NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE.ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Advanced Vehicle Systems Assessment

Volume V: Appendices

March 1985

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 84-79
Volume V, the Appendices, includes reports on battery design, battery cost, aluminum vehicle construction, IBM PC computer programs, and battery discharge models. Other volumes are Volume I, Executive Summary, Volume II, Subsystems Assessment, Volume III, Systems Assessment, and Volume IV, Preference and Aftermarket Analyses.
Advanced Vehicle Systems Assessment
Volume V: Appendices

March 1985

Prepared for
U.S. Department of Energy
Through an Agreement with
National Aeronautics and Space Administration
by
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL Publication 84-79
ABSTRACT

This report, which is divided into five volumes, documents the evaluation of advanced electric and hybrid vehicles for potential development by the early 1990s. The primary objective of the assessment is to recommend subsystem research priorities based on a comparison of alternatives as part of complete vehicle systems with equivalent performance. The assessment includes evaluations of candidate technologies as well as technical and economic comparisons of vehicle systems for specified missions. The availability of nonpetroleum fuel is also addressed, and preference analyses are used to assist in the evaluation of the relative merits of competing systems.

Volume V, the Appendices, includes reports on battery design, battery cost, aluminum vehicle construction, IBM PC computer programs, and battery discharge models. Other volumes are Volume I, Executive Summary, Volume II, Subsystems Assessment, Volume III, Systems Assessment, and Volume IV, Preference and Aftermarket Analyses.
CONTENTS

BATTERY DESIGN REPORTS

A. GUIDELINE FOR CONTRACTOR RESPONSE A-1
B. NICKEL-IRON BATTERY DESIGN ANALYSIS B-1
C. DESIGN ANALYSIS OF EXXON ZINC-BROMINE BATTERIES FOR VARIOUS ELECTRIC VEHICLES C-1
D. DESIGN ANALYSES OF ZINC-CHLORIDE BATTERIES FOR ELECTRIC VEHICLES D-1
E. IRON-AIR BATTERY DESIGN FOR THE JET PROPULSION LABORATORY E-1
F. PERFORMANCE/COST PROJECTIONS FOR LITHIUM/IRON SULFIDE BATTERIES F-1
G. PERFORMANCE AND COST PROJECTIONS FOR LITHIUM-IRON SULFIDE BATTERIES G-1
H. BATTERY DESIGN ANALYSIS: SODIUM-SULFUR H-1
I. CONTRACTOR RESPONSE: ALUMINUM/AIR BATTERY and ALUMINUM/AIR POWER CELL RESEARCH AND DEVELOPMENT PROGRESS REPORT I-1

BATTERY COST

J. METHOD OF ANALYSIS .. J-1
K. DIRECT LABOR AND EQUIPMENT COST CORRELATIONS K-1

ALUMINUM VEHICLE CONSTRUCTION

L. WEIGHT AND COST COMPARISON OF ALUMINUM AND STEEL VEHICLE BODIES L-1

IBM PC COMPUTER PROGRAMS

M. AVSIZING, AVENERGY, AVCOST AND TEST CASE M-1

PRECEDING PAGE BLANK NOT FILMED
BATTERY DISCHARGE MODELS

N. BATTERY DISCHARGE MODELS BASED ON
 ASSESSMENT OF AV BATTERY REVIEW BOARD N-1

O. BATTERY DISCHARGE MODELS BASED ON
 BATTERY DESIGN REPORTS .. 0-1
GUIDELINE FOR CONTRACTOR RESPONSE

This version of the guideline addresses the concerns expressed by the review board and battery developers at the Electric Hybrid Vehicle (EHV) Systems Assessment Seminar. Battery sizes are expressed explicitly, and the questions are geared toward complete battery systems rather than specific energy or power.

Table A-1 illustrates the differences in power and energy requirements determined for vehicles simulated to date, depending on the application (using the current models). Several examples of electric vehicles and perhaps the most extreme hybrid vehicle (full-power capability in electric mode) are shown, which bound the extremes of power-to-energy ratio (P/E). The P/E ratio defines the ratio of the power available for acceleration and the energy required to meet the range requirements so that the vehicle would "run out" of power and energy at the same time, and therefore would not be overdesigned with respect to either characteristic. The variation in the specification is the result of the differences in specific energy and specific power between the batteries, which resulted in variations in vehicle weight.

Table A-1. Differences in Power and Energy Requirements

<table>
<thead>
<tr>
<th>Battery Requirementsa</th>
<th>Vehicle Specific Power, W/kg</th>
<th>Vehicle Specific Energy, WH/kg</th>
<th>Vehicle Type</th>
<th>Power, kW</th>
<th>Power, W/kg</th>
<th>Energy, kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Pass 80-km HV</td>
<td>36-41</td>
<td>30</td>
<td>9-11</td>
<td>8-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P/E = 3.3-3.8)</td>
<td>30</td>
<td>9-11</td>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Pass 80-km HV</td>
<td>44-50</td>
<td>30</td>
<td>13-15</td>
<td>8-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P/E = 3.3-3.8)</td>
<td>30</td>
<td>13-15</td>
<td>8-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4 Ton 96-km Van</td>
<td>46-57</td>
<td>23</td>
<td>20-23</td>
<td>9-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P/E = 2.3-2.6)</td>
<td>23</td>
<td>20-23</td>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aBattery energy requirements are on the Federal Urban Driving Schedule and do not include self-discharge, thermal losses, etc. Power requirements are for 30 seconds at low state of charge (i.e., typically 10 to 15%).
bVehicle Test Weight.
Table A-1. Differences in Power and Energy Requirements (Continued)

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Power, kW</th>
<th>Vehicle Specific Power, W/kgVTW</th>
<th>Energy, kWh</th>
<th>Vehicle Specific Energy, WH/kgVTW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Pass 128-km EV</td>
<td>20-26</td>
<td>25</td>
<td>9-12</td>
<td>11-12</td>
</tr>
<tr>
<td>(P/E = 2.1-2.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Pass 160-km EV</td>
<td>37-58</td>
<td>30</td>
<td>18-26</td>
<td>13-14</td>
</tr>
<tr>
<td>(P/E = 2.1-2.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Pass 240-km EV</td>
<td>44-58</td>
<td>30</td>
<td>27-36</td>
<td>19-20</td>
</tr>
<tr>
<td>(P/E = 1.5-1.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Pass 400-km EV</td>
<td>32-43</td>
<td>30</td>
<td>46-56</td>
<td>30-32</td>
</tr>
<tr>
<td>(P/E = 0.9-1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Pass 400-km EV</td>
<td>40-53</td>
<td>30</td>
<td>53-56</td>
<td>30-32</td>
</tr>
<tr>
<td>(P/E = 0.9-1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Battery energy requirements are on the Federal Urban Driving Schedule and do not include self-discharge, thermal losses, etc. Power requirements are for 30 seconds at low state of charge (i.e., typically 10 to 15%).

Vehicle Test Weight.

Interpretation of the information in Table A-1 would lead to the following estimates of delivered energy and power requirements for batteries in advanced vehicles, although detailed analysis is ultimately required for each case (due to self-discharge, etc.):

1. Commuter vehicle battery - 12 kWh, 25 kW.
2. Hybrid vehicle battery - 15 kWh, 50 kW.
3. General-purpose Electric Vehicle (EV) or commercial van battery - 25 kWh, 60 kW.
4. Full-performance EV battery - 50 kWh, 50 kW.

These specifications are distinct, and the following questions are designed to determine the specific performance, cost, and volume of these batteries. The guideline has been organized into seven basic categories: performance modeling, cost projections, technical support for projections, energy balance, life considerations, other operational characteristics, and...
packaging flexibility. You should make every effort to respond to all the categories and supply any appropriate data or designate where there is insufficient data to support a projection.

Several ground rules must be established in an effort to standardize the projections as much as possible. Battery projections should be made for a one-year-old battery operating in 70°F ambient air. The technology projections should be limited to batteries that could be demonstrated in prototype form in the early 1990s (i.e., 1990 to 1992) and the range of applicability should be stated (i.e., 10 to 50 kWh?).

1. PERFORMANCE MODELING

(a) Battery discharge characteristics for the present battery and projections for batteries with the previous specifications. If unable to meet the extremes, specify the limiting cases. Please respond in tabular form below with the specific energy yielded as a function of the constant discharge rate specified. Identify range of applicability and any scaling concerns.

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>20 W/kg</th>
<th>60 W/kg</th>
<th>80 W/kg</th>
<th>100 W/kg</th>
<th>200 W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Commuter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - EV or Van</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 - Full-Perf.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) 30-second peak specific power capability versus state of charge (as defined for the standard C/3 or C/4 rates).

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>80% SOC</th>
<th>50% SOC</th>
<th>30% SOC</th>
<th>10% SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Commuter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Hybrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - EV or Van</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 - Full-Perf.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. COST PROJECTIONS

Production price to the Original Equipment Manufacturers (OEMs) in quantities of 100,000 units per year. The estimates should be per A. D.
Little guidelines and your opinion of the assumed values in the guidelines should be specified where they differ from your own. Estimates should include all thermal management or servicing systems (i.e., watering).

Battery Design

<table>
<thead>
<tr>
<th>Design</th>
<th>$/battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Present</td>
<td></td>
</tr>
<tr>
<td>2 - Commuter</td>
<td></td>
</tr>
<tr>
<td>3 - Hybrid</td>
<td></td>
</tr>
<tr>
<td>4 - EV or Van</td>
<td></td>
</tr>
<tr>
<td>5 - Full-Perf.</td>
<td></td>
</tr>
</tbody>
</table>

3. TECHNICAL SUPPORT FOR PROJECTIONS

List how the performance improvements would be obtained over the present battery capabilities in the following format. Try to be as specific as possible to allow the review board to adequately assess the credibility of the projections (i.e., current collectors, active material, separators, case, auxiliaries, etc.). Specify trends if nothing else, and supplement the table with explanation, if necessary.

<table>
<thead>
<tr>
<th>Component</th>
<th>Present</th>
<th>Design</th>
<th>Performance</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Change</td>
<td>Change</td>
<td>Change</td>
<td>Comments</td>
</tr>
</tbody>
</table>

4. ENERGY BALANCE

It is necessary to quantify sources of energy use other than that reflected in the performance modeling. This includes any notable start-up or shut-down energy, self-discharge and shunt currents, parasitics, thermal effects (i.e., heat transfer that must be replaced by electricity), charge efficiency, etc. This is necessary to reflect in-use efficiency over 24-hour driving schedules as simulated in the AV Assessment. A simplified 24-hour driving pattern is used here to allow your estimation of energy use (see Table A-1). The driving portion (designated driving cycle 3) was proposed by JPL to the EHV Battery Task Force as a greatly simplified version of the Federal Urban Driving Schedule to be used for life-cycle testing. This cycle retains the peak power as well as other critical parameters of the original cycle. The distance of 46 km (29 mi) is approximately the average daily trip length of a 16,000 km/yr (10,000 mi/yr) vehicle. You are asked to estimate the energy use by segment of the cycle in the table supplied on the following page. The details of the cycle are included at the end of the guideline to support detailed analyses, if necessary. The values in the table should be specified as power (Watts) assumed continuous over the segment or total energy (Watt-hours) for the segment. Please comment if there are special circumstances to consider or any other concern for the way the estimates are to be used.
Figure A-1. Simplified 24-h Driving Pattern

ESTIMATES OF IN-USE ENERGY CONSUMPTION

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shut-down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasitics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal loss<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Eff. <sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aOnly that which requires replacement by electricity (specify electrical-to-thermal efficiency).

^bSpecify charger efficiency as well if unique to battery.
5. LIFE CONSIDERATIONS

(a) Present status of cycle life, including statistical background and life-limiting mechanisms.

<table>
<thead>
<tr>
<th>Cycle Life</th>
<th>Depth-of-Discharge</th>
<th>Life-limiting Mechanisms</th>
<th>Statistical Background</th>
</tr>
</thead>
</table>

Cells

Modules

Batteries

(b) Projected cycle life, including approach to solving failure modes and effects on cost. Specify any differences between high-power and high-energy designs.

(c) Life effects on specific power and energy, efficiency, thermal characteristics (i.e., linear degradation with cycle life?)

(d) Estimate of reliability of smallest replaceable block of cells in a battery, failure modes, mean-time-to-failure, etc.

6. OTHER OPERATIONAL CHARACTERISTICS

(a) Special Charge Requirements

What happens if the cells are over-charged or over-discharged?

Is individual cell balancing required? If so, how often?

Is periodic complete discharge required? If so, how often?

Is equalizing necessary? If so, how often?
(b) Maintenance Requirements

What regular maintenance is required? How often?

What potential exists for battery refurbishment rather than replacement? How does this compare in cost with replacement?

7. PACKAGING FLEXIBILITY

(a) Volumetric considerations for various designs

liters

1 - Present
2 - Commuter
3 - Hybrid
4 - EV or Van
5 - Full-Perf.

(b) Size limitations

What are the minimum possible measurements of the battery cells or modules (i.e., height, width, length), and what are the primary considerations in changing from the present configuration?

(c) Any special consideration for relative placement of subsystems in a vehicle (i.e., necessity to place fluid reservoir near cell stack)?

(d) Scale effects in the 10- to 50-kWh range, if applicable.
CYCLE 3

<table>
<thead>
<tr>
<th>Cycle Segment</th>
<th>Type<sup>a</sup></th>
<th>Energy consumed, W-s/kg</th>
<th>Average Power, W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Time, s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 - 26</td>
<td>A</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>26 - 30</td>
<td>A</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>30 - 74</td>
<td>A</td>
<td>1428</td>
</tr>
<tr>
<td></td>
<td>74 - 76</td>
<td>A</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>76 - 171</td>
<td>D</td>
<td>-265</td>
</tr>
<tr>
<td>2</td>
<td>171 - 196</td>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>196 - 211</td>
<td>A</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>211 - 236</td>
<td>C</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>236 - 251</td>
<td>D</td>
<td>-155</td>
</tr>
<tr>
<td>3</td>
<td>251 - 276</td>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>276 - 291</td>
<td>A</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>291 - 316</td>
<td>C</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>316 - 331</td>
<td>D</td>
<td>-155</td>
</tr>
<tr>
<td>4</td>
<td>331 - 356</td>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>356 - 371</td>
<td>A</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>371 - 396</td>
<td>C</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>396 - 411</td>
<td>D</td>
<td>-155</td>
</tr>
<tr>
<td></td>
<td>411 - 436</td>
<td>S</td>
<td>0</td>
</tr>
</tbody>
</table>

^a A - acceleration.
D - deceleration.
S - stand.
C - cruise.
NICKEL-IRON BATTERY DESIGN ANALYSIS
IN SUPPORT OF THE
ELECTRIC AND ELECTRIC HYBRID VEHICLE
PROJECT

BY:

EAGLE-PICHER INDUSTRIES, INC.
JOPLIN, MISSOURI

FOR:

JET PROPULSION LABORATORY
CONTRACT 956731
TASK RE-152/170

PRECEDING PAGE BLANK NOT FILMED
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>BATTERY DATA</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.1 Energy Density</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3.2 Performance</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Specific Energy vs Rate KWH VS KW</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Peak Specific Power W/Kg</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3.3 Cost Projections</td>
<td>14</td>
</tr>
<tr>
<td>4.0</td>
<td>RESULTS AND DISCUSSION</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4.1 Performance Modeling</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4.2 Cost Projections</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4.3 Technical Support Projections</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4.4 Energy Balance</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>4.5 Life Considerations</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>4.5.1 Present Status</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>4.5.2 Projected Cycle Life</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>4.5.3 Life Effects on Battery Operating Characteristics</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>4.5.4 Reliability</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>4.6 Other Operational Characteristics</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4.6.1 Special Charge Requirements</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4.6.2 Maintenance</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>4.7 Packaging Flexibility</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4.7.1 Volume</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4.7.2 Size Limitations</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>4.7.3 Subsystems</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>4.7.4 Scale Effects</td>
<td>33</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Summary of Present Battery Characteristics</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>Summary of Advanced Battery Characteristics</td>
<td>2</td>
</tr>
<tr>
<td>3-1</td>
<td>Advanced Battery Designs</td>
<td>5</td>
</tr>
<tr>
<td>3-2</td>
<td>Cost Analysis Results</td>
<td>21</td>
</tr>
<tr>
<td>4-1</td>
<td>Present Battery Performance</td>
<td>22</td>
</tr>
<tr>
<td>4-2</td>
<td>Advanced Battery Performance, 1986</td>
<td>23</td>
</tr>
<tr>
<td>4-3</td>
<td>Present Battery Performance, 1980-1983</td>
<td>23</td>
</tr>
<tr>
<td>4-4</td>
<td>Advanced Battery Performance, 1986</td>
<td>24</td>
</tr>
<tr>
<td>4-5</td>
<td>Battery Cost Projections</td>
<td>24</td>
</tr>
<tr>
<td>4-6</td>
<td>Support for Projections</td>
<td>25</td>
</tr>
<tr>
<td>4-7</td>
<td>Est. In Use Energy Consumpt.</td>
<td>27</td>
</tr>
<tr>
<td>4-8</td>
<td>Present Status of Cycle Life</td>
<td>27</td>
</tr>
<tr>
<td>4-9</td>
<td>Nickel-Iron Battery Volume</td>
<td>32</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3-1</td>
<td>Advanced Battery Designs</td>
<td>6</td>
</tr>
<tr>
<td>3-2</td>
<td>Constant Current Discharge Profiles</td>
<td>7</td>
</tr>
<tr>
<td>3-3</td>
<td>Open Circuit Stand Capacity Retention</td>
<td>8</td>
</tr>
<tr>
<td>3-4</td>
<td>Capacity vs. Ambient Temperature</td>
<td>9</td>
</tr>
<tr>
<td>3-5</td>
<td>Charge Acceptance</td>
<td>10</td>
</tr>
<tr>
<td>3-6</td>
<td>Recharge Char. VNF-270</td>
<td>11</td>
</tr>
<tr>
<td>3-7</td>
<td>Recharge Char. VNF-270</td>
<td>12</td>
</tr>
<tr>
<td>3-8</td>
<td>Recharge Char. VNF-270</td>
<td>13</td>
</tr>
<tr>
<td>3-9</td>
<td>Specific Energy Vs. Rate</td>
<td>15</td>
</tr>
<tr>
<td>3-10</td>
<td>ANL Data</td>
<td>16</td>
</tr>
<tr>
<td>3-11</td>
<td>ANL Peak Power</td>
<td>17</td>
</tr>
<tr>
<td>3-12</td>
<td>Positive Plate Shape Influence on Power Capability</td>
<td>18</td>
</tr>
<tr>
<td>3-13</td>
<td>SP Peak Power VNF 80x9 Module</td>
<td>19</td>
</tr>
</tbody>
</table>
1.0 SUMMARY

The estimates presented in this report are based on the established performance of the nickel-iron battery from 1980 through 1983. The projections for the advanced batteries, 1986, are based on the extrapolation of existing data as designs are modified to favor specific energy or power. The narrow difference between the present and the "advanced" battery indicates the maturity of this technology compared to what is ultimately possible in the nickel-iron system. Additionally, the relatively modest differences between "power" and "energy" designs indicates that standardization to eliminate manufacturing differences and reduce costs slightly would be advantageous for this near term battery. The cost estimate for the battery is based on the analysis completed for ANL in May 1983. Because the main cost driver in this system is the nickel metal, the advanced batteries have less metallic nickel in the positive electrodes. The estimate is based on 85% porous plaque. The higher cost reflected in the EHV batteries compensates for the extra nickel to improve the power capability of the battery.

This analysis indicates that the nickel-iron battery will yield adequate performance for the Commuter, Hybrid and EV-Van type vehicles. In the full performance 5 passenger 400 KM EV the present battery would approach 50% mass fraction of the vehicle. The advanced battery would still be 45% of the total weight. The nickel-iron unit seems appropriate for the near term in all but the full performance applications.
TABLE 1-1
SUMMARY OF PRESENT BATTERY CHARACTERISTICS

<table>
<thead>
<tr>
<th>MISSION</th>
<th>ENERGY</th>
<th>POWER</th>
<th>SP. ENER.</th>
<th>SP. PK. PWR.</th>
<th>COST</th>
<th>VOLUME</th>
<th>WT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>Commuter</td>
<td>12</td>
<td>25</td>
<td>48</td>
<td>> 80</td>
<td>2100</td>
<td>130</td>
<td>250</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>50</td>
<td>45</td>
<td>> 120</td>
<td>2760</td>
<td>175</td>
<td>333</td>
</tr>
<tr>
<td>EV or Van</td>
<td>25</td>
<td>60</td>
<td>43</td>
<td>> 80</td>
<td>4370</td>
<td>260</td>
<td>520</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>50</td>
<td>50</td>
<td>48</td>
<td>> 80</td>
<td>8740</td>
<td>520</td>
<td>1042</td>
</tr>
</tbody>
</table>

x 20% SOC

xx For Production Quan 10,000 batt/yr.

<table>
<thead>
<tr>
<th>MISSION</th>
<th>ENERGY</th>
<th>POWER</th>
<th>SP. ENER.</th>
<th>SP. PK. PWR.</th>
<th>COST</th>
<th>VOLUME</th>
<th>WT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>12</td>
<td>25</td>
<td>56</td>
<td>> 100</td>
<td>1400</td>
<td>110</td>
<td>214</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>> 140</td>
<td>1830</td>
<td>155</td>
<td>300</td>
</tr>
<tr>
<td>EV or Van</td>
<td>25</td>
<td>60</td>
<td>56</td>
<td>> 100</td>
<td>2960</td>
<td>223</td>
<td>446</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>50</td>
<td>50</td>
<td>56</td>
<td>> 100</td>
<td>5800</td>
<td>446</td>
<td>893</td>
</tr>
</tbody>
</table>

x 20% SOC

xx For Production Quan 10,000 batt/yr.

including 15% factor to approximate OEM price.
2.0 INTRODUCTION

The Eagle-Picher Nickel-Iron Battery is being developed under DOE sponsorship especially for electric and electric hybrid vehicles. The approach has been to strive for the ultimate performance from the battery while eliminating all superfluous weight. The result is a battery consisting of sintered electrodes which are light weight and of low resistance while retaining the structural integrity to survive 100% DOD cycling for over 1000 cycles. The program has progressed to the point where the achievement of its goals is imminent.

The suggested cell discharge reactions for this battery are:

Fe + 2OH$^-$ \rightarrow Fe(OH)$_2$ + 2e (anode)
2 NiOOH + 2 H$_2$O + 2e \rightarrow 2 Ni(OH)$_2$ + 2 OH$^-$ (cathode)
2 NiOOH + Fe + 2 H$_2$O \rightarrow 2 Ni(OH)$_2$ + Fe(OH)$_2$ (combined)

This battery system has many advantages when compared to other units.

The battery has demonstrated:

A doubling of vehicle range with the attending improved utility and decreased maintenance.

It requires no unique auxiliary equipment or periodic equalization.

It has excellent life expectancy which yields increased vehicle reliability and lowers life cycle cost.

The nickel in the battery is not consumed and is fully recoverable from expended batteries.

The present status of the Nickel-Iron Battery Development program indicates that the traditional long life expectancy of the system has not been compromised. Cells have demonstrated life cycle capability in excess of 2000, 100% DOD cycles. Modules and full size batteries have
been tested to in excess of 1000 cycles with tests continuing. One battery has been in practical service for four (4) years without degradation of performance.

3.0 BATTERY DATA

The objective of this report is to help estimate nickel-iron batteries for electric vehicles. This section presents the data upon which all the performance, size, weight and cost estimates are based. Included with the data generated by EPI is published data from JPL publication 82-91 and NBTL reports.

3.1 Specific Energy

The projected specific energy of the nickel-iron battery is 56 WH/Kg. This is the goal of the development program sponsored by DOE. Table 3-1 shows the design highlights of the present battery with alternate proposed designs to achieve the specific energy goals. A detailed comparison of the weight distribution in these designs follows in Figure 3-1, a scale weight representation of each component. The advanced battery designs save weight by reducing the electrolyte and the iron content of the cells with minor reductions in nickel grid, case material and separator weight. The accomplishment of either design, "A" or "B", requires only that the positive electrode achieve its desired performance. The status is that electrodes up to 4.0 mm in thickness have been developed. The one remaining problem is to improve their strength to be comparable with the 2.0 mm electrodes which have demonstrated excellent life characteristics.

3.2 Performance

The self-explanatory data of Figures 3-2 through 3-8 outlines the general characteristics of the nickel-iron battery from constant current
TABLE 3-1

ADVANCED BATTERY
MORE HIGHLY WORKED IRON PLATES
WITH COINING AND SUPHIDE ADDED

PRESENT STATUS

<table>
<thead>
<tr>
<th></th>
<th>"A"</th>
<th>"B"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 Pos. 2.0 mm</td>
<td>8 Pos. 3.0 mm</td>
</tr>
<tr>
<td></td>
<td>80% POROUS</td>
<td>85% POROUS</td>
</tr>
<tr>
<td></td>
<td>85% UTILIZATION</td>
<td>85% UTILIZATION</td>
</tr>
<tr>
<td>13 NEG. a 1.2 mm</td>
<td>7 NEG 1.5 mm</td>
<td>5 NEG 2.0 mm</td>
</tr>
<tr>
<td></td>
<td>2 NEG 0.8 mm</td>
<td>2 NEG 1.0 mm</td>
</tr>
<tr>
<td></td>
<td>WORKED a 0.65 AH/CC</td>
<td>WORKED a 0.8 AH/CC</td>
</tr>
<tr>
<td>24 SEPARATOR a 0.85 mm</td>
<td>16 SEPARATOR 0.7 mm</td>
<td>12 SEPARATOR 0.7 mm</td>
</tr>
<tr>
<td></td>
<td>295 AH</td>
<td>295 AH</td>
</tr>
<tr>
<td></td>
<td>.123 V</td>
<td>1.21 V</td>
</tr>
<tr>
<td></td>
<td>7.0 KG</td>
<td>5.5 KG</td>
</tr>
<tr>
<td></td>
<td>51.8 WH/KG</td>
<td>64.9 WH/KG</td>
</tr>
</tbody>
</table>
MORE HIGHLY WORKED IRON PLATES WITH COINING AND SULFIDE ADDED
IRON AT 0.8 AH/CC
POS AT 85% UTILIZATION

FIGURE 3-1
FIGURE 3-5
NICKEL IRON CELL VNF-270
CHARGE ACCEPTANCE
VS.
INPUT AND RATE

Legend, A.H. Charge
○ 280
△ 210
□ 140

Discharge Capacity, A.H.

Charge Time, Hrs

Cell 33
Cell 34
discharge to charge efficiency.

3.2.1 Specific Energy vs Rate, KWH vs KW

This type presentation of the data on the VNF-270 can be derived from Figure 3-2 using the 140 AH voltage as average for the discharge, and 7.0 Kg for the weight of the cell. Each curve represents a nearly constant wattage discharge. The decrease in energy density is in proportion to the voltage decrease.

The graph of Figure 3-9 from JPL publication, 82-91 shows the EPI battery energy density near 40 WH/Kg from 10 to 20 watts/Kg discharge. With an electrolyte change that battery is now operating in the region indicated near 50 WH/Kg.

The graph of Figure 3-10 shows the Ragone plot derived by the NBTL at ANL. The similarity of these curves confirms the relatively flat output vs rate characteristic of the nickel-iron battery.

