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COORDINATE AXES, LOCATION OF ORIGIN, AND REDUNDANCY
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Department of Fhysics and
Genphysical Research Laboratory
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For continucus Fourier trarnsformns, the shift theorem will

locate the origin anywhere. If
Mfix) = F(s) ’
then
HMf(x—-a)) = exp(~i2was) F(s)
for' forward transforms. For inverse transforms,
F-1{F(s-a)) = exp(+i2was) f(x) .

The discrete Fourier transforn (DFT) has special
considerations: (1) there are orly a finite rumber of sample

points, and (&) there is replication in both domains.
COMPLEX ONE-DIMENSIONAL DARTA

Cornsider a furncticrm domain array ayx, where x gives the
coordinate locatiorn of each of the complex elements of ax. The
transform of ay is given by the complex array A]. Here 3
specifies the.fﬁequency ngmber defined by Jls = s. Far &% = 1
As is riumerically equal tao 1/N, with N the rumber of points in

ax. Its units are the reciprocal units of x. Irn general
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As = 1/ (NAxX)
Data arrays often have no particular origin asscociated with
their elements. Those that do are commonly one of tws forms:
Form Qaz:
AQ A1 @2 .2 AN~-E AN-1
which hiss N points, and
Form lat
A A—=M4]l ssa A=Z A~1 AQ A1 AF s aM~1 am
which has (EM+1) points. The standard convention for the DFT
is

N-1

AR} = E ap exp(—icwky/N) ’
k=0

]
-h

where K gives the position of ap as measured from the left o
the array (with the first element having k = @) as stored by
existing fast Fourier transform (FFT) programs. The form of
th; exporient is such that k = @ is assumed to be the label of
the origin element. Data iw Form @& can be directly
transformed, but for data in Form la, something must be done to
have the transform correctly represent the data with their
givenn origin. As an alternative to having different FFT
algorithms for differernt data origins, the data may be modified
to use existing codes.

The required modification of the data is a rearrangement
as follows:
Form 3act
a0 a1 a2 ... AM-1 AN A-M+l s.. A2 a-]
for N = 2M+1, or

I
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Form 4a:

ap a§ AZ +sse AM—=1 AMy=M =M+l s 8=2 A=l

for N = M, with apy~M = am + a-M. N is the rumber of points
to be transformed.

Eecause the DFT corresponds to replicated data, the above
modificatiorns describe a shift of the data to the left by M
elemernts, or of the origin to the right by M elements for N
ever, or by M+l for N odd. If N is evern, ancther form is
veeded to corvespond to Form la. The first element of Form la
is replaced by am,-M and the last element dropped to give Form
2a.

Form 2a:
aMy~M A—M+l e B=2 a=1 AP &1 A2 s« Ap=-i .

Another approach consists of taking the DFT of the
urnmodified data directly. The DFT definition is ther used in
its standard form arnd the DFT is corrected, rather than
rearranging the data before the DFT is calculated. The DFT of
the unshifted data can be changed irto that of the shifted data
by a phase multiplication determivied by the Shift Theorem
(Bracewell, 1978). Since the origin is assumed to be at the
left-most element for the standard DFT algorithms, the ayx array
must be shifted to the left soc that ag will fail on the cowigin.
Fer the forward DFT (-i transform), the phase multiplier
correspariding to this shift will be exp(+i2wsMax). The
multiplication of the DFT of data irn Form 1la or 2a by fhis
factor will result in a QFT énrresponding to an origin
correctly located at ag.

+
The transform of sampled data is replicated, which means
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that the DFT is periodically repeated. The pericd is 1/4x,
which is often assumed to be 1. Since a pericodic function is
completely specified by ore pericd (called an "island" by
EBracewell, or principal interval, or base band), the discrete
transform is givern as one period of the periodic result. The
base islarnd of the transform, centered on the origin, is the
part of the transform generally used fonn ponceptual
manipulations. Working with this island has the advantage that
any frequericy~deperidernt filterirg will be sinplified since the
s values (freguercy values) are sinply associated with the
elements of the trarnsform array:

Form 1A3

A-M P-Mm+1 ... Az A-1 Aa AL ARz ... Al-1 Am
gs= ~MAS (~M+1)AS...~CAs ~As @ As 28S... (M-1)As MAs

for N odd. Unfortunately, the convention for the DFT is rnot
the above arrarngement, but is
Fovrm 2A:

