
STUDY OF ONE- AND TWO-DIMENSIONAL

FILTERING AND DECONVOLUTION ALGORITHMS

FOR A STREAMING ARRAY COMPUTER

NASA GRANT NO. NSC-1648

(NASA-CR-176 224) A STUDY OF DERIVXTIVE	 N86-108?5FTLTErS IISTNG TH? DISCRETE FOUPIF p TPANSFORM
Final Report M. S. Thesis (New Orleans(lni v. , La.)	 li r" p 4C A06/MF AM 1	 CSCL 19P	 (lnclas

G3/61 27513

c

^r

r
Dr. George):. loup, Principal investigator

Department of Physics
University of New Orleans
I ew Orleans, LA 70148

FINAL. REPORT

Appendix 3

"'^ • ^ r "i 19ti5	 ^^

^p^.ESg DEPT'

r

OWN

A STUDY OF DERIVATIVE FILTERS

USING THE DISCRETE FOURIER TRANSFORM

A Thesis

Submitted to the Graduate Paculty of the

University of New Orleans

in partial fulfillment of the

regnirements for the degree of

Master of Science

I.

in

The Department of Physics

by

Kathleen Acomb Whitehorn

A. S., University of New Orleans, 1977

May, 1980

i

a

„a

ACKNOWLEDGEMENTS

I would like to express rineere appreciation to Dr.

George E. Ioup for his guidance and his encouragement,

without which this thesis would never have come to fruition.

Thanks also go to Dr. Charles E. Head and Dr. Joseph E.

Murphy for their helpful suggestions. And lust but not

least I would like to thank my husband, Mark, for his

patient understanding and productive aonvereationh.

Part of the work associated with this thesis was funded

by a NASA grant, NSG 1648.
u

The three-dimensional plots were drawn using the ASPEX

plotting package obtained from the Laboratory for Computer

Graphics and Spatial Analysis, HRrvard University.

I

ii

TABLE OF CONTENTS

Page

Abstract	 vii

Introduction

Chapter I
	

3

(;hapter II
	

24

Chapter III
	

27

Summary	 35
	 n

Appendix	 71

Bibliography	 96

Vita	 97

iii
k

LIST OF FIGURES
s

1.1 . t tin	 the3 q	 R relationship between t a,nd s B

1.2 The sampling property of III(x) 9

1.3 The replicating property of III(x) 11

1.4 Incommensurate function with/without zeroes 16

1.5 Rearrangement of data, 20i

1.6 Rearrangement of data 20

1.7 Gaussian input data 40

1.8 x-derivative of Gaussian data 41

1.9 Cosine wave input data 42

1.10 x-derivative of Cosine data. 43

1.11 x-derivative of Gauss. SF=1.OF-4, no filter 44

1.12 x-derivative of Gauss. SF=1.OE-3, no filter 45

1.13 x-derivative of Gauss. SP=1.OE-4, Pyr, M=4 46
f	 ^

4. 1.14 x-derivative of Gauss. 3F=1.OE-4, Pyr, M=4 im ►ag	 47

1.15 x-derivative of Gauss. 9F=1.OE-3, Pyr, M=4 48

1.16 x-derivative of Gauss. SF=1.OE-4, Pyr, M=8 49

!~ 1.17 x-derivative of Gauss. SF=1.OE-3, Pyr, M=8 50

1.18 x-derivative of Gauss. 4F=1.0E-4, Cir, R=4 51

1.19 x-derivative of Gauss. SF=1 .OE-3, Cir, R=4 52

-^ 1.20 x-derivative of Gauss. SF=1.OE-4 9 Cir, R=8 53

-i 1.21 x-derivative of Gauss. SF=1.OE-3, Cir, R=8 54
k

1.22 x-derivative of Gauss. SF=1.OE-4, Rect M=4 55

1.23 x-derivative of Gauss. SF=1.OE-3, Rect M=4 56

.24 x-derivative of Gauss, SF=1.OE-4 9 Rect M=8 57

1.25 x-derivative of Gauss. SF=1.OE-3, Reet M=8 58

iv

1 .26

1 .27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

• • 35

1 .36

1.37

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

x-derivative of

cosine

cosine

cosine

cosine

cosine

cosine

cosine

cosine

cosine

cosine

cosine

cosine

SF=1.OE-4, Root M=8

SF=1.0E-3, Root M=8

SF=1.01-4, Cir, R=8

SF:1.OE-3 0 Cir, R=8

SF=1.OE-4 9 Cir, R=4

S?=1 .0E-3 ► C i, r , R=4

SF=1.O1-4 0 Pyr, Mn8

SF=1 .01-3 r Pyre M=B

SF=1., nE-4 , Pyre Mu4

SF=1.OE-3 9 Pyre M=4

SF=1.OF-4 9 no filter

SP=1.OE-3, no filter

59

60

61

62

63

64

65

66

67

68

69

70

v

I

LIST OF TABLES

Page

TABLE I
	

29

TABLE II	
30

a

A

7

fl^
s

ABSTRACT

Important properties of derivative (difference) filters

using the discrete Fourier transform are investigated. The

k
filters are designed using the derivative theorem of Fourier

analysis.

Because physical data are generally degraded by noise,

the derivative V.lter is modified to diminish the effects of

the noise, especially the noise amplification which normally

occurs while differencing. The basis for these

modifications is the reduction of those Fourier components

for which the noise most dominates the data.

The various filters are tested by applying them to find

differences of two-dimensional data to which various amounts

of signal dependent noise, as measured by a root mean square

value, have been added. The modifications, circular and

square ideal low-pass filters and a cut-off pyramid filter,

are all found to reduce noise in the derivative without

significantly degrading the result. And the last also

reduces Gibbs oscillations for those data sets for which

these oscillations are present with low-pass filtering.

The FORTRAN programs which perform the filtering

(DERIV4 . FOR and FILT . FOR) and the program which adds the

n.	 noise (GNOISE.FOR) are given and discussed.

[l
	

Vii

0

it

e

INTRODUCTION

Filtering is the process of multiplying the Fourier

j	 transform of data witn some function. The mathematical form
t

of the multiplying function depends on the desired outcome.

One type of filter that in used to locate peaks, to

determine the position of boundaries and locate edges, (and

i

J

{

	 to determine the derivative) in the derivative filter. The
S

drawback to using this filter is the sensitivity of the

derivative operation to noise, especially high frequency

noise. This problem can be alleviated by modifying the

derivative filter.

In this study a diecrete	 approximation	 to the

derivative of the input data is obtained by operating in the

transform domain using the derivative theorem. For data

with noise the transform is filtered a second time to reduce

the effects of noise. Results of these operations with and

without noise are compared in the function domain. Computer

programs are used to perform these manipulations of the

data.

DFRIV4.FOR is the FORTRAN program that outputs the

transform of the input data (two-dimensional data), the

transform of the x-derivative, the y-derivative, or the

second derivative with respect to x and y. DERIV4.FOR uses

the one--dimensional FFT program listed in Higgins' article

(Higgins,1976).	 And DERIV4•FOR accepts real (one input 	 i

k CP

	 file) input data or complex (two input files) input date,,

1

0

t o 	2 	 ^I
while	 it	 outputs	 complex data.	 The program that adder the

0aussian notes to the data is	 GNOISE.FOR,	 and	 it	 accepts

only	 real	 data.	 GNO18$. FOR	 is	 based on a noise program

written by Bill Aivens (8iveno,1976) which has been modified

for	 two-dimensional	 data.	 FILT.FOR to the FORTRAN program

that performe the filtering, and was written by the 	 author.

The	 three	 filter	 choices	 are a circular filter, a square

filter (called a root filter), 	 and	 a	 flat-topped	 pyramid

is
filter.	 The filter consists of the multiplication of one of

three	 filter	 functions	 after	 the	 transform	 has	 been

multiplied	 by the derivative filter.	 The circular and root

filter functions have the value of one inside the boundaries

of	 the respective geometric figures after which the filters

t

are named, and have the value zero outside	 the	 boundaries.

ti

The flat-topped filter function is one inside the square and

slopes linearly (with negative slope) from the edges of 	 the

square	 to the end of the data matrix where the v+al^ie of the

function is zero.	 FILT.FOR also allows for the size of	 the

E
filter function	 (the	 size	 of the square or circle) to be

varied.

This thesis is sepRrated into 	 three	 chapters	 with	 a

Y
summary	 and	 an	 appendix.	 The three chapters are entitled

FOURIER TRANSFORMS, TAKING the	 DERIVATIVE,	 and	 NOISE	 and

FILTERS.	 The	 appendix	 includes	 the FORTRAN code for the

programs that were used.

CHAPTER 1

FOURIER TRANSFORMS

1 1 SPICIAL FUNCTIONS AND THEOREMS

In one dimension the Fourier transform of s continuous

function, f(x), is x

fa

-Ash 94
f L) s	 rlx
•06

This integral is a function of s and will be called F(s).

