General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A STUDY OF METHODS TO PREDICT AND MEASURE THE TRANSMISSION OF SOUND THROUGH THE WALLS OF LIGHT AIRCRAFT

Research Contract #0226-51-1288

INTEGRATION OF CERTAIN SINGULAR BOUNDARY ELEMENT INTEGRALS FOR APPLICATIONS IN LINEAR ACOUSTICS

Sponsored by

NASA
Hampton, VA 22365

Report No. 0226-16 HL 85-21

Submitted by:

Dan Zimmerle, Graduate Research Assistant
Robert J. Bernhard, Principal Investigator

Approved by:

Raymond Cohen, Director
Ray W. Herrick Laboratories

July 1985
CONTENTS

1. INTRODUCTION... 1

2. BEM INTEGRALS OVER AN ELEMENT CONTAINING THE ROOT NODE
 2.1 Computation of I_o.. 3
 2.2 Linear Elements... 4

3. EXTENSION TO HIGHER-ORDER ELEMENTS.............................. 8
 3.1 Computation of the Integral for Sub-Parametric Elements........ 9

4. INTEGRALS OF NORMAL DERIVATIVES.................................. 13

5. CONSTRUCTION OF A BOUNDARY ELEMENT PROGRAM.................. 14
 5.1 Construction of the Integration Routines....................... 17
 5.1.1 The Routines to Compute I..................................... 18
 5.1.2 The Routines to Compute the Element Integrals 14........ 18
 5.1.3 Utility Routines 15.. 19
 5.2 Assembly of HROW, GROW into the Coefficient Matrix............ 20

6. CONCLUSIONS... 22

APPENDICES... 23
1. INTRODUCTION

It is well known that boundary element techniques require the integration of a characteristic solution over elements which define the boundary of the domain. The characteristic solution is usually a function of the distance from a "root" node to the surface of the element over which the integral is being computed. When the "root" node is outside of the element, the integrals may be performed in a straight-forward fashion using standard numerical integration techniques like Gaussian quadrature. However, when the node is in the element, the integral contains an integrable singularity which will not integrate accurately using Gaussian quadrature. This report will discuss an alternative method for performing this integral.

The method proposed separates the integral of the characteristic solution into a singular and non-singular part. The singular portion is integrated with a combination of analytic and numerical techniques while the non-singular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of sub-parametric elements.

This report will consider only the integrals over elements containing the root node, and will deal only with the characteristic solution for linear acoustic problems. However, the method described may be generalized to most characteristic solutions.
2. **BEM INTEGRALS OVER AN ELEMENT CONTAINING THE ROOT NODE**

Suppose the root node is node \(n \) (\(1 < n < m \)). To denote distance from node \(n \), write \(r \) as \(r_n \).

\[
I_i = \int_{A_e} N_i \frac{e^{-jkr_n}}{r_n} \, dA \quad i = 1, 2, \ldots, m \quad (1)
\]

where

- \(I_i \) - contribution (i.e., integral) to coefficient of node \(i \).
- \(N_i \) - shape function for node \(i \)
- \(A_e \) - area of element \(e \) (region of integration)
- \(r_n \) - distance from root node to any point in the element
- \(k \) - constant from Helmholtz equation
- \(m \) - number of nodes in element \(e \)

Several significant properties of the shape functions are:

1. All \(\{N_i : i \neq n\} \to 0 \) as \(r_n \to 0 \)
2. \(N_n \to 1 \) as \(r_n \to 0 \)
3. \(N_n = 1 - \sum_{i=1}^{m} \frac{N_i}{i \neq n} \)

From these observations we note that the integrand of \(I_i \) is singular only when \(i = n \). For all other integrals, \(N_i \to 0 \) as \(r_n \to 0 \) quickly enough to avoid singularity. Thus, \(I_i \), for \(i \neq n \)
may be integrated numerically without undo difficulty.

For \(i=n \) an integrable singularity exists. First, rewrite the integral \(I_n \) as:

\[
I_n = \int_{A_e} N_n \frac{e^{-jkr_n}}{r_n} \, dA
\]

\[
= \int_{A_e} \frac{e^{-jkr_n}}{r_n} \, dA - \sum_{i=1}^{m} \frac{I_i}{i \neq n}
\]

We may therefore break \(I_n \) into a singular part,

\[
I_o = \int_{A_e} \frac{e^{-jkr_n}}{r_n} \, dA
\]

and a non-singular sum of previously calculated integrals,

\[
I_n = I_o - \sum_{i=1}^{m} \frac{I_i}{i \neq n}
\]

The problem, then, is reduced to calculating \(I_o \).

2.1 Computation of \(I_o \)

Note:

\[
I_o = \int_{A_e} \frac{\cos kr_n}{r_n} \, dA + j \int_{A_e} \frac{\sin kr_n}{r_n} \, dA
\]

but

\[
\lim_{r_n \to 0} \frac{\sin kr_n}{r_n} = k
\]
Therefore, the second integral may be evaluated numerically, if desired. Temporarily both will be kept together.

2.2 Linear Elements

For linear elements sides are straight lines:

Figure 1. Type T-3 Element

Figure 2. Type Q-4 Element
Rephrasing I_0 in local polar coordinates:

$$I_0 = \int_{A_e} \frac{-jkr_n}{r_n} r_n dr_n d\theta = \int_0^\alpha \int_0^1 e^{-jkr} r_1(\theta) - jkr d\theta$$

where R_1 is the equation of line AB in polar coordinates.

For a quadrilateral element

$$I_0 = \int_0^\alpha \int_0^1 e^{-jkr} r_1(\theta) d\theta + \int_0^\beta \int_0^{\theta^*} e^{-jkr} r_2(\theta^*) d\theta$$

Figure 3. Polar Coordinate Definition for T-3 Element

Figure 4. Polar Coordinate Definition for Q-4 Element
Thus, an expression for $R_1(\theta)$ and $R_2(\theta^\circ)$ must be found.

