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SUMMARY

This paper presents experimental techniques for determining the

extensional and bending stiffness characteristics for symmetric laminates.

Vibrational test techniques for determining the dynamic modulus and material

damping are also discussed.

Partial extensional stiffness results initially indicate that the

laminate theory used for predicting stiffness is accurate. It is clearly

shown that the laminate theory can only be as accurate as the physical

characterisitcs describing the lamina, which may vary significantly.

It is recommended that all of the stiffness characteristics in both

extension and bending be experimentally determined to fully verify the

laminate theory. Dynamic modulus should be experimentally evaluated to

determine if static data adequately predicts dynamic behavior. Material

damping should also be ascertained because laminate damping is an order of

magnitude greater than found in common metals and can signficant1y effect the

displacement response of composite panels.

INTRODUCTION

Graphite-epoxy composite materials have become of great interest to the

aeronautics and space industry because of their high strength and stiffness to

weight ratios. Acoustically induced material fatigue is of concern because of

the intense fluctuating pressure fields generated by aircraft and spacecraft

propulsion systems on structures.

Scientists would like to mathematically predict the displacement response

of composite panels to acoustically induced random pressure fields. The panel

strains can be evaluated once the displacement response has been ascertained.
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Various investigators (1-3)* have developed theories which predict the

deflection response of symmetric laminate plates. Solution of these equations

requires determination of the extensional and bending stiffness matrices which

can be predicted theoretically (4) based upon certain physical characteristics

of the lamina. This laminate theory is based upon the static experimental

material characteristics of a single unidirectional lamina.

Concern exists about the validity of using static material properties in

a dynamic analytic model. The modulus (a measure of stiffness) can be

determined indirectly by mechanically vibrating laminate cantilever beams

(5-8).

The investigation reported herein presents methods for experimentally

verifying the static stiffness matrices for symmetric laminates. A technique

for determining some important dynamic characteristics will also be

addressed. Partial experimental data for the extensional matrix for a

T300/5208 graphite-epoxy angle-ply laminate is also presented. This laminate

plate consisted of nominally I-rom (0.040-in.) thick 8-ply material having a

lay-up of [0°, 45°, -45°, 90 0 ]s, where the subscript s denotes symmetric

lay-up.

This study considered those factors that effect the behavior of composite

materials. It was determined that dynamic behavior is of upmost importance

and includes stiffness, material damping and structural damping

characteristics. Verification of the laminate theory under dynamic as well as

static conditions, thin versus thick plate and small versus large deflection

conditions is required. Major factors controlling material characteristics

include manufacturing and material variability as well as environmental

conditions, especially moisture and temperature.

* refers to reference

•

•
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Long term goals should include the study of fatigue characteristics with

sinusoidal and random excitation with appropriate frequency distribution.

Another important material characteristic is creep, the slow change of

physical dimensions associated with prolonged exposure to stress and

temperature. Finally, new composite construction (lay-up) and material

compositions should also be investigated.
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distance along beam from fixed end

distance along beam from fixed end to center of strain gage

distance from laminate midplane to kth lamina layer

beam shear strain

beam extensional strain

specimen loss factor

curvature

eigenvalue of rth mode

mass per unit length of beam

damping ratio

Poisson's ratio

normal stress

shear stress
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BACKGROUND

Static Conditions

Classical laminate theory allows prediction of laminate stiffness

characteristics based upon the physical characteristics of unidirectional

lamina where:
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Aij is called the extensional stiffness, Bij the coupling stiffness, and

Dij the bending stiffness. Knowing the transformed reduced lamina stiffness

Qij (4) and zk, which is the distance from the plate middle surface to the

k-th layer, the stiffness matrices can be calculated. The unidirectional

reinforced plies (lamina) from which the laminates are constructed possess

four engineering elastic constants Ell' the modulus in the direction of the

reinforcing filamant, E22, the modulus transverse to the filamant direction,

G12, the longitudinal shear modulus and, v12, Poisson's ratio. When a

laminate is fabricated with materially orthotropic lamina, the stiffness

reduces to a 3 by 3 symmetric matrix.

The assumption used in the derivation of the laminate theory are similar

to those used in the standard hypothesis for plates and shells. This approach

could actually be called the classical thin lamination or plate theory.