The independent variables in the function and transform

domains are x and s, respectively. Here the term frequency

will be used to represent the independent variable in the

transform domain, regardless of the units of the function

domain independent variable. The inverse transform of F(s)

in •

1

v^

&XI = I F(46) c	 r^
w

W

The sign reversal in the exponential is necessary to ensure

that two successive transformations result in the original

function (Bracewell, 1965)•

3

The Yourter transform of a oontinuoue function in two

dimensions tot

F(,,, ^a . I	
f (X, ^^ r	 d

where u is the independent variable in the transform domain

associated with the independent variable x of the function

domain and v of the transform domain is associated with y of

the function domain. The inverse transform ist

f

Mr	
,i A74 ^ k X ^ ^'y

F (^^ r) C	 3 	 cues a^el
'- f

First I will define some common functions associated

with Fourier transformn and give their transforms

(Bracewell, 1965)•

In one dimension some common functions are

rect(x)	 1	 abs(x) < 1/2

= 0
	

abs(x) > 1/2

1/2
	

abs(x) = 1/2

tri(x) _ 1 - abs(x)
	

abs(x) < 1

0
	

sbs(x) > 1

4

09

the impulse function
w

d(x)t In	 d(x)dx I d(x) R Q, x i 0

the nine {unction

sino(x) = sin(oy x)/(I'x)

the replicating or shah function

III(x) s I d(x-n)
A • •At

even impulse pair

IT(x)	 = 1/24(x+1/2) + 1/2d(x-1/2)

odd impulse pair

Ii(x)	 : 1/2d(x+1/2) - 1/2d(x-1/2)

Gaussian

exp(-n'x;)

COMMON TRANSFORM PAIR ►

f F(s)

rect(x) sine(s)

tri(x) sinel(a)

d(x) i

III(x) III(a)

II(x) cos(ws)

S

.ss

r,

s

6

Ii(x)
	

isin(i'e)

exp(-n'x'')
	 exp(-nb'*)

In two dimensions the common functions are

rect(x,y)=	 rect(x)rect(y)

sinc(x,y)=	 sinc(x)sine(y)

d (x, y) n 	 d(x)d(Y)

gaussian=	 exp(-I'(x -'+ y11))

COMMON TRANSFORM PAIRS

f(x,y)	 F(u,v)

rect(x,y)	 sinc(u,v)

exp(-7'(x-'+ y 4)) exp(- I'(u a+ v2))

cos('Yx)	 II(u)d(v)

A few theorems play a basic role when dealing with

Fourier transforms. Therefore I will state these theorems

here for those unfamiliar with Fourier transforms, but will

not give the proofs, which may be found in Bracewell, 1965•

A few of the basic theorems:

THE SIMILARITY THEOREM

If f(x) has the Fourier transform F(s) then f(ax) has

the Fourier transform IafF(s/a). Conceptually this states

that broadening a function in the function domain causes

7
	 a

contraction of the transform and growth of its ordinate in

the transform domain, and vice versa.

THE AhDITION THEOREM

It f(x) and g(x) have the Fourier transforms F(s) and

G(s), respectively, then f(x) + g(x) has the Fourier

transform F(s) + G(a).

THE SHIFT THEOREM

If f(x) has the Fourier transform F(s) then f(x-a) has

the Fourier transform exp(-21'ias)F(s). This simply states

that shifting a tunctign in the function domain is analogous

to giving the transform a frequency dependent phase shift.

THE CONVOLUTION THEOREM

if h(x) _ /f(u)g(X-U)dx (h=f*g, f convolved with g)

and f(x) has Fourier transform F(s) and g(x) has Fourier

transform G(s), then H(s) is the transform of h(x) where

H(s) = F(s)G(s). The convolution theorem is used quite often

since it is usually easier to perform a multiplication or

division than it is to perform a convolution or

deconvolution.

THE DERIVATIVE THEOREM

8

If f(x) has the Fourier transform F(s) then f'(x),the

derivative of f(x) has the Fourier transform 2M O(s). Here

is a method for obtaining the derivative of a function that

is not an approximation technique. And by successively

applying this theorem higher order derivatives can be

obtained.

Another theorem, ,although not a basic theorem in

continuous Fourier transform analysis, is important in going

from continuous transforms to discrete transforms. This

theorem, known as the sampling theorem, states that a

function whose transform is zero for s > s. (where s,is the

cutoff frequency in the transform domain) is fully specified

by samples taken at equal intervals not exceeding 1/(2s,)

save for any harmonic terms with zeroes at the sampling

points. Thus it is possible to reconstruct a function from

its samples if the sampling interval is less than or equal

to 11(2s,) . See Fig. 1.1 for graphical detail.

Fist. 1.1 Stating the relationship of t and s.,

r

III(x)

x

1

fl	 9
The nhnh f l in •-tion i.i u:zeful	 in	 representinp sampled

d'it •l.	 For wh e n one mul tipl if^n it Function f(x) , by the shgh

function, 111(x), one is effectively sampling that

continuous function at evenly spaced intervals. The values

of the function, f(x), at integral values of x are preserved

(by the dolt+is) whereas information of the function between

the intervuls of the deltas is not kept. F)ymbolically this

sampling property of the shah function is represented as:

	

AX)
	 2 /1

'S.- as

FY;

I	 ^	 '
And this is graphically stated in Fig. 1.2.

Another important property of the shah function that is

closely associated with the sampling property is that of

replication. When the shah function is convolved with

another function the result in the function being replicated

at unit intervals to infinity in both directions. If the

function is wider than one unit interval (or wider than the

replication interval when this in not unity) then there is

overlapping of the replications. When this occurs in the

transform domain it is known as aliasing and can be a

serious problem.	 The replicating property symbolically

stated is:

w

A & - do

The replicating property of the shah is shown graphically in

Fig.	 1 .3.

Discrete functions (data) can be viewed as sampled

continuous functions. That is, If the continuous function

is represented by f(x) then the discrete (or sampled)

version can be represented by III(x/t)f(x), where t is the

sampling interval. And as a consequence of sampling, the

transform of a discrete function is jtj-III(ts)*F(s), where

^^ u

	
'A 1

10

440

11

_7	 Y=o	 f	 13

Fig. 1.3 The replic!iting property of III(x)

. I

^h

12

F(e) in the transform of the continuous function. Thus wit

see that sampling in the function domain causes replication

in the transform domain. This can also be applied in the

reverse direction- sampling in the transform domain causes

replication in the function domain.

9.2 THE DISCRETE POURIFR TRANSFORM

The Fourier transform as previously stated operates on

continuous functions, whereas physical data are normally

discrete. Therefore one must shift gears and begin thinking

in terms of discrete functions. One method is to construct

discrete functions from continuous functions using the

sampling function, and then to use the continuous Fourier

transform to obtain a representation for the discrete

Fourier transform (known as the DFT).

Thus	 a	 discrete	 function can	 be	 represented	 by

(a III(x/t)f(x),	 where	 f(x)	 is	 a continuous function that

corresponds	 to	 the	 discrete	 function. Also since	 the

discrete	 function	 is	 taken	 to have finite extent one can

represent	 it	 as	 the	 continuous function times	 a	 rect

function.	 The rest function is often called a window since

when it multiplies a continuous function only that	 portion

of the function which falls under the rect is left non-zero.

Thus the discrete function can be represented by the product

! III(x/t)rsct((x-a)/c)f(x).	 The parameter	 t in	 the shah

, 	 .,.:.

{	 function determines the sampling interval, the parameter c

ff	 in the root function determines the width of the window, and

 a determines the position of the center of the root. From

^s r
the convolution theorem the transforms of a discrete function

can be viewed an Itcl •exp(-2?/iae)TII(ts)*sinc(ce)*F(s). Thus
f	 ,x

the DFT of a discrete function is not exactly equal to to

ji	 sampling of the Fourier transform of the analogous

continuous function. Due to the processes of sampling and

windowing the original function is altered somewhat and thus

its transform is affected also (Bracewell,1965).

Convolving the continuous Fourier transform with a sine

broadens it, and the convolution with the shah function

causes replication. If any portion of a function that is

replicated extends beyond the cutoff frequency then these

high frequencies mask as lower frequencies and aliasing

occurs. Since convolving with the sine broadens the

transform this contributes further to aliaoing. Convolution

with the sine also causes Gibbs oscillations about any rapid

change in the transform (Bracewell,1965).

The following is a derivation of the DFT using the

representation of discrete functions by continuous functions

multiplied with the shah function (Ioup,1978).

U.

Jitere^s ^u/tc^io R = p̂ W
r

p̂ cacy s .^. IP(*AX) 4(9- kax) ax
k• s

r
x s ^X

"^ 0

w

[ZE f(kAx) 9((X- 4%) dx s ^^^xs ,(•Y
_p

l C	 ^	 x
kt0	 .r

k•o

SwrN^^^Kq 0`s^

	

we Cr^TtGt(slrLMt ^c	 iAit3 V^

o (r4 s) =	 P(k4x) ax t -
,^i>,i (kaxl(r,Os^

14

/y4x

0

IS

The discrete Fourier transform of discrete data is a

eftmpled function. The transform is sampled to allow

representation an, and calculation using a digital computer.

Thus the data in the function domain are replicated. The

fast Fourier transform technique is just a quick method for

obtaining the DFT of a function. Therefore the fast Fourier

transform (FFT) and the DFT (both are the name transform-

one is just a faster approach to calculation for large data

sets) view the date, from the function domain as one period

of the replication with the period of replication equal to
	

ce

the width of the window.