AR R1 Pz .»s AM-1 AM A-M+l . « A2 A-1q
g= 2 A8 2488... (M-1)As MAS (-M+1)As...—-248 -As

for N = 2M+1, or
Farm 4AL

Ap AL Az ... AmM-1 AMy =M PA=M+1 aua -2 A1

for N = 2My, with AMy~m E AM + A-M. This arrarngement may be

thought of as consisting of the origin and right—hand half of

‘the base island and the left-hand half of the first replication

to the right. When filtering the transform in this form, care
must be taken to associate the correct s value with each

element. As an alterrnative to working with this DFT result,
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the elements of the DFT may be rearranged into Form 1A for N
codd or into
Form 2RA:
AMy =M A~M+1 «e: A=2 A=1 AQ AL AZ «»s AM-1
for N ever. This may be accomplished by rearrarnging the DFT
elemernts after they are obtained, or by phase multiplyirng the
data before the transform is taken. Again the shift theorem is
used to determine the phase multiplication,. The phase
multiplication foir each ax will be exp(—~i2vM(As)x) if the -~i
transform is used for the DFT.

Ivi the transform domain, the phase multiplicatier reeded
to correct for Form 2a with N even (M = N/2) is

@lZMisAX = @Ii2W(N/2)JASAK = iE8W(N/Z)JAx/ (NAX) .
This becomes

eim] = (-1)J .

Ca;e must be taken that ) measure the displacement iv terms of
positive or negative position number of the elemerts from the s
origin of the transform. For (-1)J, positive or riegative makes
no differerce, but for other cases it will be important. The
phase multiplier for N odd alsco simplifies, although rot as
much. This phase multiplication corrects for a data origin
given by Form 2a.

For the function domain, the phase multiplication needed
to have the trarnsform be in Form 2R, N even, is

a-i2W(MAS) KAX = a—i2M(N/2) (1/NAK)KAK = e=iwk = (~1)K

Again k measures the positive or negative displacement relative

to the x nrigin. The simplification for N odd is similar but

i
i
{
f
i
i)i

s, e gy




ot as great. This phase multiplication causes the transform
to have Form 2A rather thar Form 4R.

For Form 48 o 2R, for filtering purposes the element
AMy ~M is asscciated with s = +MAs and s = ~MAs since Avy~M = AM
+ A-M. If the filter is H(s), then the filtered result at this
location showld be

HAMAS) AMy =+ HO=MA=) A, om
E =

(4

if the ay elements are real, since the transform is Hermitian
{conjugate even or symmetric, FBEracewell, 1978). For complex

axy no rule can be given. Setting the filtered result to zerc

o ta  the result which holds for real data are two possible

approaches.

TWO-DIMENSIONAL DATA

Corsider Forim Qa. Notice that the ap,p element is in the

upper left corver, and subscripts increase dowr and to the

e W e B s e e N PR

right. This arrangemernt is chosen for two reasons; first, this

is the usual way matrix elements are subscripted, and seccond,

B v—

Tme TromlTmgmmems v v

this is the usuval order in which image data are stored in the
computer. The subscripts carn be used to dencte the x and y
axes of the two-dimernsional transform. There are two choices:

axyy ¢ the x axis is vertically down and the y axis harizontal

S s S O S

E to the right, with the z axis out of the paperj; or ay,yx : the x
% axis. horizontal to the right and the y axis‘ vertically down,
E with the z-axis into the paper. - The latter converntion is
chosen here because the x and y axes are generally taken to be