As shown in Figure 5, by similar triangles ABC ADE

\[
\frac{R_2 \sin \alpha}{\sin \theta} = \frac{R_2 \cos \alpha - R_1}{\cos \theta - R_1}
\]

\[
(r \cos \theta - R_1)(R_2 \sin \alpha) = (r \sin \theta)(R_2 \cos \alpha - R_1)
\]

\[
r(R_2 \sin \alpha \cos \theta - R_2 \cos \alpha \sin \theta + R_1 \sin \theta) = R_1 R_2 \sin \alpha
\]

but,

\[
R_2(\sin \alpha \cos \theta - \cos \alpha \sin \theta) = R_2 \sin (\alpha - \theta)
\]

\[
R = r = \frac{R_1 R_2 \sin \alpha}{R_2(\sin \alpha \cos \theta - \cos \alpha \sin \theta) + R_1 \sin \theta}
\]
or

\[R = \frac{R_1 R_2 \sin \alpha}{R_2 \sin(\alpha - \theta) + R_1 \sin \theta} \]

Therefore:

\[R_1(\theta) = \frac{R_1 R_2 \sin \alpha}{R_2 \sin(\alpha - \theta) + R_1 \sin \theta} \quad (8) \]

\[R_2(\theta^*) = \frac{R_2 R_3 \sin \theta}{R_3 \sin(\beta - \theta^*) + R_2 \sin \theta^*} \]

From Equation 6, the integral over \(r \) is non-singular and easily integrated. Equations 6 and 7 can now be partially evaluated numerically by

\[\int_{0}^{\gamma} \int_{0}^{\gamma} \right] = \int_{0}^{\gamma} \left[\begin{array}{c} -jkr_n \\ -jk \end{array} \right] R(\theta) \]

\[= \frac{1}{k} \int_{0}^{\gamma} \left[e^{-jkR(\theta)} - 1 \right] d\theta \]

\[= \frac{i}{k} \int_{0}^{\gamma} e^{-jkR(\theta)} d\theta - \frac{17}{k} \quad (9) \]

This integral is easily evaluated numerically using Gauss quadrature over \(\theta \).
3. EXTENSION TO HIGHER-ORDER ELEMENTS

For many applications, linear triangular and quadrilateral elements are sufficient. However, for some applications, higher-order (e.g., quadratic or cubic) elements may provide an increase in accuracy. There are two types of elements with higher interpolation orders that are of interest here -- iso-parametric and sub-parametric elements.

In sub-parametric elements the geometry of the element is defined by a lower order of interpolation than the function values. If the geometry is defined in terms of linear shape functions the method of determining I_o is exactly the same for all sub-parametric elements as the method presented above, where m is the number of nodes in the element.

In iso-parametric elements, however, the geometry is defined by higher-order interpolation, as shown in Figure 6.

Figure 6. Isoparametric Element Displacements
Since the boundary of the element is no longer defined by straight lines, the techniques presented above will not integrate I_0 correctly, as shown by the shaded area in the figure. In this author's experience computing I_0 for an iso-parametric element is much more difficult than computing it for a sub-parametric element.

In many applications the geometry of the region is neither complex enough to warrant iso-parametric elements nor critical enough that it needs to be represented exactly. In addition, there is some evidence which indicates that higher-order elements do not improve the accuracy of the method significantly. For these reasons it was decided to concentrate on the sub-parametric techniques, which is much simpler and should give a good indication of the advantages, if any, of using higher-order elements. If necessary, iso-parametric capability may be developed at a later date.

3.1 Computation of the Integral for Sub-Parametric Elements

At this juncture it is interesting to look at methods for computing I_0 in general -- i.e., covering the range of possible root nodes and element shapes.

The root node must be one of three types:

1. Corner node (all element types), as shown in Figure 7

2. On a side of the element (quadratic and cubic types), as shown in Figure 8
3. In the interior of the element (certain cubic types), as shown in Figure 9

In each case the root node is marked with a dot. All other nodes used to define the geometry of the elements are marked with an "x". Letters marking each of the sub-triangles are enclosed in circles.

Note that in each case the element may be divided into from one to four triangles by connecting the root node with each of the other corner nodes in the element. The integral for the entire element is simply the sum of the integral for each of the triangles. Also note the following: 1) One or two of the triangles will collapse to lines (i.e., have area of zero) for certain root nodes; 2) the number of subtriangles in each element is equal to the number of corner nodes in the element. By using the test "is the area of this triangle equal to zero" it is possible to write a general algorithm to compute I_0 for any sub-parametric element as shown in Table I.
Figure 7. Root Node as a Corner Node

Figure 8. Root Node as a Midside Node

Figure 9. Root Node as an Interior Node
6.1 **Algorithm to Calculate I_0**

A) Main Routine:

1) Set the sum I to zero

2) FOR $i = 1$ to number of corner nodes in the element (S) DO

 a) Select 2 corner nodes to create a triangle:

 $a = i$

 $b = i + 1$

 if ($b > S$) $b = 1$

 b) Calculate contribution to I for this triangle using the routine below:

 c) Add contribution to I.

3) END

B) Routine to calculate contribution to I for each triangle.

1) Calculate area of the triangle.

2) IF (the area of the triangle is zero) THEN

 a) return a value of zero

 ELSE

 b) compute the integral over the triangle (n,a,b) using Eq. 9.

3) END
4. INTEGRALS OF NORMAL DERIVATIVES

Up to this point, only integrals of the characteristic solution have been considered. However, it is well known that integrals of the normal derivative of the characteristic solution must also be computed.

If an element is a portion of a plane, the normal to the surface is perpendicular to the vector extending from the root node to any point on the element. This is true for all triangles formed with linear sides, and is true for quadrilaterals provided opposite sides lie in the same plane. In such cases where the normal and the "position" vector are perpendicular the normal derivative is zero.

