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ABSTRACT

Zinc telluride is of interest as a potential electronic device material,

particularly as one component in an amorphous superlattice, which is a new

class of interesting and potentially useful materials. This paper describes

some structural and electronic properties of ZnTe films deposited by argon ion

beam sputter deposition. Films (up to 3000 A thick) were deposited from a

ZnTe target. A beam energy of 1000 eV and a current density of 4 nA/cm2

resulted in deposition rates of approximately 70 A/min. The optical band gap

was found to be approximately 1.1 eV, indicating an amorphous structure, as

compared to a literature value of 2.26 eV for crystalline material. Intrinsic

Nstress measurements showed a thickness dependence, varying from tensile for

``'	 thicknesses below 050 A to compressive for larger thicknesses. Room

temperature conductivity measurements also showed a thickness_dependence, with

values ranging from 1.86x10
-6
 n 1 cm 1 for a 300 A film to 2.56x10-7

	 1 
cm 

1

for a 2600 A film. Measurement of the temperature dependence of the

conductivity for these films showed complicated behavior which was thickness

dependent. Thinner films showed at least two distinct temperature dependent

conductivity mechanisms, as described by a Mott-type model. Thicker films

showed only one principal conductivity mechanism, similar to what might be

expected for a material with more crystalline character.

INTRODUCTION

In recent years there has been interest in the properties of amorphous

II-VI compounds, including amorphous zinc telluride (a-ZnTe) (Refs. 1 to 5).

Thin films of these materials deposited by vacuum evaporative techniques have
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been shown to be essentially amorphous, with microcrystallite sizes less than

20 A i6 any direction. As-deposited a-ZnTe has been found to be stable

essentially indefinitely at room temperature, with crystallization times on

the order of 100 yr (Ref. 6). These films exhibit el;• .rical conductivity

consistent with a Mott-type model in which conduction in extended states above

the band edges dominates at high temperatures, and conduction by hopping in

band tail states and states near the Fermi level becomes dominant at lower

temperatures. Investigators have also prepared an a-ZnSe/a-ZnTe

heterojunction which exhibits dioda-like behavior (Refs. 7 to 9).

It is this last discovery which motivates the work to be described here.

The field of amorphous semiconductor superlattices is relatively new, with

much of the work to date having been done at Exxon, the University of Chicago,

and the University of Arizona (Refs. 10 to 14) as well as in Japan (Ref. 15).

The research has been primarily concerned with preparing and characterizing

amorphous silicon and silicon compounds, particularly silicon carbide and

silicon nitride. The materials investigated exhibit a number of the

properties of crystalline superlattices, even though the condition of registry

at the interfaces is relaxed. These findings open up a whole new field of

exploration with regard to amorphous semiconductors and may make possible new

device materials.

This paper reports an investigation of some structural,'optical, and

electrical properties of ZnTe films prepared by ion beam sputter deposition,

with an eye toward potential use in a superlattice structure. It also

compares films prepared in this way to those prepared by evaporative

techniques.

APPARATUS AND PROCEDURE

Thin films (300 to 3000 A thick) of ZnTe were fabricated by sputtering a

pressed powder target of this material with an argon ion beam onto 2 cm square,
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s	 fused silica substrates mounted on a water-cooled holder. An Ion Tech` Dualz

Beam sputtering system, which contained both a 2.5 and a 15 cm ion source (see

Fig. 1), was used to deposit the films. The target, 12.7 cm in diameter and

0.64 cm thick, was mounted on the cube-shaped holder, which was also water

cooled. The substrates were mounted with polyimide Kapton • tape onto the

substrate holder. Special masks over portions of the substrates permitted

deposition of the films in a bridge-shaped configuration (see Fig. 2), which

facilitated subsequent resistance measurements. Other samples deposited over

the whole substrate were used for other resistance measurements and for

optical measurements. The source-to-target distance was 20.3 cm, and the

target-to-substrate distance was 15.3 cm (see Fig. 3). Argon ion beam

energies, during deposition were 1000 eV, and beam current densities were

approximately 3.5 mA/cm2 . Film thicknesses and hence the deposition rate

were measures; !sing a Tencor*Alpha-Step profile measuring system. The'

deposition rate was -70 A/min for ZnTe at these beam conditions.