horizontal and vertical, respectively,f in two-dimensicral
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to  be horizontal; then the uw axis is horizontaly and if y is
\ chosen to be vertical, ther the v axis is vertical.
Form Qas
:‘ agy 2 apy 1 aQy 2 ses AQy NE-1 ':
| aiy0 aty i aly g vse ALyNE-1 :
|
: azy @ agy 1 azy 2 sns B2y NE-1 :
| . . |
| . . |
: AN1~2y @ AN1-2y1 AN1-292 s« aAN1~-2yNE~1 :
L aN1i-1,@ aNi—1y1 AN1=1y2 »=« aN1-1yNE2-1 d
‘ Form la: Mi, Mz odd
&
: { A-M1; —-M2 A-M1y—-ME+1 oo A-Miy~1 T—szm A=Miyl eus A=MiyM2-1
| :a-M1+1’“ME A—=Mi41y~ME+1e e B=pMi+ly~1 T—m1+1.o Awpitly 1o e Bd=M1+1yM2-1
. 111 | v
| . |
[ |
: Awly=M2 @=Ly -ME+1 ese A=y -1 T-t.m @-1y] s a-1yM2-1
:-ao.-me--~-ao.—ma+1 ----- agy —y === Tmoo ------ agyy == aQy M-y~
: apy, -mM2 ALy —MS+1 euo ag, -t 71.0 Atyl ene ag, M2-1
| . 11 I I
[ . [
| I
| aMi~1y~M2 aM1—=1y~ME+1 ses@Mi=1y=1 aAMI-1+@ aMI-1y1l «s.aMi-1yM2-1
[
L aMis ~M2 aMiy=M2+1 «ec: aM1y-1 aM1, @ AM1y1 «=s  aMiyM2-1
E,
E
E
}
7

coordinate systems. Note that the limits on x and y are

@ £ x $Ng-1 or =Mz $ x $ Mg and @ £y £ Ni-1 or =M1 Sy 5 My.

Forms Qa or 3a are assumed by starndard FFT alpgorithms. In the

netation of Bracewell the exporential in the two-dimensiornal

Fourier transform is givern by exp(—2wi(xu+yv)). If x is chosen

a-M1y M2 ]

a-Mi+1yM2

a-1yM2
agy M2

aiyMe

aMi-1y M2

amMiy M2

4

-

NPy

P

ek B i iy e 2

T v

%




Form 2

I asM1, tMe

a—1,y M2

s oo - -

22y M2

ALy 22

— T . W —— S —— T — W o, ——a— —

L aMi-1y %M

Form 3

aMil 0

i

|

|

|

|

|

= ami1-1,0
|

|

|

: a-M140
|

A-M1+1+0

A1ty EME AMisly ~ME+1 o BMitly»]

at M1, Mz even

AdMly ~M2+L oo aiMiy —1

a—Mi+lylee e d=Mi+1sM2-1 a-Mi+lyM2
v

]
|
I
|
171 | v
|
I
Ay =ME41 <o Aceiy—1 i a-110 -1y
o N Yens o o . ey - - - - Y »—-' - T - W -
AQy ~ME+1 e agy —1 : ARy @ agy 1
ALy ~M24+1 euo aly~1 : a0 aty 1
I ] 1
I
|
2 AMi-1y—~ME+1 -+« aMi-1,-1 | 3aMi-1y0 amM1~-
az M1, Mz odd
Adyl v agy m2-1 agy M2 : gy -M2
Alygl one aiym2—-1 aly Mz : ayy-M2
1 [
|
]
aMi=1y1 sse@Mi-1yM2=1 AaML-1yM2 : aMi—-14 ~M2
aM1y) e AM1yMER-1 amiymz : amM1y ~M2
— —— el T
A=Mly] eos A=M1yM2-1 a-M1y M2 : a-M1y —~M2
|
|
)
i
|
|

A—1y] ex.  A=fyM2-1 a-1yM2

atMi, @ atmi

A-Mi+1yQ A=M1

Aa-Mi+1y-ME

A~1y —-M2

11l s AgMiy MS~1 9

151 ses A=Mi+lyME-1

|

|

}

. |

. |

|

a~1y M2~1 :
T T - |
oy A0y Me-1 :
‘e aiy M1 :
. |

|

|

L1yl eee  aMi~1yM2~1

ARy ~M2+1 e agy -1 1

ALy —M2+1 oo Aty -1

11 .

AM1~1y=M241es. AMI-1y~—1

AMLy ~ME+1 s AMLy -1

— - - fama e b

A-Mly—M2+1 +so A=Mly—1
B-M1+1y~ME2+1s s d-Mitly -1
111 .

|
I
|
|
|
I
|
I
|
|
|
|
|
|
]
|
I
|
J

B—ly—MS+1 =ea aA-fy~1}




Faorm 4as Mi, Mz even

raoyo Ay 1 v AQy ME&~1 a9y tM2 Ay ~M241 s 2Ry ~4
aly2 Ayl »we AfyME-4 aly M2 ALy =MS+L s aly=-1
. I 11 .

