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COORDINATE AXES, LOCATION OF ORIGIN, AND REDUNDANCY

FOR THE ONE AND TWO DIMENSIONAL DISCRETE FOURIER TRANSFORM

FOR COMPLEX AND REAL DATA

George E. IGup and Juliette W. Ioup
Department of Physics and

Geophysical Research Laboratory
University of New Orleans, New Orleans, LA 70148

For continuous Fourier transforms, the shift theorem will

k	 f
`l	 locate the origin anywhere. If

r	 9Kf(X) }	 -	 F(s)	 ,

then

9Kf(x-a)}	 exp(-i2was) F(s)

for'forward transforms. For inverse transforms,

7-- 1 {F (s-a) ), = exp (+i2was) f(x)

The	 discrete	 Fourier	 transform	 (DFT)	 has	 special

considerations:	 (1) there are only a finite number , of sample

points, and ( 2) there is replication in bath domains.

COMPLEX ONE-DIMENSIONAL DATA

Consider a function domain at-ray ax, where x gives the

coordinate location of each of the complex elements of ax. The

transform of ax is given by the complex array A,). 	 Here j

specifies the freq uericy number- defined by j&s = s. For- &x = 1,

As is numerically equal to i/N, with N the number of points in

ax. Its units are the reciprocal units of x. In general
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As = 1 / t NAx )

Data arrays often have no particular origin associated with

their elements. Those that do are commonly one of two forms:

Form 0a

a0 al -12 ... aN-'E aN-1

which hAs N points, and

Form i a

a-M a-M+ 1 .. . a-a a-1 a0 al a2 • . • aM--1 aM

which has (2M+1) points. The standard convention for the DFT

is

N-1
AJ = E ak exp (-i :'irk,/N)

k=0

where k gives the Position of ak as measured from the left of

the array (with the first element having k = 0) as stared by

existing fast Fourier transform (FFT) programs. The form of

the exponent is such that k = 0 is assumed to be the label of

the origin element. 	 Data in Form 0a can be	 directly

transformed, but for data in Form la, something must be done to

have the transform correctly represent the data with their

given origin. As an alternative to having different FF'f

algorithms for different data origins, the data may be modified

to use existing codes.

The required modification of the data is a rearrangement

as follows:

Form 3as

a,) a 1 ap- own am-1 ahi a-M+ 1 ..@ a-^2 a-1

for N - ;2M+i, or
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Form 4a:

ae al a2 . . . am-1 aml -M a -M+. i ... a—a a-.1

for N - 2M, with aM, _M = aM + a-M.	 N is the nurtiber of poin

to be transformed.

Beca+.tse the DFT corresponds to replicated data, the abo

modifications describe a shift of the data to the left by

elements, air of the origin to the right by M elements for

even, or by M+1 for N ;add. 	 If N is even, another form

needed to correspond to Form la. The first element of Form

is replaced by aM, -M and the last element drr_ipped to give Fa

ea.

Form 2a:

aM,-M a-M+1 ... a-e a-1 ao a1 ae ... aM-i

Another approach consists of taking the DFT of the

unmodified data directly.	 The DFT definition is then used in

its standard form and the DFT is corrected, rather than

rearranging the data before the DFT is calculated. The DFT of

the unshifted data can be changed into that of the shifted data

by at phase multiplication determined by the Shift Theorem

(Bracewell, 1579).	 Since the origin is assumed to be at the

left -most element for the standard DFT .algorithms, the ax array

must be shifted to the left so that ae will fall or, the origin.

For the forward DFT (-i transform)~ the phase mtt.ltp,lier

correspoy'vding to this shift will be exp(+i;BwsMpx). The

multiplication of the DFT of data in Farm la or 2a by this

factor will result in a DFT corresponding to an origin

correctly located at ae.

The transform of sampled data is replicated, which means
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that	 the DFT is periodically repeated.	 The period	 is	 I /.dx

which	 is often assumed to be 1.	 Since a periodic function im

completely	 specified	 by	 one period	 (called	 an	 " is l and"	 by ^^

Bracewell,	 or principal	 interval,	 or base band), 	 the discrete

transform	 is given as one period of the periodic result. 	 The

base island of the transform,	 centered on the origin,	 is	 the

part	 of	 the	 transform	 genercA I I y	 used
	

f Or	 concept ua 1

man i pu I at i ons.	 Working with this island has the -advantage that

any frequency-dependent filtering will be simplified since	 the

values	 (frequency	 values)	 are simply associated	 with	 the

elements of the transform array:

