
4

'N AS A -CP - 17 18 q9) ZEPO-GRAVITY MOVEMENT
STUDI-1, 13 (Pennsylvania Utiiv.)	 113 p
9C v6/m p 4)1	 CSCL 12B

N86-10897

Unclas
G3/66 27494

FUMM

♦0

UNIVERSITY of PENNSYLVANIA

The Moore School of Electrical Engimering

PHILADELPHIA, PENNSYLVANIA 19104

Zero-Gravity Movement Studies

May 31 9 1985

NASA Contract No. NAS9 -16834

Norman I. Badler,
Principal Investigator

Paul Fishwick
Nina Taft

Mukul Agrawala

Department of Computer and Information Science
Moore School D2

University of Pennsylvania
Philadelphia, PA 19104

Zero-Gravity Movement

Table of Contents
1. Introduction
	

1
2. Requirements For Free-fall Jointed Body Dynamics

	
2

2.1. Rigid Body Dynamics
	

4
2.2. Inertia Routines
	

7
2.3. Center of Mass Routine

	
9

2.4. Angular and Linear Momentum Routine
	

10
3. Path Planning Techniques, Collision Detection and Avoidance

	
10

3.1. Path Finding
	

11
3.1.1. The Configuration Space Approach

	
11

3.1.2. A Subdivision Algorithm
	

16
3.2. Path Finding in a TEMPUS Framework

	
17

3.3. Clearance Detection
	

18
3.4. Interactive Techniques

	
20

4. Data Collection Techniques
	

22
S. Proposal for an Hierarchic Simulation System

	
22

6. Conclusions
	

23
7. Schedule and Resources

	
24

8. Bibliography
	

26
I. Hierarchical Reasoning

	
20

Zero-Gravity Movement

List of Figures
Figure 3-1: Enlarged Obstacle Due To Fixed Orientation of A (26) 12
Figure 3-2: Untransformed Environment (251 13
Figure 3-3: Transformed Environment (251 13
Figure 3-4: Advantage of Rotations 13
Figure 3-5: Obstacles Changing Due To Rotation (25) 14
Figure 3-6: Path Fi-iding Using Slices (25) 15
Figure 3-7: Enviroment Divided Into Cells (12) 16
Figure 3-8: Connectivity Graph From Subdivision Algorithm (121 17
Figure 3-9: Using Clearance Detection To Limit Movement 19
Figure 3-10: Using Clearance For Reaching 20

ii

Zero-Gravity Moveme: ►t

List of Tables
Table 7-1: Zero-Gravity Motion Studies Schedule 	 25
Table 7-2: Zero-Gravity Motion Studies Resources 	 25

iii

I

1. Introduction
The use -)f computer graphics to simulate the movement of articulated animals and

mechanisms has a number of uses ranging over many fields. Human motion simulation
systems can be useful in education, medicine, anatomy, ph; siology, and dance. In
biomechanics, computer displays help to understand and analyze performance.

Simulations can be used to help understand the effect of external or internal forces.

Similarly, zero-gravity simulation systems should provide a means of designing and
exploring the capabilities of hypothetical zero-gravity situations before actually carrying
out such actions. The advantage of using a simulation of the motion is that one can

experiment with variations of a maneuver before attempting to teach it to an individual.

We can divide the zero-gravity motion simulation problem into two broad areas:

human movement and behavior in zero-gravity, and simulation of articulated
mechanisms. We will examine each in turn.

In the absence of external forces the linear momentum of a body is conserved.

Similarly in the absence of torques the angular momentum of a body is conserved. We

can examine the motion of a diver (which is a good example of effective free-fall) and

then extended the analogy to that of an astronaut (34, 201. The physics of rotational
motion in free-fall examines motion relative to the center of mass point. The center of

mass is defined as a mathematical point whose position is determined by the distribution
of mass within the body. Rotations of a body in free-fall are about the center of mass.

The basic question is the following: how can a diver in mid-air suddenly twist and
somersault without violating the law of the conservation of angular momentum? The

somersault is defined as the basic rotation about the axis through his waist and the twist

is the rotation about the longitudinal axis running from his head to his toe. Angular
momentum is the product of the angular velocity and the moment of inertia H=Iw. Both
H and I are vectors. The moment of inertia of a rigid body about an axis is Me body's
tendency to resist changes in angular velocity about that axis. It is possible for the diver

to change his rate of spin (angular velocity) if he decreases his moment of inertia so the

angular moment remains 6he same. For example, if he brings his arms and legs in closer

to the longitudinal axis while spinning he decreases his moment of inertia and increases

his spin rate. It is also possible for a diver to change both his somersaulting angular

momentum and his twisting momentum as long as their sum, total angular momentum,

remains constant in magnitude and direction. This situation closely parallels that of the

Zero-Gravity Movement

astronaut in that a man working in space in a weightless environment must be able to

control his body orientation. He can start in a motionless position and with a few simple

movements reorient himself in any d irection. The underlying physics is the same for an

astronaut as it is for a diver since both men are moving in the absence of torques.

Ramey and Yang have published a detailed procedure to describe human motion in

three-dimensional space 1301. The motions under study are those occuring in fres-fall,

however the procedure developed includes the effects of external forces at the initial

stage. Ramey and Yang use a nine body-segment model. The equation of motion is

developed using the principle of conservation of anv,slar momentum referred to the mass

center of the body.

Most existing computer graphics bo gy modeling systems are kinematic not

dynamic [23, 5, 7, 14, 18, 221, in other words, they only consider joint positions and

angles. Kinetic systems use motion variables as position, velocity, and accelerations and

have been mostly used in crash simulation [31, 191. A dynamic system will also considci

forces and torques [351. Since dynamic systems are more realistic than kinematic ones, a

zero-gravity simulator must be a dynamic system. At least one recent attempt to

produce a dynamics simulator for articulated figures has been reported by Wilhelms 1351.

Unfortunately her reliance on purely dynamic simulation leads to difficulty in controlling

jointed motions, most notably at the point where free motion contacts ground or another

obstacle. Apparently both kinematics and dynamics are required for effective control.

Girard anc Macicjewski have successfully merged kinematic control of multiple leg

, ovements with overall dynamic control of the `body • along an arbitrary motion

path [211. Their Jacobian and pseudo-inverse techniques are different from those used

for kinematic reach in TEMPUS, but the results are very efficient and promising for

future simulation and control systems.

2. Requirements For Free-fall Jointed Body Dynamics
Unrestrained motion in zero gravity must be examined from three perspectives: the

dynamics of pushing and grasping, the transition between grasping or pushing points

(including translation in free-fall), and the path planning problem (including collision

detection and avoidance). Our approach to these problems consists of a study of the

physics involved, then a decomposition of the problem into components which offer the

best cost-effective solution involving the computer and an operator. This interaction is

much more likely to achieve satisfactory results than either could do alone. For example,

2

Zero-Gravity Movement

the state of the art in robot motion path planning and collision avoidance is not yet

capable of efficiently handling the full complexity of a multiply-jointed body in an

arbitrary workplace [lozano79, brooks821, though the literature provides us with useful

heuristics.

In one scenario, the operator would specify an initial and final body position and

request TEMPUS to specify a feasible path of movement between the two positions. The

path of movement is then computed and may be graphically animated. The 'feasibility'

requirement dictates the following constraints on the movement:

1. It must be kinematically plausible. There should be no interpenetration of the
moving person and solid objects, and joint limits must not be violated.

2. It must be dynamically plausible. The equations of motion of the moving
body, both in free-fall and when interacting with external objects, must be
satisfied.

These two constraints imply that both geometry and forces are essential for an adequate

simulation. The former is rather obvious, but the latter is needed since zero-gravity

motion is controlled by the • non-standard • application of forces. Therefore forces

resulting from movements, such as the resistance of external objects and limitations on

an individual's ability to apply such forces, should be modeled. For example, if a person

should push himself off a wall, or grasp a restraint to slow or stop his motion, then

numerous verifications must be made. The person must be capable of exerting the forces

necessary to achieve the resulting positions and velocities. The wall must be able to

withstand the resulting force and be a surface which is safe to push or pull against. The

capabilities provided for strength analyses (3) must be used extensively.

The OSDS operator must have facilities for defining which objects in the

environment may be used for grasping and pushing and the forces they will accomodate.

The user may also partially specify paths by allowing only a subset of these objects to be

used or by explicitly requiring the path to contain intermediate body positions. The

latter i.Q especially important in order to refine a path found to contain ur desirable

collisions.

In order to study the dynamics of grasping and pushing we must examine rigid

body motions under the influence of external forces. In the next section we look at some

experiments in computing free body motions.

3

Zero-Gravity Movement

2.1. Rigid Body Dynamics

First we examine the dynamics of a rigid body in free-fall under the application of

external impulse forces. Then we will look at articulated objects and determine how

their motions change when the angle of articulation changes.

Two experiments were performed to study specific situations of the kinematic and

dynamic motion of an object. For study purposes the programs embody certain

restrictions that simplify the mathematics and yet do not trivialize the problem. More

complex cases may be handled by the essential simulation underpinnings. In particular,

the objects manipulated are simple geometric forms of uniform mass, the forces applied

are considered to be impulses at an instant of time, and articulated motions are assumed

to occur instantaneously. By choosing a small enough time interval for the simulation,

the resulting dynamics closely approximate most of the significant motion effects.

The forces acting on a body are gravity, inertia, friction, centrifugal, and Coriolis.

Each of these may be modeled as an impulse over a small enough time interval. Likewise,

motion of the joints of the articulated object are assumed to occur at a • slow enough•

rate so that we can ignore the effects of added torques for now. They, too, can be

modeied as impulse forces if need be. While this method may not be the most efficient,

it serves as a necessary first approximation. The robotics literature, though concerned

with dynamics formulations, is most concerned with producing the • correct • joint

torques to control a given motion of the end effector (101. These torques are therefore

related to the maximum torque that can be developed at each joint. For a human

figure, this is a strength or joint limit problem. For locomotion, however, we are

interested in motion of the body itself. It is significant to note that the robotics world

can always assume a fixed base that can absorb virtually any forces or torques applied to

it. Our figures in free-fall, however, are more likely to be moved by their environment

rather than vice ver8a, since it is the environment that is more likely to be (relatively)

massive and stabile.

The two demonstratable programs, called BOX and RODS, handle the two cases of

rigid and articulated motion. The BOX program uses as its object a rectangular prism

(solid box) and allows the user to enter a force (magnitude and d irection) and the point

of application of the force. The force input is actually an impulse, which means that the

force is applied only for an instant in time; i.e. the force is not being applied constantly

to accelerate the object. The resulting motion of the box involves botb translational and

4

rotational motion. The program determines the translational and rotational parameters

and transforms the object vertices accordingly. The program al-,o allows the user to

enter a small time period (&T) and it updates the values of these vertices every AT

The user can see the new position of the object after AT seconds, and its next new

position after another AT seconds, etc.

TJL he program RODS generates two end-connected rods of uniform, non-zero mass.

The rods are assumed to be already moving with some initial angular velocity

(arbitrarily set by the programmer). The angle between the two rods can be changed at

any time. T"is angle change is what happens when a parson applies internal forces at one

of his joints to change one of his body segments in relation to the other. For example, he

might bend his lower arm and move it close. to his upper arm. This change in angle

between the two rods causes the center of mass of the system to change and alters the

rotational motion. A new inertia matrix describing the system of objects is calculated

and from that the resulting motion is determined. We will describe this further below.

The BOX program makes use of the routines XYZMAT, getinpt, online,

angular_ momentum, PostMult and the necessary CORE graphics routines. XYZMat

and PostMult are existing TEMPUS routines. XYZMat determines the rotation matrix

given the yaw, pitch and roll angles as input. PostMult applies a matrix to a vector and

leaves the results in a new vector. This is the routine used to apply the rotation matrix

to all the points (actually defined as vectors from the origin of the local coordinate

system). Getinpt is a routine to get the minimal set of input needed from the user.

Online is a function that determines whether a point lies on a given line. In this case,

the point is the point of application and the line is the line defined by the center of mass

point and the direction of the force. If the point of application lies on this line, then

there is no rotational motion. This routine is useful because if we can know this

information ahead of time all the calculations for rotational motion need not be carried

out. The angular_ momentum routine determines the angular momentum vector

according to H=M(rX v) where rX v is the cross product of the point r (the point of

application) and the velocity v. Af is the total mass and H is the angular momentum. H

is a vector because it has three components, one in the x-direction, one in the y-direction

and one in the z-direction.

The RODS program uses the routines NewCmSys, Rinertia, and Rod len, in

addition to various TEMPUS routines. The NewCmSys routine takes as input the

5

Zero-Gravity Movement

coordinate-i of two rods, defined in the same coordinate system. The conversion of one

rod's coordinates into coordinates of the other rod's local coordinate system is done in

the main program. NewCmSya determines the coordinates of the center of mass of the

system of objects (in this case the tw.-) rods) and then redefines the local coordinate

system so that its origin is the current center of mass. Each time we change the angle

between the two rods this routine must be called to determine the new center of mass.

The Rinertia routine is the one that determines the inertia matrix of the system of rods

about axes through the center of mass. First we mint determine the inertia matrix for

each rod and then we add the two matrices together. For an object composed of several

simple bodies, we are allowed to add their respective inertia matrices as long as they are

all defined relative to the same set of axes 161.

The general formula for the inertia of a rod defined along the z-axis is Izz=O and

Iyy=Izz=A1ass•Len 2. For a rod along the y-axis, Iyy=0 and Izz=Izz= Mass -Len 2.

(The formulas for the z-axis case follow similarly.) This product of mass and length

squared would be the only component of the inertia if we were describing the inertia of

each rod about axes through its own center of mass. But since we want to describe the

inertia about axes through the center of mass of the system, we use the parallel axis

theorem to add an additional factor to each of the elements of the inertia matrix. The

parallel axis theorem says P=1+md2 where d is the distance between the current axis

and the new parallel axis about which we wish to determine the inertia. The principal

formula used to deterimine the rotational motion is H=Iw, where H is the angular

velocity vector, I is the inertia matrix, and w is the angular velocity vector. We are

given some initial angular velocity and determine the inertia matrix according to the

input parameters describing the coordinates of the points of the rods and the relations

between the various coordinate systems. We compute the angular momentum once and

then it remains constant. This is because angular momentum is conserved in this

situation. Hence, each time we change the angle between the two rods, we determine

the new coordinates of the rods and determine the new inertia matrix. Since angular

momentum is conserved, we can compute the new angular velocities: w=(1` 1 1 H.

Initially, it was thought that the axis of rotation of the rigid object would be a useful

parameter to determine, but actually the axis of rotation of the system changes every

.*_nstant and for the moment does not appear to be of any use.

A test program prompts the user for the minimal set of input required for the

getinpt routine, namely the force and the point of application. The program determines

6

Zero-Gravity Movement

the yaw, pitch and roll angles frorn this input. From these parameters and the object's

definition, BOX determines the translational and rotational motion due to the impulse

applied. First the velocity V FAt/M is computed, then the translation T=V&t. If

there is rotational motion (determined by the function online) then the angular

momentum, inertia, and angular velocity is determined. The three components of the

angular velocity give the change in angle around each axis and these are the input

parameters to XYZMat which produces the rotation matrix.

2.2. Inertia Routines

In general, the inertia matrix for a three dimensional object takes the following

form:

Izz Ixy Izz 0
lyx lyy Iyz 0
Izz Izy lzz 0
0 0 0 1

The inertia matrix is dependent on the type of object (shape), its composition, and the

coordinates in which the object is defined. If the object's local coordinate system is

defined such that the object's center of mass is the origin of the coordinate system and

the axes of the object (height, length and width) are defined along the coordinate

system's axes, then all of the non-diagonal elements in the above matrix go to zero.

In general, the formulas for the elements in the mat; ix are based on integrating

over the mass distribution. All of these formulas should be integrals with dM as the

differentiable mass element. Hence the resulting values depend on the limits of

integration, which depend in turn upon the shape of the object. The non-diagona!

elements are called the products of inertia. The moments of inertia (diagonal elements)

are:

Iiz= ` (y2+z2)dM

lyy= f (z2+z2)dM

Izz= f (z2+y2)dM

The products of inertia are:

7

ff` Zero-Gravity Movement

Ixy(=lyx)=fxy dM

Ixz(=lzx)= / zx dM

Iyz(=1zy)= rzy dM

The two inertia routines, binertia (BOX) and rinertia (RODS), contain the solutions for

these particlar shapes. In the case of the box the non-diagonal elements are zero since the

box is defined symmetrically in a local coordinate system This means that the center of

mass of the box is the origin of the coordinate system and its coordinates along the axis

are equivalent per axis (i.e. (xj= jxj, jyj= jyj, etc.). Let hx be the length, by be the

height, and hz be the width. Then the moments of inertia are (from the results of the

integration):
Ixx = 1/12 AAhy2+hz2)
lyy = 1 /12 M(hx2+hz2)
Izz = 02 M(hx2+hy2)

The results of the integration for the case of the Tods depends on the axis upon which

the rod is defined. If the rod is defined to lie along the x-axis, then the moments of

inertia (where M is the mass and L is the length) are:
1xx = 0
Iyy = Izz = 1/12 ML2

If the rod is defined along one of the other axes, the moments of inertia follow according

to the same pattern.

If the rod is not defined along an axis, a simple transformation should be computed

to transform the rod's coordinates into a coordinate system where it is defined along one

of the axes. This specification of the rod is critical since the formulas in the inertia

matrix (1=(1112)M•L2) depend upon this configuration.

If we want to determine the inertia matrix in another coordinate system whose

axes are parallel to the initial coordinate system, then an additional factor :nest be

added to each element in the inertia matrix. The paraLel axis theorem describes the

additional factor 181. The theorem says P=1+md2 where d is the distance between the

two origins. Let (a,b,c) be the distance from the new coordinate system's origin to the

old coordinate system's origin, with a, b and c defined in the new coordinate system. Let

8

Zero-Gravity Movement

e denote the new coordinate and z denote the initial coordinate. The new coordinates

are z'=x+a; y'=y+b; i=z+c. To update the diagonal elements of the inertia matrix
we add the extra factor as follows.

Iaa = Ixx+M(b2+c2)
Ibh = Iyy+A4a2+c2)
Icc = Izz+M(a2+b2)

The pattern is to add to the inertia around a given axis the product of the total mass M

and a special quantity. This quantity is the sum of the squares of the two distances

different from the axis which we are determining. In other words, for axis a (or new z),

the special quantity is the sum of the squares of b and c; for the inertia about axis b, the
special quantity is the sum of the squares of a and c; etc. The factor which must be

added to the products of inertia follows a different pattern. The new products are:
lab = Izy+ltfab
Ibc = Iyz+Mbc
Tat = Irz+Mac

The Pattern is to add the quantify which is the product of the total mass M times two of

the distance ratios (a, b, or c). The two ^istance ratios used are the same two defining

the products of inertia. If we are describing the product of inertia with respect to the x

and y axes, then we add the factor Mab; for the product of inertia with respect to the y

and z axes we add Mbc •, etc. This redefining of the inertia matrix into new coordinate

systems is often necessary since local transformations occur frequently in human body

modeling.