The basic stress and deformation hypothesis is based upon the assumption

that the laminate consists of perfectly bonded laminae, bonds are assumed to

infinitesimally thin as well as non-shear-deformable. That is, the

displacement are continuous across lamina boundaries so that no lamina can

slip relative to one another. The laminate acts, therefore, as a single layer

with very special properties, but nevertheless acts as a single layer of

material (4).
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If the laminate is thin, a line originally straight and perpendicular to

the middle surface of the laminate is assumed to remain straight and

perpendicular to the middle surface when the laminate is extended and bent.

This assumption is equivalent to ignoring shear strains perpendicular to the

middle surface, i.e., Yxz = Yyz = O. In addition, the normals are

presumed to have constant length so that the strain perpendicular to the

middle surface is ignored, i.e., £z = 0 (4).

Figure 1 shows a typical stress and strain variations of a laminate of

dissimilar lamina. As previously stated, the strain is assumed to vary

linearly across the plate but Qij can be different for each lamina layer.

Because of this difference in lamina stiffness, the stress variation through

the laminate thickness is not necessarily linear as shown in Figure 1.

o 0The force-moment relationships for a laminate, where Ex' £y' and

oYxy are the normal and shear strains at the middle surface Kx ' Ky ' and

K xy the curvature, is:
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where Nx ' Ny, and Nxy are the normal and shear forces per unit width,

Mx and My are the bending moments per unit width in the x and y directions

respectfully, and Mxy is the twisting moment per unit width.

For the symmetric case we are considering, the laminas are geometrically

symmetric around the middle surface as well as materially similar, the

coupling matrix Bij vanishes. Further simplifications can exist if the

laminate is extensionally balanced, Al2 ::: A26 ::: 0, i.e. no shear coupling,

or balanced in bending where Dl6 ::: D26 ::: 0, i.e. no coupling between

bending and twisting.

When performing experiments, the loads are applied and the resulting

deformations are measured. The resultant forces and moments are written in

terms of the middle surface extensional strains and curvatures as:

[ 3]

Because of experimental techniques, the deformations are the dependent

variables and it is advantageous to invert the force-moment equation. For a

symmetric laminate, the coupling matrix B vanishes, and the inversion is

simply 00):

D~l H~} [4 ]

•

Note that this relationship is much more complex if the laminate is not

symmetric. Let us denote A-I ::: A' and n- I ::: D' and in expanding we have:
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Verification of one set of stiffnesses implies verification of the other set

because the two sets, A and D, and A' and D', are the inverse of one another.

The stiffness matrices can readily be calculated from the inverted form.

Dynamic Conditions

Because lamina material characteristics obtained from static tests are

used to predict the laminate stiffness characteristics, the dynamic stiffness

characteristics should also be addressed. Schultz and Tsai report (6) up to

20% variation of stiffness between dynamic and static measurements for 6 and

8-layer angle-ply glass/epoxy laminates. Other investigators (7) using

two-layer cross-ply E-glass/epoxy laminates, have found very good agreement

between static and dynamic stiffness.

Both of these investigations are based upon mechanically vibrating

cantilever beams at resonance and then calculating the dynamic modulus E',

based upon classical vibration analysis. This modulus is a measure of

stiffness and when compared to values obtained from static tests, gives an

indication if the stiffness is different under dynamic conditions.

..
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STATIC EXPERIMENTAL TECHNIQUES

Extensional Stiffness in Tension

The extensional matrix coefficients can readily be determined by applying

unaxial forces to the laminate in preferred directions. Let us first consider

the case where, Ny = Nxy 0, then from Equation 5 we have,

o - A' Nex - 11 x'

•

considering are symmetric, there is no coupling between extension and bending,

i.e. Bij = 0, and the strains remain the same across the surface, eO = e,

therefore A1'1 = e IN, A' = e IN and A
1
'6 = Y IN. We need only apply ax x 12 y x xy x

known uniaxial stress to a specimen, measure the surface strain and determine

the coefficients.

Similarly, we can apply a uniaxial force Ny where Nx = Nxy = °and

measure the surface strain and determine Ai2 = exlNy ' AZ2 = eylNy and

A2'6 = Y IN.xy Y

This extensional data can be determined by a simple tensile test using

standard laboratory techniques (11). Figure 2 shows the specimen size

recommended for composites. A simple tensile testing machine is used for

applying loads and instrumentation for a strain gage rosette is required, in

addition, two specimens are needed to obtain adequate information. These

specimens, as shown in Figure 3, consist of; first sample with its outer

fibers aligned with the longitudinal axis (x-direction); and the second with

its outer fiber 90° to the longitudinal axes. A 45° strain gage rosette

should be placed on one of the surfaces near the middle of the test specimen.