Form IAi

A-M	 A_M+j	 A-2	 A-1	 RO	 Al	 Re ...	 AM-1	 AM
S= -MAz	 (-M+ 1) As... -2&s -As	 0	 4s	 L'--'As. . .	 ( M- I) As M.&S

for N odd.	 Unfortunately,	 the convention for the DFT is 	 not

thi above arrangementg	 but is
Form 3A:

AO	 P I	 Re	 AM- 1 	 AM	 A_M+J	 A-2	 A-I
s= a	 As	 24s...	 (M- I)As Mas (-M+I)As...-2&s 	 -As

for N a 2M+1 9 or

Form 4Ai

AO	 Ai	 Re ...	 AM-1	 AM,-M	 A-M+1	 A _"D.	A - I
S= 0	 As	 2&s...	 (M- I)As -M&s	 (_M+1)As..._2&s -as 4

for	 N	 2M,	 with AM j _M E AM + A-M.	 This arrangement may	 be

thought	 of as consisting of the origin and right-hand half 	 of

*the base island and the left-hand half of the first replication

to the right.	 When filtering the transform in this form,	 care

must	 be	 taken	 to	 associate the correct s	 value	 with	 each

element.	 As	 an alternative to working with this DFT 	 result,
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the elements of thie DFT may be rearranged into Form 1A for N

odd or into

Form 2A:

AMI --M A-M+ 1 ... A-2 A-1 AO Al A2 ... AM-1

For N even.	 This may be accomplished by rearranging the DFT

elements after they are obtained, or by phase multiplying the

data before the transfo rm is taken. Again the shift theorem is

used	 to determine the phase mult ipl icat i,:in. 	 The phase

multiplication foo each ax will be exp (--i2T,^M (As) x) if the -i

transform is used for the DFT.

In the transform domain, the phase multiplication needed

to correct foe , Form 2a with N even (M = N/2i is

ei2vMs6x = ei2r(N/2)J6s6x = ei2w(N 32)J6x /(N6x)

This becomes

eiwj - (-1) J

care must be taken that J measure the displacement in terms of

positive or negative position number of the elements from t_hg IL

origin of the transform. For (-1) J , positive or negative makes

no difference, but for other cases it will be important. The

phase multiplier for N odd also simplifies, although not as

much.	 This phase multiplication corrects for a data origin

given by Form 2a.

For the function domain, the phase multiplication needed

to have the transform be inn Form 2A 9 N evert, is

e-i27r(Mps) k&x = e-i2W(N/2)(1 /NOx)kpx = e-iwk = 6-i)k

Again k measures the positive or negative displacement relative

tohhai x	 n. The simplification for N odd is similar but

^I
i

s	 ^

1
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not as great.	 This phase mmitipiication causes the transform

to have Form EA rather than Form 4A.

For Form 4A or 2A, for filtering purposes the element

AM+ -M is associated with s ra +M4s and s - -M4s: since AM + -M w AM

+ A-M. If the filter, is W(s) + then the filtered result at this
a

location shot.,, ld be

H (M,6s ).AM. _m,	 +	 H (-MAI)

if the ax elements ,Are real + since the transllot,ro is Wermitian.

( con, i.Ig at a even or symmetric, Bracewe l 1, 1978) . For complex

ax, no rule can he given. Setting, the filtered result to zero

or to the result which holds for real data are two possible

approaches.

TWO-DIMENSIONAL DATA

Consider Form 0a. Notice that the agi l e element is in the

upper left corner, and subscripts increase down and to thePP	 +	 P

right. This arrangement is chosen for two reasons; first+ this

is the usual way matrix elements are subscripted, and second, 	 l

this is the usual order in which image data are stored in the

computer.	 The subscripts can be used to denote the x and y

axes of the two-dimensional transform.	 There, are two choices:

ax,y the x axis is vertically down and the y axis horizontal

to the right, with the z axis out of the paper; or ay,x : the x

axis horizontal to the right and the y axis vertically down,
•

with the z-axis into the paper.	 The latter convention is

chosen here because the x and y axes are generailly taken to be

horizontal and vertical +	respectively,, in two-dimensional
r

r•
1
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coordinate systems. Note that the limits on x and ,y akre

0 4  4N2-i ot- -M2 f x IMe and 0 4 y IN1-1 cot, -M1 Sy 4M 1.