AML1~1+Q AMLI~iyi «e» AMI~-iyM2-1 AML=1y M2 APf~1y~M24L v WML=Ly -]

— e - s g o — -~ st s 26w -y -t oo ’ ;- -y - - - - v Lealandand Eadaalen] W i

axM1y 2 AtMiyl soee atM1y MES-1 AxMiy EM2 AtMLy ~ME+L ono AtMiy ~1

A-M1411@ A=Mi+lylrer A=Mit+ly)M2-1

. IV

A=MLi+1y M2 A=Mi+1ly~MI2+L o0 A=Misly~1

II1 v

———— S ——— . ————

La-1,0 B=131 »see a1y M2-1 a—1y M2 By ~ME+L sus | J

B R e e R ,: g

With ap, M2 = apyMa + apy~M2 and  asMiy ) = aMi, p + a—miy

DRSPS

and agMi M2 = AMiyM2 + a-Miy M2 * aMLy =M2 + a-Mi,-ME

The quadrant numbers are shown as Roman nunerals for

it

Fovms La, 2a, 3a, and 4a. The quadrarit numbering system

depends upon the choice of the x-y coordinate system discusted

gt e e

above. Elements ag,i and aj,0 are on the axes. They are

between quadranrts and are nct actually iv, them. The rearranged

sectioris from Form 1a o Form Za are not all of the same sizej

they do rot have the same rnumbers of columns and rows. Note
that for N even, Form 2a, the origin is not ;t the pgeocnetric
certer of the matrix, bu¢ is Just to the right of and Just
belocw the center.

One may rearrange Form 1a into Form 3a or Form 2a into
Form 4a and then take the standard DOFT. The result will

represent the data with the correct origin of Form 1a v Form ‘ ;

2a. Alternatively, one may take the transform of Form la aw it

9




is for Niy, Nz odd (o Form 22 for Ni, Nz even), and then phase
miltiply the transform to have it correctly represent the
origin as iv Form la or Form 2a.

Ivn ore dinmensicn, the data are replicated and aliasing
may Sceur, Two~dimensicrnal data are alsco replicated and

gimilar aliasing problems may be present.

11 1
1 v II1
e EE e
Form ta ——y II l I ) §4 |
l X r Form 3a
111 |1 v 11}
[ P

Form la has "o" marking its center, and "x" marks the center of
Form 3a.

The phase multiplication in the trarsform domain to get
the transform of data with the origin in the ceanter will be

exp (+2wiuMzAx) exp(+2wivMidy) ’
where the uv origin is in the center or the upper left corner
of the mnatrix, depending on whether the transform has been
rearranged or not. Since for Ny and Nz even, Mz = Np/2, M =
Nj3/2, and since Au = 1/(NzAx), and Av = 1/(N1dy), then the
exporientials above become

exp (+2wi (N2AX/2) (8/N28x) ) exp(+2wi (N1Ay/2) (r/N1by))

= exp(iws) expl(im) = (—-1)% (~1)r = (=1)r+s .

10
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where v and o should be neasured from the origin,

The nornal way to think of the transform is Form 1R,
which may be obtained frorm the diagram for Form 1a by
substituting capital letter A for small & However, the
stardard DFT calcoulated is Form 2R for N odd and Ferm 4R for N
RVer,

For Form 4, the dc level, Apgypy, 1% in the upper laft
corner, and lower freguencies, i.e., those of small jul, vl
values, are found in the corners of the matrix. The highest

frequencies are in the center,

dcmn/ / | \ \\_

Aot

Form 4 high
{
— —~\\l (/‘ Tow freguencies
\\ i at corners

Therefore, for two-dimensional low-pass filters, the center

[ (> S S Sy S o

region must be blocked out. Note that the filter covers a two-
dimensional area.

If the transform origin is to be in the '"center",
rearrange the transfc m after taking it, or phase multiply the
data before taking the fivansform:
exp(-2wiMzAumdx) exp(-2wiMiaAvndy)

= axp(—-2wiNzmax/ (EN2AK) ) exp(~2wiNindy/ (EN1dy))

= (=1)M*tn for Ni, Nz even .

The transform will be in Form 1A for Nj, Nz odd, or Form 2R for
Ni, Nz even, for either method.