The shear strain can be obtained from the relationship
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with the rosette layout shown in Figure 4. From these two test specimens

we then can determine Ail' AZ2 ' Ai2' Ai6' and AZ6 as described above.

A minimum of three specimens each, of the 0°, and 90° orientations,

should be tested. More reliable data could also be obtained by having strain

gage rosettes on both surfaces and base the strain values on the average of

the two gages. This procedure should result in statistically significant

data.

Extensional Stiffness in Shear

The stiffness coefficient A
66

is obtained by placing a laminate specimen

in pure shear. For this case Nx = Ny = 0 and from Equation 5 we have

Y IN • We can also verify the shear coupling coefficients wherexy xy

A1'6 = £ IN andx xy

the tension tests.

A2'6 = £ IN . both of which can also be determined duringy xy'

There exists no standard shear tests for composite laminates. Spiegel

(12) and Herakovich (13) discuss the advantages and disadvantages of various

types of shear tests. The technique that is probably the most valid is the

picture-frame shear test (14). Validity is based upon the specimen being in

pure shear and void of extraneous normal forces or moments associated with the

technique, stress concentrations or fixture characteristics. The major

disadvantage of the picture-frame shear test is the large size of the test

specimen which is typically on the order of 44.5-cm (17.5-in.) square (14).

A shear test technique that is considered reasonably accurate and also

uses a small test specimen is the double V-notch shear test which is commonly

called the Iosipescu Shear Test (15). A slight variation of this test

technique is called the asymmetrical Four-Point Bend (AFPB) test (16). It has
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been shown theoretically (12, 16) and experimentally (12) that the Iosipescu

Shear Test is accurate when used with composite laminates, The AFPB Shear

Test is probably the most accurate of the two methods. The Isoipescu Shear

Test is comprised of a simple compression test fixture shown schematically in

Figure 5.

Inspection of Figure 6 shows that at the double V-notch, the beam is in '

pure shear with no moment. The magnitude of the shear stress in the constant

shear stress region is governed by external equilibruim requirements of the

specimen and is seen to be just the applied load P. Iosipescu (15) showed

that, because of the 90° V-notch in the test specimen, constant shear exists

all of the way across the beam between the notches. To experimentally

determine the shear stress we measure the normal strain at a 45° angle at the

middle of the test specimen between the V-notches as related by the sketch of

Mohr's circle in Figure 7. A small strain gage should be used because of the

relatively small region of pure shear. Because the specimen is so narrow, the

strain should be measured on both sides of the test specimen and the average

value used on the applicable strain Yxy. From Equation 5, we have

A' - Y IN66 - xy xy·

We could verify the shear coupling coefficients by measuring the strain

using a strain gage rosette in the test region. Again from Equation 5, we

would have A1'6 = £ IN and AZ'6 = £ IN • This particular measurementx xy y xy

would probably be inaccurate because of the small size of the test section

between the notches.

Bending Stiffness for Bending Moments

Examination of Equation 6 shows that we can determine the bending

stiffness coefficients by applying pure bending moments to the test specimen.
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For example, let My = Mxy = 0, we could then determine D11 = Kx/Mx '

and D'16 = K 1M.xy x Similarly, we could take the case for

= K 1M , andy y

Let us examine what we mean by curvature, K. Shown in Figure 8 is a

plate in the xy plane where Wo is the midplane deflection in the z-direction

owoand 8 = -ax. It can be readily shown (4) that the curvatures are;

02
WO

-2 axoy. This curvature can be measured directly, or

the deflection can be measured and then the curvature can be determined from

the above relationships.