Forms 0a or 34 are assumed by standard FFT algorithrols. Inn the

notation -of Bracewell the exponential in the two-dimensional

Fourier transform is given by exp(-2wi (xu+yY) ). If x is chosen

to be hori ontal^ than the 4 axis is horizo ,-intal i and if y is

chosen tc, be vertical } then the v axis is vertical.

Form Oat

f	 a0, o a0, 1	 309 2 ...	 ash, NE-1
I

I	 a l, 0
i

a i, 1	 alga • • •	 a l, N2° 1 1

a29 0 a2, 1	 a2, 2 .. •	 a2, N2-1 I

II
I

I	 aN1 -2, 0 aNi -2, 1 aNi-2,

.

.
2 - - •	 aNi-29 N2-1

I

I
I

L aNi-19 0 aNi-19 1	 aNl-19 2 - - -	 aNi-1, N2-1 J

Farm ia:
f

Ml, M2 odd

I' a-Mi;-M2I a-M1,-M2+1	 --- a-Mi, -1 	 a-M1,0I a-M1,1	 ••• a-Mi,M2-1 a-M1,M2

I	 I a-Ml+i, --M2
EI

a-Mi+i, - , M2+1• •. a-Mi+i, -1 a-M1+1, 0 a-Mi + i, 1- .. a-M1+1, M2- 1 a -M1+1, M2

I

III I

I
1V

-I
1	 a-1 9 -Me a-1, -M2+1	 .. •

I
a-19-1	 a-1, o

I
a-i, 1	 . • • a-1, M2-1 a-1+ M2

I -a0. -Me----a0, -M2+ i ----- a0, -1------a0, 0-" -
I

-a0, i ----- a0, M2- i -----a0, M2
I
I	 ai, -M2 ai, -M2+i	 • • • al, -1	 al, 0

i
a1, I.	 • - • a1, M2-1 a1, Ma

I	 -

-

II I

I

I •

-

I	 aMi -19-M2 aml-19-Ma+1	 ...
I

aMi-i,-1	 aMi-190
I

aMl-i,i	 --- aMi-1,M2-1 aMl-1,M2

L aMl,-M2 aMi,-M2+1	 ••. aMl,-1	 aM1,0 aMirl	 --- aMi,M2-1 am1,M2

7
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Form ?a:	 Mi, me even

P atmi, ime
I

a im 19 -M2+1	 • • . atMi, -1 I	 atMi, 0
i

a tMiI 1 aim It Me-1

i	 s-Mi+1, tM2
1

a-Mi+1, -M2+1	 •• a-M1+i, ,-i I	 a-M1 +11 0
I

a-Mi+i, i••• a-M1+1, Me-1

I	 .
.

III I

I

IV

•

i

4-19 ime
I

a-1 t 0
---

a-1, 1	 • • •
---	 ..

a-1, M2-i
---	 - -

I	 ae l tM2 ael -ME+1	 .. , a0, --i
I
I	 a09 0
I

a0r i	 ... a0, M;-1
i
1	 a i, tM2 a1, -M2+1	 ... at -i I	 alto

1
a1, i	 ... ai, M2-1

I
Iz I i

.
T

r

aMi--i, tM2 aMI -1, -Me+1	 • . • aMi -1, -1
I
I	 aMi-19 0 aM1-1, 1	 • • • aMi -1, M2-1

Form Ua Mi, M2 odd

f a0, 0 a0, 1	 .. « a0, M2-i a0l M2	 I
I

a0, -M2 a0, -Me+1 , .. a@$ -1
I
I al t o ai,1	 ••• ai,Me-i ai,M2	 I

I
a ir-M2 ai,-M2+i	 ••• air-1

1
1	 .	 ,
1

I I
1

Ii
•
•

I
1	 aMi -19 0 aMi-19 1	 • • • aMi-i, M2-i

I
aMi-1, M2	 I

I
aMi-i -M2 aMi-ii -M2+ 1. • • aMi-19 -1

I	 aMi, 0
- -

aMi, 1	 • • •
----

aMi, M2-1
---	 ---

aMl, M2	 I

--	 -- I
aMi, -M2
---	 --

aMi, -M2+1	 • • •
---	 ---

aMi, -1

f
I	 a-M1, a a-M1, i ••• a-M1, M2-1

I
a-M1, M2	 I

1
a-M1, -Mr a-Mi, -M2+i	 •• • a-Mi, -1

1a-M1+ire a-M1+l,l ... a-Mi+i,M2-i a-Mi+1,M2 )
I

a-Mi+i,-M2 a-Ml+i,-M2+i...a-Ml+ir-1
I

IV ) III

I
L a-i,e a-191	 ..w a-1 9 M2-i a-1,M2	 I a-11-M2 a-19-M2+1	 ... a-11-1

R

8



1,

Form 4a:	 M1i Me even

'^/..} 0 a	 9 1	 r • • Ao s M2-1 I	 a0l iMG. a09-M2+1	 r r . 72)9 -•1

A 190 Alt  r.. a1+M2-1 I alI+ma
f

a1,-M;R+1 al,y-1
r

.
X I

I
1I

•
.

