
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

A STUDY OF METHODS TO PREDICT AND MEASURE THE TRANSMISSION
OF SOUND THROUGH THE WALLS OF LIGHT AIRCRAFT

Research Contract #0226-51-1288

INTEGRATION OF CERTAIN SINGULAR
BOUNDARY ELEMENT INTEGRALS FOR
APPLICATIONS IN LINEAR ACOUSTICS

Sponsored by

NASA
Hampton, VA 22365

Report No. 0226-16 	 HL 85-21

Submitted by:

Pan Zimmerle, Graduate Research Assistant
Robert J. Bernhard, Principal Investigator

Approved by:

Raymond Cohen, Director
Ray W. Herrick Laboratories

July 1985

ai

CONTENTS

1. INTRODUCTION ... 1
f

2. BEN INTEGRALS OVER AN ELEMENT CONTAINING THE ROOT !
NODE......	 2
2 .1	 Computation	 of	 I	 3
2.2	 Linear	 Elements 4

3. EXTENSION TO HIGHER-ORDER ELEMENTS 8 i
3.1	 Computation of the Integral for Sub-Parametric Ele-

ments... 9

4. INTEGRALS OF NORMAL DERIVATIVES 13	 i

5. CONSTRUCTION OF A BOUNDARY ELEMENT PROGRAM 14
5.1	 Construction of the Integration Routines............ 17

5.1.1	 The Routines to Compute	 I	 14 18	 s
5.1.2	 The Routines to Compute tRe Element

Integrals	 14.....
	

........................ 18
5.1.3	 Utility Routines 	 15 19

5.2	 Assembly of HROW, GROW into the Coefficient
Matrix .. 20

6. CONCLUSIONS .. 22

APPENDICES ... 23

t

method described may be generaiized to most characteristic solu-

tions.

- 1 -

1.	 INTRODUCTION

It is well known that boundary element techniques require the

integration of a characteristic solution over eleeents which

define the boundary of the domain. The characteristic solution

is usually a function of the distance from a "root" node to the

surface of the element over which the integral is being computed.

When the "root" node is outside of the element, the integrals may

be performed in a straight-forward fashion using standard nua,er i-

cal integration techniques like Gaussian quadrature. However,

when the node is in the element, the integral contains an integr-

able singularity which will not integrate accurately using Gaus-

sian quadrature. This report will discuss an alternative method

for performing this integral.

The method proposed separates the integral of the charac-

teristic solution into a singular and non-singular part. The

singular portion is integrated with a combination of analytic and

numerical techniques while the non-singular portion is integrated

with standard Gaussian quadrature. The method may be generalized

to many types of sub-parametric el,..-ments.

This report will consider only the integrals over elements

containing the root node, and will deal only with the charac-

teristic solution for linear acouetic problems. However, the

,i

- 2 -

2. BEN INTEGRALS OVER AN ELEMENT CONTAINING THE ROOT NODE

Suppose the root node is node n (1 < n < m). To denote dis-

tance from node n, write r as rn.

e 3krn

I i s jA N i	 r	 dA	 i - 1,2,...,m	 (1)
e	 n

where

I i - contribution (i.e., integral) to coefficient of node i.

N i - shape function for node i

A - area of element a (region of integration)

rn - distance from root node to any point in the element

k - constant from Helmholtz equation

m - number of nodes in element e

Several significant properties of the shape functions are:

1) All (N i : i f n)	 0 as rn ^ 0

2) Nn --• 1 as rn	 0

3) Nn 1 - E Nin 	 i=1	 1
i•n

From these observations we note that the integrand of I i is

singular only when i-n. For all other integrals, N i - 0 as

rn --* 0 quickly enough to avoid singularity. Thus, I i , for ion

L -..&

now
_...ate=

t
	

- 3 -

may be integrated numerically without undo difficulty.

}

For i-n an integrable singularity exists. First, rewrite

the integral I n as:
i

-Jkrn
e

dAIn = fAe Nn rn
F

5

	

e
-jkrn	 m

Ae rn
ifn

We may therefore break I n into a singular part,

-jkrn
I o = fA

e
r	 dA	 (3)

e	 n

and a non-singular sum of previously calculated integrals,

m
In = I o - E	 i i	(4)

i=1
ion

The problem, then, is reduced to calculating Io.

2.1 Cgmgutation of Io

Note:

coskrn	 sinkrn
Io = fA _r dA + fA r dA	 (5)

	

e	 n	 e	 n

but

s in kr	 5
1 im	 r n k
rnyo	 n

- 4 -

Therefore, the second integral may be evaluated numerically, if

desired. Temporarily both will be kept together.

2.2 Linear Elements

For linear elements sides are straight lines:

Figure 1. Type T-3 Element

Figure 2. Type Q-4 Element

7

- 5 -

8̂ j
'Rz	 1	 i

a

^^	 A

Figure 3. Polar Coordinate Definition for T-3 Element

Rephrasing 1 in local polar coordinates:

e
-jkrn	

R. (e) -Jkr
I o - JAe -'_ — r ndrnde - Jo Jo l	 a	 ndrndB

where R1 is the equation of line AB in polar coordinates.

(6)

Figure 4. Polar Coordinate Definition for Q-4 Element

For a quadrilateral element

at R1 (e) -jkrn	 d R2 (e*) -jkxn
I O - Jo Jo	 a	 drnde + Jo Jo	 0	 drnd6* (7)

- 6 -

k

Thus, an expression for RI (G) and R2(05 must be found

,p	 o

R,

Figure S. Definition of R(9)

As shown in Figure 5, by similar triangles ABC ADE

R28ina R2cosa - R1
f

rsine	 rcose - R1

(rcose - Rl)(R29ina) i (rsin6)(R2cosa - Ri)

r(R2 sinacose - R2 cosasine + Risine) - R1R28ina

but,

R2(sinacose - cosasine) s R28in(a - e)

RlR2sina
R - r

R2 (sinacose - cosasine) + Risine

- 7 -

or

RiR2s ina
R R2sin (a - 8) + Risine

Therefore:

RlR2sina

R1(e) = R28in (a - 6) + Rlsine

R2R3sinb

R2 (e*) = R3sin (d - 9*) + R28in8*

From Equation 6, the integral over r is non-singular and

easily integrated. Equations 6 and 7 can now be partially

evaluated numerically by

_jgr R(e)

Io jo(8) a-jk
ndr nd6 = j^	 n	 de

0

k j0 te_JkR(g) - lj dB

k j'Y e_jkg(8) de - k	 (9)

This integral is easily evaluated numerically using Gauss quadra-

tune over 9.