Optical holographic techniques can be used for determining the components

of curvature by measuring the interference fringes (17-19). These

measurements are valid for plates in anticlastic bending which is only

applicable for laminates that do not have coupling between the pure bending

moments, Mx and My, and the twisting moment Mxy ' i.e., Di6 = D26 = o. In

other words, holographic techniques can only be used if the bending matrix,

Dij' is balanced such as in cross-ply laminates. Major disadvantages of

using holographic interferometry include the large instrumentation costs,

difficulty and cost of measuring, interpreting the interference fringe

patterns, and the difficulty of putting thin laminates 1-3 rom (0.04-0.12 in.)

in appropriate bending under known conditions.

various investigators (5-8) have used a technique for determining bending

stiffness characteristics by using a simply loaded cantilever beam and

measuring the strain near the support. A rectangular shaped beam has a
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parabolic shear stress distribution in the x-z plane with a maximum value at

the midplane but zero at the surfaces. We can, therefore, measure the strain

at the surface due to the effects of curvature without being concerned with

shear forces in the x-z plane,

o
~ecause we have no normal stress at the midplane during bending, € vanishes

or

and we have

where !I.

x, y, xy, and u = upper surface

lower surface.

h
~i

and [7]

•

Experiments should be performed using two sets of cantilever beams, one

with the beam axis with the outer fibers aligned with the beam axis and the

other with the outer fiber aligned 90° (perpendicular) with the beam axis or

shown in Figure 9. Strain gages should be mounted on both surfaces of the

cantilever beam near the support where the magnitude of the moment is large.

From these strain gages, we can determine ex' €y, and Yxy; with the

upper side in tension and the lower one in compression. Note that the

magnitude of the moment at the center of each strain gage is different because

of slightly different geometrically locations relative to the end of the beam,

as can be seen from Figure 4.

Because· of the small loads required to bend the beam in the range of

curvature desired, much care must be used in the experimental procedure, as

well as the size of the beam. A reasonable beam size would be in the order of

1 in. wide by 6-in. long. The concentrated load should actually be a

distributed load along a transverse line at the end of the beam as shown in

Figure 10.
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Let us examine the case for the simply loaded cantilever beam with

Mxy 0; from Equation h
and from Equation 6:My = = 7: zt<x = £

X

2£ 2£

Di1Mx therefore, Di1
x similarly we have Di2

y andK = = 'hM""; = hMx x x

For the beam with the orthogonal outer fiber direction where, Mx =

Mxy = 0, we would have from Equations 6 and 7, and

2y
xy

D26 =~. Care should be taken with the sign of the coefficient because
y

of the direction of the curvature; basing the strain magnitude upon the

average of the upper end lower surface strain gages, while taking into

consideration, one is in tension and the other in compression.

Bending Stiffness for Twisting Moments

The last bending stiffness coefficient is associated with the twisting

moment·Mxy • The saddle test or four point loading of a plate can be used to

determine D66 as well as the shear modulus. G. This technique has been

successfully used for laminate plates (6, 20). The saddle test is

accomplished by placing four equal forces at the corners of a square plate as

shown in Figure 11. The forces are perpendicular to the plate with those

forces at the first and third (diagonal) corners being upward and the other

two forces downward. The corner loads create a twisting moment resulting in

the square plate assuming a hyperbolic paraboloid, or a saddle shape. The

matrix coefficent, D66' is calculated using the relationship (4, page 181)
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where the P is the applied load at the corners, L is the diagonal

(corner-to-corner) distance of the plate and we the deflection at the

corners with respect to the center of the plate. The shear modulus can also

be calculated using the relationships (20)

G

where h is plate thickness.

Extreme care must be used in performing the saddle test because of the

very small forces, less than one Newton, required when testing 1-2 rom

(0.04-0.08 in.) thick plates. Alignment becomes critical and instrumentation

used for measuring the corner deflection, we should not impose forces on the

plate.

ENVIRONMENTAL CONSIDERATIONS

The effects of environmental conditions on static and dynamic properties

is of utmost importance. High temperature and diffusion of moisture into

resin materials are of major concern. It has been reported (21) that a hot

moist environment alters the stiffness and damping characteristics of graphite

epoxy composites. Some investigators (22) performing static flexural tests of

graphite/epoxy beams, concluded that moisture and temperature can actually

change the mode of failure.

Another parameter that affects material characteristics of composite

materials is the time parameter. Resin/fiber composites have stiffness and

strength properties which are a function of time or have viscoelastic

characteristics (23).
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Because of these factors it is very important to perform the experiments

under documented and similar conditions of humidity and temperature. It is

recommended that all tests be performed as close to Standard Laboratory

Atmosphere (SLA) conditions as possible. The SLA is air at 23 ± 2 °C and 50 ±

5% relative humidity.