ami-19 0 aml-19 1	 . • • aM1-11 M2--1
f
I	 AMi-19 tM2

-	 --
aM -1, -M2+1

---	 ---	 ---
MMi--if -1

---

a iM19 0 aimlr 1	 • • • atMi9 M2- i
i
i	 a tMi9 tM2
f

a*Ml9 -Ma+l	 • • • atMi.r -1

a-M1+19 0 a-M1+1+ 1• • P. a-M1+19 M2-1 I	 a-Mi+11 tM2
I

+a -Mi+lr -M?+I	 r • . a-M1+19 -1

r

r

IV I

(

YI.
•

•

a- i i e a-19 1. a,-19 M2-1
I
I	 a-19 ime a-19 --M	 +1	 , .. a-i V -1

With ak9 tME - ak9 MP. + ak,.. ,M2 and atM19 l = aMi9 I + a-M1+ i

and a tM 19 tM2 - aM i 9 M2 + a-M I t M2 'F aM 19 -t42 + a -M 1 9 -M2 -

The quadrant numbers are shown as Roman numerals for

Forma i.a, 2a, 3a, and 4a. The quadrant numbering system

depends upon the choice of the x-y coordinate system discusved

above.	 Elements ae, i and ai, 0 are rQ the axes.	 They are

between quadrants and are not actually in them. The rearranged

sections from Form la to Form 3a are not all of the same size;

they do riot have the serve numbers of columns and rows. Note

that for N even, Form 2a, the origin is not at the geometric

carter of the matrix, bue. is ,lust to the right of and ,rust'

below the center.

one may rearrange Form la into Form 3a or Form 2a into

Form 4a and then take the standard DFT. The result will

represent the,dat a with the correct origin of Form la or Form

2a. Alternatively, one may t aloe the transform of form la as it

t

3

9
4,

6.__	
1,.	
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is for N1 9 Ne odd (or- Farm 2a for Ni, N2 even ), and then phase

multiply the transform to have it correctly represent the

ori g in as I n Form 1 4 or Form 2a.

In one dimension, the data are rwplicated and aliasing

may Occur.	 Two-dimensional data are also replicated and

slrni latw al iamirio nv^oblmrns raav be arese nt.

Form 1q, has " b" narking its center, and "m" marks the center of

Form 3a.

The phase multiplication in the transform domain to get

the transform of data with the origin in the center will be

exp (+2WiuM2Am) emp (+2WivM1tly)

where the uv origin is in the center or the upper left corner

of the matrim, depending on whether the transform has been

rearranged or not. Since for N1 and N2 even, M2 = N2/29 M1 -

Na/2 9 and since Au - 1/ (N2Ax), and w = 1/(Nl&y), then the

exponentials above became

exp(+2wi(N2&x/2)(s/Ne&x)) expt+2wi(NlAy/2)( r/N1&y))

= exp(iws) emp(ivr) = ( -1)s ( -1) r	(-i)r+s

10
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i
where r and a should bee measured from the origin.

The normal way to think of the transform is Form 1A,

which may be obtained from the diagram for Form is by

substituting capital letter A for small a.	 However, the

standard OFT calculated is Form 3A for N odd and Form 4A for N

►eveen.

For Form 4A, the do level, Pogo, is in the upper left

cornea, and lower freq ►aenciees,	 i. e. , those of smal l l u l , I v I

values, area found in the corners of the matrix. 	 The highest
r

f,	 frequencies are in the center.

i
do level	 I

I
Form 4A	

^
_----_-_ high __

I
I //Tow frequencies
iat corners

Therefora q for two-dimensional low-pass filters, three  center

region most be blocked out. Note that the filter covers a two-
.

dimensional area.

If the transform origin is to be in the "center",

rearrange the transfo^m after taking it, or phase multiply the

data before taking the fsrransform

exp(-awimeaamOx) exp(-'2_WiM1QvnAy)

exp(-2vi N2m&x/(2N2tlx)) exp(-ewiN1nAy/(Q2Ni oy) )

( - i) m+n	 for N1 9 N$ even	 .