The second argon ion source in this system permitted ion beam cleaning of

the substrate surfaces immediately prior to deposition. Prior cleaning of a

substrate in this way has been shown to greatly improve the adherence of

sputter deposited films (Ref. 16). For this work, all substrates were

precleaned for 2 min with a 250 eV, 0.17 mA/cm 2 ion bean, at a 45 0 angle of

incidence.

Intrinsic stress measurements were performed using an Ionic Systems°

stress gauge. For these measurements, films were deposited onto ion

beam-cleaned silicon wafers 7.6 cm in diameter.

The optical band gap, E V was measured using a Perkin-Elmer' Lambda-9

spectrophotometer. Spectral absorptances (a.) were calculated from total

transmittance (tk) and total reflectance (p^) curves [^ = 1 - (p x +

tk )] and plotted as (aLE)1/2 versus E. The straight line portion of

.^
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the graph was extrapolated to (aXE) 1/2 = 0 and this intercept taken as

E  (Ref. 11).

Electrical contact to the films was accomplished with the same deposition

system by masking all but the arms o, the bridge-shaped samples and sputtering

from a gold target. The shape of the deposited films permitted a four-point

measurement of resistance. Currents were provided by a Keithley" Model 225

current source or a Keithley Model 616 electrometer operated as a current

source. In either case, voltages were measured using a second Keithley
!
 616.

Cryogenic temperatures for these measurements were obtained with an Air

Products Displex closed cycle helium refrigeration system operated in the

range of 40 to 300 K.

Room temperature resistivity measurements were performed on films which

covered the entire substrate. Gold contacts were sputtered onto the films in

a gap configuration. The gap was approximately 1 mm. For these measurements,

a single Keithley 616 was used to measure resistance.

RESULTS AND DISCUSSION

General Visual Observations

Zinc telluride films 1300 to 3000 A thick) deposited by ion beam sputter

deposition appeared smooth, shiny, and translucent with a dark amber color.

These as-deposited films did not spa'l, crack, or show any other outward signs

of stress or poor adhesion. Evaporated zinc telluride films have been

reported to be stable upon deposition, with crystallization times on the order

of 100 yr (Ref. 6).

Intrinsic Stress

The results of the intrinsic stress measurements are shown in Fig. 4,

which depicts intrinsic stress versus film thickness. Two regions are

observed, with thinner films under tensile stress and thicker films under

compressive stress. The data point at zero thickness is, of course, not an
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to be the general case for thick, continuous metal and semiconductor

ns .

actual measurement of a ZnTe film, but is the measured stress on a silicon

wafer which has been subjected only to the ion beam cleaning procedure. This

data point shows that this cleaning procedure does not itself introduce any

measureable stress to the silicon wafer prior to film deposition.

The transition from tensile to compressive stress suggests that, in

thinner films, stress is dominated by properties of the film/substrate

interface, while in thicker films, it is dominated by properties of the

growing bulk film. Chopra (Ref. 18) reviewed the properties of thin films,

and he discussed several models for the origin of intrinsic stress. According

to his discussion, a surface tension effect may explain the behavior observed

here. Initially, the file' consists of isolated islands of ZnTe, each tending

to coalesce with those nearby and thus causing the tensile stress. At the

same time, a compressive stress is caused by the inability of these individual

islands to spread out to cover the surface. This stress arises from the

attempt by an island to accommodate later arriving material by increasing in

surface area, rather than by increasing in thickness. For very thin films,

the tensile component dominates, as is observed. As the film becomes thicker,

the islands coalesce and their number decreases, thus reducing the tensile

component. At some thickness the two effects balance, and the net stress is

zero. The compressive component then begins to dominate as thickness is

increased further.