DYNAMIC EXPERIMENTAL TECHNIQUES

Stiffness

As mentioned before, dynamic tests can be used to determine the dynamic

modulus of elasticity, E', which is a measure of stiffness. In other words,

we cannot determine the stiffness matrices under dynamic conditions. We can

determine Ell and E22' the modulus in the principal and orthogonal axis as

well as material damping characteristics~

The forced vibration response technique is the most widely used method

for characterizing the dynamic behavior of composites (24). Both stiffness

and damping can be determined. The stiffness is found from the forced

resonant frequency of a cantilever beam and damping from knowledge of the

classical analytical relationships for flexural vibration of a beam.

Let us denote the dynamic modulus, sometimes referred to as the storage

modulus, as E' which can be determined from the relationship (7):

[E~IJl/2 [8]

where the eigenvalues, ArL, have been tabulated by Bishop and Johnson (25),

~ is the mass per unit length, wr is the beam resonant circular frequency of

mode r, I is the 2nd moment of area of the beam and L is the beam length.

The technique involves using a center-driven double-cantilever beam

specimen. A sketch of this type of test specimen is shown in Figure 12.
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Flexural vibrations of the one-piece specimen are induced by vertical motions

of the shaker table which is mounted at the middle of the specimen. Vibration

frequency and amplitude are controlled by adjusting the electrical current to

the shaker coil. Specimen resonant frequency is determined by driving the

beam at various resonant modes.

Strain gages would be mounted on the surface of the beam and an

accelerometer mounted on the shaker. Resonant frequencies are then determined

by varying the shaker frequency and observing the strain-acceleration

Lissajous patterns on an oscilloscope as shown in Figure 13. This Lissajous

pattern is produced by plotting the strain signal against the base

acceleration signal. Beam resonant frequency is located by maximizing the

ratio of strain amplitude to input acceleration amplitude.

The double-beam cantilever test specimen must be balanced to minimize

frictional losses. By using the signals from strain gages mounted on both

beams located equal distance from the base t the test apparatus can be

balanced. The two strain gage signals from opposing beams are exactly in

phase when the Lissajous pattern is 45-deg. line. Small weights can be

attached to the end of the beams to balance the specimen. If the two beams

are not in phase t the Lissajous pattern forms an ellipse. Having obtained the

resonant frequency wrt the dynamic modulus E' is obtained by manipulating

Equation 8. A reasonably sized test specimen would be 2.5-cm (I-in.) width

and 30.5-cm (12-in.) double length (2-L).

Damping

Let us define an effective complex modulus t E*t with the relationship

E* = E' + iE" [9]

where E" is called the loss modulus (imaginary). The specimen loss factor,

nSt is related to the complex modulus by the equation (26)
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[10]

where \1 is the damping ratio. Specimen damping can be computed by using the

definition of specimen loss factor (26)

where

and

Ds
ns =--21TUs

D = 1TV as o 0

1
L M(x)2

U J dxs ="2 ,
0 E I

[ll ]

[12]

[13]

where Ds and Us are the energy dissapated per cycle and strain energy in

the beam at maximum displacement respectfully. The unknown shear force t VOt

and bending moment t M(x)t are found from the characteristic function

describing the mode shapes (25) and the measured strain at a known location on

the beam. The base amp1itude t aOt can be found from the measured base

acceleration and resonant frequency. Gibson (8) showed that the resulting

equation for specimen loss factor iS t

).. 4>'''(0)4>'' (x )ha·r roo
22 L ()) dx)
r 0

[14]

The loss factor is always positive in this relationship because 4>"(0) for a
r

cantilever beam is negative (25). Equation 14 can be used to compute the loss

..
factor from measured values of ()) tat £(x )t hand L and tabulated values ofroo

and 4>"'(0) (25).r

The testing technique described is referred to as the resonant-dwell

technique (8) versus the bandwidth technique (5 t 6). The forced vibration

test was selected over the amplitude decay test not only because of the
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ability to control both amplitude and frequency of vibration, but also because

damping can be determined at a single frequency and amplitude. During

resonant dwell testing, the specimen is usually driven in its first or 2nd

mode; while the resonant frequency, input acceleration and bending strain are

measured. Damping is determined using equation 14 and dynamic modulus

(storage modulus) is determined using equation 8.