The transform will be in Form 1A for N1 9 Ne odd, or Form 2A for

N1 9 Ne even, for either method.

With currently defined FFT computer algorithms, the

initial data are assumed to be in Form Oa or Form 3a for N1 9 Ne

odd and Form Oa or Form 4a for N1, Ne even.	 The distinction

li
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between Forms 0a and 3a or 4a does not matter if the data are

never considered As giving the "frequency content" of the

forward transform.

ONE-DIMENSIONAL REAL DATA

Whether calculating the transform of two real arrays with

one complex transform, or the transform of one N-point real

,array with one (N/2)-point complex transform (Brigham, 1374)9

or the ordinary complex transform for real data, computer

storage requirements can be red4ced by making use of the

symmetries of the transform for real data. The function domain

forms do not change. The transform domain farms can be

modified as follows:

Farm lAs

A-M A-M+1 ... A-2 A-1 Ae

for N odd, with ((N•-0/2) + 1 complex terms. 	 It seems that

there are ECM-1)12) + 13 N + i independent pieces of dAta,

which is one too many; but Am is real, so that there are

actually only N independent values as there should be. To fill

in the rest of the terms, make use of the Hermitian prepertys

Ali	 A,.•;	 ,,

Form At

Ae Al A2 ... AM-1 AM

for N odd.	 There are N numbers represented as in Form IA.

Again use the Hermitian property to fill in the missing termse

A-i	 Ai

12
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Form 4A:

AO Al AE ... AM-1 AM,-M

For N even, where both A0 and AM,.-M are real. (This again

insures that there are 2C(N/2) + 13 -• 2 = N independent pieces

of i nformat ion. >

Form 2A:

AMr-M A-M+1 ... A-2 A-1 AO

For real data one may choose to work only with positive

frequencies, Form 3A or Form 4A.

CALCULATION OF THE TWO-DIMENSIONAL DFT

Recall that the definition of the two-dimensional DFT is

N1-1 N,-_,-i
Ars	 E	 E ak1 exp(- ii2wC(rk/N1)+(s1/N2)3}

k=0 100

N1-1	 NE-1
=	 E exp(-i27rrk/N1) E aki amp(-i2ws //N2)

k=0	 1=0

where k varies. vertically and 1 varies horizontally. The inner

summation over 1 is the sum over the k th row for each k. The

rule implied in this expression is than row transforms are

taken first and then the column transforms. Let

N2-1
Oks = E akl exp(-i2ws1/N2)

1=0

Then the summation over k becomes

N1-1
E olks exp(-i2wrk/Ni)
k-0	

f

This is a sum over the st h column for each s. The rule implied

by this expression is that the column transform is next taken.

Therefore the complete rule for the two-dimensijanal DFT is to

13
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take all the row transforms and then all the ccIumn transforms

of this result.	 Bookkeeping may be a problem! 	 Furthermore,

the column transforms may alternatively be taken first and then

the row transforms of that result.

MATRIX APPROACH

Following the approach of Brigham (1974) 9 the Fourier

transform CA3 of original data Cal may be written as

	

/ AO 1	 / We we We WO 1 / ae 1
( Al 1 = ( We W 1 We W3 1 ( a 	 1

A	 1	 1 WO W2 W4 W6 1( ae 1

	

A3 /	 1 We W3 W6 W9 / 1 a3 /	 ,

with W = exp(i `7r/N). This matrix equation describes the

transformation of one column vector (ai) into anr'"her column

vector ( Ai).	 The CW3 matrix performs the column transform by

pre-multiplying the column vector (ai). If the CW3 matrix

premultiplies a matrix Ca3, it will transform each column of

that matrix. The corresponding transform operator matrix which

would give a row transform is CWT 3 9 which post -multiplies a row

vector ( ai) T = (a@ , a1,a2 , a3).	 If CWT3 post-multiplies the

matrix Ca3, it transforms every row of Ca3. 	 Therefore for a

two-dimensional matrix transformation of the matrix Ca3,

CW3 Ca3 CWT 3	 CA3	 .