(8)

t

- 8 -

3. EXTENSION TO HIGHER-ORDER ELEMENTS

For marry applications, linear triangular and quadrilateral

elements are sufficient. However, for some applications,

higher-order (e.g., quadratic or cubic) elements may provide an

increase in accuracy. There are two types of elements with higher

interpolation orders that are of interest here -- iso-parametric

and sub-parametric elements.

In sub-parametric elements the geometry of the element is

defined by a lower order of interpolation than the function

values. If the geometry is defined in terms of linear shape

functions the method of determining 1 is exactly the same for

all sub-parametric elements as the method presented above, where

m is the number of nodes in the element.

In iso-parametric elements, however., the geometry is defined

by higher-order interpolation, as shown in Figure 6.

y

N ♦ /

1 ^
9

Figure 6. Isoparametric Element Displacements

F	 9

f
	 Since the boundary of the element is no longer defined by

t

straight lines, the techniques presented above will not integrate

1 correctly, as shown by the shaded area in the figure. In this
author's experience computing 1 for an iso-parametric element is

much more difficult than computing it for a sub-parametric ele-

ment.

In many applications the geometry of the region is neither

complex enough to warrant iso-parametric elements nor critical

enough that it needs to be represented exactly. In addition,

there is some evidence which indicates that higher-order elements

do not improve the accuracy of the method significantly. For

these reasons it was decided to concentrate on the sub-parametric

techniques, which is much simpler and should give a good indica-

tion of the advantages, if any, of using higher-order elements.

If necessary, iso-parametric capability may be developed at a

later date.

3.1 Comautation of the Intear&I for Sub-Parametric Elements

At this juncture it is interesting to look at methods for

computing 1 in general -- i.e., covering the range of possible

root nodes and element shapes.

The root node must be one of three types:

i
1. Corner node (all element types), as shown in Figure 7

2. On a side of the element (quadratic and cubic types),

as shown in Figure 8

i

IL ;
- 10 -

3.	 In the interior of the element (certain cubic types),

as shown in Figure 9

In each case the root node is marked with a dot. All other nodes

used to define the geometry of the elements are marked with an

"x". Letters marking each of the sub-triangles are enclosed in

circles.

Note that in each case the element may be divided into from

one to four triangles by connecting the root node with each of

the other corner nodes in the element. The integral for the

entire element is simply the sum of the integral for each of the

triangles. Also note the followings 1) One or two of the trian-

gles will collapse to lines (i.e., have area of zero) for certain

root nodes; 2) the number of subtriangles in each element is

equal to the number of corner nodes in the element. By using the

test "is the area of this triangle equal to zero" it is possible

to write a general algorithm to compute 1 for any sub-parametric

element as shown in Table I.

- 11 -

0 0	 0^
d	 ^- o^

Figure 7. Root Node as a Corner Node

Figure 8. Root Note as a Midside Node
	 ko

lo,

Figure 9. Root Node as an Interior Node

- 12 -

TABLE I.

6.1 Algorithm to Calculate Io

A) Main Routine:

1) Set the sum I to zero

2) FOR i - 1 to number of corner nodes in the element (S)
DO

a) Select 2 corner nodes to create a triangle:

a = i

b i + 1

if (b> S) b1

b)	 Calculate contribution to I for this triangle
using the routine below:

c)	 Add contribution to I.

3) END

B) Routine to calculate contribution to I for each triangle.

	

1)	 Calculate area of the triangle. 	 {
6

	2)	 IF (the area of the triangle is zero) THEN

a) return a value of zero
ELSE

b) compute the integral over the triangle (n,a,b)
using Eq. 9.

	

3)	 END

- 13 -

4. INTEGRALS OF NORKAL DERIVATIVES

Up to this point, only integrals of the characteristic solu-

tion have been considered. However, it is well known that

integrals of the normal derivative of the characteristic solution

must also be computed.

If an element is a portion of a plane, the normal to the

surface is perpendicular to the vector extending from the root

node to any point on the element. This is true for all triangles

formed with linear sides, and is true for quadrilaterals provided

opposite sides lie in the same plane. In such cases where the

normal and the "position" vector are perpendicular the normal

derivative is zero.

Sub-parametric elements, which are being used exclusively in

this report will be planar for all triangular elements. Sub-

parametric quadrilateral elements may also be defined as planes

with very little loss of versatility. Therefore, for sub-

parametric elements, all integrals of the normal derivative are

zero, and thus, very easy to compute.

9

- 14 -

5. CONSTRUCTION OF A BO	 NT PROGRAM

In order to properly utilize the integration routines

presented following this chapter, it is necessary to place them

in the intended type of program structure. This section will

briefly explain the type of program structure for which they were

designed.

The major operations of the program are:

1. Input mesh definition into the program.

2. Assemble the system of equations.

3. Add internal sources to the equation system (optional).

4. Generate additional equations for overdetermined sys-

tem.

5. Solve the system of equations.

6. Extract results.

Of course, this flow chart will vary somewhat if, for example, a

line by line equation solver is used.

The most complex step of the program is the assembly of the

system of equations. This step, is discussed in more detail in

Table 2. Figure 10 is a flow-of-control diagram, showing which

routines are called by, or connected to other routines.

1

- 15 -

I Root in eiemrnt:	 I

routine SAINT3
Triangular 3 	 ,,

•	 Elements \

	
1

V
' Root not in element:

routine INTO

I	 Integral i
Control

I	
Routine	

I

(Root in element	 I

Rain	 I	 routine SAINTI
Assembly	 puadrilateral

Routine I	 l cents	

Nil' Root not in element:
routine INTEI	 I

I Assembly	 I

I Control
Routine	

I

I	 Using nodal bounder conditions, reduce
two vectors (HROM, GROV) to one vector

I	
a constant representing one row of the

I	
equation set

I line by line	
I	 I Add row to equation set 	 1

I equation solver I
	 I for later solution using I

Gauss elimination

' Add row to equation set	 I
I	

for later solution via 	 I

a least squares method

Figure 10. Flow of Control for Assembling the System
of Equations.