As a result of this if the period of periodic input

data is incommensurate with that of the window, then it is

better to add zeroes to the end of one period of the

function till the periodicity of the function plus the

appended zeroes is commensurate with the window. Function

domain replication, implicit in the use of a sampled

transform, joins incomplete periods of the function together

causing discontinuities to be generated when the data is

incommensurate with the window. See Fig. 1.4.

Vol	 0011); 	 0e)
Mri.^...'^+1 w wWom

0	 16

x Fig. 1.4 Incommensurate function without and with zeroes

The discontinuities could introduce Gibbs oscillatione, in a

DFT representation. Theee will be discussed in more detail

In the chapter on noise and filters.

The cutoff frequency in the transform domain is equal

to one-half the inverse of the sampling interval in the

function domain (i.e., :1/(2t)). Thus to include higher

frequencies and reduce alinsing the sampling interval is

made as small as possible.

1.3 THE FAST FOURIER TRANSFORM

The FP 'T algorithm reduces the number of operations

performed in the calculation of the DFT of a sequence. The

algorithm was rediscovered by Cooley and Tukey in 1964

(Cochran et al). The significance of this algorithm is that

it reduces the time required to calculate the DFT of a

sequence. It takes N multiplications to compute the DFT in

the straightforward method, whereas the number of

multiplications performed using the FFT algorithm is

approximately 2Nlog.N. As N gets large the savings in

computation time becomes great. For one-dimensions

11.1024 is common; for this example the earrings amount to a

factor of one hundred reduction in the number of operations

required (Higgins,1976; Cochran et R10967)•

Basically the M algorithm can be und.erstooA by taking

an N point transform and splitting it into two N/2 point

transforms. Then these two transforms are each split in

half, and this process repents itself until there are N one

point transforms. There are other FFT algorithe that work

on sequences of N points (N not prime) for N not two raised

to an integral power, but because the reduction to N one

point transforms can not be completed they are not as

efficient. The FFT algorithm n.lso uses the periodicity of

the exponential function to eliminate redundant operations.

To understand this process let A(r) be the value of the

transform of X W at the Frequency r=ros, where

r =0,1,2,...N-1. N is the number of points in the sequence

X(k). Then from the DFT

A(r) =kEX(k)exp(-2'Xirk/N)
ilo

Then the data set is split into even and odd sequences, Y(k)

and Z(k) .

17

Y(k)= X(2k)	 k=0,1,?, ... ,(N/2)-1.

is

Z(k) nX(2k+1)	 k•0,1,2,9..,(N/2)-1.

And let

A(r)•	 [Y(k) exp(-41virk/N) + Z(k)exp(-2)'i(2k+1)r/N)]
•

• Y(k)exp(-4riirk/N) + exp(-2vir /!1)	 ,,Z(k)oxp(-41YIrk/N)
a

where rn 0,1,2,9..,N-1	
K•0

.1

If K(r) n ^Y(k)exp(-41'tYrk/N)
k=•

A/r-i

L(r)• X?.(k)sxp(-4Pirk/N)
kai

M(r)= exp(-2tir/N)

then

A(r)• K(r) + M(r)L(r)	 rn0,1,2,...,(N/2)-1.

Since K(r) and L(r) are periodic in the half interval

(0<:r<N/2), A(r) can be generated for the second half

using the values of K(r) and L (r) for the first half.

A(r+(N/2))= K(r) - M(r)L(r)

The minus sign comes from exp(-27/ir/N) as 0 <=r<N/2 being

ON

I a
	

it

opposite in sign to exp(-2711r/R) as X/2<•r<W, (i.e.,

oxp(-2vir/r) • -exp(-2$Fi(r+(X/2))/R))•	 Thus the R point

transform has Rona k two X/2 point transforms.

The M algorithm used (Riggins # 1976) assumes that the

first data yoint is the value of the function at the origin,

and that any values asoociated with negative x (abscissa)

are placed beyond the function value of the last positive x.

Be* yig. I.S. The data must either input to the M

program in this form or a portion of the program must be

devoted to rearranging the data into the format required by

the P'T subroutine. The program DERIV.fOR which performs a

one-dimensional FFT of a sequence does the latter. The

output of DERIV.fOR is in the same format as the input.

Though instead of rearranging the transform the input data

In multiplied by s phase factor (the input data can be

viewed as having been shifted to the center of the matrix).

"%e result is the same as if the rearrangement had been

performed (An4rews,1970).

When the number of data points is a power of two one

runs into difficulty in representing even functions that

have their origin sampled. Since the function is

represented by an even number of points the window can not

be symmetric about the origin. Thus it is best to have the

function go to zero at both ends within the width of the

window. If this is not possible then the asymmetry and the

replication in the function domain which results from having

ZO ,-ii

rr

at

V

44
0

40
a
a^
b
a^
0o

a
ma

0
44

to

4a
0

4a
a
a^
A
m
0o
I
a
ILO

ma

I 	 I

'^ 4

0
. Ff4)^

%W

j
V j'

j ^►

I a	 21

a sampled transform must be carefully considered.

In two dimensions the DFT is defined ass

F(m r n). 'T , X(J,k)exp(-2ffi((mj/M) + (nk/N)))

which can be rewritten ass

2[,fX(J,k)exp(-2*imj/M)]exp(-29'ink/N'/P(m,n) n
ka,r j +d

The term in the brackets is the transform of row (or column)

k. And the outer sum transforms the columns of the above

result. Thus a two-dimensional DFT can be obtained by first

performing a one-dimensional DFT on each row (this amounts

to M one-dimensional DFT operations) and then executing a

one dimensional DFT on each column of the matrix of

transformed rows (this amounts to N one-dimensional DFT

operations). This is equivalent to the result obtained when
a

columns and rows are interchanged in the above procedure.;,

The two-dimensional discrete Fourier transform is also

sampled. The input data are now a matrix of values, where

the first index corresponds to the y coordinate values and

the second to the x coordinate values.

_f

	

	 Since the one-dimensional FFT algorithm used in the

two-dimensional FFT is of the type discussed previously, the
F

two-dimensional FFT routine also expects data in a different

format than what might be expected. 	 In addition, the

0

22

transform in not arranged as expected. Instead of the

origin being located at or near the center of the transform

matrix (at point N/2 + 1 9 N/2 + 1) for an even matrix (where

N is the number of rows or columns in the matrix) the FFT

results in the origin being located at the top left corner

of the matrix with all the low frequencies in the corners

and the high frequencies in the center.	 The same idea

applies to data in the function domain. Soe Fig. 1.6.

The two- dimensional FFT program used, DERIV4.F4R,

expects data with the origin located at the center and

rearranges	 it into the format expected by	 the

two-dimensional FFT subroutine. The two-dimensional

transform is also rearranged such that the origin is at the

center by the phrase multiplication method mentioned

previously in the section on the one-dimensional FFT.

Since the number of points is normally even, and in our

case N where N is a power

row and a rightmost column

with the origin sampled

sampled the input data Rre

replication. The one-dim,

two-dimensions.

of two,

if data

sire use

viewed

ensional

there is a missing bottom

with even symmetry and

3. Since the transform is

as one period of the

discussion generalizes to

l

	

	 As in the one-dimensional case sampling in the function	 1

domain causes replication in the transform domain. Though

now the replication is in two dimensions with the top row of

one period adjacent to the bottom row of another period and

0

J	

I

i

23

the ease for the left and right most oolumns.

n

4^

^P3

{

i

this investigation on

of the programs operate on

of the results for two

to explaining the theory I

3 for simplicity, reverting

to illustrate an important I	 };

C

Since I have concentrated

two-dimensional functions most

two-dimensional data with most

dimensional data. When it comes

will use one-dimensional functions

to two-dimensional functions only

point or a veiled implication.

24

CHAPTER 2

TAKING THE DERIVATIVE

From the derivative theorem the transform of the

derivative of a function is just 211is times the transform of

the function to be differentiated.	 For higher order

derivatives the relationship is:	 C.' (f`v(x))= (2f/is)" F(s),

where cX(f(x))= F(s).

Thus the derivative theorem provides a method for

obtaining the derivative of continuous and discrete

functions without approximation other than any approximation

already made in treating a continuous function discretely.

This method, like any derivative technique, is sensitive to

noise, especially since there is no smoothing due to the

approximations of normally used numerical techniques. 	 But

if one is already using the PPT and the data are relatively

noise-free then this method is definitely a viable

alternative to derivative approximation methods. Also, if

the data are noisy very effective filters may be used as

part of the derivative process.

v

0

a
	

25
	 i c

The FORTRAN program DERIV4.FOR takes as input

two-dimensional data in the form of a two-dimensional square

matrix, with the maximum site of the matrix being 64 X 64.

Most of the time though, the size of the data matrix was 32

X 32, a, compromise between the number of points desired and

the length of time required to run the program. Using 32 X

32 matrices DERIV4•FOR ran in approximately one third of the

time compared to when 64 X 64 matrices were used.

DERIV4.FOR gives the user four choices of how the

transform will be manipulated. Once the transform is

obtained it is multiplied by 21Yiu, or by 2friv, or by -4/'4uv,

or it is untouched. Thus DERIV4.FOR can give the transform

of the x-derivative of the input data, the transform of the

y-derivative of the input data, the transform of the second

derivative with respect to x and y of the input data, or the

transform of the data. To obtain the transform of the

second derivative with respect to x or y DERIV4.FOR is just

run twice, with the output from the first run being the

input for the second run.