3.2.2 Peak Specific Power W/Kg

The original data for this characteristic was published by NBTL in the DOE Electric and Hybrid Vehicle Program Quarterly Report No. 11. That data is reproduced here as Figure 3-11. Figures 3-12 and 3-13 are provided to support the projections for the advanced designs. Figure 3-12 shows the immediate improvement in power available from reduced height electrodes. All the advanced batteries are based on electrodes about 130 mm high. Figure 3-13 shows that additional gains may be realized by improving the conductivity of the electrodes. Investigations to determine the optimum design continue.

3.3 Cost Projections

This information regarding the cost projection for nickel-iron
FIGURE 3-10

An HBTI Derived Ragone Plot Showing Specific Energy as a Function of Specific Power for Several Types of Aqueous Mobile Batteries.
Six sustained peak power versus time plots for each of six depths of discharge of an Eagle Picher 5-cell, 280 Ah, nickel/iron battery.

Specific peak power sustained for 30 second duration corresponding to three depths of discharge (DOD) for six batteries tested at the NBTL.
batteries has been abstracted from an analysis performed for ANL. This information has been supplied in detailed reports to both ANL and JPL supporting the contention that battery manufacturing costs in the region of $100/KWH are reasonable.

Assumptions

1. The high energy design (using 85% porosity nickel plaque) is successful.

2. Impregnation and other plate processes under development would be utilized.

3. Battery production level at 10,000 units, 25 KWH each, per year.

4. Quotations were received late 1982 and not upgraded by cost indexing.

5. Iron electrodes would be manufactured in U.S.A.

Table 3-2 cost analysis results in 1982 dollars follows:

4.0 RESULTS AND DISCUSSION

4.1 Performance Modeling

The nickel-iron battery has not been designed for continuous discharge rates higher than 60 W/Kg. However, since it is a moderately low specific energy battery it does deliver sufficient wattage for all the vehicles. Only the watts per kilogram appear low because of the batteries weight. Table 4-1 gives the results of the calculations on the present battery 1980-1983. Table 4-2 shows the estimates for the advanced battery, 1986.
TABLE 3-2

COST ANALYSIS RESULTS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>$/KWh</th>
<th>TOTAL DOLLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL</td>
<td>67.02</td>
<td>1742.30</td>
</tr>
<tr>
<td>MODULE/BATTERY</td>
<td>8.76</td>
<td>227.68</td>
</tr>
<tr>
<td>PROCESS</td>
<td>7.15</td>
<td>185.97</td>
</tr>
<tr>
<td>LABOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRODE PROCESSING</td>
<td>12.00</td>
<td>312.00</td>
</tr>
<tr>
<td>POSITIVE (8.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEGATIVE (3.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODULE/BATTERY ASSEMBLY</td>
<td>3.74</td>
<td>97.20</td>
</tr>
<tr>
<td>MATERIAL HANDLING</td>
<td>2.67</td>
<td>69.60</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$101.34</td>
<td>$2634.75</td>
</tr>
</tbody>
</table>
TABLE 4-1

PRESENT BATTERY PERFORMANCE

SPECIFIC ENERGY, WH/KG, VS. DISCHARGE RATE

<table>
<thead>
<tr>
<th>BATTERY DESIGN</th>
<th>20 W/KG</th>
<th>60 W/KG</th>
<th>80 W/KG</th>
<th>100 W/KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>48</td>
<td>36</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Hybrid</td>
<td>45</td>
<td>39</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>EV or Van</td>
<td>48</td>
<td>36</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Full Performance</td>
<td>48</td>
<td>36</td>
<td>30</td>
<td>24</td>
</tr>
</tbody>
</table>

Note that 100 W/Kg is close to the peak specific power exhibited by this battery. The hybrid battery was designed as the VNF 80x9 battery to favor power discharge. It can sustain higher discharge rates. However, the small differences in energy density to 60 W/KG discharge show that individual designs for each of the vehicle types are unnecessary.
TABLE 4-2
ADVANCED BATTERY PERFORMANCE, 1986
SPECIFIC ENERGY, WH/KG VS. DISCHARGE RATE

<table>
<thead>
<tr>
<th>BATTERY DESIGN</th>
<th>20 W/KG</th>
<th>60 W/KG</th>
<th>80 W/KG</th>
<th>100 W/KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>56</td>
<td>46</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Hybrid</td>
<td>50</td>
<td>44</td>
<td>41</td>
<td>37</td>
</tr>
<tr>
<td>EV or Van</td>
<td>56</td>
<td>46</td>
<td>39</td>
<td>31</td>
</tr>
<tr>
<td>Full Performance</td>
<td>56</td>
<td>46</td>
<td>39</td>
<td>31</td>
</tr>
</tbody>
</table>

Again 100 Watts/Kg is close to the peak specific power for these batteries.

The 30 second peak specific power capability of the present battery has been measured and the data published by the NBTL. In Table 4-3 the Hybrid battery is based on the VNF 80 x 9 design which yields significantly higher peak power.

TABLE 4-3
PRESENT BATTERY PERFORMANCE 1980-1983
30 SECOND POWER CAPABILITY (W/KG)

<table>
<thead>
<tr>
<th>BATTERY DESIGN</th>
<th>80% SOC</th>
<th>50% SOC</th>
<th>30% SOC</th>
<th>15% SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>110</td>
<td>100</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>Hybrid</td>
<td>170</td>
<td>155</td>
<td>135</td>
<td>115</td>
</tr>
<tr>
<td>EV or Van</td>
<td>110</td>
<td>100</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>110</td>
<td>100</td>
<td>85</td>
<td>70</td>
</tr>
</tbody>
</table>

Note that the batteries, of the EV or Commuter type, have demonstrated sufficient power and energy to operate the SCT and the ETV-1 and -2 vehicles for over 70 miles of the J227 "C" cycles or 55 mph driving for 100 miles.
TABLE 4-4

ADVANCED BATTERY PERFORMANCE, 1986
30 SECOND POWER CAPABILITY W/KG

<table>
<thead>
<tr>
<th>BATTERY DESIGN</th>
<th>80% SOC</th>
<th>50% SOC</th>
<th>30% SOC</th>
<th>15% SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>Hybrid</td>
<td>190</td>
<td>170</td>
<td>150</td>
<td>130</td>
</tr>
<tr>
<td>Ev or Van</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>160</td>
<td>140</td>
<td>120</td>
<td>100</td>
</tr>
</tbody>
</table>

4.2 Cost Projections

These cost projections are based on the data provided in section 3.3. A factor of 15% was added to the manufacturing cost data to approximate on OEM price for the batteries. The battery size in KWH delivered for 100% DOD is indicated for each type.

TABLE 4-5

BATTERY COST PROJECTIONS

<table>
<thead>
<tr>
<th>BATTERY DESIGNER</th>
<th>SIZE KWH</th>
<th>PRESENT '80-'83 $</th>
<th>ADVANCED $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>12</td>
<td>2100</td>
<td>1400</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>2760</td>
<td>1830</td>
</tr>
<tr>
<td>Ev or Van</td>
<td>25</td>
<td>4370</td>
<td>2900</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>50</td>
<td>8740</td>
<td>5800</td>
</tr>
</tbody>
</table>

4.3 Technical Support for Projections

The technical support for the projections presented in this report are tabulated in Table 4-6. The statements are based on the detailed data presented in Section 3.
<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PRESENT STATUS</th>
<th>DESIGN CHANGE</th>
<th>PERFORMANCE CHANGE</th>
<th>COST CHANGE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Case</td>
<td>Moulded ABS Plastic</td>
<td>Polypropylene Plastic</td>
<td>Smaller case Lighter Weight Higher Strength</td>
<td>Slight Reduction</td>
<td>Heat sealing tooling required high productivity rate for cost justification.</td>
</tr>
<tr>
<td>Pos. Electrode</td>
<td>2.0 mm thick 165 x 195 mm 80% porous</td>
<td>4.0 mm 165 x 137 mm 85% porous</td>
<td>Equal Performance per unit volume power & energy</td>
<td>Up to 25% savings in Ni Powder</td>
<td>Performance is maintained by plate shape change and if necessary grid improvements.</td>
</tr>
<tr>
<td>Hi Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos. Electrode</td>
<td>2.0 mm thick 165 x 130 mm 80% porous</td>
<td>1-Deep Tabs 2-Imp. Grid 3-Coining</td>
<td>Imp. Power Capability</td>
<td>1-Cost incr. 2-Min. Cost Increase</td>
<td>Alternate methods may be appropriate Deep tabs are last resort.</td>
</tr>
<tr>
<td>Hi Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg. Electrode</td>
<td>1.2 mm thick 165 x 195 mm 165 x 137 mm</td>
<td>2.0 mm</td>
<td>Higher Energy per unit wt.</td>
<td>Sligh Rd. Grid savings Lower process costs</td>
<td>Same process costs result in more HW per unit volume plate</td>
</tr>
<tr>
<td>Hi Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg. Electrode</td>
<td>1.2 mm thick 160 x 130 mm</td>
<td>2.0 mm</td>
<td>Improved</td>
<td>Slight</td>
<td>7 mm Top portion of plate devoted to conduction</td>
</tr>
<tr>
<td>Hi Power</td>
<td></td>
<td></td>
<td></td>
<td>Increase</td>
<td></td>
</tr>
<tr>
<td>Separator</td>
<td>0.85 mm Thickness</td>
<td>0.70 mm Thickness</td>
<td>Higher Energy Density</td>
<td>None</td>
<td>Less electrolyte per per unit capacity Aggravates thermal problem.</td>
</tr>
</tbody>
</table>
4.4 **Energy Balance**

The nickel-iron battery operates at normal ambient temperature and pressure conditions. It will charge and discharge efficiently at initial temperature from -20 to +40°C. The battery requires no auxiliary energy expenditures to compensate for:

- Start up or shut down procedures.
- Shunt currents, parasitic losses or thermal effects.

The stand losses for the nickel-iron battery have been determined and are represented by the graph in section 3, Figure 3-3 of this report. Under the conditions of the simplified 24 hour driving pattern the stand losses can be applied at the rate represented by the 160 hour section of the graph. When the discharge is begun immediately after the completion of a charge cycle the rapid loss shown from zero to 40 hours does not occur. That loss is due to rapid oxygen evolution from the positive electrode which stops when the discharge is begun. The stand loss for this nickel-iron battery would be only .03% per hour under these conditions. The loss in watts during the stand periods is in proportion to the battery capacity. The data in Table 4-7 is for the 12 KWH commuter vehicle.

The total energy efficiency of the nickel-iron battery is taken as the product of voltage efficiency and the coulombic efficiency of charging. The voltage efficiency is the ratio of the average discharge voltage at the three hour rate to the average voltage for an eight hour charge. At present the coulombic efficiency is set, by the specified recharge procedure, to yield the highest output from the battery. We expect that the advanced batteries could be operated at 90% coulombic efficiency with only a small reduction in output, see Figure 3-8.

The data which is applicable to the battery is tabulated in Table 4-7
TABLE 4-7

ESTIMATED IN USE ENERGY CONSUMPTION SEGMENTS

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DRIVE</td>
<td>STAND</td>
<td>DRIVE</td>
<td>STAND</td>
<td>RECHARGE</td>
</tr>
<tr>
<td>Self Discharge</td>
<td>4 Watts</td>
<td></td>
<td>4 Watts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Eff.*</td>
<td>64% (72%)</td>
<td>64% (72%)</td>
<td>64% (72%)</td>
<td>(56%)</td>
<td></td>
</tr>
</tbody>
</table>

*Voltage efficiency is 80% for Ni-Fe system.

() advanced battery, only if considered important.

(56%) represents periodic equalization recharge to recover full iron capacity. It is believed that 110% AH return would not fully recharge the iron plate.

4.5 Life Consideration

4.5.1 Present Status

The Eagle-Picher nickel-iron battery is the one "Near Term Battery" of the DOE program to exceed its life goals. Tests at the NBTL, Eagle-Picher and SU, Sweden are summarized in Table 4-8 below:

TABLE 4-8

PRESENT STATUS OF CYCLE LIFE

<table>
<thead>
<tr>
<th>CYCLE LIFE*</th>
<th>DEPTH OF DISCHARGE</th>
<th>LIFE LIMIT MECH</th>
<th>STATISTICAL BACKGROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELLS</td>
<td>1500/1700</td>
<td>80 - 100%</td>
<td>xx</td>
</tr>
<tr>
<td>MODULES</td>
<td>1200/1700</td>
<td>80 - 100%</td>
<td>xx</td>
</tr>
<tr>
<td>BATTERIES</td>
<td>1000/1500</td>
<td>80 - 100%</td>
<td>xx</td>
</tr>
</tbody>
</table>

* Cycle life shown is demonstrated/projected.

xx Life limiting mechanisms and their correction follows in the discussion.

xxx A statistical calculation on battery reliability has not been performed.
For the purpose of this report we have confined the discussion of life limiting mechanisms to those which have been observed in the battery test programs at NBTL, EPI and S.U.

Both failure mechanisms were manifested in the first cell failures at the NBTL at about 800 cycles at 80% DOD. Post test analysis on two cells from different modules revealed sludge shorting and split separators. The sludge shorts were alleviated in two different manners. In one case the sludge space was more than doubled in height. An alternate solution was to lower the separator to contact the case bottom. This confined the sludge to the region of the negative plate which generated it. It reduced the corner and edge "build up" which caused the problem. The separator had split at the fold around the positive electrode. Positive electrode growth caused the split. The separator had already been rearranged to fold around the negative electrode which does not expand with age. No further action was taken. The separator has since been changed to flat individual sheets to eliminate the fold.

4.5.2 Projected Cycle Life

The projected cycle life is based on the separator corrections already included and further refinements more recently included in the designs. The rapidity with which sludge accumulates has been more than halved. Edge coining of the iron electrode eliminates most of the sludge. Newer cell designs accomodate the positive electrode growth. Elimination of the bottom plate support will relieve the terminal seal stress as the electrode expands. None of these changes has an impact on cost. The edge coining would be accomplished in the same operation as the tab area is coined for welding.
The difference between energy and power designs is not sufficient to have a significant effect on battery life. However, in theory the power designs should exhibit greater endurance. The power oriented batteries will have lower specific energy and internal resistance. Both tend to lower the maximum temperatures during discharge. The cooler battery will exhibit the longer life.

4.5.3 Life Effects on Battery Operating Characteristics

Actual measurements of battery operating characteristics during life cycle testing have not been made. However, the peak specific power, specific energy, efficiency, and thermal losses will be related to electrode aging. The nickel-iron battery exhibits very stable output during its useful life indicating that at moderate rates, 2 to 3 hours discharge, plate degradation is not significant. Consequently specific energy, efficiency, and the thermal characteristics of the battery will remain practically constant for the life of the battery. When peak specific power is considered the ultimate capability is being measured. This characteristic must be influenced by age since it demands that the total plate volume be effective. The iron electrode is corroded and recharged in each cycle. The reaction can not be 100% reversible. There is a reduction in peak specific power vs. cycle life. The rate at which it occurs has not been measured.

4.5.4 Reliability

In the absence of a mathematical reliability estimate for the nickel-iron battery, it is suggested that it would prove to be excellent. The battery is conventional in design and construction. It requires no auxiliaries for its operation. Each battery is performance
tested as part of the manufacturing procedure. The cycle to cycle reliability of the unit is the best possible.

At present the smallest replaceable block of cells in operating batteries is a five cell module. The modules are repairable in that plate groups in individual cells can be recased. This has been the only repair required. New batteries will incorporate polypropylene heat sealed cases. This will correct the problems caused by cemented ABS plastic cell jars.

4.6 Other Operational Characteristics

4.6.1 Special Charge Requirements

Overcharge - The Ni-Fe battery is unaffected by overcharging at low or ordinary currents. Overcharging is routine in reestablishing capacity after extended periods of shelf storage. Cells and modules have been charged at the 10 hour rate until they were completely dry without damage or reduction in subsequent performance.

Overdischarge - Forced overdischarge, as a weak cell in a battery or power discharge on a module, which causes oxygen evolution on the iron electrode will damage those plates. The Ni-Fe battery does have considerable protection against this situation by virtue of design and the chemistry of the reaction. First the cells are designed so that a 20% overdischarge is required to exceed the first plateau capacity of the electrode. The second plateau discharge, Fe^{2+} to Fe^{3+} offers in theory another 50% protection before oxygen is evolved. When it occurs this type failure of the iron is characterized by corrosion detaching the active material from the grid and plugging the fine pores in the double porosity structure of the plate. Recovery from overdischarge is dependent upon its
severity.

Cell Balancing - Not required. The normal amount of over-charge in each cycle is sufficient to cover efficiency differences.

Periodic Complete Discharge - Not required. The test programs have not indicated any problem with repeated partial discharges on this battery.

Equalization - To be determined. This type routine might be used with reduced charging return. If less than maximum performance is satisfactory, then decreased recharge levels would reduce watering frequency and increase charging efficiency. Under this type service some periodic equalization might be required to keep the iron electrode fully charged.

4.6.2 Maintenance

Charging - By proper and timely charging the user can reduce significantly the maintenance the Ni-Fe batteries require. Recharging daily after only fractional discharge reduces the charge efficiency and increases the water usage.

Watering - Typical designs require watering after five full cycles of 120-130% AH recharging. Watering frequency has been about once per week. Ultimately the watering interval might be one month.

Inspection - Monthly, to observe that watering caps are in place and not causing electrolyte salt bridges between terminals. Clean or rinse if required.

Refurbishment - Factory refurbishment of batteries is possible at fractional cost. This has already been demonstrated to replace breached ABS cell jars. Each occasion will require individual consideration.
4.7 Packaging Flexibility

4.7.1 Volume

The volumetric considerations for the various designs are listed in Table 4-9. The volume predicted is for battery cells only. No module trays are included.

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>ENERGY KWH</th>
<th>STATE-OF-ART LITERS</th>
<th>ADVANCED LITERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>12</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>175</td>
<td>155</td>
</tr>
<tr>
<td>EV or Van</td>
<td>25</td>
<td>260</td>
<td>233</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>50</td>
<td>520</td>
<td>446</td>
</tr>
</tbody>
</table>

4.7.2 Size Limitations

The conventional design of the nickel-iron battery imposes a limit on the height of a cell. In the capacities required for electric vehicles, batteries less than eight inches high would have poor volumetric efficiency. The space required above the tops of the plates becomes proportionally larger as the cell gets shorter.

The advanced designs will be about 9 inches high, because EV's will need "short" batteries and this shape improves the power capability per unit of weight.
4.7.3 Subsystems

The nickel-iron battery requires small I.D. tubing to vent battery gases to a safe location and feed make up water to the individual modules.

4.7.4 Scale Effects

The scale effects between 12 and 25 KWH batteries would be small. Table 4-9 indicates that up to 4% more volume is allowed for the smaller batteries.
APPENDIX C

DESIGN ANALYSES OF
EXXON ZINC/BROMINE BATTERIES
FOR VARIOUS ELECTRIC VEHICLES
DRAFT

DESIGN ANALYSES OF
EXXON ZINC/BROMINE BATTERIES
FOR VARIOUS ELECTRIC VEHICLES

MARCH 17, 1984

Prepared for
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Prepared by
Philip C. Symons PhD
Electrochemical Engineering Consultants Inc.
13760, Innsbrook Drive
Northville, Michigan
Under Consultant Agreement Number LC 790423

Based on Inputs from
Richard J. Bellows & Patric Grimes
Exxon Research & Engineering Company
Linden, New Jersey

PRECEDING PAGE BLANK NOT FILMED

G-3
INTRODUCTION

This report is a brief description of a series of design analyses performed by the author as part of a program being conducted by JPL to determine the feasibility of using various energy storage and energy conversion technologies in "Advanced Vehicles" for use on US roads in the 1990's. Unlike most of the battery developments being considered in this phase of the JPL study, the zinc/bromine battery designs and the analyses thereon reported here were not the result of work done by the developer - the Exxon Research & Engineering Company. Although this unit of Exxon is a DOE developer, they declined to respond to an offer to conduct the work requested by JPL under contract from the latter. The personnel at Exxon who are involved in zinc/bromine battery development did, however, agree to aid the author in developing a response to the questions being posed by JPL in this phase of the JPL analysis. The questions being posed by JPL referred to are given in the work statements of those battery developers who did agree to conduct the required analyses under contract, and are further delineated in the "Guidelines" sent to such contractors, and to Exxon, as part of the study. The questions and guidelines will not be reviewed further here and are incorporated in this report by reference. We must recognize that this report, unlike most of the others that will be reviewed by the technical panel assembled for this purpose by JPL (the "Review Board") has not been prepared by the battery developer but by a member of the Review Board. The time and manpower devoted to the analysis of Exxon zinc/bromine batteries is thus a small fraction of that used in analysing
other battery systems, and that the responses are probably more conservative than might be expected from developers who have vested interests.

EXXON has been in the process of developing zinc/bromine batteries for almost a decade, although their experience with some of the components of their system extends for a substantially longer period than this. This development work has progressed to the point where relatively large zinc/bromine batteries have been assembled and tested by Exxon. Thus, both 10kWh and 20kWh zinc/bromine batteries, incorporating somewhat different design details, have been tested more-or-less successfully during the past two years. Exxon is in the process of developing, under a program funded by the Department of Energy, an electric vehicle battery that will be tested in an EV that is being developed in a parallel DOE program by Ford Motor Company. This experience with relatively large devices makes the job of projecting the performance of zinc/bromine batteries somewhat more straightforward than it might otherwise be, although we should note that the batteries that have been built and tested to date have not had the power capabilities that are believed to be needed for advanced EVs.

Exxon have been developing the electrically-conducting carbon/plastic composite materials for possible use in electrochemical devices, in collaboration with others, since the late 1960s, and the bromine complexing agents have been under development for a considerable period of time also. The initial interest in zinc/bromine batteries at the Exxon Research & Engineering Company, the unit of Exxon at which the work under discussion has
been carried out, was as potential electric vehicle candidates. Work on the system was funded exclusively by the parent company of Exxon R & E (through another unit - Exxon Enterprises) until early 1980, when Phase I of a DOE program was initiated. Since that time, Exxon has cost-shared the DOE program, and the work has been directed, until recently at least, to the development of batteries that might be applicable to solar photovoltaic system energy storage. Exxon maintained its interest in the EV application however, and during the past year or so, a development project on EV batteries has been underway in addition to the one for solar PV batteries. Sandia National Laboratories has had responsibility for managing and/or monitoring the Exxon zinc/bromine battery programs for DOE.

The technology on which the Exxon zinc/bromine battery is based is fully described in two reports on their DOE program published by SNLA - "Development of a Circulating Zinc-Bromine Battery", Phase I Final Report, SAND82-7022, and Phase II Final Report, SAND83-7108. In essence, the Exxon zinc/bromine battery technology has the following features:

* Circulating electrolyte, with two separated flows into each cell and "flow-past" the zinc and bromine electrodes. Sculptured microporous polyolefin, "Daramic", used to separate and space zinc and bromine electrodes and to form compartments of each cell.

* Conductive carbon/plastic electrodes, high surface area carbon "attached" to the faces to be used as bromine electrodes. Carbon/plastic composites and insulating (polyolefin) edges formed by inexpensive co-extrusion method.

* Bipolar cell-stack utilizing Exxon's "shunt-current protection" to prevent maldistribution of zinc growth on cycling. Flow frames (with channels to direct flows as necessary) made by injection molding with Daramic separators as inserts in mold.

* Bromine complexing agents to store the elemental bromine formed during charge as a separate phase in a special compartment of the battery.
Complexing agents dissolved in battery electrolyte before charge; brominated complex "carburretted" into flowing electrolyte to supply bromine during discharge.

The flow arrangement proposed by Exxon for their zinc/bromine batteries is shown in Figure 1. A photograph of the components that are used to make cell-stacks of the design currently favored by Exxon are shown in Figure 2. Exxon believes that this technology will give zinc/bromine batteries that will be reasonably high in performance and yet will be inexpensive. The calendar and cycle-life of Exxon zinc/bromine batteries is projected by them to be relatively short, however, although they believe that the low cost that will be attainable will counterbalance this short lifetime so as to give a low life-cycle-cost. The reader is referred to the reports cited above for further details of the Exxon zinc/bromine battery technology.

In the balance of this report, we will describe and discuss the answers to the questions that have been posed of various battery developers by JPL, the latest version of these questions, as described in the "Guidelines" described above, being addressed. In the next section - METHODOLOGY OF THE STUDY - we will describe the methodology used in making the quantitative and qualitative estimates asked for by JPL. The third section - STUDY RESULTS - will give the answers to the questions posed by JPL in the last version of the guidelines. The fourth and final section will deal with the VALIDITY OF THE ESTIMATES and in it we will discuss the answers to the JPL questions that were derived from the information given to us by Exxon.
METHODOLOGY OF THE STUDY

In the "Guidelines" sent to battery developers, JPL indicated that there were eight vehicle types for which they would like preliminary designs to be made. From these preliminary designs, it was hoped that battery developers could make reasonably reliable projections of the specific energy, specific power, volume and OEM price of batteries that would give the desired EV performance. It was recognized from the beginning that any particular battery on which information was being sought would not necessarily meet the requirements of all eight vehicle types specified by JPL. In the present study, we decided to eliminate vehicle types for which we thought that zinc/bromine batteries would be inherently unsuitable. Additionally, we combined some vehicle types for which the battery requirements were very similar. The EV types and battery requirements on which we hoped to develop outline designs were, therefore, as follows:

* Two-passenger commuter EV 12kWh 25kW
* Hybrid 4/5-passenger EV 15kWh 50kW
* General purpose electric car or van 25kWh 60kW
* Full performance 4/5-passenger EV 50kWh 50kW

We note at this point that the present design for a zinc/bromine EV battery leads to nominal ratings of about 20kWh and 30kW.

Ideally, we had hoped to answer the questions posed by JPL in the "Guidelines" by making projections of battery performance on the basis of...
actual preliminary designs for zinc/bromine batteries optimized to the four vehicle types listed above. However, since Exxon did not find it possible to accept a contract from JPL to perform such work, it was necessary for us to adopt a different approach. The methodology we used to make the necessary projections therefore consisted of the following steps:

* Careful review of the literature available on the design of Exxon zinc/bromine batteries for electric vehicle use.

* Development of a set of forms (attached as Appendix A) to facilitate recording information received from battery developers who agreed to respond to the JPL "Guidelines".

* Quantification of the weight, volume, projected OEM price and expected performance of the present state-of-the-art battery.

* In face-to-face and telephone discussions, and written communications with Exxon personnel, establishment of projections for the performance, weight, volume and OEM price of a zinc/bromine battery with an optimized present-day design.

* Acquisition of information on the non-quantifiable questions in the JPL "Guidelines" by face-to-face questioning of Exxon personnel.

* Acquisition of the coefficients of the Symons Equations for the weight, volume and OEM price of batteries with performances different from those given to us for the optimized present-day design. This information was requested of Exxon personnel during our meeting and received in writing at a later date. For a further discussion of the Symons Equations, see below.

* Calculation of the weight, volume and expected OEM price of Exxon zinc/bromine batteries for the four vehicle types listed above, and calculation and projection of the specific energy, specific power and battery OEM price projections requested by JPL. Note that the specific energy versus discharge rate and specific peak power versus state-of-discharge projections were made on the basis of the overall weight projected for the various batteries combined with the projected performance of the optimized present-day design battery.

* Submission of the final projections to Exxon by way of a first draft of this report and modifications of the projections as necessary through telephone conferences with their personnel and by means of written communications from them.

It should be noted that a zinc/bromine battery of the type specified in the
"Guidelines" as "Present" has not yet been built by Exxon, and that the projections given under this heading in the next section have been made on the basis of the performance of a 20kWh battery designed for solar PV storage. This approach was taken because the final design details of the zinc/bromine battery to be built under the DOE/EHV/Ford project have not yet been determined, and use of the expected performance, weight and volume characteristics of this battery would therefore be premature.