With currently defined FFT computer algorithms, the

initial data are assumed toc be in Form Qa or Form 3a for Ni, Nz

odd and Form Qa or Form 4a for Ny, Nz ever. The distinction

11
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betweerr Formns Oa and 3a or 4a does not matter if the data are
riever corsidered ag giving the "frequency content” of the

forward transform,
ONE~DIMENSIONAL REAL DATA

Whether calculating the transform of two real arrays with
ovie  ocomplex trangform, or the transform of cone N-point real
array with one (N/2)=-point complex transform (Brigham, 1974),
mr the ordirary complex transform for real data, computer
storage requirenents can be reduced by making use of the
symmatries of the transform for real data, The function domain
farpma do net  change. The transform domain forms can be
madified as follows:

Form 1As

R-v A-M+1 «+« A2 A-{ Ao

for N odd, with ((N-1)/8) + 1 complex terms. It seems that
there are 2L((N=1)/2) + 11 = N 4+ 1 independent pieces of data,
which is one too many; but Rp is real, so that there are
actually only N irndependent values as there should be. To fill
in the rest of the terms, make use of the Hernitian prcperty:

* +
A = A~j v

Form 3A:
Ra AL A2 +e. AM-1 AM
for N odd. There are N numbers represented as in Form 1A,

Again use the Hermitian property to fill in the missing terms:

12
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Farm 483

ARa A1 Az «+. AM—-1  AMy-M

for N even, where both RAp and AMy~M are real. (This again
insures that there are SL(N/2) + 11 ~ 2 = N indeperndent pieces
of information.)

Form 2A:

AMy =M PA=M+1 .. R=z A-{ AQ .

For real data ore may choose to work only with positive

frequencies, Form 3ZA or Form 4A.

-

CALCULATION OF THE TWO-DIMENSIONAL DFT

Recall that the definition of the two—-dimensicnal DFT is
Ni—=1 Ng-1
Apg = b E app expi{-i2wl(rk/Ni)+(sl/Nz)1)
k=@ =0
Ni—-1 Nz—1
= E exp(—i2wrk/N1) T axp exp(-i2wsl/Np) ’
) k=0 =0
where k varies vertically and ? varies horizontally. The irnner
summation over t is the sum over the kth row Ffor each k. The
vule implied in this expression is that row transforms are
taken first ard then the columm transforms. Let
Nz~1
fks = T app exp(-i2ws/Nz) .
=0
Then the summation cover Kk becomes
Ni-1
£ oOks exp(—i2mKk/Ni) .
k=@
This is a sum over the sth column for each £. Ths rule implied

by ¢this expression is that the column transform is next taken.

Therefore the complete rule for the two-dimensional DFT is to

13
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take all the row transforms and thern all the oo lunrn  transforms
of  this result. Bookkeeping may be a problem! Furthermore,
the columr transforms may alternatively be taken first and then

the row transforms of that result,

MATRIX AFFROACH

Following the approach of Brigham (1974), the Fourier

transform [AR) of original data [al may be writte=n as

/ Aa / WO WO W2 WO \ / ap )
{ AL 1= WO Wl We W3 ){ ay )
( Az ) { WO WS W4 WE )t az )
\ Az /A WO W3 WE W3 s\ az / y

with W = exp(i2w/N). This matrix equaticon describes the
transformation of one column vector (ai) into anc"her column
vector (Rj). The L[W] matrix performs the columrn Y“ransform by
pre-multiplying the column vector (aj). If the ([W] matrix
premultiplies a matrix [al, it will transform each column of
that matrix. The corresponding trarsform operator matrix which
would give a row transform is [WT1, which post-multiplies a row
vector (aj)T = (ag,ai,azyaz). If (WT) post-multiplies the
matrix (€al, it transforms every row of [al. Therefore for a
two—dimensional matrix tranasformation of the matrix [al,
(Wl Cal [WT] = T[AR1 .
This shows that either row transforms or column transforms
could be calculated first, because matrix mnultiplicaticn is
associative:
(CW1 [al) CWT] = [W) (Cal [WT3) = [A] .

For a square matrix, the dimensions of [(WT] are the same
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as those for [W1 and CWT1 = CWl. If the matrix [al is nret
square, say Ni rows and Nz columns, then the pre-~multiplying
matrix  [Wl will be Ny by N1 and the past—-multiplying matrix
(WT1 will be Nz by Ngz.