Sub-parametric elements, which are being used exclusively in this report will be planar for all triangular elements. Sub-parametric quadrilateral elements may also be defined as planes with very little loss of versatility. Therefore, for sub-parametric elements, all integrals of the normal derivative are zero, and thus, very easy to compute.
5. **CONSTRUCTION OF A BOUNDARY ELEMENT PROGRAM**

In order to properly utilize the integration routines presented following this chapter, it is necessary to place them in the intended type of program structure. This section will briefly explain the type of program structure for which they were designed.

The major operations of the program are:

1. Input mesh definition into the program.
2. Assemble the system of equations.
3. Add internal sources to the equation system (optional).
4. Generate additional equations for overdetermined system.
5. Solve the system of equations.
6. Extract results.

Of course, this flow chart will vary somewhat if, for example, a line by line equation solver is used.

The most complex step of the program is the assembly of the system of equations. This step, is discussed in more detail in Table 2. Figure 10 is a flow-of-control diagram, showing which routines are called by, or connected to other routines.
Using nodal boundary conditions, reduce two vectors \((HROW, GROW) \) to one vector a constant representing one row of the equation set.

Figure 10. Flow of Control for Assembling the System of Equations.
TABLE II

Assembly of the System of Equations

0. Define complex vectors HROW, GROW of length NOD.

1. FOR i = 1 to the number of nodes (NOD) DO

 a. Set the vectors HROW, GROW to zero. These vectors will hold, respectively, the integrals of the normal derivative of the characteristic solution (H) and the characteristic solution (G), respectively.

 b. FOR j = 1 to the number of elements (NEL) DO

 1. Localize coordinates and node numbers for element j into temporary arrays.

 ii. IF j is triangular THEN

 1. IF node i is in element j THEN

 call integration routine for a triangle containing the root node (SAINT3).

 1. ELSE

 call integration routine for a triangle not containing the root node (INTE3).

 ii. ELSE

 1. IF node i is in element j THEN

 call integration routine for a quadrilateral containing the root node (SAINT4).

 1. ELSE

 call integration routine for a quadrilateral not containing the root node.

 iii. Add the integrals just computed to their proper locations in the vectors HROW, GROW.

 b. END of loop on the elements, j.

 c. Add the row of integrals for node i, accumulated in HROW and GROW to the coefficient matrix following the boundary conditions specified for each node.

1. END of loop on the nodes, i.
The tests in l.b.ii of Table 2, which are used to select the type of integral to be computed, should properly be placed in a separate routine for easy maintenance. However, since the tests are quite simple and the integration routines very flexible, it should be more efficient to incorporate the tests directly into the main assembly routine. Step l.c of Table 2 is dependent upon the type of solution procedure chosen, and should be placed in a separate routine. This subject will be discussed more later.

5.1 Construction of the Integration Routines

A listing of the integration routines (which is slightly out-of-date, but all that was available at the time of this writing) is given in the Appendices, along with shape function and certain other utility routines. This section will briefly discuss the structure of the integration routines.

The routines may be divided into three groups:

1. Computation of the I_o integral for an element
 \[\text{COINTE, IOINTE} \]

2. Computation of the integrals for an entire element
 \[\text{SAINT3, INTE3, SAINT4, INTE4} \]

3. Utility routines and shape functions SHAQUA, SHATRI,
 \[\text{NORMAL} \]
 along with the subroutines to SHAQUA:
 \[\text{SH2DQQ, SH2DCQ} \]

The routines in 1 and 3 are called by the routines in 2 and are
transparent to the remainder of the program.

5.1.1 The Routines to Compute I_0 The routines COINTE and IOINTE are a direct implementation of the method described previously. COINTE divides the sub-parametric element into the number of sub-triangles. IOINTE is called by COINTE to calculate the integral over each sub-triangle. If one angle of the sub-triangle is 180 degrees (which is equivalent to asking "is the area zero", and is much easier to calculate), COINTE returns a value of zero.

5.1.2 The Routines to Compute the Element Integrals INTE3 and INTE4 compute the integrals for triangles (thus the 3) and quadrilaterals, respectively, for the cases when the root node is not in the element. These are straight forward implementations of standard Gaussian quadrature.

SAINT3 and SAINT4 are images of INTE3 and INTE4 except for two modifications. First, during the Gaussian quadrature, the integral for the root node is not calculated, since it is singular and inaccurate. Second, additional statements are added at the end of the routine to call COINTE to compute the I_0 integral for the element. I_0 is then used to compute the integrals for the root node.

The "SAINT" and "INTE" routines are not combined because a large number of tests would be needed within the routines to decide whether the root node is in the element. These tests would make the computation much less efficient.
Integration routines for triangular and quadrilateral elements are not combined in one routine because certain operations may be eliminated when triangular elements are handled separately. Also, the dimensions of the arrays and certain DO loop parameters may be specified as constants, which, on some compilers, is more efficient than specifying variables.

5.1.3 Utility Routines The utility routines contain NORMAL, which calculates the normal vector for a triangle with linear sides, and the shape function routines. The shape functions are simplifications of finite element shape functions (the derivatives of the shape functions need not be calculated) for 2-dimensional problems.

The shape functions have the capability to handle hierarchal nodes, as proposed by Zienkiewicz. Any of the midside nodes of the higher order elements may be removed, reducing the number of degrees of freedom and the order of the element. To remove node i, for example, specify the ith position in the element connectivity as zero, i.e., ID(i) = 0.

The integration routines assume that the quadrilateral elements are plane, or nearly plane. To minimize the error due to deviations from plane geometry, an "average" normal vector is used. However, results with non-plane elements may not be good.

Prior to any call to an integration routine, the Gaussian quadrature points must be specified in the common blocks QPOINT (quadrilateral elements), TPOINT (triangular elements) and SPOINT
one dimensional Gauss points to integrate the θ integral for I_0).

5.2 Assembly of HROW, GROW into the Coefficient Matrix

Step 1.c in Table 2 for the assembly of the system of equations is in need of a few additional comments. As shown in the flow-of-control diagram, an additional routine is responsible for converting the integrals stored in HROW and GROW into a single equation for node i. The equation is then assembled into the system by the proper routine for the type of solution method used.