Also DERIV4.FOR performs either the minus-i or the

plus-i transform. The minus-i transform has a negative i in

the argument of the exponential whereas the plus-i transform

has a positive i in the argument of the exponential.

In multiplying by 2Viu or 21'iv, etc., the transform is

"centered" (as centered as can be using an even number of

rows and columns) about the origin. Thus in some cases the

A	
26

sign of the u or v is negative. That is, although any

replication could be used, we use the one centered about the

origin.

^.

	

	 The sampled functions that were used to cheek

DERIV4 . FOR were a two-dimensional gaussian and n cosine

wave. The gRussian used was exp((07-I)01 + (J-17)")/(4.0)].
Figure 1.7 is the gaussian and Fig. 1.8 is the x-derivative

of the gaussian. First DERIV4.FOR was run to obtain the

minus-i transform of the x-derivative of the gaussian. This

was then plus-i transformed to obtain the x-derivative of

theussian. The same sequence of ever to were followed to$	 4
(obtain the x-derivative of the cosine wave. 	 The relation
I.

used for the cosine wave was 1 + cos (2-it(J-17)/ 16) where the

addition of one was to produce non-negative data. Figures

1.9 and 1.10 are respectively plots of the cosine wave and

its derivative.

a+

F1

CHAPTER 3

NOISE AND FILTERS

3.1 NOISE

Since noise in signals is very common, whether' it be

background noise, instrument noise, or another unwanted

signal, developing the method of taking the derivative using

the derivative theorem of Fourier transform analysis would

not be complete without including noisy data. The type of

noise chosen was ordinant dependent Gaussian additive noise,

i.e., noise with a Gaussian probability density function.

This choice was made since the noise associated with most

imaging sensors can be modeled as a Gaussian distributed

random process.

GNOI°E.FOR is the FORTRAN program that adds noise to

the input data. The output is noise added onto the data.

If f(y) is the probability density function then f(y)

e-YY«i'z 0 Now f(y) is the probability density

function of the noise. To determine the amplitude of the

noise at a particular point the relation between the

amplitude and probability density function must be

determined.

27

Zt

If f
s

 (Pyl ^*OCA

4o(4 lK C ^^^,a _ _ 4

y ^K;^fwr►

Since f(y) is evenly distributed, f(y) can be represented by

a. uniformly distributed random number.	 Thus, if P is a

random number between zero and one, y

To describe ordinant dependent noise &M^ is not a

constant but is equal to a scale factor times the ordinant

of the data point in question (A =SF•A(I,J), where A(I,J)

is the value of the function associated with the point

((J-17),(17-I))). The scale factor allows the root mean

square value (RMS) of the noise to be varied.

The amplitude of the noise is y. This is added to the

ordinant (or the value of the function associated with the

point) by GNOISB.FOR. Additive noise was used since it is

common and the simplest to deal with mathematically.

The synthetic date, sequences to which noise was added

were the gaussian and cosine wave used before. The scale

factors used were 0.00001 and 0.0001. The following plots

show the data with noise and then its derivative. For the

0

29

Gaussian the derivative is real, thus the imaginary part

given an ides of the round-off error. For example # the

magnitude of the maximum and minimum values of the imaginary

part of the x-derivative of the Gaussian data are 42.349 and

-42.349 reppectively for the scale factor equal to 0.00001.

For the maximum and minimum values associated with the other

x-derivatives of the Gaussian data and the cosine wave data

with the associated scale factors of the noise; see Table

1.

TABLE I

d/dx of maximum minimum scale factor Rel/Im

Gauss. 42.3 -	 42 . 5 .00001 Im

Gauss. 12492.0 -12655.3 .00001 Re

Gauss. 124.5 -	 124 . 5 .0001 Im

Gauss. 12019.8 -13681.5 .0001 Re

cosine 274.2 -	 274.2 .00001 Im

cosine 7599.0 - 7439.5 .00001 Re

cosine 772.4 -	 772.4 .0001 Im

cosine 11306.4 - 9536.4 .0001 Re

The RMS is the root mean square of the noise amplitude.

That is

aril' &4 e u E

r

p a t ^l

%t
1 \ nib,RMS=	 --_NA	

r N^ = number of rOnes

The SNR is the signal to noise ratio, which is

30
	 r^

SNRn

	

	 PEAK SIGMAL VAWZ

no of M0182

Each filter operated on data with the note@ scale

factor equal to 0.0001 and 0 . 00001. Also the STIR and RMS

for the Gaussian and cosine waves with noise scale factors

of 0.0001 and 0.00001 are listed in Table II.

TABLE II

function	 scale factor	 SNR	 RMS

Gauss.	 .00001	 814.3	 .123 E-2

Gauss.	 .0001	 285.6	 .350 E-2

cosine	 .00001	 188.1	 .106 E-1

cosine	 .0001	 66.7	 .300 E-1

3.2 FILTERING

The aim of any filtering is to reduce the unwanted

effects in data and enhance the wanted ones. We wish to

minimize the effects of the noise on the derivative of the

data. We accomplish this by filtering in the transform

domain, because if any of the characteristics of the noise

in the transform domain are known then it is simpler to

design the filter in the transform domain. Most often the

only characteristics of the noise that are known are those

which are simply given in the transform (frequency) domain.

31

In the transform domain the transform of the derivative

,t of the function is Me ?(a), where F(s) !s the transform of

the function itself. The multiplication by s amplifies high

frequency noise, therefore any filter should decrease this

effect. One method would be to out off any frequencies

above a certain value. This is analogous to multiplying the

transform of the derivative with a two-dimensional root

function, a two-dimensional circular function, or some other

geometric shaped plateau function. The drawback with this

type of filtering is the introduction of Gibbs oscillations

due to the abrupt windowing in the frequency domain by the

filter. To reduce any Gibbs oscillations a tall can be

added to the plateau filter. though this also increases the

effect of high frequency noise on the transform.

Gibbs oscillations are the oscillations that result

around rapid changes in the function domain when the

function is represented by a transform that has been

truncated (multiplied by a rect function in the simplest

case) (Bracewe11 , 1965). A truncated transform translates in

the function domain to convolving the function with a sinc

function, if the region of a discontinuity in the time

domain	 in to be examined.	 The discontinuity can be

approximated with the sgn function(sgn(x)= 1, x>O; 	 _ -1,

x<0).	 Now	 sgn(x)*sinc (x) 	 2/^inc(t)dt 	, where
OT

2fsinc(t)dt = (2/1r)Si(vrx) (Si is the sine integral). This

function oscillates about -1 for large negative x values.

As the origin is approached the amplitude of the

oscillations increases, pisses though sego at x=0, shoots up

t	 to a maximum of 1.18 and then oscillates about 1 as x

increases, with the oscillations dying out as x increases.

The amplitude of the oscillations about -1 and 1 remains the

same it the sine function is compressed by a factor of R and

strengthened by a factor of M (to preserve unit area) and

only the frequency of the oscillations is altered. It It

increased. Thus changing H does not change the amount of

overshoot which is approximately nine per cent of the amount

of the discontinuity.

Thus to reduce Gibbs oscillations a linear tail was

added to the rect function to form a flat-topped pyramid

function. This flat-topped pyramid filter function, the

circular filter function and the root filter function were

used on noisy gaussisn and cosine wave functions.

Dealing first with the x derivative of the Gaussian

data, the worst filters (worst in terms of affecting the

presence of the noise) were the circular filter with the

radius, R, equal to four and the sect filter with the length

of a side equal to nine (=2M+1, where M=4), with the

circular f?.iter being worse. (Because the derivative of the

Gaussian should be reel, even with noise, the non-zero

imaginary parts reflect round-off error in the

calculations).

r'.1
33	 A

For that circular filter with Rs4, the oscillations in

the dorivat vo were quite large and were not dying down

within the period. While the oscillations in the derivative

from the reot filter with Ms4 were still rather large, they

were dyin4 off sore , no x and y varied from zero.

With Rs8 the oscillations in the result using the

circular filter are less and show some circular symmetry.

The result with the riot filter with M nM has oscillations

which are loss than fur Ms4, and die off more rapidly for

values of x and y oft axis. Also the oscillations are

greatest in the x direction. This is the direction in which

the derivative is taken, and the derivative process tends to

amplify the effects of any type of noise.

The pyramid filter adds a linear ramp to the rest

function that extends from the edge of replication (or edge

of the square containing all the data- not including the

extra row or column) to the edge of the rest. The

derivatives using the pyramid filter show no pereeptable

oscillations.

For the cosine wave data the rest and circular filters

will work the best since the transform of a cosine wave is

the even pair situated on the a axis with their separation

determined by the period of the cosine. The transform of

the cosine wave chosen for this work is non-zero only close

to the nr^gin. Therefore the rest and circular filters can

cutoff much of the transform (and thus much of the noise)

.

i

e

3	 ^ 8

S

but still have only a small effect on the

(actually the even pair convolved with a lino because of the

windowing in the function domain).

This was seen in the results of the circular, reet, and

pyramid filters. The pyramid filter was the worst since it

let in more noise. And as expected as R or M decreased in

the circular, rect or pyramid filters the results showed

less effects of noise.