The Rinertia procedure determines the inertia matrix of each rod and then adds

the two matrices together. We are allowed to employ the principle of superpos;tion since

the moment of inertia with respect to a given axis of a body made of several of the basic

simple shapes may be obtained by computing the moments of inertia of its component

parts about the desired axis and adding them together [6].

2.3. Center of Mass Routine

To define the center of mass of a system of n particles, let M equal the sum of all
y	 the different masses:

M = ml+m2+ • • • +mn.
Then the center of mass is:

Xcm = [ml•z1+m2•z2+ • • • +mn•x»)/M

Ycm—
^ml-zl+mZz2+
ml•yl+m2•y2+ • • • +mn•yn]/M.

Zcm = 	 • • • +mn•zn /M.

T order to determine the center of mass of a system of two rods, we must treat each rod

F	 9

Zero-Gravity DAovement

as a particle. If we assume the rod has an even mass distribution and that all its mass is

concentrated at the center of mass (of each rod) then we are allowed to treat each rod as

a particle. (We only do this in computing the center of mass, not anywhere else.) The

coordinate values (zn, yn, and zn) represent the current center of mass of each rod in

the current coordinate system.

The two rods are connected at one of their endpoints, but we want to interpret the

two together as one object defined in a local coordinate system centered at the object's

center of mass. This is necessary because when we apply a force, and hence a rotation,

the 'object' or system of rods rotates about the system's center of mass. The center of

mass's coordinates must be (0,0,0) in the local coordinate system for the applied rotation

to make any sense. Therefore, once this procedure determines the center of mass of the

system, it defines a new local coordinate system with this new center of mass as the

origin. The calculated center of mass serves as the translation vector to update all the

points (the endpoints and center of mass) of the object in the new coordinate system.

2.4. Angular and Linear Momentum Routine

Ir the particular case of a rigid body rotating in three-dimensional space about a

fixed point O, the angular momentum of the body about the fixed point O is

HO=J: ri-v;Am;, where ri and v; denote, respectively, the position vector and the

velocity of the particle P; with respect to the fixed frame zyz centered at O. For the

case of a continuous and evenly distributed body, the Am factor is treated as the

constant total mass M and can be moved in front of the summation sign (6]. This

procedure also determines the linear momentum, but it is not currently used by any of

the 'forces' routines. It may prove to be useful in the future and is therefore computed.

3. Path Planning Techniques, Collision Detection and Avoidance
Since an astronaut's ability to move about in a three-dimensional environment is

an important consideration, it is vital that TEMPUS be able to effectively accomodate

such activity. The automatic path planning mechanism planned for TEMPUS is meant

to generate the actual path to be used by the inhabitants of the environment. Path

planning methods which seem most promising for `he needs of TEMPUS are highlighted.

The methods surveyed include configuration space and subdivision algorithms. The

appropriateness of these approaches vis-a-vis the needs of TEMPUS are discussed. The

design and implementation of a clearance detection mechanism is also presented along

10

Zero-Gravity Movement

with a description of how such a facility may be used in an interactive or automatic path

finding mechanism.

3.1. Path Finding

Path finding has been explored in the context of robotics to control the motion of

manipulator arms or mobile robots in an environment with known obstacles. Simply

stated, path finding deals with finding a continuous path that avoids obstacles, from an

object's initial position to a goal position [11l. We will examine two general methods for

automatic path planning: configuration space and subdivision algorithms.

3.1.1. The Configuration Space Approach

The configuration apace approach attacks the problem of finding a path fc: a

polyhedron by reducing it to one of finding a path for a point. Reducing the moving

object to a point greatly decreases the complexity of calculating clearances and collisions.

thus simplfying the whole path finding process. The simplified problem remains a valid

version of the original if the enviromental obstacles are enlarged to compensate for the

reduced moving object.

To transform the moving polyhedron and the obstacle to their respective forms the

following algorithm is used [26]:

1. A point is chosen on the moving object to represent the object. This point is
refered to as the reference point.

2. The moving object is translated such that the reference point is at the origin.

3. Each vertex of the translated object is subtracted from each vertex of the
obstacle.

4. The transformed obstacle is the convex hull (the smallest convex polyhedron)
that contains the points created in step 3.

The extension to the obstacle (Figure 3-1) represents areas in which placing the reference

point would result in a collision between the moving object and the obstacle. The

asymmetry of the extension is due to the fact that if the moving object's orientation is

fixed, the reference point may not approach the obstacle for equal distances from all

sides before a collision occurs.

If the transformation is carried out completely, an environment such as the one

shown in Figure 3-2 is changed to one resembling Figure 3-3. The transformed

environment allows the find-path problem for polygon 'A' to be reduced to finding a

11

r

F

Zero-Gravity Movement

A
s	 ^

v65^a c1¢ A

1	 /6
s

Figure 3-1: Enlarged Obstacle Due To Fixed Orientation of A [26]

path for point RA around the enlarged obstacles. The shortest collision free path for the

reference point consists of piecewise linear paths connecting the initial position and the

goal position via the vertices of the ex tended object [25].

Using the obstacle vertices and the start and goal position as nodes, a graph of the

environment can be formed. Two nodes are adjacent if they can be connected by a

straight line that does not intersect any other obstacle. This approach allows the find-

path problem to be solved via a graph search [25].

The configuration space approach does well in locating paths for objects whose

motion is strictly translational (fixed orientation). The paths it finds are, however, very

sensitive to inaccuraeies in the object model. For an exact model, the calculated path

would result in the moving object just touching the obstacles. The slightest inaccuracy

in the modeling makes collisions almost certain [25].

In most practical applications of path finding the moving object is not restricted to

translational motion. Rotational freedom permits the moving object to use paths that

are not suitable for the strictly translational case. Figure 3-4 illustrates an example in

which the goal is unattainable using translational motion alone; the object can reach its

des't"wa,t ion only when allowed to change its orientation.

The benefits of rotation--1 motion are not without their cost. The environment's

12

Zero-Gravity Movement

Figure 3-2: Untransformed Environment (251

9

Figure 3-3: Transformed Environment (251

v
J
d
h

0
GoA^
x

J
d
N

C

J

d
s

O

--,	 Gam\^^	 x
v
C
N

13

Figure 3-4: Advantage of Rotations

ability to accomodate the actual rotation and the new orientation must now be accessed

13

MONOWIL.

Zero-Gravity Movement

by the path planning mechanism. The actual rotation of the object refers to the area

swept out by the object as it rotates to its new orientation 1241. This is not a trivial

problem and it adds very significantly to the cost of path finding. Only very recently

have sophisticated mathematical tools been applied to the complete six degree-of-freedom

configuration space (three translations and three rotations) to determine paths for non-

convex, three-dimensional objects [15, 17]. So far the results have only been extended to

three degree-of-freedom, fixed base, robot manipulators in fixed (static)

environments [271.

The configuration space approach handles rotations by creating new environments

or *slices* for the rotational sweep and the object in its new orientation. Figure 3-5

shows how an obstacle will differ for each case.

Jill

Ill1 1	l	 i ;
11	 ^	 ^i^ iu	 ^	 l^il

	

i	 i'	 ill'°I
Pte- A, 	 ^-

Figure 3-5: Obstacles Changing Due To Rotation [251

When rotational motion is allowed, the environment is modeled by a series of

slices. In reaching its destination the object may travel within a slice or between slices.

The intea-slice motion represents translational motion while inter-slice movement

signifies changes in orientation. An example of the slice approach is illustrated in Figure

3-6. Notice that inter-slice movement can only be done at points safe in both slices [261.

The intermediate slice corresponds to the object actually rotating to its new orientation.

14

Zero-Gravity Movement

9r	 D
A3

i
J _

A2

S

A,

Figure 3-6: Path Finding Using Slices (251

Although the slice approach provides a solution to path finding that aecomodates

rotational motion, the requirement that a slice be created for each sweep and each new

orientation renders this technique very expensive when dealing with complex objects and

environments. As previously mentioned, each rotation requires the creation of two

additional slices (one for the sweep, and one for the new orientation). If an object has a

single degree-of-freedom, even if the freedom is subdivided into only eight discrete

positions (45 degrees), it may be e-cessary to create 16 slices to model the environment.

If an additional polygon, with the same freedom, is attached to this object it may

become necessary to create additional slices for each slice of the original object. For any

given position of the original polygon the linked polygon is capable of 8 different

orientations, thereby requiring 16 slices, and thus such a linked object may require 162

slices. The sixteen represents the number of discrete samples of each degree-of-freedom,

multiplied by two for the number of slices needed for each differeni rotation. The

exponent signifies the number of rotational degrees-of-freedom (1 for each polygon).

The actual number of slices created may be less than indicated by the formula,

because efficiency measures can be used to rule out certain orientations. The example

shows how quickly the upper limit of blices needed grows with the number of degrees of

15

Zero-Gravity Movement

freedom, and that without efficiency measures path finding using the slice approach may

be an expensive prospect. The objects described above are simple by TEMPUS

standards. The TEMPUS human body model has 38 rotational degrees-of-freedom. The

complete representation of the configuration space for this body (not counting the

flexible spine) would require at least 1632 , or about 1036 slices! As of now there are ao

efficiency measures that can be be applied to these objects, and there is no reason to

believe that any scheme that could bring the number of slices created to a manageable

number would itself be cheap. So at the present, the cost of using even the most

established path finding mechanism for TEMPUS is prohibitive.

3.1.2. A Subdivision Algorithm
The subdivision algorithm treats the environment in the same way as the

configuration approach. The moving object is reduced to a point and the obstacles are

enlarged. The subdivision algorithm differs, however, in the way it goes about finding a

path. It divides the environment into 'cells, • where each cell is then classified as full,

mired, or empty. Full signifies that the cell has no free space and is completely filled by

an obstacle. Alixed implies a cell has some free space. Empty is used to denote cells

which consist entirely of free space [121.

'	 1

r" i - " - ^--	 1	 1	 ' 1	 1

IM
1	 "' .6' 	 1	 1	 ,EI	 ^

Figure 3-7: Enviroment Divided Into Cells (12)

After the environment has been divided the algorithm creates a connectivity graph

(see Figure 3-8) where the nodes of the graph represent cells and are labeled E (empty),

M (mixed) or F (full). There is an edge from each cell to its neighboring cell. The

16

i

Zero-Gravity Movement

algorithm attempts to find a path by traversing the connectivity graph via empty cells.

If no such path is found the mixed cells are further subdivided and the graph traversal is

attempted again. This process continues until either a path is found or the resolution

(subdivision) reaches a limit set by the user (12].

/1I
E M—E	 M-M—M

E /M/M--M\E/ E \E

E — M E	 E—M—E

\ E/	\ /E

Figure 3-8: Connectivity Graph From Subdivision Algorithm (12]

The size of the cells represents a tradeoff. If the cells are made large, the resulting

graph will be simpler but a greater number of iterations will be needed to find a path.

For smaller cells the graph may be unnecessarily complicated but the algorithm will

require fewer iterations. The size should be based on the environment. For cluttered

environments small sizes are preferable; for open environments larger cells are

adequate [12].

3.2. Path Finding in a TEMPUS Framework
The most interesting features of the methods discussed are the manners in which

the environment is represented. The approach of converting the environment to a graph

and then traversing the graph to find the path can be exploited in TEMPUS. The

designers using TEMPUS know, for example, that certain areas represent corridors,

hallways, hatches, etc. This knowledge can be used to facilitate path finding.

One possibility would be for the designer to create a master graph of the layout,

consisting of areas connected by passageways or corridors. To get from a position to a

1 i

17

Zero-Gravity Movement

goal, the path planning mechanism would consult the master graph to see which passages

connect the area in which the astronaut is currently situated to the area in which the

goal is located. The mechanism would then find a path for the astronaut through his

area to the corridor indicated by the master graph. The astronaut would then proceed

via corridors to the goal area. Upon the astronaut's arrival at the goal area the path

planner would find a path from the passageway through the goal area to the actual goal.

This scheme has the possibility of simplifying path finding in two ways. First,

when the path planning mechanism is finding a way to a passage, or from a passage to a

goal, it only needs to consider a subset of the layout. Therefore, the path finder has

fewer obstacles to consider and the cost of enlarging, creating local graphs and traversing

them is reduced. Second, since the corridors are designed for easy passage for the

astronaut in a given position or positions, only specified slices need be considered. This

is just an idea of how graph representation combined with knowledge of the enviroment

may be used to attempt path finding. As of now no such mechanism exists.

The configuration space and subdivision methods represent the state of the art in

path finding. They provide some direction in designing a path planning mechanism for

TEMPUS, but in their given form they are inappropriate. These algorithms are

inefficient even for simple non-jointed objects; for an application such as TEMPUS

w) , ich deals with complex, multi-jointed objects with many degrees of rotational freedom

their cost would be prohibitive.

3.3. Clearance Detection

A primitive path planning mechanism may be possible if it could ignore the

complexity of TEMPUS objects and consider only approximations such as a bounding

box or a convex hull of the object. This approach would greatly simplify path finding

with the following consequences: any path generated would be for the approximated

object, and the mechanism may not detect paths requiring TEMPUS objects to use

complex motions such as joint rotation. Both these conditions can be managed if the

paths produced are treated as recommendations and the user is given the tools necessary

to evaluate the adequacy of the suggested paths.

Collision detection and clearance detection are tools that would be invaluable to a

user trying to evaluate any path. These have been designed and implemented in

TEMPUS. Clearance detection finds the closest components of two objects and the

18

'—^ h ►overnen 4^oa w,\I
Cayse col\IS ion

d ig+ance.

"CEvrntd

i^ clev^^o^ru.c

1G;Gc'^IOn

Zero-Gravity Movement

distance between them. This information can help the user decide whether a figure can

fit between two objects or if the fit is too tight. The user may also locate the narrowest

spot in the path and test if the path is actually usable. Once a path is found the user

may try people of different sizes in the path to get an idea of exactly how ►such room a

path allows.

The applications of the clearance detection facility are not limited to primitive

path finding mechanisms. It is extremely useful in other circumstances as well. In a more

advanced path finding mechanism it may simplify the path finding problem because the

information it provides can be used to limit the freedom of movement of TEMPUS

objects. A great deal of freedom, as noted previously, complicates the task of path

planning because of the substantial cost it imposes on the path finding computations.

Figure 3-9: Using Clearance Detection To Limit Movement

If the clearance test indicates a component of an object to be very close to some

obstacle, any rotational or translational motion that moves the component in question

closer to the obstacle can be dismissed (see Figure 39). Relative to the path planning

mechanism, the screening of certain motions is effectively the same as reducing the

movement freedom of the object, thus simplifying the 'ask of path finding.

The scope of clearance detection is not limited to path finding since it is very

useful in other important TEMPUS functions such as reaching and evaluating object

configurations. For a person in any given position TEMPUS allows the creation of a

workspace: the polygon encompassing the set of points reachable by the person. If an

19

Zero-Gravity Movement

object is not within the workspace of a person the clearance test may be applied to

calculate the distance between the workspace and the object (Figure 3-10). The result

can be used to determine how the person should move next. For example if the

astronaut is sitting in a chair and wishes to reach a switch, the clearance test can be

used to decide whether the astronaut has to rise and walk or just lean forward.

w-

GC.-1T I_—
A l s^anc e

Fe4un, _ J 6,(
cleo rcmce

Figure 3-10: Using Clearance For Reaching

Further details on the TEMPUS clearanc#_ detection algorithm have been reported

previously [2].

3.4. Interactive Technique

While collision avoidance techniques can be used to determine initially plausible

paths, and simple collision detection techniques can be used to ensure the validity of the

exact derived paths, the overall computational complexity involved really forces us to

adopt an interactive graphical approach to path planning and assessment.

Given the existence of adequate real-time graphical display capabilities we can

substitute interaction for automatic planning. For example, three-dimensional view

control can provide much (though not all) of a collision detection assessment: the

operator can interactively and incrementally move the view to check for visual spacing

20

Zero-Gravity Movement

between objects. The only weakness is when one object has a concavity that is (partially)

filled by another object. Then no global view will directly disclose the actual

penetration; the only graphical recourse is to clip the objects by a plane passing through

both, and visually check for intersection along a series of clipping planes throughout the

concavity. This operation is made feasible by a feature on most real-time display

systems to specify and manipulate a front clipping plane in real-time. In particular, the

III 500 display purchased for NASO-17239 has the required capability.

Although a bit more tedious, the clipping plane approach to collision detection may

be extended to motion of one or more of the objects or figures along their respective

paths of motion. Given a (pre-computed) path, for example, the object may be 'flown'

repeatedly along the path and visually inspected for interference by real-time

manipulation of the viewpoint. Where a collision is suspected, the motion may be

stopped and the configuration viewed in detail.

With the new generation of high-speed graphics workstations, it will probably

become feasible to perform some partial collision detection 'on-the-fly' during display

update using a bounding box approach. The objects to be displayed have orthogonally-

oriented rectangular prisms for bounding boxes which are not drawn on the screen. By

incorporating a suitable spatial 'hashing' scheme, neighboring boxes may be tested

against one another to detect possible intersections. While the number of boxes used

may be limited, it could be of significant help during interactive coarse motion planning.

The other principal advantage to a real-time interactive graphics system for motion

planning is that the user would have full control over all the degrees of freedom of the

figures involved. The substitution of human intelligence for (as yet unknown) zero-

gravity motion heuristics could make the difference between a usable, successful system,

and a slow, unresponsive planner. That is, the human operator would be able to

manipulate the joints of the figures to achieve fairly close positional solutions in the

extensive joint space of the human body. Using a real-time reach positioner based on

six-dimensional inputs, the user could quickly experiment with potential body limb

configurations while maintaining reseasonable real-time collision detection as noted

above. The time needrd to find a configuration by manual experimentation is apt to be

significantly lower than that of any automatic method presently conceived. By

computing distances between the user-controlled reach selection point in space and

nearby s:irfaces, a semblance of 'real' surface feel could even be achieved. In this

21

Zero-Gravity Movement

fashion it would not be possible to move the limbs into illegal intersections with the

environment.

The system we would recommend for implementation would use interactive control

and some planning heuristics. Since the automatic planning methods are expensive they

would be suitable for coarse motion planning. Manual motion planning techniques, on

the other hand, are computationaliy cheaper and more general, but are not be

guaranteed to obtain a solution if one exists. Thus a balance between both is necessary,

as the problem is practically intractable otherwise. In addition, the hybrid system may

be easier to use and control by an experienced operator.

4. Data Collection 'Techniques

Many zero-gravity path heuristics used can be derived primarily through

observation and analysis of films 141 of astronauts moving in zero-gravity (such as the

Skylab films), scrutiny of their relevant comments, discussions with them about specific

problems and techniques 1291. An important requirement is that the system should have

a good subjective feel and its performance must degrade g-acefully. The difficulty the

system has in finding a path must reflect the difficulty an experienced astronaut in a

known environment would have finding a path. For example, most astronauts appear to

favor locomotion using the hands to maintain a grip and stability restraint, rather than

using the legs or floating free.