The conversion of the integrals into an equation is a simple operation based on the boundary conditions for the nodes. The program BOUN3D, originally written for three dimensional heat transfer contains all of the instructions necessary for this operation. The comments in the program should be self-explanatory.

Another pressing problem with boundary conditions is which boundary condition to enforce at a corner where different conditions are specified on each side of the corner. The system used in BOUN3D, and suggested for this program is to place two (or more) nodes close to the corner. The different boundary conditions may be specified on different nodes.

When the integrals are converted to an equation the correction factor for the included angle at the node must also be
incorporated. It is suggested the angle be calculated from the geometry of the mesh, rather than the integrals, as is usually done for heat transfer problems. This task is probably handled best within a mesh generation program. Note that an additional array will have to be added to BOUN3D to hold the angle at each node.

Finally, a note about equation solvers needs to be given. The usual manner of solving unsymmetric full systems by Gauss elimination has proven quite satisfactory in the past, and is suggested for this program. Iterative methods, such as SOR, BSOR and Gauss-Seidel usually will not converge at a reasonable rate.

A possible variation on Gauss elimination would take advantage of the fact that boundary element equations are formed completely, one at a time. Since the complete equation is available at once, it is possible to eliminate the first i-1 coefficients from row i at the time the row is added to the coefficient matrix. This "line by line" elimination would reduce the amount of storage needed for the matrix from \(N \times N \) to \(N \times (N - 1) / 2 \). However, it would make it impossible to pivot the matrix.

Finally, by separating the formation of the equation from its addition to the coefficient matrix, it will be easy to add specialized solution routines. For example, for some least squares methods, the number of equations and variables are not equal. Such solvers often require specialized assembly methods.
6. **CONCLUSIONS**

This work has provided several insights which may be useful.

1. Sub-parametric elements seem to be the most efficient means of utilizing higher-order elements. However, there is very little evidence to suggest that higher-order elements will greatly improve the accuracy of the solution.

2. Attention should be given to a method(s) of performing an iterative "design" type problem solution. It is very expensive to iterate using boundary element because the system of equations needs to be decomposed at each iteration. This could become a very pressing problem whenever iterations are necessary, such as a noise path identification application.

3. For problems where all of the nodes are given the same boundary conditions (such as an impedance) there should be very little problem imposing boundary conditions (i.e., the problems that haunt solid mechanics and heat transfer applications should not appear). This is an area that can be ignored until a serious problem crops up.

4. The solution of the system of equations will continue to be the most time consuming part of the analysis. Some improvement must be made in this area, but such improvements probably not a relevant concern at this time.
APPENDICES
APPENDIX A: Subroutines COINTE and IOINTE

function cointe(korn,irroot,x,y,z,ak)

Computes the Io integral over the element by dividing the (sub-)
parametrix element into a number of linear triangular elements

Inputs:
irroot - local number of the root node
npe - number of nodes in the element (used to determine whether
element is triangular or quadrilateral)
x,y,z - element nodal coordinates
id - connectivity for element
ak - constant from Helmholtz equation

Outputs:
cointe - value of the Io integral for the element

Calls:
iointe - computes Io for individual triangles in element

Notes:
1) iointe requires gauss integration points for one dimension. These
must be set before routine is called.
2) Intended only for sub-parametric elements. Serious errors may
occur if used with parametric elements.

implicit real*8 (a-h,o-z)
complex*16 cointe,iointe
dimension x(korn),y(korn),z(korn)
--------------------- arrays hold points for the nodes of subtriangle
dimension xx(3),yy(3),zz(3)
--------------------- find element type, initialize variables
cointe = (0.,0.)
xx(1) = x(irroot)
yy(1) = y(irroot)
zz(1) = z(irroot)
--------------------- divide element into subtriangles and integrate each
il = korn
do 100 i = 1,korn
i2 = i
if(il.eq.irroot.or.i2.eq.irroot) goto 100
xx(2) = x(i1)
xx(3) = x(i2)
yy(2) = y(i1)
yy(3) = y(i2)
zz(2) = z(i1)
zz(3) = z(i2)
cointe = cointe + iointe(xx,yy,zz,ak)
d0 il = i2
100 continue

return
end

function iointe(x,y,z,ak)

Computes the constant integral over a triangular element or a triangular portion of an element

Inputs:
x, y, z - the coordinates of the triangle. The root node is the first in the arrays.
ak - constant from the helmholtz equation

Outputs:
iointe - value of the integral of:
\[\frac{\exp(-jkr)}{r} \, dA \]

Notes:
1) all reals are double precision
2) the integral is performed using both analytic and numerical techniques
3) if the area of the triangle is zero, iointe = 0

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(3),Y(3),Z(3)
complex*16 iointe

-------- GAUSS POINTS FOR NUMERICAL INTEGRATION

COMMON /SPOINT/ ETA(16),W(16),NINPT

---------------- TOP IS THE DOT PRODUCT OF R1 AND R2
TOP = (X(2) - X(1)) * (X(3) - X(1))
 + (Y(2) - Y(1)) * (Y(3) - Y(1))
 + (Z(2) - Z(1)) * (Z(3) - Z(1))
R1 = DSQRT((X(2)-X(1))**2+(Y(2)-Y(1))**2+(Z(2)-Z(1))**2)
R2 = DSQRT((X(3)-X(1))**2+(Y(3)-Y(1))**2+(Z(3)-Z(1))**2)

---------------- DOT R1 R2 TO FIND ANGLE OF ELEMENT
COSA = TOP/(R1* R2)

if (dabs(dabs(COSA)-1.d0) .le. 1.d-4) then
 iointe = (0.d0,0.d0)
 return
end if

-------- compute the 1o integral for the triangle
ALPHA = DACOS(COSA)
SINA = DSIN(ALPHA)

-------- NUMERATOR OF R-CARAT
TOP = R1 * R2 * SINA
A2 = ALPHA * 0.5d0
iointe = (0.d0,0.d0)