The shape of the curve in Fig. 4 suggests that the stress approaches a

constant value for films greater than 3000 A thick. While more data is needed

to confirm this, other work (Ref. 19) on a large number of materials has shown
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Optical Band Gap

Figure 5 shows the optical properties of total transmittance, total

reflectance, and absorptance for a 1000 A thick film as a function of

wavelength between 400 and 1000 nm. A plot of (a kE)
1/2 

versus E, as

shown in Fig. 5, gives an E intercept (equal to E g , the optical band gap)

of 1.12 eV. This value differs markedly from the crystalline value of 2.26

eV. It also differs markedly from the voiue of 2.35 eV reported by Brown and

Brodie (Ref. 20), whose samples were prepared by evaporative techniques.

Their samples were annealed in helium for several hours at high temperatures

(350 °C), which apparently crystallizes them.

In an attempt to determine if annealing has any effect on these samples,

a second, identical ZnTe film was subjected to a 2 hr anneal at 100 °C at

10-4 torr. While these conditions were not identical to those described in

Ref. 20, one might reasonably expect some effect on E g . A second series of

spectra was obtained (Fig. 7). The result is that E 	 was unchanged

(Fig. 8).

Figure 9 shows a comparison of the absorptance curves before and after

annealing for the same sample. As can be seen, there is a very small shift of

the absorption edge to longer wavelengths. The conclusion is that annealing

under these conditions does not appreciably affect Eg . While a higher

temperature anneal, such as was used by Brown and Brodie, flight have an

effect, it is difficult to imagine that a change in E 	 as large as 1 eV

would occur.

A value of E 	 below the crystalline value is not surprising,

considering the amorphous nature of these films. The disruption of the

periodicity of the crystalline structure would be expected to result in a

significant increase in both the conduction and valence band tail states,

lowering the effective optical band gap. Additional xperimentation is needec
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to determine if anneal conditions could be found which would result in

crystallization of these films.

Conductivity

The conductivities of these ZnTe films were measured both as a function

of film thickness and temperature. Figure 10 shows the thickness dependence

for as-deposited films measured using the gap configuration. The conductivity

decreases with increasing thickness, with values ranging from 1.86x10-6

0_
1
 cm 1 for a 300 A film to 2.5600

-7
 Q

-1 
cm-1 for a 2600 A film.

Figure 11 is a plot of the conductivity versus temperature over the range

40 to 300 K for as-deposited films of three different thicknesses. The most

interesting feature in the figure is the thickness dependence of the three

plots. For the thinnest film (1300 A), the conductivity decreases rapidly as

the temperature is lowered to about 125 K, and then is approximately constant

between 125 and 40 K. As the film thickness is increased, the room

temperature conductivity decreases (consistent with Fig. 10), and only a small

decrease in conductivity with decreasing temperature is observed. The

thickest film studied (3125 A) showed very little temperature dependence.

The conductivity of the thinnest film, curve (a), is well represented by

a Mott-type model (Ref. 21). In this model, conduction at higher temperatures

is accomplished by carrier excitation (holes, in this case, since a-ZnTe is

p-type, see Ref. 1) from states near the Fermi level, E F , to extended states

in the valence band. This may be represented by Eq. (1)

o - o(0)exp[-(E F - E V )/kT]	 (1)

where o is the conductivity, E 	 is the energy of the valence band edge,

k is Boltzmann's constant, and T is the absolute temperature. A plot of

In o versus 1/T should be linear, as is observed. The calculated

activation energy (equal to -E F + E V ) is 0.210 eV. At low temperatures,

7
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conduction results from hopping between localized states in the defect band

near the Fermi level. This may be represented by Eq. (2)

02 = 02 (0)exp[-E 2AT]	 (2)

where E 2 is the activation energy for hopping conduction in the defect

band. Here the activation energy (E 2 ) is found to be 0.00132 eV. At

intermediate temperatures, according to the Mott model, conduction arises by

carrier excitation from states near the Fermi level to localized states in the

valence band. This may be represented by Eq. (3)

a1 = 01(0)exp[-(EF - 
E  + E HOP )/

kT ]	 (3)

where E 8 is the energy of the localized valence band tail, and E
HOP is

the activation energy for hopping conduction. Here a plot of In a versus

1/17 gives an activation energy (equal to -EF + 
E  - E 

HOP ) of 0.00516 eV.