"-n the next section will be look at. an extensive proposal fcr an hierarchic

simulation system which could take advantage of heuristics and knowledge of path

planning as this information became available.

b. Proposal for an Hierarchic Simulation System

Complex processes such as zero-gravity human motion and task-directed activities

pose certain problems for trLAtional simulation and reasoning techniques which emply a

single level approach to the study of the nature of processes. In certain applications this

single level view is entirely acceptable, especially when considering a microcosm of a

large process or strinpiy a liuuted process. In many other instances, howr, ver, processes are

complex and naturally defined in terms of hierarchies. This hierarchical decomposition

!ends to organize the components of the simulation in a more effective manner.

Unfortunately in traditional simulation, hierarchies are used strictly for organizational

purposes. In this new line of research, we)resent more powerful abstraction hierarchies

22

Zero-Gravity Movement

which represent processes and objects using layers of nets each of which involves a valid

simulation at a given level of detail.

The extensive proposal presented as Appendix I presents a definition of

hierarchical reasoning about processes using different abstraction levels. Through

hierarchical reasoning, the analyst is given much freedom in controlling the flow of

actions for a given set of processes over an arbitrary number of levels.

A potential implementation of the hierarchical reasoning theory called HIRES is

also presented. HIRES allows the user to reason in a hierarchical fashion by relating

certain facets of the simulation to levels of abstraction specified in terms of actions,

objects, reports, and time. High and low level knowledge about interacting, complex

processes is integrated into a unified methodology.

This research is prompted by the need to adequately study human motion in a

spacecraft environment. One of the major components of such a study is a simulation

system that permits an analyst to model the ^-vironment, set up initial conditions, and

then simulate some aspect of the environment. The study of articulated motion of human

figures is sufficiently complex to warrant the use of the proposed reasoning system.

Hierarchical reasoning methods may be employed to both reduce computational

complexity during simulation and allow the analyst to better comprehend the processes

being simulated.

6. Conclusions
The conclusion of this report is that zeio-gravity motion studies should be

undertaken in the context of a hybrid system combining interactive human positioning

and movement with some automatic path finding techniques. The interactive part

should be implemented on a real-time display system permitting the simultaneous control

of at least six degrees-of-freedom of the human model. The resulting t;:)sitions and

motions should be visually inspected for collisions and interference. Path planning will

initially be an interactive activity. As the interactive code is used, real-time geometric

tests fo, limb reach and object collisions should be developed. If possible, these tests

should be extended to handle object to object intersections at the graphics workstation

code level.

While the interactive system matures, an hierarchic simulator should be

i

23

Zero-Gravity Movement

implemented both to enable more effective use of computational resources and to remove

as much of the detailed manual positioning task as possible from the operator. This

simulation system also provides a representational framework upon which known (or

potential) movement heuristics may be implemented and tested.

Finally, the dynamics of articulated human motion must be completely defined for

the zero-gravity environment and routines to simulate and compute the body's

movement response to external or internal forces must be designed. This stage will

necessarily include integration of human strength models in order to properly handle

internally-generated forces. Suitable information on the allowable levels of reactive

forces on environmental objects will also be required. The principal challenge here is to

properly deign the integrated system to permit effective operator interaction and

control between kinematics and dynamics.

7. Schedule and Resou. ces

The tasks outlined in the Conclusion could be realized over a four year period if

suitable personnel were directed to its implementation. The schedule would, of course,

differ if other directions were taken. In particular, a completely interactive system may

take only two years, while a more elaborate path planning facility would take longer. It

is assumed that appropriate real-time graphics display equipment already exists; such is

the case on the current NASA contract. The approximate timetable for a zero-gravity

motion studies system is given in Table 7-1.

The time milestone is the length of time from project inception (not a duration) to

the completion of the indicated tasks. The tasks are a summary of the work needed to

fulfill the system requirements discussed in the Conclusion. Each task refers to one
graduate research assistant. This is a half time load (20 bours/week). Thus multiple

+asks for one time milestone are assumed to proceed in parallel, and a total of two

individuals for three years are required.

The resources required are summarized in Table 7-2. The monetary estimates are

based on solely on 1085 University of Pennsylvania rates including employee benefits,

tuition, and overhead as applicable. There is no provision for inflation; that may be

projected by NASA as necessar-1.

24

25

Zero-Gravity Movement

Table 7-1: Zero-Gravity Motion Studies Schedule

Tine Milestone I Task (per staff member)

year 0.6	 1 Real-time action playback.
I Representations for hierarchic simulator.

----------------•--
year 1	 I Real-time positioning.

I Elaboration of several levels of the hierarchic simulator.
----------------+---

year 2	 1 Integration of playback/positioner with simulator.
I Simple force input for articulated body dynamics.

----------------+--
year 2.6	 1 Refine simulator; determine and encode 0-g path heuristics.

I Determine forces from strength model and environment.

year 3	 1 experiment with real-time collision detection.
I Integrate dynaa_a.cs model into TEMPUS.

----------------+--
year 4	 1 Build motion planning system for coarse motion strategies.

I Integrate dynamics model into simulation and planning
system.

----------------+--

Table 7-2: Zero-Gravity Motion Studies Resources

2 Graduate Research Assist.its for duration of project =60K/year
Faculty supervision time (10% of academic year)1OK/pear
Equipment:

Travel, current expense, duplicating, etc34K/year

---------------------------•---

Totals:
Year 1: 094K
Year 2: $94K
Year 3: $94K
Year 4: $94K

-------------------------------------•---

Zero-Gravity Movement

8. Bibliography

1. Howard Anton. Elementary Linear Algebra. John Wiley and Sons, New York, NY,
1977.

2. Norman I. Badler, Jon Korein, Paul Fishwick, Jeff Gangel, and Jane Rovins.
TEMPUS: Simuiating personnel and tasks in a 3-D environment. Progress Report #16,
NAS9-16634, Dept. of Computer and Information Science, University of Pennsylvania,
October, 1984.

3. Norman I. Badler, Philip Lee, and Sui Wong. Strength Modeling Report. Dept. of
Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 1985.
(For NAS9-1663.1).

4. Norman I. Badler. Motion Analysis Report. Dept. of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA, 1985. (For NAS9-16634).

b. P. Bapu, S. Evans, P. Kitka, M. Korna, and J. McDaniel. User's guide for
COifBIMAN programs. Univ. of Dayton Research Institute, January, 1981. U.S.A.F.
Report No. AFA_MR1rTR-80-91.

6. Ferdinand P. Beer and E. Russell Johnston Jr.. lector Mechanics for Engineers:
Statics and Dynamics. McGraw-Hill, New York, 1977.

7. F. M. Blakeley. n CYBERMAN • . Chrysler Corp., Detroit, MI, June, 1980.

8. Mary L. Boas. Mathematical Method in The Physical Sciences. John Wiley and
Sons, New York, NY, 1966.

0. John P. Boysen, Peter R. Francis, and Rex A. Thomas. • Interactive computer
graphics in the study of human body planar motion under free fall conditions • . Journal
of Biomechanics 10 (1977), 783-787.

10. Michael Brady, John M. Hollerbach, Timothy L. Johnson, Tomas Lozano-Perez,
Matthew T. Mason (Ed.). Robot Motion: Planning and Control. NET Press,
Cambridge, MA, 1982.

11. Rodney A. Brooks. Solving the Find-Path Problem by Representing Free Space as
Generalized Cones. 674, MIT Artificial Intelligence Laboratory, May, 1982.

12. Rodney A. Brooks and Tomas Lozano-Perez. A Subdivision Algorithm in
Configuration Space for Findpath with Rotation. 684, MIT Artificial Intelligence
Laboratory, December, 1982.

13. Rodney Brooks. Solving the find-path problem by good representation of free
space. Proc. AAA] National Conf. on Artificial Intelligence, Pittsburgh, PA, 1982, pp.
381-386.

14. T. Calvert, J. Chapman, and A. Patla. • Aspe-ts of the kinematic simulation of
human movement' IEEE Computer Graphics and Applications 2, 9 (November 1982),
41-50.

16. John Canny. Collision detection for moving polyLedra. 806, MIT Artificial
Intelligence Laboratory, October, 1984.

26

Zero-Gravity Movement

16. Jesus Depena. 'Simulation of modified human airborne movements'. Journal of
Biomechanics 14 (1981), 81-89.

17. Bruce R. Donald. Motion planning with six degrees of freedom. 791, MIT Artificial
Intelligence Laboratory, May, 1984.

18. M. Dooley. 'Anthropometric modeling programs - A survey'. IEEE Computer
Graphics and Applications 2, 9 (November 1982), 17-25.

10. J. T. Fleck, F. C. Butler, and S. L. Volgel. An improved three dimensional
computer simulation of crash victims. DOT .-HS-801, 507-510, Dept. of Transportation,
NHTSA, April, 1975.

20. Cliff Frohlich. 'The physics of somersaulting and twi.-ting'. Scientific American
(September 1981), 155-164. (The Amateur Scientist).

21. Michael Girard and A. A. Maciejewski. 'Computational modeling for the computer
animation of legged figures'. Computer Graphics 19 (1985). to appear.

22. R. Harris, J. Bennet, and L. Dow. CAR-II - A revised model for crew assessment of
reach. 1400.06B, Analytics, Willow Grove, PA, June, 1980.

23. E. Kingsley, N. Schofield, and K. Case. 8 SAb1MIE-a computer aid for man-
machine modeling'. Computer Graphics 15, 3 (August 1981), 163-169.

24. James U. Korein. A geometric investigation of reach. MIT Press, Cambridge, MA,
1985.

25. Tomas Lozano-Perez. Spatial Planning: A Configuraticn Space Approach. 605,
MIT Artificial Intelligence Laboratory, December, 1980.

26. Tomas Lozano-Perez. 'Automatic Planning of Manipulator Transfer Movements'.
IEEE Transactions on Systems, Man and Cybernetics 11, 10 (October 1981).

27. Tomas Lozano-Perez. Colloquium. (at University of Pennsylvania, 1985).

28. Tomas Lozano-Perez and Michael Wesley. 'An algorithm for planning collision-free
paths among polyhedral obstacles'. Comm. of the ACM 201 W (October 1979), 560-570.

29. J. R. Morrow Jr., J. Boelter, W. W. Hosler, and J. Jackson. Man-machine analysis
of translation and work tasks of Skylab films. Final Report, NAS9-15521, NASA JSC.

30. M. R. Ramey and A. T. Yang. 'A simulation procedure for human motion
studies'. Journal of Biomechanics 14, 4 (1981), 203-213.

31. D. H. Robbins, R. O. Bennett, Jr., and B. Bowman. User-oriented mathematical
crash victim simulator. Proc. 16th Stapp Car Crash Conf., 1972, pp. 128-148. SAE
Paper No. 720962.

32. Micha Sharir and Elka Ariel-Sheffi. On the Piano Movers' Problem: Various
Decomposable Motion Planning Problems. 58, Dept. of Mathematical Sciences, Univ. of
Tel Aviv, and Computer Science Dept., Courant Institute Of Mathematical Sciences,
New York Univ., Feburary, 1983.

33. Paul C. Shields. Elementary Linear Algebra. Worth Publishers, New York, 1980.

27

Zero-Gravity Movement

34. Jearl Walker. 'The essence of ballet maneuvers is physics , . Scientific American
(June 1982), 146-153. (The Amateur Scientist).

35. Jane Wilhelms. The simulation of animals, robots, and other articulated
mechanisms using dynamics. Dept. of Computer Science, University of California,
Berkeley, CA, 1984.

28

Zero-Gravity Movement

I. Hierarchical Reasoning

This Appendix consists of Paul Fishwick's PhD Dissertation proposal. The pages

are separately sectioned and paginated from the body of the Zero-Gravity Movement

report. A Table of Contents for this Appendix is therefore included.

29

Hierarchical Reasoning:
Simulating Complex Processes

over Multiple Levels of Abstraction

Paul A. Fishwick

Dissertation Proposal

May 1085

Hierarchical Reasoning

Table of Contents

1. Introduction 3
1.1. Overview of this thesis 3
1.2. Problem Statement 3
1.3. Recent Related Work 4

1.3.1. Qualitative Reasoning Systems 4
1.3.2. STEAMER 5

1.4. Contributions of this Thesis 5
1.4.1. Identifying types of abstraction 5
1.4.2. Goals 6

1.5. Terminology 6
1.6. Overview of Chapters 7
1.7. Background 7
1.8. Applications 8

2. Background Areas of Interest 9
2.1. Human Motion 10
2.2. Computational Geometry 11
2.3. Robot ics 12
2.4. Classical Simulation 13

2.4.1. Simulation as an Analysis Tool 13
2.4.2. Two Categories of Simulation 13
2.4.3. Discrete Simulation Languages 14
2.4.4. Continuous Simulation Languages 14
2.4.5. A Combination of Continuous and Discrete Methods 15
2.4.6. Problems with Classical Systems 16
2.4.7. AI Simulation 18

2.4.7.1. Quantitative and Qualitative Reasoning 16
2.4.7.2. STRIPS 18
2.4.7.3. Recent Simulation Research 18

2.5. Planning 21
2.5.1. An Overview of Planning Methodologies 21
2.5.2. Creating Plans with Time Constraints 22
2.5.3. Collision Avoidance Planning 23

3. An Application: EVA 25
4. Hierarchical Reasoning 29

4.1. The Need to Explore Hierarchical Reasoning 	 29
4.2. Definitions	 31
4.3. Modeling Abstraction	 31
4.4. Multi-Level Abstraction	 32
4.5. Computational Efficiency	 32
4.6. Overview	 32

1-i

Hierarchical Reasoning

4.7. Types of Abstraction 33
4.8. Relaticnships among Abstraction Types 34

4.8.1. The Basic Triad 34
4.8.2. Pure Object Abstraction 35
4.8.3. Pure Process Abstraction 35
4.8.4. Spatial Abstraction 35
4.8.5. Complementary Representations for Spatial Abstraction 36

4.9. Defining Key Abstraction Types 37
b. Process Abstraction 39

5.1. What is a Process? 39
5.2. The Traditional View of Process Abstraction 39
5.3. Creating a New View of Processes 40
5.4. Definition of the formal process model 41
5.5. Process Abstraction Net 41

5.5.1. Choosing a formal model 41
5.5.2. Choosing an informal model 43
5.5.3. Implicit Semantics 45
5.5.4. Explicit Semantics 46

5.6. Knowledge Base 46
5.7. Control Mechanism 46
5.8. Simulation with Process Abstraction 47

6. Object Abstraction 49
7. An Initial Implementation 51

7.1. Overview 51
7.2. Abstraction Functions 51

7.2.1. Process Abstraction 51
7.2.2. Object Abstraction 52
7.2.3. Report Abstraction 52

7.3. Controlling the Flow of Simulation 53
7.3.1. Starting the Simulation 53
7.3.2. Assigning Abstraction Levels 53

7.4. An Example: A Day in the Life of a Clock 56
8. Conclusions 61
A. References 63
Appendix A. An Alarm Clock Simulation 71

I-ii

Hierarchical Reasoning

List of Figures

Figure 3-1: EVA Checklist 27
Figure 4-1: Basic Abstraction Triad 34
Figure 5-1: A Process Hierarchy 40
Figure b-2: An example Petri Net 43
Figure 7-1: Alarm Clock Hierarchy 56

Hierarchical Reasoning

Abstract

This thesis presents a definition of hierarchical reasoning about processes using

different abstraction levels. Most simulation (or process reasoning) systems permit the

monitoring of a single level of abstraction. Through hierarchical reasoning, the

analyst is given much freedom in controlling the flow of actions for a given set of

prccesses over an arbitrary number of levels.

An implementation of the hierarchical reasoning theory called HIIIES is also

presented. HIRES allows the user to reason in a hierarchical fashion by relating

certain facets of the simulation to levels of abstraction specified in terms of actions,

objects, reports, and time. High and low level knowledge about interacting, complex

processes is integrated into a unified methodology.

I-1

1-?

Hierarchical Reasoning

Acknowledgments

— to be completed —

Hierarchical Reasoning

Chapter 1

Introduction

1.1. Overview of this thesis

This thesis presents a new theory for hierarchically reasoning about processes

involving complex actions and a variety of objects. In reasoning hierarchically, the

analyst is able to view the Simulation model as a hierarchy of abstractions in terms of

processes, objects, time and reports. A sample implementation of the theory, called

HIRES (Illerarchical REasoning System), is also presented. Interactive sessions and

example simulations are given for a simple alarm clock model and a more detailed

spacecraf t environment including moving human operators.

1.2. Problem Statement

Traditional simulation techniques and reasoning methods have employed a single

level approach to the study of the nature c! processes. In certain instances this single

level view is entirely acceptable, especially when considering a microcosm of a large

process or simply a limited process. In many other instances, however. processes are

complex and naturally defined in terms of hierarchies. This hierarchical

decomposition tends to organize the components of the simulation in a more effective

manner. Unfortunately in traditional simulation, hierarchies are used strictly for

organizational purposes. In this new line of research, we present more powerful

abstraction hierarchies which represent processes and objects using layers e! nets each

of which involves a valid simulation at a given level of detail.

This research i, prompted by the need to adequately study human motion in a

spacecraft environmzat. One of the major components of such a study is a

simulation system that permits an analyst to model the environment. set up initial

conditions, and then simulate some aspect of the environment. The study of

I-3

Hierarchical Reasoning

articulated motion of human figures is sufficiently complex to warrant the use of the

proposed reasoning system. Hierarchical reasoning methods may be employed to both

reduce computational complexity during simulation and allow the analyst to better

comprehend the processes being simulated.

1.3. Recent Related Work

The theory and implementation of the hierarchical reasoning paradigm discussed in

this thesis owes much to the past research in the areas o! general simulation,

knowledge representation, and abstract reasoning (such as qualitative reasoning).

Many of these important efforts are discussed in chapter 2. To put the new concept

of hierarchical reasoning into proper perspective, a subset consisting of several recent

key research areas is briefly discussed. Then in the next section the specific unique

contributions of this thesis are outlined and contrasted against the previous work.

1.3.1. Qualitative Reasoning Systems

Qualitative Reasoning involves a high-level of reasoning about a given process.

Expert knowledge and heuristic information are used to form the semantics of a

system based on qualitative reasoning. This type of reasoning is often used to

understand the nature of processes and is to be differentiated from the type of

reasoning utilized in the development of semantics for lower level classical simulation

systems.

There are several qualitative reasoning systems such as (de Kleer 79, Forbes 81al to

cite specific examples. DeKleer's system allows the analyst to reason about electrical

circuits. DeKleer's other work includes ent'iaioning which represents predictions on

the sequence of events that can occur at a given time, and a qualitative theory of

differential equations in (QR. 84;. Forbus' system (called FROB) allows the user to

reason abo^it a • bouncing-ball • environment using a set of high order, abstract

semantics. Forbus terms this new set of semantics • Qualitative Process Theory'

which is discussed completely in (QR 841.