-------- INTEGRATE THE THETA INTEGRAL
do 100 i=1,ninpt

---------------- RC IS r-carat
rc = top/(R2*dsin(a2*(1.d0-eta(i)))+R1*dsin(a2*(1.d0+eta(i))))
skr, ckr are sin, cos of k*r-carat
skr = dsin(ak * rc)
ckr = dsqrt(1.d0 - skr*skr)

--------------------- multiply by weights now to avoid conversion later
skr = skr * w(i)/ak
ckr = ckr * w(i)/ak

--------------------- Add intermediate to the totals, CA..GC 0
iointe = iointe + dcmplx(skr, ckr)

--------------------- CORRECT FOR JACOBIAN and constant term
iointe = iointe * dcmplx(a2, 0.d0) - dcmplx(0.d0, alpha/ak)

RETURN
END
APPENDIX E: Subroutines INTE4, SAINT4, INTE3, and SAINT3

subroutine inte4(xp,npe,x,y,z,id,g,h,ak)

PERFORMS INTEGRALS FOR quadrilateral elements not CONTAINING THE root node

Inputs:
XP - ARRAY OF LENGTH 3, CONTAINING THE COORDINATES OF THE NODE IN QUESTION (XP(I) - X(I)TH COORDINATE OF THE NODE)
npe - number of Nodes Per Element
x,y,z - nodal coordinates of element
id - element connectivity (used in some shape function routines
ak - constant from helmholtz equation
iroot - number of the node in the element which is the root node.
 If the root is outside the element, iroot = 0

Outputs:
g - complex, d.p. array of length npe containing integrals OF U* OVER THE ELEMENT
h - complex, d.p. array of length NPE containing integrals OF Q* OVER THE ELEMENT

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of quadrilateral element for which a shape function routine is installed
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION OVER line. The integration points must be set before the routine is called. Integration is done in both coordinate directions in the usual manner.
3. Maximum number of integration points presently is 16X16
4. This routine is valid only for sub-parametric elements

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XP(3),X(4),y(4),z(4),id(npe)
complex*16 g(npe),h(npe),ustar,qstar
-------- block of 'space' for all of the shape function routines
common /sspace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)
-------- space for integration points (1-D, gauss type)
COMMON /QPOINT/ psi(16),W(16),NINPT
-------- initialize all integrals to zero
do 10 i = 1,npe
 g(i) = (0.d0,0.d0)
 h(i) = (0.d0,0.d0)
-------- Find the normal vector and area for the element
-------- First triangle (nodes 1, 2 & 3)
call normal(x,y,z,u,al)
-------- second triangle
xx(1) = x(2)
xx(2) = x(3)
xx(3) = x(*)
yy(1) = y(2)
yy(2) = y(3)
yy(3) = y(4)
zz(1) = z(2)
zz(2) = z(3)
zz(3) = z(4)
call normal(xx,yy,zz,u,a2)
area = a1 + a2

---------- INTEGRATE!
DO 100 i = 1,ninpt
 chi = psi(i)
 c1 = 1.d0 - chi
 c2 = 1.d0 + chi
DO 100 j = 1,ninpt
 eta = psi(j)
 wate = w(i) * w(j)
 e1 = 1.d0 - eta
 e2 = 1.d0 + eta

---------- compute geometric SHAPE FUNCTIONS
 sha(1) = 0.25d0 * c1 * e1
 sha(2) = 0.25d0 * c2 * e1
 sha(3) = 0.25d0 * c2 * e2
 sha(4) = 0.25d0 * c1 * e2

---------- compute vector from root to integration point, (xc)
xc(1) = - xp(1)
xc(2) = - xp(2)
xc(3) = - xp(3)
do 50 k = 1,4
 xc(1) = xc(1) + sha(k) * x(k)
 xc(2) = xc(2) + sha(k) * y(k)
 xc(3) = xc(3) + sha(k) * z(k)
R = dsqrt(xc(1)**2 + xc(2)**2 + xc(3)**2)

---------- compute interpolation shape functions
if(npe .ne. 4) call shaqua(chi,eta,npe,id,sha)

---------- dot normal, u, and vector, r, to get angle
 cosa = (xc(1)*u(1) + xc(2)*u(2) + xc(3)*u(3))/r
 ustar = dcmplx(dcos(ak * r)*wate/r,-dsin(ak*r)*wate/r)
 gstar = ustar * dcmplx(-Cosa/r,-ak*cosa)

---------- DO ADDITIONS FOR INTEGRATIONS
DO 100 k = 1,npe
 H(k) = H(k) + dcmplx(SHA(k),0.d0) * QSTAR
 G(k) = G(k) + dcmplx(SHA(k),0.d0) * USTAR
10 continue

---------- CORRECT FOR JACOBIAN (make temporary use of ustar)
 ustar = dcmplx(area*0.25d0,0.d0)

DO 110 I = 1,npe
 G(I) = G(I) * ustar
110 H(I) = H(I) * ustar

RETURN
END
SUBROUTINE saint4(npe,x,y,z,id,g,h,ak,iroot)
PERFORMS INTEGRALS FOR quadrilateral elements CONTAINING THE root NODE

Inputs:
- npe - number of Nodes Per Element
- x, y, z - nodal coordinates of element
- id - element connectivity (used in some shape function routines)
- ak - constant from helmholtz equation
- iroot - number of the node in the element which is the root node.
 If the root is outside the element, iroot = 0

Outputs:
- g - complex, d.p. array of length npe containing integrals of U^* OVER THE ELEMENT
- H - complex, D.P. array of length NPE containing integrals of Q^* OVER THE ELEMENT

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of subparametric quadrilateral elements which a shape function routine is installed
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION on a line. These are used in both directions for integrating over the element. (Must be set before routine is called)
3. This routine may call function iointe, which needs 1-D gauss points in /spoint/. These must be set before routine is called
4. Only valid for planar, subparametric elements