- 16 -

TABLE II

Assembly of the System of Equations

0. Define complex vectors HROW,.GROW of length NOD.

1. FOR i = 1 to the number of nodes (NOD) nO

a. Set the vectors HROW, GROW to zero. These vectors will hold,
respectively, the integrals of the normal derivative of the
characteristic solution (H) and the characteristic solution
(G), respectively.

b. FOR j = I to the number of elements (NEL) 00

1. Localize coordinates and node numbers for element j into
temporary arrays.

..	 ii. IF j is triangular THEN

1. IF node i is in element j THEN

call integration routine for a triangle containing
the root node (SAINTS).

1, ELSE

call integration routine for a triangle not
containing the root node (INTE3).

ii, ELSE

1. IF node i is in element j THEN

call integration routine for a quadrilateral
containing the root node (SAINT4).

1, ELSE

call integration routine for a quadrilateral
not containing the root node.

M. Add the integrals just computed to their proper locations
in the vectors HROW, GROW.

b, ENO of loop on the elements, j.

c. Add the row of integrals for node i, accumulated in HROW and	 {
GROW to the coefficient matrix following the boundary
conditions specified for each node.

I. END of loop on the nodes, 1.

t

15

17 -

The tests in l.b.ii of Table 2, which are used to select the

type of integral to be computed, should properly be placed in a

separate routine for easy maintenance. However, since the tests

are quite simple and the integration routines very flexible, it

should be more efficient to incorporate the tests directly into

the main assembly routine. Step l.c of Table 2 is dependent upon

the type of solution procedure chosen, and should be placed in a

separate routine. This subject will be discussed more later.

5.1 Construction of the Integration Routines

A listing of the integration routines (which is slightly

out-of-date, but all that was available at the time of this writ-

ing) is given in the Appendices, along with shape function and

certain other utility routines. This section will briefly dis-

cuss the structure of the integration routines.

The routines may be divided into three groups:

1. Computation of the
1 integral for an element

COINTE, IOINTE

2. Computation of the integrals for an entire element

SAINT3, INTE3, SAINT4, INTE4

3. Utility routines and shape functions SHAQUA, SHATRI,

NORMAL along with the subroutines to SHAQUA:

SH2DQQ, SH2DCQ

The routines in 1 and 3 are called by the routines in 2 and are

5.1.1 Xhl Routines IQ C2MRute I o The routines COINTE and IOINTE

E	 are a direct implementation of the method described previously.
L

COINTE divides the sub-parametric element into the number of

sub-triangles. IOINTE is called by COINTE to calculate the

t	 integral over each sub-triangle. If one angle of the sub-
s

triangle is 180 degrees (which is equivalent to asking "is the

area zero", and is much easier to calculate), COINTE returns a

value of zero.

5.1.2 Thl Routines I& ComputeDute JUg Element Integrals INTE3 and

INTE4 compute the integrals for triangles (thus the 3) and qua-

drilaterals, respectively, for the cases when the root node is

not in the element. These are straight forward implementations

of standard Gaussian quadrature.

SAINT3 and SAINT4 are images of INTE3 and INTE4 except for

two modifications. First, during the Gaussian quadrature, the

integral for the root node is not calculated, since it is singu-

lax and inaccurate. Second, additional statements are added at

the end of the routine to call COINTE to compute the 1 integral

for the element. 1 is then used to compute the integrals for

the root node.

The "SAINT" and "INTE" routines are not combined because a

large number of tests would be needed within the routines to

decide whether the root node is in the element. These tests

would make the computation much less efficient.

e

- 19 -

Integration routines for triangular and quadrilateral ele-

ments are not combined in one routine because certain operations

may be eliminated when triangular elements are handled

separately. Also, the dimensions of the arrays and certain DO

loop parameters may be specified as constants, which, on some

compilers, is more efficient than specifying variables.

5.1.3 Utility Routines The utility routines contain NORMAL,

which calculates the normal vector for a triangle with linear

sides, and the shape function routines. The shape functions are

simplifications of finite element shape functions (the deriva-

tives of the shape functions need not be calculated) for 2-

dimensional problems.

The shape functions have the capability to handle hierarchal

nodes, as proposed by Zienkiewicz. Any of the midside nodes of

the higher order elements may be removed, reducing the number of

degrees of freedom and the order of the element. To remove node

i, for example, specify the ith position in the element connec-

tivity as zero, i.e., ID(i) - 0.

The integration routines assume that the quadrilateral els-

ments are plane, or nearly plane. To minimize the error due to

deviations from plane geometry, an "average" normal vector is 	 {

used. However, results with non-plane elements may not be good.

Prior to any call to an integration routine, the Gaussian

quadrature points must be specified in the common blocks QPOINT

E	 (quadrilateral elements), TPOINT (triangular elements) and SPOINT
F;

- 20 -

(one dimensional Gauss points to integrate the 6 integral for

Io)"

5.2 Assembly of HRO . GROW into the Coefficient Matrix

Step l.c in Table 2 for the assembly of the system of equa-

tions is in need of a few additional comments. As shown in the

flow-of-control diagram, an additional routine is responsible for

converting the integrals stored in HROW and GROW into a single

equation for node i. The equation is then assembled into the

system by the proper routine for the type of solution method

used.

The conversion of the integrals into an equation is a simple

operation based on the boundary conditions for the nodes. The

program BOUN3D, originally written for three dimensional heat

transfer contains all of the instructions necessary for this

operation. The comments in the program should be self-

explanatory.

Another pressing problem with boundary conditions is which

boundary condition to enforce at a corner where different condi-

tions are specified on each side of the corner. The system used

in BOUN3D, and suggested for this program is to place two (or

more) nodes close to the corner. The different boundary condi-

tions may be specified on different nodes.

When the integrals are converted to an equation the correc-

tion factor for the included angle at the node must also be

incorporated. It is suggested the angle be calculated from the

geometry of the mesh, rather than the integrals, as is usually

done for heat trAnsf er problems. This task is probably handled

best within a mesh generation program. Note that an additional

array will have to be added to BOUN3D to hold the angle at each

node.

Finally, a note about equation solvers needs to be given.