The cosine wave is representative of functions whose

spectrum is centered closely about the origin and such

drastic measures (M=4,R=4) would eliminate important

information in the transform domain for functions which are

not so concentrated.	 Thus, since the Gaussian had a

spectrum which spread out over the entire period

(two-dimensional) in the transform domain, the pyramid

filter was better as it allowed more information of the

transform through.

1

}

I

^E

r

u

33

SUMMARY

A study of derivative filters using the discrete Fourier

transform has been performed. As has been discussed a

filter multiplies the transform of the data to be filtered

with some function. Thus the derivative filter multiplies

the transform of the data with 21fts, where s is the

independent variable in the transform domain. This result

is the derivative theorem of Fourier transform analysis.

But because the derivative process is sensitive to

noise, the filter must be modified to reduce the noise

effects. This noise filtering can be done before, after, or

combined with	 the derivative filtering since the

multiplication is commutative. 	 In this case the noise

filtering was done after the derivative filters.

The input data were a two-dimensional cosine wave and a

two-dimensional Gaussian wave. The input data were entirely

two- dimensional, though in the theoretical portions of this

thesis reference was made to one-dimensional functions for

simplicity. And since the data were two-dimensional all the

computer programs were written to operate on two-dimensional

data.

.The GaussiRn ordinant dependent noise was added to the

input data by the program GNOISE.FOR. This program uses the

random number generator in FORTRAN to determine the size of

the noise.	 i

^T

36	 I
s

DERIV4.FOR was used to take the P'FT of the input. The

filter program used was FIM FOR.

After a not of noisy data was filtered by DERIM POR

and FILT.FOR the resultant output was transformed back to

the function domain in order to examine the derivative of

the noisy data after filter Iran.

Of the three filters, the one employing a tail (the

function sloped down to zero rather than abruptly cutting

off) worked the best on data having a transform not

concentrated about the origin. Gibbs oscillations in the

function domain are reduced by such filters and the

trade-off in letting more noise through to allow the

transform to go gradually to zero is definitely beneficial.

I

For data with transform information centered about the

origin, the filters that out off abruptly worked better than

the filter that employed a tail. This is due to being able

to get rid of the high frequency noise without destroying

any important transform information. Thus the appropriate

filter depends on the type of data. Since the information

in the transform domain is generally not concentrated about

the origin, filter functions that are to be used for common

data need tails.

Future work in this area might be to use different

tails such as a Gaussian tail for the circular filter or a

cosine wave tail for the rect filter. Also the filter could

f^

•a

i

Iri
M

be tested using another type

Gaussian ordinant dependent.

the noise could be ordinant

than a certain value, while

certain value the noise could

or depend on some other pare®

of noise, rather than

Along these lines of

dependent for ordina,n,

for ordinants leas

be independent of the

ster.

37

additive

thought

to larger

than a

ordinant

38

Perspective Plots

The following are plots of the final results. 	 SP is the

scale factor used to determine the	 amplitude of the

noise. Cir, Pyr, and Rect 	 are abbreviations for the

circular, flat-topped,	 and	 square filter functions,

respectively.

1.7 Gaussian input data

1.8 x-derivative of Gaussian data

1.9 Cosine wave input data

1.10 x-derivative of Cosine data

1.11 x-derivative of Gauss. SP=1.OE-4, no filter

1.12 x-derivative of Gauss. SF=1.OE-3, no filter

1.13 x-derivative of Gauss. SF=1.OE-4, Pyr, M=4

1.14 x-derivative of Gauss. SF=1.OE-4 9 Pyr, M=4 imag

1.15 x-derivative of Gauss. SF=1.OE-3, Pyr, M=4

1.16 x-derivative of Gauss. SP=1.OE-4, Pyr, M=8

1.17 x-derivative of Gauss. SP=1.OE-3, Pyr, M=8

1.18 x-derivative of Gauss. SF=1.OE-4 9 Cir, R=4

1.19 x-derivative of Gauss. SF=1.OE-3, Cir, R=4

1.20 x-derivative of Gauss. SF=1.0E-4 9 Cir, R=8

1.21 x-derivative of Gauss. SF=1.OE-3 9 Cir, R=8

1.22 x-derivative of Gauss. SP-O.OE-4, Rect M=4

1.23 x-derivative of Gauss. SF=1.OE-3, Rect M=4

1.24 x-derivative of Gauss. S.F=1.OE-4 9 Rect M=8

1.25 x-derivative of Gauss. SF=1.OE-3, Rect M=8

A

39

1.26 x-darivativo of cosine IP=I.OB-4. Rect
Mae

1.27 x-derivative of cosine SP=I.OB-3t Reat
Mae

1.28 x-derivative of cosine SPal.OB-4, Ciro Rw8

1.29 x-derivative of cosine SPuI.OE-3, Ciro RuS

1.30 x-derivative of cosine SPu1-OB-4. Ciro R=4

1.31 x-derivative of cosine SPol.OB-3, Ciro Rw4

1.32 x-derivative of cosine SPaI.OZ-4. Pyr,
Mae

i x 1.33 x-derivative of cosine SPuI.OR-3, Pyr, Moe

1.34 x-derivative of cosine SP=I.OE-4, Pyr, M=4

1.35 x-derivative of cosine SPul-OH-3, Pyr, M=4

1.36 x-derivative of cosine SP=I.OE-4, no filter

1.37 x-derivative of cosine SP=I.OE-3, no filter

L0

4

rn
.1,

w

40

41

O^
r-A

t^

T

i

42

rn

w

oe

V
Ir

4

t

0

.4

w

I
44

Ilia!	 Il^li,^l l

r,

w

T

r
4^

w~--=^--	 - -----

`	 \
\

\

\̀ 	 \^
\	 ^

\
^

.	 \

`	 .

\
\
\

`

`

`
\̀

`
^`

^`
`

`

\	 \
\	

`
\

\	 \

\	 `
`	 .

`	 \
\
\	 `

	

\	 \

	

\	 .

	

^	 .
`

\

\\	 \
\	 `

^
^
\	 \

'
''^

'
'

m
^

,
^

,
^

^

^m

''
/

M

lk 0

•low	 (9 1

f.

4.

1

Ell

47

f

R

In'

r-1

r1

U'

C^.

n

c	
^I

48

,,	
^ I^IIIII^,^

I II I 	ly^

I ''I

rn
w

^4

t -Ww
. 477

49

`^	 1

1	 1

1	 ,
^	 4

1

e^

^o

w

t	 !

e ^^

F

1	 '^

1

1	 ^

tr^

w

50

L	 ^^

w

/l

51

co

Ik

r	 .^

a)

rn
44

-.0

52
iF

" 0

t^
.14

ri.

53

54

T

OR'r •

OF FC o

1	 ^

11

1

N

r--1

.14

44

,

1

1	 '^

1	 ^	
,

I	 ^

`	
1

1

n i

N
N

w

55

r

1'

56

r

. n

k ,

1

1 \.\

i

M
N

r--I

CT

4.

r.)7
i r

11 0

^t

1

•^	 1

1

1

f
i

N
r/

04

(D 'I

ri d

^ ^ 4r

59

1

1

1	 ^

l

1

1	 ^

1

r

1	 ,^

1	 `,

1

N
^-i

1

r

rN
ri

Cn
• ►i
(ta

60

61

1
11

1

^11

00
N
r-4

CT

w

rnN
r-^

t;	 '
.14

^I

,I

4^

62

r
POR

AW

63

1	 ^

1

I !. /: / / I

11 1

0
r^

w

/ ^li• ^ j

% r

r
64

P

1
1	 ^,

1

I

/
/	 1

,1	 t,

M

r-1

tDr,
w

1 n

4 .

0

^1 -

G5

© n

54

r

r	 / r

66

t

M.

M
M

r--1

. ro+.rrr -- ..wIvmlplpA

1 /^ ;	 ,,^,^/	
ol

/*

^'
0/1

Itr

rn

rJ4

07

-^ E

^	 M

1	 ^t	
[y+

1

i

V

68

69

OF. Pout

A//

t^

ri

LL4

t

^	 t

1

1	 ^.

L	 `S

!I

r

(y

70

r
r1

w

4.

1W

Appendix

Following is the code for the programs discussed in

this thesis. The order of the execution of these programs

is: step one- input the data. to GNO18E.FOR and choose the

scale factor of the noise; step two- input the noisy data

to DERIV4.FOR and rhoose the minus-i transform and the x,

second xy, or y 4erivative; step three- filter the output

of DERIV4.FOR using F?LT.FOR with one of the three filter

functions after choosing its size; step four- plus-i

transform this result to obtnin

derivative of the original data

f	 ^

r^

S

1
71

The data tiles used	 by	 DERIV4 . FOR 9 	GNOI SE.FOR,

{
	 FILT.FOR, are all unformatted binary random accens filea3.

'	 The size of the two dimensional input qnd output arrays

necessitated the use of such fileF. 	 Disc I/O time was

Y

	

	 reduced drastically and thus execution time was greatly cut.

The record length of these data files is equal to the number

of data points.