The Symons Equations, referred to above, that represent an inherent part of the projection methodology used in the present study, were derived by the author as part of a study conducted by Argonne National Laboratory. The derivation of the equations was described in detail in an internal report to ANL (1982) and has been summarized in a number of open-literature publications (see, for example, P. C. Symons, Extended Abstracts of the Electrochemical Society, Volume 82-2, pg. 7). In essence, the formulae that are now described as the Symons Equations relate the weight, volume and projected OEM price of a battery to the energy and power that are to be delivered by it. The three equations are as follows:

Battery weight (W) = A \times E + B \times P + C

Battery volume (V) = A' \times E + B' \times P + C'

Battery price (X) = A'' \times E + B'' \times P + C''

- where \(E \) is the energy to be delivered by the battery to the motor-controller of EV in kWh, \(P \) is the power required to give accelerations in kW, and \(A, A', A'', B, C \) etc. are coefficients that are derived from a particular battery design. The energy and power used in the Symons Equations must be specified
carefully if the equations are to be useful (see references for a further discussion of this). Please note that the coefficients of the Symons Equations refer to a particular group of batteries that are designed according to the same set of principles; these equations cannot be used for batteries of the same generic type at different stages of development. Any particular set of coefficients refer, of course, to batteries of the same generic type. In addition, it should be noted that the Symons Equations are only intended for use over relatively small ranges of energy and power. The ranges appropriate for any particular set of Symons Coefficients will depend on the battery type and the actual battery design that was used to derive them. The use of estimating formulae such as the Symons Equations to project the performance or price must never be taken out of the context in which the coefficients were derived.

The methodology used to estimate the characteristics of various zinc/bromine batteries that has been used herein necessarily results in projections that are based on the same set of critical design and performance assumptions. In other words, we do not assume different degrees of success in developing the various batteries required for different vehicle types. Improvement over the present state of the art is assumed, however, as will be discussed in the final section of the report. In the next section, we describe the results of the design analysis that has been performed on Exxon zinc/bromine batteries.
STUDY RESULTS

As described in the preceding section of the report, the information on Exxon zinc/bromine batteries for the JPL study has been received in two separate ways. Firstly, during a visit to Exxon, the author got projections on the expected performance, OEM price and life characteristics of an EV battery with a design which is basically an optimized version of the one presently under development for solar PV storage. Information on batteries designed specifically for the EVs of interest to JPL was not available directly but was obtained in the form of coefficients for the Symons Equations. These coefficients, supplied in writing to the author, represent the second way in which the information required for the JPL study was obtained. We note that the two types of information obtained from Exxon are supposed to refer to batteries designed according to the same basic design principles and that different degrees of advancement of the technology are not assumed for the various EV types. Both types of information obtained is summarized below, this being presented as completed "JPL Forms" (see preceding section) at the end this section. A commentary on the assumptions believed to have been used by Exxon is given first, and then the values of the coefficients of the Symons Equations are described and discussed, before the overall information requested by JPL is given.

The design basis on which the quantitative information given below was calculated or projected is as follows:
Overall system designed according to the principles of Exxon zinc/bromine batteries outlined in the INTRODUCTION to this report and described in Exxon's SNLA reports referenced above.

Fully charged electrolyte has composition comprising 3 molar zinc bromide, 0.5 molar each of MEMBr and MEPBr (bromine complexing agents), 4 molar of a mixture of potassium and ammonium bromides.

Utilization of dissolved zinc, i.e. fraction of zinc that would be plated during a full charge with a 100% coulombic efficiency, taken as 70% for all designs. This implies that the minimum concentration of zinc bromide will be about 0.9 molar, neglecting the coulombic inefficiency and any volume change of the electrolyte that may occur.

Baseline (i.e. "Present") design based on a charge zinc loading of 90mAhr/sq.cm. and a charge time of 3 hours. The Exxon method used to make calculations of battery weight as a function of expected capability is shown in Table 1. EV battery designs with a different P/E ratio would have a different loading and charge time.

Values of energy deliverable given for a continuous discharge at the stated rate, such discharge immediately following the preceding charge. Values for energy deliverable do not, unless otherwise stated, include the energy required for auxiliaries - pumps and shunt current protection - during discharge. The actual energy that can be delivered must be reduced by the energy required to drive the auxiliaries during the discharge.

The "Present" design gives a nominal 20kWh and 30kW battery that is projected to weigh 303 kg. and to occupy 284 litre. A breakdown of the weight and volume of this battery is shown in Table 2. A 20kWh battery with an unoptimized design of the same type as that used for the projection actually weighs 330kg. However, the power of this battery is not as high as that projected for the "Present" design. A new cathode layer (CP-3), already under test in small cell-stacks, is thought to be capable of the required performance.

The energy deliverable under sustained discharge was projected by Exxon on the basis of data obtained on Stack # PAM01Z, this being designed and tested according to the principles listed herein. Experimental discharge curves for this cell-stack are given in Fig 3.

Projections for peak power capability of the "Present" battery were made by Exxon on the basis of data obtained on a 10kWh cell-stack identified as Z-10. This stack has a design similar to that assumed in making the projections. The raw data used in making the projections is shown in Fig 4. The state-of-charge (SOC) is defined relative to the energy deliverable (see above) at the three-hour discharge rate.

Estimates of the OEM price of an Exxon zinc/bromine battery of 20kWh
nominal capacity were made by the developer according to the ADL method in 1981. The results of this Exxon analysis are given in the Phase II SNLA Report referenced above, and are summarized in Table 3. The battery coated is presumably of the same design as that for which weight and volume estimates are given above. An OEM price of about $800 for the 20kWh battery resulted from this estimate.

These design principles represent the basis for projections made for the "Present" design battery and for batteries with different performance capabilities.

For batteries that are required to have capabilities different from the baseline ("Present") design, Exxon submitted coefficients for the Symons Equations to the author. Thus, the following formulae were projected by Exxon to be applicable to the calculation of the weight, volume and OEM price of the zinc/bromine batteries required for the EV applications being analysed by JPL:

\[
\begin{align*}
\text{Weight} &= \text{kWh} \times 12.3 + \text{kW} \times 1.35 + 38.3 \text{ kg} \\
\text{Volume} &= \text{kWh} \times 12.3 + \text{kW} \times 1.36 + 99.8 \text{ litre} \\
\text{OEM Price} &= \text{kWh} \times 16.0 + \text{kW} \times 4.58 + 344.3 \text{ 1981$}
\end{align*}
\]

- where kWh represents the energy that can be delivered by the battery at the three hour rate and kW is the peak power deliverable at 30% SOC. It should be noted that these definitions of the energy and power are not the same as those used in deriving the Symons Equations, and as a result, some further care should be taken in applying the formulae than normally is needed.

In deriving these formulae, we understand that Exxon assumed that changes to the power capability of a battery could be achieved by adding or removing individual bipolar electrodes and their associated frames, separators and electrolyte to or from baseline design, and that the energy could be changed
by means of changes to the amount of electrolyte in the battery. The weight, volume and OEM price formulations then follow from the breakdowns referenced above and the assumed performance (20kWh, 30kW) of the baseline design. On the basis of these assumptions, the sustained and peak power projections asked for by JPL for batteries other than the baseline case can be derived by using ratios from the values projected for the baseline design.

The projections requested in the latest version of the JPL "Guidelines" are given in Tables 4 to 12. The quantitative projections given in these tables should be only used in EV optimization calculations in conjunction with the background information in this report. In the tables, there is some information that is referred to by means of numbered notes. These notes follow and should also be used in conjunction with the projections in the tables.

Note 1: Energy consumption by the items shown in Table 8 (pumps, shunts, self-discharge, etc.) should be regarded as proportional to the nominal power of the battery.

Note 2: There has not, as yet, been a great amount of formal cycle-life testing conducted at Exxon on zinc/bromine batteries. The life of the active carbon layers now used is not known at present. Reliability of small flow battery systems is of some concern because of the pumps and other mechanical components.

Note 3: The volume of the baseline 20kWh/30kW battery calculated from the Symons Equation given to the author by Exxon is 384 litre. This value does not coincide with either of the volumes given for this battery during the meeting with Exxon. This is troublesome because the volume of Exxon
zinc/bromine batteries is one of the principal concerns in EV applications.

The values given for the characteristics of Exxon zinc/bromine batteries designed for EV use in this section are those given to us by Exxon personnel during a meeting and/or in writing. The validity of the estimates made in this section is discussed in the next and last section of the report.
VALIDITY OF THE ESTIMATES

THIS SECTION WILL BE WRITTEN FOLLOWING FURTHER DISCUSSIONS WITH EXXON,
PARTICULARLY AFTER THEY HAVE HAD A CHANCE TO REVIEW THE PRECEDING SECTIONS OF
THE REPORT.
Table 1. 20 kWh Battery Design Calculations

Basis: 90 mAh/cm2 Zn loading
70% Zinc utilization
80% Coulombic Efficiency
3M ZnBr$_2$ Electrolyte

Electrolyte Volume and Weight

Volume = \(\frac{(\text{electrode area}) (\text{Zn loading})}{(\text{zinc concentration}) (\text{zinc utilization})} \)

\[
= \frac{(1160 \text{ cm}^2/\text{electrode})(156 \text{ electrodes})(0.90 \text{ mAh/cm}^2)(3600 \text{ s/hr})}{(2 \times 0.965 \times 10^5 \text{ As/mole})(3 \text{ mole Zn/liter})(0.7 \text{ utilization})}
\]

= 147.7 l

Weight = 147.7 l x 1.7 kg/l = 245.9 kg

Capacity

Capacity = (Zn loading)(av. discharge voltage)(coul. effic.)(electrode area)

\[
= (0.090 \text{ Ah/cm}^2)(1.676V)(0.8 \text{ coul. eff.})(1160 \text{ cm}^2/\text{electrode})(156 \text{ electrodes})
\]

= 21.8 kWh gross

Net Capacity = Gross Capacity - Auxiliary = 21.8 - 3.1 = 18.7 kWh

Power (50% SOC at 70% of OCV)

Power = (voltage)(current density)(electrode area) =

\[
(1.232V) (0.189 \text{ A/cm}^2)(1160 \text{ cm}^2/\text{electrode})(156 \text{ electrode}) = 42.0 \text{ kW}
\]

Base Case (20 kWh, 90 mAh/cm2, 70% utilization)

Energy Density = \(\frac{18.7 \text{ kWh}}{325 \text{ kg}} \) = 57.5 Wh/kg

Power Density = \(\frac{42 \text{ kWh}}{325 \text{ kg}} \) = 129 W/kg
<table>
<thead>
<tr>
<th>Component</th>
<th>Part Dimensions (cm)</th>
<th>Number of Parts (#)</th>
<th>Volume (liter)</th>
<th>Density (g/m/cm²)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacks</td>
<td>36.5 x 51 x .06</td>
<td>154</td>
<td>17.2</td>
<td>.9</td>
<td>15.5</td>
</tr>
<tr>
<td>Bipolar Electrode</td>
<td>36.5 x 51 x .10</td>
<td>4</td>
<td>.7</td>
<td>.9</td>
<td>.7</td>
</tr>
<tr>
<td>Current Collectors</td>
<td>36.5 x 51 x .21</td>
<td>156</td>
<td>61.0</td>
<td>.9</td>
<td>24.1*</td>
</tr>
<tr>
<td>Separators</td>
<td>36.5 x 51 x 2</td>
<td>2</td>
<td>7.4</td>
<td>.9</td>
<td>3.3*</td>
</tr>
<tr>
<td>Neg. Feed Blocks</td>
<td>36.5 x 51 x 3</td>
<td>2</td>
<td>11.2</td>
<td>.9</td>
<td>5.0*</td>
</tr>
<tr>
<td>Pos. Feed Blocks</td>
<td>53 x .65 D.</td>
<td>4</td>
<td>.02</td>
<td>7.9</td>
<td>.1</td>
</tr>
<tr>
<td>Electrolyte</td>
<td></td>
<td></td>
<td>144.7</td>
<td>1.55</td>
<td>245.9</td>
</tr>
<tr>
<td>Reservoir</td>
<td></td>
<td></td>
<td>106.7</td>
<td></td>
<td>106.7</td>
</tr>
<tr>
<td>Stacks</td>
<td></td>
<td></td>
<td>38.0</td>
<td></td>
<td>38.0</td>
</tr>
<tr>
<td>Auxiliaries/Misc.</td>
<td></td>
<td></td>
<td>80.2</td>
<td></td>
<td>80.2</td>
</tr>
<tr>
<td>Pump Heads</td>
<td>8 x 8 x 8</td>
<td>2</td>
<td>1</td>
<td>.2†</td>
<td>.2</td>
</tr>
<tr>
<td>Pump Motors</td>
<td>8 x 8 x 12</td>
<td>1</td>
<td>.8</td>
<td>4.0†</td>
<td>3.0</td>
</tr>
<tr>
<td>Valves</td>
<td>4 x 6 x 12</td>
<td>2</td>
<td>.6</td>
<td>1.0†</td>
<td>.6</td>
</tr>
<tr>
<td>Plumbing</td>
<td>100 x 3 D.</td>
<td>4</td>
<td>.6*</td>
<td>.4†</td>
<td>.2</td>
</tr>
<tr>
<td>Controller</td>
<td>5 x 5 x 1</td>
<td>1</td>
<td></td>
<td>.2†</td>
<td></td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td>40 x 45 x 4</td>
<td>1</td>
<td>7.2</td>
<td>.2†</td>
<td>1.4</td>
</tr>
<tr>
<td>Fan (HX)</td>
<td>30 x 30 x 20</td>
<td>1</td>
<td>18</td>
<td>.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Pump (HX)</td>
<td>10 x 10 x 10</td>
<td>1</td>
<td>1</td>
<td>.2</td>
<td>.2</td>
</tr>
<tr>
<td>Coolant</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>1.1</td>
<td>6.6</td>
</tr>
<tr>
<td>Sensors</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation/Packaging</td>
<td>3.5 M² x 1</td>
<td>1</td>
<td>35</td>
<td>.2</td>
<td>7</td>
</tr>
<tr>
<td>Voidage</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Tankage/Supports</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>.9</td>
<td>9</td>
</tr>
</tbody>
</table>

* Void Volume Adjustment
† Void Volume Adjustment

| Totals | | | 284.4 | | 303.2 |
Table 3. Total Factory and Capital Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material (Includes Electrolyte @ $220/Module)</td>
<td>$321.36</td>
</tr>
<tr>
<td>Purchased Components (Includes Outside Molding Costs and Accessories)</td>
<td>211.71</td>
</tr>
<tr>
<td>In-House Labor Costs</td>
<td>68.74</td>
</tr>
<tr>
<td>Total Material, Components & Labor Cost/20 kWh Module</td>
<td>601.81</td>
</tr>
<tr>
<td>Total Material, Components & Labor Cost/kWh</td>
<td>30.09</td>
</tr>
<tr>
<td>1. @ 2500 MWh Material, Components & Labor Cost per Year</td>
<td>$75,225,000.00</td>
</tr>
<tr>
<td>2. Marked-up Equipment Costs (10% of estimated ($12,500,000)</td>
<td>1,250,000.00</td>
</tr>
<tr>
<td>3. Rent (100 sq. ft. Plant @ 5.00/ft<sup>2</sup>)</td>
<td>500,000.00</td>
</tr>
<tr>
<td>4. Total Factory Costs (Lines 1 + 2 + 3)</td>
<td>76,975,000.00</td>
</tr>
<tr>
<td>5. Working Capital Requirement (30% line 4)</td>
<td>23,092,500.00</td>
</tr>
<tr>
<td>6. Total Investment ($12,500,000 + line 5)</td>
<td>35,592,500.00</td>
</tr>
<tr>
<td>7. Return on Investment & Taxes (30% line 6)</td>
<td>10,677,750.00</td>
</tr>
<tr>
<td>8. Additional @ $5.00/kWh</td>
<td>12,500,000.00</td>
</tr>
<tr>
<td>9. Total Capital Cost (lines 4, 7 & 8)</td>
<td>100,152,750.00</td>
</tr>
<tr>
<td>Capital Cost per 20 kWh Module</td>
<td>801.22</td>
</tr>
<tr>
<td>Capital Cost per kWh</td>
<td>40.06</td>
</tr>
</tbody>
</table>

- Net Capital Costs Following Page -
Table 4. Forms for Recording Information for JPL
January/February, 1984 - Page 1

DATE: 03/18/84 LOCATION: EEC, Inc.
DEVELOPER: Exxon SYSTEM: Zn/Br2

1. PERFORMANCE MODELING

(a) Battery discharge characteristics:

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Specific Energy (Wh/kg) vs Discharge Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 W/kg</td>
</tr>
<tr>
<td>Present,</td>
<td></td>
</tr>
<tr>
<td>20 kWh/30 kW</td>
<td>64</td>
</tr>
<tr>
<td>325 kg</td>
<td></td>
</tr>
<tr>
<td>20 kWh/30 kW</td>
<td>60</td>
</tr>
<tr>
<td>325 kg</td>
<td></td>
</tr>
<tr>
<td>2. Commuter,</td>
<td></td>
</tr>
<tr>
<td>12 kWh/25 kW</td>
<td>55</td>
</tr>
<tr>
<td>220 kg</td>
<td></td>
</tr>
<tr>
<td>3. Hybrid,</td>
<td></td>
</tr>
<tr>
<td>15 kWh/50 kW</td>
<td>52</td>
</tr>
<tr>
<td>290 kg</td>
<td></td>
</tr>
<tr>
<td>4. Electric</td>
<td></td>
</tr>
<tr>
<td>Vehicle or Van,</td>
<td></td>
</tr>
<tr>
<td>25 kWh/60 kW</td>
<td>59</td>
</tr>
<tr>
<td>427 kg</td>
<td></td>
</tr>
<tr>
<td>5. Full-Perf.,</td>
<td></td>
</tr>
<tr>
<td>50 kWh/50 kW</td>
<td>69</td>
</tr>
<tr>
<td>721 kg</td>
<td></td>
</tr>
</tbody>
</table>

aW/O and W signify Without and With Auxiliaries.
Table 5. Forms for Recording Information for JPL
January/February, 1984 - Page 2

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Peak Specific Power (W/kg) vs State-of-Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80% SOC</td>
</tr>
<tr>
<td>1. Present,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
</tr>
<tr>
<td>20 kWh/30 kW</td>
<td></td>
</tr>
<tr>
<td>2. Commuter</td>
<td></td>
</tr>
<tr>
<td>(See text)</td>
<td></td>
</tr>
<tr>
<td>3. Hybrid</td>
<td></td>
</tr>
<tr>
<td>(See text)</td>
<td></td>
</tr>
<tr>
<td>4. Electric Vehicle or Van</td>
<td></td>
</tr>
<tr>
<td>(See text)</td>
<td></td>
</tr>
<tr>
<td>5. Full-Perf.</td>
<td></td>
</tr>
<tr>
<td>(See Text)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)By extrapolation.
Table 6. Forms for Recording Information for JPL
January/February, 1984 - Page 3

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>1981 $/battery</th>
<th>Basis of Estimate/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 kWh/30 kW</td>
<td>802</td>
<td>Phase II Report</td>
</tr>
<tr>
<td>Commuter,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 kWh/25 kW</td>
<td>651</td>
<td>Symons Equations</td>
</tr>
<tr>
<td>Hybrid,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 kWh/50 kW</td>
<td>814</td>
<td>Symons Equations</td>
</tr>
<tr>
<td>Electric Vehicle or Van,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 kWh/60 kW</td>
<td>1019</td>
<td>Symons Equations</td>
</tr>
<tr>
<td>Full-Perf.,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 kWh/50 kW</td>
<td>1374</td>
<td>Symons Equations</td>
</tr>
</tbody>
</table>
Table 7. Forms for Recording Information for JPL

January/February, 1984 - Page 4

<table>
<thead>
<tr>
<th>DATE:</th>
<th>LOCATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/18/84</td>
<td>EEC, Inc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEVELOPER:</th>
<th>SYSTEM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exxon</td>
<td>Zn/Br²</td>
</tr>
</tbody>
</table>

ENTER SUB-PAGE #: A

3. TECHNICAL SUPPORT FOR PROJECTIONS

How are improvements assumed in all the above to be achieved? a

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Present Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

aSee text of report.
Table 8. Forms for Recording Information for JPL

January/February, 1984 - Page 5

<table>
<thead>
<tr>
<th>Segment /Parameter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up</td>
<td>Pumps On</td>
<td>Pumps off</td>
<td>Pumps on</td>
<td>Pumps off, till charge.</td>
<td></td>
</tr>
<tr>
<td>and shut-down</td>
<td>Continuously, 44 min.</td>
<td>Stack (See 1)</td>
<td>(See 1)</td>
<td>Charge 2h at end of period</td>
<td></td>
</tr>
<tr>
<td>lmA h/cm²</td>
<td>3 Wh</td>
<td>312 Wh</td>
<td>3 Wh</td>
<td>312 Wh</td>
<td>3 Wh</td>
</tr>
<tr>
<td>Self-discharge</td>
<td>688 Wh</td>
<td>0</td>
<td>688 Wh</td>
<td>0</td>
<td>2156 Wh</td>
</tr>
<tr>
<td>Shunt currents</td>
<td>161 Wh</td>
<td>0</td>
<td>161 Wh</td>
<td>0</td>
<td>520 Wh</td>
</tr>
<tr>
<td>Parasites</td>
<td>Electrolyte Pumps</td>
<td>95 Wh</td>
<td>95 Wh</td>
<td>260 Wh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Fan</td>
<td>0</td>
<td>0</td>
<td>100 Wh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling Pump</td>
<td>15 Wh</td>
<td>15 Wh</td>
<td>40 Wh</td>
<td></td>
</tr>
<tr>
<td>Thermal loss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Charge eff.</td>
<td>Regen.</td>
<td>NA</td>
<td>Regen.</td>
<td>NA</td>
<td>Charge</td>
</tr>
<tr>
<td></td>
<td>Voltaic Effs only</td>
<td>90%</td>
<td>90%</td>
<td>87%</td>
<td></td>
</tr>
</tbody>
</table>

aAbove based on 20 kWh/30 kW "Present" design. See Note 1.
5. LIFE CONSIDERATIONS

(a) Present status of cycle life.

<table>
<thead>
<tr>
<th>Cycle life</th>
<th>Depth-of-discharge</th>
<th>Life-limiting mechanisms</th>
<th>Statistical background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual cells cannot be tested</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-cell-stacks</td>
<td>~400</td>
<td>100%</td>
<td>Warpage Failed</td>
</tr>
<tr>
<td>8-cell-stack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thicker Electrodes</td>
<td>640</td>
<td>100%</td>
<td>Still under test</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>1200</td>
<td>100%</td>
<td>None Detected</td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 kWh Sub-scale</td>
<td>~100</td>
<td>100%</td>
<td>Did not fail</td>
</tr>
<tr>
<td>20 kWh Full size</td>
<td>None</td>
<td>Cycle tested to date</td>
<td></td>
</tr>
</tbody>
</table>

(b) Projected cycle life, approach to solving failure modes, effects of these on cost. Specify any differences between high-energy & high power designs.

1000 Deep Cycles Projected. Approaches to get this TBD.

(c) Life effects on specific power & energy, efficiency and thermal characteristics (i.e., linear with cycling).

Slow decline in efficiency, possibly lower deliverable capacity.

(d) Estimate of reliability of smallest replaceable block of cells, failure modes, mean-time-to-failure, etc.

Don't know

See Note 2.
Table 10. Forms for Recording Information for JPL
January/February, 1984 - Page 7

DATE 03/18/84
DEVELOPER: Exxon

LOCATION: EEC, Inc.
SYSTEM: Zn/Br₂

6. OTHER OPERATIONAL CHARACTERISTICS

(a) Special charge requirements:

What happens if cells are overcharged or overdischarged?

No permanent damage.
See Note 3.

Is individual cell balancing required? If so, how & how often?

No

Is periodic complete discharge required? If so, how & how often?

Yes. TBD - thought to be 20 to 100 cycles.

Is equalizing necessary? If so, how & how often?

No

(b) Maintenance requirements?

What regular maintenance is required? How often?

pH (?), Air (?), Inerts Venting (?), Check Pumps and Motors (?)

What potential exists for periodic battery refurbishment rather than replacement? How does this compare to cost with replacement?

Stacks replaceable in principle, pumps/motors could be serviced. Battery could be repaired. Cost of repair labor (unknown now) will determine if done.
Table 11. Forms for Recording Information for JPL

January/February, 1984 - Page 8

DATE: 03/18/84
LOCATION: SEC, Inc.

DEVELOPER: Axon
SYSTEM: Zn/Br₂

7. PACKAGING FLEXIBILITY

(a) Estimated volume of each of the designs:

<table>
<thead>
<tr>
<th>Battery</th>
<th>Liters</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Present,</td>
<td>300</td>
<td>Based on component volumes</td>
</tr>
<tr>
<td>20 kWh/30 kW</td>
<td>31-5/8 in. x 25 in. x 34 in.</td>
<td>Design Envelope for Battery</td>
</tr>
<tr>
<td>2. Commuter,</td>
<td>12 kWh/25 kW</td>
<td>From Symons Equations</td>
</tr>
<tr>
<td>352</td>
<td>From Symons Equations</td>
<td></td>
</tr>
<tr>
<td>3. Hybrid,</td>
<td>15 kWh/50 kW</td>
<td>From Symons Equations</td>
</tr>
<tr>
<td>352</td>
<td>From Symons Equations</td>
<td></td>
</tr>
<tr>
<td>4. Electric Vehicle</td>
<td>25 kWh/60 kW</td>
<td>From Symons Equations</td>
</tr>
<tr>
<td>or Van,</td>
<td>489</td>
<td>From Symons Equations</td>
</tr>
<tr>
<td>5. Full-Perf.,</td>
<td>50 kWh/50 kW</td>
<td>From Symons Equations</td>
</tr>
<tr>
<td>783</td>
<td>From Symons Equations</td>
<td></td>
</tr>
</tbody>
</table>

(b) Size limitations, minimum possible measurements of battery cells or modules (H x W x L), primary considerations if change must be made from present configuration, other?

- Minimum height of 6 in. in reservoir.
- Asymmetry of electrodes 3:1.
- Change from present dimensions will mean redesign.

(c) Any special consideration for relative placement of components/sub-systems, i.e., necessity to place fluid reservoir near cell-stack?

- Reservoir and stack(s) on same level, to keep volume at minimum. Reservoir and stack(s) could be separated.

(d) Scale effects in the 10-50 kWh range, if applicable?