The usual manner of solving unsymmetric full systems by Gauss

elimination has proven quite satisfactory in the past, and is

suggested for this program. Iterative methods, such as SOR, BSOR

and Gauss-Seidel usually will not converge at a reasonable rate.

A possible variation on Gauss elimination would take advan-

tage of the fact that boundary element equations are formed com-

pletely, one at a time. Since the complete equation is available

at once, it is possible to eliminate the first i-1 coefficients

from row i at the time the row is added to the coefficient

matrix. This "line by line" elimination would reduce the amount

of storage needed for the matrix from N * N to N * (N -1)/2.

However, it would make it impossible to pivot the matrix.

Finally, by separating the formation of the equation from

its addition to the coefficient matrix, it will be easy to add

specialized solution routines. For example, for some least

squares methods, the number of equations and variables are not

equal. Such solvers often require specialized assembly methods.

6 .	 CONM&S I ONS

- 22 -

This work has provided several insights which may be useful.

1. Sub-parametric elements seem to be the most efficient means

of utilizing higher-order elements. However, there is very

little evidence to suggest that higher-order elements will

greatly improve the accuracy of the solution.

2. Attention should be given to a method(s) of performing an

iterative "design" type problem solution. It is very expen-

sive to iterate using boundary element because the system of

equations needs to be decomposed at each iteration. This

could become a very pressing problem whenever iterations are

necessary, such as a noise path identification application.

3. For problems where all of the nodes are given the same boun-

dary conditions (such as an impedance) there should be very

little problem imposing boundary conditions (i.e., the prob-

lems that haunt solid mechanics and heat transfer applica-

tions should not appear). This is an area that can be

ignored until a serious problem crops up

4. The solution of the system of equations will continue to be

the most time consuming part of the analysis. Some improve-

ment must be made in this area, but such improvements prob-

ably not a relevant concern at this time.

APPENDICES

- 23 -

APPENDIX A: Subroutines COINTE and IOINTE

Yr

--
function coints(korn,iroot,x,y,z,ak)

Computes the Io integral over the element by dividing the (sub-)

parametrix element into a number of linear triangular elements
-----• --
inputs:

iroot - local number of the root node
npe - number of nodes in the element (used to determine wheter

element is triangular or quadrilateral)
x,y,z - element nodal coordinates

id - connectivity for element
ak - --onstant from Helmholtz equation

Outputs:

cointe - value of the lo integral for the element

Calls:
iointe - computes Io for individual triangles in element

--
Notes;

1) iointe requires gauss integration points for one dimension. These
must be set before routine is called.

2) Intended only for sub-parametric elements. Serious errors may
occur if used with parametric elements.

implicit real*8 (a-h,o-z)
complex*16 cointe,iointe
dimension x(korn),y(korn),z(korn)

--------------------- arrays hold points for the nodes of subtriangle
dimension xx(3),yy(3),zz(3)

--------------------- find element type, initilize variables
cointe - (0.,0.)
xx(1) - x(.iroot)
yy(1) - y(iroot)
zz(1)	 z(iroot)

--------------------- divide element into subtriangles and integrate each
it - korn
do 100 1 - l,korn

12 - i
if(il .eq. iroot .or. 12 .sq. iroot) goto 100

xx(2) - x(il)
xx(3) - x(12)
YY(2) - Y(il)
YY(3) - Y(i2)
zz(2) - z(il)
zz(3) - z(12)
cointe - cointe + iointe(xx,yy,zz,ak)

00	 it - 12

i
3

return
endI

function iointe(x,y,z,ak)
Y--
Computes the constant integral over a triangular element or a triangular

portion of an element
--

Inputs:
x,y,z - the coordinates of the triangle. The root node is the first in

the arrays.
ak - constant from the helmholtz equation

Outputs:
iointe - value of the integral of:

exp(-jkr)/r dA

Notes:
1) all Teals are double precision
2) the integral is performed using both analytic and numerical techniques
3) if the area of the triangle is zero, iointe - 0

IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION X(3),Y(3),Z(3)
complex*16 iointe

--------•---------- GAUSS POINTS FOR NUMEksCAL INTEGRATION
COMMON /SPOINT/ ETA(16),W(16),NINPT

---------------- TOP IS THE DOT PRODUCT OF R1 AND R2
TOP	 (X(2) - X(1)) * (X(3) - X(1))

*	 + (Y(2) - Y(1)) * (Y(3) - Y(1))
*	 + (Z(2) - Z (1)) * (Z (3) - Z(1))
R1 = DSQRT((X(2)-X(1))**2+(Y(2)-Y(1))**2+(Z(2)-Z(1))**2)
R2	 DSQRT((X(3)-X(1))**2+(Y(3)-Y(1))**2+(Z(3)-Z(1))**2)

---------------- DOT R1 R2 TO FIND ANGLE OF ELEMENT
COSA - TOP/(R1* R2)

---------------- if cosa = 1, the triangle is collapsed to a line
if (dabs (dabs (cosa) -1. d0) . le. 1. d•-4) then

iointe - (O.d0,0.d0)
return

end if
---------------- corupute the lo integral for the triangle

ALPHA - DACOS(COSA)
SINA - DSIN(ALPHA)

---------------- NUMERATOR OF R-CARAT
TOP	 - R1 * R2 * SINA
A2	 - ALPHA * 0.5D0
iointe - (O.d0,0.d0)

----------------- INTEGRATE THE THETA INTEGRAL
do 100 i-l,ninpt

----------------- RC IS r-carat
rc - top/(R2*dsin(a2*(1.d0-eta(i)))+Rl*dsin(a2*(1.d0+eta(i))))

----------------- ski, ckr are sin, cos of k*r-carat

skr - dain(ak * rc)
ckr - dsgrt (1. d0 - skr * skr)

----------------- - multiply by weights now to avoid conversion later
skr	 skr * w(i) /ak
ckr	 ckr * w(i)/ak

----------------- Add intermdiates to the totals, GA..GC
40	 iointe - iointe + dcmplx(s)r,ckr)
-------------------------- CORRECT FOR JACOBIAN and constant term

iointe - iointe * do-tplx(a2,0.d0) - dcmplx(O.dO,alpha /ak)

END

APPENDIX E: Subroutines INTE4, SAINT4, INTE3, and SAINT3

subroutine inte4(xp,npe,x,y,z,id,g,h,ak)

PERFORMS INTEGRALS FOR quadrilateral elements not
CONTAINING THE root node

Inputs:
XP - ARRAY OF LENGTH 3, CONTAINING THE COORDINATES OF THE NODE

IN QUESTION (XP(I) - X(I)TH COORDINATE OF THE NODE)
npe - number of Nodes Per Element

x,y,z - nodai coordinates of element
id - element conneetivity (used in some shape function routines
ak - constant from helmholtz equation

iroot - number of the node in the element which is the root node.
If the root is outside the element, iroot - 0

Outputs:
g - complex, d.p. array of

OF U* OVER THE ELEMENT
H - complex, D.P. array of

OF Q* OVER THE ELEMENT

length npe containing integrals

length NPE containing integrals

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of quadrilateral

element for which a .shape function routine is installed
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION

OVER line. The integration points must be set before the
routine is called. Integration is done in both coordinate
directions in the usual manner.