The following diagram illustrates the two equivalent

paths which may be used to wbtain the two-dimensicnal Fourier

transform.
function [al 2 row trarsform = CaltWTl
(post—multiply CWT1)

v ¢
column transform column transform
{pre—-mnultiply C[WI1) (pre-nultiply L[W1)

¥ ¥

CWltal 2 row transform < 2-D transform CWICLalCWT]

(post-multiply CWTY)
TWO-DIMENSIONAL REAL DATA

For real data, the transform of two rows at a time can be
obtaived usinp orne complex transform (Brigham, 1974). Whether
or not this is done, we begin by assuming the data are a matrix
of size Ni by Nz arranged in Form Qa:

r agyo oo agy, N2~-1 1

| |
- - '

|
|
|

AN1=1+@ .- aNt-14N2-1 4 .

Let ojj) represent @he matrix elements for the intermediate step
after taking row transforms of the original matrix Cal. Then
the orne-dimensional row transforms of the real rows of (al

produce

15

W




o T oW -~ —— P, T — "
1
* *
f ooy & %Ryl oo gy (N2/2)~1 %oy N2/ 2 RRy (NB/E) =1 sos 02, 1 ]
| . ) . |
I . ¢ . |
| . y . |
| ¢ I
| ) * * |
L ON1—1+@ ONL~1y1-2+ ON1~1y (N2/E)~1 ONL1—19sN2/2¢ ONL=1y (N2/2)~1 «o« ONi-1y1 J

The redurndarnt part is the right side with the conplex

congugates. It is written in terms of the rnorn—redundant part.

The eoclumn Just to the left of the redundant part, column Nz/2,
! is called the boundary elemernit coliumn. Using M3 = Nt/ and Mz

= Nz/2, the ® matrix may be relabeled as

: [ %2, @ cee OOy ME2-1 oo, M2 ; %2y M2—1 cee  OQy1 1 '
L L. i
: a? | . ) . |

| | . < . | 3

v | ) * * | §

; : UM1-19@-++ OM1-1,M2-1 ﬂm1-1.:me; OM1-1yM2=1 »os  OM1-1y1 :

: * *

: : OtM1s@ o OEMiyM2-1 AtM1, £M2) MLy M2=1 o otM1y 1 : (

f ’ ¢ » * i

: : Remitiy@eo e O=Mis+tyM2—1 G=Mi+1,y 2M2) M1 +1yM2=1 oas u—m1+1.1:

i ¢

} ' . ) ] '

: | . ¢ . [ |

; | . ) . I |
| ( * * ) ;
Lo-1y@ oo OS-t,m2-1 %—1,y M2 ) ®-1yM2~-1 ses O-1,y1 J

Elements of the first column and the boundary element column
are real because the original data were real.

Next the column transforms are taken to obtain




Form 4A:
* *
reayo Royt ees RQyME-1 AR, tM2 ( Ay M2-1 vee Ray 1 1
i S * |
| ( A-1yMa~-1 R-1,1 | ,
| ) ) . ‘ %l
| . I { 11 . |
I . ) . |
| ( = * | 1B
:9m1~1.m AMi=1y1 »++  AMI=1yME~1 ﬁm1-1.:mai A-Mi+lyMa~1 oo 9~M1+111: i
* »*
:9:M1,0 AtM1y ] oo AMiyME—1  AxMi,y M2 2 AgMiy MEZ—1 « o AxMiy 1 : $
* * }
: i AM1~14 M2~1 AMi—1y 1 : i
| . v ) 111 . | i
| . ¢ . [ it
‘ )] * * | ;
L A-1y@ A-1y] «ec. Aty M2—-1 A-1y Mz ¢ ALyM2—=1 «.. A1,y 1 4 ;

The first column and the bourndary element column are both
Hermitian. The redundant part is written in terms of the
complex conjugates of the non—redundant part. (Note that the |
low-frequency edges of the guadrarts are not at the center but
at’thn far corners.) The first subscript of the redundant part

of a row is usually not the same as that of the non-redurdant

part. The explanation is given as follows. In ore dimension

i
the continucus Fourier transform of f¥(x) is F¥(-s), and in twc !

dimensions the discrete Fourier transform of Q¥p is A%*-p, k.

Except for the first row, quadrant II (III) of the ([A] %
£

matrix above comes from conjugating and rearvranging part of ;
g

quadrant IV (I),. This symmetry can be seen readily in

photographs of two-dimensional optical transforms, for example, s

in Ardrews (197@), pages 34, 35, 42, 107-109, 165-167. In
these photographs, the logarithms of the Fourier transforms are
shoewns  in order to decrease the dyrnamic range of the transform

arnd allow the small values to be seen Qith the limited dynamic




R L

rarge of ar image display.