DERIV4.FOR iH the FORTRAN program that performs the

transformation of the x-derivative of the data., second

xy-derivative of the data, y-derivative of the date., or the

transform of the data.. The run-time parameters are:

1. The size of the matrices that hold the input and output

`	 data- the limit is 64 (for 64 X 64 matrices). Must input an

integer that is an integral power of two.

e

2. The operation to be performed. Enter 1 for the

transform of x-derivative of the input, 2 for the transform

of the second xy-derivative of the input, 3 for the

transform of the ,y-derivative of the input, 4 for the

transform of the input.

' ^' _ 1

3. The type of data- real or coup?ex. 	 Enter 1 for real

data, a 2 for complex iata.

4. The sign of the transform- minus-i or plus-i. 	 Enter -1

1

73

for the minus-i transform, t for the plus-i trannfurm.

5. The output file unit n 1imbRre. Enter the unit number for

the real part data file first, then the unit number for the

imaginary part datii file.

6. The input file unit number(s). Enter the unit number for

the real part. If the data is complex follow with the unit

number for the imaginary part.

';.

I

tih

"5

DERIV4.FOR

DIMENSION A1(64964),B1(64964),DATA1(128)

DIMENSION Ci(64964)

TYPE 556

556	 FORMAT(' ONTER SIZE OF MATRIX, LIMIT IS 64 ' ► $)

ACCEPT 557,IZ1

557	 PORMAT(I)

TYPE 558

558	 PORMAT(' ENTER D/DU, D2/DUDV, D/DV, OR F(X) ',$)

ACCEPT 557,17,2

TYPE 559

5;,,	 FORMAT(' ENTER REALM OR COMPLEX(2) DATA TYPE ',$)

ACCEPT 55791%3

TYPE 560

560	 FORMAT(' ENTER SIGN OF TRANSFORM (1, -1) ',$)

ACCEPT 557,IZ5

IZ4:2*IZ1

563	 FORMAT(2I)

CALL DFRIV(I%1, IZ2,IZ3,IZ4,IZ5,A1,BI,DATAI,C1)

STOP

END

SUBROUTINE DERIV(INI,IK,ILI,IN3,ISNI,A,B,DATA,C1)

DIMENSION) A(IN1,IN1),DATA(IN3),B(IN1,IN1)

DIMENSION C1(IN1,IN1)

LOGICAL FLAG,FLAG2

48	 FORMAT(2I)

IN2-IN1/2

74

m

4°x,.4.

i

7S

{'i
I n

IL2=IN1*IN1

TYPE 562

562 FORMAT('	 ENTER OUTPUT FILE N S(RE,IM)	 ',$)

ACGLPT 489IF1,IF2

i
FLAa2=.TRUF.

PLAG=.TRUH.

14 FORMAT (I)

GO TO (220030) IL1

220 TYPE 565

565 FORMAT('	 ENTER PILE N ',t)

t_ ACCEPT 14 9 IFC

CALL DEFINE FILE (IFC,IL2,LOC3,0,0,0)

666 READ	 (IFC#1) A

((667
t,

CALL REFRMT (IN1,IN2,A,C1)

00 TO 333
(

230 TYPE 566

566 FORMAT('	 ENTER FILE # O(RE,IM)',$)

' ACCEPT 48 1 IFA, IFB

CALL DEFINE FILE (IFA,IL2,LOC1,0,0,0)

CALL DEFINE FTLE (IFB,IL2,LOC2 , 0,0,0)

READ (IPAN1) A

READ (IPB#I) B
{

CALL REFRMT (IN1,IN2,A,C1)

CALL REPRMT (IN19TN2,B,C1)

333 DO	 1	 I=1,IN1

k
6	 .^

 DO 3	 I1^_i,IN3

3 DATA(t1)=0

11 IF (FLAG) GOTO 100

DO	 110 K=1,IN192

A(I,K)=-A(I,K)

110 CONTINUE

GOTO	 111

100 DO	 101	 K=2,IN1,2

A(I,K)=-A(I,K)

ICI CONTINUE

111 FLAG=.NOT..FLAG

DO 4 J=1,IN1

4 DATA(2*J-1)=A(I,J)

IF (ILI.EQ.1) GO TO 240

IF (FLAG2) GOTO 200

DO 210 K=1,IN1,2

B(I,K)=-B(I,K)

210 CONTINUE

GOTO 211

200 DO 201	 K=2,IN1,2

B(I,K)=-B(I,K)

201 CONTINUE

211 FLAG2=.NOT.FLAG2

DO	 241	 J'=1 , IN1

241 DATA(2*J)=B(I,J)

240 CALL RRKFFT(INI,ISNI,IN3,DATA)

DO 5 J=1,IN1

A(I,J)=DATA(2*J-1)

5 B(I,J)=DATA(2*J)

7

12

2

CONTINUE

DO 60 I2=1 , IN1-,1

DO 60 J =12+19IN1

TMP=A(I29J)

A(I2,J)=A(J,I2)

A(J,I2)=TMP

CONTINUE

DO 61 I3 = 1,IN1-1

DO 61 J=13+1,IN1

TMP-B(I3,J)

B(I3,J)=B(J9I3)

B(J,13)=TMP

CONTINUE

DO 2 I=1,IN1

DO 6 J=1 , T.N1

DATA(2*J-1)=A(I,J)

DATA(2*J)=B(I,J)

CALL MRKPPT(INI,ISNI,IN39DATA)

DO 7 J=1,IN1

A(I,J)=DATA(2*J-1)

B(I,J)=DATA(2*J)

CONTINUE

CONTINUE

DO 70 I2=1,IN;-1

DO 70 J=I2+1,TN1

TMP=A(I2,J)

A(12,J)=A(J,I2)

I

60

61

6

r

77
	

u	 ^^

i

a

' u,,_J

A(J,12)=TMP

70 CONTINUE

DO 71	 13=1,IN1-1

DO 71	 J=13+19IN1

TMPxB(13,J)

B(I3,J)=B(JvIl)

B(J,I3)=TMP

71 CONTINUE

GO TO(49,399599777)IK

49 DO 41	 I=29IN2+1

DO 41	 J= IN2+19 IN1

A(I,J)=A(I,J)*6.28318531*(J-(IN2+1))

41 B(I,J)=B(I,J)*6.28318531*(J-(IN2+1))

DO 42 I=29IN2+1

DO 42 J=2,IN2

A(I,J)= A(I,J) *6.28318531*(J-(IN2+1))

42 B(I,J)=B(19J)*6.28318531*(J-(IN2+1))

DO 43 I=IN2+2,IN1

DO 43 J=29IN2+1

A(I,J)=A(I,J)*6.28311531*(J-(IN2+1))

43 B(I,J)=B(I,J)*6.28318531*(J-(IN2+1))

DO 44 I=IN2+2,IN1

DO 44 J=IN2+2,IN1

A(19J)=A(I,J)*6.28318531*(J-(IN2+1))

44 B(I,J)=B(I,J)*6.28318531*(J-(IN2+1))

A(1,1)=A(1,1)*(-(IN2+1))*1.57079633

B(191)=B(1,1)*(-(IN2+1))*1.570'79633

J

78

79

DO 68 J=2,IN1

A(1,J)-A(1,J)*(J-(IN2*1))*3.14159265

68	 B(19J)=B(1,J)*(J-(IN2+1))*3.14159265

DO 69 I=2,IN1

A(I,1)=A(I,1)*3.14159265*(-(IN2+1))

69	 B(I,1)-B(I,1)*3.14159265*(-(IN2+1))

GO TO 777

39	 DO 31 I=2,IN2+1

DO 31 J=IN2+1,IN1

A(:,J)-A(I,J)*6.28318531*

! (J-(IN2+1))*(ABS(I-(IN2+'i)))

31	 B(I,J)=B(19J)*6.28318531*(ABS(I-(IN2+1)))

DO 32 I=29IN2+1

DO 32 J=2,IN2

A(I,J)=A(I,J)*6.28318531*

! (J-(IN2+1))*(ABS(I-(IN2+1)))

32	 B(I,J)=B(I,J)*6.28318531

! *(J-(IN2+1))*(ABS(I-(IN2+1)))

DO 33 I=IN2+2,IN1

DO 33 J=2,IN2+1

A(I,J)=A(I,J)*6.28118531*(J-(IN2+1))*((IN2+1)-I)

33	 B(I,J)=B(I,J)*6.28318531*(J-(IN241))*((IN2+1)-I)

DO 34 I=IN2+2,IN1

DO 34 J=IN2+2,IN1

A(I,J)=A(I,J) *6.?.8318531 *(,J-(IN2+1))*((IN2+1)-I)

34

	

	 B(I,J)=B(I,J)*6.28313531*(J-(IN2+1))*((IN2+1)-I)

DO 67 J=2,INf

•I

^r.