It is important to note that qualitative reasoning represents a methodology for

reasoning about processes at a single level of abstraction. Although, this new, higher

I-4

Hierarchical Reasoning

level of abstraction is critical in the comprehension of processes in general, the

theories invo:ved with strict qualitative reasoning do not aLow for multiple levels of

abstraction. Nor do they allow for the ability to choose various levels of abstraction

during the course of a given process simulation. Hierarchical reasoning, on the other

hand, permits multiple levels of abstraction during the simulation and gives the user

methods for focusing on different aspects of the simulation at different abstraction

levels.

1.3.2. STEAMER

STEAMER (Hollan 8 .11 represents a substantial development in terms of allowing an

analyst to reason about a steam propulsion system in terms of graphical icons and

displays. In the example simulation of the steam plant, there are roughly 100

pictures that represent a hierachical description of the system. The pictures are

accessed in a hierarchical fashion, since the user may wish to view the system as a

whole (i.e. the basic steam cycle) or in parts.

The hierarchy present in the objects within STEAMER represents an object

hierarchy and not a process hierarchy. More specifically, there is d single level of

abstraction in terms of the actual process. The user is allowed •a view various levels,

but these different levels rely on the underlying mathematical level which controls

the simulation. The simulation of the steam propulsion system does not rely on the

type of qualitative semantics commonl y found in qualitative reasoning systems. The

results viewed by the user can be qualitative, but the underlying, computational

model is not.

1.4. Contributions of this Thesis

1.4.1. 3dentlfying types of abstractlon

This thesis contributes the notion of hierarchical reasoning in terms of a basic

theory, an implementation, and representative examples. The theory of hierarchical

reasoning is based upon three primary types of abstractions:

1. Object Abstraction - The view .,f an object can take many different forms
depending on the level of abstraction associated with the object. If the

I-5

Hierarchical Reasoning

object is large (relative to an agent's size) and can be explored from
within, then the object can be internally described as being composed of
various partitions. U the object is small, then the object can be described
using either coarse (i.e. bounding volume) descriptions or more specific
descriptions (i.e. surface description or solid-geometry model). The object
hierarchy within STEAMER provides a good example of allowing the user
to view object abstraction from a graphical per.,pective.

2. Process Abstraction - The view of a process can be seen at a fairly low
level, using mathematical terms, or at a high level (using qualitative
reasoning).

3. Report Abstraction - The view of the simulation can be filtered by having
only certain levels of 1)-:,cess abstraction output to the user.

1.4.2. Goals

The primary goals of this thesis are:

• Create a taxonomy for abstraction. The general notion of abstraction as it
relates to process simulation and reasoning is described in specific terms.
Types of abstraction are presented. The relationships among each type
are explored.

• Create formal definitions for process and object abstraction. These
definitions will include the method of hierarchically reasoning about
processes in that specialized hierarchies of processes and objects are
described.

• Create an implementation to allow a user to exercise the various
abstraction concepts defined.

1.5. Terminology

The term • hierarchical reasoning* is used since one is able to reason about

processes by taking advantage of the inherent abstractions of processes, actions, and

objects. Hierarchical reasoning is a different type of reasoning than qualitative

reasoning in the following way: qualitative reasoning involves the description of a set

of semantics to be used in high-order reasoning about processes, whereas hierarchical

reasoning involves a set of capabilities that allow the user to control the now and

structure of processes. Therefore qualitative reasoning deals with defining semantics

for a single abstraction level. Hierarchical reasoning deals with defining methods for

monitoring and controlling the now among many abstraction levels. Some of the

I-6

Hierarchical Reasoning

high-order process levels used when reasoning hierarchically may in fact be defined

using the semantics commonly found in the qualitative reasoning literature.

I.G. Overview of Chapters

Chapter 2 presents the general areas of study that impinge upon the proposed area

of research. The areas of human motion, computational geometry, robotics,

simulation, and planning are briefly covered.

Chapter 3 describes the primary application to be used to describe the abstraction

concepts: EVA (Extra Vehicular Activity).

Chapter 4 defines the concept of hierarchical reasoning. The notions of abstraction

and a taxonomy for abstraction are outlined. The relationships among the abstraction

types are enumerated in the form of a triad.

Chapter 5 defines a formal model for process abstraction.

Chapter 6 defines a formal model for object abstraction.

Chapter 7 presents an initial implementation of some of the abstraction concepts in

the form of a message-passing system. The function of an alarm clock is used as an

example.

Chapter 8 discusses some preliminary conclusions and contributions of this research.

Problems discovered during the work and suggested courses for further research are

outlined.

1.7. Background

A few years ago, an interactive software system called TEAfFUS [Badler 83alwas

initiated. The major goals of TEMPUS were to create a set of advanced graphics

capabilities, anthropometric databases, and body modelling functions to aid in the

study of human motion. Recently there has been work done in the areas of user

interface (Weinstein 83, Bloom 831 and reach kinematics [Korein 841. Currently, an

I-7

I-8

Hierarchical Reasoning

animation system is in the planning stage and should help in creating film and video

animation of human models.

Much of the underlying framework necessary for the study of human motion has

been developed during the course of the TEMPUS project. The project has a strong

3-D CORE [CORE 791 implementation, several graphics utilities [Shapiro 841, and

significant low-level geometric facilities [Korein 841. A new research direction

concerning the simulation and planning of multiple agent activities within a space

(zero-gravity) environment is underway. This new work will rely on the foundation

created through prior years on the TEMPUS project. The new research, however, is

concentrating mainly on issues whose bases lie within the artificial intelligence

dorrain. Specifically, the areas of parallel and hierarchic planning, collision avoidance

planning and simulation based on a complex 3-D world model are being pursued.

The world model will include a set of objects and actions whose effects wil'. be

constrained by the zero-gravity environment within the workstation.

1.8. Applications

This research is prompted by NASA Johnson Space Center Contract NAS9-17239

and Army Research Office Grant DAAG29-84-K-0061. The primary goals of the

work includes the study of human motion within a space environment. Such an

environment might include a shuttle or orbiting space station where several complex

on-board and extra-vehicular tasks are performed during the mission.

Hierarchical Reasoning

Chapter 2
Background Areas of Interest

This chapter covers several areas that are relevant to the proposed theory of

hierarchical reasoning. These areas are not a direct part of the proposed research,

however, they serve as background areas so that a foundation may be laid for the

theory and implementation of hierarchical reasoning in future chapters. All areas are

active research areas that have been studied for the past fifteen years or so. The

areas that we will review will be the following:

L Human motion - This is clearly the focus of the project's overall
research efforts and therefore one of the primary areas of interest. Much
of the work done within this area, however, has not addressed itself to the
simulation and planning aspects of a true human motion system.

2. Computational Geometry - At the bottom of all of the high-level
functions that we wish to possess, we find the geometric objects and
human models themselves. The quantitative attributes of a model, such
as a space station and its contents, must not be sacrificed when the
motion modeling is underway. Our motion system, for instance, should be
able to tell us when something is physically impossible or impractical.

3. Robotics - Humans move in a way not unlike the way that robots move
(at least theoretically). The robotics domain provides equations of motion
that can be applied to human joints and appendages so that we may
better understand human limb movement. Human movement is much
more complicated due to the articulation and spherical joints of the
human body, however, many of the basic motions of both robots and
humans may be compared if we do not analyze the joint movements to a
great level of detail.

4. Classical Simulation - Classical simulation techniques are explored (i.e.
both discrete and continuous approaches). These systems represent the
first study of simulating and reasoning about processes.

5. AI Simulation - Simulation systems constructed within the Al domain
are presented. These systems are more recent than the classical simulation
systems, and they are more concerned with representing and manipulating
symbolic knowledge in addition to quantitative knowledge.

I-9

Hierarchical Reasoning

B. Planning - What is the most efficient method of achieving task A, given
a number of initial conditions and a goal? Planning can help us to
determine an efficient method of accomplishing a task.

2.1. Human Motion

There has been a fair amount of work done in the study of human motion. Much of

this work, however, has not dealt with simulation or planning to any great level of

detail. Some of the earlier work was based on Labanotation [Hutchinson 001.

Labanotation is a notation for human movement which uses symbols to describe the

movement and orientations of the joints over time. Labanotation scores are much

like musical scores in their time representation attributes. Early human movement

work often entailed the construction of an interpreter for Labanotation [Smoliar 77).

Other work such as [Calvert 801 discussed a mixture of labanotation techniques with

analog interpretation of body movements (using an electrogoniometer).

Badler described a taxonomy for conceptual movement descriptions [Radler 751

(including human motion) and also co-authored a survey article dealing with human

movement representations [Badler 791. A recent publication discusses the ineoporation

of dynamics into human movement [Badler 83b]. Dynamic effects yield a more

accurate simulation of human motion than has been previously explored. Zeltzer

describes a method for describing the motor control of various skeletal parts [Zeltzer

821 using finite state automata. He uses the broad jump and a short walking

sequence as examples of skeletal motion. Zeltzer also mentions possible directions in

human motion simulation using a production system model [Zeltzer 831.

Weber [Weber 781 defines a set of types that might be used in a human movement

simulation system. Tsotsos [Tsotsos 801 has designed a system called ALIEN which

includes frame-based knowledge cf ventricular heart motion.

There has been little work in applying Al techniques to the problems found in the

human motion domain. The work of Radler [Badler 751 includes descriptions of

various motion representations using frame knowledge, however, there is much more

work to be done. The research under the NASA project at the University of

Pennsylvania is currently concentrating in this area.

I-10

Hierarchical Reasoning

2.2. Computational Geometry

If one is to have a reliable simulation or planning system, it is essential that the

geometry of the environmental components be considered. Many of the examples

given in Al literature tend to ignore geometrical considerations when describing such

things as moving blocks and picking objects. To some extent, this is quite

understandable, given the difficulty and computational overhead in precisely defining

an accurate geometric simulation. Nevertheless, we consider the geometrical aspects

of the simulation to be important if one is to maintain a reliable system.

Collision detection has long been a topic of research with its primary applications in

the robotics domain. See section 2.3 for a discussion on the relationships between the

study of robot movement and human movement. Intersection methods using planar

projections and a three-dimensional octree object representation are discussed in

IAhuja 801. The work of Lozano-Perez (Lozano ?91 and Brooks [Brooks 83a, Brooks

83b] is important for its contribution to collision avoidance and hence collision

detection. We note that collision detection is closely related to collision avoidance,

however, this latter topic is explored in the section on planning.

Korein IKorein 841 has recently written about the computational aspects of reach

and its implications in a workstation environment. The swept volumes created

through various reach movements are also outlined. These volumes can be used as a

basis for studying collision detection between human limbs in motion.

The concerns of computational geometry involve low-level, quantitative r—rects of

processes. Should a simulation of human movement include such quantitative details?

It depends on the type of process abstraction necessary to adequately study a

particular sequence of movements. A complete discussion o! process abstraction can

be found in Ch apter S. If we are investigating the reach spaces associated with

tightly confined environment such as a cockpit, then it becomes important to

simulate these computational aspects. On the other hand, it may be entirely

inappropriate to simulate low-level sweeping motions or collision detection situations

if we are modeling astronauts conducting an EVA (extra-vehicular activity) in a wide-

open space. It might turn out that a simple set of heuristics will detect collisions, etc.

I-11

Hierarchical Reasoning

The notion of abstraction in terms of processes, objects, and reports represents the

primary avenue of research that is derined in this thesis.

2.3. Robotics

When researching human motion, we may take advantage of the enormous amount

of work that is being done in the robotics field. Many of the 'production • robotics

languages are procedurally oriented. Any interactions between manipulators or

devices is strictly encoded using concurrency measures such as semaphores and

monitors. This makes sense, considering that the manipulators controlled through the

language have to operate in real-time. The robotics languages are not so much

oriented toward simulation as they are toward accomplishing real-time tasks.

Examples of these robotics languages include AL [Mujtaba 821 and ANIL [Taylor 82].

A fairly high-level language called AUTOPASS (Lieberman 771 was designed which

contained task descriptions as language statements. A survey of 14 robot languages

may be found in [Bonner 82].

Many of the concepts, such as grasping, ungrasping, and reaching are similar in

both human movement and robotics: our simulation system can reap the benefits of

many of the low-level computational aspects often found within robotics literature.

Despite some of these similarities between the robotics and human motion worlds,

there are some striking dif.'erences. The primary difference lies with the fact that

robots are currently pre-planr ,o to perform certain tasks: we give a robot a plan or

set of instructions and fully expect the robot to operate accordingly. Humans, when

doing formal tasks, may also be considered to operate in a • pre-planned • mode

although humans may spontaneously react to various external conditions that arise

during the execution of the task/plan. The point is that we program a robot in a

certain way because we already know what we want it to do, whereas, we need to

study human movement because we are trying to understand it. Another difference

is in the degree of locality associated with the robot's actions. Many robots are

composed of one manipulator whicl; works in a localized region (possibly performing

a pick and place or assembly operation). humans have a tendency to move about, so

modeling human motion has some inherent complexities which are not found when

modeling the movements of robot manipulators.

I-12

Hierarchical Reasoning

Due to the strict procedural nature of the production robotics !anguages and the

lack of a 'simulation' flavor, the production robotics languages are not seen as being

appropriate when studying human motion. The Al Simulation approach is based on

a more non-procedural foundation. In the production system approach, for instance,

there is one monitor which controls the now of information between the nodes in the

system. Each node might have procedures which may be activated, but they do not

pass control to other procedures directly. Using an object-based approach, one is

capable of invoking a large class of objects at one time through message passing

primitives. In either approach, one is not forced into a strict procedural framework.

2.4. Classical Simulation

2.4.1. Simulation as an Analysis Tool

In simulating a particular world, such as the world within an operating manned

spacecraft, we learn more about the internal processes within that world and how

they interact. Simulation is a subject which has been studied longer than most others

mentioned so far in this report.

2.4.2. Two Categories of Simulation

Classical simulation is currently thought of as being in one of two categories:

• Discret.e - Discrete simulation languages allow studying a model with
discrete time events. Events occur at a specific time, and when the world
model time has reached the event time, the event 'fires' and a world
state change is effected. Many of the business-oriented simulation
languages support discrete event simulations since time can be effectively
modeled with discrete state changes.

• Continuous - The scientific and engineering environments often i
simulate world that involve gradual state changes. For instance, if o
simulating the trajectory of a moving projectile, then it becomes nece:
to break time into very small intervals until some tolerance is sati<
When the interval size is too large it is shortened for more precision.

1-13

Hierarchical Reasoning

2.4.3. Discrete Simulation Languages

The early simulation languages, such as SMISCRIPT (SIMSCRIPT 721 and

GPSS (GPSS 67] are essentially discrete event simulations systems: time is such^nly

incremented according to event arrival times. It also should be noted that the

knowledge represented about the world in such systems does not have a symbu'.ic

treatment. The manipulation of knowledge is somewhat limited by the expressive

power of the language implementation: most of the major simulation languages, such

as GPSS, are FORTRAN lookalikes. SIMSCRIPT supports a more English oriented

development system and seems to be geared toward being able to create a simulation

quickly. Because the older simulation languages have evolved over a period of many

years, there are some quirks. For instance, SIMSCRIPT supports many synonyms for

accomplishing the same simulation sub-task (such as queuing an event). This

attribute of SPASCRIPT can be annoying - in a sense, it is trying to be a pseudo

natural language interface, but it fails since the user is often forced to remember

which are valid synonyms and which are not. A cleaner, more precise syntax would

have been more appropriate.

2.4.4. Continuous Simulation Languages

Continuous simulation languages allow a variable break-up of time over small

intervals. The interval chosen is based usually on a tolerance that is required for an

accurate simulation. CSMP (CSMP 761 is a good example of a pure continuous

simulation system. The simulation user constructs a model of some physical structure

using a network of interconnected blocks. Each block represents a function with

corresponding inputs and outputs. Then a set of equations describing the physical

system is constructed and translated into the block network. The block network acts

as an analog representation of the physical system. Blocks are of certain types, such

as integrators, summers, weighted summers and relays. Throughout the simulation,

the user may optionally plot certain variables over time, and collect other relevant

statistics.

1-14

s'

Hierarchical Reasoning

2.4.6. A Combination of Continuous and Discrete Methods

There are some simulation languages, such as GASP [Pritsker 74] which support

both discrete and continuous simulation techniques. Payne [Payne 821 gives a good

overview of classical simulation systems and includes a section on combined

techniques. This combination is important to the NASA work. Discrete simulation

affords us the capabilities of stepping through time in chunks. Many of the NASA

tasks may be thought of as discretely defined tasks:

1. Open Inner Hatch

2. Turn Rotary Switch-14 45 degrees

3. Extend to Stow

4. Grasp tool-2

A question arises: why could not some of these tasks be considered continuous

events? Monitoring time continuously generally means that we start by dividing time

into very small intervals of the same size. If the intervals do not give us the required

tolerance necessary for accurate results, we can adjust the time increment. The

answer to the above question is that any event may be considered from either a

continuous or discrete vantage point. The method that we should apply depends on

where we want to concentrate our simulation results. For instance, suppose we are

modeling an astronaut that is performing b complicated manuever to pass through an

airlock. Let us further suppose that the motion is • complicated • since there is an

obstruction which must first be removed before gaining entry through the airlock.

tvhen the astronaut ¢ets to the other side of the airlock, he will perform Task-A

(whatever that may be). If we are interested in modeling Task-A, then we may very

µell treat the complicated motions of going though the airlock as a few simple

discrete events. On the other hand, if we are more concerned with the method used

to navigate through the airlock, we may choose a more 'continuous* treatment of

time around the airlock entry and a more 'discrete • treatment of time during the

execution of Task-A. We see that this discussion is related to the idea of process

abstraction mentioned in the introduction. Specifically, the user should be able to

I-15

Hierarchical Reasoning

*tune-in' on certain parts of the workspace, and "tune-out , other parts which still

need to be simulated, but at a coarsee level. The proposed research design includes

the capability with which one may fully specify the process abstraction, object

abstraction, and report abstraction inherent within a system (see chapter 5).

2.4.8. Problems with Classical Systems

The world model that is supported by both continuous and discrete simulation

languages is often described using data structures that are indigenous to languages

such as FORTRAN. Many of these simul tion languages do not support a symbolic

structure of the world model, therefore reasoning about the model can be difficult.

The next section describes simulation techniques that are amenable to working with

knowledge at many different levels.

2.4.7. AI Simulation

2.4.7.1. Quantitative and Qualitative Reasoning

Let us now consider some of the more recent developments with respect to

simulation. Much of this recent work is to be found within the context of AI

literature. One may divide the study of current simulation systems into two areas:

qualhtulive and quantitative simulation.