- Larger batteries were advantageous - even more than shown by volumes above.
ZINC-BROMINE CIRCULATING BATTERY

ANODE LOOP

SEPARATOR

CARBON PLASTIC ELECTRODES

PUMP

ZnDEPOSIT

CATHODE LOOP

Br₂ ACTIVE ELECTRODE

Br₂ COMPLEX STORAGE

Electrochemical Reactions:

Zn° ⇌ Zn⁺ + 2e⁻
Br₂ + 2e⁻ ⇌ 2Br⁻
Zn° + Br₂ ⇌ ZnBr₂

Figure 1. Circulating Zinc-Bromine Battery
Figure 2. Zinc-Bromine 1200-cm² Battery Components
CHARGE-DISCHARGE VOLTAGE PROFILE OF 10 kWh (Z-10) BATTERY

10 kWh ZINC—BROMINE SUB-MODULE 120V-1200 cm² ELECTRODES

POLARIZATION CURVES OF 10 kWh BATTERY (Z-10) (20 SECOND PULSES)
APPENDIX D

DESIGN ANALYSES OF ZINC-CHLORIDE BATTERIES FOR ELECTRIC VEHICLES
EDA PERSPECTIVE

This report describes the characterization of the zinc-chloride batteries for a variety of electrical vehicle missions, with specific emphasis on the fixed power to energy batteries defined in this contract with JPL. The fixing of the power and energy levels does not allow the trade-offs of battery stored energy (vehicle range) and total vehicle weight for a particular vehicle type. This trade-off is a very important characteristic for flowing electrolyte batteries, such as the zinc-halogen systems. In the case of the zinc-chloride battery, incremental energy can be stored for a given power level at a cost of $10/kWh and at a very high incremental energy density of 220 Wh/kg. A graphic example of this is the general purpose van having a 60-kW, 25-kWh battery defined in this contract. A zinc-chloride battery as per these specifications would weigh 399 kg and sell for $3,684. In reality, however, the range of this vehicle could actually be doubled for an increase in selling price of only $250 and a weight increase of 250 pounds. This increased stored energy has to be considered as a very attractive option, since the 100-mile plus range it would allow, will greatly improve the usefulness of such a van. The subject of incremental stored energy has not been specifically addressed in this report because of the fixed power to energy definition. However, this subject is an important element in quantifying the zinc-chloride battery for vehicle market applications and must be taken into account if an accurate and comprehensive assessment is to be made.
CONTENTS

INTRODUCTION	 1

Background	 1
Design and Operational Description	 1
Design Flexibility of Zinc-Chloride Batteries	 3

RESPONSE TO JPL GUIDELINES	 6

Battery Technological Projections	 6
Performance Modeling	 6
Cost Projections	 7
Technical Support for Projections	 8
Energy Balance	 9
Life Considerations	 12
Other Operational Characteristics	 12
Packaging Flexibility	 14

CONCLUSIONS	 15
INTRODUCTION

Energy Development Associates has been developing zinc-chloride batteries for electric-vehicle applications since 1972. By early 1976 it had developed the comb-type bipolar stack structure. Under an R&D contract with the U.S. Department of Energy, EDA developed and demonstrated a 36-kWh engineering prototype battery in a Volkswagen Rabbit by 1980. Early in 1980 Gulf+Western Industries (G+W) -- EDA’s parent company -- initiated its own program to demonstrate 40-kWh zinc-chloride batteries in specially-designed four-passenger vehicles. Upon demonstrating the technical viability of zinc-chloride powered passenger vehicles -- the Rabbit exhibiting a 117-mile range at average speeds above 40 mph in highway/city driving and a four-passenger G+W vehicle exhibiting a 200-mile range at 40 mph on a 2.5-mile oval track --, the emphasis was shifted to delivery vehicle battery development and engineering. In 1983 EDA demonstrated a 40-kWh engineering prototype battery in a converted half-ton Renault Trafic van. During independent testing of this vehicle at Ohio’s Transportation Research Center, it exhibited a 90-mile range at an average speed of 35 mph.

The basic objective of this contract -- Contract Number 956811 with the California Institute of Technology, Jet Propulsion Laboratory (JPL) -- is to assess and report on the design flexibility, cost sensitivity, and technical feasibility of zinc-chloride battery designs targeted for development through the early 1990s. In preparing this report EDA has made every effort to follow the guidelines established by JPL. It should be noted however, that zinc-chloride batteries have some unique features which the pre-established guidelines fail to bring out. Many of these features are common to flow batteries and will be touched upon as a prelude to the main body of this report.

Design and Operational Description

Figure 1 schematically illustrates the operation of a zinc-chloride battery during charge. A pump is used to circulate electrolyte through the battery stack. The chlorine gas formed during charge is transferred from the stack to the store using a gas pump. The chlorine is mixed with chilled store liquid at the inlet to the pump and chlorine hydrate is formed in the pump and at the outlet from the pump. The circulating store liquid is separated from the solid hydrate particles using a filter shown at the bottom of the store. A heat exchanger utilizing glycol or Freon is used to chill the recirculating store liquid.
Figure 1. Zinc-Chloride Battery During Charge

Figure 2 shows the battery during discharge. Electrolyte is again circulated through the stack using a pump. A portion of this warm electrolyte is tapped from the main manifold and flowed through a heat exchanger to decompose the hydrate. The evolved chlorine gas from the store is injected and dissolved in the electrolyte stream which is feeding the stack. The gas pump is not used during discharge.
Figures 1 and 2 show the battery stacks inside the sump. In most vehicle batteries, the battery stacks are actually packaged separately from the sump and are connected to the sump by electrolyte supply and return piping. Also, heat transfer between stack and store is most frequently accomplished by a direct interchange of electrolyte between the two compartments.

Figure 3 shows the present construction of a zinc-chloride comb-type battery stack. Graphite wafers, which serve as the zinc-electrode substrates, are press-fitted into one side of a bipolar busbar. Pairs of chlorine electrodes are press-fitted into the other side of the busbar. The result is a double-sided comb, hence the comb-type designation. In assembling the battery stacks, the zinc electrodes of one comb interleave with the chlorine-electrode pairs of another comb to form the unit cell. The stack terminates with a thick graphite busbar at one end with chlorine electrodes, while at the other end, there is a thick graphite busbar with zinc-electrode substrates.

Figure 3 shows the present construction of a zinc-chloride comb-type battery stack. Graphite wafers, which serve as the zinc-electrode substrates, are press-fitted into one side of a bipolar busbar. Pairs of chlorine electrodes are press-fitted into the other side of the busbar. The result is a double-sided comb, hence the comb-type designation. In assembling the battery stacks, the zinc electrodes of one comb interleave with the chlorine-electrode pairs of another comb to form the unit cell. The stack terminates with a thick graphite busbar at one end with chlorine electrodes, while at the other end, there is a thick graphite busbar with zinc-electrode substrates.

Design Flexibility of Zinc-Chloride Mobile Batteries

Design parameters that reflect the performance and cost of zinc-chloride batteries in mature production in the early 1990s were utilized to develop the relationships between power, energy, weight, and cost of vehicle batteries.
Figure 4 shows the general relationship between specific power and specific energy for P/E ratios of 1:1 to 2:1. The band illustrates that the relationship varies with different battery capacities. P/E ratios greater than 2 would be achieved by adding more stack volume.

![Graph showing specific power and specific energy relationship](image)

Figure 4. Specific Power and Specific Energy Relationship

Figure 5 illustrates the relationship between battery power, energy, and weight. This figure more clearly shows the effect of battery power on weight. Doubling the power of a 30-kWh battery from 30 kW to 60 kW, the weight increases from ~650 pounds to ~930 pounds (100 Wh/kg vs. 70 Wh/kg, respectively). By increasing the battery energy for any design power level increases the battery weight at a rate of only ~1.1 lb/kWh (4.5 kg/kWh).

D-12
Figure 5. Battery Power, Energy, and Weight Relationship

Figure 6 shows the relationship between battery power, energy, and selling price. This figure shows the sensitivity of battery selling price to battery power level and the relative insensitivity of price to battery energy. A 30-kW, 30-kWh battery would sell for $2,500 and a 60-kW, 30-kWh battery would sell for $3,750, a 50% increase in selling price. Conversely, an increase in battery energy increases the selling price of higher power batteries at a rate of only ~$10/kWh.

Figure 6. Battery Power, Energy, and Selling Price Relationship
RESPONSE TO JPL GUIDELINES

This section of the report summarizes the results of the assessment conducted in accordance with the "Guideline For Contractor Response." The order of presentation is consistent with the format of the guideline document.

Battery Technological Projections

Zinc-chloride battery performance and cost projections were made for four specific vehicle batteries. The four batteries and their delivered energy and power requirements are as follows:

- Commuter Vehicle Battery -- 42 kWh, 25 kW
- Hybrid Vehicle Battery -- 15 kWh, 50 kW
- General Purpose EV or Commercial Van Battery -- 25 kWh, 60 kW
- Full Performance EV Battery -- 50 kWh, 50 kW

The technological projections for these four batteries as well as other zinc-chloride batteries in this report are limited to batteries which could be demonstrated in prototype form in the early 1990s. The projections are for one-year old batteries operating in 70°F ambient air.

Performance Modeling

A battery model was used to project performance and weight of zinc-chloride batteries for various battery energy storage and power requirements. The basic design parameters for this model are as follows:

- Delivered capacity of 160 mAh/cm² of electrode surface
- Delivered energy of 300 mW/cm² at 30-sec peak power
- Chlorine storage density of 0.27 g/cc of store volume

Projected discharge characteristics of the four specified vehicle batteries are compared in Tables 1 and 2. These projected characteristics are compared with a 43-kWh, 40-kW battery that reflects the present state-of-the-art of zinc-chloride battery technology.

Table 1 compares the specific energy (Wh/kg) at various discharge rates for the subject batteries.
Table 1

SPECIFIC ENERGY (Wh/kg) FOR VARIOUS DISCHARGE RATES

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Discharge Rate (W/kg)</th>
<th>30 Sec Peak (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>1. Present</td>
<td>67</td>
<td>51</td>
</tr>
<tr>
<td>2. Commuter</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>3. Hybrid</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>4. Gen. Purpose EV or Van</td>
<td>65</td>
<td>61</td>
</tr>
<tr>
<td>5. Full Performance</td>
<td>110</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 compares the 30-second peak power capability at various state-of-charge percentages. These values reflect the relatively flat voltage profile of the zinc-chloride battery throughout the entire battery discharge.

Table 2

30-SECOND PEAK SPECIFIC POWER (W/kg) AT VARIOUS PERCENT STATE-OF-CHARGE AS DEFINED BY A STANDARD C/4 RATE

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>80</th>
<th>50</th>
<th>30</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Present</td>
<td>62</td>
<td>61</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>2. Commuter</td>
<td>132</td>
<td>130</td>
<td>128</td>
<td>127</td>
</tr>
<tr>
<td>3. Hybrid</td>
<td>160</td>
<td>158</td>
<td>156</td>
<td>154</td>
</tr>
<tr>
<td>4. Gen. Purpose EV or Van</td>
<td>149</td>
<td>147</td>
<td>145</td>
<td>144</td>
</tr>
<tr>
<td>5. Full Performance</td>
<td>107</td>
<td>105</td>
<td>104</td>
<td>103</td>
</tr>
</tbody>
</table>

Cost Projections

Estimates of battery selling price of the four specified vehicle batteries and a present state-of-the-art 43-kWh, 40-kW battery are compared in Table 3. The estimates are for batteries in mature production of 100,000 units per year.
Table 3
SELLING PRICE OF VEHICLE BATTERIES

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>$/Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Present</td>
<td>4,000*</td>
</tr>
<tr>
<td>2. Commuter</td>
<td>2,026</td>
</tr>
<tr>
<td>3. Hybrid</td>
<td>3,154</td>
</tr>
<tr>
<td>4. Gen. Purpose EV or Van</td>
<td>3,684</td>
</tr>
<tr>
<td>5. Full Performance</td>
<td>3,525</td>
</tr>
</tbody>
</table>

*Engineered for manufacturing

Technical Support for Projections

Research and development in several areas to advance the state-of-the-art of zinc-chloride batteries is a continuing effort at EDA. Development of the following components, systems, and processes is expected to lead to the achievement of the battery performance and price projected for the early 1990s.

Store (hydrate storage process): Increasing the chlorine hydrate storage density significantly impacts on battery weight and volume as well as reduces cost. Using straight filtration, chlorine packing densities of 0.20 g/cc of store volume are presently achieved in 40-kWh size stores and densities up to 0.25 g/cc have been achieved in 20-kWh size stores. Chlorine storage densities in the range of 0.30-0.40 g/cc have been demonstrated with hydrate pellets.

Cell Electrodes: Lower cost graphite electrodes and improved activation processes have a direct effect on battery performance, weight, volume, and cost.

Unit Cell: Development of unit cell designs offer promise of reduced cost through reduced component parts, fabrication, and assembly. Unit cell design development also has promise of significant improvements in stack performance and efficiency.

Materials of Construction: Improvement of materials promises reduced fabrication costs and reduced maintenance costs due to a reduction of contaminants in the electrolyte.

Battery System: Battery system development aimed at system and component simplification promises reduced costs and improved reliability.
To quantify sources of energy use such as self discharge, parasitic losses, etc., under vehicle driving conditions, a total energy balance was performed for a zinc-chloride battery through an entire driving cycle. The cycle utilized for this energy balance is the simplified 24-hour driving pattern requested in the "Guidelines for Contractor Response" furnished by JPL. This driving pattern, which certainly cannot be considered as a typical EV driving cycle, is illustrated in Figure 7. The driving portion of this pattern (designated driving cycle 3) was proposed by JPL to the EHV Battery Task Force as a greatly simplified version of the Federal Urban Driving Schedule to be used for life-cycle testing. This driving cycle is detailed in Table 4.
Table 4

DETAILED DRIVING CYCLE 3

<table>
<thead>
<tr>
<th>Cycle Segment No.</th>
<th>Time (s)</th>
<th>Type*</th>
<th>Energy Consumed (W-s/kg)</th>
<th>Average Power (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-26</td>
<td>A</td>
<td>298</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>26-30</td>
<td>A</td>
<td>358</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>30-74</td>
<td>A</td>
<td>1428</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>74-76</td>
<td>A</td>
<td>94</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>76-171</td>
<td>D</td>
<td>-265</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>171-196</td>
<td>S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>196-211</td>
<td>A</td>
<td>497</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>211-236</td>
<td>C</td>
<td>175</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>236-251</td>
<td>D</td>
<td>-155</td>
<td>-10</td>
</tr>
<tr>
<td>3</td>
<td>251-276</td>
<td>S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>276-291</td>
<td>A</td>
<td>497</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>291-316</td>
<td>C</td>
<td>175</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>316-331</td>
<td>D</td>
<td>-155</td>
<td>-10</td>
</tr>
<tr>
<td>4</td>
<td>331-356</td>
<td>S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>356-371</td>
<td>A</td>
<td>497</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>371-396</td>
<td>C</td>
<td>175</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>396-411</td>
<td>D</td>
<td>-155</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>411-436</td>
<td>S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* A - acceleration
C - cruise
D - deceleration
S - stand

All calculations of the total energy balance were based on the ETV-1 vehicle battery weight of 488 kg.

The total energy balance was calculated for a zinc-chloride battery design based on performance levels projected in the early 1990s. This battery has a design 30-second peak power of 50 kW, a delivered energy of 52.7 kWh at a C/4 discharge rate, and a total weight of 472 kg. Although the total energy consumed in the 24-hour driving pattern is small compared to the energy storage capacity of this battery, this size battery was chosen to approach the weight of the ETC-1 vehicle battery (488 kg) used as the calculation base.
The estimates of in-use energy consumption and the energy balance of the zinc-chlorine battery for the 24-hour driving pattern are shown in Table 5.

Table 5

ESTIMATES OF IN-USE ENERGY CONSUMPTION (Wh)
FOR 24-HOUR DRIVING PATTERN

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Start-up/ Shut-down</td>
<td>0</td>
</tr>
<tr>
<td>Self-discharge & Shunt Current</td>
<td>931</td>
</tr>
<tr>
<td>Parasitics</td>
<td>157</td>
</tr>
<tr>
<td>Thermal Loss</td>
<td>0</td>
</tr>
<tr>
<td>Net Heat Rejection</td>
<td>924</td>
</tr>
</tbody>
</table>

Total Energy Delivered (segments 1 & 3) = 5,634 Wh
Total Energy Input on Charge (segment 5) = 11,660 Wh
System Discharge Efficiency = 64.40%
System Charge Efficiency = 75.00%
Overall Round-Trip Efficiency = 48.30%

Net battery ampere hours and watt hours delivered and ampere hour and watt hour losses for the discharge segments (segments 1 and 3) of the 24-hour driving pattern were calculated by a detailed analysis of the four modes of operation in the segments, i.e., acceleration, cruise, deceleration, and stand. The 8-hour charge segment (segment 5) of the 24-hour pattern was calculated as a 0.5-hour period for store electrolyte cool down to hydrate formation temperatures and a 7.5-hour battery charge. The net heat rejected in each segment includes all parasitic, shunt, self discharge, thermodynamic heat, heat of hydrate formation (charge) or decomposition (discharge), and voltaic losses. Regenerative braking is assumed during deceleration and the associated voltaic losses are included. The total energy input on charge, the system charge efficiency, and the overall round-trip efficiency include the energy input of the refrigeration unit for the 8-hour duration of segment 5.
Because the consumed energy in segments 1 through 4 is only a fraction of the storage capacity of the zinc-chloride battery in this weight class, the values in the charge segment (segment 5) are normalized by this fraction to permit proper battery evaluation. With this zinc-chloride battery, the driving pattern could be repeated approximately seven times on a single charge. Due to the fact that the zinc-chloride battery has no start-up or shut-down losses and operates at near ambient with no thermal losses, these parameters in Table 5 are designated as such.

It is assumed that the 24-hour driving pattern requested in the Guideline is for battery evaluation purposes only. EDA does not consider this pattern to be representative of any urban driving cycle and is considered to be a worst-case duty cycle for flowing electrolyte batteries because of the many active stand requirements. The round-trip efficiency for this driving pattern is 48% as compared to a round-trip efficiency of ~60% for a standard C/4 discharge cycle. The efficiency for a truly representative driving pattern would be somewhere between these values; more likely in the range of over 50% and under 60%.

Life Considerations

Due to the cost and time required for cycle life testing with vehicle batteries, life cycle test data are limited. Most of the data available are for zinc-chloride cells and batteries that are indicative of but not identical to vehicular batteries. EDA has operated a zinc-chloride battery-powered vehicle approximately 25,000 equivalent miles with varying states of charge. The number of cycles on this vehicle battery is 202 to date. Modules in load-leveling batteries -- which incorporate the same basic cell design and materials -- have performed through the equivalent of 1,724 cycles. Although not part of any formal life-cycle test program, experimental zinc-chloride cells have operated over more than 600 cycles. Data collected from these cells and batteries indicate that the gradual oxidation of the porous-graphite chlorine electrodes will establish the useful life of zinc-chloride electric-vehicle batteries. Carbon dioxide formation rates suggest that the chlorine electrodes will experience only a 10% reduction in weight after 150,000 vehicle miles.

These data are summarized in Table 6.

Other Operational Characteristics

Zinc-chloride batteries offer the capability of over-charge and over-discharge without producing any serious safety hazards or permanent damage to the batteries. The depletion of zinc ions during overcharge results in an increased H₂ formation rate at the zinc electrodes. This is handled by recombining the H₂ with Cl₂ in the gas phase using the recombination reactor. Due to the fact that excess chloride ions are present -- in the form of supporting salts --, the major anodic reaction during over-charge continues to be the oxidation of chloride ions to chlorine. This chlorine is then available for recombination with the H₂ and return to the electrolyte as HCl.
Table 6

PRESENT STATUS CYCLE LIFE

<table>
<thead>
<tr>
<th>Cycle Life</th>
<th>Depth of Discharge</th>
<th>Life-limiting Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>600*</td>
<td>Varied</td>
<td>CO2 formation rates indicate 10% wt. loss in chlorine electrodes at 150,000 vehicle miles.</td>
</tr>
<tr>
<td>Modules</td>
<td>>1700</td>
<td>Chlorine-electrode loss due to extensive accidental overcharges.</td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>200</td>
<td>Both units remain operational.</td>
</tr>
<tr>
<td>Load-Leveling</td>
<td>170</td>
<td></td>
</tr>
</tbody>
</table>

*Cells employed for developmental purposes and were not part of a formal life test program.

Upon overdischarge zinc-chloride cells revert to chlorine-chlorine cells due to the excess inventory of chlorine in the system. Typical 50-kWh zinc-chloride batteries contain a minimum inventory of 0.6 kg of excess chlorine as chlorine dissolved in the battery electrolyte and 1 atm absolute chlorine pressure in the gas phase of the battery. Upon depletion of metallic zinc from the dense-graphite zinc-electrode substrates, the electrode reaction becomes the anodic formation of chlorine from available chlorine ions. The corresponding cathodic reduction of dissolved chlorine to chloride ions continues at the porous-graphite chlorine-electrode substrates of a reversed (overdischarged) cell.

Cell balancing in a zinc-chloride battery is accomplished by completely stripping zinc from all the cells in the battery, i.e., cell balancing is accomplished by periodic complete discharge. Zinc-electrode shape changes, associated with nonuniform shunt current and primary current distributions during partial depth-of-discharge operation, suggest the desirability of conducting periodic cell balancing operations after every 5,600 Ah of charge or the equivalent of every 10 complete charge/discharge cycles.
Maintenance operations on commercial zinc-chloride batteries will be conducted primarily to ensure the proper operation of mechanical and electrical components in the system. Valve seats, pump bearings and wear plates, etc., may require replacement on an annual or biannual basis. Electronic components — pressure transducers, temperature sensors, etc. — could require annual recalibration and occasional replacement. Inert-gas rejection will be handled automatically at complete discharge and adjustments to the electrolyte pH will be required on about a biannual basis.

Zinc-chloride batteries are designed to allow for the replacement or refurbishment of failed mechanical and electrical components or subsystems. The battery stack can, in accidental contamination situations, be refurbished by draining and chemical cleaning. Although present stack designs do not allow for easy electrode replacement, it is possible to replace unit cells and thereby refurbish a battery stack. Unit cell replacement offers cost savings over stack replacement for about two-thirds the life of the battery. Beyond the equivalent of 80,000 vehicle miles on the battery the cost of cell replacement may not be economically justified.

Packaging Flexibility

Table 7 compares the projected volumes of the four specified vehicle batteries and a present state-of-the-art 43-kWh, 40-kW battery.

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Volume (liters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Present</td>
<td>464</td>
</tr>
<tr>
<td>2. Commuter</td>
<td>144</td>
</tr>
<tr>
<td>3. Hybrid</td>
<td>253</td>
</tr>
<tr>
<td>4. Gen. Purpose EV or Van</td>
<td>325</td>
</tr>
<tr>
<td>5. Full Performance</td>
<td>366</td>
</tr>
</tbody>
</table>

A cell stack is a number of unit cells fabricated in series in bipolar fashion. The present minimum dimensions of a unit cell are 2.9 inches in length, 9.7 inches in width, and 5.5 inches in height including supply and return manifolds. A cell stack contains anywhere from 20 to 40 cells depending on the power and packaging requirements. Therefore the minimum stack dimensions are height 5.5", width 9.7", and length 2.9" x number of cells.
The main battery components are the stacks, sump, and store. From an operational standpoint these components can be packaged anywhere in the vehicle that is practicable. The only special consideration as to their relative placement is weight distribution in the vehicle.

CONCLUSIONS

The results of this assessment indicate that zinc-chloride batteries can provide a cost-effective power source ($70 $/kWh) for electric vehicles which have a power-to-energy ratio of approximately one. Although life-cycle costs are not specifically addressed in the report guidelines, they will be very low for zinc-chloride batteries because of the low capital cost, low-maintenance, and long-life features of this system.

With regards to efficiency, zinc-chloride batteries will operate with round-trip efficiencies in the range of 50-60% depending upon the duty cycle. The projected efficiency for the duty cycle specified in the guidelines is 48%. This cycle is unduly severe on flow-type batteries — due to the large number of active stands involved — and does not appear to be representative of an urban driving cycle. The projected overall efficiency for the same battery on a simple charge/discharge (at the C/4 rate) cycle is approximately 60%. These two types of duty cycles establish the extremes and operating efficiencies on typical driving cycles will likely be in the range of 53-57%.

In the areas of specific energy and specific power, zinc-chloride batteries with power-to-energy ratios of approximately one will offer values of at least 100 Wh/kg and 100 W/kg, respectively. It seems very logical that users of this type of battery, where energy can be added for a minimum penalty — only 10 lb/kWh added weight and only 10 $/kWh added selling price —, will choose the full energy capability. The extra energy can be used for creature conveniences and/or eliminate the need to recharge a route-type vehicle on a daily basis.
APPENDIX E

IRON-AIR BATTERY DESIGN
FOR THE JET PROPULSION LABORATORY
IRON-AIR BATTERY DESIGN ANALYSIS FOR THE
JET PROPULSION LABORATORY

D. Zuckerbrod and E. S. Buzzelli

February 9, 1984
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>3. THE MODEL</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Assumptions</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Calculations</td>
<td>7</td>
</tr>
<tr>
<td>4. RESULTS AND DISCUSSION</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Performance Modeling</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Cost Projections</td>
<td>10</td>
</tr>
<tr>
<td>4.3 Technical Support for Projections</td>
<td>11</td>
</tr>
<tr>
<td>4.4 Energy Balance</td>
<td>11</td>
</tr>
<tr>
<td>4.5 Life Considerations</td>
<td>14</td>
</tr>
<tr>
<td>4.6 Other Operational Characteristics</td>
<td>15</td>
</tr>
<tr>
<td>4.7 Packaging Flexibility</td>
<td>15</td>
</tr>
<tr>
<td>5. CONCLUSION</td>
<td>17</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1. Iron-Air Cell Polarization Curve ... 6</td>
</tr>
<tr>
<td>5-1. Boundary Conditions for Iron-Air Battery Performance 18</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1. Summary of Near Term Battery Characteristics 1</td>
</tr>
<tr>
<td>1-2. Summary of Advanced Technology Battery Characteristics 1</td>
</tr>
<tr>
<td>3-1. Physical Assumptions for the Battery Model 7</td>
</tr>
<tr>
<td>3-2. Cost Assumptions .. 7</td>
</tr>
<tr>
<td>4-1. Near Term Battery Performance ... 9</td>
</tr>
<tr>
<td>4-2. Advanced Battery Performance ... 9</td>
</tr>
<tr>
<td>4-3. Specific Peak Power (W/kg from 100% to 20% SOC) 10</td>
</tr>
<tr>
<td>4-4. Battery Cost Projections .. 10</td>
</tr>
<tr>
<td>4-5. Technical Support for Projections ... 12</td>
</tr>
<tr>
<td>4-6. Estimates of In-Use Energy Consumption 13</td>
</tr>
<tr>
<td>4-7. Predicted Battery Volume .. 16</td>
</tr>
</tbody>
</table>
IRON-AIR BATTERY DESIGN ANALYSIS
FOR THE JET PROPULSION LABORATORY

by

D. Zuckerbrod and E. S. Buzzelli

Abstract

The iron-air battery system was modeled mathematically to predict performance, peak power, cost and the size of batteries designed for various specific electric vehicle missions. Near term (late 1980's) and advanced technology (early 1990's) performance cases were considered for commuter, hybrid, van and full performance type electric vehicles. Technical support was given for projections and consideration was given to known system losses. Boundary conditions were given for battery performance indicating design flexibility. The results of this modeling effort indicate that the iron-air couple could meet the established goals for each mission in a low cost battery system.
1. Summary

The iron-air battery system was modeled mathematically to obtain estimates of battery performance, cost, weight and size for various missions using individual electrode performance characteristics based on available data and conservative projections. Mission specifications, given in terms of energy and power, and their respective battery characteristics are summarized in Table 1-1 for the near term case (late 1980's) and in Table 1-2 for the advanced technology case (early 1990's). Details of the calculations and of the model used to calculate the derived quantities expressed in this report are available upon request. They were not included as they were beyond the scope of this work.

Table 1-1. Summary of Near Term Battery Characteristics.