This shows that either row transforms or column transforms

could be calculated first, because matrix multiplicaticn is

associative=

(CW3 Ca3) CWT3 = CW3 (Ca3 CWT])	 CA3

For a square matrix, the dimensions of CWT3 are the same

I

1

I

14



as those for CW3 and CWT 7 = CW].	 If the matrix Cal is not

square, say NI rows and Na 001 1AMn3, then the pre-multiplying

matrix CW] will be N1 by N1 and the post -rivAltiplyirig matrix

CWT3 will be N2 by N2-

The following diagram illustrates the two equivalent

paths which may be used to obtain the two-dimensional Fourier

transform.

Flinct ion Ca]

	

	 4 row transform 4	 La] CWT]
(post-rjtult iply CWT])

i
	

i

column transform	 column transform
(pre-rault iply CW]) 	 (prel-multiply CW] )

CW] Ca]	 -I'	 row transform	 .fir 2-D transform CW7 Ca] CWT]
(post-multiply CWT])

TWO-DIMENSIONAL REAL DATA

For real data, the transform of two rows at a time can be

obtained using one complex transform (Brigham, 1974). Whether

or not this is done, we begin by assuming the data are a matrix

of size N1 by N2 arranged in Form 0a:

r a0,a	 ...	 a0+N2-1	 I

I	 I
L aNl-190 •••	 aNi-19N2-1	 •

Let ai j represent the matrix elements for the intermediate step

after talking row transforms of the original matrix Ca].	 Then	 M

the one-dimensional row transforms of the real rows of Ca]

produce

Y

r
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r Ot0, 0	 Ot0, 1 • ..	 Ot@v (N2/2^) -1	 009 N2/ 2 >	 OtO, (N2/2) -1 • • •	 Ot0, 1

i	 >
^	 (	 I
I	 >	 ^	 ^	 r
L OtN1-1, 0 OtNI-1, 1	 OtNi --i, (N2/2) -1 ON1- I, N2/2 < ONi-1, (N;;/2)-1 • • • OtNi-19 1 J

The	 red s.tndant part is the right side with the complex

conjugates.	 It is written in terfols of the nor-redundant part.

The column just to the left of the redundant part, column Na/29

is called the boundary element col umn.	 Using M1	 N1/2 and M2

= N2/2, the 0 matrix may be relabeled as

r Ot0, 0	 • ..	 Ot0, Me- i	 Ot0, tM2	 <	 Ot0, Me-1	 • , .	 OtO, 1
I	 >
I	 <

I	 >	 •
I	 <

I 01MI-19 0• • •	 OtM1-1, M2-1 OtMi -19 :km2 (	OtMi-IV M2-1 • • •	 OtMi-19 1
I	 >

I OttM19 0 • • •	 OtvI, M2-1	 Otii1, tM2>	 OttM1, M2-1 • • • 	 OttMI, 1

I *I-M1+1, 0 • • • Ot-M1+1, M2-1 Ot-M1+1, V2>	 Ot-M1+1, M2-1 • • • Qt-M1+1, 1I	 (.

	

>	 •

L Qt-1, 0	 ...	 Ot-1, M2-1	 at- 19 #M2 >	 Ot-19 me- i	 ... Ot-19 1

Elements of the first column and the boundary element column

are real because the original data were real.,

Next the column transforms are taken to obtain

16



Form 4A:

r A0, 0	 A0 1	 a 0	 A0r M2-1 	A0, tMe	 ( Ate, Me-1	 A0, 1

I	 A-i, M2-1	 A-i, i

1	 I	 ^	 II	 .

I AM1-1, 0 AM1-19 1 ... AMi-19 M2-1 AM1-19 :mO A-M1+1, M;:-1 ... A -M1+19 1

I AtM1, 0 A :tM1, 1 • •	 AtMI, M2-1 AtM1r ve > A tM1r M2-1 . • •	 ptM1, 1
I

AMi-i, Ma-1	 AM1-11 1
1	 •

I	 IV	 >	 IIZ

L A-1 9 0 A-i, 1 ...	 A-.1, M2-1	 A-1, tM	 ( Air Ma-1	 Air 1

The first colurntn and the boundary element coIurns are both

Hermit ian. 	The redundant part is written in terms of the

complex conjugates of the non-redundant part. (Note that the

low-frequency edges of the quadrants are not at the center but

at the far corners.) The first subscript of the redundant part

of a row is usually not the same as that of the non-redundant

part. The explanation is given as follows.	 In one dimension

the continuous Fourier transform of f*(x) is F*(-s), and in two

dimensions the discrete Fourier transform of At*Rk is A*-.I, k•

Except for the first row, quadrant II (III) of the CA7

matrix above carves from conjugating and rearranging part of

quadrant IV M. This symmetry can be seen readily in

photographs of two-dimensional optical transforms, for example,

to Andrews (1970) 9 pages 34, 359 429 107-109 9 165-167. In

these photographs, the logarithms of the Fourier transforms are

shcwn in order to decrease the dynamic range of the transform

and allow the small values to be seen With the limited dynamic

h	 17



range of an image display.