Recall that either the row transform~ or the column
trarsforms can be taken first for the two-dimersional Fourier
transform. If the column transforms are obtained first, two
real rows (in cantrast to columns) are sbtained. When rex* the
row  transforms are takern, two Hermitian rows (in contrast to
columns) are obtained. The final tramsform matrix [AR) is the
same as that obtairned by taking row transforms first and then

column transforms, arnd it may therefore be written as

Hermitian Hermitian
column ool umn
¢ L/
Hermitian 9 I (real) I {real)) 1
row | ( |
i | ) |
L S |
[ [ ) |
Hermitian =2 | (real) (real) ¢ t
row [ [ ) |
| ( [
| | ) |
' L < J
redundant
The real elements are indicated. Although the right "half" is

shown to be redurdant, the bottom "half" may be taken as the
redundant part, as would be natural after taking column
transforms.

Form 4R can be rearrarged into Form £A, either by
furction domain phase multiplication as previously defined, or
equivalently by trarsform domain rearrangement. Twana form

domain rearrangement gives




Form A

* *

( AtM1y M2 : ALMLy MS=1 = o AsMiy 1 AxMi, 0 ; AdMiyl sse AM1y ME—-1 ]

I . I < . I

‘ L] ' > - .

| . I ¢ . I

| I o» » ) |

| A-1y2M2 | ALym2-1 «.. A1, 1 A-1y1 ( A-1y1 vue A~1y M2~1 I

| o= * ) |

: Ry M2 : ARy ME~1 oo AR, 1 Ry @ ; Ady 1 s Ay M2—~1 :

(- I ¢ . |

b | ) . |
| b I ¢ . I
| | o= * ) |
E L AM1~1y 2M2! RA=M1+1sME2=1 see A=M1+1y1 AMI-1+0 ¢ AMLI~1y1 es. AMiI-tsM2-1 J )
% redurdant jy
| ;
g The dashed lire is the redundant lirne from Form 4A. Form 2R }

should be rewritten in terms of kriown values, so that the 4

redundant part is given in terms of the non-redundant part.
‘ g
E Form 2A: ‘
1 . * *

r AEMiy 2M2 | AEMLy ~M2+1 =«. RtMiy~-1 PREM1,0 ; RgMiy—1 == AtMiy —M2+1 1 i

! ;

| . I < . b

| . | I11 ) v . |

[ . i < . |

| { ) » »* i

A1, tM2 | A=gy—M241 se. R-1y,-1 AR-1,0 ( Aly~1 »es Aty —M2+1 |

I I b * |

| Ry tM2 I ARy ~M2+1 .- Ay -1 AR, 2 ; ARy -1 «»>» ARy -M2+1 :

| i

| . I < . ]

| . i II ) I . ]

| . I ¢ . ]

| | o > % * i

LAM1I-1y2M2 | AMLI~1y~-M2+1 ~ee AMI-15-1 AM1-1,0 ¢ A-Mi+1y—1 =»- R-Mi+1y-M2+1 d

redurndant

If positive quadrants are desired rather than negative for the
non-redundant part, a bhase shift should be performed only on y

for the data (or rearrangement on v in Form 4R).
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The resulting form is:

f AtM1y @ AEMiyl 0+ AEMiyME~1  REMi, M2 z

i . y .

I . v ( .

' L > L]

| { * *

1 A=-1,y0 Aeigl aos A-1y Mz-1 A—1y M2 i ALy ME~] oo Riy1
* »*

I Ray Aay 1 o»e Ry Ma~—1 Ray vz i AQy ME=1 o« Ry 1

|

' [ > .

I . I $ .

‘ . ) -

] ¢ % *

#* »*
RaMiy ME=1 oo Aty 3

L AML~1+@ AMLi=191 =2+ AMI=1yME—1 AMi—1y 2ME > P-ML+1)M2~1 «ss A=Mi+iyi J

redurndant
The required phase multiplication in the function domain is
with (=i)1, nrot (-1)k+2, Only the distance from the X axis
(the vy measuremernt) is used. This puts the high frequencies
together and the low frequercies together in the ron-redundant
part of the transform and keeps only positive frequercies. The
bourdary-element wolumn contains the highest fregquercies. The
phase nultiplication can be don; either befocre or after taking

the row transforms to get the o matrix.