3. Maximum number of integration points presently is 16X16
4. This routine is valid only for sub-parametric elements

IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION XP(3),X(4),y(4),z(4),id(npe)
complex*16 g(npe),h(npe),ustar,gstar

-------------- block of 'space' for all of the shape function routines
common /sspace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)

-------------- space for integration points (1-D, gauss type)
COMMON /QPOINT/ psi(16),W(16),NINPT

-------------- initialize all integrals to zero
do 10 i - l,npe

g(i) - (O.d0,0.d0)
h(i) - (0.d0,0.d0)

-------------- Find the normal vector and area for the element
-------------- First triangle (nodes 1, 2 6 3)

call normal(x,y,z,u,al)
-------------- second triangle

xx(1)- x(2)
xx(2) - x(3)
xx(3) - x(")
yy (1) - y(2)

3

i

3
J

YY(2) - Y(3)
YY(3) - Y(4)
zz(1) - z(2)
zz(2) - z(3)
zz(3)- z(4)
call normal(xx,yy,zz,u,a2)
area - al + a2

-------------- INTEGRATE!
DO 100 I - l,ninpt

chi - psi(I)
cl - 1. d0 - chi
c2 - 1.d0 + chi

do 100 j - l,ninpt
eta	 psi(j)

wate = w(i) * w(j)
el 1. d0 - eta
e2 1.d0 + eta

-------------- compute geometric SHAPE FUNCTIONS
sha(1) - 0.25d0 * cl * el
sha(2) - 0.25d0 * c2 * el
sha(3) - 0.25d0 * c2 * e2
sha(4) - 0.25d0 * cl * e2

------------ compute vector from root to integration point, (xc)
xc(1) _ - xp(1)
xc(2) - - xp(2)
xc(3) - - xp(3)
do 50 k 1,4

xc(1) xc;l) + sha(k) * x(k)
xc(2) = xc(2) + sha(k) * y(k)

1	 xc(3)	 xc(3) + sha(k) * z(k)
R - dsgrt(xc(1)** 2 + xc(2)**2 + xc(3)**2)

------------ compute interpolation shape functions
if(npe .ne. 4) call shaqua(chi,eta,npe,id,sha)

------------ dot normal, u, and vector, r, to get angle
Cosa	 (xc(1)*u(1) + xc(2) *u(2) + xc(3)*u(3))/r
ustar	 dcmplx(dcos(ak * r)*wate/r,-dsin(ak*r)*wate/r)
gstar = ustar * dcmplx(-Cosa/r,-ak*cosa)

------------- DO ADDITIONS FOR INTEGRATIONS
DO 100 k - l,npe

H(k) - H(k) + dcmplx(SHA(k),O.d0) * QSTAR
G(k) - G(k) + dcmplx(SHA(k),O.dO) * USTAR

l0	 continue
-------------- CORRECT FOR JACOBIAN (make temporary use of ustar)

ustar - dcmplx(area*0.25d0,0.d0)
DO 110 I - l,npe

G(I) - G(I) * ustar
10	 H(I) - H(I) * ustar

RETURN
END

;EJECT
SUBROUTINE saint4(npe,x,y,z,id,g,h,ak,iroot)

PERFORMS INTEGRALS FOR quadrilateral elements 	
I

CONTAINING THE root NODE

Inputs:
npe - number of Nodes Per Element	 r

x,y,z - nodal coordinates of element
I	 id - element connectivity (used in some shape function routines

ak - constant from helmholtz equation
iroot - number of the node in the element which is the root node.

If the root is outside the element, iroot - 0

Outputs:
g - complex, d.p. array of length npe containing integrals

OF U* OVER THE ELEMENT
H - complex, D.P. array of length NPE containing integrals

OF Q* OVER THE ELEMENT
--

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of subparametric

quadrilateral elements which a shape function routine is
installed

2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION
on a line. These are used in both directions for integrating
over the element. (Must be set before routine is called)

3. This routine may call function iointe, which needs 1-D gauss
points in /spoint/. These must be set before routine is called

4. Only valid for planar, subparametric elements

IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION XP(3),X(4),y(4),z(4),id(npe)
complex*16 g(npe),h(npe),ustar,cointe

-------------- block of 'space' for all of the shape function routines
common /sepace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)

-------------- space for integration points (1-D, gauss type)
COMMON /QPOINT/ psi(16),W(16),NINPT

-------------- initialize all integrals to zero
do 10 i - l,npe

g(i) - (O.d0,0.d0)
i	 h(i) - (O.d0,0.d0)
-------------- Area for the element: for first triangle

call normal(x,y,z,u,al)
-------------- second triangle

xx(1) - x(2)
xx(2)- x(3)
xx(3) - x(4)
yy(1) - y(2)
yy(2) - y(3)
yy(3) - y(4)
zz(1)- z(2)
zz(2)- z(3)
zz(3)- z(4)
call normal(xx,yy,zz,u,a2)
area - al + a2

i

3{1

------------- INTEGRATE!
DO 100 1 - l,ninpt

chi - psi(I)
cl - l.dO - chi
c2 - l.dO + chi

do 100 j - l,ninpt
eta - psi(j)

Ovate - w(i) * w(j)
el - 1.d0 - eta
e2 - 1.d0 + eta

-------------- compute geometric SHAPE FUNCTIONS
sha(1) - 0.25d0 * cl * el
sha(2) - 0.25d0 * c2 * el
sha(3) - 0.25d0 * c2 * e2
sha(4) - 0.25d0 * cl * e2