<table>
<thead>
<tr>
<th>Mission</th>
<th>Energy¹ (kWh)</th>
<th>Power¹ (kW)</th>
<th>Sp.Ener.² (Wh/kg)</th>
<th>Pk.Power³ (W/kg)</th>
<th>Cost ($/bat.)</th>
<th>Volume (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>12</td>
<td>25</td>
<td>98</td>
<td>203</td>
<td>880</td>
<td>102</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>50</td>
<td>72</td>
<td>240</td>
<td>1524</td>
<td>208</td>
</tr>
<tr>
<td>EV or Van</td>
<td>25</td>
<td>60</td>
<td>90</td>
<td>215</td>
<td>1831</td>
<td>279</td>
</tr>
<tr>
<td>Full Perf</td>
<td>50</td>
<td>50</td>
<td>130</td>
<td>130</td>
<td>1744</td>
<td>260</td>
</tr>
</tbody>
</table>

Table 1-2. Summary of Advanced Technology Battery Characteristics.

<table>
<thead>
<tr>
<th>Mission</th>
<th>Energy¹ (kWh)</th>
<th>Power¹ (kW)</th>
<th>Sp.Ener.² (Wh/kg)</th>
<th>Pk.Power³ (W/kg)</th>
<th>Cost ($/bat.)</th>
<th>Volume (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>12</td>
<td>25</td>
<td>126</td>
<td>262</td>
<td>636</td>
<td>81</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>50</td>
<td>93</td>
<td>300</td>
<td>1031</td>
<td>147</td>
</tr>
<tr>
<td>EV or Van</td>
<td>25</td>
<td>60</td>
<td>115</td>
<td>277</td>
<td>1230</td>
<td>187</td>
</tr>
<tr>
<td>Full Perf</td>
<td>50</td>
<td>50</td>
<td>181</td>
<td>181</td>
<td>1187</td>
<td>204</td>
</tr>
</tbody>
</table>

1. requirement defined in "Guidelines for Contractor Response"
2. using "Cycle 3" driving cycle
3. from 100% to 20% SOC
The results of the modeling effort clearly indicate that the iron-air battery system could meet the goals for each mission. Battery cost, weight and size all fall within the range judged necessary for an electric vehicle propulsion battery.
2. Introduction

The iron-air cell, consisting of a porous sintered iron electrode coupled to a carbon-based bifunctional air electrode, has the characteristics necessary for the development and demonstration of a successful battery system for electric vehicle propulsion. The cell reaction during discharge is as follows:

\[
\begin{align*}
\text{anode:} & \quad \text{Fe} + 2 \text{OH}^- \rightarrow \text{Fe(OH)}_2 + 2e^- \\
\text{cathode:} & \quad \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2e^- \rightarrow 2\text{OH}^- \\
\end{align*}
\]

\[
\text{total:} \quad \text{Fe} + \text{H}_2\text{O} + \frac{1}{2} \text{O}_2 \rightarrow \text{Fe(OH)}_2 \quad E^\circ=1.283 \text{ V}
\]

This system has many advantages in terms of battery design and commercial applicability. The most obvious advantage is the inexhaustability and therefore the invariance of the positive electrode. Oxygen is supplied from ambient air (scrubbed free of CO₂) during discharge and returned to it during charge. This, in part, helps to maintain the flat discharge curve (voltage vs. state of charge) exhibited by iron-air cells. The air electrode can neither be overcharged nor overdischarged with respect to cathode capacity and utilization thus making cell balancing unnecessary and simplifying equalization. The power and energy of a cell can be varied almost independently by varying the area of the cell (power) and the thickness of the iron electrode (energy). This allows great design flexibility and the tailoring of the battery to a specific mission requirement. This design flexibility is not available in other secondary battery systems.

The materials used in iron-air cells are low in cost and are available in an almost inexhaustable supply. The air electrode is catalyzed with a low loading of silver (1-2.5 mg/cm²). This low level of peroxide elimination catalyst represents only a small part of the estimated cost of the electrode (less than 25% of $9/oz.).

Finally, electrode life in excess of 500 cycles for both the iron and air electrodes has been demonstrated in half-cell tests. Full-cells have been tested
with lifetimes in excess of 100 cycles but these do not reflect state-of-the-art air electrodes which have since been improved considerably.

The present status of the Iron-Air Battery Development Program is as follows:

- The iron electrode has met the near term goal of 0.4 Ah/g for greater than 500 cycles.

- The air electrode is undergoing continued development and has improved in performance and reproducibility. Lifetime in excess of 500 cycles has been demonstrated.

- Iron-air cell testing and development was terminated in 1980 at the request of the sponsor in order to focus on advancing the cycle life characteristics of the air electrode.

Estimates of near term cell performance used in this study were based on previous cell testing with the results adjusted to reflect subsequent improvements in the air electrode.
3. The Model

The goal of this work was to estimate the performance, weight and cost of an iron-air battery for electric vehicle propulsion. Such a battery, with the desirable characteristics reported herein, has not been built. A mathematical model was employed to generate these values from existing half-cell and full-cell data. Two scenarios were considered, a near term (late 1980’s) case and an advanced (early 1990’s) case.

3.1 Assumptions

The driving cycle assumed for battery discharge was "Cycle 3", appended at the end of the "Guidelines for Contractor Response." Regenerative braking was disregarded as it was only a small factor in the design of the battery.

Cell polarization curves are shown in Figure 3-1. They include resistive losses in the electrolyte. For the purpose of the model, the curves were considered to be linear and a least squares fit was made through the input polarization data. The slope and intercept so obtained were used to calculate the characteristics of the battery. Physical assumptions used to calculate cell performance are given in Table 3-1. The low estimate for auxiliary weight was derived in part from the minimal cell casing required. The major faces of the cell container are the air electrodes, whose weight is included as the electrode itself.

The energy requirements for parasitic losses were defined not to exceed 5% of the battery energy based on the results of an earlier system study. The power penalty for this steady load is minimal and was ignored. The parasitics need not operate when the vehicle is shut down. The system consists of a blower for cell air, an electrolyte circulation pump, a heat exchanger, a carbon

IRON–AIR CELL POLARIZATION CURVES

TERMINAL VOLTAGE

<table>
<thead>
<tr>
<th>Near Term Performance</th>
<th>Advanced Performance</th>
<th>Ultimate Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Voltage (V)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-1. Iron-Air Cell Polarization Curve.

The cost estimate of $200 used for peripherals, shown in Table 3-2 with the iron and air electrode cost assumptions, appears reasonable at this stage of development of the iron-air battery system. Further development of real systems in a future hardware development program will provide more realistic costs for the peripherals.
Table 3-1. Physical Assumptions for the Battery Model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Near Term</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Electrode Density</td>
<td>1.14</td>
<td>1.14 g/cm³</td>
</tr>
<tr>
<td>Air Gap</td>
<td>0.1</td>
<td>0.1 cm</td>
</tr>
<tr>
<td>Air Electrode Weight</td>
<td>0.2</td>
<td>0.15 g/cm²</td>
</tr>
<tr>
<td>Iron Electrode Density</td>
<td>1.68</td>
<td>1.68 g/cm³</td>
</tr>
<tr>
<td>Iron Electrode Capacity</td>
<td>0.4</td>
<td>0.5 Ah/g</td>
</tr>
<tr>
<td>Electrolyte Density</td>
<td>1.23</td>
<td>1.23 g/cm³</td>
</tr>
<tr>
<td>Electrolyte Conductivity</td>
<td>0.48</td>
<td>0.48 ohm⁻¹cm⁻¹</td>
</tr>
<tr>
<td>Electrolyte Gap</td>
<td>0.1</td>
<td>0.1 cm</td>
</tr>
<tr>
<td>Theoretical Potential</td>
<td>1.283</td>
<td>1.283 V</td>
</tr>
<tr>
<td>Charging Potential</td>
<td>1.53</td>
<td>1.5 V</td>
</tr>
<tr>
<td>Current Efficiency (charge)</td>
<td>90</td>
<td>95 %</td>
</tr>
<tr>
<td>Auxilliary Weight</td>
<td>10</td>
<td>10 %</td>
</tr>
<tr>
<td>Auxilliary Volume</td>
<td>15</td>
<td>15 %</td>
</tr>
<tr>
<td>Parasitics</td>
<td>5</td>
<td>5 % Energy</td>
</tr>
</tbody>
</table>

Table 3-2. Cost Assumptions.

<table>
<thead>
<tr>
<th>Component</th>
<th>Near Term</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Electrode</td>
<td>$2.00</td>
<td>2.00 $/kg</td>
</tr>
<tr>
<td>Air Electrode</td>
<td>30.00</td>
<td>20.00 $/m²</td>
</tr>
<tr>
<td>Peripherals</td>
<td>200.00</td>
<td>200.00</td>
</tr>
</tbody>
</table>

3.2 Calculations

The calculation of battery performance, weight and cost consisted of five parts:

1. Determination of the slope and intercept of a least squares fit of the cell polarization curve and calculation of peak power per unit area

2. Sizing the cell area to meet peak power requirements

3. Sizing the iron electrode thickness to meet energy requirements (range...
to 0% SOC with some performance degradation expected from 20% to 0% SOC)

4. Iteration to converge at the desired energy with the driving cycle specified in W/kg of battery

5. Calculation of desired parameters using the battery designed in Step 4

The battery energy was increased to account for parasitic losses. Auxiliary volume and weight were factored in as part of Step 4. The calculations were performed using a "spreadsheet" program for a desktop computer.

4. Results and Discussion

4.1 Performance Modeling

The results of the performance modeling calculations are given in Table 4-1 for the near term battery performance and in Table 4-2 for the advanced performance using the assumptions given in Table 3-1.

Table 4-1. Near Term Battery Performance.

Specific Energy (Wh/kg) versus Discharge Rate (Specific Power)

<table>
<thead>
<tr>
<th>Bat. Design</th>
<th>20W/kg</th>
<th>60W/kg</th>
<th>80W/kg</th>
<th>100W/kg</th>
<th>200W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>104</td>
<td>98</td>
<td>95</td>
<td>92</td>
<td>60</td>
</tr>
<tr>
<td>Hybrid</td>
<td>77</td>
<td>73</td>
<td>71</td>
<td>69</td>
<td>55</td>
</tr>
<tr>
<td>EV or Van</td>
<td>96</td>
<td>91</td>
<td>88</td>
<td>85</td>
<td>62</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>151</td>
<td>137</td>
<td>129</td>
<td>120</td>
<td>*</td>
</tr>
</tbody>
</table>

* exceeds peak power

Table 4-2. Advanced Battery Performance.

Specific Energy (Wh/kg) versus Discharge Rate (Specific Power)

<table>
<thead>
<tr>
<th>Bat. Design</th>
<th>20W/kg</th>
<th>60W/kg</th>
<th>80W/kg</th>
<th>100W/kg</th>
<th>200W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>134</td>
<td>128</td>
<td>125</td>
<td>122</td>
<td>101</td>
</tr>
<tr>
<td>Hybrid</td>
<td>98</td>
<td>94</td>
<td>93</td>
<td>91</td>
<td>80</td>
</tr>
<tr>
<td>EV or Van</td>
<td>123</td>
<td>118</td>
<td>115</td>
<td>113</td>
<td>95</td>
</tr>
<tr>
<td>Full Perf.</td>
<td>195</td>
<td>182</td>
<td>175</td>
<td>167</td>
<td>*</td>
</tr>
</tbody>
</table>

* exceeds peak power

The flat discharge curve (potential vs. state of charge) for iron
electrodes and the invariance of the air electrodes indicate constant peak power independent of state of charge down to 20% SOC. After this, performance would be expected to degrade and polarization data to become erratic due to the characteristics of the iron electrodes and expected spread in the electrode capacities. The resistance of the iron electrode is essentially constant for the Fe(OH)$_2$ reaction, and as a result, the power characteristics for the cell/battery are constant during a discharge. This is unique to the iron-air system as compared to other secondary systems where impedance increases with depth of discharge. Peak power, which is constant from 100% to 20% SOC is given for the near term and advanced batteries in Table 4-3.

Table 4-3. Specific Peak Power (W/kg from 100% to 20% SOC).

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Near Term</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>203</td>
<td>262</td>
</tr>
<tr>
<td>Hybrid</td>
<td>240</td>
<td>300</td>
</tr>
<tr>
<td>EV or Van</td>
<td>215</td>
<td>277</td>
</tr>
<tr>
<td>Full Performance</td>
<td>139</td>
<td>181</td>
</tr>
</tbody>
</table>

4.2 Cost Projections

Using the assumptions shown in Table 3-2 and the iron weight and air electrode area requirements calculated by the model, the battery costs are projected in Table 4-4.

Table 4-4. Battery Cost Projections.

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Near Term</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>$889</td>
<td>636</td>
</tr>
<tr>
<td>Hybrid</td>
<td>1524</td>
<td>1031</td>
</tr>
<tr>
<td>EV or Van</td>
<td>1831</td>
<td>1230</td>
</tr>
<tr>
<td>Full Performance</td>
<td>1744</td>
<td>1197</td>
</tr>
</tbody>
</table>

It must be noted that at the present stage of cell development, a detailed cost
study may not be meaningful. The assumed values appear to be reasonable in light of materials cost and the cost of related processes used in other Westinghouse products. A justification of the costs, is based on a 1980 manufacturing cost estimate completed at the request of Lawrence Livermore National Labs. The present electrodes may, in fact, provide a cost reduction to the 1980 estimate of $40/kWh.

4.3 Technical Support for Projections

Technical support for the projections made in this report is given in Table 4-5.

4.4 Energy Balance

The iron-air battery is an ambient temperature and pressure device. Therefore, start-up and shut-down losses are not encountered as they would be in high temperature fuel cells, molten salt or metal-halogen systems. Waste heat upon use will be sufficient to warm the battery to its operating temperature (35-45°C). Similarly, thermal loss is not seen as a problem.

The self discharge of iron-air cells has never been studied in detail at Westinghouse. However, it is felt that this is not a major problem. The air electrode can not self discharge in the usual sense (by evolving O₂ as nickel electrodes do). While mono-functional air electrodes tend to fail rapidly at open-circuit conditions due to carbon and catalyst oxidation (another sort of self discharge), the Westinghouse air electrode is fully bi-functional and thus is engineered to withstand the high potentials associated with oxygen evolution. The lower potentials associated with open circuit conditions do not appreciably damage the electrode. The iron electrode, however, may self discharge by evolving hydrogen. This can be controlled by minimizing impurities in the iron and the electrolyte to minimize the number of low overvoltage sites for hydrogen evolution. It is estimated, based on half cell test results, that the self discharge occurs at the rate of about 1% of the battery capacity (iron electrode capacity) per day, but there is no firm evidence here other than the half-cell observation. Shunt currents can not be estimated at this stage of battery development, as
<table>
<thead>
<tr>
<th>Component</th>
<th>Present Status</th>
<th>Design Change</th>
<th>Performance Change</th>
<th>Cost Change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Electrode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Current Collector</td>
<td>Ni-fiber mat</td>
<td>Ni-plated steel wool mat</td>
<td>lower charge voltage</td>
<td>lower</td>
<td>extensive (W) experience</td>
</tr>
<tr>
<td>• Active Material</td>
<td>Teflon™ bound carbon + catalyst</td>
<td>non-fluorinated binder. improved catalyst</td>
<td>lower weight shorter break-in higher discharge voltage</td>
<td>much lower</td>
<td>new materials available</td>
</tr>
<tr>
<td>• Hydrophobic material</td>
<td>Teflon™ bound carbon</td>
<td>Hostaflo™ bound carbon</td>
<td>longer life less flooding</td>
<td>slight</td>
<td>study by CWRU</td>
</tr>
<tr>
<td>Iron Electrode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Current Collector</td>
<td>Ni-EDNET™</td>
<td>improved configuration and tabbing</td>
<td>better utilization lower resistance</td>
<td>slight</td>
<td>tab welds show high resistance</td>
</tr>
<tr>
<td>• Active Material</td>
<td>sintered porous iron</td>
<td>improved purity</td>
<td>better charge efficiency</td>
<td>slight</td>
<td></td>
</tr>
<tr>
<td>Separator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
experience with other than single cells is extremely limited. Development of the full battery will surely attempt to minimize these shunt current losses.

Peripherals giving rise to parasitic losses during battery operation are an electrolyte pump, an air blower, and a packed-bed humidifier-dehumidifier. These need only operate when the vehicle is operating and perhaps shortly thereafter to avoid high temperatures after shut-down. A detailed thermal study of the iron-air battery system (1980) indicated that parasitic losses would not exceed 5% of the total battery energy for a nominal 20-40 kWh battery system.

The energy efficiency of the iron-air battery was resolved into the charge efficiency and discharge efficiency with the product of the two being the overall energy efficiency of the battery. The charge efficiency assumed a charge potential independent of rate because the rate will vary only slightly for an overnight charge. The discharge efficiency assumed the driving cycle used for the performance modeling. Regenerative braking was ignored as only an incremental benefit, but can be accepted by the battery.

The energy balance information is summarized in Table 4-6.

Table 4-6. Estimates of In-Use Energy Consumption.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Self Discharge</td>
<td>-</td>
</tr>
<tr>
<td>Parasitics</td>
<td>1000W</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>65(68)%</td>
</tr>
</tbody>
</table>

*Energy Consumption: Power, continuous over segment
**Energy Efficiency: Near term (Advanced Technology)%
4.5 Life Considerations

Iron electrodes and air electrodes have demonstrated lives of over 500 cycles in half cell tests. Actual iron electrodes have exceeded well over 1000 cycles with a somewhat different structure and lower electrode utilization. Full cells have demonstrated life of over 100 cycles with older, less stable air electrodes (pre 1980). The life limiting mechanism for air electrodes is the loss of structural integrity and hydrophobicity due to the corrosion of carbon and attack of the Teflon binder. This, in turn, limits the life of the cell. Cell life is not sensitive to depth of discharge (at least down to 0% SOC and perhaps further). Life test data does not exist for modules and batteries.

The life for an iron-air battery is presently projected to be greater than 500 cycles. No relationship between the ratio of power to energy and cycle life is foreseen for a properly designed cell, but once again, no experimental evidence exists in the cell engineering area. An ongoing air electrode research program is aimed at improved air electrode performance, uniformity, reproducibility and life. To date, improvements in both the air electrode structure and catalysis have involved either no change or a significant reduction in cost compared with earlier, less successful designs.

The performance of the air electrode remains constant for several hundred cycles after break-in (a few cycles). The performance then begins to decay linearly for perhaps another hundred cycles. At the end of life, the electrode may fail through gross leakage of electrolyte (case rupture) or flooding, whereupon oxygen reduction is not supported and hydrogen evolution occurs if the cell is driven. After the initial cycle, the iron electrode performance is essentially unchanging for many hundreds of cycles given chemically clean operating conditions (no CO₂ or low H₂ overvoltage impurities). So degradation of power, energy and efficiency follows the decay of the air electrode performance.

No estimate of the reliability of a battery module (6 cells in parallel) is available at this time as experimental data is not available. It would be expected that the iron electrode could be manufactured to within ±2-3% of design capacity. The air electrode would probably be ±5 mV.
4.6 Other Operational Characteristics

It is impossible to overcharge or overdischarge the air electrode. As long as electrolyte and air are available, the electrode is invariant. Iron electrodes are not damaged by overcharging. This is well known for iron-nickel batteries, which require overcharging for proper operation. Overdischarging will take the iron electrode to a *second plateau* where the Fe$^{+2}$ is oxidized to Fe$^{+3}$. Thus the battery can be considered to have some emergency capacity if it were needed, albeit at very low power densities. Iron electrodes have been driven to oxygen evolution and then recharged with no apparent ill effects. Hence, the system is extremely tolerant to severe abuse in the form of extended overcharge and deep discharge well past the point of reversal, with no deleterious effects on performance or life. Individual cell balancing is never required in the iron-air battery due to the invariant air electrode. The cells are always in balance by definition. Periodic complete discharge is not required for proper cell operation. The battery is self-equalizing during charging as slight overcharging is normal and causes no damage while continuing to charge the cells of greater capacity.

Some regular maintenance is required for proper battery operation. Make-up water must be added to replace that lost to evaporation and electrolysis. The carbon dioxide scrubber will need its medium changed periodically and the electrolyte will also have to be changed at some relatively infrequent interval. Air and electrolyte filters will require cleaning and/or replacement and electrical connections may have to be inspected and cleaned. No estimate can be given for the frequency of these tasks as battery development has not yet reached a stage where estimates would be meaningful.

The low cost nature of the iron-air system will probably make battery refurbishment unnecessary with the exception of the replacement of a prematurely failed module.

4.7 Packaging Flexibility

Table 4-7 shows volumes predicted for various battery designs by the model. The values include a 15% volume penalty for auxiliary systems. The size and shape of the iron-air battery appears to be very flexible. The constraints, at
Table 4-7. Predicted Battery Volume.

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Near Term</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter</td>
<td>102</td>
<td>81 liters</td>
</tr>
<tr>
<td>Hybrid</td>
<td>185</td>
<td>147</td>
</tr>
<tr>
<td>EV or Van</td>
<td>236</td>
<td>187</td>
</tr>
<tr>
<td>Full Performance</td>
<td>260</td>
<td>204</td>
</tr>
</tbody>
</table>

At this point in time, one key issue is that edge current collection is required by the system and air must be supplied to the air electrodes. A change in electrode shape would require redesign of the current collector with a possible weight penalty for an unfavorable shape. Both horizontal and vertical cell designs are being considered. Subsystems are required to handle air flow and electrolyte circulation. While placement of subsystems at a location remote from the battery will increase system complexity and weight and volume penalties, ducts and tubing can be designed as needed for spatial considerations.

While iron-air cells show no special scaling problems, the peripherals may have minimum sizes and weights adding a penalty to the low end of the 10-50 kWh range. Design of the auxiliaries will be performed as the iron-air development program proceeds toward a prototype system demonstration objective.
5. Conclusion

The iron-air battery system using the Westinghouse bi-functional air electrode, offers performance adequate for the specified electric vehicle propulsion missions proposed in this study. The flexibility offered by the invariant air electrode allows battery power and energy to be tailored to a specific task or vehicle mission need. The batteries are fabricated from inexpensive materials in abundant supply, resulting in a low cost battery system ($20-40 $/kWh). No special problems are expected due to start-up, shut-down or maintenance procedures and there are no inherent safety problems related to this particular system. Boundary conditions for iron-air battery performance, derived from the model used, are given in Figure 5-1. Estimates of the performance of peripheral systems include considerable uncertainty due to a lack of experimental data. Further research and development effort is required on the iron-air system to provide performance and life data which can be used to evaluate and compare this system to other candidates for the various EV missions. With respect to the three important battery criteria established by possible vehicle manufacturers, safety, reliability, and life, the Iron-Air system is a strong contender for use in vehicles in the 1990's.
Figure 5-1. Boundary Conditions for Iron-Air Battery Performance.
APPENDIX F

PERFORMANCE/COST PROJECTIONS
FOR LITHIUM/IRON SULFIDE BATTERIES
PERFORMANCE/COST PROJECTIONS
FOR LITHIUM/IRON SULFIDE BATTERIES

A. A. Chilenskas and H. Shimotake
Argonne National Laboratory
Argonne, Illinois 60439

February 1984
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION.</td>
<td>1</td>
</tr>
<tr>
<td>II. PERFORMANCE MODELING.</td>
<td>4</td>
</tr>
<tr>
<td>III. COST PROJECTIONS.</td>
<td>6</td>
</tr>
<tr>
<td>IV. TECHNICAL SUPPORT FOR PROJECTIONS</td>
<td>6</td>
</tr>
<tr>
<td>V. ENERGY BALANCE.</td>
<td>8</td>
</tr>
<tr>
<td>VI. LIFE CONSIDERATIONS</td>
<td></td>
</tr>
<tr>
<td>A. Cycle Life.</td>
<td>11</td>
</tr>
<tr>
<td>B. Life Effects.</td>
<td>11</td>
</tr>
<tr>
<td>VII. OTHER OPERATIONAL CHARACTERISTICS</td>
<td></td>
</tr>
<tr>
<td>A. Special Charge Requirements</td>
<td>12</td>
</tr>
<tr>
<td>B. Maintenance Requirements</td>
<td>13</td>
</tr>
<tr>
<td>VIII. PACKAGING FLEXIBILITY</td>
<td></td>
</tr>
<tr>
<td>A. Volumetric Considerations</td>
<td>14</td>
</tr>
<tr>
<td>B. Size Limitations</td>
<td>14</td>
</tr>
<tr>
<td>C. Special Considerations</td>
<td>15</td>
</tr>
<tr>
<td>D. Scale Effects</td>
<td>15</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A. Prismatic Battery Performance Projections</td>
<td>17</td>
</tr>
<tr>
<td>B. Bipolar Battery Performance Projections</td>
<td>21</td>
</tr>
<tr>
<td>C. Battery Manufacturing Cost Projections</td>
<td>29</td>
</tr>
<tr>
<td>D. Life Considerations</td>
<td>37</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ongoing Programs in Li-alloy/MS Battery Development</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Specific Energy</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Peak Power</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Projected Costs</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Energy Consumption</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Estimates of In-Use Energy Consumption</td>
<td>10</td>
</tr>
<tr>
<td>A-1</td>
<td>Specific Energy with Constant Power Discharge</td>
<td>17</td>
</tr>
<tr>
<td>A-2</td>
<td>Specific Energy</td>
<td>18</td>
</tr>
<tr>
<td>B-1</td>
<td>Cell Design Parameters</td>
<td>28</td>
</tr>
<tr>
<td>B-2</td>
<td>Cell Dimensions</td>
<td>28</td>
</tr>
<tr>
<td>C-2</td>
<td>Feedstock/Market Price Comparison</td>
<td>30</td>
</tr>
<tr>
<td>C-3</td>
<td>Feedstock Cost for a High-Power Battery</td>
<td>31</td>
</tr>
<tr>
<td>C-4</td>
<td>Production Costs of Li$_2$S + LiBr-Containing Electrolyte</td>
<td>32</td>
</tr>
<tr>
<td>C-5</td>
<td>Non-Lithium-Containing Materials</td>
<td>33</td>
</tr>
<tr>
<td>C-6</td>
<td>Feedstock Cost for Producing Li$_2$S and LiCl</td>
<td>33</td>
</tr>
<tr>
<td>C-7</td>
<td>Production Cost of Li$_2$S and LiCl from Feedstock</td>
<td>34</td>
</tr>
<tr>
<td>C-8</td>
<td>OEM Selling Price</td>
<td>35</td>
</tr>
<tr>
<td>D-1</td>
<td>Summary of Li/FeS Cell Performance Tests</td>
<td>38</td>
</tr>
<tr>
<td>D-2</td>
<td>Module Tests</td>
<td>41</td>
</tr>
<tr>
<td>D-3</td>
<td>Battery Maintenance Cost for an Electric Automobile</td>
<td>47</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Theoretical Specific Energies of Selected Battery Systems</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Energy Balance for JPL/FUD Cycle</td>
<td>9</td>
</tr>
<tr>
<td>A-1</td>
<td>Specific Energy of Prismatic Li-Al/FeS Batteries</td>
<td>19</td>
</tr>
<tr>
<td>A-2</td>
<td>Peak Power of Prismatic Li-Al/FeS Batteries</td>
<td>20</td>
</tr>
<tr>
<td>B-1</td>
<td>Computer Flow Chart for Specific Energy</td>
<td>21</td>
</tr>
<tr>
<td>B-2</td>
<td>Computer Flow Chart for Peak Power</td>
<td>21</td>
</tr>
<tr>
<td>B-3</td>
<td>Specific Energy as a Function of Constant Power Discharge</td>
<td>26</td>
</tr>
<tr>
<td>B-4</td>
<td>Specific Power (30-sec) as a Function of State-of-Charge</td>
<td>27</td>
</tr>
<tr>
<td>D-1</td>
<td>Cycle Life of MERADCOM Cells</td>
<td>39</td>
</tr>
<tr>
<td>D-2</td>
<td>Typical Voltage of Short-Circuited Cells</td>
<td>43</td>
</tr>
<tr>
<td>D-3</td>
<td>Failure Rate for Cells with MTTF of 1500 Cycles</td>
<td>45</td>
</tr>
<tr>
<td>D-4</td>
<td>Effect of Cell Replacement on Battery Life</td>
<td>46</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Research on the lithium/molten salt electrolyte system at ANL and several industrial developers has given rise to a family of electrodes containing lithium in the negative electrode and sulfur in the positive electrode. The electrode couple that has received the most attention has been Li-Al/FeS with its development carried well beyond the laboratory stage. Based upon the JPL study guideline of choosing technology that could be demonstrated in prototype form in the 1990-1992 era, the Li-Al/FeS technology rather than the potentially more energetic Li-Si/FeS2 technology has been chosen as a basis for the performance and cost projections.