Recall that either the row trAncforrn r or the column

transforms can be taken first for the two-dime-si gnal Fourier

transform.	 If the column transforms are obtained first, two

real rows (i n cont rast to col umns) are obtained. When nex', the

row transforms are taken, two Hermitian rows (in contrast to

columns) are obtained. The final transform matrix CA3 is the

same as that obtained by taking r o w transforms first and then

column transforms, and it may therefore be written as

Hermitian	 Hermitian
co 1 umn	 col umn

i	 i
Hermitian 4 r (real)	 I(rea0 >

row	 I	 <	 I
i	 I	 >	 l

^>
Hermitian -1 I (rea l) 	 (rea1) <	 t

row	 I	 I	 >	 I
I	 (	 I
I	 I	 >	 I

L	 <	 J

redundant

The real elements are indicated. Although the right "half" is

shown to be redundant, the bottom "half" may be taken as the

redundant part, as would be natural after taking column

transforms.

Form 4A can be rearranged into Form 2A, either by

function domain phase multiplication as previously defined, or

equivalently by transform domain rearrangement. T;^anuform

domain rearrangement gives

is



Forrai 2A:

A tM1 r tMa	 I AtMI, M2-1	 • • • A tMI, 1 AtMI, o < A tMI, 1	 . • •	 AtMII me- i
I )
I <
I >
I

A-1, tM2	 I A 1, M;:--1	 ... All 1 A-1, I'a ( A-1, 1	 ...	 A-1, M-
f * * )

A0, tM2	 I A0, M2- i	 ... Rev i A0, o < poll	 ...	 Ao, M2-1
>

I
I * * >

AMl -19 tM2 I A-Mi+i,M2-1	 • • • A-M1+1, 1 AMi-I, e ( AM1 -19 1	 • • •	 AmI-1, M2-1

redundant

The dashed line is the redundant line from Form 4A. Form 2A

should be rewritten in terms of known valuesq so that the

redundant part is given in terms of the non-redundant part.

Farm 2Aa

r Avit tM2

I
I
1
1
I A-1, tM2
i
I A0, ve

I
I

I
LAM 1-i,tM2

A tMi, -M2+1	 • • • AtMIV -i A tMI, o > AtMi, -1	 • • • AtM1, -M2+1

< 1
III > IV	 . I

> * *	 I
A-1, -M2+1	 ... A-1, -1 A-19 o < A19-1	 . . . Al, -M2+1

AQ, -M2+1	 ... A0, -1 A0, o < A09-1	 ... A0, -M2+1	 I
> I
.< t

IT ) I I

>
AMi-1,-M2+1	 n •• AM1-19-1 AM1-190 ( A-M1+19-1	 ••• A-M1+19-M2+i

redundant

If positive quadrants are desired rather than negative for the

non-redundant parts a phase shift should be performed only on y	 .M

for the data (or rearrangement on v in Form 4A).

19



The resulting form is:

f AtMI, 0 AtmI 1 ...	 A*M19 Ma-1 A tMiI :tMa > A tml, ma-1 . , .	 A:tM1, 1
I	 t
1	 r	 ^	 •

I	 IV	 l

I	 A--1, Ma-1	 A-1, tM2	 > A1, ma-1 • , .	 A1, 1.
I	 {	 *	 ^r

I A0, 0	 A0, 1 ...	 A0, Ma- 1	 not tMe	 > A09 Mao- I	 A09 I
I

1	 >	 .

I	 I	 <

I	 f *	 ^

AMI-19 0 AM1 -19 I • • • AM1-19 MC-1 AM1-19 tM2 > A-M1+19 M`-1 • • A-MI+i, i

redundant

The required phase multiplication in the function domain is

with (- 0 1 9 riot ( - i) k+ f.	 Only the distance from the x axis

(the y measurement) is used. This puts the high frequencies

together and the low frequencies together in the non-redundant

part of the transform and keeps only positive frequencies. The

boundary-element column contains the highest frequencies. The

phase multiplication can be done either before or after taking

the row transforms to get the p( matrix.

rh i ghest
r	 E3 >

<	 I

I law	 high

<	 i

1	 >	 I

L	 <	 ^
),boundary	 redundant

column

SUMMARY PICTURES

For complex two-dimensional data, there are two passible

paths to the correct transform representation if the origin is

20



n

in the center.	 In the following diagram, the actual origin of

the two-dimensional data is marked with Ca, the origin assumed

by the FFT algorithm is marked with (>, subscript I on quadrant

numbers indicates the actual quadrants,	 and subscript

indicates the quadrant nurriber,s as assumed by the IM PT algorithrn.