In reasoning qualitatively about a system, we utilize certain heuristics about the

world model. This type of reasoning involves an abstract, intuitive sense about the

world. Let us take an example using the everyday world. If we drop a ball on the

ground then it will probably bounce. We can therefore set up a causal relationship

between drop ball -> bounte ball. The ball environment may be found in (Radler

75, Forbus 81a). We see that this knowledge is very important since it represents the

way we think about the world in an everyday-sense. When I drop a ball on the

ground, I do not calculate parabolic trajectories to determine that it will bounce - I

know that it will bounce from past experience. Also, there is a fairly good possibility

that I will know the general path that the ball will follow. It should be noted that

this example presumes a world model with a gravitational force. The space model will

Aso contain similar heuristics about both the motion of objects and human agents.

I-lt3	 -

Hierarchical Reasoning

Most of the early pioneering work in qualitative reasoning may be found in [de Kleer

75, de Rleer 77, Rieger 771 who demonstrate the use of qualitative reasoning in

solving various physics problems. Forbus continues to explore this arena "'orbus

81a, Forbus 81b, Forbus 831. The STEAMER project [Ilollan 841 is also an excellent

example of representing and manipulating qualitative knowledge. The interested

reader is directed towards [Gentner 831 and more recently to a special issue in

qualitative reasoning [QR 841 which contains a wealth of literature dealing with items

such as the semantics of qualitative process theory and causal reasoning.

In reasoning quantitatively, we view the world through a mathematical perspective.

We are concerned with seeing the world according to the equations that have been

derived to explain certain phenomena such as deferential equations of dynamic

motion, ano trajectories for path finding. Regardless of whether or not the equationE

give us intuitively correct results, we tend to trust their accuracy since they are

based on many years of research and empirical knowledge.

Both types of reasoning are important to a simulation system. Quantitative

reasoning is imperative in certain instances, such as in the simulation of an

autonomous device such as a robot arm (or a human arm). For instance, the

dynamics associated with a robot arm performing an assembly task become critical

due to the real time nature of the manipulator task. Therefore, if we are modeling

an assembly robot's arm movements, we might well choose a quantitative modeling

metbod. Qualitative reasoning will permit us to inci ide rule of thumb production

rules in our space-environment simulation. Expert rules (the experienced astronaut

being the expert) will be embedded into our simulation to aid in qualitatively

reasoning about the space workstation. Much of this reasoning cannot be defined in

a quantitative sense (or when it is defined as such, it becomes overly complicated and

meaningless). For instance, by grasping a given tool, I can reason that this tool will

stay held within my hand as I move around. To define this using a strict

quantitative approach, we lose the very idea of • grasping'. Grasping can be

considered to be a qualitative aspect of a simulation - it is a symbolic, abstract piece

of knowledge.

1-17

Hierarchical Reasoning

2.4.7.2. STRIPS

The STRIPS system (Fikes 711 was one of the first Ai .3imula ► ion systems and serves

as a general mcdel for many of the currently known systems. STRIPS is a robot

problem-solving system. The three basic concepts (state of the world model (SWhi),

production rules, and control monitor) are an integral part of STRIPS. The SWM

consists of a list c! assertions. The inference rules are in the form of operator 3 which

manipulate the world model. A sample example of a robot operator is stack which

may be defined as follows (using an example from (Nilsson 801):

stack (obj 1 ob j 2)

Preconditions: HOLDIXG(obj1),CLEAR(obj2)
Delete:	 HOLDING(obj1),CLEAR(obj2)
Add:	 HANDEIPTY,ON(objl,obj2),CLEAR(objl)

This operator may be defined in English: 'Stacking of one object (objl) onto 'Inv

other object (obj2) may begin only when the robot is holding ob;l and obj2 has

nothing on top of it (i.e. it is clear).' The 'preconditions' are assertions that happen

I o be in the state of the world model at a given instant. That is, when

HOLDItiG(obit) and CLEAR(obj2) are within the SWM, then the stack operator is

free to 'tire.' The 'delete' items are deleted from the world model after the

operator fires, and the 'add' items are added. Pi this particular case, the delete and

precondition rules are identical, however, that is not always the case.

2.4.7.3. Recent Simulation Research

The STRIPS model was an excellent start, and there have been several major

simulation efforts since. One of the major problems with STRIPS is that it only

treated time in a discrete way. In fact, time as a continuous phenomenon does not

exist within a STRIPS model. Thr most notable effort around the same time as

STRIPS is a system developed by Hendrix for modeling continuous concurrent

processes (Hendrix 731. His Scenario concept is directly related tc the production

rules in STRIPS although he goes mn^h further. His most important contributions

1-18

Hierarchical Reasoning

are tho capabilities for modeling gradual changes in processes (such as the flowing of

water) and for allowing multiple processes to interact, sometimes in un-scheduled

ways. Among several examples that Hendrix discusses, • filling the bucket' is a

classic example of these concepts. Even though the general , 'avor of the simulation

methodology is oriented towards discrete simulation, the gradual filling of the bucket

with water may be continuously modeled through the calculation of a set of time

intervals for gradually updating the water level inside the bucket. The simplest

method of finding the small time intervals necessary for a continuous simulation is

done by including not only the original time-dependent motion equation, but also an

equivalent inverse equation dependent on the motion variable (i.e. displacement, for

instance). This filling of the water bucket is a scenario which operates independently

of the rest of the world. However, if an outside agent such as a robot) turns the

valve on the water spigot, the scenario is able to detect such an • interrupt • and

adjust itself.

An implementation of the Hendrix Model was achieved by [Lowrance 771. Lowrance

and Friedman include several different examples including an electric switch world

and a Turing machine world.

Salter [Salter 80, Salter 841 and colleagues have recently developed a simulation

system which is strongly based on the Hendrix simulation model. The system, called

CONCUR, permits the user to create a world model composed of scenarios and then

simulate the world. CONCUR. contains an equation solver which solves a set of

equations in order to arrive at the interesting times. The interesting times for a

particular process are those time values which may be determined by solving for the

inverse solution to an equation dependent on z time variable (sia h a: an equation of

motion). CONCUR. also includes a powerful pattern matching capability which aids

in the instantiating of process scenarios.

Vere [Vere 831 built a simulation based on the application of planning the motions

of an autonomous spacecraft (such as Voyager). Vere's work is more important for its

contribution to parallel planning in time, so it will be discussed in section 2.5.

While on the subject of simulation, it is worth discussing animation. Animation

M!

I-19

Hierarchical Reasoning

might be used as an important feedback within any simulation system. It allows the

user to visually interact with the simulation - changing the environment and seeing

the results. In the NASA project, we are interested in maintaining a considerable

amount of visual feedback so that the user of the simulation can feel more in tune

with the simulated world. It is important to note that the system that we are in the

midst of designing should not be thought of as only an animation system. Any

animation that is desired can easily be achieved by including a scheduled event that

fires every fraction of a second. Our primary goal within our research is to

understand the interrelationships between human agents and the rest of the world

model. Animation techniques serve a useful purpose in allowing us to carefully

monitor such interrelationships in terms of changes to the state of the world model.

Other feedback mechanisms include numeric output such as statistics, variable

values, and possibly question-answering in a limited form. In the chapter on

hierarchical reasoning, the reader will note that animation of a process can often be

associated with a fairly low level of object abstraction.

The STEAMER Project (Hollan 841 is a good example of a system that was

designed to allow the user to reason with it. The user is also capable of creating his

own simulations by way of a graphical editor. Thus, STEAMER has placed an

emphasis on user-interaction and consequently a strong animation capability.

Fantasy-Model simuiailous sucu as [.ivn.n 11'euiing i aj auu

STARCROSS (STARCROSS 821 (a science-fiction spacecraft simulation) are also

interesting since they allow the user to communicate to the simulation system in

natural language. The user becomes part of the simulated environment, learning

about the world by trying out v^.,ious actions and receiving responses to those

actions. The 'fantasy' component may easily be translated to any other domain,

including the spacecraft domain where the user is trying to learn about a spacecraft

by exploring it. Fantasy simulation games may be categorized as a very high-level

discrete simulation where the user is able to invoke functions at each clock tick.

I-20

Hierarchical Reasoning

2.5. Planning

2.5.1. An Overview of Planning; Methodologies

Planning and simulation are the two most important aspects of our current

research. By finding a plan for an agent, we are trying to determine the sequence of

events that will allow him to achieve a given goal. So according to this definition of

planning, we recognize the notion of • optimality • within planning. That is, planning

is something that we do so that we can determine the most efficient path (or action

sequences) before we actually perform the task. Here we see a classic relationship

between planning and simulation. We may be inside a simulation system and decide

that we need to develop a • plan • before continuing. We then execute some sub-

module of the simulator called the • planner'. Once we receive a plan, we simulate it.

Planning may therefore be seen as a sort of • mental • simulation within the actual

simulation. Within the planning system, we must practically simulate a given action

just to determine the plan. For instance, if we review the production system

simulation method, we find that we perform the same basic computations for both

simulation and planning. The major difference is that with planning we work in

reverse, starting from the goal(s) and working backward towards the initial

conditions. Planning, in this respect, is analogous to • reverse • simulation.

Let us define two new terms: automatic planning and manual planning. They will

be defined as follows:

1. Automatic Planning - A procedure to determine a plan given a goal and a
set of initial conditions. The goal is often expanded using a backward-
chaining procedure until the set of initial conditions are satisfied. In many
instances, branches of the state space may be pruned when it is
determined that the branch will never (or probably never) reach the
initial state. Automatic planning will often be referred to simply as
• planning • in this report since planning, as it is usually described, is
defined as an automatic procedure.

2. Manual Planning - A plan that is • manually' derived by the -, s,-r of the
simulation system, or by someone who has statically encoded some kind of
plan knowledge within the simulation. This has also been termed
• deterministic' simulation. In this thesis, manual planning will take the
form of a ta8k junction. The task function will simply be a deterministic
function containing control structures and hooks into the knowledge
database.	 This is the type of planning that Hendrix [Ilendrix 731

I-21

Hierarchical Reasoning

mentioned in his simulator. One simply arrives at a representative
function and runs it through the simulation system.

The type of planning capability that one should use depends on the situation. As an

example of these two types of planning, consider the following two situations:

1. Opening the hatch door - Opening the hatch door to the module, for
instance, enables the agent to move from one area to another. However,
the act of opening the door does not generally require a pre-conceived
plan. Opening the door might well be decomposed into sub-tasks and
control structures. If our knowledge of opening hatch doors is good, then
this procedure can be straightforwardly programmed as a task.

2. Moving from the Module to the Orbiter - Moving from one place to
another is often somewhat complicated by obstacles which might be in the
paths of the agents. To find efficient paths, it is useful to generate
automatic plans. The necessity for the automatic plan is derived directly
from the complexity inherent with a given action. The act of moving can
involve complex conditions.

If we are modeling the actions of robots in the environment., we may very well

choose to incorporate a strictly automatic planning approach. On the other hand,

humans will not always move in accordance with a fixed plan. It may be worthwhile

for the simulation system user to develop a plan then try it out to see what happens.

It is clear that both manual and automatic planning are important to a simulation

system.

2.5.2. Creating Plans with Time Constraints

The efforts of STRIPS led to linear methods for determining plans, but

Sacerdoti (Sacerdoti 771 created the first parallel planner (NOAH) whi^h was able to

create a set of parallel plans that were partially ordered in time. A conflict resolver

was added to correct any discrepancies in planned orderings of events. Even though

Sacerdoti's work included partial ordering, there were no specific time intervals or

durations associated with the events. The treatment of time using more specific

time constraints is important, but only recently researched. Vere [Vere 831 has

created a system called DEVISER that creates parallel plans for controlling the

actions of an autonomous spacecraft. DEVISER is important for its emphasis on

planning in time. Goals and various actions/events may have uvindow or duration
attributes. A window in the system is characterized as follows:

I-22

Hierarchical Reasoning

(WINDOW EARLIEST IDEAL. LATEST)

The last three variables represent, respectively, the earliest time an action/event

can occur, the ideal time for it to occur, and the latest possible time that it can

occur.

Salter [Salter 83] has also written about planning with time constraints. His system

deals with time in terms of time trajectories which can be seen to be somewhat

isomorphic to Vere's window. The time trajectories are reminiscent of timing

diagrams for integrated circuits: State values vs. time.

Allen (Allen 81, Allen 831 has written about representing time intervals and general

temporal reasoning. Temporal reasoning is related to temporal planning since one is

concerned with representing networks of time durations and intervals.

2.5.3. Collision Avoidance Planning

Within the robotics domain, collision avoidance planning [Lozano 79, Brooks

83a, Brooks 83b] enables a mobile robot to avoid obstacles in its path. Fixed robots

may also have to worry about obstacles in the way of the arm. For the purpose of

simulating human motion, these collision detection methods will become useful.

However, it is hoped that an adequate simulation can be accomplished by applying

certain movement heuristics to a given path problem in the spacecraft. It remains to

be seen what the problems in this area will be. In any case, collision detection may

need only be implemented at a fairly high level, such as modeling continuous motions

in a packed environment. The notion of process abstraction arises again.

I-23

Hierarchical Reasoning

Chapter 3

An Application: EVA

The research for this thesis will use is specific application within the spacecraft

domain so that the concepts to ensue will be better comprehended. The chosen

application is the process of an EVA (Extra Vehicular Activity) as performed on a

spacecraft such as the Sp,-.:e Shuttle. An EVA, as its definition suggests, involves

operator movement outside of the spacecraft. Early EVA's were performed with the

use of a tether (life line): the astronaut would simply exit the vehicle and perform

observations with camera equipment. More recent EVA's are used not only for

observation but also for the diagnosis and repair of the external part of the spacecraft

or orbiting satellites. The modern EVA is accomplished with the aid of an MMU

(Manned Maneuverin g Unit) which permits the operator to travel with ease.

A general overview of an EVA may be found in [Joels 821, but the most critical and

comprehensive information is to be found in the actual checklists used by operators

within the spacecraft (Armstrong 83). A • checklist • is the set of procedures which is

used by human operators to insure the correct and safe operation of tasks delineated

within the checklist. Each checklist will contain several activities which may contain

sub-activities some of which might be contingent upon certain variables. Thus, a

checklist is very much a program whose statements are English-like.

The use of a NASA checklist to describe the characteristics of abstraction is quite

appropriate when we consider the complexities associated with the lists: there are

literally hundreds or perhaps thousands of steps within a checklist. The EVA

checklist, in particular, is used for the following reasons:

1. Spatial Aspects - The agents involved within an EVA must move around
the craft to perform various preparations prior to exiting the vehicle.
During the EVA, there are many spatial considerations since the agents
must work both inside and outside the craft.

P RECI:CiNG PA'.II: 11.,% dK NOT FILMED	
I-25

Hierarchical Reasoning

2. Abstraction - Every type of abstraction is needed due to the complexity of
the EVA. Movement must occur via the airlock and each type of
movement may be simulated at several levels. An interesting abstraction
feature (which will be discussed later at some length) relates to the view
of the spacecraft by the agents. From within, the spacecraft is a space
defined by specially identified locations (i.e. in the commander's neat, in
the airlock, in front of hand controller). From the outside, the spacecraft
is viewed externally as a solid object. The • spacecraft • object is still the
same object in both instances, but the methods of reference and levels of
object abstraction differ.

The EVA procedure [Armstrong 83] may be abstractly represented as shown in figure

3-1. It can be seen that this procedure involves a definite hierarchy. Also certain tasks

may be performed in parallel with other tasks so that the overall procedure is

efficiently defined. As an example, we note that the MIDDECK PREP and

AIRLOCK PREP procedures may be performed in parallel.

1-26

Hierarchical Reasoning

EQUIP PREP
MIDDECK PREP
AIRLOCK PREP

EMU CHECKOUT
EMU 3 CHECKOUT CONFIG
SOP CHECK
PRILARY REGULATOR/FAN/PUMP CHECK
EMU 3 TEMPORARY STORAGE
COMM CHECK
BATTERY CHARGE CHECK

EVA PREP
PREP FOR DONNING
EMU DONNING

CHECK
PURGE

COMM CHECK
EVA COMM CONFIG
UHF ONLY SITE COMM CONFIG

DEPRESS/REPRESS
DEPRESS
REPRESS
FAILED LEAK CHECK (5 PSI)

POST EVA

POST rZ.'A ENTRY PREP

EMU MAINT/RECHARGE
WATER RECHARGE
OXYGEN RECHARGE VERIFICATION
SUIT DRYING/SEAL LUBRICATION
WATER RECHARGE VERIFICATION
EMU LiOH CARTRIDGE/BATTERY REPLACEMENT
BATTERY REPLACE2 ENT (Crewman in Suit)
LiOH REPLACEMENT (Crewman in Snit)

EVA CUFF CHECKLIST

EMERGENCY AIRLOCK REPRESS

Figure 3-1: EVA Checklist

I-27

Hierarchical Reasc

Chapter 4.

Hierarchical Reasoning

In this chapter, we describe the central ideas of the thesis and define exactly what is

meant by the phrase 'hierarchical reasoning.' We shall see that hierarchical

reasoning L. based on hierarchies of different abstraction types. These types will be

explored in detail in the remaining chapters. Before describing the various aspects of

abstraction, we discuss the need to perform research in this area.

4.1. The Need to Explore Hierarchical Reasoning

So far, in our background discussions, we have outlined much of the research

connected with simulation and planning. It is clear that our NASA work can benefit

greatly from this past experience. The NASA work, however, poses some new

challenges which are not addressed by prior systems. The overall NASA project must

address the following items (during the course of this new line of study):

1. Multiple Agents - Even though some work has been done in dealing
with multiple agents (Kono'.ige 801, this is essentially an untapped area.
Simulating the cooperation of agents in performing a single task will
become important. We can rely on the wealth of knowledge in operating
systems theory (Dijkstra 68, Hoare 781 to help with the study of the
cooperation aid synchronization of processes (i.e. agents acting on
objects).

2. A Complex World Modei - A true simulation of a space environment
will undoubtedly involve several agents and many objects and actions
(perhaps hundreds or thousands). The simulator should be able to handle
complex models efficiently.

3. Human Agents - There has never been a realistic simulation of human
agents in a working environment. There have been some definitions of
simple movement functions, but this does not qualify as a true simulation
(this previous work is seen more in the light of a junctional
decompoeition of certain high level tasks).

PPECE.DI C, PM;E BLANK NOT FILMED

I-29

Hierarchical Reasoning

This thesis will not attempt to address the many issues previously defined as

background material. Inst ead, a specific topic is proposed: the design of a new

simulation method whic5 is more appropriate to complex simulations. The primary

feature of this method lies within the notion of hierarchical reasoning which is now

defined.