The position the Li-Al/FeS couple holds in relation to other battery couples in terms of theoretical specific energy is shown in Fig. 1. As can be calculated from the values given, Li-Al/FeS has greater than 2 1/2 times the theoretical specific energy of Pb/PbO2. The most energetic couple in the lithium/molten salt family is Li/S and has about 15 times the theoretical specific energy of Pb/PbO2 and about 3 1/2 times that of the Na/S couple currently under development.

Research and development work on the lithium/molten salt system is worldwide. A brief summary of ongoing work is presented in Table 1.
Fig. 1. Theoretical Specific Energies of Selected Battery Systems.
TABLE 1

ONGOING PROGRAMS IN Li–ALLOY/MS BATTERY DEVELOPMENT

- **DOE Work at ANL**
 - Research on advanced electrodes
 - Component design studies

- **U.S. Army (MERADCOM)**
 - Fork Lift Truck Program. Cells exceed 900 cycles

- **Electric Power Research Institute (EPRI)**
 - Van Battery Program
 - Li–Al/FeS modules
 - ANL and Gould

- **U.S. Air Force**
 - Satellite Battery Program. At Gould.

- **International**
 - Development Programs in England, Korea, Japan, U.S.S.R.
 - Commercialization of Li–Al/FeS by Chemelectron (Toronto) subsidized by Canadian government
II. PERFORMANCE MODELING

Two types of battery designs were evaluated for this study. The prismatic design, presently under development at ANL and Gould for the EPRI van battery program, has excellent prospects for meeting the requirements for the commuter car and the 3/4-ton van with improved state-of-the-art Li-Al/FeS technology. The bipolar design, being tested at Gould, has the potential for significant performance improvement over the prismatic design especially in terms of power density as required by the hybrid vehicle and high energy density as required by the long-range full performance automobile.

The specific energy and peak power projections for four classes of batteries are given in Tables 2 and 3. A prismatic design using Li-Al/FeS with a MgO separator and LiCl-KCl electrolyte was chosen for the class 2 battery because (1) the requirements for the commuter car and van can be met with modest improvements in the existing technology and (2) Li-Al/FeS with a MgO separator is the system with the lowest manufacturing cost.

The bipolar battery was chosen for the full-performance automobile and the hybrid vehicle. The main distinction between the class 3 and class 4 bipolar batteries is in the use of an all lithium electrolyte (LiBr-LiCl-LiF) in place of LiCl-KCl to improve the power performance of the hybrid battery. Li-Si is added to the Li-Al alloy in the negative electrode to provide an increase in the specific energy.

A discussion of the methodology used in projecting the performance of the prismatic batteries is given in Appendix A.

A discussion of the methodology used to project the performance of a bipolar Li-Al/FeS battery is given in Appendix B.
Table 2. Specific Energy, Wh/kg

<table>
<thead>
<tr>
<th>Class</th>
<th>Battery Designation</th>
<th>Battery Design</th>
<th>Discharge Rate (W/kg)</th>
<th>20</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present Prismatic</td>
<td>Prismatic</td>
<td></td>
<td>63</td>
<td>50</td>
<td>43</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Commuter Prismatic</td>
<td>Prismatic</td>
<td></td>
<td>87</td>
<td>75</td>
<td>67</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3/4 ton van</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Full-Performance</td>
<td>Bipolar</td>
<td></td>
<td>136</td>
<td>115</td>
<td>103</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Hybrid</td>
<td>Bipolar</td>
<td></td>
<td>136</td>
<td>115</td>
<td>103</td>
<td>90</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3. Peak Power, W/kg (30-second)

<table>
<thead>
<tr>
<th>Class</th>
<th>Battery Designation</th>
<th>Battery Design</th>
<th>State of Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>1</td>
<td>Present Prismatic</td>
<td>Prismatic</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>Commuter car 3/4 ton van</td>
<td>Prismatic</td>
<td>190</td>
</tr>
<tr>
<td>3</td>
<td>Full-Performance</td>
<td>Bipolar</td>
<td>242</td>
</tr>
<tr>
<td>4</td>
<td>Hybrid*</td>
<td>Bipolar</td>
<td>278</td>
</tr>
</tbody>
</table>

*A 15% power increase over the full-performance bipolar battery is assumed due to the use of the all lithium electrolyte.
III. COST PROJECTIONS

The projected OEM price for Li-Al/FeS batteries for the commuter car, 3/4-ton van, full-performance automobile and the hybrid vehicle is given in Table 4.

The basis for the cost projections is given in Appendix C.

IV. TECHNICAL SUPPORT FOR PROJECTIONS

The principle departures from existing technology used in making the performance and cost projections were:

(1) The use of a bipolar design for the full-performance and hybrid vehicle battery as a more appropriate for the high-power and high-energy outputs that are desired. The feasibility of the bipolar design hinges to a large extent upon the development of an adequate peripheral seal. Bipolar cells have been built and tested at the British Admiralty, ANL, Gould, and Eagle-Picher. The starved-electrolyte concept being developed at Gould lends itself to bipolar designs by immobilizing the electrolyte to a significant degree. Various concepts for seals have been proposed that appear to have the potential for a successful seal. Tests of bipolar stacks at Gould have shown very promising early results.

(2) The production of all lithium-containing compounds from a feedstock of Li$_2$CO$_3$ is proposed as a method of reducing the manufacturing cost of lithium-alloy/iron sulfide batteries. This procedure requires the fabrication of cells in the discharged state, i.e., with Li$_2$S as the electrochemically active material in the positive electrode. Uncharged cells using a mixture of Li$_2$S and iron powder in the positive electrode have been tested with good results at ANL.(1) The performance of the cells were about the same as for
Table 4. Projected Costs

<table>
<thead>
<tr>
<th>Class</th>
<th>Battery Designation</th>
<th>Battery Design</th>
<th>Energy kWh</th>
<th>Power kW</th>
<th>P/E</th>
<th>Materials</th>
<th>OEM Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1) Li-Al/FeS; BN</td>
<td>$/kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1C1-KCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2) Li-Al-Si/FeS; MgO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LiBr-L1C1-LIF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Present</td>
<td>Prismatic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Commuter 3/4 ton van</td>
<td>Prismatic</td>
<td>12</td>
<td>24</td>
<td>2</td>
<td>Li-Al/FeS; MgO</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prismatic</td>
<td>23</td>
<td>46</td>
<td>2</td>
<td>LiCl-LCl</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>Full-Performance</td>
<td>Bipolar</td>
<td>50</td>
<td>50</td>
<td>1</td>
<td>Li-Al/FeS; MgO</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LiCl-KCl</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hybrid</td>
<td>Bipolar</td>
<td>15</td>
<td>50</td>
<td>3.3</td>
<td>Li-Al-Si/FeS; MgO</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LiBr-L1C1-LIF</td>
<td></td>
</tr>
</tbody>
</table>
cells built in the charged state. Precautions need to be taken in uncharged cell fabrication because of the sensitivity of Li$_2$S to the moisture content in the atmosphere. Also, work at ANL showed that charging the cell must commence as soon as the electrolyte is molten to maximize cell lifetime. Considerable work remains in developing the uncharged cell fabrication technology to the present level of charged cell construction. Based upon the experience with uncharged cell fabrication at ANL, the prospects for the successful development of this approach for post 1990 vehicle batteries appears good.

V. ENERGY BALANCE

An energy balance for vehicle operating on the JPL modified FUD cycle was developed based upon the data supplied by JPL and assumptions given below.

Basis:

1. Battery Weight = 488 kg
2. Vehicle Test Weight = 1660 kg
3. Ave Speed for Cycle 3 = 19.6 mph
4. Time for Cycle 3 = 463/3600 = 0.121 h
5. Cycle 3 Distance = 19.6 x .121 = 2.37 mile
6. Distance/Day = 12 x 2.37 = 28.4 mile
7. Battery Heat Loss at Operating Temp. = 150 W

A diagram showing the energy input/output for each major component that occurs during the performance of cycle 3 is given in Fig. 2.
Fig. 2. Energy Balance for JPL/FUD Cycle.

Basis
Cycle Segment - Cycle 3
Time/cycle 0.121 h (463 sec)
Distance/cycle 2.37 mile
Charger Efficiency 85% (DC out/AC in)
Battery Efficiency 70% (DC out/DC in)
Battery Weight 488 kg
Vehicle Test Weight 1660 kg
A summary of energy consumption and selected energy performance coefficients is given in Table 5.

Table 5. Energy Consumption

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Heat Loss/24 h = 150 W x 24 = 3600 Wh</td>
<td></td>
</tr>
<tr>
<td>I²R heating/24 h = 262 Wh x 12 cycles = 3144 Wh</td>
<td></td>
</tr>
<tr>
<td>Energy Required to Maintain Temperature = 456 Wh</td>
<td></td>
</tr>
<tr>
<td>AC energy required = 949 Wh/2.37 mile = 400 Wh/mile</td>
<td></td>
</tr>
<tr>
<td>Battery DC Output = 612 Wh/2.37 mile = 258 Wh/mile</td>
<td></td>
</tr>
<tr>
<td>Vehicle Efficiency = 258/1.66 tonnes = 155 Wh/tonne mile</td>
<td></td>
</tr>
<tr>
<td>Overall Energy Efficiency = 258/400 = 0.65</td>
<td></td>
</tr>
</tbody>
</table>

The estimates of In-Use Energy Consumption is given in Table 6.

Table 6. Estimates of In-Use Energy Consumption

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up and shut-down</td>
<td></td>
</tr>
<tr>
<td>None required; battery kept at constant temperature</td>
<td></td>
</tr>
<tr>
<td>Self-Discharge</td>
<td></td>
</tr>
<tr>
<td>Negligible; Ah efficiency 98-99+%</td>
<td></td>
</tr>
<tr>
<td>Shunt Current</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Parasitics</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Thermal Loss</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24 Wh</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14 Wh</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Charge Eff.</td>
<td></td>
</tr>
<tr>
<td>(DC Out/DC In)</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td></td>
</tr>
</tbody>
</table>
VI. LIFE CONSIDERATIONS

A. Cycle Life

Engineering-sized cells are currently achieving from 500 to >1000 cycles with prospects for achieving 1500 cycles MTTF in the next few years considered very good.

Modules of 5 to 10 cells have been tested with the lifetimes obtained generally following that expected from the life time obtained in single cell tests. One module failed after only a few cycles when defects in one or more cells allowed electrolyte leakage.

The present status and projected cycle life of cells, modules, and batteries is discussed in Appendix D.

As discussed in the Appendix, a battery comprised of cells having a MTTF of 1500 cycles with a failure distribution characterized by a Weibull slope of 5 would achieve 1000 cycles with a replacement of 5 cells.

B. Life Effects

The effect of cycle life on specific energy has already been noted (Table 1, Appendix D). Capacity loss of cells has been progressively reduced from about 8%/100 cycles to present values of about 2%/100 cycles.

The resistance of the cells do not appear to change significantly with cycle life, hence the specific power is expected to be unchanged with battery life.

The coulombic efficiency of new cells range between 98-99+% with only slight decreases in coulombic efficiency occurring until cell failure, at which point the efficiency drops drastically. Failed cells, however, have been shown to contribute to battery power for part of the discharge cycle even when partially shorted.

The effect of cycle life on the thermal characteristics of the cells has not been measured. No potentially adverse effects have come to our attention.
VII. OTHER OPERATIONAL CHARACTERISTICS

A. Special Charge Requirements

The normal charge and discharge reactions in the Li-Al/FeS cell result in the formation of solid products without gaseous side-reactions, which permits the cell to be sealed and eliminates the need for electrolyte replacement. Information on the effects of overcharging and overdischarging Li-Al/FeS cells has been obtained from thermodynamic data, laboratory-scale cell experiments, full-scale cell tests, and post-test examinations of cells. The normal charge cutoff voltage (IR-included) is 1.55V and the reversible (IR-free) voltage is 1.33V. When the charge cutoff voltage is exceeded, the first significant overcharge reaction, which occurs at about 1.8 V (IR-free).

\[\text{Fe} + 2\text{LiCl} + 2\text{Al} \rightarrow \text{FeCl}_2 + 2\text{LiAl} \]

This reaction involves (1) anodic oxidation of the iron current collector in the FeS electrode to form FeCl₂ (complexed as KFeCl₃ or K₂FeCl₄) and (2) the deposition of additional lithium in the Li-Al electrode. Corrosion of the iron current collector by this mechanism can be reduced by the addition of iron powder to the FeS electrode.

The normal IR included discharge cutoff voltage for Li-Al/FeS cells is 1.0 or 0.9V. The principal overdischarge reaction is

\[\text{Al} + 3\text{LiCl} \rightarrow \text{AlCl}_3 + 3\text{Li} \]

This reaction occurs at -1.5V (IR-free). Aluminum in the LiAl electrode undergoes anodic oxidation to form AlCl₃, which is soluble in the electrolyte, and metallic lithium is deposited on the iron sulfide electrode. The cell under these conditions is in a state of reversal. Continuing to overdischarge eventually causes a short circuit due to the deposition of metallic aluminum in the separator or the formation of liquid lithium at the iron sulfide electrode.
The reaction at -1.5V (IR-free) is consistent with the maximum voltage observed (-1.6) during cell reversal tests that were performed at ANL.

Individual cell charge balancing (equalization) is required with Li-Al/FeS cells because small differences in the coulombic efficiency of the cells when cycled will produce a cell-to-cell charge imbalance. The cell to cell variation of coulombic efficiency is small and 10-cell series-connected modules have been operated with “equalization” charging being performed on a once-per-week basis. This observation suggests that van fleets could operate with an inexpensive bulk charger dedicated to each van (for overnight charging) while rotating a charger-equalizer unit among as many as seven or more vans. Concepts for inexpensive charger/equalizers for this battery system are under investigation in the EPRI program.

Periodic complete discharge is not necessary for this system.

B. Maintenance Requirements

Regular maintenance is not required because the battery is sealed and requires no electrolyte replacement. The battery temperature is controlled automatically to the proper operating temperature by the built-in heat exchanger (heating and cooling capability). The bulk charger (used for overnight charging) can also have a separate AC circuit that provides the power to the battery heaters for temperature maintenance for periods of intermediate storage (1-2 weeks). For longer term storage, the battery can be allowed to cool to room temperature and reheated to restore it to service. Periodic equalization (every 1-2 weeks) by a charger-equalizer unit is required. Equalization can be accomplished overnight.

The ANL van battery design(3) developed for the EPRI program packages individual cells into 9-cell module trays. Individual cells can be replaced in a planned maintenance step that provides a cool-down of the
battery to room temperature. An example that was described earlier (see Appendix C - Life Considerations) suggested that replacement of 5 cells in a 100 cell battery would significantly extend the battery life and be cost-effective.

VIII. PACKAGING FLEXIBILITY

A. Volumetric Considerations

The van battery design(3) which uses SOA Li-Al/FeS cells and is based upon the use of an electric Chrysler T-van provides a reference for volumetric considerations. The van battery is designed to fit the maximum space available under the deck, 75 x 30 x 12 inches. The energy output for this battery is projected at 36 kWh which yields a volumetric energy density of 82 Wh/l. A conservative packaging design was employed because space was available under the deck which did not infringe upon useable space within the vehicle. With refined packaging, values expected for the commuter car or van battery produced in the 1990's would be 100-125 Wh/l. Specific designs have not been attempted for the bipolar battery. A preliminary estimate puts the bipolar batteries in the range of 125-175 Wh/l.

B. Size Limitations

Cells have been built with two to seven electrode plates with the plate sizes ranging from 3 x 5 inches to 12 x 12 inches. The system as developed allows a great deal of flexibility in the size and capacity of the cells. The larger plate designs (i.e., 12 x 12 inches) have current distribution and heat removal requirements somewhat more demanding than the 5x7 inch size currently being developed for EV batteries.
C. Special Considerations

The battery design includes a high-efficiency insulating case, a heat-exchanger, voltage and temperature instrumentation taps packaged as a single unit. A small blower will be mounted adjacent to the battery to circulate the cooling air.

D. Scale Effects

Scaling factors for batteries in the range of interest i.e., 10-50 kWh have not been developed. Based upon the flexibility available in the cell design, i.e., size, thickness, and number of plates, efficient cell designs can be developed for batteries that span the 10-50 kWh range.

The battery shape, which is determined by the application, influences the surface/volume ratio of the battery and has an important effect upon volumetric energy density because of the need for an insulating case. The impact of shape upon the gravimetric energy density is less important. For the prismatic battery designs that have been studied thus far discount factors of 0.5 to 0.6 have been obtained that convert cell volumetric energy density to battery volumetric energy density. The discount factors developed by design studies for the gravimetric energy density have ranged from 0.75-0.8. Preliminary cell design studies have been completed for bipolar cells. Scaling factors and discount factors for bipolar cells packaged as a battery unit have not as yet been developed.
ACKNOWLEDGEMENT

This report was prepared in support of the Jet Propulsion Laboratory Electric and Hybrid Vehicle Project, Contract NASA MIPR No. WO-8756.

REFERENCES

APPENDIX A - PRISMATIC BATTERY PERFORMANCE PROJECTIONS

I. Specific Energy Projections

The specific energy as a function of constant power discharge was obtained from an estimate based upon a high-power cell built and tested by T. Kaun.

The values projected by T. Kaun\(^{(1)}\) are given in Table A-1.

<table>
<thead>
<tr>
<th>Discharge Rate (W/kg)</th>
<th>Specific Energy (Wh/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>111</td>
</tr>
<tr>
<td>11</td>
<td>107</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>47</td>
<td>93</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>126</td>
<td>63</td>
</tr>
</tbody>
</table>

The state-of-the-art and projected specific energy for cells having P/E ratio = 2 was obtained from modeling studies.\(^{(2)}\) These values are given in Table A-2.

\(^{(1)}\) T. Kaun, Private communication, Argonne National Laboratory, March 1981.
\(^{(2)}\) E. Gay, Private communication, Argonne National Laboratory, Jan. 1984.
Table A-2 Specific Energy, Wh/kg

<table>
<thead>
<tr>
<th>Technology State</th>
<th>Cells</th>
<th>Batteries*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA</td>
<td>87</td>
<td>65 @ 16 W/kg</td>
</tr>
<tr>
<td>Projected (1990)</td>
<td>115</td>
<td>86 @ 21 W/kg</td>
</tr>
</tbody>
</table>

*Derating factor of 0.75 (from cells to batteries).

These values are plotted on Fig. A-1 which provides the basis for the SOA and projected values for the specific energy of Li-Al/FeS batteries as a function of constant power discharge rates.

11. Peak Power Projections

The peak power estimates are based upon a shape factor obtained from the estimates based upon an experimental high-power cell and modeling studies for cells with a P/E ratio of 2.

These values are plotted in Fig. A-2.
Fig. A-1. Specific Energy of Prismatic Li-Al/FeS Batteries.
Fig. A-2. Peak Power of Prismatic Li-Al/FeS Batteries.
APPENDIX B - BIPOLAR BATTERY PERFORMANCE PROJECTIONS

A study was made to characterize the projected performance of the bipolar type Li-Al/FeS batteries. The study was focused on the following:

1) Specific energy of a battery when discharged at a constant specific power.

2) 30-second specific power capability of the battery as a function of the state-of-charge (SOC) as defined for the standard C/3 rate.

I. Description of Bipolar Type Li-Al/FeS Cell Batteries

The cell considered in the study employs Li-Al/LiCl-KCl/FeS operating at about 460°C with open circuit voltage of 1.35 V at the fully charged state. The bipolar cell discussed in this study comprises stacked layers of circular electrodes, 0.2 cm thick ceramic (MgO powder) separators, a ceramic (MgO) ring insulator, and a 0.018 cm thick stainless steel can. The bipolar plates are made of 0.018 cm thick stainless steel. As we will discuss later, an electrode diameter of 17.78 cm (thick) with a three bipolar plates was found to satisfy the requirements.

II. Methodology

For the analysis, a conceptual cell design was developed by first selecting mechanical dimensions and a theoretical capacity and applying key design parameters including loading densities and the negative/positive ratio. The cell design was then used to calculate 1) specific energies at different rates of discharge, and 2) 30-second peak specific powers at different states of charges as defined. Flow charts of the computer programs used to carry out the analysis are shown in Fig. B1 and B2.
Fig. B-1. Computer Flow Chart for Specific Energy.
Fig. B-2. Computer Flow Chart for Peak Power.
In calculating the specific energies, the utilization of the active material in the cell at the desired discharge rate must be determined. For this, the following formula which is derived from experimental data on an advanced prismatic cell was used.

\[U(\text{current}) = 1 - 1.67i \]

where \(i \) is in A/cm\(^2\).

The utilization is also known to be affected by the electrode thickness although its effect diminishes as the thickness decreases particularly below 0.15 cm. The effect is analytically expressed by the following formula based on an experimental correlation.

\[U(\text{thickness}) = 1.15 - tc \]

where \(tc \) is the positive electrode thickness in cm. Two values of the above utilizations were then compared and the smaller value was taken to determine the discharge capacity of the cell at the selected rate. For determining the average cell voltage, the following equation was used.

\[V_{av} = 1.35 - C \cdot i \]

where \(V_{av} \) is in volt, \(R \) is cell resistance in ohm-cm\(^2\), and \(i \) is current density in A/cm\(^2\). The cell resistances were taken as 0.8 for advanced and 1.2 for the SOA cells. These values are similar to those found for the prismatic cells. The energy and power outputs of the cell can be calculated by multiplying the average voltage by the cell capacity and current, respectively.

For the calculation of the peak power, one needs to know the peak-power flux, W/cm\(^2\). Data for 30-sec peak power are available for SOA and

an advanced prismatic cell\(^{(4)}\) as a function of the SOC. The values are listed below:

<table>
<thead>
<tr>
<th></th>
<th>80% SOC</th>
<th>50% SOC</th>
<th>30% SOC</th>
<th>10% SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced, W/cm(^2)</td>
<td>0.57</td>
<td>0.41</td>
<td>0.32</td>
<td>0.25</td>
</tr>
<tr>
<td>SOA, W/cm(^2)</td>
<td>0.40</td>
<td>0.25</td>
<td>0.17</td>
<td>0.10</td>
</tr>
</tbody>
</table>

These values are observed for the prismatic cells, and even higher values are expected for a bipolar type cell because of its intrinsically low cell resistance. The cell values obtained were multiplied by 0.75 to allow for the weight of the battery case and other battery components.

III. Summary of Results

A series of computations were made for both the advanced and SOA designs with the electrode diameter varying from 3 in. (7.62 cm) to 7 in. (17.78 cm), the cell capacity varying from 100 to 300 Ah, and the number of bipolar plates varying from 1 to 3. For both the advanced and SOA design, the cells having 7 inch electrodes, 3 bipolar plates and theoretical capacity of 180 Ah were selected because they provided the best P/E match to the requirements. The results are summarized below and also presented in Fig. B3 and B4.

1. Specific energy of a battery when discharged at a constant specific power

<table>
<thead>
<tr>
<th></th>
<th>20 W/kg</th>
<th>60 W/kg</th>
<th>80 W/kg</th>
<th>100 W/kg</th>
<th>200 W/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced, Wh/kg</td>
<td>136</td>
<td>115</td>
<td>103</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>SOA, Wh/kg</td>
<td>121</td>
<td>97</td>
<td>83</td>
<td>69</td>
<td>-</td>
</tr>
</tbody>
</table>

2. 30-second specific power capability as a function of the SOC.

<table>
<thead>
<tr>
<th></th>
<th>80% SOC</th>
<th>50% SOC</th>
<th>30% SOC</th>
<th>10% SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced, W/kg</td>
<td>242</td>
<td>187</td>
<td>146</td>
<td>114</td>
</tr>
<tr>
<td>SOA, W/kg</td>
<td>167</td>
<td>104</td>
<td>71</td>
<td>42</td>
</tr>
</tbody>
</table>

\(^{(4)}\) Redey, L., Private communication (1982).
Fig. B-3. Specific Energy as a Function of Constant Power Discharge.
Fig. B-4. Specific Power (30-sec) as a Function of State of Charge.
The cell design parameters and cell dimensions used in the analysis are summarized in Tables B1 and B2.

Table B1. Cell Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Advanced</th>
<th>SOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Electrode Dia, cm</td>
<td>17.78</td>
<td>17.78</td>
</tr>
<tr>
<td>Electrode Area, cm²</td>
<td>744.5</td>
<td>744.5</td>
</tr>
<tr>
<td>No. of Bipolar Layers</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Theoretical Capacity, Ah</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Neg Loading Density, Ah/cm³</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Pos Loading Density, Ah/cm³</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Neg/Pos Ratio</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Cell Resistance, ohm cm²</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Cell Thickness, cm</td>
<td>1.94</td>
<td>2.21</td>
</tr>
<tr>
<td>Cell Weight, kg</td>
<td>1.23</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table B2. Cell Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Advanced</th>
<th>SOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode Dia, cm</td>
<td>17.78</td>
<td>17.78</td>
</tr>
<tr>
<td>No. of Bipolar Layers</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electrode Area, cm²</td>
<td>744.5</td>
<td>744.5</td>
</tr>
<tr>
<td>Electrode Thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive, cm</td>
<td>0.151</td>
<td>0.173</td>
</tr>
<tr>
<td>Negative, cm</td>
<td>0.266</td>
<td>0.332</td>
</tr>
<tr>
<td>Separator, cm</td>
<td>0.200</td>
<td>0.200</td>
</tr>
<tr>
<td>Can, cm</td>
<td>0.018</td>
<td>0.018</td>
</tr>
<tr>
<td>Total Thickness, cm</td>
<td>1.941</td>
<td>2.21</td>
</tr>
<tr>
<td>Total cell volume, cm³</td>
<td>733</td>
<td>833</td>
</tr>
<tr>
<td>Total cell weight, kg</td>
<td>1.228</td>
<td>1.344</td>
</tr>
</tbody>
</table>
APPENDIX C - BATTERY MANUFACTURING COST PROJECTIONS

I. INTRODUCTION

The potential for low-cost battery manufacture is explored here by (1) the use of the Gould cell technology (powder MgO separators) (2) manufacture of all the required lithium containing compounds from a Li₂CO₃ feedstock (3) use of low-carbon steel* for the cell container, electrode structure, and particle retainers (mechanically perforated sheet), and (4) manufacture of the cell in a discharged state, i.e., use of Li₂S as the source of electrochemically active lithium.

The cost impact of the LiBr-LiCl-LiF electrolyte versus the LiCl-KCl electrolyte is examined by choosing the Li-Br containing salt for a high-power battery and the LiCl-KCl electrolyte for a high-energy battery.

II. MATERIALS COST

The market price of materials of interest for this analysis is given in Table C1.