Naw
1
1

80

A(19J)=A(1,J) *3.14159265*(IN2+1)*(J- (IN2+1))

67	 b(19J)=B(19J) *3.14159265*(IN2+1)*(J- (IN2+1))

DO 66 I=2,IN1

A(I,1)=A(I,1)*3.14159265*(I- (IN2+1))*(IN2+1)

66 B(I,1) =B(I,1) *3.14159265*(I- (IN2+1))*(IN2+1)

A(191)=A(1,1) *(IN2+1)*(-(IN2+1))*1.57079633

B(191)=B(1,1)*(IN2+1)*(-(IN2+1))*1.57079633

GO TO 777

59	 DO 51 I=2,IN2+1

DO 51 J=IN2*1,IN1

A(I,J)=A(I,J) *6.28318531*(ABS(I-(IN2+1)))

51	 B(I,J)=B(I,J) *6.28318531*(ABS(I-(IN2+1)))

DO 52 I=2,IN2+1

DO 52 J=2,IN2

A(19J)=A(I,J) *6.28318531 *ABS(I-(IN2+1))

52	 B(I,J)=B(I,J) *6.23318531*(ABS(I-(IN2+1)))

DO 53 I=IN2+2,IN1

DO 53 J=2,IN ?+1

A(I,J)=A(I,,T) *6.28318531*((IN2+1)-I)

53	 B(I,J)=B(I,J)*6.2R3i8531*((IN2+1)-I)

DO 54 I=IN2+2,IN1

DO 54 J= IN2+2,IN1

A(I,J)=A(I,J) *6.28313531*((IN2+1)-I)

54	 B(I,J)=B(I,J)*6.28319531*((IN2+1)-I)

A(1,1)=A(1,1) *(IN2+1)*1.57079633

B(1,1)=B(1,1)*(IN2+1)*1.57079633

DO 65 J=2,IN1

81

{	 '1

"I

A(19J)=A(19J)*3.14159265*((IN2+1))

65	 B(1,J)=B(1,J)*3.14159265*(IN2+1)

DO 64 I=2,IN1

A(I,1)=A(I,1)*3.14159625*(I - (IN24•1))

64	 B(I,1)=B(I,1) *3.14159625*(I-(IN2+1))

C	 THE REAL PART OF THE TRANSFORM IS IN 21

C	 THE IMAG. PART OF THE TRANSFORM IS 1N 22

777	 CALL DEFINE FILE(IF1,IL2,LOC4,O,O,O)

CALL DEFINE FILE(IF2,IL2,L00590,090)

WRITE (IF2#1) A

WRITI (IF1#1) B

700	 RETUAN

ENE,

9UBROUTINE MFKFFT(NN,ISIGK,IQI,DATA)

DIMENSION DATA(IQ1)

Xw 2-NN

C

C

C

C

C	 FAST FOURIER TRANSFORM ROUTINE

C

C

J=1

DO 5 I=1 ,Nv2

IF(I-J)1,2,2

1	 TEMPR=DATA(J)

A

1

82

2

3

4

5

6

7

TEMPI-DATA(J+1)

DATA(J)=DATA(I)

DATA(J+1)=DATA(I+1)

DATA(I)=TEMPR

DATA(I+1)=TEMPT

M=N/2

IF(J-M)59594

J=J-M

M=M/2

IF(M-2)59393

J=J+M

MMAX=2

IF(MIIAX-•N)7,10910

ISTEP=2*MMAX

THETA=6.2831853/FLOAT(ISIGN*MMAX)

SINTH=SIN(THFTA/2)

WSTPR=-2*SINTH*SINTH

WSTPI=SIN(THETA)

WR=1

WI=O

DO 9 M=1,MMAX,2

DO 8 I=M,N,ISTRP

J=I+MMAX

TEMPR=WR*DATA(J)-WI*DATA(J+1)

TEMPI=WR*DATA(J+1)+WI*DATA(J)

DATA(J)=DATA(I)-TEMPR

DATA(J+1)=DATA(I+1)-TEMPI

xI

r,

10	 RETURN

END

SUBROUTINE REPRMT(IS,IS2,A,C)

DIMENSION C(IS2,IS2),A(IS,IS)

39 PORMAT(I)

21 DO 60 I=1,IS2

DO 60 J=1,IS2

60 C(I,J)-A(I,J)

DO 61	 I=IS2+1 , IS

DO 61	 J=IS2+1 , IS

A(I-IS2,J-IS2)=A(I,J)

61 A(I,J)=C(I-IS2,J-IS2)

DO 62 I=1,IS2

DO 62 J=1,IS2

62 C(I,J)=A(I,J+I9,2)

DO 63 I=1 , IS2

DO 63 J=1,IS2

A(I,J+IS2)=A(I+IS2,J)

63 A(I+IS29J)=C(I,J)

83

DATA(I)=DATA(I)+TEMPR

A	 DATA(I+1)sDATA(I+1)+TEMPI

TEM PR=WR

WR=WR*WSTPR-WI*WSTPI+WR

9
	

WI=WI*WSTPR+TEMPR*WSTPI +W I

MMAX=ISTRP

GO TO 6

k

it

84

I

85

FILT.FOR is the FORTRAN filter program. The .,hoice of

filter functions is ideal square and circular low-pads

filter iunitions, and a flat-topped filter function. The

extent of the filter function can be varied by changing the

value of M for the square and flat-topped filter function

and R (radius) for the circular filter function. The

run-time parameters are:

1. The size of the square matrices- same conditions hold as

in DrRIV4.FOR.

2. The input and output files. The data type is assumed to

be complex, therefore a total of four logical unit numbers

must be entered. The input unit numbers must be first, and

for each pair of unit numbers the real unit nur:ber is first.

3. The filter function desired. Enter 1 for the square

filter function, 2 for the circular filter function, 3 for

the flat-topped pyramid filter function.

4. The size or extent of the filter function- limit i9

one-half the size of the matrices used by the program to

hold data.

f

f

e

86

FiLT.FOR

DIMENSION A1(64064),B1(64964)

TYPE 10

10
	

FORMAT(' ENTER SIZE OF MATRIX ',$)

ACCEPT 119ISZ1

II
	

FORMAT(I)

ISZ2=ISZ 1 /2+1

CALL PILTR(Al,BloISZ1,ISZ2)

STOP

END

SUBROUTINE FILTR (A,E,INI,IORIG)

DIMENSION A(IN1,IN1) , B(INI,IN1)

IL2nIN1*IN1

401
	

FORMAT(I)

402
	

FORMAT(2I)

TYPE 460

460
	

FORMAT(' ENTER INFILES , OUTFILES (RE,IM) ',$)

ACCEPT 461 , IF1,IF2,IF3,IF4

461
	

FORMAT(4I)

CALL DEFINE FILE(IF1,IL2,L0C1,0,0,0)

CALL DEFINE FILE (IF2,IL2,LOC2,0,0,0)

CALL DEFINE FILE (IF3,IL2,LOC3 , 0,0,0)

CALL DEFINE FILF(IF4,I12,LOC4 ,O, ,^ O)

READ (IF1#1) A

READ (IF2#1) B

TYPE 410

410	 FORMAT(' IS FILTER 9Q0),CIRC (2),CUT PYRAM (3) ',$)

89

ACCLPT 4019ISHAPE

GO TO (420,430,450) ISHAPE

420 TYPE 421

421 FORMAT('	 ENTER M(SIZEn2MM+1)	 ',S)

ACCEPT 401,IMM2

GO TO 440

430 TYPE 431

431 FORMAT('	 ENTER RAD	 ',$)

ACCEPT 401,IRAD

440 IF (ISHAPE.EQ.1) IMID=IMM2

IF (ISHAPE.EQ.2) IMID=IRAD

DO 441	 I=1,IORIG-IMID-1

DO 441	 J=1,IN1

A(I,J)=0.0

B(I,J)=0.0

441 CONTINUE

DO 442 I=IORIG+IMID+I,INI

DO 442 J=I,INI

A(I,J)=0.0

B(ItJ)=0.0

442 CONTINUE

DO 443 I=IORIG-IMID,IORIG+IMID

DO 443 J=1,IORIG-IMID-1

A(I,J)=0.0

B(I,J)=0.0

443 CONTINUE

DO 444 I=IORIG-IMID,IORIG+IMID

r

r	}

y

444

140

C

C

88is

DO Z44 J nIORIG+IMID+I,IN1

A(IoJ) nO.O

B(I,J) n0.0

CONTINUE

IF (ISHAFF.EQ.1) GO TO 490

K1=IN1/2+;AMID+2

J3=(IN1/2—IMID)*2

K2=IN1/2—IMID+1

J4=J3+4*IMID+2

K3=K1-1

J5=J3+1

J6=J4/2

RIGN=IORIG

DO 140 I2=IORIG—IMID#IORIG+IMID

DO 140 I3=IORIG—IMID,IORIG+IMID

L1=I2—INi/2-1
	 a

L2=(13+1)/2—INI/2-1

XR=(12—RIGN)**2

YR=(13—RIGN)**2

R=IMID

IF (SQRT(XR+YR).LE.R) GOTO 140

A(I2tI3)=0.0

B(12tT3)=0.0

CONTINUE.