The previously discussed simulation and reasoning systems are useful for certain

applications, but they fail to provide the analyst with a capability of integrating

abstract leveLs of knowledge about the simulation environment. If we take the

example of a bouncing ball (Badler 75, Forbus 81a1, we see that we can describe the

motion of the ball qualitatively: that is, we can break the general space of the

environment into regions and define causal relationships such as DROP BALL ->

BOUNCE BALL. On the other hand, using a quantitative approach, we could use a

set of equations to specifically point out the precise position of the ball over time. It

is clear !hat both approaches, including the pieces of knowledge associated with each

approach, need to be integrated in a single knowledge base if we are to correctly

represent the ball object and all its facets of motion (at all levels of abstraction). In

this manner, the analyst at simulation time could choose the level of abstraction as a

function of variables (and ranges of those variables; such as spatial location, time,

and object class ^'a;^uming a hierarchical object representation).

Abstraction in simulation was discussed in (Goldin 811, however their approach was

oriented towards the automatic, bottom-up creation of higher-level • chunks. • A

formal methodology for abstraction was not presented. STEAMER, which was

discussed in the introduction, does include the capability for the user to reason in

terms of different levels of object abstraction. STEAMER, however, does not focus on

process abstraction or the topic of abstraction in general: it is more concerned with

providing the user with a detailed graphical interface to the model.

Hierarchical reasoning centers around the ability to monitor and change

abstractions associated with the model. Three major types of abstraction are

discussed: process, object, and report. The focus of the hierarchical reasoning

methodology is not to advocate a particular set of semantics for a given abstraction

level (such as qualitative process semantics or graphics). In fact, different levels of

1-30

Hierarchical Reasoning

abstraction will utilize some of these semantics. Rather, the focus is to give the

simulation user the flexibility in both manipulating and monitoring the simulation by

working with the inherent abstractions associated with the model. Hierarchical

reasoning, therefore, is concerned more with the flow and control of the simulation

and less with specific operational semantics associated with different levels.

4.2. Definitions

Hierarchical Reasoning is defined as reasoning about processes over levels of

abstraction. The term • abstraction • is the key concept when reasoning about

processes hierarchically, so we will spend some time delineating the aspects of

abstraction. Abstraction is an often-used word and can be foul„ i strewn throughout

general literature. It is a word that we use to define our representations of things

such as objects and actions. That is, objects and actions may be described

• abstractly • or • non-abstractly. • When one speaks of *abstraction* it is generally

:neant 0 convey a high level of abstraction, whereas more detailed accounts of things

are not usually termed 'abstract.* In this thesis, we refer to abstractioni as being an

all-encompassing term which may have associated levels so that one may easily

differentiate between various representations. Therefore, abstraction denotes the

type of description and semantics connected with a virtual continuum that spans

many levels.

4.3. Modeling Abstraction

Despite the fact that abstraction has been defined in many different instances

within computer science literature, there has not been an investigation into a

definition which encapsulates the essence of several different sorts of abstraction such

as procedural, object, and report abstraction. In subsequent chapters, we form a clear

view of abstraction in terms of definition and the modeling of systems at varying

abstraction levels. It is not sufficient to simply talk of abstraction in a general sense:

the various types of abstractions and their interesting relationships are explored.

I-31

Hierarchical Reasoning

4.4. Multi-Level Abstraction

Abstraction must be considered within the context of many levels. If one discusses

abstract notions for processes and objects at only single level, then much relevant

information will be missing. It is very natural to reason about processes at varying

levels depending on the context in which the reasoning is being performed. In this

thesis, we will be concerned with the definition of the many levels and the

connections between the levels.

4.5. Computational Effiiciency

We also concern ourselves with the efficiency of simulating certain processes at

different levels of abstraction. Simulating a given process at a high level of

abstraction will generally involve less computational complexity than if we were to

simulate at lower levels. There is a trade-off between the level of abstraction and the

information quality obtained at a given level. That is, we might be able to

drastically reduce the complexity of a given task by simulating at a high level,

however, we might lose valuable information about the process. If this information is

not needed, then there will not be a problem. On the other hand, if the information is

essential to the integrity of the simulation, then trade-offs will have to be made.

These trade---ffs and considerations are studied in this thesis.

4.4. Overview

We need to carefully define abstraction before any theory or implementation may

be pursued. In this chapter, we discuss abstraction of the following types:

• Process

• Object

• Spatial

• Temporal

• Report

After defining these types of abstraction, we explore methods for modelir_g

abstraction. Implementation considerations are left for a future chapter. We are now

primarily concerned with developing a theory for abstraction.

1-32

Hierarchical Reasoning

4.7. Types of Abstraction

We now taxonomize abstraction by presenting several types along with

accompanying definitions.

• Process - When dealing with actions, we may be interested in a fairly
high level of process abstraction: If we are simulating the movement of an
agent traveling though an airlock, we may simply want to specify the
action as three simple discrete events: 1) Agent enters airlock, 2) Agent is
inside airlock, and 3) Agent exits airlock. In a similar fashion, the EVA
may be seen as 1) Preparation, 2) actual activity and 3) Post EVA
considerations. On the other hand, if we are very interested in reasoning
about a process iz, greater detail, then we will want to specify a fairly low
abstraction ievel. Animation, for instance, will generally require lower-
levels of process abstraction, unless we are willing to settle for widely
separated key frames.

• Object - Objects can be defined as • things' at the highest level of object
abstraction, or by such attributes as coordinate triples and orientation
angles at lower object abstraction levels. Sometimes an object can be
viewed as its bounding volume (a minimal v; lume that covers the object.).
for instance, during coarse motion planning of some simple geometric sort,
the bounding-box object description might be all that is necessary. At
other times, such as in an animation, the object must be treated at a low-
level of abstraction. Note that space, in general, can be treated as a
hierarchy of objects. Therefore, spatial locations may also be abstracted.

• gpallal - As was just mentioneu, the abstraction of space is important so
that we gain a locative understanding of an agent's movements. An agent
might be simply • inside the crew compartment' or, at a lower spatial
abstraction level, be o at middeck, next to the hatch. • At still lower
spatial abstraction levels, specific coordinate data may be necessary.

• Temporal - Time may be treated using varying-sized intervals. Large
intervals can be used when a process is to be simulated at a high
abstraction level. Time may also be treated using high-level phrases such
as in (Allen 811 (X occurs before Y,etc.). For more accuracy and more
detailed information, smaller time intervals will need to be specified.

• Report - Report abstraction relates to the procedural abstraction le^-el at
which the analyst wishes to • see • the results of the running simulation.
The analyst may wish to run the entire simulation at a fairly low-level
but view only higher level results. Using report abstraction, the analyst
can filter out excess output.

I-33

Ob^^ zSS

1	 1

Hierarchical Reasonipg

4.8. Relationships among Abstraction Types

Now that types of abstraction ha-e been identified, it is essential to look at the

relationships which bind them. First, we create a pictoral relationship in the form of

a triad (as seen in figure 4-1).

Figure 4-1: Basic Abstraction Triad

4.8.1. The Basic Triad

An explanation of figure 41 is in order. First, the acronym SRP denotes the Spatial

Reference Point. The SRP can be seen as the vertex where process and object

abstraction 'merge' to become spatial abstraction. Tb(. SRP actually represents the

point, at -,hv hich a given agent operating within a r-m ess starts to treat objects and

processes from a s,,atial perspective. The triad is meant as a general paradigm for

viewing the relative functions of each arm of the triad (object, process, and spatial

abstraction).

The top of the triad represents fairly high levels of abstraction while the bottom

represents lower level-i. We note that the spatial abstraction segment is composed of

both object and process abstraction. Let us examine each of the 3 segments starting

at the upper left (object abstraction) and working in a clockwise direction.

134

Hierarchical Reasoning

4.8.2. Pure Object Abstraction

This relates to an agent's external view of an object. Objects such as a car or the

space shuttle can be abstracted from an external point of reference by removing the

degrees of detail associated with the object's exterior. A car from a distance ma y be

abstracted as a rectangular box. As one approaches the car, the exterior begins to

take on fu; then amounts of detail. The space shuttle may equally be seen in a similar

light: its abstraction might be seen as a cylinder. As one appr:3aches the shuttle, one

sees that it actually has four main components: a tail section, fusElage, wings, and

nose.

4.8.3. Pure Process Abstraction

When one considers the nature of processes from a high abstrat ! ion level, processes

can be seen as partially ordered sequences of events that have no direct spatial

relationsiLip. For example, we view the EVA as being composed of the three afore-

mentioned events: 1) Preparation, 2) EVA, and 3) Post-EVA. These events are so

high-level that when we reason about them, we tend to consider t'tem as simply a

series of events and not only as rough spatial abstractions. The spati.61 component of

process abstraction is more emphasized at lower levels of process abstraction.

4.8.4. Spatial Abstraction

As we traverse throught the abstraction levels we come to the SRP which denotes

an interesting transition. Specifically, objects are now treated from internal points of

view. No longer do we see an object as a container of some sort, but rather the object

becomes the space in which we operate. The kinds of abstractions that we can

associate with a given object are greatly changed once we enter the object and move

around inside. Every object has a SRP and it is clear that abstract information

connected with the SRP depends on the agent. If the agent is a human and the object

is a spacecraft, then it is quite logical to see that we can traverse the many

abstraction levels associated with this object. On thk. other hand. if the object is a

stowage-locker, then there is little chance that we will move down beyond the SRP of

the locV ,r. If we cannot get inside of the object, or have little intereit in identifying it

as a space, then we tend to traverse abstraction levels strictly above the SRP for that

I-35

Hierarchical Reasoning

object. The type of action used by the agent is also important when considering

spatial abstraction for an object.. If an action involves fine motion planning then we

are more likely to identify a greater number of di_-crete spatial points of interest.

When we consider process abstraction, we see that all processes may eventually be

reduced to simple movements at some abstraction level. The act of • donning the

EMU' (Extravehicular Mobility Unit - a special • space suit •) can be completely

described by a partially ordered graph of translation and orientation events.

Complicated movements of an agent through a space can be defined by a long

sequence of connected vectors (This path could be calculated using a

• findpath' [Lozano :91 algorithm or some other relevant technique).

4.8.5. Complementary Representations for Spatial Abstraction

As we have seen, both object and process abstraction merge to become spatial

abstraction. The spatial abstraction segment may therefore tie seen as being

composed of two segments: the object side and the process side. We now consider

these two sides to spatial abstraction.

On the object side, we can imagine a model describing the object's spatial aspect.

The model (which will be discussed more completely in a subsequent section) can be

defined as a connected graph of places or locations. The nodes of the graph represent

locations and the arcs represent directional movements which allow one to traverse

from one place to another. This technique has been widely used to define space

qualitatively. Kuipers TOUR, model [Ku ; pers 761 is an example of such a scheme. The

TOUR model allows one to find and describe places, paths, and directions in a map

domain (i.e. finding a geographical route).

On the process side, we can imagine a model describing the elements of fine motion

details. We use Petri Nets in a future section to model these motions. These nets are

very similar to the object nets with the exception that the process nets are naturally

oriented toward defining processes rather than locations. The nets are composed of

conditions (or places) and transitions.

When we examine these two sides to spatial abstraction, we see that both sides are

I-36

Hierarchical Reasoning

somewhat complementary aspects of the same notion. An object representation

shown in great detail may be seen to be a 'static* set of locations with connecting

direction arcs. Spatial abstraction can be defined as the reprsentative data structure

derived by taking a starting location and closing it under the operation of an action

verb. Object abstraction which defines space is therefore a etate epace representation.

The process representation contains similar information within the content of the

model, except now of control and constraints are emphasized rather than static

locative data. We will discuss spatial abstraction more completely in a future section.

4.9. Defining Key Abstraction Types

We have identified three abstraction types and their relationships: 1) process, 2)

object, and 3) spatial. From the above discussion, we see that we can limit the

discussion to simply process and object abstraction since spatial abstraction can be

seen to be a combination of these two types.

In consideration of temporal abstraction, we see that time is actually somewhat of

an artifact and may be more adequately studied with respect to the partial ordering

inherent within the events of a process. As more events are used to describe a certain

process, the intervals of time used to cap!»re the events become smaller in size. The

actual time is important only in that it allows us to reference the current state of a

process. Thus, when we pursue the essence of process abstraction, we cover temporal

abstraction due to the proportionality between process and temporal abstractions.

The last type of abstraction (report) will be covered in a future chapter. There we 	 .3

will look at controlling the system of abstract levels that we are defining in this

chapter. Report abstraction will allow us to filter information associated with

processes.

I-37

Hierarchical Reasoning

Chapter 5
Process Abstraction

In defining processes at different levels of abstraction, it becomes necessary to first

mention current methods for specifying process abstraction. It will be shown that

these methods revolve around an incomplete theme which fails to adequately model

process abstraction. Then we proceed to define a new model which is an

improvement upon the older process model in that it covers abstraction more

comprehensively.

5.1. What is a Process*

Processes can be complex, so we restrict ourselves to study simple models of

processes, suspending discussions of the practically infinite variety of process

description languages (such as general purpose programming languages). A process is

construed to be a partially ordered graph of events. In short, a process is composed of

actions. Some actions may occur in parallel with other actions (which introduces the

partial ordering), and most actions will have certain constraints imposed upon them

(the actual ordering or synchronicity).

5.2. The Traditional View of Process Abstraction

Processes may be viewed from qualitative or quantitative points of view (as

described in the background chapter). The traditional view of a process is generally

defined in figure 54.The view in figure 5-1 shows a single level of abstraction. This is

the basic flaw of the traditional process view. In looking more closely at the figure,

we see that even though abstraction is given treatment, its treatment is essentially

denotational in character. PREP means that three preparations need to be performed

(EQUIP PREP - Equipment Preparation, EMU CHECKOUT - Checking EMU, and

EVA PREP - Preparations for actual EVA). The term PREP denotes these three

I;:.:1; -X NOT :ILIIED	 I-39

Hierarchical Reasoning

rAs K-

EVA

I
PREP	 EVA	 P0"S —EVIL

F^,o I p—	 Ems-	 EVA	 El<r^y - ^rn^- ^^^^- rz ^e^s5
rP.Er	 GHECKWT rff7	

F'fsYf	 I^Irt; CHK

Figure 5-1: A Process Hierarchy

sub-processes. The key point to be made here is that PREP by itself has no intrinsic

value other than the denotational one imposed by the tree. That is, PREP does not

mean anything by itself: it simply serves as a kind of corridor though which we must

pass to get to the 'real' process. The real process is not actually uncovered until we

execute the leaf nodes of the tree. While it is true that these internal tree nodes have

provided with us with abstract process knowledge, it should be noted that this

representation fails to give us any flexibility in reasoning about the overall process at

different abstraction levels, since only the lowest levels contain adequate knowledge

about the process.

5.3. Creating a New View of Processes

One of the main concerns of this research is to create a definitional model for

processes which attempts to overcome some of the problems associated with the

traditional approach. Let us now consider the critical elements of how we should view

processes. The following sections define major attributes of a process model which

allows for a comprehensive abstraction capability. Every process may be considered

from several diff,-rent abstraction levels. We can view a single process as a connected

set of process nets. The highest net represents the highest amount of process

I-40

Hierarchical Reasoning

abstraction while the lowest Let in the hierarchy represents the lowest amount of

process abstraction.

5.4. Definition of the formal process model

Let us now define a formal model for processes which emphasizes levels of

abstraction. We define a process as follows:

Proceee i = { A,K,C }

Process i is any given process such as • Prepare for donning EMU • or •Replace

Battery.' Each process is defined as a set of three items: 1) A = Process Abstraction

Net, 2) K = Knowledge Base, and 3) C = Control Mechanism. Let us define each of

these three items separately.

5.5. Process Abstraction Net

The process abstraction net is the key to the notion of process abstraction since it is

here that we define what it means to be a process. We define A (the process

abstraction net) to be a hierarchy of separate machines with connecting links

provided to traverse the hierarchy. To successfully define a process, we need first use

a specific computational model.

5.5.1. Choosing a formal model

Given the criteria in the previous chapter, we must choose a model of computation

which satisfies those criteria. We briefl y discuss four models and discuss their merits.

Finite state automata are a simple and effective means of modeling processes. The

primary disadvantage of finite state machines is that they do not model concurrency.

Turing Machines are more general and powerful and can model concurrency. Turing

machines, while being good at modeling items such as computational complexity, lack

an intuitive representation for parallelism and asynchronicity. First order logic can

also be used as the basis for modeling processes, however logic seems more

appropriate when modeling relationships rather than specific concurrent actions.

We decide to use Petri Nets (Petri 62) to model each abstraction level. There are

I-41

Hierarchical Reasoning

several reasons for the use of Petri Nets. Petri Nets are ideal for modeling

asynchronous, concurrent systems. Much of their appeal lies in the visual

representation of asynchonicity and concurrency: one may easily view a Petri Net

and note the flow of control afforded to the net. They have wide application in

many areas and their potential for both modeling and analysis is promising. Before

describing Petri Nets, we should note that Petri created the basic notions in his

thesis, but a considerable amount of work has been performed since that time: Petri

Nets, much like Turing Machines, have been extended to allow for greater and more

complete modeling power. A general survey of Petri Net Theory may be found in

[Peterson 771 and a comprehensive book on the subject is [Peterson 81].

It is assumed that the reader has a rough knowledge of Petri Nets. A brief

description is given in any case. A Petri Net is defined as a four-tuple (P,TJ,O),

where P = a set of places or conditions, T = a set of transitions, I = a function

from transitions to a bag of places, and O = a function from transitions to a bag of

places. Figure 54 gives an example net.We may see various forms of parallelism and

mutual exclusion in the this net. For instance, we see that places p3 and p4 will occur

in parallel. Also, transitions t2 and t3 have the property of being mutually exclusive

events if we view the net as a marked net with a single marker in p2.

One may also model conditional execution by specifying the conditions as places in

the net which are tied to transitions whose firing depends on the condition.

Our Petri Net Model satisfies our basic criteria for modeling a single process level

within the abstraction net A. This model serves as a good formal model, however, a

more informal model directly derived from this Petri net model is more adequate

when thinking in terms of how we might build an actual implementation.

Specifically, we choose the production system paradigm since it has wide application

and represents the features that we have discussed.

I-42

Hierarchical Reasoning

I (ti) = {pi}
I(t2) = {p2}
I (t3) = {p2}
I(t4) = {p3,p4,p6}

0(t1) = {p2}
0(t2) = {p3,p4}
0(t3) = {pb}
0(t4) = {pg}

1

P = { p1,p2,p3,p3,p4 , p5 , p6 }
T = { t1,t2,t3,t4 }

Figure 5-2: An example Petri Net

5.5.2. Choosing an Informal model

Given the Petri net model in the previous section, we might ask ourselves 8 1-low do

we execute the net? • Clearly, the formal model is best at giving us a method for

visually portraying information flow. It is not immediately apparent how we should

build a real system based on this model. There is a need for specifying a more

informal model which can be used as a basis for implementation.

A good approximation to the Petri net formalism is the use of production

systems [Post 43[. Production systems have been widely used in various

implementations and represent a simple control mechanism. This simplicity of control

can be both a benefit and burden to our efforts. The benefit is that we may easily

execute production system rules using forward or backward chaining methods. Many

I-43

Hierarchical Reasoning

control paradigms are limited to forward chaining and while it is true that forward

chaining is our primary concern in simulation, the backward chaining capability is

useful for deriving preconditions given a goal. This latier capability is most often

exploited in planning systems. The disadvantage to using production systems is the

other side of the coin of simplicity. Overall methods for control are somewhat

obscured by the restrictions imposed by production systems.