Starting with a feedstock of Li₂CO₃, H₂S, HF, HCl, H₂SO₄, and NaBr, the feedstock costs to make a pound of Li₂S, LiBr, LiCl, and LiF (as required for the high-power cell) is listed and compared with market prices in Table C2.

*LiAl was chosen as the negative active material to permit the use of low-carbon steel for the negative electrode housing.
Table C1. Market Price of Materials* (1983)

<table>
<thead>
<tr>
<th>Material</th>
<th>Market Price, $/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium metal</td>
<td>31.00</td>
</tr>
<tr>
<td>Li₂CO₃</td>
<td>1.48</td>
</tr>
<tr>
<td>LiCl</td>
<td>3.00</td>
</tr>
<tr>
<td>LiF</td>
<td>4.72</td>
</tr>
<tr>
<td>KCl</td>
<td>0.105</td>
</tr>
<tr>
<td>HCl</td>
<td>0.27</td>
</tr>
<tr>
<td>HF</td>
<td>0.68</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.11</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0.04</td>
</tr>
<tr>
<td>NaBr</td>
<td>1.04</td>
</tr>
<tr>
<td>MgO</td>
<td>0.50</td>
</tr>
<tr>
<td>Al</td>
<td>0.60</td>
</tr>
<tr>
<td>Iron powder</td>
<td>1.00</td>
</tr>
<tr>
<td>Low Carbon Steel</td>
<td>0.33</td>
</tr>
<tr>
<td>KCl</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*Chemical Marketing Reporter, Nov. 11, 1983.

Table C2. Feedstock/Market Price Comparison

<table>
<thead>
<tr>
<th>Compound</th>
<th>Feedstock Cost, † $/lb of Compound</th>
<th>Market Price* of Compound, $/lb</th>
<th>Feedstock Cost as % of Market Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li Metal</td>
<td>9.29</td>
<td>31.00</td>
<td>30</td>
</tr>
<tr>
<td>Li₂S</td>
<td>2.48</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>LiBr</td>
<td>1.88</td>
<td>6.50</td>
<td>29</td>
</tr>
<tr>
<td>LiCl</td>
<td>1.52</td>
<td>3.00</td>
<td>51</td>
</tr>
<tr>
<td>LiF</td>
<td>2.63</td>
<td>4.72</td>
<td>56</td>
</tr>
</tbody>
</table>

†Includes Li₂CO₃ plus all reactants to convert Li₂CO₃ to the compound listed.

**Not made in commercial quantities.
III. COST OF CONVERTING Li₂CO₃ TO THE DESIRED COMPOUNDS

The feedstock cost for the conversion of Li₂CO₃ to the desired compounds Li₂S, LiBr, LiCl, and LiF is given in Table C3.

Table C3. Feedstock Cost for a High-Power Battery

<table>
<thead>
<tr>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 5 lb of electrolyte per kWh</td>
</tr>
<tr>
<td>2. Electrolyte composition, wt.%</td>
</tr>
<tr>
<td>LiBr, 68; LiCl, 22; LiF, 10.</td>
</tr>
<tr>
<td>3. 0.67 lb elemental Li req'd per kWh in 2.2 lb Li₂S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cpd Wt. lb/kWh</th>
<th>Feedstock Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li₂S</td>
<td>2.2</td>
<td>2.48 $/lb Cpd</td>
</tr>
<tr>
<td>LiBr</td>
<td>3.4</td>
<td>1.88 $/lb Cpd</td>
</tr>
<tr>
<td>LiCl</td>
<td>1.1</td>
<td>1.52 $/lb Cpd</td>
</tr>
<tr>
<td>LiF</td>
<td>0.5</td>
<td>2.63 $/lb Cpd</td>
</tr>
</tbody>
</table>

| Totals | 7.2 |
| Feedstock Cost $/kWh |
Li₂S	5.45
LiBr	6.39
LiCl	1.67
LiF	1.31
Totals	14.82

The conversion cost of the feedstock was estimated using the following assumptions.

1. The equipment cost, depreciation base, total investment, rent and labor costs are 1/2 of that estimated for the battery plant in ANL-79-59 p. 15 (ADL Method, Table 11). The values for the chemical conversion part of the plant are:

<table>
<thead>
<tr>
<th>Equipment Cost, $x10^6</th>
<th>$2.33, $2.03/kWh (1979 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciation Base, $x10^6</td>
<td>$4.68, $4.07/kWh</td>
</tr>
<tr>
<td>Total Investment, $x10^6</td>
<td>$8.68, $7.55/kWh</td>
</tr>
<tr>
<td>Total Labor, $/kwh</td>
<td>2.13</td>
</tr>
</tbody>
</table>
2. Inflation rate = 1.099 \times 1.096 \times 1.062 = 1.28.

3. Battery size = 24 kWh

4. Plant size 1.15×10^6 kWh/year

The conversion cost of Li_2CO_3 to the desired lithium compounds is shown in Table C4.

Table C4. Production Cost of $\text{Li}_2\text{S} + \text{LiBr}$-Containing Electrolyte from Feedstock

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost Item</th>
<th>$/Battery</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Materials Cost</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials OH</td>
<td>35</td>
<td>10% of materials cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Direct Labor</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Labor OH</td>
<td>182</td>
<td>280% of direct labor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Equipment Depreciation</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rent</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Factory Cost</td>
<td>655</td>
<td>Item 1 + 2 + 3</td>
</tr>
<tr>
<td>5</td>
<td>ROI + Taxes</td>
<td>70</td>
<td>30% of total investment</td>
</tr>
<tr>
<td>6</td>
<td>Production Cost, $/battery</td>
<td>725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Cost, $/kWh</td>
<td>30.21</td>
<td></td>
</tr>
</tbody>
</table>

The cost of the non-lithium-containing materials is given in Table C5.
Table C5. Non-Lithium-Containing Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Wt/kWh</th>
<th>$/lb</th>
<th>$/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>2.5</td>
<td>0.60</td>
<td>1.50</td>
</tr>
<tr>
<td>Iron Powder</td>
<td>3.5</td>
<td>1.00</td>
<td>3.50</td>
</tr>
<tr>
<td>MgO</td>
<td>1.9</td>
<td>0.50</td>
<td>0.95</td>
</tr>
<tr>
<td>L.C. Steel</td>
<td>7.0</td>
<td>0.33</td>
<td>2.31</td>
</tr>
<tr>
<td>Feedthru Parts</td>
<td>-</td>
<td>-</td>
<td>4.80</td>
</tr>
<tr>
<td>Totals</td>
<td>14.9</td>
<td>-</td>
<td>13.06</td>
</tr>
</tbody>
</table>

The feedstock cost for producing Li$_2$S and LiCl for the high-energy battery is given in Table C6.

Table C6. Feedstock Cost for Producing Li$_2$S and LiCl for the High-Energy Battery

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cpd Wt/kWh, lb</th>
<th>Feedstock Cost</th>
<th>$/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$_2$S</td>
<td>2.2</td>
<td>2.48</td>
<td>5.45</td>
</tr>
<tr>
<td>LiCl*</td>
<td>2.2</td>
<td>1.52</td>
<td>3.34</td>
</tr>
<tr>
<td>Totals</td>
<td>4.4</td>
<td>-</td>
<td>7.79</td>
</tr>
</tbody>
</table>

*5 lbs of electrolyte with 44 wt.% LiCl-56 wt.% KCl
The production cost of Li$_2$S and LiCl from the feedstock is given in Table C7.

Table C7. Production Cost of Li$_2$S and LiCl From Feedstock

Basis

Materials Cost $7.79/kWh (Table C6)
Capital, Labor, Rent is 25% of Battery Plant in ANL-79-59

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost Item</th>
<th>$/Battery</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Materials Cost</td>
<td>187</td>
<td>10% of materials costs</td>
</tr>
<tr>
<td></td>
<td>Materials Overhead</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Direct Labor</td>
<td>33</td>
<td>280% of direct labor</td>
</tr>
<tr>
<td></td>
<td>Labor Overhead</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Equipment Depreciation</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rent</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Factory Cost</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ROI + Taxes</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Production Cost</td>
<td>375</td>
<td>($15.60 kWh)</td>
</tr>
</tbody>
</table>

IV. OEM SELLING PRICE

A summary of the costs leading to the estimation of the OEM selling price is given in Table C8. A comparison is made between a high-power battery that employs LiBr-LiCl-LiF electrolyte with a high-energy battery using LiCl-KCl electrolyte.
<table>
<thead>
<tr>
<th>Cost Item</th>
<th>High-Power</th>
<th>High-Energy</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium Bearing Compounds</td>
<td>725</td>
<td>375</td>
<td>Table C4 (High-P); Table C7 (High-E)</td>
</tr>
<tr>
<td>Other Materials</td>
<td>313</td>
<td>320</td>
<td>Table 5; Table C5 + $7 for KCl</td>
</tr>
<tr>
<td>Insulating Enclosure</td>
<td>650</td>
<td>650</td>
<td>Consiglio/Symons estimate</td>
</tr>
<tr>
<td>Material Overhead</td>
<td>1,688</td>
<td>1,345</td>
<td>10% of materials</td>
</tr>
<tr>
<td>Direct Labor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell</td>
<td>131</td>
<td>131</td>
<td>AML-79-59 x inflation</td>
</tr>
<tr>
<td>Cell/Battery</td>
<td>33</td>
<td>33</td>
<td>25% of cell labor</td>
</tr>
<tr>
<td>Direct Labor Overhead</td>
<td>164</td>
<td>164</td>
<td>(Consiglio/Symons)</td>
</tr>
<tr>
<td></td>
<td>459</td>
<td>459</td>
<td>280% of direct labor</td>
</tr>
<tr>
<td>Equipment Depreciation</td>
<td>25</td>
<td>25</td>
<td>AML-79-59 x inflation</td>
</tr>
<tr>
<td>Rent</td>
<td>8</td>
<td>8</td>
<td>AML-79-59 x inflation</td>
</tr>
<tr>
<td>Factory Cost</td>
<td>2,513</td>
<td>2,136</td>
<td>AML-79-59 x inflation</td>
</tr>
<tr>
<td>Capital Investment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Investment</td>
<td>464</td>
<td>464</td>
<td>AML-79-59 x inflation</td>
</tr>
<tr>
<td>ROI + Taxes</td>
<td>139</td>
<td>139</td>
<td>30% of total investment</td>
</tr>
<tr>
<td>Warranty</td>
<td>100</td>
<td>100</td>
<td>Consiglio/Symons study</td>
</tr>
<tr>
<td>OEM Selling Price</td>
<td>2,752</td>
<td>2,375</td>
<td>($115/kWh)</td>
</tr>
<tr>
<td></td>
<td>($99/kWh)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V SUMMARY

1. The main objective of this study was to show that by the use of Li₂CO₃ as a feedstock for the production of all the required lithium-containing compounds, it may be possible to reduce the battery OEM price to about $100/kWh.

2. The ADL costing methodology was followed except where modified by the Consiglio/Symons study. The capital values for equipment, depreciation, and total investment as well as rent were taken from the ANL-79-59 study on cost.

3. Based upon this approach, a trade-off analysis for a high-power system (using the LiBr containing electrolyte) shows a 15% higher cost compared to the system using LiCl-KCl electrolyte ($115/kWh compared to $99/kWh).

4. It seems likely that the power and energy requirements for the commuter car and van can be met using prismatic cell designs optimized for power using LiCl-KCl electrolyte, a Li-Al electrode (to permit use of low-carbon steel for the negative electrode structure) and low-carbon steel for the cell can. By addition of iron powder (a 30% stoichiometric excess) to the positive electrode mix, it would be possible to use low-carbon steel for the positive electrode structure. Mechanically perforated steel sheet in series with the MgO powder separator can probably be used successfully as a particle retainer.

As indicated in Table C8, the OEM cost for such a battery would be $99/kWh.

5. A cost analysis for the bipolar battery was not attempted. For purposes of this study, no distinction between prismatic or bipolar battery manufacturing cost was made.
A. Cells

A summary of the cycle-life tests for the Gould and Eagle-Picher status cells is presented in Table D1. For the purposes of cycle-life testing, a deep cycle was defined as 80% or greater of the theoretical cell capacity, and end of cell life was defined as either a 20% loss of the initial capacity or a drop in the coulombic efficiency to 95%. Groups of at least 12 cells of identical design were cycle-life tested to provide statistical data on the time to failure. The highest mean time to failure (MTTF) was 410 cycles for the Eagle-Picher Group I cells and 330 cycles for the second group of Gould powder separator cells. The Weibull Slope, which defines the distribution of failures, ranged from 1.4 to 3.2. The average capacity loss rate ranged from 2.5 to 8% per 100 cycles.

Significant lifetime improvement was demonstrated by a group of five cells built by Eagle-Picher in a program for the U.S. Army (MERADCOM). The cycle life of the five cells is plotted against the voltage at cut-off at 80% depth of discharge (see Fig.D1). The testing of this group continues with two of the cells having exceeded 1000 cycles. The average capacity loss rate for a cell in this group has been measured at 2%/100 cycles.

Life limiting mechanisms for the cells have been studied extensively by the post-test examination of hundreds of cells. The cells fail by shorting caused by the extrusion of active material from the negative or positive electrode due to ruptures in the electrode containment structures or by shorting caused by the formation of Li-Al protrusions that penetrate the BN separator.*

*This failure mechanism has been experienced only in the Eagle-Picher cells.
Table D1. Summary of Li/FeS Cell Performance Tests at ANL

<table>
<thead>
<tr>
<th></th>
<th>Gould Status Cells</th>
<th>Eagle-Fisher Status Cells</th>
<th>Eagle-Fisher Status Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>Group I</td>
</tr>
<tr>
<td>No. of Cells in Group</td>
<td>12</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Theo. Capacity, Ah</td>
<td>194</td>
<td>194</td>
<td>360</td>
</tr>
<tr>
<td>Av. Operating Temperature, °C</td>
<td>465</td>
<td>a</td>
<td>465-475</td>
</tr>
<tr>
<td>Av. Peak Capacity, Ah</td>
<td>158</td>
<td>157</td>
<td>288</td>
</tr>
<tr>
<td>Std. Deviation in Peak Capacity, ± %</td>
<td>4.5</td>
<td>3.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Av. Specific Energy, Wh/kg</td>
<td>74</td>
<td>80</td>
<td>71</td>
</tr>
<tr>
<td>Peak Specific Power, W/kg</td>
<td>70</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>Cycle Lifeb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High/Low, Cycles</td>
<td>307/14</td>
<td>467/121</td>
<td>542/150*</td>
</tr>
<tr>
<td>Mean Time-to-Failure, Cycles</td>
<td>218/26c</td>
<td>268</td>
<td>330</td>
</tr>
<tr>
<td>Weibull Slope</td>
<td>2.0/3.4</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Av. Capacity Loss Rate, % per cycle</td>
<td>0.08</td>
<td>0.06</td>
<td>0.032</td>
</tr>
</tbody>
</table>

*Temperature was 455°C until 20% capacity loss, then raised in 5°C increments to 455-475°C.

bEnd of life defined as 20% capacity loss or coulombic efficiency decrease to <95%.

cCorrelated as five- and seven-cell groups. Single group correlation not possible.

* Gould Status Cells, Group II, showing the improved performance obtained by raising the temperature to 475°C.
FIG. D-1

CYCLE LIFE OF MERADCOM CELLS

Legend
△ CELL 211
× CELL 206
□ CELL 209
◆ CELL 210
■ CELL 207

VOLTAGE AT END OF DISCHARGE

NUMBER OF DISCHARGES
The Gould cells which employ a MgO powder separator fail by the gradual degradation of the separator which allows the electrodes to contact or by the gradual buildup of iron particles in the separator that eventually bridge and cause a short.

An analysis relating the MTTF and the failure distribution of cells on the expected battery life is given in Section C.

B. Modules

The cycle life achieved by Li-Al/FeS modules tested under deep discharge conditions at ANL and Eagle-Picher, Industries is given in Table D2. In general, the cycle life obtained was that expected based upon cell life results obtained from tests of individual cells. The exception occurred in the test of the 30 cell module which failed early in life due to electrolyte leakage from hairline cracks which developed in several of the cells. The cell cans are at negative potential and fail rapidly when the electrolyte bridges cells in a closely packed cell array. This condition causes an electrolysis reaction resulting the transfer of iron accompanied by rapid discharge of the cells.

Module testing at ANL is continuing in the Electric Power Research Institute (EPRI) program. A 9-cell array of Gould cells will be tested in a fully-engineered system that includes heating and cooling units in a high-efficiency thermal insulated case.

C. Batteries

Test work at ANL has shown that a series-connected module can continue to operate for many cycles with a small percentage of failed cells. Tests were also performed on individual cells with a procedure that simulated

(1) ANL Report, ANL-81-65 pp. 42-46 (February 1982).
Table D2. Module Tests

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of Cells</th>
<th>Battery Voltage V</th>
<th>Battery Capacity kWh</th>
<th>Thermal Insulation</th>
<th>Cycle Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>6</td>
<td>8.8</td>
<td>1.0</td>
<td>Vac-Foil</td>
<td>11</td>
</tr>
<tr>
<td>1979</td>
<td>10</td>
<td>5.9</td>
<td>3.7</td>
<td>Conventional</td>
<td>34</td>
</tr>
<tr>
<td>1979</td>
<td>5</td>
<td>5.6</td>
<td>1.6</td>
<td>Vac-Foil</td>
<td>70</td>
</tr>
<tr>
<td>1980</td>
<td>9</td>
<td>10.6</td>
<td>3.0</td>
<td>Conventional</td>
<td>72</td>
</tr>
<tr>
<td>1981</td>
<td>10</td>
<td>12</td>
<td>2.5</td>
<td>Vac-Foil</td>
<td>71</td>
</tr>
<tr>
<td>1981</td>
<td>10</td>
<td>12</td>
<td>2.5</td>
<td>Vac-Foil</td>
<td>79</td>
</tr>
<tr>
<td>1981</td>
<td>10</td>
<td>11.6</td>
<td>3.8</td>
<td>Conventional</td>
<td>270</td>
</tr>
<tr>
<td>1981</td>
<td>10</td>
<td>11.8</td>
<td>4.0</td>
<td>Conventional</td>
<td>150</td>
</tr>
<tr>
<td>1983</td>
<td>30</td>
<td>36</td>
<td>12</td>
<td>Conventional</td>
<td>12*</td>
</tr>
</tbody>
</table>

*Module failed early in life due to electrolyte leakage from several defective cells (see text).
the behavior of a failed cell in a series-connected string. (2) Cells that had developed a short as a result of lifecycle testing were tested using a timed cycle in which 284 Ah were passed through the cell both on charge and discharge with the voltage and heating rates monitored. The voltage history of such a cell is given in Fig. D2. The main points to be noted are that the shorted cell provides useful voltage for a number of cycles (30-40 cycles) as shown by the curve labeled 2 until it deteriorates to the condition shown by curve 3 where the cell exhibits its peak negative voltage of -1.6 V and its maximum heat generation of 90-100 W on discharge. The duration of this peak negative voltage state was 15-30 cycles when it then tended to a terminal state shown by curve 4. Voltage conditions for the terminal state are -0.4 V on discharge and +0.4 V on charge with heat evolution of 35-40 W on discharge and 15-20 W on charge.

The main conclusion that has been drawn from these tests is that it may be possible to operate a series-connected battery containing a small number of failed cells if provision is made to handle the extra heat generated by the failed cells. This conclusion provides the rationale for considering maintenance schemes that allow the battery to operate until the number of failed cells in the battery drops the capacity below an acceptable level at which time the battery is shut down and the failed cells are replaced.

A battery life analysis for Li-Al/FeS cells with a projected MTTF of 1500 and a Weibull slope of 5 was developed. The assumptions made were (1) initial capacity of 20 kWh delivered by a 100 cell battery (2) 2%/100 cycle capacity loss rate (3) average voltage loss per failed cell of 2.4 V and (4) 80 miles/discharge.

Fig. D2. Typical Voltage of a Short-Circuited Cell on Continued Cycling.
The distribution of failures with cycle-life is given in Fig. D3. Using this data, the battery output as a function of cycles was derived and is shown plotted on Fig. D4. The results show that a battery life of 1000 cycles is possible with the replacement of 5 cells.

Whether it is economical to repair the battery after the first few cells fail will depend upon the cost of repair and the lifetime extension obtained compared to the cost of purchasing a new battery. An example developed in Table D3 suggests that maintenance for an additional 16,000 miles (200 cycles) obtained by replacing 5 cells would be cheaper; that is, amortizing battery first cost over 64,000 miles (800 cycles) results in a cost of 4.7¢/mile while the $600 spent for maintenance provides an additional 16,000 miles and results in a cost of 3.75¢/mile.

To summarize:

1. State-of-the-art cells at the engineering level have shown the potential for achieving >1000 cycles MTTF.
2. Statistical distribution for cells as determined by Weibull analysis show distributions characterized by slopes of 2-3. The potential for improvement to distributions characterized by a Weibull slope of 5 appears good.
3. Typical module tests resulted in obtaining module lifetimes that could be projected from consideration of single cell lifetime data. One module test was abruptly terminated due to electrolyte leakage from cells.
4. Experimental work at ANL with cells and modules has demonstrated the operation of a module with several failed* cells. Individual cells were tested in a mode simulating the operation of a failed cell in a series-connected

*Failure defined by the single cell test criteria of (1) less than 80% of initial capacity or (2) less than 95% coulombic efficiency.
FAILURe RATE FOR CELLS WITH MTTF OF 1500 CYCLES

% FAILURES

0 500 1000 1500 2000

CYCLES

Legend

△ WEIBULL SLOPE 1
X WEIBULL SLOPE 2
□ WEIBULL SLOPE 3
Fig. D-4. Effect of Cell Replacement on Battery Life.

- Drops from 20 kWh to 18 kWh in 500 cycles.
- Minimum acceptable capacity (80% of initial 20 kWh).
<table>
<thead>
<tr>
<th>Cycle No.</th>
<th>Cumulative Miles</th>
<th>Maintenance Work</th>
<th>Costa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-800</td>
<td>64,000</td>
<td>none</td>
<td>$3,000 (Battery purchase)</td>
</tr>
<tr>
<td>800-870</td>
<td>69,600</td>
<td>2 cells replaced</td>
<td>210</td>
</tr>
<tr>
<td>870-910</td>
<td>72,800</td>
<td>1 cell replaced</td>
<td>130</td>
</tr>
<tr>
<td>910-975</td>
<td>78,000</td>
<td>1 cell replaced</td>
<td>130</td>
</tr>
<tr>
<td>970-1000</td>
<td>80,000</td>
<td>1 cell replaced</td>
<td>13C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$3,600</td>
</tr>
</tbody>
</table>

Battery cost to consumer taken as $150/kWh.
Cell cost at $30/cell and labor at $50/hr.
These tests showed that the voltage behavior of a failed cell passed through a voltage maximum of -1.6 V during discharge and then stabilized at -0.4 V. The conclusion drawn from the single-cell work was that the operation of a module with a small percentage of failed cells might be feasible if provisions for the excess heat removal from failed cells were made in the design of the thermal management system.

5. An analysis of battery life that was based upon a hypothetical cell population that had a MTTF of 1500 cycles, a Weibull slope of 5, and a capacity loss rate of 2%/100 cycles was made. The analysis suggests that a battery lifetime of 1000 cycles is achievable with a replacement of 5 cells.
APPENDIX G

PERFORMANCE AND COST PROJECTIONS FOR LITHIUM-IRON SULFIDE BATTERIES
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Performance Modeling</td>
<td>2</td>
</tr>
<tr>
<td>III. Cost Projections</td>
<td>6</td>
</tr>
<tr>
<td>IV. Technical Support for Projections</td>
<td>6</td>
</tr>
<tr>
<td>V. Energy Balance</td>
<td>9</td>
</tr>
<tr>
<td>VI. Life Considerations</td>
<td>14</td>
</tr>
<tr>
<td>A. Cycle Life</td>
<td>14</td>
</tr>
<tr>
<td>B. Life Effects</td>
<td>14</td>
</tr>
<tr>
<td>VII. Other Operational Characteristics</td>
<td>15</td>
</tr>
<tr>
<td>A. Special Charge Requirements</td>
<td>15</td>
</tr>
<tr>
<td>B. Maintenance Requirements</td>
<td>17</td>
</tr>
<tr>
<td>VIII. Packaging Flexibility</td>
<td>18</td>
</tr>
<tr>
<td>A. Volumetric Considerations</td>
<td>18</td>
</tr>
<tr>
<td>B. Size Limitations</td>
<td>20</td>
</tr>
<tr>
<td>C. Special Considerations</td>
<td>20</td>
</tr>
<tr>
<td>D. Scale Effects</td>
<td>22</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>23</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A. Prismatic Battery Performance Projections</td>
<td>24</td>
</tr>
<tr>
<td>B. Bipolar Battery Performance Projections</td>
<td>28</td>
</tr>
<tr>
<td>C. Battery Manufacturing Cost Projections</td>
<td>38</td>
</tr>
<tr>
<td>D. Life Considerations</td>
<td>44</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Battery Energy and Power Requirements for Electronic and Hybrid Vehicles</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Specific Energy with Discharge Rate for Li Alloy-FeS Batteries</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Peak Power at Various States of Charge for Li Alloy-FeS Batteries</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>Projected Cost of Lithium-Metal Sulfide Batteries</td>
<td>7</td>
</tr>
<tr>
<td>5.</td>
<td>Energy Consumption Summary</td>
<td>12</td>
</tr>
<tr>
<td>6.</td>
<td>Estimates of In-Use Energy Consumption</td>
<td>13</td>
</tr>
<tr>
<td>B-1</td>
<td>Bipolar Battery Design Parameters</td>
<td>31</td>
</tr>
<tr>
<td>B-2</td>
<td>Peak Power of Bipolar Batter at Various States-of-Charge</td>
<td>37</td>
</tr>
<tr>
<td>C-1</td>
<td>Market Price of Materials</td>
<td>41</td>
</tr>
<tr>
<td>C-2</td>
<td>OEM Selling Price for Lithium-Metal Sulfide Batteries</td>
<td>42</td>
</tr>
<tr>
<td>D-1</td>
<td>Summary of Lithium-Metal Sulfide Cell Performance Tests</td>
<td>45</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>JPL Modified Federal urban Driving Schedule</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Energy Balance Over 24 Hours for JPL/FUD Schedule</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Monopolar-Prismatic Lithium-Metal Sulfide Cell</td>
<td>21</td>
</tr>
<tr>
<td>A-1.</td>
<td>Specific Energy as a Function of Discharge Rate for a Monopolar Design</td>
<td>25</td>
</tr>
<tr>
<td>A-2.</td>
<td>Peak Power as a Function of State-of-Charge for a Monopolar Design</td>
<td>26</td>
</tr>
<tr>
<td>B-1.</td>
<td>Bipolar Stack Design</td>
<td>29</td>
</tr>
<tr>
<td>B-2.</td>
<td>Positive Electrode Utilization as a Function of Current Density</td>
<td>33</td>
</tr>
<tr>
<td>B-3.</td>
<td>Average Discharge Voltage as a Function of Current Density</td>
<td>34</td>
</tr>
<tr>
<td>B-4.</td>
<td>Specific Energy as a Function of Discharge Rate for a Bipolar Battery</td>
<td>35</td>
</tr>
<tr>
<td>B-5.</td>
<td>Peak Power Flux as a Function of State-of-Charge</td>
<td>36</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

This report has been prepared under JPL Contract No. 956761 in support of the Jet Propulsion Laboratory Electric and Hybrid Vehicle Project.