J highest

F £l > 9
| ( |
| ) |
I low high ) |
| < |
| ? |
L 4 4

boundary redundant

column

SUMMARY FICTURES

For complex two-dimensiocnal data, there are two possible

paths to the correct transform representation if the origin is

20




in the center.

the two-dimersional data is marked with (D,

by the FFT algorithm is marked with (O,

numbers indicates

the actual

I the following diagram,

quadrants, and

subscript

the actual crigin of
the origin assuned

subscript 1 on quadrant

()

irdicates the quadrant runbers as assumed by the F#T algarithim.

e E

Form Sa
) |
— A———— — -ET —— -
II1,IV3. 11,1112
¢
rearrange
¢
(C3) |
I [ I1
v boxrn
Form 4a

There are alsc two possible paths for obtaining the

origin in the center:

function

(]
phase multiply
L/

furnction

< transform -

.

= transform =

= transform <

= transform =

wirznig
hransforn
representaticor

v

phase nultiplication

v

corvect
transfiorm
representation

transform
()
v
rearrange
L
[
|
e e e -
i)
)
will be

1t is possible that parts of both of these ﬁictures

applied to the data.
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The rotaticrn of Oppenheim and Schaffer will be used.
Consider two arrays: Xi(myn) of dimension My x Ni, and xzimn)

of dimension M2 X Nz, The lingar convelution may be defined as

© o
xz{myn) = ¥ z K1lgyr) xz(ln=g), (ri=r)) "
q==0 r=—00

The limits orn the summatiorns depend or whether the convolution
is expanding or non-expandirig.

It is possible to define for computational purposes
either expandirng or rion-expanding convolutions, As an example
iri one dimension, cornsider two functions: f (of length nf) and
g (of length ng). The cornvolution h = f % g will have length
nh = nf +ng — 1, which is the normal expanding convolution
result. For the nor—~exparnding result, let f be the input, g

the filter, and the output required to have the same length as

the irnput, i.e., h = Nf. The expansion of f caused by
convolution with g is dropped. To save computer time it would
rnot be calculated at all. A rior-expanding result is important

in (1) iterative calculaticons, where the ocutput would expand
with each iteration, (2) two dimensions, wheri computer storage
for only a certain size image is available, and (3) when one is
interested in the filtered result only over the domain of the
iriput. FFT programs might rnot convnnicntly‘accammadate the
expanded arrays, especially irn two dimensions. The limits of
the summations in the linear convolution do not depend o the
output variables for the expanding conveoelutiony for non-
expanding, they do. Note that the size of xz(myn) defined
above will be (My+Ma-1) x (Ni+Nz2—-1) for an expanding

calculation.

ee
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PERIODIC CONVOLUTION

In one dimension, coyelie conveolution was pictured with
the twe functicrns being convaolved writter on the clrcumnferorce
of cylinders which were rotated with respect to each wther.
The model for twe dimensions could be one sphere inside
arother, with the spheres rotated with respect to each other.

The pericdic cornvoluticon is defired to be

~ M—-1 N—-1 ~ ~
K3 {myn) = b > b > X1 (qy ) Xal{ln=q),y (n—r)) .
q=d r=@

M and N must be specified along with the sum to completely
defire the periocdic convolution, since the results of the
periodic convolution will depend on the choice of M and N. For
this output, m=@,1,...,M-1 and n = By1,...,N-1. However,
:3(m,n> rieed riot be calculated in this order, i.e., from @ to
M=1 and ® to N-1. Jt may be calculated in any order.

If xi¢myn) has dimension M1 x Ny and xglmyn) has
dinension M2 x Nz, then the pericdic cornvolution can be
caloulated for M 2 Mi and M 2 Mz and N 2 Nf end N 2 Ng. The
furicticns X1 and x2 must be packed with zercs to make them M x
N periodic. Thayafore xi and Xz must be filled to the same
size to defire the periodic conveolution. Th;n the result of
the periodic convolution will correspond to that cbtained from
the DFT Convolution Theorenm, using the DFT's ‘of x1 and x2, each

of size M x N. X4 and xz must be packed with zeros to this
size. Then
e A * ~ e

FAxzmyn))y = Xi(k,8) Xa(k, D) .

Fer the periodic result to agree with the linear, M 2 M1 + Mz -

23
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