Ka¥+1 |
!} 24 CONTINUE
| XDEL=1.0
DO 26 J=3,I0RIG-IMID-1

DO 27 I=Jd+1,IN1=J+1
A(I,J)=(XDEL/IRMP)*A(I,J)
B(I,J)=(XDEL/IRMP)*B(I,J)

P — —— —_—
ke ———- [m—— [P,

27

26

29

28

30

31

20

90

CONTINUE

XDEL=XDEL+1.0

CONTINUE

XDEL=1.0

K=0

DO 28 J=IN1-1,IORIG+IMID+1,-1
DO 29 I=4+K,IN1-2-K
A(I,J)=(XDEL/IRMP)*A(I,J)
B(I,J)=(XDEL/IRMP)*B(I,J)
CONTINUE

K=K+1

XDEL=XDEL+1.0

CONTINUE

DO 30 J=1,IN1
A(IN1,J)=0.0
B(IN1,J)=0.0

CONTINUE

DO 31 I=1,INi
A(I,IN1)=0.0
B(I,IN1)=0.0
CONTINUE

DO 20 I=t,2
DO 20 J=1,INt
A(1,d)=0.0
B(I,y)=0.0
CONTINUE

DO 21 J=1,2

"

T

e . i LS I S r e Lag " T

. M

-
S o

| —

g ok .o Raba
— = B3

) i
R

g 9

21
490

500

DO 21 I=1,INt
A(1,J)=0.0
B(I,J):0.0
CONTINUE
WRITE(IP3#1) A
WRITE(IP4#1) B
RETURN

END

e ——

. . C o s

m &
13

-

GNOISE.FOR is the PORTRAN program that adds Gaussian
ordinant dependent noise to the input data. The input data

is not destroyed. The run-time parameters are:

1. The size of the matrices- the same conditions hold as for

DER1IV4.FOR.
2. The scale factor of the noise.

3. The type of data- real or complex. Enter 1 for. real, 2

for complex.

4. The input logical unit number(s), the unit number(s) that
is (are) to contain signal plus noise, the unit number(s)
that is (are) to contain the noise only. If the data |is
complex two unit numbers are required for each case, with

the real unit number being the first in all cases.

[T PRSIPEY o. To. I ol M

4

R P NN S Y e, W ST
T owe. A AraA NN "t’- ——

GNOISE.PFOR - z
DIMENSION A(64,64),B(64,64) |
REAL SP ' i
mYPE 10 ‘
10 FORMAT(' ENTER SIZE OF MATRIX ',8)
ACCEPT 11,182
1 PFORMAT(I)
TYPE 12
12 FORMAT(' ENTER SCALE FACTOR ',$)
ACCEPT 13,SF
13 FORMAT(G)
CALL NOIS(A,B,SF,IS3%)
STOP
END
SUBROUTINE NOIS(A1,B1,SF1,IS21)
DIMENSION A1(ISZ1,18%1),B1(I821,1S21)
REAL 3P
IL2=18%1%1S%1
KOUNT=0
TYPE 100
100 FORMAT(' REAL(1) OR COMPLEX(2) DATA TYPE ',$)

ACCEPT 110, IK1

111 FORMAT (21)
110 FORMAT(T)
112 FORMAT (2G)
113 FORMAT(G)
114 FORMAT(31)

— v e e - -

115 PORMAT(61)
G0 70(120,130) IK1

l% 9%
|

[j 120 TYPE 121 ’
i‘ 121 PORMAT(' ENTER INFILE,S+N,N PITE ',$) ;
ACCEPT 114,IF1,IFPS1,IPN1 :
CALL DEPINE FILE(IF1,IL2,L0C1,0,0,0) !

CALL DEFINE FILE(IFS1t,1L2,L0C2,0,0,0)
! CALL DEFINE FILE(IPFN1,IL2,L0C3,0,0,0)
READ(IF1#1) A1

G0 TO 200
& 130 TYPE 134 !
131 FORMAT(' ENTER INPUT RE,IM, (S+N)

i ! RE,IM,(N) RE,INM',$)
z ACCEPT 115,1IF1,IF2,IPS1,IFS2, IFN1,IPN2
CALL DEFINE FILE(IF1,IL2,10C1,0,0,0)
CALL DEFINE FILE(IF2,IL2,L0C2,0,0,0)
CALL DEFINE FILE(IFSt,IL2,L0C3,0,0,0)
CALL DEFINE FILE(IPFS2,ILZ, L0C4,0,0,0) n
CALL DEFINE PILE(IPN1,IL2,L0C5,0,0,0) E&ﬁ
-
I

CALL DEFINE FILE(IFN2,IL2,L0C6,0,0,0)
READ (IF1#1) A1
200 RMS=0.0
KOUNT=KOUNT+1
DO 300 I=1,IS%1
DO 300 J=1,1S%1
K=
P=RAN(5)

———

#
-
i Am'.E

- RS IRAPRCPVT R

95

[E S=RAN(10) ‘
IP (A1(1,J).LT.1.0E=20) XN=2.%P*A1(I,J)
IP (A1(1,J).LT.1.0E=20) GO TO 250
XN=ABS(A1(I,J))*

! (=-ALOG(P*SQRT(6.28318*3F1*ABS(A1(I,J)))))