------------ compute vector from root to integration point, (xc)
xc(1) - - xp(1)
xc(2) - - xp(2)
xc(3) - - xp(3)
do 50 k - 1,4

xc(1)- xc(1) + sha(k) * x(k)
xc(2) - xc(2) + sha(k) * y(k)
xc(3)- xc(3) + sha(k) * z(k)

R - dsgrt(xc(1)**2 + xc(2)**2 + xc(3)**2)
ustar - dcmplx(dcos(ak * r)*wate/r,-dsin(ak*r)*wate/r)

------------- Compute interpolation shape functions
if(npe .ne. 4) call shaqua(chi,eta,npe,id,sha)

------------- DO ADDITIONS FOR INTEGRATIONS
DO 100 JJ - l,npe

------------- skip the root node, if one exists
if(jj .ne. iroot) then

G(JJ) - G(JJ) + dcmplx(SHA(JJ),O.dO) * USTAR
end if

10	 continue	 -
-------------- CORRECT FOR JACOBIAN (make temporary use of ustar)

ustar - dcmplx(area * 0.25d0,0.d0)
DO 110 I - l,npe

.0	 G(I) - G(I) * ustar
-------------- if root is in the element correct for the constant term

if (iroot . no. 0) then
korn - 4
g(iroot) - coints(korn,iroot,x,y,z,ak)
do 200 i - l,npe

if(i .no. iroot) g(iroot) - g(iroot) - g(i)
10	 continue

and if

RETURN
END

EJECT
SUBROUTINE INTE3(%P,npe,%,y,z,id,G,H,ak)

PERFORMS INTEGRALS FOR subparametric triangular elements not

CONTAINING THE root node

inputs:
XP - ARRAY OF LENGTH 3, CONTAINING THE COORDINATES OF THE NODE

IN QUESTION (XP(I) - X(I)TH COORDINATE OF THE NODE)
npe - number of Nodes Per Element

x,y,z - nodal coordinates of element
id - element connectivity (used in some shape function routines
ak - constant from helmholtz equation

--
Outputs:

g - complex, d.p. array of
OF U* OVER THE ELEMENT

H - complex, D.F. array of
OF Q* OVER THE ELEMENT

length npe containing integrals

length NPE containing integrals

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of subparametric

triangular element
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION

for a triangular region. The integration points must be set
before the routine is called.

3. Maximum number of integration points presently is 16
4. This routine is valid only for sub-parametric elements

--
IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION XP(3),X(3),y(3),z(3),id(npe)
complex*16 g(npe),h(npe),ustar,gstar

-------------- block of 'space' for all of the shape function routines
common /sspace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)

-------------- space for into cation points (1-D, gauss type)
COMMON /TPOINT/ al1(16),al2(16),W(16),NINPT

-------------- initialize all integrals to zero
do 10 1 - l,npe

g(i) - (O.dO,0.dO)
h(i) - (O.dO,O.dO)

-------------- Find the normal vector and area for the element
call normal(x,y,z,u,area)

------ INTEGRATEI
DO 100 I - l,ninpt

-------------- use shape functions to caluculate vector from root
to point in the element, (xc)

xc(1) - all(i)*(x(1)-x(3)) + al2(i)*(x(2)-x(3)) + x(3) - xp(1)
xc(2) - all(i)*(y(1)-y(3)) + al2(i)*(y(2)-y(3)) + y(3) - xp(2)
xc(3) - all(i)*(z(1)-z(3)) + al2(i)*(z(2)-z(3)) + z(3) - xp(3)
R - dsgrt(xc(1)**2 + xc(2)**2 + xc(3)**2)
------ compute interpolation shape functions
call shatri(all(i),a12(i),npe,id,sha)
------ dot normal, u, and vector, r, to get angle
coaa - (xc(1)*u(1) + xc(2)*u(2) + xc(3)*u(3))/r
ustar - dcmplx(dcos(ak * r)*w(i)/r,-dsin(ak*r)*w(i)/r)
gstar - ustar * dcmplx(-cosa/r,-ak*coaa)

------------- DO ADDITIONS FOR INTEGRATIONS

DO 100 k - l,npe
H(it) - H(k) + dcmplx(SHA(k),0.d0) * QSTAR
G(k) - G(k) + dcmplx(SHA(k),O.dO) * USTAR

0	 continue
-------------- CORRECT FOR JACOBIAN (make temporary use of ustar)

ustar - dcmplx(area,0.d0)
DO 110 I - l,npe

G(I) - G(I) * ustar
.0	 H(I) - H(I) * ustar

RETURN
END
SUBROUTINE saint3(npe,x,y,z,id,g,h,ak,iroot)

PERFORMS INTEGRALS FOR subparametric triangular elements not
CONTAINING THE root node

Inputs:
npe - number of Nodes Per Element

x,y,z - nodal coordinates of element
id - element connectivity (used in some shape function routines
ak - constant from helmholtz equation

iroot - local number of the root node

Outputs:
g - complex, d.p. array of length npe containing integrals

OF U* OVER THE ELEMENT
H - complex, D.P. array of length NPE containing integrals

OF Q* OVER THE ELEMENT
--

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of subparametric

triangular element
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION

for a triangular region. The integration points must be set
before the routine is called.

3. Maximum number of integration points presently is 16
4. This routine is valid only for sub-parametric elements

--
IMPLICIT REAP.*8 (A-H2O-Z)
DIMENSION XP(3),X(3),y(3),z(3),id(npe)
complex*16 g(npe),h(npe),ustar,cointe

-------------- block of 'space' for all of the shape function routines
common /sspace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)

-------------- space for integration points (1-D, gauss type)
COMMON /TPOINT/ all(16),al2(16),W(16),NINPT

-------------- initialize all integrals to zero
do 10 i - l,npe

g(i) - (0.d0,0.d0)
J	 h(i) - (0.d0,0.d0)
-------------- Find the normal vector and area for the element

call normal(x,y,z,u,area)
-------------- INTEGRATE!