Tests should be performed at small amplitude-to-thickness ratios, w(L)/h,

because of air damping. Gibson (8) performed tests as described using an

aluminum specimen in air and in vacuum, and found that air damping is neglible

when w(L)/h < 0.5.

To ascertain the effectivenss of frequency on stiffness and damping, the

resonant-dwell technique can be used by driving the beam at higher modes.

Usi~g this technique, Schultz and Tsai (5) measured resonant frequencies as

high as 10k Hz. These higher mode tests should be performed in a vacummn

because of air frictional effects, i.e., air damping loss could become

appreciable even at small amplitudes. Air damping would be proportional to

velocity squared because of aerodynamic viscous drag effects.

Gibson (8) shows that thermoelastic loss factors are directly relatd to

frequency, therefore, material heating could create problems. This

investigator also reported excessive specimen loss factors at maximum strain

amplitudes exceedings 10-3 for a [0°/90°] Scotchply specimen. Based upon

this latter information, tests should be performed in the amplitude

i d d . < 10-3 •n epen ent range, 1.e., at €

PARTIAL RESULTS

A few tension tests have been performed on 8-ply T300/5208 (9)

graphite-epoxy angle ply laminates. This laminate consisted of nomially 1-mm
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(0.04-in.) thick material having a lay-up of [0°, 45°, -45°, 900 ]s. These

tension tests were performed per ASTM standard test D3039-76 [11] as outlined

in this report. The strain was measured along the principal (longitudinal)

and orthogonal (transverse) axis; therefore, no shearing coupling data was

determined, i.e., A16.

The results of these tensile tests are shown in Table I, where

orientation refers to the outer fiber alignment in the direction of applied

tensile load. In other words, two types of tensile test samples were used,

the first set was with the outer fibers aligned with the longitudinal specimen

axis and the second set with the outer fibers orthogonal to the longitudinal

axis.

Based upon a lamina thickness of 0.127-mm (O.005-in.) the laminate theory

predicts Ah == Ail == -5.756 Gm/N for a total laminate thickness of 1.016-mm

(0.040-in.). Inspection of Table I shows that Ail == A22 within 1.2% and

Ai2 == Ail within 0.9%.

The main concern is to determine if the laminate theory is valid. Review

of Table I shows that Ail and Ai2 were with in approximately 3%, also Ai2

and AZl were within approximately 4% when comparing laminate theory with

experimental results~ One could readily conclude that the laminate theory is

accurate, at least for the limited extensional case considered.

Remembering that the laminate theory uses experiment results based on

lamina experimental data, let us investigate lamina data for the T300/S208

composition. Lamina properties from various references are shown in Table

II. Inspection of this table shows variation between the reported lamina
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material characteristics of 35% for Ell' 7% for E22' 30% for G12' and

36% for v1Z. The comparison made in Table I was based upon O'Brien's (27)

data because of the known similarity of composition and curing process.

One reasonable conclusion that can be made at this point in the

experimental process is that the laminate theory is only as accurate as the

lamina data. This conclusion is in turn only valid if we assume that the

laminate experimental data being reported is composed of the lamina reported

by O'Brien. In the future, it is highly recommended that lamina material

characteristics Ell, E22' G12 and v12 be experimentally verified for

each "batch" of laminate plates that is fabricated. This lamina data

gathering should only be terminated when sufficient statistical information is

collected which provides confidence in the repeatability of the lamina

material fabrication process.

CONCLUSIONS AND RECOMMENDATIONS

1. Both dynamic and static material property measurements should be

performed. Both laminate and single-ply tests are required. Variability

of these properties will be dependent upon the actual materials used in

fabricating the laminate (fibers and resin), the details of the

manufacturing process, environmental conditions (temperature and moisture)

and the actual test methods.

2. It is imperative that the laminate theory be verified under dynamic

conditions. These studies should consider the frequency distribution of

the excitation. This investigation should also involve short wave lengths

and large amplitudes •
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3. Very few standard test techniques are available for determining material

properties of laminates. Many test techniques have been proposed but have

not been accepted by the composite material testing community. The only

standard test that is being used is for tensile testing of laminate

specimens. There exist no tests for determining the dynamic stiffness

matrix elements in extension, coupling or bending.

4. Short term goals include determining the dynamic stiffness and material

damping characteristics of the laminates presently being investigated.