XN=SQRT(2.0%SF1*XN)

250 IF (S.67.0.5) XN=-XN
TEMP=A1(I,J)
A1(I,d)=A1(I,d)+XN
B1(I,J)=XN

Bl ~
> o) =

IF (A1(I,J).L7.0.0) A1(I,J)=0.0
. RMS=(A1(I,J)-TEMP)#*24RMS
300 CONTINUE

[RMS=SQRT(RMS/IL2) 3
;' TYPE 113,RMS S
%é IF (KOUNT .EQ. 2) GOTO 500

" WRITE (IFS1#1) At

3 WRITE (IFN1#1) B1

IF (IK1 .EQ. 1) GOTO 400

IF (KOUNT .EQ. 1) READ (IF2#1) A1

F' IF (KOUNT .EQ. 1) GOTO 200
500 WRITE (IFS2#1) A1
{ WRITE (IFN2#1) B1 ;
{ 400 RETURN
END

Bibliography

Andrews, H.C. (1970), Computer Techniques in Image

Proceasing, Academic Press, New York, New Tork.
Bivens, Willirm C. (1976), "“Resolution Enhancement for
Non-fixed ULinear Systems," (Unpublished Master's Thesis,

Department of Physics, University of New Orleans).

Bracewell, Ron(1965), The Fourier Transform and its

Applications, McGraw Hill, New York, New York.

Cochran, William T., et al (1967), "What is the Past Fourier
Transform?," Proceedings of the IEEE, vol. 55, no. 10, pp.
1664-1674 (October).

Higgins, R.J. (1976), "Past Fourier Transform: An
introduction with some minicomputer experiments," American

Journal of Physics, vol. 44, no. 8, pp. 766,773 (August).

Ioup, George E, private communications (1978).

R S

il

VITA

97

Kathleen Simons Acomd Whitehorn was born in [N

on N to Bettie Ann NN -nd
Cyril Lloyd Acomb.

High School

She graduated from Walters Preparatory
in May 1974 and the following fall entered the
University of ew Orleans.

Mark Alan

On August 6, 1977 she mes-ried

Writehorn, also a graduste of the University of

New Orleans 1in physics. She

received her Bachelor of

Science degree 1in physics with honors in December of 1977

from the University of New Crleans. The following spring

she accepted a graduate assistantship from the Physics

Department of the University of New Orleans. Her 1last two
semesters she worked with the Louisiana State University Eye

Center.

T " il

	1986001358.pdf
	0065A02.tif
	0065A03.tif
	0065A04.tif
	0065A05.tif
	0065A06.tif
	0065A07.tif
	0065A08.tif
	0065A09.tif
	0065A10.tif
	0065A11.tif
	0065A12.tif
	0065A13.tif
	0065A14.tif
	0065B01.tif
	0065B02.tif
	0065B03.tif
	0065B04.jpg
	0065B05.tif
	0065B06.jpg
	0065B07.tif
	0065B08.tif
	0065B09.tif
	0065B10.tif
	0065B11.tif
	0065B12.tif
	0065B13.tif
	0065B14.tif
	0065C01.tif
	0065C02.tif
	0065C03.tif
	0065C04.tif
	0065C05.tif
	0065C06.tif
	0065C07.tif
	0065C08.tif
	0065C09.tif
	0065C10.tif
	0065C11.tif
	0065C12.tif
	0065C13.tif
	0065C14.tif
	0065D01.tif
	0065D02.tif
	0065D03.tif
	0065D04.tif
	0065D05.tif
	0065D06.tif
	0065D07.jpg
	0065D08.jpg
	0065D09.jpg
	0065D10.jpg
	0065D11.jpg
	0065D12.jpg
	0065D13.jpg
	0065D14.jpg
	0065E01.jpg
	0065E02.jpg
	0065E03.jpg
	0065E04.jpg
	0065E05.jpg
	0065E06.jpg
	0065E07.jpg
	0065E08.jpg
	0065E09.jpg
	0065E10.jpg
	0065E11.jpg
	0065E12.jpg
	0065E13.jpg
	0065E14.jpg
	0065F01.jpg
	0065F02.jpg
	0065F03.jpg
	0065F04.jpg
	0065F05.jpg
	0065F06.jpg
	0065F07.jpg
	0065F08.jpg
	0065F09.jpg
	0065F10.tif
	0065F11.tif
	0065F12.tif
	0065F13.tif
	0065F14.tif
	0065G01.tif
	0065G02.tif
	0065G03.tif
	0065G04.tif
	0065G05.tif
	0065G06.tif
	0065G07.tif
	0065G08.tif
	0065G09.tif
	0065G10.tif
	0065G11.tif
	0065G12.tif
	0065G13.tif
	0065G14.tif
	0066A01.tif
	0066A02.tif
	0066A03.tif
	0066A04.tif
	0066A05.tif
	0066A06.tif
	0066A07.tif
	0066A08.tif