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XP(3),X(4),y(4),z(4),id(npe)
complex*16 g(npe),h(npe),ustar,cointe
-------------- block of 'space' for all of the shape function routines
common /sepace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)
-------------- space for integration points (1-D, gauss type)
COMMON /QPOINT/ psi(16),W(16),NINPT
-------------- initialize all integrals to zero
do 10 i = 1,npe
g(i) = (0.d0,0.d0)
h(i) = (0.d0,0.d0)
-------------- Area for the element: for first triangle
call normal(x,y,z,u,a1)
-------------- second triangle
xx(1) = x(2)
x(2) = x(3)
xx(3) = x(4)
yy(1) = y(2)
YY(2) = y(3)
yy(3) = y(4)
zz(1) = z(2)
zz(2) = z(3)
zz(3) = z(4)
call normal(xx,yy,zz,u,a2)
area = a1 + a2
DO 100 I = 1,ninpt
 chi = psi(I)
 cl = 1.d0 - chi
 c2 = 1.d0 + chi
DO 100 j = 1,ninpt
 eta = psi(j)
 wate = w(i) * w(j)
 e1 = 1.d0 - eta
 e2 = 1.d0 + eta

compute geometric SHAPE FUNCTIONS
sha(1) = 0.25d0 * cl * e1
sha(2) = 0.25d0 * c2 * e1
sha(3) = 0.25d0 * c2 * e2
sha(4) = 0.25d0 * cl * e2

compute vector from root to integration point, (xc)
xc(1) = - xp(1)
xc(2) = - xp(2)
xc(3) = - xp(3)
DO 50 k = 1,4
 xc(1) = xc(1) + sha(k) * x(k)
 xc(2) = xc(2) + sha(k) * y(k)
 xc(3) = xc(3) + sha(k) * z(k)
R = dsqrt(xc(1)**2 + xc(2)**2 + xc(3)**2)
ustar = dcmplx(dcos(ak * r)*wate/r,-dsin(ak*r)*wate/r)

Compute interpolation shape functions
if(npe .ne. 4) call shaqua(chi,eta,npe,id,sha)

DO ADDITIONS FOR INTEGRATIONS
DO 100 JJ = 1,npe
skip the root node, if one exists
 if(jj .ne. iroot) then
 G(JJ) = G(JJ) + dcmplx(SHA(JJ),0.d0) * USTAR
 end if
continue

CORRECT FOR JACOBIAN (make temporary use of ustar)
ustar = dcmplx(area * 0.25d0,0.d0)
DO 110 I = 1,npe
 G(I) = G(I) * ustar
if(root is in the element correct for the constant term
 if(iroot .ne. 0) then
 korn = 4
 g(iroot) = cointe(korn,iroot,x,y,z,ak)
 do 200 i = 1,npe
 if(i .ne. iroot) g(iroot) = g(iroot) - g(i)
 end if

RETURN
END

SUBROUTINE INTE3(%P,npe,%,y,z,id,G,H,ak)

PERFORMS INTEGRALS FOR subparametric triangular elements not
CONTAINING THE root node

Inputs:
- XP - ARRAY OF LENGTH 3, CONTAINING THE COORDINATES OF THE NODE IN QUESTION (XP(I) = X(I)TH COORDINATE OF THE NODE)
- npe - number of Nodes Per Element
- x,y,z - nodal coordinates of element
- id - element connectivity (used in some shape function routines)
- ak - constant from helmholtz equation

Outputs:
- g - complex, d.p. array of length npe containing integrals OF U* OVER THE ELEMENT
- H - complex, D.P. array of length NPE containing integrals OF Q* OVER THE ELEMENT

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of subparametric triangular element
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION for a triangular region. The integration points must be set before the routine is called.
3. Maximum number of integration points presently is 16
4. This routine is valid only for sub-parametric elements

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XP(3),X(3),y(3),z(3),id(npe)
complex*16 g(npe),h(npe),ustar,qstar
-------------- block of 'space' for all of the shape function routines
common /sspace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)
-------------- space for int :ation points (1-D, gauss type)
COMMON /TPOINT/ al1(16),al2(16),W(16),NINPT
-------------- initialize all integrals to zero
do 10 1 - l,npe
 g(i) = (0.00,0.00)
 h(i) = (0.00,0.00)
-------------- Find the normal vector and area for the element
 call normal(x,y,z,u,area)
-------------- INTEGRATE!
DO 100 I - l,ninpt
-------------- use shape functions to calcuculate vector from root to point in the element, (xc)
 xc(1) = all(i)*(x(1)-x(3)) + al2(i)*(x(2)-x(3)) + x(3) - xp(3)
 xc(2) = all(i)*(y(1)-y(3)) + al2(i)*(y(2)-y(3)) + y(3) - xp(2)
 xc(3) = all(i)*(z(1)-z(3)) + al2(i)*(z(2)-z(3)) + z(3) - xp(3)
 R = dsqrt(xc(1)**2 + xc(2)**2 + xc(3)**2)
-------------- compute interpolation shape functions
 call shatri(all(i),al2(i),npe,id,sha)
-------------- dot normal, u, and vector, r, to get angle
 cosa = (xc(1)*u(1) + xc(2)*u(2) + xc(3)*u(3))/R
 ustar = dcmplx(dcos(ak * r)*w(i)/r,-dsin(ak*r)*w(i)/r)
 qstar = ustar * dcmplx(-cosa/r,-ak*cosa)
-------------- DO ADDITIONS FOR INTEGRATIONS
SUBROUTINE saint3(npe,x,y,z,id,g,h,ak,iroot)

PERFORMS INTEGRALS FOR subparametric triangular elements not CONTAINING THE root node

Inputs:
- npe - number of Nodes Per Element
- x,y,z - nodal coordinates of element
- id - element connectivity (used in some shape function routines
- ak - constant from helmholtz equation
- iroot - local number of the root node

Outputs:
- g - complex, d.p. array of length npe containing integrals OF U* OVER THE ELEMENT
- H - complex, D.P. array of length NPE containing integrals OF Q* OVER THE ELEMENT