We define A = (PI ,Pe Ps,....P,,) where the individual Pi may be viewed either as

Petri Nets or as an equivalent set of production rules. Each transition in the formal

Petri net model corresponds to a rule in a production system. Each rule in a

production system requires a set of preconditions before • firing • much like a Petri

net. Once the rule is fired, a set of postconditions takes effect. P; is defined as a set of

production rules {R1,R2,...,R,,,). Each Ri is defined as a rule frame. The frame is

composed of slot names and values:

Slot Name TTPS Example Value

idnum docimal 23
idaym list (EVA)
def string •Extra Vehicular Activity'
preconds list ((PRE-EVA))
delete list ((PRE-EVA))
implicit list ((IN-EVA)(IN-MMU))
explicit list (P2 (DO-EVA))

These slot names and values deserve brief descriptions:

e idnum - The identification number for the rule. In the above case, this is
rule number 23 in the given production rule set.

e idsym - This identifies the actual event taking place. In this case we are
defining the rule for performing an EVA.

e def - An English description of the event.

• preconds - A list of preconditions for the rule to fire.

e delete - A list of assertions to delete once the rule has fired (i.e. once the
preconditions have been satisfied).

e implicit - A list of implicit assertions to be added to the knowledge base
when the rule fires.

e explicit - A list composed of two elements: the first element is the

I-44

Hierarchical Reasoning

identification of a new production rule set to use, and the second element
is an assertion used to start execution within this new rule set.

Most of the above slot specifications are quite common in production systems. The

exceptions are the last two slots: implicit and explicit. These are critical in our

design of process anstraction, so we discuss these at some length in the next two

sections.

6.5.3. Implicit Semantics

We define implicit semantics to be the qualitative attributes assigned to either a

place or transition. Implicit semantics are by nature subjective since there definition

depends on the knowledge of the particular individual running a simulation based on

the given process hierarchy. Within the context of production systems, we choose to

assign implicit semantics to the transitions (i.e. production rules) and not to the

places (i.e. preconditions). The implicit semantics of a transition are those inferred

by an individual when receiving only the information contained within the

identification of the transition . It is easiest to imagine this inference of information

as being based on simple message passing between humans: If someone gave a

message to another which said • John is performing an EVA • what implicit

information could be inferred? As mentioned before, these inferences are rather

dependent on the individuals involved: a formal protocol performed with many

subjects might determine the greatest overlap in such inferred information.

If we reference the transition EVA, for instance, L'n the level 2 machine, we can

infer several pieces of knowledge:

• We can create a volume which defines the new location of the operator.
This volume can be defined possibly as a sphere of a certain radius minus
the volume specified by the shuttle. The idea is that given the messagr,
EVA, we can certainly identify the agent's new • location volume. • The
agent is certainly not inside the ship during an EVA and also the agent
will not be too far from the shuttle. Hence, we use the notion of a
bounded volume to qualitatively describe the agent's new location during
the EVA.

• The agent will be wearing an EMU and will be operating the MW
(manned maneuvering unit).

e Probabilistic knowledge sueb as the estimated position of the agent. We

I-45

Hierarchical Reasoning

are certain of the already-defined location volume. This volume defines
the boundaries associated with location. It is also possible that we might
assign belief measures to various discrete points within the volume.

We can certainly imagine how we can simulate the EVA process completely at

process abstraction level 2 by simply executing the net at that level and using only

implicit knowledge.

5.5.4. Explicit Semantics

Explicit semantics for a place or transition in a net is a more common notion in

computer science. We simply create a subnet at the next lower level of abstraction

and attach it to the given place or transition. The explicit semantics of a transition,

for instance, is simply defined by the subnet attached to the transition.

5.6. Knowledge Base

The second element of a given Process i is the knowledge base K (recall that

Process] = { A,K,C }). We define the knowledge base to be similar to those defined

in standard production systems: a list of assertions. The only item that we change is

that we define K to be a list of elements where each element is a list composed of

two other elements: an identifier specifN:ng the level of process abstraction and the

assertion made at that level

5.7. Control Mechanism

The control mechanism that we use is essentially the same control mechanism used

in standard production systems. The primary difference lies in a choice which is made

at each rule firing: should we execute implicit or explict semantics? In the simplest

case, we can make this a manual choice. That is, we can step through a simulation of

a process and manually choose whether to either stay on the same abstraction level

or to traverse the hierarchy in an upwards or downwards fashion.

I--Ie

Hierarchical Reasoning

5.8. Simulation with Process Abstraction

Now that we have defined the components of process abstraction, we can see how

we might create a simulation system by just using a process abstraction net. We can

allow a user to traverse the many levels of process abstraction by moving down the

connecting links between each level. One could either make moves down a level,

thereby exploiting the explicit process knowledge at the next level, or execute the

Petri Net at the current level, thereby exploiting implicit process knowledge.

This hierarchical view of process abstraction is important, but we should now

consider object abstraction and finally spatial abstraction. It is only then, can we

form a complete theory which unifies the different types of abstraction.

I-47

Hierarchical Reasoning

Chapter 6

Object Abstraction

This chapter is currently under development.

ITIE.CEDING PA:;E BLANK NOT FILMED

1-49

Hierarchical Reasoning

Chapter 7
An Initial Implementation

7.1. Overview

This chapter represents an initial investigation into hierarchical reasoning in terms

of in implementation performed in the February 1985 timeframe. The

implementation is based on a syst::m called ROSS (Klahr 801 which is an lisp-based,

object-oriented package. A mere comprehensive implementatina is prroposed in the

future which is predicated on the later-defined cocc, pts defined in the chapters on

process and object abstraction. This more comprehensive package wili probable be

more closely tied to the production s ystem definition already described.

Abstraction Functions

tES supports a set of functions that are useful in providing the analyst with the

y to create a hierarchical reasoning system. The functions fall into two

oriel: functions that the simulation desi gner uses to create the actual simulation

functions that allow the simulation user to control the flow of the simulation.

section deals with the designer funcltOV9.

. Process Abstraction

phrase *current process abstraction level set by the user' will appear in the

virg definitions. These user defined le-els are created with the flour junctions

ibed in the followin6 section.

(0 <level> <Object> <Qeseage>)

NNG PAc;N: BLANK NOT F11,MED

I-51

Hierarchical Reasoning

Send a <message> to <object> only If <level> <= the current process
abstraction level set by the user.

(V <level> <object> <aessage> <time>)

Schedule a <-nessage> to be sent la <object> at <time> only if <level> <=
the current process abstraction level set by the user.

(G e <level> <object> <aessage>)

De-schedule all <message>'s to be sent to <object> only if <level> <= the
current process abstraction level set by the user.

7.2.2. Object Abstraction

(0 <level-listl> <funcl> <level-list2> <func2> ...)

<level-list>'s are lists of object abstraction levels. <func>'s are functions that
are evaluated only if one of the members of the current object abstraction level list
specified by the user is a member of the corresponding <level-list>.

7.2.3. Report Abstraction

(% <funcl> <func2> ...)

If the process abstraction level currently active u-ithin the simulation is tmthin
the list of report -bstraction levels specified by the user, then evaluate the
arguments of o (namely, <funcl>, <func2>, etc.). These functions will most
often be teat and/or graphics outeut functions.

I-52

Hierarchical Reasoning

7.3. Controlling the Flow of Simulation

The previous section on abstraction functions specified levels of abstraction that

were created by the simulation designer. This section describes some of the flow
functions which permit the simulation user to 'tune' the simulation while it is

running. This • tuning • is similar to tuning a television set or radio: one wishes to

filter out some aspects while highlighting others.

7.3.1. Starting the Simulation

First, the user must place one or more events onto the event queue, or send one or

more messages to objects. Abstraction variables should also be set (see the next

section). Then the simulation can begin by telling the simulation clock to tick for a

given amount of time. At any time, the resolution of the clock may be changed.

7.3.2. Assigning Abstraction Levels

This section includes two terms which should be defined before continuing: levels

and and-or trees. A • <level>' is used to identify an abstraction level.

Theoretically, there are infinitely many abstraction levels that can be represented,

however, it is pragmatic and efficient to represent -,nl y a discrete number of levels.

High abstraction levels are represented as low numbers, while low abstraction levels

are represented as high numbers. This may sound unduly complicated, although this

mapping is appropriate since our simulation is a top-down design: we are more likely

to refine our higher levels into still lower levels (and this will simply necessitate

increasing the level # as we proceed). It is important to note that when one specifies

a procedural abstraction level, all levels less than or equal to that level are effected.

This is due to the top-down nature of creating the simulation, and the requirement of

maintaining consistency while traversing abstraction levels. Procedural abstraction

levels are not independent of one another - they are related in a hierarchical fashion.

1-53

Hierarchical Reasoning

The term ' <and-or> • tree is also used. This is a goal-tree with and and or nodes.

The value of the tree is true or false, depending on the evaluation at each node.

Within the and-or tree, we have items of the form (<predicate> <argl> <a -02>

...). Some typical values for <predicate> are clase,obJect,meseage, and time.

The interactive functions are now described:

(0= <levell> <and-orl> <1eve12> <and-or2> ...)

This is how one tunes the process abstraction in the simulation. Whenever the 809

is encountered during the simulation, the <and-or>'s are evaluated until a true one

is found. If the current process abstraction level is less than or equal to the

corresponding <level> of a true <and-or> evaluation, the corresponding code (in

the mx* m call) is evaluated. The •®>' and ' (4<' functions operate similarly.

An example will demonstrate how (q= is used. Suppose that we take the previous

example of an agent entering and exiting a room. Let us further suppose that we are

interested in carefully monitoring instances when the agent picks up any object

within the time range of 500 <-> 800 (in terms of the simulation clock). Any other

action is to be simulated at a high level of abstraction. At the beginning of the

simulation, we could specify:

(0= 3 (and (sessage (pick up >object))
(object agent)
(tile 500 800))

1 true)

We are assuming that 3 represents the lowest-level of abstraction defined for this

simulation. If the first condition (Le. <and-or>) is not evaluated as true, then the

default will be level 1.

(1= <level-listl> <and-orl> <level-list2> <and-or2> ...)

Whenever the •#• is encountered during the simulation, the <and-or>'s are

evaluated until a true one is found. If the corresponding <level-list> of a true

<and-or> evaluation intersects with the <level-list>'s in the •#• function, the

corresponding code (in the •#' call) is evaluated.

a

I-54

Hierarchical Reasoning

Object abstraction may be related to objects in the same manner as with the ®=

function. The main difference is th--t with object abstraction, we can specify level

lists and not just single levels. Using a list of levels means that we can optionally run

the simulation while simultaneously viewing several object abstraction level outputs.

For instance, text is often output at high level object abstractions while graphics is

output at lower levels - the text and graphics could be simultaneously viewed by

creating dedicated viewports on the screen. If, in our room example, we wanted to

monitor 1) all switches inside room e A • and 2) any agents inside room • B • using a

high level of abstraction, we could do the following (assume all other

objects/situations are to be modeled using object abstraction level 2).

(R= (1) (or (and (class switch-type)
(inside-room A))

(and (class agent-type)
(inside-room B)))

(2) true)

Finally, we can specify report abstraction levels to be monitored using this method:

(%= <level-listl> <and-orl> <level-list2> <and-or2> ...)

The arguments are the same as specified for the function •#=•. Whenever the

0 % 0 is encountered during the simulation, the <and-or>'s are evaluated until a

true one is found. If the current process abstraction level is an element of the

corresponding <level-list> for a true evaluation. thzn the arguments of the a%m

function are evaluated. If we always wanted only a high-level of reporting while

running a very low-level simulation, we could do the following:

(0= 3 true)
(%= (1) true)

II

I-55

Hierarchical Reasoning

7.4. An Example: A Day in the Life, of a Clock

ROSS will be used for the initial HIRES implementation, due to its capabilities and

,Additional simulation features (such as an event scheduling queue). An example of the

use of the HIRES functions will be described in this section. The example is a fairly

simple one: the operation of an analog alarm clock. This example was chosen since it

is short and concise, yet contains many of the concepts delineated so far. Namely,

one can see causality, abstraction levels (for processes,objects, and reports), and

interrupts (the alarm feature).

Figure 7-1 gives an overall procedural abstraction hierarchy for the daily activity of

the clock:

day

am - pm

early-morning late -morning afternoon evening

12:00	 - 5:59:59 6:00	 -	 11:59:59 12:00 - 5:59:59	 6:00 -	 11:69:59

Figure 7-1: Alarm Clock Hierarchy

The IITRES implementation is shown in appendix A. The implementation consists

primarily of the four object- (clock, hour-hand, minute-hand, and second-hand) and

their associated frames. The reev slot name represents message patterns that may

cause the corresponding expressions to be evaluated.

There are a few support functions listed in the implementation: (update-graphics

<object>) updates a graphics display for <object>; (sbow-time) displays the

current time in a digital format; (output) is used to output data to the terminal

device; and (update-coords) keeps track of the two-dimensional coordinate positions

for each hand.

1-56

Hierarchical Reasoning

Some characteristics of the analog clock in terms of its component parts are now

discussed:

Clock - The object • clock' is used to store the current clock time (which
is independent of the simulation time), and various methods that can be
found within the 0 recv • slot. The alarm is set by scheduling the pulling of
an alarm button. Pushing the button stops the alarm. The • sound alarm•
method informs the user that the alarm is continuing to ring if the user
has specified a low-level of object abstraction for this instance (at a higher
level, we may not be concerned about this detail).

• Hour-hand - The • hour-hand' object is designed to move from one tick
position to the next. There are four tick positions between each hour on
the clock face. The objects • minute-hand' and 'second-hand' are similar
in operation. Note the two levels of object abstraction for each object: At
the high level we are interested in knowing the time in a text format
while at the low level we are interested in a more precise definition
through a graphics rendition.

A sample interactive HIRES session is presented.

I-57

Hierarchical Reasoning

I hires
HIRES Vi.O - Hierarchical Reasoning System

; first, let`s set up the environment

> (setq $time 0)
> (load 'clock)
Ok..environment 'clock' has been loaded

set abstraction variables to tune the simulation

> (0= 2 true)	 process abstraction <= level 2 all the time
> (-_ (1) true)	 object abstraction = level 1 all the time
> (%_ (1 2) true) 	 report all process levels (all the time)

; next, we schedule an event to get things started

> (0> 1 clock (day) $time)
> (go)	 start the actual simulation

It is AM
It is PM
A day has passed!

Let's say that we are interested in the minute-hand during
the first ten minutes after the clock strikes midnight. Let's
further assume that we do not want details of the actual
minute hand (i.e. tent output will do). In addition, we will
set the alarm.

> (setq $time 0)
> (0= 5 true)	 process abstraction <= level 6 all the time
> (t= (1) true) ; object abstraction = level 1 all the time
>report at process level 5 only when the current object =
>	 'minute-hand' and the current simulation time is within
>	 the specified range (first 10 minutes). Otherwise, do not
>	 report anything
> (x= CO (and (object minute-hand) (time 0 800)) () true)
> (0> 1 clock (day) $time)
> (0 1 clock (set alarm 0 1 0))	 set the alarm
The alarm has been set at 12:01 am
> (0> 1 clock (push button) 342)	 schedule an interrupt
> (go)

The time is 12:00:00 am
The time is 12:01:00 am
The time is 12:02:00 am
The time is 12:03:00 am
The time is 12:04:00 am
The alarm has been turned off at 12:05:00 am

I-58

Hierarchical Reasoning

The time is 12:06:00 am

The time is 12:10:00 am

> (exit)
Bye

1-s9

Hierarchical Reasoning

Chapter 8
Conclusions

The goal of hierarchical reasoning is to provide a flexible method of simulation by

taking advantage of the inherent abstraction levels associated with processes, objects,

and their interactions. The analyst may create a knowledge base with many different

knowledge layers, and then reason about the change in the environment over

arbitrary time intervals. Initial goals have been met by providing a rigorous model for

process and object abstraction and by creating an initial implementation for testing

purposes.

This thesis has demonstrated the impo ► tance of reasoning in a hierarchic;l fashion,

and not simply through strictly quali t ative or quantitative methods. It is hoped that

both the scientific/engineering community and the artificial intelligence community

can benefit by using an integrated, hierarchical approach similar to the one defined.

It is critical that all levels of abstract knowledge be available to facilitate a true

process simulation.

ThEre remains much work to be done in the area of hierarchical reasoning. The

abstraction formalisms presented in the thesis will aid both the designer and use: of

large simulations by allowing them to reason about portions of a complex

environment at different levels.

PRECEDING PACE BLANK NOT FILMED

I-61

Hierarchical Reasoning

Chapter 9
References

[Abuja 80]	 Abuja, N., Chien, R. T., and Bridwell N.
Interference Detection and Collision Avoidance among Three

Dimensional Objects.
In Proceedings of the first Annual National Conference on

Artificial Intelligence, pages 44 - 48. AAA], August, 1980.

[.Men 811	 Allen, James F.
An Interval-Based Representation of Temporal Knowledge.
In Seventh International Joint Conference on Artificial

Intelligence, pages 221 - 226. IJCAl, August, 1981.

[Allen 831	 Allen, James F. and Koomen, Johannes A.
Planning Using a Temporal World Model.
In Eighth International Joint Con ference on Artificial

Intelligence, pages 741 - 747. IJCAI, August, 1983.

[Armstrong 83] Armstrong, Charles H., and Veach, William R.
Flight Data File EVA Checklist.
Technical Report, Mission Operations Directorate-Operations

Division, NASA Johnson Space Center, October, 1983.

[Radler 75]	 Badler, Norman I.
Temporal Scene Analysis: Conctptual Descriptions of Object

Afovements.
PhD the-is, University of Toronto, February, 1975.

[Badler 79]	 Badler, Norman I. and Smoliar, Stephen W.
Digital Representations of Iiuman Movement.
ACA1 Computing Surreys 11:19 - 38, March, 1979.

[Badler 83a]	 Badler, Norman 1., Webber, Bonnie L., Korein, James U. and
Korein, Jonathan.
TEMPUS: A System For The Design And Simulation Of Mobile

Agents In A Workstation And Task Environment.
In Proceedings of IEEE Trends and Applications Conference.

March, 1983.

(Badler 83b1	 Badler, Norman I.
Design of a Human Movement Representation Incorporating

Dynamics.
August, 1983.

" rzFrrrnIl.r PAc;T M ANK NOT r1T.Mrn
1-63

Hierarchical Reasoning

(Bloom 831	 Bloom, Douglas, A.
A User-Oriented Interface Control of an Interactive Computer

Graphics System.
Master's thesis, University of Pennsylvania, 1983.