t

DO 100 I	 l,ninpt
------------- use shape functions to caluculate vector from root

to point in the element, (xc)
xc(1) - all(i)*(x(1)-x(3)) + a12(i)*(x(2)-x(3)) + x(3) - xp(1)
xc(2) - all(i)*(y(1)-y(3)) + al2(i)*(y(2)-y(3)) + y(3) - xp(2)
xc(3)- all(i)*(z(1)-z(3)) + al2(i)*(z(2)-z(3)) + z(3) - xp(3)
R - dsgrt(xc(1)**2 + xc(2)**2 + xc(3)**2)

------------ compute interpolation shape functions
call shatri(all(i),al2(i),npe,id,sha)

------------ dot normal, u, and vector, r, to get angle
ustar - dcmplx(dcos(ak * r)*w(i)/r,-dsin(ak*r)*w(i)/r)
------ DO ADDITIONS FOR INTEGRATIONS

DO 100 k - l,npe
if(k .ne. iroot) G(k) - G(k) + dcmplx(SHA(k),O.d0) * USTAR

0	 continue
-------------- CORRECT FOR JACOBIAN (make temporary use of ustar)

ustar - dcmplx(area,0.d0)
DO 110 I - l,npe

D	 G(I) - G(I) * ustar
------------- correct for root node

g(iroot) - cointe(npe,x,y,z,ak)
do 120 i - l,npe

0	 if(i .ne. iroot) g(iroot) - g(iroot) - g(i)

RETURN
END

PENDI% C: Subroutines NORMAL, SHAQUA SHZDQQ, SHATRI, and SH2DCQ

sasssasssasssasassassasasaassssasssaaasasssssssasasssrssssssassasas

subroutine normal(x,y,z,u,area)

Computes the normal and area of a triangular plane in three

dimensions

Inputs:

x,y,z - coordinates of the three nodes
u - normalized normal vector formed by crossing the vector

between nodes 1 and 2 into the vector between nodes
1 and 3

area - area of the triangle
---------------- COMPUTE VECTORS R1 & R2 ALONG SIDE 1 & 3 OF ELEMENT

implicit real*8 (a-h,o-z)
dimension x(3),y(3),z(3),u(3),rl(3),r2(3)

-------------- form the two vectors to be crossed
rl(1)- x(2) - x(1)
rl(2)- y (2) - y(1)
rl(3)- z(2) - z(1)
r2(1) - x(3) - x(1)
r2(2) - y (3) - y(1)
r2(3) - z(3) - z(1)

-------------- CROSS R1 & R2 TO FIND U, NORMAL TO THE SURFACE
U(1) - (R1(2) * R2(3) - R1(3) * R2(2))
U(2) - (Rl(3) * R2(1) - R1(1) * R2(3))
U(3) - (R1(1) * R2(2) - R1(2) * R2(1))

-------------- THE MAGNITUDE OF U IS TWICE THE AREA OF ELEMENT
BOT - DSQRT(U(1)**2 + U(2)**2 + U(3)**2)
AREA 0.5 * BOT

-------------- NORMALIZE U
U(1) - U(1)/BOT
U(2) - U(2)/BOT
U(3) - U(3)/BOT

return
end

ass- a asssaaasssa sss ssss ass as sssa s aaa sssss a ss s sa s a a s ss a sa sa • a ssa s a s
YYlYYYYYYYYYYY

MODULE FOR 2-D planar shape functions
tYYY

SUBROUTINE SHaqua(SS,TT,npe,id,SHA)

CONTROL FOR TWO-DIMENSIONAL ISOPARNETRIC ELEMENTS
TYPES SUPPORTED:

	

NUMBER	 HIERARCHIAL	 TYPE OF ELEMENT

	

OF NODES	 NODES POSSIBLE

	

--------	 --------------	 ----------------------------
4	 ---	 LINEAR QUADRILATERAL
8	 YES	 QUADRATIC QUADRILATERAL

E 9	 YES	 LAGRANGE QUADRILATERAL
12	 YES	 CUBIC QUADRILATERAL

INPUT ARGUMENTS:

NATURAL COORDINATES
npe -- number of nodes in element
ID -- element connectivity

.--
Outputs:
SHA -- SHAPE FUNCTIONS AT (3S,TT)

-

IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION 3(4),T(4),SHA(npe)
DATA S/-0.5D0,0.5D0,0.5D0,-0.5D0/,T/-0.5D0,-0.5D0,0.5D0,0.5D0/

------ FORM 4-NODE QUADRILATERAL SHAPE FUNCTIONS
DO 100 I-1,4

a	 SHA(I)- (0.5+5(I)*SS)*(0.5 + T(I)*TT)
------ ADD higher order terms if necessary

IF(NPE .EQ. 8 .or. npe .eq. 9) CALL SH2DQQ(SS,TT,SHA,ID,NPE)
IF(NPE .EQ. 12) CALL SH2DCQ(SS,TT,SHA,ID,NPE)

RETURN
END

EJECT

SUBROUTINE SH2DQQ(S,T,SHA,I%,NPE)
IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION I%(npe),SHA(npe)
32 - 0.5d0 * (1.d0 - S*S)
T2- 0.5d0 * (1.d0 - T*T)

DO 100 I-5,npe
0	 SHA(I) - 0.
--------------------------------------- MIDSIDE NODES

if(ix(5) .ne. 0) SHA(5) - S2 * (1.d0 - T)
if(ix(6) .no. 0) SHA(6) - T2 * (1.d0 + 3)
if(ix(7) .no. 0) 3HA(7) - 32 * (1.d0 + T)
if(ix(8) .no. 0) SHA(8) - T2 * (1.d0 - 3)

--------------------------------------- LAGRANGE HEREAFTER
if(npe .eq. 9) then
if(ix(9) .no. 0) then
SHA(9) - 4. * S2 * T2

--------------------------------------- CORRECT EDGE FOR INTERIOR
DO 105 1-1,4

SHA(I) - SHA(I) - 0.25 * SHA(9)
5	 IF(IR(I+4) .NE. 0) SHA(I+4) - SHA(I+4) - .5 * SHA(9)

end if
end if

---------------------------------- CORRECT CORNER FOR MIDSIDE
7 K-8

DO 109 I-1,4
L-I+4
SHAM - SHAM - .5*(SHA(K) + SHA(L))