NOTES:
1. THIS ROUTINE IS CAPABLE OF HANDLING any type of subparametric triangular element
2. THE INTEGRATION POINTS GIVEN IN /POINT/ ARE FOR INTEGRATION for a triangular region. The integration points must be set before the routine is called.
3. Maximum number of integration points presently is 16
4. This routine is valid only for sub-parametric elements

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XP(3),X(3),y(3),z(3),id(npe)
complex*16 g(npe),h(npe),ustar,cointe
--------- block of 'space' for all of the shape function routines
common /sspace/ sha(12),xx(3),yy(3),zz(3),u(3),xc(3)
--------- space for integration points (1-D, gauss type)
COMMON /TPOINT/ all(16),al2(16),W(16),NINPT
--------- initialize all integrals to zero
DO 10 i = 1,npe
g(i) = (0.d0,0.d0)
h(i) = (0.d0,0.d0)

--------- Find the normal vector and area for the element
call normal(x,y,z,u,area)
--------- INTEGRATE!
DO 100 I = l,ninpt

---------- use shape functions to calculate vector from root to point in the element, (xc)
xc(1) = all(i)*(x(1)-x(3)) + al2(i)*(x(2)-x(3)) + x(3) - xp(1)
xc(2) = all(i)*(y(1)-y(3)) + al2(i)*(y(2)-y(3)) + y(3) - xp(2)
xc(3) = all(i)*(z(1)-z(3)) + al2(i)*(z(2)-z(3)) + z(3) - xp(3)
R = dsqrt(xc(1)**2 + xc(2)**2 + xc(3)**2)

---------- compute interpolation shape functions
 call shatri(all(i),al2(i),npe,id,sha)

---------- dot normal, u, and vector, r, to get angle
 ustar = dcmplx(dcos(ak * r)*w(i)/r,-dsin(ak*r)*w(i)/r)

---------- DO ADDITIONS FOR INTEGRATIONS
 DO 100 k = l,npe
 if(k .ne. iroot) G(k) = G(k) + dcmplx(SHA(k),0.d0) * USTAR
 continue

---------- CORRECT FOR JACOBIAN (make temporary use of ustar)
 ustar = dcmplx(area,0.d0)
 DO 110 I = l,npe
 G(I) = G(I) * ustar

---------- correct for root node
 g(iroot) = cointe(npe,x,y,z,ak)
 do 120 i = l,npe
 if(i .ne. iroot) g(iroot) = g(iroot) - g(i)

RETURN
END
PENDIX C: Subroutines NORMAL, SHAQUA, SHZDQQ, SHATRI, and SH2DCQ

subroutine normal(x,y,z,u,area)

Computes the normal and area of a triangular plane in three dimensions

Inputs:
- x, y, z - coordinates of the three nodes
- u - normalized normal vector formed by crossing the vector between nodes 1 and 2 into the vector between nodes 1 and 3
- area - area of the triangle

implicit real*8 (a-h,o-z)

dimension x(3),y(3),z(3),u(3),rl(3),r2(3)

form the two vectors to be crossed

rl(1) = x(2) - x(1)
rl(2) = y(2) - y(1)
rl(3) = z(2) - z(1)

r2(1) = x(3) - x(1)
r2(2) = y(3) - y(1)
r2(3) = z(3) - z(1)

CROSS R1 & R2 TO FIND U, NORMAL TO THE SURFACE

U(1) = (R1(2) * R2(3) - R1(3) * R2(2))
U(2) = (R1(3) * R2(1) - R1(1) * R2(3))
U(3) = (R1(1) * R2(2) - R1(2) * R2(1))

THE MAGNITUDE OF U IS TWICE THE AREA OF ELEMENT

BOT = DSQRT(U(1)**2 + U(2)**2 + U(3)**2)
AREA = 0.5 * BOT

NORMALIZE U

U(1) = U(1)/BOT
U(2) = U(2)/BOT
U(3) = U(3)/BOT

return

end

MODULE FOR 2-D planar shape functions

SUBROUTINE SHAQUA(SS,TT,npe,id,SHA)

CONTROL FOR TWO-DIMENSIONAL ISOPARMETRIC ELEMENTS

TYPES SUPPORTED:

<table>
<thead>
<tr>
<th>NUMBER OF NODES</th>
<th>HIERARCHIAL NODES POSSIBLE</th>
<th>TYPE OF ELEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>---</td>
<td>LINEAR QUADRILATERAL</td>
</tr>
<tr>
<td>8</td>
<td>YES</td>
<td>QUADRATIC QUADRILATERAL</td>
</tr>
</tbody>
</table>
INPUT ARGUMENTS:
SS,TT -- NATURAL COORDINATES
npe -- number of nodes in element
ID -- element connectivity

Outputs:
SHA -- SHAPE FUNCTIONS AT (SS,TT)

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION S(4),T(4),SHA(npe)
DATA S/-0.5D0,0.5D0,0.5D0,-0.5D0/,
 T/-0.5D0,-0.5D0,0.5D0,0.5D0/
------ FORM 4-NODE QUADRILATERAL SHAPE FUNCTIONS
DO 100 I=1,4
 SHA(I)= (0.5+S(I)*SS)*(0.5 + T(I)*TT)
------ ADD higher order terms if necessary
IF(NPE .EQ. 8 .or. npe .eq. 9) CALL SH2DQQ(SS,TT,SHA,ID,NPE)
IF(NPE .EQ. 12) CALL SH2DCQ(SS,TT,SHA,ID,NPE)
RETURN
END
EJECT