(Bonner 821 Bonner, Susan and Shin Kang, G.
A Comparative Study of Robot Languages.
IEEE Computer 15(12):82 - 96, December, 1982.

[Brooks 83a] Brooks, Rodney A. and i,ozano-Perez Tomas.
A Subdivision Algorithm in Configuration Space for Findpath with

Rotation.
In Eighth International Joint Conference on Artificial

Intelligence, pages 799 - 806. 	 IJCAI, August, 1983.

[Brooks 83b] Brooks, Rodney A.
Planning Collision-Free Motions for Pick-and-Place Operations.
The International Journal of Robotics Research 2(4):19 - 80, 1983.

(Calvert 80] Calvert, T. W., Chapman, J., and Patla, A.
The Integration of Subjective and Objective Data in the .Animation

of Human Movement.
In Proceedings of the SIGRAPH 80 Con fertnee, pages 198 - 203.

SiGRAPH/ACM, July, 1980.

[CORE 79] Graphics Standards Planning Committee.
General Methodology and the Proposed CORE System.
In Computer Graphics - A Quarterly Report. SIGRAPH/ACM,

August, 1979.

[CSMP 761 IBM 1130 Continuous System Modeling Program, Program
Deecription and Operalione Manual
S1120-0405 edition, IBM Program Information Department,

Hawthorne, N.Y., 1976.

[de Kleer 75] de Kleer, Johan.
Qualitative and quantitative knowledge in classical mechanics.
Technical Report AI-TR-352, Massachusetts Institute of Technology,

December, 1975.

[de Kleer 771 de Kleer, Johan.
Multiple Representations of Knowledge in a Mechanical Problem-

Solver.
In Fifth Internationai Joint Conference on Artificial Intelligence,

pages 299 - 30 .1.	 IJCAI, August, 1977.

[de Kleer 791 de Kleer, Johan.
Causal and Teleological Reasoning in Circuit Recognition.
PhD thesis, Massachusetts Institute of Technology, January, 1979.

I-64

Hierarchical Reasoning

[Dijkstra 68]	 Dijkstra, E. W.
Cooperating sequential processes.
In F. Genuys(Editor) (editor), Nogramming languages. Academic

Press, 1968.

(Fikes 711 Fikes, R. E. and Nilsscn, N. J.
STRIPS: A new approa • h to the application of theorem proving to

problem solving.
Arti ficial Intelligence 2:189 - 208, 1071.

[Forbus 81a] Forbus, Kenneth D.
A Study of Qualitative and Geometric Knowledge in Reasoning

about Motion.
Technical Report AI-TR-615, Massachusetts Institute of Technology,

February, 1981.

[Forbus 81b] Forbus, Kenneth D.
Qualitative Reasoning about Physical Processes.
In Seventh International Joint Conference on Arti ficial

Intelligence, pages 326 - 330.	 IJCAI, August, 1981.

Forbus 831 Forbus, Kenneth D.
Measurement Interpretation in Qualitative Process Theory.
In Eighth International Joint Conference on Artificial

Intelligence, pages 315 - 320. 	 IJCAl. August, 1983.

(Gentner 831 Gentner, Dedre and Stevens, Albert.
Mental Models.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1983.

(Goldin 811 Goldin, Sarah E. and Klahr, Philip.
Learning and Abstraction in Simulation.
In Seventh International Joint Conference on Artificial

Intelligence, pages 212 - 214.	 IJCAl, August, 1981.

(GPSS 671 IBM Corporation.
General Purpose ,Simulation System 1360 Introductory 1.18er's

Manual, Report # H2O-0304
1967.

(Ilendrix 731 Hendrix, Gary G.
Modeling Simultaneous Actions and Continuous Processes.
Ar!i ficial Intelligence 4:145 - 180, 1973.

f Hoare 781 Hoare, C. A. R.
Communicating sequential processes.
Communications of the ACM 21(8):666 - 677, August, 1978.

(llollan 841 Hollan, James D., Hutchins, Edwin L. and Weitzman, Louis.
STEAMER: An Interactive Inspectable Simulation-Based Training

System.
Al Nfagazine 5(2)::5 - 27, Summer, 1984.

I-65

Hierr.rchical Reasoning

jNutchir„on 701 Hutchinson, A.
Labanotation.
Theatre Arts Books, 1070.

(Joels 821 Joels, Kerry M. and Kennedy, Gregory P.
The Space Shuttle Operator's Manual.
Random House, Inc., 1982.

(Klahr 801 Klahr, Philip and Faught, William S.
Knowledge-Based Simulation.
In Proceedings of the first Annual National Conference on

Artificial Intelligence, pages 181 - 183.	 AAAI, August, 1980.

IKonolige 801 Konolige, Kurt and Nilsson, Nils J.
Multiple-Agent Planning Systems.
In Proceedings of the first Annual National Conference on

Artificial Intelligence, pages 138 - 1 .12.	 AAAI. August, 1980.

(Korein 8 .11 K--rci:;, James G.
A Geometric Investigation of Reach.
PhD thesis, University of P-nnsylvania, 1984.

(Kuipers 761 Kuipers, Benjar.iin.
Spatial Knowledge.
Technical Report, Massachusetts Institute of Technology, June,

1976.
Al Memo 359.

[Lebling 79]	 Lebling, David P. and Blank, Marc S. and Anderson, Timothy A.
ZORK: A Computerized Fantasy Simulation Game.
IEEE Computer , April, 1979.

[Lieberman 77] Lieberman, L. I. and Wesley, M. A.
AUTOPASS: An Automat=e Programming System for Computer

Controlled Mechanical Assembly.
IBM Journal of ReQearch and Development 21(4):321 - 333, July,

1977.

[Lowrance 77]	 Lowrance, John, D. and Friedman, Daniel P.
Hendrix's Model for Simultaneous Actions and Continuous

Processes: An introduction and Implementation.
International Journal of Man-llfachine Studies 9:537 - 581, 19747.

[Lozano 79]	 Lozano-Perez, Tomas and Wesley, Michael A.
An Algorithm for Planning Collision -Free Paths Among Polyhedral

Obstacles.
Communications of the ACM 22:580 - 570, October, 1979.

(Mujtaba 821	 Mujtaba, M. S. and Goldman, R. and Binford T.
Stanford's AL Robot Programming Language.
Computers in Mechanical Engineering :50 - 57, August, 1982.

1-66

E	 [Nilsson 801

Hierarchical Reasoning

N i lsson, Nils J.
Principles of Artificial Intelligence.
Tioga Publishing Company, 1980.

[Payne 821	 Payne, James A.
Introduction to Simulation: Programming Techniqu^d and

Methods of Analysis.
M,;Graw -Hill, 1982.

[Peterson 77] Peterson, James L.
Petri Nets.
Computing Surveys 9(3):223 - 252, September, 1977.

[Peterson 811 Peterson, James L.
Petri Net Theory and the Modeling of Systems.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1981.

[Petri 62] Petri, C.
Korrmunikation mit Automaten.
PhD thesis, University or Bonn, 1962.

[Post 431 Post, E.
Formal reductions of the general combinatorial problem.
American Journal of Mathematics 65:197 - 268, 1943.

[Pritsktr 741 Pritsker, A. A. B.
The GASP IV Simulation Language.
Wiley , 1974.

[QR 841
Artificial Intelligence.
Volume 24: Numbers 1-3.
December, 1984
Special Volume on Qualitative Reasoning about Physical Systems.

[Rieger 771 Rieger, Chuck and Grinberg, Milt.
The Declarative Representation and Procedural Simulation of

Causality in Physical Mechanisms.
In Fifth International Joint Con ferenc-, on Artificial Intelligence,

pages 250 - 256.	 IJCAI, August, 1977.

[Sacerdoti 771 Sacerdoti,Earl D.
A Structure for Plans and Behavior.
Elsevier North Holland Inc., 1977.

[Salter 801 Salter, Richard M.,Brennan, Terence J., and Friedman, Daniel P.
CONCUR.: A language for continuous concurrent processes.
Computer Languages 5:163 - 189, 1980.

[Salter 831 Salter, Richard M.
Planning in a Continuous Domain-An Introduction.
Robotica 1:85 - 93, 1983.

I-67	 —

Hierarchical Reasoning

[Salter 841	 Salter, Richard M.
Declarative Modeling of Symbolic Continuous Processes in a Robot

Simulation System.
1984.
To appear in Robotica.

[Shapiro 34]	 Shapiro, Lynne A.
A Method for Generating Shadows With Umbra and Penumbra in

Computer Generated Images.
Master's thesis, University of Pennsylvania, May, 1984.

(SIMSCRiPT 72] Consolidated Analysis Centers, Inc.
SIAISCRIPT H.5 Reference Handbook
1972.

(Smoliar 771 Smoliar, S. W. and Weber, L.
Using t'.e computer for a semantic representation of Labanot.ation.
Computing in the humanities :253 - 261, 1977.

(STARCROSS 821
StarCross User's Afanual
Infocom, Inc., 1982.

[Taylor 82] Taylor, R. H., Summers, P. D. and Meyer, J. M.
AML : A Manufacturing Language.
The International Journal of Robotics Research 1(3), 1982.

(Tsotsos 801 Tsotsos, John K.
A Framework for Visual Afotion Understanding.
Technical Report CSRG-114, University of Toronto, June, 1980.

(Vere 831, Vere, Steven A.
Planning In Time: Windows And Durations For Activities And

Goals.
IEEE Transactions On Pattern Analysis And Afachine

Intelligence 5(3):246-267, May, 1983.

[Weber 781 Weber, L. ,Smoliar, S.W. and Badler, N.I.
An Architecture for the Simulation of Human Movement.
Proceedings of the 1978 Annual ron ference. ACM 1, December 4 -

6, 1978.

(Weinstein 831 Weinsten, Luke A.
A Menu Driven User Interface.
Master's thesis, University of Pennsylvania, 1983.

(Zeltzer 821 Zeltzer, David.
Motor Control Techniques for Figure Animation.
IEEE Computer Graphics and Applications 2:53 - 59, November,

1982.

1-68

Hierarchical Reasoning

(Zeltzer 83) Zeltzer, David.
Knowledge-based Animation.
In SIGRAPH/SIGART Interdisciplinary Workshop

Representation and Perception, pages 184 - 192.
Computing Machinery, April, 1983.

,VOTION
Assocation for

I-69

Hierarchical Reascning

Appendix A
An Alarm Clock Simulation

►
'RF.C[?I)IN;, PAGE BLANK NOT

FILMED

1-71

Hierarchical Reasoning

An Alarm Clock Simulation
written using HIRES capability

Paul Fishwick

Specify the actors for the clock simulation

Define the object hierarchy

(ask something create instance clock with
hour 0
minute 0
second 0)

(ask something create instance hour-hand with
x1-coord 0
y1-coord 0
x2-coord 0
y2-coord 6
color blue)

(ask something create instance minute-hand with
x1-coord 0
y1-coord 0
x2-coord 0
y2-coord 10
color green)

(ask something create instance second-hand with
x1-coord 0
y1-coord 0
x2-coord 0
y2-coord 8
color red)

Define the Object Behaviors

[ask clock when receiving
(day)

(0 2 clock (am))
W 2 clock (pm) 43200) ; pn starts in 12 hours
W 1 clock (next day) 86400))

[ask clock when receiving
(next day)

(t 0 2) 3 (output 'A day has passedl')))]

[ask clock when receiving

(am)
(R 0 2) 3 (output 'It is A?i')))
(0 3 clock (early morning))
W 3 clock (late morning) 21600)] ; late morning in 6 hours

[aak clock when receiving
(pm)

(R (1 2) 3 (output 'It is PY')))
(6 3 clock (afternoon))
W 3 clock (night) 21600)] ; night `A 6 hours from now

[ask clock when receiving

I-72

Hierarchical Reasoning

(early morning)
(• (1 2) (Z (output 'It is in the early morning')))
(0 4 hour-hand (move 0 6))]

[ask clock when receiving
(late morning)

(0 (1 2) (x (output 'It is in the late corning')))
(0 4 hour-hand (move 6 11))]

[ask clock when receiving
(afternoon)

(• (1 2) 3 (output 'It is the Pfternoon')))
1%0 4 hour-hand (move 12 17))]

[ask clock when receiving
(night)

(# (1 2) 3 (output 'It is nighttime')))
(0 4 hour-hand (cove 18 23))]

[ask clock when receiving
(set alarm >hours >minutes)

(setq seconds 0)
(setq aim-time (plus (times Lours 3600) (times minutes 60) seconds))
(• (1) 3 (output 'The alarm has been set at •

(show-alarm-time hours ainutes)))
(2) 3 (update-graphics 'alarm-buttoc')))

(0> 1 clock (sound alarm) sin-tine)]

[ask clock when receiving
(sound alarm)
(# (2) 3 (output 'The alarm is ringing ...'))
(0 1 clock (sound alarm) 1)]

[ask clock when receiving
(push button)
(! (1) 3 (output • The alarm has been turned off at ' (show-time)))

(2) 3 (update-graphics 'alarm-button')))
W 1 clock (ask clock sound alarm))] ; de-schedule (sound alarm)

[ask hour-hand when receiving
(move >start >stop)

(if (le start stop)
;(update-coords 'hour hand')
(0 (1) (Z (output 'The time is ' (show-Lice));

(2)	 (update-graphics 'hour hand')))
(setq expression (list '0> 4 'hour-hand

(list 'nexthourtick start stop) 720))

(eval expression)
(0 6 minute-hand (move 0 11))]

[ask hour-band when receiving
(nextbourtick >etart >stop)

(set-slot clock hour (plus (get-slot clock hour) 0.2))
(set-slot clock minute

(mod (fix (times (get-slot clock hour) 60)) 60))
(setq expression (list '0 4 'dour-hand

(list 'Move (plus start 0.2) stop)))
(aval expression)]

1-73

Hierarchical Reasoning

[Lek minute-hand when receiving
(move Wart >stop)

(if (tee start stop)
;(updata-coords 'minute hand')
A (1) (% (output "The time is ' (shoe-time)))

(2) 3 (update-graphics 'minute hand')))
(setq expression (list W 6 'ainute-hand

(list 'nextainute start stop) 60))
(if (as start stop) (eval expression))
(0 6 second-hand (move 0 69))]

[ask minute-hand when receiving
(nextainute >start O top)

(set-slot clock minute (plus (get-slot clock minute) 1))
(set-slot clock second 0)
(setq expression (list '0 6 'minute-hand

(list 'move (plus start 1) stop)))
(eval expression)]

[ask second-hand when receiving_
(move >start O top)

(if (le start stop)
;(update-coords 'second bind')
1 (1) 3 (output •The time ib • ' . snow-Lime)))

(2) 3 (update-graphics 'second hand')))
(setq expression (list W 6 'second-hand

(list 'nextsecond start stop) 1))
(if (no start stop) (eval expression))]

[ask second-hand when receiving
(nextsecond wart O top)

(set-slot clock second (plus (get-slot clock second) 1))
(setq expression (list '0 6 'second-hand

(list 'move (plus start 1) step)))
(oval expression)]

Define support functions

(defun output fexpr (out-list)
(mapcar '(lambda (a-value) (princ (oval a-value)))

out-list)
(terpri))

(defun update-graphics (type)
(output 'Graphics are being updated for the • type))

(defun update-coords (type)
(output 'Coordinate locations are being updated for the ' type))

(defun show-time nil
(setq hour (fix (get-slot clock hour)))
(setq indicator 'pm)
(if (le hour 11) (setq indicator 'aa))
; adjust hour to 12 hour format with Wpm indicator
(setq hour (plus (mod Q hour 11) 12) 1))
(setq minute (fix (get-slot clock ainute)))

I-74

Hierarchical Reasoning

(eetq second (get-slot clock second))
(princ hour) (princ VD
(princ minute) (princ 'I:I)
(princ second)
(princ '1 1)
(princ indicator))

(defun show-alarm -tile (hour ainute)
(setq indicator 'pm)
(i1 (le hour 11) (setq indicator AW)
; adjust hour to 12 hour format US am/pa indicator
(setq hour (plus (sod Q hour 11) 12) 1))
(princ hour) (princ '1:1)
(princ minute) (princ 'I I)
(princ indicator))

(defun get-slot fezpr (list)
(setq object (car list))
(setq slat (cadr list))
(ask !object recall your !slot))

(defun set-slot fezpr (list)
(setq object (car list))
(setq slot-name (cadr list))
(setq slot-value (oval (caddr list)))
(ask !object set your !slot-name to !slot-value))

175

	0008A02.pdf
	0008A03.pdf
	0008A04.pdf
	0008A05.pdf
	0008A06.pdf
	0008A07.pdf
	0008A08.pdf
	0008A09.pdf
	0008A10.pdf
	0008A11.pdf
	0008A12.pdf
	0008A13.pdf
	0008A14.pdf
	0008B01.pdf
	0008B02.pdf
	0008B03.pdf
	0008B04.pdf
	0008B05.pdf
	0008B06.pdf
	0008B07.pdf
	0008B08.pdf
	0008B09.pdf
	0008B10.pdf
	0008B11.pdf
	0008B12.pdf
	0008B13.pdf
	0008B14.pdf
	0008C01.pdf
	0008C02.pdf
	0008C03.pdf
	0008C04.pdf
	0008C05.pdf
	0008C06.pdf
	0008C07.pdf
	0008C08.pdf
	0008C09.pdf
	0008C10.pdf
	0008C11.pdf
	0008C12.pdf
	0008C13.pdf
	0008C14.pdf
	0008D01.pdf
	0008D02.pdf
	0008D03.pdf
	0008D04.pdf
	0008D05.pdf
	0008D06.pdf
	0008D07.pdf
	0008D08.pdf
	0008D09.pdf
	0008D10.pdf
	0008D11.pdf
	0008D12.pdf
	0008D13.pdf
	0008D14.pdf
	0008E01.pdf
	0008E02.pdf
	0008E03.pdf
	0008E04.pdf
	0008E05.pdf
	0008E06.pdf
	0008E07.pdf
	0008E08.pdf
	0008E09.pdf
	0008E10.pdf
	0008E11.pdf
	0008E12.pdf
	0008E13.pdf
	0008E14.pdf
	0008F01.pdf
	0008F02.pdf
	0008F03.pdf
	0008F04.pdf
	0008F05.pdf
	0008F06.pdf
	0008F07.pdf
	0008F08.pdf
	0008F09.pdf
	0008F10.pdf
	0008F11.pdf
	0008F12.pdf
	0008F13.pdf
	0008F14.pdf
	0008G01.pdf
	0008G02.pdf
	0008G03.pdf
	0008G04.pdf
	0008G05.pdf
	0008G06.pdf
	0008G07.pdf
	0008G08.pdf
	0008G09.pdf
	0008G10.pdf
	0008G11.pdf
	0008G12.pdf
	0008G13.pdf
	0008G14.pdf
	0009A02.pdf
	0009A03.pdf
	0009A04.pdf
	0009A05.pdf
	0009A06.pdf
	0009A07.pdf
	0009A08.pdf
	0009A09.pdf