GO TO 490

CIRCLE FILTER IS FINISHED

450

451

TYPt 451

FORMAT(' ENTER MID(PLATB -- - ----

ACCEPT 401,IMID

IRMPn (IORIO-1)-(IMID+1)

XDELn1.0

DO 22 I n 39 IORIG-IMID-1

DO 23 J=I,IN1-(I -2)

A(I,J)=(XDEL/IRMP)*A(I,J)

B(I,J W XDEL/IRMP)*B(I,J)

CONTINUE

XDEL=XDBL+1.0

CONTINUE

XDBL=1.0

K=0

DO 24 I=IN1-1,IORIG+IMID4

DO 25 J=3+K,IN1-1-K

A(19J)=(XDEL/IRMP)*A(I,J)

B(I,J)=(XDEL/IRMP)*B(I,J)

CONTINUE

XDBL=XDEL+1.0

K=K+1

CONTINUE

XDEL=1.0

DO 26 J=3,IORIG-IMID-1

DO 27 I=J+1,IN1-J+1

A(I,J)=(XDBL /IRMP)*A(I,J)

B(I,J)=(XDEL/IRMP)*B(I,J)

23

22

25

24

as

.;r ty..
1

1

90

27
	

CONTINUE

XDEL=XDEL+1.0

26 CONTINUE

XDEL=1.0

K=0

DO 28 J=IN1-I,IORIG+IMID+1,-1

DO 29 I=4+K,IN1-2-K

A(I,J)=(XDEL/IRMP) *A(I,J)

B(I,J) =(XDEL/IRMP) *B(I,J)

29
	

CONTINUE

K=K+1

XDEL=XDEL+1.0

28
	

CONTINUE

DO 30 J=1,IN1

A(IN1,J)=0.0

B(IN1,J)=0.0

30
	

CONTINUE

DO 31 I=1,iN1

A(19IN1)=0.0

B(I,IN1)=0.0

31
	

CONTINUE

DO 20 I=1,2

DO 20 J=1,IN1

A(I,J)=0.0

B(I,J)=0.0

20
	

CONTINUE

DO 21 J=1,2

DO 21 I=1,IN1

A(I,J) nO.O

B(ItJ)=0.0

21	 CONTINUE

490	 WRITE(IF3#1) A

WRITE(IF4#1) B

500	 RETURN

END

92

GNOISE.FOR is the FORTRAN program that adds Gaussian

ordinant dependent noise to the input data. The input data

is not destroyed. The run-tine parameters are:

1. The size of the matrices- the same conditions hold as for

DERIV4•FOR.

2. The scale factor of the noise.

3. The type of data- real or complex. Enter 1 for. real, 2

for complex.

4. The input logical unit number(s), the unit number(s) that

is (are) to contain signal plus noise, the unit number(s)

that is (are) to contain the noise only. If the data is

complex two unit numbers are required for each case, with

the real unit number being the first in all cases.

a

>t'i

FORMAT(G)

CALL NOIS(A,B,SF,ISZ)

STOP

END

SUBROUTINE NOIS (A1,B1,SFI,ISZ1)

DIMENSION A1(ISZI9ISZ1),B1(ISZI,ISZ1)

REAL SPI

IL2=ISZ1*ISZ1

KOUNT=0

TYPE 100

FORMAT(' REAL(1) OR COMPLEX(2) DATA TYPE

ACCEPT 110,IK1

FORMAT(2I)

FORMAT(I)

FORMAT(2G)

FORMAT(G)

FORMAT(3I)

13

100

111

110

112

113

114

I

.^l

94

115	 FORMAT(6I)

GO TO 0 20,130) IK1

120	 TYPE 121

121	 FORMAT(' ENTER INFILE,S+N,N FIVE ',$)

ACCEPT 1149IF1 , IF91,IFN1

CALL DEFINE FILE (IF1,IL2,LOC1,0,0,0)

CALL DEFINE FILE(IFSI,IL2,LOC2,0,0,0)

CALL DEFINE FILE(IFNI,IL2,LOC3,0,0,0)

READ(IF1N1) Al

GO TO 200

130	 TYPE 131

131	 FORMAT(' ENTER INPUT RE,iM,(S+N)

RE,IM,(N) RE,IM',$)

ACCEPT 115,IF1,IF2,IFSl,IFS2,IFNI,IFN2

CALL DEFINE FILE(IF1,IL2,L0C1,0,0,0)

CALL DEFINE FILE(IF2,IL2,LOC2,0,0,0)

CALL DEFINE FILE(IFSl,IL2,LOC3,0,0,0)

CALL DEFINE FILE(IFS2,IL2,LOC4,OtO,0)

CALL DEFINE FILE(IFNI,IL2,G005,0,0,0)

CALL DEFINE. FILE(IFN2,IL2,LOC6,0,0,0)

READ (IF1#1) Al

200	 RMS=0.0

KOUNT=KOUNT+1

DO 300 I=1,IS71

DO 300 J=1,ISZ1

K=^

P=RAN(5)

s=RAN(10)

IF (A1(I,J).LT.1.OE-20) XN=2. *P*A1(I,J)

IF (A1(I,J).LT.1.OE-20) GO TO 250

XN=ABS(A1(I,J))*

(-ALOG(P*SQRT(6.28318*SF1*ABS(A1(I,J)))))

XN=SQRT(2.0*9F1 *XN)

250	 IF (S.GT.0.5) XN=-XN

TEMP=A1(I,J)

A1(I,J)-A1(I,J)+XN

B1(I,S)=XN

IF (A1(I,J).LT.O.0) A1(I,J)=O.O

RMS=(A1(I,J)-TEMP)**2+RMS

300	 CONTINUE

RMS=SQRT(RMS/IL2)

TYPE 113,RMS

IF (KOUNT .EQ. 2) GOTO 500

WRITE (IFS1#1) Al

WRITE (IFNI#1) Al

IF (IK1 .EQ. 1) GOTO 400

IF (KOUNT .EQ. 1) READ (IF2#1) Al

IF (KOUNT .EQ. 1) GOTO 200

500

	

	 WRITE (IFS2#1) Al

WRITE (IFN2# 41) 141

400	 RETURN

`x

96

Bibliography

Andrews, H.C. (1970), Comdr Techniques in Image

Processing, Academic Press, New York, New York.

Bi l► ens, William C.	 (1976), "Resolution Enhancement for

Non-fixed Linear Systems," (Unpublished Master's TheRts,

Department of Physics, University of New Orleans).

Bracewell, Ron(1965), The Fourier	 Transfo rm 	 and	 its

Applications, McGraw Hill, New York, New York.

Cochran, William T., et al (1967), "What is the Fast Fourier

Transform?," Proceedings of the IEEE, vol. 55, no. 10, pp.

1664-1674 (October).

Higgins, R.J.	 (1976), "Fast	 Fourier	 Transform:	 An
R

introduction with some minicomputer experiments," American

Journal of Physics, vol. 44, no. 8, pp. 766,773 (August).

Loup, George E, private communications (1978).

t	 ..

Kathleen Simons Acomb Whitehorn was born in

on Bettie Ann Bi and

Cyril Lloyd Acomb. She graduated from Walters Preparatory

High School in May 1974 and the following fall entered the

University of New Orleans. On August 6, 1977 she me^ried

Mark Alan Whitehorn, also a graduate of the University of

New Orleans in physics. She received her Bachelor of

Science degree in physics with honors in December of 1977

from the University of New Orleans. The following spring

she accepted a graduate assistantship from the Physics

Department of the University of New Orleans. Her last two

semesters she worked with the Louisiana State University Eye	 t

Center.

	1986001358.pdf
	0065A02.tif
	0065A03.tif
	0065A04.tif
	0065A05.tif
	0065A06.tif
	0065A07.tif
	0065A08.tif
	0065A09.tif
	0065A10.tif
	0065A11.tif
	0065A12.tif
	0065A13.tif
	0065A14.tif
	0065B01.tif
	0065B02.tif
	0065B03.tif
	0065B04.jpg
	0065B05.tif
	0065B06.jpg
	0065B07.tif
	0065B08.tif
	0065B09.tif
	0065B10.tif
	0065B11.tif
	0065B12.tif
	0065B13.tif
	0065B14.tif
	0065C01.tif
	0065C02.tif
	0065C03.tif
	0065C04.tif
	0065C05.tif
	0065C06.tif
	0065C07.tif
	0065C08.tif
	0065C09.tif
	0065C10.tif
	0065C11.tif
	0065C12.tif
	0065C13.tif
	0065C14.tif
	0065D01.tif
	0065D02.tif
	0065D03.tif
	0065D04.tif
	0065D05.tif
	0065D06.tif
	0065D07.jpg
	0065D08.jpg
	0065D09.jpg
	0065D10.jpg
	0065D11.jpg
	0065D12.jpg
	0065D13.jpg
	0065D14.jpg
	0065E01.jpg
	0065E02.jpg
	0065E03.jpg
	0065E04.jpg
	0065E05.jpg
	0065E06.jpg
	0065E07.jpg
	0065E08.jpg
	0065E09.jpg
	0065E10.jpg
	0065E11.jpg
	0065E12.jpg
	0065E13.jpg
	0065E14.jpg
	0065F01.jpg
	0065F02.jpg
	0065F03.jpg
	0065F04.jpg
	0065F05.jpg
	0065F06.jpg
	0065F07.jpg
	0065F08.jpg
	0065F09.jpg
	0065F10.tif
	0065F11.tif
	0065F12.tif
	0065F13.tif
	0065F14.tif
	0065G01.tif
	0065G02.tif
	0065G03.tif
	0065G04.tif
	0065G05.tif
	0065G06.tif
	0065G07.tif
	0065G08.tif
	0065G09.tif
	0065G10.tif
	0065G11.tif
	0065G12.tif
	0065G13.tif
	0065G14.tif
	0066A01.tif
	0066A02.tif
	0066A03.tif
	0066A04.tif
	0066A05.tif
	0066A06.tif
	0066A07.tif
	0066A08.tif