SUBROUTINE SH2DQQ(S,T,SHA,IX,NPE)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION IX(npe),SHA(npe)
S2 = 0.5d0 * (1.d0 - S*S)
T2= 0.5d0 * (1.d0 - T*T)
DO 100 I=5,npe
0 SHA(I) = 0.
------ MIDSIDE NODES
if(ix(5) .ne. 0) SHA(5) = S2 * (1.d0 - T)
if(ix(6) .ne. 0) SHA(6) = T2 * (1.d0 + S)
if(ix(7) .ne. 0) SHA(7) = S2 * (1.d0 + T)
if(ix(8) .ne. 0) SHA(8) = T2 * (1.d0 - S)
------ LAGRANGE HEREAFTER
if(npe .eq. 9) then
if(ix(9) .ne. 0) then
 SHA(9) = 4. * S2 * T2
end if
if(npe .eq. 9) then
 SHA = SHA - SHA(9)
end if
------ CORRECT EDGE FOR INTERIOR
DO 105 I=1,4
 SHA(I) = SHA(I) - 0.25 * SHA(9)
5 IF(IX(I+4) .NE. 0) SHA(I+4) = SHA(I+4) - .5 * SHA(9)
end if
end if
------ CORRECT CORNER FOR MIDSIDE
7 K=8
DO 109 I=1,4
 L=I+4
 SHA(I) = SHA(I) - .5*(SHA(K) + SHA(L))
SUBROUTINE SHATRI(A1,A2,NPE,IX,SHA)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 L(3)
DIMENSION SHA(npe),S2(3),S3(3),IX(npe)
DATA S2/1.D0,0.D0,-1.D0/,S3/0.D0,1.D0,-1.D0/

FORM THIRD SHAPE FUNCTION
L(1) = A1
L(2) = A2
L(3) = 1. - L(1) - L(2)

FORM LINEAR SHAPE FUNCTIONS
DO 10 I=1,3
SHA(I) = L(I)

IF(NPE .NE. 6) RETURN

DO 20 J=4,6
SHA(J) = 0.D0

FORM QUADRATIC TERMS AS NECESSARY
IF (IX(4) .NE. 0) SHA(4) = 4.D0 * L(1) * L(2)
IF (IX(5) .NE. 0) SHA(5) = 4.D0 * L(2) * L(3)
IF (IX(6) .NE. 0) SHA(6) = 4.D0 * L(3) * L(1)

correct corners for midside nodes
KK = 6
DO 60 I=1,3
K=I+3
SHA(I) = SHA(I) - 0.5D0*(SHA(KK) + SHA(K))

RETURN
END

SUBROUTINE SH2DCQ(S,T,SHA,IX,NPE)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION IX(npe),SHA(npe)

DATA S1/0.D0,0.D0,0.D0,0.D0,-1.D0/ 1 2 3 4 5
 6 7 8 9 10 11 12
* ,1.D0,1.D0,1.D0,1.D0,-1.D0,-1.D0,-1.D0/
1 2 3 4 5 6
DATA T1/0.D0,0.D0,0.D0,0.D0,-1.D0,-1.D0/ 7 8 9 10 11 12
* -1.D0,1.D0,1.D0,1.D0,-1.D0,-1.D0/
C = 9.D0/32.D0
SS = 1.D0 - S*S
TT = 1.D0 - T*T
S2 = 0.5D0 * SS
T2 = 0.5D0 * TT
DO 10 I=5,12
SHA(1) = 0.d0
----------------------- ALLOW FOR MISSING NODES
IF(IX(5) .ne. 0) then
 IF(IX(6) .ne. 0) then
 SHA(5) = C*(1.d0 - T) * SS * (1.d0 - 3.d0*S)
 SHA(6) = C*(1.d0 - T) * SS * (1.d0 + 3.d0*S)
 SHA(1) = SHA(1) - (2.d0 * SHA(5) + SHA(6))/3.d0
 SHA(2) = SHA(2) - (2.d0 * SHA(6) + SHA(5))/3.d0
 else
 SHA(5) = S2 * (1.d0 - T)
 SHA(1) = SHA(1) - 0.5d0 * SHA(5)
 SHA(2) = SHA(2) - 0.5d0 * SHA(5)
 end if
end if
------------------ side 2, nodes 7 and 8
IF(IX(7) .ne. 0) then
 IF(IX(8) .ne. 0) then
 SHA(7) = C*(1.d0 + S) * TT * (1.d0 - 3.d0*T)
 SHA(8) = C*(1.d0 + S) * TT * (1.d0 + 3.d0*T)
 SHA(2) = SHA(2) - (2.d0 * SHA(7) + SHA(8))/3.d0
 SHA(3) = SHA(3) - (2.d0 * SHA(8) + SHA(7))/3.d0
 else
 SHA(7) = T2 * (1.d0 + S)
 SHA(2) = SHA(2) - 0.5d0 * SHA(7)
 SHA(3) = SHA(3) - 0.5d0 * SHA(7)
 end if
end if
------------------ side 3, nodes 9 and 10
IF(IX(9) .ne. 0) then
 IF(IX(10) .ne. 0) then
 SHA(9) = C*(1.d0 + T) * SS * (1.d0 + 3.d0*S)
 SHA(10) = C*(1.d0 + T) * SS * (1.d0 - 3.d0*S)
 SHA(3) = SHA(3) - (2.d0 * SHA(9) + SHA(10))/3.d0
 SHA(4) = SHA(4) - (2.d0 * SHA(10) + SHA(9))/3.d0
 else
 SHA(9) = S2 * (1.d0 + T)
 SHA(3) = SHA(3) - 0.5d0 * SHA(9)
 SHA(4) = SHA(4) - 0.5d0 * SHA(9)
 end if
end if
------------------ side 4, nodes 11 and 12
IF(IX(11) .ne. 0) then
 IF(IX(12) .ne. 0) then
 SHA(11) = C*(1.d0 - S) * TT * (1.d0 + 3.d0*T)
 SHA(12) = C*(1.d0 - S) * TT * (1.d0 - 3.d0*T)
 SHA(4) = SHA(4) - (2.d0 * SHA(11) + SHA(12))/3.d0
 SHA(1) = SHA(1) - (2.d0 * SHA(12) + SHA(11))/3.d0
 else
 SHA(11) = T2 * (1.d0 - S)
 SHA(4) = SHA(4) - 0.5d0 * SHA(11)
 SHA(1) = SHA(1) - 0.5d0 * SHA(11)
 end if
end if
return
END