9	 K-L
RETURN
END

EJECT
SUBROUTINE SHATRI(A1,A2,NPE,IX,SHA)
IMPLICIT REAL*8 (A-H2O-Z)
REAL*8 L(3)
DIMENSION SHA(npe),S2(3),S3(3),IX(npe)
DATA SZ/1.DO,O.DO,-1.DO/,S3/0.DO,1.DO,-1.DO/

----------------------------- FORM THIRD SHAPE FUNCTION
L(1) - Al
L(2) - A2
L(3) - 1. - L(1) - L(2)

-------------------------------- FORM LINEAR SHAPE FUNCTIONS
DO 10 I-1,3

SHA(I) - L(I)

IF(NPE .NE. 6) RETURN

}

S

DO 20 J-4,6
0	 SHA(J) - O.dO

if(ix(4) .no. 0) SHA(4) -
if(ix(5) .no. 0) SHA(5) -
if(ix(6) .no. 0) SHA(6) -

KK - 6
DO 60 I-1,3

K-I+3

FORM QUADRATIC TERMS AS NECESSARY
4.dO * L(1) * L(2)
4.dO * L(2) * L(3)
4.dO * L(3) * L(1)
correct corners for midside nodes

SHA(I) - SHA(I) - 0.5d0*(SHA(KK) + SHAM)
KK-K

RETURN
END

EJECT
SUBROUTINE SH2DCQ(S,T,SHA,IX,NPE)
IMPLICIT REAL*8 (A-H2O-Z)
DIMENSION IX(npe),SHA(npe)

1	 2	 3	 4	 5
DATA Sl/O.DO,O.DO,O.DO,O.DO,-1.DO

6	 7	 8	 9	 10	 11	 12
* ,1.DO,1.DO,1.DO,1.DO,-l.D0,-1.DO,-l.DO/

1	 2	 3	 4	 5	 6
DATA T1/O.DO,O.DO,O.DO,O.DO,-1.DO,-1.DO,

7	 8	 9	 10	 11	 12
* -1.DO,1.DO,1.DO,1.DO,1.DO,-1.DO/

C - 9.dO/32.dO
SS - 1.dO - S*S
TT - 1.dO - T*T
S2 - 0.5dO * SS
T2 - 0.5dO * TT
DO 10 I-5,12

i

t
1

SHA(I)-0.d0
--------------------------- ALLOW FOR HISSING NODES

IF(IX(5)	 .no. 0) then
IF(IX(6)	 .no. 0) then

SHA(5) - C*(1.d0 - T)	 * SS *	 (1.d0 - 3.d0*S)
SHA(6) - C*(1.d0 - T)	 * SS *	 (1.d0 + 3.d0*S)
SHA(l) - SHA(l) - (2.d0 * SHA(5) + SHA(6))/3.d0
SHA(2) - SHA(2) - (2.d0 * SHA(6) + SHA(5))/3.d0

else
SHAM - S2 *	 (1.d0 - T)
SHA(l) - SHA(l) - 0.5d0 * SHA(5)
$HA(2) - SHA(2) - 0.5d0 * SHA(5)

and if
and if

-------------------- side 2, nodes 7 and 8
IF(IX(7)	 .no. 0) then
IF(IX(8)	 .no. 0) then

SHA(7) - C*(1.d0 + S)	 * TT * (1.d0 - 3.d0*T)
SHA(8) - C*(1.d0 + S)	 * TT * (1.d0 + 3.d0*T)
SHA(2) - SHA(2) - (2.d0 * SHA(7) + SHA(8))/3.d0
SHA(3) - SHA(3)	 - (2.d0 * SHA(8) + SHA(7))/3.d0	 -

else
SHA(7) - T2 *	 (1.d0 + S)
SHA(2) - SHA(2) - U.5d0 * SHA(7)
SHA(3) - SHA(3) - 0.5d0 * SHA(7)

end if
end if

------------------- side 3, nodes 9 and 10
IF(IX(9)	 .no. 0) then
IF(IX(10)	 .no. 0) then

SHA(9)	 - C*(1.d0 + T) * SS *	 (1.d0 + 3.d0 * S)
SHA(10) - C*(1.d0 + T)	 * SS *	 (1.d0 - 3.d0 * S)
SHA(3) - SHA(3) -	 (2.d0 * SHA(9) + SHA(10))/3.d0
SHA(4) - SHA(4) - (2.d0 * SHA(10) + SHA(9))/3.d0

else
SHA(9) - S2 *	 (1.d0 + T)
SHA(3) - SHA(3) - 0.5d0 * SHA(9)
SHA(4) - SHA(4) - 0.5d0 * SHA(9)

end if
end if

------------------ side 4, nodes 11 and 12
IF(IX(11)	 .no. 0) then
IF(IX(12)	 .no. 0) then

SHA(11) - C*(1.d0 - S)	 * TT * (1.d0 + 3.d0 * T)
SHA(12) - C*(1.d0 - S)	 * TT * (1.d0 - 3.d0 * T)
SHA(4) - SHA(4) -	 (2.d0 * SHA(11) + SHA(12))/3.d0
SHA(l) - SHA(l) -	 (2.d0 * SHA(12) + SHA(11))/3.d0

also
SHA(11) - T2 *	 (1.d0 - S)
SHt.(4) - SHA(4) - 0.5d0 * SHA(11)
SHA(l) - SHA(l) - 0.5d0 * SHA(11)

end if
end if
return
END

	GeneralDisclaimer.pdf
	1986001445.pdf
	0043A02.pdf
	0043A03.pdf
	0043A04.pdf
	0043A05.pdf
	0043A06.pdf
	0043A07.pdf
	0043A08.pdf
	0043A09.pdf
	0043A10.pdf
	0043A11.pdf
	0043A12.pdf
	0043A13.pdf
	0043A14.pdf
	0043B01.pdf
	0043B02.pdf
	0043B03.pdf
	0043B04.pdf
	0043B05.pdf
	0043B06.pdf
	0043B07.pdf
	0043B08.pdf
	0043B09.pdf
	0043B10.pdf
	0043B11.pdf
	0043B12.pdf
	0043B13.pdf
	0043B14.pdf
	0043C01.pdf
	0043C02.pdf
	0043C03.pdf
	0043C04.pdf
	0043C05.pdf
	0043C06.pdf
	0043C07.pdf
	0043C08.pdf
	0043C09.pdf
	0043C10.pdf
	0043C11.pdf
	0043C12.pdf
	0043C13.pdf