The extensional and bending stiffness elements under static conditions

should also be completed.
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TABLE I

T300/5208 Laminate

8-Ply Experimental Extensional Stiffness Data

26

, , , ,
Sample Orien. l' All A22 -A12 -A21 Ell E22 V12

Comment (deg) (mm) (~) (~) (~) (~) (GPa) (GPa) (unitless)N N N N

A-1-T 0 1.054 17.96 --- 5.389 --- 52.18 --- 0.300

A-2-T 0 1.062 18.34 --- 5.629 --- 51.37 --- 0.304

A-3-T 0 1.044 18.43 --- 5.455 --- 51.99 --- 0.298

A-4-T 0 1.034 18.63 --- 5.507 --- 51.93 --- 0.296

A-5-T 0 1.064 18.03 --- 5.282 --- 52.13 --- 0.304

A-6-T 0 1.186 18.49 --- 5.575 --- 45.63 --- 0.305

A-7-T 0 1.036 18.62 --- 5.656 --- 51.82 --- 0.304

B-1-T 90 1.034 --- 18.36 --- 5.511 --- 52.70 0.300

B-2-T 90 1.029 -- 18.45 --- 5.647 --- 52.70 0.306

B-3-T 90 1.039 --- 18.79 --- 5.356 --- 51.24 0.293

B-4-T 90 1.034 --- 17.93 --- 5.511 --- 53.96 0.307

B-5-T 90 1.041 --- 17.39 --- 5.611 --- 52.22 0.323

B-6-T 90 1.034 --- 18.00 --- 5.670 --- 53.73 0.315

mean --- 1.053 18.36 18.15 5.499 5.551 51.01 52.76 0.304

6* --- 0.041 0.27 0.49 0.134 0.117 2.39 1.00 0.008

% Diff. --- 3.7 2.7 3.7 4.5 3.6 8.7 5.6 2.0

,
Theoretical Values: All

DOD/NASA design data:

* Standard deviation

, ,
= 18.86 em/n, A

12
= A

21
= 05.756 Gm/n and t =

= E22 = 55.9 GPa and V = 0.31

1.016 nun,
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TABLE II

T300/5208 Lamina Properties

Ell E22 G12 v
12 Reference

(GPa) (GPa) (GPa) ---

147 10.9 6.41 0.38 (9)

134 10.5 5.5 0.30 (27)

181 10.3 7.17 0.28 (28)

163 10.2 6.48 0.39 (29)

27
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Ftgure 1. Hypothetical variation of strain and stress through the laminate thickness. (4)

Discontinuous FibersType of Reinforce­
ment

Continuous Fibers

rom in. mm in.

Boron
Graphite
Glass

0.50K to 2.54
0.508 to 2.54
0.762 to 3.275

0.020100.100
0.020100.100
0.030 10 0.125

1.016 to 5.08
1.016 lu 5.08
1.524 106.55

11.040 to 0.200
0.040 10 0.200
0.060 to 0.250

r3BmmC1.51n.! Ga~~u::"~~th , • 3RmmCl.5in'1
mln.l.mum.. Spe,_"lmen Widt.h I: m.lnlmum SDe~lmen

Wldtr

I .
I I

,-_-,'---1-

I 0 0'----'-.
I

Spe~·lmen

Th)('kness

Non-Bond laminate tabs on two sides and al holh ends. Tabs arc applied to lhe end of the test composite with a suitahle
adhesive. Each tab is a minimum of 38 mm (1.5 in.) long hy the width of the laminate and a thickness of approxImately 1.5 104
limes the thickness of the lest composite.

•

figure 2. Tensile Test Specimen (11 )
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Figure 3.- Tensile specimen test arrangement.
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Figure 4.- Strain gage rosette .
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Figure 5.- Schematic of the Iospiescu shear test fixture (12).
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Figure 6.- Force, shear and moment diagrams of the Iosipescu
shear test (12).
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2

Fi~ure 7.- Mohr's ctrcle for bidimensional
pure shear stress state (15).
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Figure 8.- Geometry of deformation in the x-z
pl ane (4).
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a. side view

b. plan view

Figure 9.- Simply loaded cantilever beam.
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Figure 10.- Cantilever beam.
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Figure 11~~ Twisting of a square plate (4).
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Fi~ure 12.- Double-cantilever beam specimen
configuration (8).



...

•

•

Figure 13.- Lissa~ous patterns generated by strain
(~ertlcal) and acceleration (horizontal)
slgnals (8) .
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