Curve (b) of Fig. 11, which is for a 2000 A film, shows two distinct

conductivity regions and a much sharper "knee" with no easily disc?rn Wye

intermediate temperature conductivity mechanism. Applying the Mott model to

this curve, the higher and lower temperature activation energies were found -,o

be 0.131 and 0.00065 eV, respectively.

Curve (c), which is for a 3125 A film, shows very little variation of

conductivity with temperature over the temperature range studied. A linear

higher temperature region is just barely discernible, and its activation

energy was found to be 0.0264 eV. The activation energy for the lower

temperature region was calculated to be 0.000170 eV. If a wider temperature

range (to include higher temperatures) could be covered, one would expect both

curves (b) and (c) to be similar in shape to curve (a)

Ordinarily, one would expect parameters such as E 2 , E 8 , and EHOP

to be intrinsic to the material and to be independent of film thickness. In

other words, one would expect them to be dependent on the bulk structure of
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the film. This would be the case only if the bulk structure itself is

independent of film thickness. The results obtained here indicate that this

is not true when the film is sufficiently thin.

The trend indicated in Fig. 11 is what might be expected for films which

behave witt more crystalline character as thickness increases. At higher

temperatures, an amorphous semiconductor, with its significant density of

states within the gap (see Fig. 2 of Ref. 21), would be expected to have a

highe;- conductivity than a crystalline sample of the same material. As the

temperature is lowered, the conductivity would be expected to decrease rapidly

as the carriers that exist within the gap lose the thermal energy necessary

for excitation. At low temperatures, the conductivity arises only from

hopping of the carriers located in the few states at or near the Fermi level.

A crystalline semiconductor would have a smaller conductivity at the same high

temperature because the density of states within the gap is zero. As the

temperature is lowered, the conductivity decreases relatively less, since it

was low initially.

Apparently, the relative amorphicity or crystallinity of a ZnTe film

depends upon its thickness, at least over the thickness range studied. The

thicker the film, the more its properties may be dominated (not surprisingly)

by its bulk. A thicker film may more easily relax as it grows during sputter

deposition. As the later arriving material loses its ener'gy to the film

during collision, earlier material may rearrange to a more periodic and hence

I -	 lower energy configuration. For even thicker films (3000 to 10 000 A) one

would expect the electrical conductivity to be essentially linear over the

entire temperature range studied here. One would also expect less of a

dependence of room temperature conductivity on thickness. This already

appears to be the case f rom Fig. 11.
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CONCLUSIONS

As stated initially, the intent of this work was to investigate ion beam

sputter deposited zinc telluride as a candidate for use in an amorphous

superlattice. For films below about 1000 A in thickness, the intrinsic stress

is less than about 10 9 dyn/cm2 , which is a negligible stress for a film

this thin. Hence, ZnTe films prepared in this way may be suitable for use in

a superlattice structure, where layer thicknesses for the most part range from

10 to 500 A. The optical band gap is low, being less than half that of the

crystalline value. A similar mater;al with a higher gap, such as amorphous

zinc selenide, might work well with ZnTe in the fabrication of superlattices

with preselecta^le band gaps, assuming quantum size effects can be observed.

The thickness dependence of the conductivity suggests that amorphous

superlattices constructed with a-ZnTe will display interesting electrical

behavior. Perhaps particular electrical properties could be preselected by

choosing a certain ZnTe layer thickness, in much the same way that optical

properties might be preselected. Further investigation of the ZnSe/ZnTe

system is required.