F^"11'fl1 ^a
t)	 ^

III1, I2 ' IVI I III

	

_..	 —
^C

	

II1 9 IV?	 I19 II12

rearrange
i

(e]) I

	

I !	 II

^LV	 III

Form 4a

-► trans,forrn 4	 wrong
•	 ±transform

represent atior-

phase multiplication
i

correct
transform

-1 transform 4	 representation

There are also two possible paths for obtaining the transform

origin in the centers

function	 4 transform 4	 t>

phase multiply	 rearrange

function	 4 transform 4

i O- -
It is possible that parts of b oth of these pictures will be

applied to the data.



The notation of Qppenheim and Schaffer will be used,

Consider two arrays., x1 (m, n) of d2.mension Ml x N1, and xw tm, n)

of dimension Mp_ x N:--. The linear convolution may be defined as

00	 00
x3(rag n)	 E	 E	 xi (q, r) xa ( (m -q) I (o-r) )

qw -M r=-oo

The limits on the summations depend on whether the convolution

is expanding or non-expanding.

It is passible to define for com putational purposes

either expanding or non-expanding convolution%.	 As an example

in one dimension, consider two functions: f (of length nf) ak,d

g (of length ng).	 The convolution h m f * g will have length

nh - of + ng - i, which is the normal expanding convolution

result.	 For the non-expanding result, let f be the input, g

the filter, and the output required to have the same length as

the input, i.e.,	 nh : nf.	 The expansion of f caused by

convolution with g is dropped.	 To salve computer, time it would

not be calculated at all. A non-expanding result is important

in (i) iterative calculations, where the output would expand

with each iterations (2) two dimensions, when, computer storage

for only a certain size image is available, and (3) when one is

interested in the filtered result only over the domain of the

input.	 FFT programs might not conveniently accommodate the

expanded arrays, especially in two dimensions. The limits of

the summations in the linear convolution do not depend on the

output variables for the expanding convolution; for non-

expandinpg they do.	 Note that the size of x3(m,n) defined

above will	 be (M i+M2-1) x (N1+Ne- ) for an	 expanding

calculation.
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PERIODIC CONVOLUTION

In	 one dimension,	 cyclic convolution was pictured 	 with

the two functions being convolved written on the	 circlAmf%rancee

of	 cylinders	 which were rotated with respect to 	 each	 ether.

The	 model	 far	 two	 dimensions could	 be	 one	 sphere	 inside
i

another,	 with the spheres rotated with respect to each other.

The periodic convolution is defined to be
ry	 M-1	 N-1	 -
x3(rn, n)	 E	 E	 xi (q, r)	 xe	 (m-q), (n-r) )

q-0	 raid

M	 and	 N	 must be specified along with they sum	 to	 completely

define	 the	 periodic	 convolution,	 since	 the	 results	 of the

periodic convolution will depend on the choice of M and N. 	 For

this	 output,	 m = 091,...,M-1	 and n	 0919...,N-i.	 However,

x3 (m, n) need root be calculated in this order, 	 i.e.,	 from 0 to

M-1 and 0 to N-1.	 It may be calculated in any order. i

If	 x1(m,n)	 has	 dimension	 M1	 x	 N1	 and	 xa(m,n)	 has

dimension	 Me	 x	 N2,	 then	 the periodic	 convolution	 can	 be

calculated	 for M t M ,1 and M L Me and N 2 N1 and N t	 Na.	 The

functions xj ?end xe must be packed with zeros to make them M	 x

N	 periodic.	 Thee=;sfore	 xi and x2 must be filled to the	 same

size	 to define the periodic convolution. 	 Then the result	 of

ethe periodic convolution will correspond to that obtained	 from

the DFT Convolution Theorem,	 using the DFT+s ,of xi and x2, each

of	 size	 M x N.	 xj and xe must be packed with zeros to	 this

size.	 Than

9 -C x3 	 n) I- 	 X1 (k, t)	 Xe(k, 1)

Fe,r the periodic result to agree with the linear, M t M1 + Me -
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