REFERENCES

1. J.B. Webb and D.E. Brodie, Can. J. Phys. 52, 2240 (1974).

2. C.J. Moore, B.S. Bharaj, and D.E. Brodie, Can. J. Phys. 59, 924 (1981).

3. P. Ng, J.B. Webb, and D.E. Brodie, Can. J. Phys. 54, 4A6 (1976).

4. P.K. Lim and D.E. Brodie, Can. J. Phys. 55, 1512 (1977).

5. A. Yoshikawa, K. Tanaka, S. Yamaga, and H. Kasai, Jap. J. Appl. Phys. 23,

L424 (1984).

6. J.B. Webb and D.E. Brodie, Can. J. Phys. 53, 2481 (1915).

7. C.J. Moore and D.E. Brodie, Aprl. Phys. Lett. 34, 78 (1979).

8. O.E. Brodie and C.J. Moore, Can. J. Phys. 58, 38 (1980).

9. D.E. Brodie and C.J. Moore, Can. J. Phys. 59, 173 (1981).

10



10. B. Abeles and T. Tiede, Phys. Rev. Lett. 6, 2003 (1983).

11. B. Abeles, 1. Tiedye, K.S. Liang, H.W. Deckman, H.C. Stasiewski, J. C.

Scanlon, and P.N. Eisenberger, J. Non-Cryst. Solids. 66, 3S1 (19841.

12. T. Tiede, B. Abeles, P. D. Persans, B. G. Brooks, and G. D. Cody, J.

Non-Cryst. Solids. 66, 345 (1984).

13. J. Kakalios, H. Fritzsche, N. lbaraki, and S.R. Ovshinsky, J. Non-Cryst.,

Solids. 66, 339 (1984).

14. C.M. Falco, J. Appl. Phys. 56, 1218 (1984).

15. T. Ogino and Y. Mizushima, Jap. J. Appl. Phys. 22, 1647 (1983).

16. M.J. Mirtich, J. Vac. Sci. Technol. 18, 186 (1981).

17. N.F. Mott and E.A. Davis, Electronic Processes in Noncrystalline

Materials, (Clareidon, Oxford, 1971), p. 197.

18. K.L. Chopra, Thin Film Phenomena, (McGraw-Hill, New York, 1969).

19. E. Klokholm and B.S. Berry, J. Electrochem. Soc. 115, 823 (1968).

20. H.M. Brown anO D.E. Brodie, Can. J. Phys. 50, 2502 (1972).

21. E.A. Davis and N.F. Mott, Philos. Nag. U. 903 (1970).

E	 11



r

ORIGINAL PACE IS
Of POOR QUALITY

Figure 1. - Photograph of sputtering system. showing target holder i lower
nghli. substrate holder (left of centers, 2.5cm Ion source lhelow sub-
strate holden, and 15cr Ion source labove Wort holderl.

fill	 R7,t,

v

4 25 cm
fSGAL1 FOR SAMPtf SIM

Figure 2. - Sample shape and electronic arranger sent for conductivity
vs temperature r easurements.

19



N
E
U

W
z
}
D

-- - - - - - - - - - - - - - - - - ,

15 cm

- --SUBSTRATE 11	 TON
SOURCE

15.3 cm

(FOR SPUTTER
CLEANING OF

-
TARGET
HOLDER

SUBSTRATES)

SUBSTRATE
'LDER

2.5 cm	 ; i	 20.3 cm
IC  SOURCE;

ZnTe
TARGET

Figure 3. - Schea.atic diagram of ion beam sputtering apparatus Waving spatial arrangement of ne ion
sources, target holder, and substrate holder,

0	 500	 1000	 1500	 2000	 2500	 3000
FILM THICKNESS, A

Figure Q - Intrinsic stress vs film thickness for several thickness
of ZnTe films.

\,5



6

6

4

2

W
i 100a

80

z
•a

z à 60
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