Research and development on lithium alloy-metal sulfide, molten salt electrolyte rechargeable batteries has been ongoing at Gould since the mid-1970s until the present time. This effort was initially supported by DOE contracts via the National Laboratories (ANL, SNL, LBL) and more recently by contracts from the Air Force and EPRI in addition to funds from Gould.

The lithium-sulfur system is generic in nature, in that there are a number of choices possible for both the negative and positive electrode active materials. The most energetic electrochemical couple would be that of elemental lithium and elemental sulfur. However, since both these electrodes would be molten at the battery operating temperature, it is extremely difficult to engineer a practical cell design. Consequently the technology has evolved by sacrificing some of the specific energy offered by the elemental lithium and sulfur electrodes and employing lithium-alloy negative electrodes and metal-sulfide positive electrodes. These latter type electrodes permit practical engineering cells to be built since the electrodes are solid at the cell operating temperatures of 350-475°C; the melting point of the salt electrolyte dictates the operating temperature range. The lithium alloys which have received greatest attention are lithium-aluminum (e.g. 20 w/o Li:80 w/o Al) and lithium-silicon (e.g. 43 w/o Li:57 w/o Si); each of which offers particular advantages in terms of properties and cell performance. Most of the early engineering cell development was performed with Li-Al negative electrodes, however, more recently the Gould development effort has chosen to use a physical mixture of the two binary alloys Li-Al and Li-Si in order to take advantage of the characteristics of each alloy.

Similarly, there are a number of possible alternatives that can be considered for the positive electrode from the metal chalcogenides. In particular, the sulfides of iron have received the greatest attention since they are plentiful and hence relatively inexpensive. Although iron disulfide is more energetic
than the monosulfide it has not been considered in this study since its use necessitates the employment of relatively exotic and therefore expensive materials (e.g., molybdenum) for the positive electrode current collection system. The cost of such a current collection system is prohibitive to be considered in the near term for the electric vehicle application. Consequently for this study iron monosulfide (FeS) has been considered exclusively since the material is inexpensive and can readily be incorporated into practical cell designs in the time-frame relevant to this study re-early 1990s.

To date, the Li-MS work at Gould has been devoted primarily to cell development, rather than the complete battery system and therefore, we have limited knowledge to fully address all aspects of the battery system design. However, this report has been prepared in close collaboration with fellow Li-MS developers at ANL and it is the intention of the Gould report to corroborate the ANL projections where possible by experimental data and relevant studies performed at Gould under various contracts.

II. PERFORMANCE MODELING

In performing this study, two basic cell configurations have been considered. These are a conventional monopolar prismatic cell design, in which electrodes of the same polarity are connected in parallel within the cell and a bipolar configuration in which the electrode elements are stacked in series. The monopolar prismatic design is the current "state-of-the-art" which has been developed extensively during the DOE programs at ANL, Gould and Eagle Picher and is currently being pursued for a 9-cell battery demonstration in the EPRI van battery program. With minor improvements to existing technology this prismatic design is well capable of meeting the commuter car and van requirements (see Table 1).

The bipolar design which is currently being developed at Gould and the Admiralty Materials Technology Establishment (AMTE) in the UK, has the potential for significant performance improvement over the monopolar design particularly in terms of power and energy density since the current path
within the electrodes is significantly reduced and the current collection system is greatly simplified with a concomitant reduction in weight. Hence, a bipolar design is desirable for the hybrid and full performance EV where high power and high energy densities are required respectively (see Table 1).

The specific energy and peak power projections for the Li alloy - FeS system, for the various classes of batteries in Table 1, are given in Tables 2 and 3 respectively.

For the prismatic-monopolar cell, calculations have been based on a seven plate design, (i.e. 3 positive electrodes and 4 negative electrodes). The negative and positive electrodes are pressed plaques of a 80 w/o LiAl-20 w/o LiSi mixture and iron monosulfide (FeS) respectively. The separator is a high surface area magnesium oxide powder. Each of these three components also contain the alkali-halide salt electrolyte. The prismatic design has been selected for the commuter car and van applications since the performance requirements for these can be met with minor improvements in the current technology.

The bipolar design was selected for the full-performance EV and the hybrid vehicle since such a design offers the best promise of achieving the high energy and power densities required in these applications.

The methodology used in projecting the performance of the monopolar and bipolar batteries are discussed in Appendices A and B respectively.
Table 1

Battery Energy and Power Requirements for Electric and Hybrid Vehicles

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Specific Energy</th>
<th>Peak Power</th>
<th>Power: Energy Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total kWh</td>
<td>Battery Wh/kg</td>
<td>Vehicle Wh/kg</td>
</tr>
<tr>
<td>Commuter</td>
<td>12</td>
<td>67</td>
<td>12</td>
</tr>
<tr>
<td>General Purpose EV or Commercial Van</td>
<td>25</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>Hybrid</td>
<td>15</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Full-Performance EV</td>
<td>50</td>
<td>155</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 2 Specific Energy with Discharge Rate for Li Alloy-FeS Batteries

<table>
<thead>
<tr>
<th>Class</th>
<th>Battery Designation</th>
<th>Battery Design</th>
<th>Battery Specific Energy (Wh/kg)* at Various Discharge Rates (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>Present</td>
<td>Monopolar</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>Commuter & 3/4 Ton Van</td>
<td>Monopolar</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>Full-Performance</td>
<td>Bipolar</td>
<td>116</td>
</tr>
<tr>
<td>4</td>
<td>Hybrid</td>
<td>Bipolar</td>
<td>108</td>
</tr>
</tbody>
</table>

* The battery specific energy has been calculated by derating the cell specific energy by 25-30%.

Table 3 Peak Power at Various States of Charge for Li Alloy-FeS Batteries

<table>
<thead>
<tr>
<th>Class</th>
<th>Battery Designation</th>
<th>Battery Design</th>
<th>30 Sec Power Capability (W/kg) at Various States of Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>80%</td>
</tr>
<tr>
<td>1</td>
<td>Present</td>
<td>Monopolar</td>
<td>155</td>
</tr>
<tr>
<td>2</td>
<td>Commuter & 3/4 Ton Van</td>
<td>Monopolar</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>Full-Performance</td>
<td>Bipolar</td>
<td>272</td>
</tr>
<tr>
<td>4</td>
<td>Hybrid</td>
<td>Bipolar</td>
<td>254</td>
</tr>
</tbody>
</table>
III. COST PROJECTIONS

The projected OEM price for lithium alloy-iron monosulfide batteries for the different classes of vehicles is shown in Table 4.

The basis for these cost projections is given in Appendix C.

IV. TECHNICAL SUPPORT FOR PROJECTIONS

The main departures from the state-of-the-art technology that were considered in making the performance and cost projections were as follows:

(i) A bipolar battery design was chosen for the hybrid and full-performance electric vehicles since this has the potential for the high-power and high-energy outputs required by these classes of vehicle.

The feasibility of success of a bipolar design depends on eliminating stray conductive paths, both electronic and ionic, between the cells in the battery stack which would otherwise allow shunt currents to discharge the stack. One of the main sources for these stray conductive paths is electrolyte bridging between cells and to the battery case. However, the immobilized electrolyte-powder separator concept being developed at Gould and AMTE in the UK is an approach which could lead to a solution to this problem and therefore greatly simplify the design of peripheral seals required to isolate cells in the stack. Initial tests on bipolar stacks at Gould have produced very promising results and this work is to be pursued under our present EPRI contract.

The other advantage of a bipolar design is that the current collection system is less complex than a monopolar design, and therefore the part count, weight and cost are all reduced.

(ii) The materials considered in the costing of both the monopolar and bipolar batteries are those presently used in the Gould technology. However, some cost reductions could be readily brought about by
<table>
<thead>
<tr>
<th>Battery Designation</th>
<th>Battery Design</th>
<th>Energy kWh</th>
<th>Power kW</th>
<th>F/E</th>
<th>Materials</th>
<th>OEM Selling Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Monopolar</td>
<td></td>
<td></td>
<td></td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-KCl</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>1848</td>
</tr>
<tr>
<td>Commuter</td>
<td>Monopolar</td>
<td>12</td>
<td>23</td>
<td>2.08</td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>3850</td>
</tr>
<tr>
<td>Gen. Purpose EV or</td>
<td>Monopolar</td>
<td>25</td>
<td>60</td>
<td>2.40</td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td>Commercial Van</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>3850</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Bipolar</td>
<td>15</td>
<td>50</td>
<td>3.33</td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>1905</td>
</tr>
<tr>
<td>Full-Performance EV</td>
<td>Bipolar</td>
<td>50</td>
<td>50</td>
<td>1.0</td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LIA1: LiS1-FeS; MgO;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LICI-LIF-LIBr</td>
<td>6350</td>
</tr>
</tbody>
</table>
utilising less expensive materials if one is willing to accept some modest loss in performance in either specific energy and/or power.

The cell anode electrode containment hardware and the current collection system which are currently fabricated from stainless steel and nickel respectively could be made from a low carbon steel. The consequence of such a change would be a heavier cell (i.e. lower specific energy) if the strength of the containment hardware at the battery operating temperature and the conductivity of the current collection system are to be maintained. Alternatively, some relaxation in the conductivity of the current collection system would probably result in a cell with reduced power capabilities especially at low states of charge. The life of the battery may be affected also if less expensive alloys are chosen for the hardware since their corrosion resistance is more than likely to be inferior at the elevated operating temperatures, (i.e. 450-500°C). Similarly, the selection of the negative active material may govern the choice of alloy for the hardware, especially the current collector.

From the cost analysis summarized in Appendix C however, it can be seen that the cost of the lithium bearing compounds are a major portion of the battery cost (i.e. ~40%). If a significant reduction is to be made therefore in the cost of lithium-metal sulfide batteries it is in this area which the greatest savings could be realized.

The two obvious ways in which the lithium bearing material cost can be reduced are:

1) Reduce the quantity of lithium bearing compounds or replace with cheaper alternatives.

2) Identify a low cost source of lithium and develop inexpensive manufacturing processes to produce the required lithium compounds.

Examples of these would be to build cells which are negative electrode limited and starved in electrolyte. In addition a change in electrolyte composition
from the ternary lithium halide salt to the binary LiCl-KCl electrolyte would significantly reduce the electrolyte cost since lithium bromide is the major constituent in the ternary salt electrolyte.

A low cost source of lithium is lithium carbonate which is currently available as an item of commerce. The conversion of lithium carbonate into other lithium compounds suitable for building lithium-metal sulfide batteries has been explored to some depth by Chilenskas et al at ANL. I refer you to their report and analysis in which they have shown the potential for reducing the cost of lithium-iron sulfide batteries below the $1.54-1.27/kWh range projected in this report.

V. ENERGY BALANCE

An energy balance for a vehicle operating on a JPL modified FUD schedule (see Figure 1) has been developed based on data from JPL and the following assumptions:

1) Vehicle test weight 1660 kg.
2) Battery weight 488 kg.
3) Average speed for cycle 3, 46x5/8x60/88=19.6 mph.
4) Time for cycle 3, 436/3600=0.111 h.
5) Distance covered in cycle 3, 19.6x0.121=2.37 miles.
6) Total distance per day 12x2.37=28.4 miles.
7) Battery heat loss at operating temperature = 450 W.
8) Charger efficiency 85% (D.C. out/A.C. in).
9) Battery efficiency 80% (D.C. out/D.C. in).
10) Battery Heat Capacity 0.25 Wh/kg °C.
11) Battery Specific Energy 75 Wh/kg.

An energy balance diagram is shown in figure 2 for performing the JPL/FUD driving schedule over a period of 24 hours. Each of the major components in the system are identified along with the input/output energy.
Figure 1 JPL modified Federal Urban Driving Schedule for 24 hour period.
Figure 2
Energy Balance Over 24 Hours for JPL/FUD Schedule

AC Power Supply 3641 Wh (AC)
Charger (85% Eff.) 1296 Wh (Heat Loss)
Battery Electric Energy (80% Eff.) 7347 Wh (DC)
Motor/Controller 6828 Wh (DC)
Battery Heat Energy 1707 Wh (Battery I^2R Heating)
Battery Heat Energy 3600 Wh (Heat Loss Through Insulation)

(Regenerative Braking) 1188 Wh
5640 Wh (Drivetrain)
A summary of the overall energy consumption and efficiency coefficients are given in Table 5 while estimates for the in-use energy consumption are given in Table 6.

Table 5 Energy Consumption Summary

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery heat loss per 24h.</td>
<td>3600 Wh</td>
</tr>
<tr>
<td>Battery I^2R heating during operation over 24h</td>
<td>1707 Wh</td>
</tr>
<tr>
<td>External heating required to maintain battery temperature over 24h.</td>
<td>1893 Wh</td>
</tr>
<tr>
<td>Total A.C. Energy Required</td>
<td>363 Wh/mile</td>
</tr>
<tr>
<td>Battery D.C. Output</td>
<td>235 Wh/mile</td>
</tr>
<tr>
<td>Vehicle Energy Consumption</td>
<td>142 Wh/tonne mile</td>
</tr>
<tr>
<td>Overall Energy Efficiency</td>
<td>65%</td>
</tr>
<tr>
<td>Battery heat energy generated during segment 1 of JPL/FUD cycle.</td>
<td>854 Wh</td>
</tr>
<tr>
<td>Maximum temperature rise of battery during segment 1 of JPL/FUD cycle.</td>
<td>70°C</td>
</tr>
<tr>
<td>Energy required to raise battery temperature from R.T. to 4500°C.</td>
<td>53 kWh</td>
</tr>
<tr>
<td>Total Battery Energy</td>
<td>36.6 kWh</td>
</tr>
<tr>
<td>Depth of Discharge to drive JPL/FUD cycle</td>
<td>19%</td>
</tr>
</tbody>
</table>
Table 6 Estimates of In-Use Energy Consumption

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Start up and</td>
<td>None required: Battery capable of maintaining its operating temperature</td>
</tr>
<tr>
<td>Shut down</td>
<td></td>
</tr>
<tr>
<td>Self-Discharge (Wh)</td>
<td>22</td>
</tr>
<tr>
<td>Shunt Current</td>
<td>none</td>
</tr>
<tr>
<td>Parasitics</td>
<td>none</td>
</tr>
<tr>
<td>Thermal Loss (Wh)</td>
<td>110</td>
</tr>
<tr>
<td>Charge Eff. (Battery AC in /DC out)</td>
<td>79%</td>
</tr>
</tbody>
</table>
VI. LIFE CONSIDERATIONS

A. Cycle Life

The cycle life of Gould engineering-size cells (i.e. theoretical capacity based on the positive electrode in the range of 120-240 Ah) is currently around 500 cycles with a number of cells having exceeded 800 cycles. The prospects for achieving 1000 cycles mean-time-to-failure (MTTF) therefore in the next few years is reasonably high.

Gould has limited experience in testing small battery modules (i.e. 3 to 10 cells connected in a series string), however results from this work indicate that generally one would expect similar lifetimes from modules as from individual cells provided that the series string of cells is periodically balanced. The current status of cycle life for engineering size cells is discussed in Appendix D.

B. Life Effects

The degradation in specific energy with cycling has been progressively reduced during the development of lithium alloy-iron monosulfide cells from approximately 0.07% per cycle to 0.02% per cycle for cells discharged at the C/3 rate. Data generated under the Air Force contract indicates that the degradation in specific energy with cycling is dependent on the discharge rate and the depth of discharge. As would be expected the higher the discharge rate or greater the depth of discharge the faster is the decline in specific energy with cycling.

The coulombic efficiency of new cells after formation can be as high as 99%, however, this can be somewhat lower (<4%) depending on the overall charge-discharge cycle time since the cells have a finite leakage current in the range of 150-300mA. With cycling there is a very gradual decline in coulombic efficiency until the point of cell failure when it drops dramatically.
In small battery module tests, cells which have developed a partial short have been found to contribute to the battery capacity for a portion of the discharge cycle.

The thermal characteristics of cells during operation over many cycles has not been thoroughly investigated. However, from the extensive number of cell tests performed there is little evidence of a substantial change in the cell charge-discharge temperature profile with cycling. The largest increases in cell temperature above the normal operating temperature of ~450°C occur when cells are discharged at very high rates (e.g. ~3C), in such cases cell temperatures have been observed in excess of 520°C at the end of discharge.

C) Failure Modes

As indicated in the previous two sections the main failure modes identified for lithium alloy-iron monosulfide cells are i) loss in capacity and ii) decrease in coulombic efficiency. Initially, loss in capacity was the predominant mode of failure but the most recent series of cell tests indicate that the decline in coulombic efficiency is now the primary failure mode. The mechanism by which the decline in coulombic efficiency occurs has not yet been elucidated, other than that it is attributed to the development of a conductive path or paths between the electrodes. Metallographic examination, performed by J. Battles of ANL, on some earlier Gould cells indicate that the conductive paths are due to the deposition of iron within the powder separator layer and positive active material exudation, however there have been a number of changes in the more recent Gould cells and these have not yet been examined.

VII. OTHER OPERATIONAL CHARACTERISTICS

A. Special Charge Requirements

The normal charge and discharge reactions in lithium alloy-iron monosulfide cells result in the formation of solid products without gaseous side reactions. This permits the cells to be hermetically sealed and eliminates the need for electrolyte additions.
Information on the effects of overcharging and overdischarging Li alloy-FeS cells has been obtained from thermodynamic data, cell tests and metallographic examination of cells after cycling.

The upper cut-off voltage on charge normally used for LiAl-FeS cells is 1.55 V (IR-included) and 1.65 V for LiAl:LiSi-FeS cells. When these upper charge cut-off voltages are exceeded, the first major overcharge reaction which occurs at approximately 1.8 V (IR-free) is as follows:

\[\text{Fe} + 2\text{LiCl} + 2\text{Al} \rightarrow \text{FeCl}_2 + 2\text{LiAl} \]

This reaction involves any free iron in the FeS electrode to form FeCl₂ and the deposition of additional lithium in negative electrode. On extended overcharge the FeCl₂ can leave the positive electrode and permeate the separator where it is reduced to iron and thus cause a short. In the case of the negative electrode the lithium concentration can become sufficiently high that it forms a liquid metal phase in the electrode which can also ultimately lead to a short.

The normal lower cut-off voltage on discharge for Li alloy-FeS cells is in the range 1.0-0.9 volts (IR-included). The principal overdischarge reaction is:

\[\text{Al} + 3\text{LiCl} \rightarrow \text{AlCl}_3 + \text{Li} \]

which occurs at -1.5 V (IR-free). In this case, aluminum in the negative electrode is oxidized to form AlCl₃, which is soluble in the electrolyte, and metallic lithium is deposited on the positive electrode. The cell under these conditions is in a state of reversal. If discharging is continued then the cell eventually short circuits due to the deposition of metallic aluminum in the separator or the formation of liquid lithium at the iron sulfide electrode.

Experience has shown that cells are much more forgiving after being subjected to overdischarge than to overcharge. Indeed a number of cells which have been driven into reversal have fully recovered their initial capacity after being
subjected to a slow rate charge. In the case of severely overcharged cells no recovery has been possible.

In order to maintain the full capacity of the Li alloy-FeS battery during operation it will be necessary to periodically equalize the individual cells in the battery. The imbalance in the battery is brought about by the small variation in coulombic efficiency of the cells. Tests at Gould on 10-cell series-string batteries have shown that it takes a number of cycles before a significant amount of capacity is unavailable due to imbalance in the cells and therefore it is anticipated that the equalization charging would be required at most on a weekly basis. This suggests that fleet vehicles could be operated with an inexpensive battery charger dedicated to each vehicle for most of the overnight charging and that one more expensive charger-equalizer unit could be rotated among a minimum of seven vehicles. Concepts for charging and equalization of Li alloy-FeS batteries are under investigation by ANL in the EPRI program.

It is anticipated that periodic complete discharge will not be necessary for Li alloy-FeS batteries.

B. Maintenance Requirements

Regular maintenance, other than a periodic charge and equalization, will not be required for a Li alloy-FeS battery since the cells are sealed; therefore no electrolyte addition is necessary. The cell equalization can be readily accomplished overnight.

The operating temperature range of the battery will be controlled automatically by a sophisticated thermal management system which is capable of heating and cooling the battery on demand. It is envisaged that a separate AC circuit will be incorporated into the charging units to provide power to the resistive battery heaters. This arrangement will maintain the battery temperature during charging or for periods of intermediate standing. For longer term storage and major overhaul, the battery can be cooled to room temperature and then brought back into service by reheating to operating
temperature. The advantage in overhauling the battery at room temperature is that it will be electrically safe which is not the case with ambient temperature battery systems.

An electric vehicle battery will comprise a number of multi-cell submodule units. Hence, one refurbishment scenario would be to replace the complete submodules in which there are failed cells by either new or reconditioned submodules. The submodules removed from the battery could then be dismantled and rebuilt with the appropriate number of new cells for a future refurbishment of the battery. Replacement of a few cells (<10% of total number in battery) would no doubt be more cost effective than replacing the complete battery and should extend the life of the battery substantially (see ANL Analysis in Appendix D of their report).

VIII. PACKAGING FLEXIBILITY

A. Volumetric Considerations

At Gould we have not yet designed a full-size EV battery for a specific application and therefore can only address the volumetric requirements of a battery in general terms. There are, however, a number of design criteria which have to be satisfied in order to maximize the volumetric energy density of the battery, these are:

1) Minimize the battery surface area: volume ratio and thus minimize the heat losses. Obviously a battery in the form of a cube would best satisfy this condition, but vehicle design usually dictates that the length of the battery is at least a factor of two greater than the width or the height.

2) The insulated battery enclosure need only be large enough to hold the desired number of battery submodules, the intermodule connectors, charge control wires and the heat exchanger system which will heat and cool the battery to maintain the desired operating temperature range.
iii) The wall thickness of the insulative enclosure should be as thin as possible. However, the thickness depends on the thermal conductivity value of the insulation and the heat loss which is tolerable in order to operate the battery. The lowest conductivity insulation is the most expensive and hence there is an economic trade-off to be considered between the various types of insulation available.

In order to obtain an approximate range for the volumetric energy density of Li alloy-FeS batteries the following assumptions have been made:

(i) Density of Li alloy-FeS cells $\approx 2 \text{ g/cm}^3 \text{ (kg/l)}$

(ii) Wall thickness of insulative enclosure $= 2.5 \text{ cm}$

(iii) Thickness of insulative and plug $= 7.5 \text{ cm}$

(iv) Heat exchanger occupies $= 15\%$ of insulative enclosure

(v) From assumptions (i)-(iv) density of battery (including enclosure) $= 1.3 \text{ g/cm}^3 \text{ (kg/l)}$

(vi) Volumetric energy density (Wh/l) = Gravimetric energy density

\[\text{Wh/kg} \times \text{density (kg/l)} \]

Hence from the cell and battery densities plus the gravimetric energy density values calculated in Appendix A and tabulated in Table 2 a range of volumetric energy densities can be derived which range from 1.3 to 2 times the gravimetric energy density. It should be noted that the smaller the battery size in terms of capacity (kWh), the greater will be the volume fraction of the insulative enclosure, and hence the volumetric energy density will be lower the smaller battery size even though identical battery submodules can be used in different size batteries.
B. Size Limitations

The Li alloy-FeS electrochemical system permits great flexibility in the design of both monopolar-prismatic cells and bipolar batteries. In the development of the system a number of different electrode sizes have been used in engineering cells from 7.5 cm x 12.5 cm to as large as 30 cm x 30 cm. The choice of electrode size, thickness and number will greatly depend upon the battery requirements in terms of power and energy. In general the high power battery would comprise many small, thin electrodes whereas the high energy battery would comprise few, large, thick electrodes. However, it is usually necessary to make compromises in both power and energy to obtain optimum battery performance. The larger electrode designs tend to have non-uniform current distribution on the electrodes which result in reduced active material utilization and increased thermal problems, consequently an electrode size of ~200 cm² is presently being considered for the EV application. A typical EV monopolar cell design is shown in Figure 3. The one feature of the design which permits a significant reduction in the cell volume is the height of the terminals, particularly the positive, above the main body of the cell. A substantial portion of the positive terminal length is devoted to the feedthrough seal which electrically isolates the terminal from the cell container. Hence if a low profile ceramic-to-metal seal is developed for the positive feedthrough then the length of the terminals could be significantly reduced with the consequential improvement in volumetric energy density.

C. Special Considerations

The complete Li alloy-FeS battery comprises a high-efficiency insulating enclosure, a heating and cooling system, current, voltage and temperature leads and control instrumentation packaged as an integral self-contained unit. The cooling media will be circulated to the heat exchanger by a small electric fan mounted adjacent to the battery.
Theoretical Capacity: 240 Ah
Cell Weight: 2.5 kg
Volume: 1.36 ft³

Figure 3 Lithium-Metal Sulfide Cell
D. Scale Effects

Detailed scaling factors have not yet been derived for batteries in the range of 10-50 kWh. However, since the Li alloy-FeS system permits great flexibility in design parameters (i.e. size, thickness and number of electrodes) it should be possible to develop high performance batteries over the range of interest.

Batteries of a monopolar prismatic design will be used first to demonstrate the feasibility of high temperature lithium-metal sulfide batteries in electric vehicles, but the ultimate performance of the system in this application will be realized in a bipolar battery design.
ACKNOWLEDGEMENT

This report was prepared in support of the Jet Propulsion Laboratory Electric and Hybrid Vehicle Project, under Contract No. 956761 and in collaboration with fellow Li-MS battery developers at Argonne National Laboratory who have also written a similar report for the JPL Project.

References

Appendix A

PRISOMATIC-MONOPOLAR BATTERY PERFORMANCE PROJECTIONS

I. Specific Energy

The current technology data presented in Table 2 has been generated from recent tests on prismatic-monopolar-multiplate cells which have a theoretical capacity of ~240 Ah and a height:width aspect ratio of ~0.7. This particular cell design has evolved over several years during a DOE contract with ANL and more recently a contract with the Air Force. The cell developed for the Air Force had a theoretical capacity of ~120 Ah and an aspect ratio of ~0.7. However, many of the design features employed in the Air Force cell have now been incorporated into a larger capacity cell (i.e. 240 Ah) for an electric van application under our current contract with EPRI.

Battery specific energy data at various discharge rates are plotted in Figure A-1. These plots have been obtained by derating the cell specific energy data by 25%. This is an average derating factor one might expect when the weight of all the ancillary battery hardware and thermal management system are accounted for in a high temperature battery design.

The "projected" performance of a monopolar battery also shown in Figure A-1 has been derived from a second iteration of the cell design currently being evaluated under the EPRI program. By optimizing the first design it has been possible to significantly reduce the weight of the cell, particularly the hardware, without making any change to the quantity of electrochemically active materials. Hence it is projected that this cell will exhibit a significant improvement in performance. The projected cell performance, again has been erated by 25% in order to obtain the battery specific energy.

II. Peak Power

The peak power data for the current technology and the "projected" prismatic-monopolar battery are plotted in Figure A-2. The current technology data are...
Figure A-1 Specific energy of a prismatic monopolar lithium alloy-iron sulfide battery as a function of constant power discharges.
Figure A.2 Peak power (30 sec pulse) of prismatic monopolar lithium-iron sulfide batteries at various states of charge.
experimental results from the same cells as were used for the specific energy measurements. The "projected" data was generated from the second iteration cell design mentioned previously. All cell data was derated by 25% in order to estimate the battery peak power performance.
Appendix B

BIPOLAR BATTERY PERFORMANCE PROJECTIONS

An analysis has been performed in order to project the performance that could be expected from a bipolar type lithium-iron monosulfide battery which utilizes the immobilized electrolyte-powder separator concept that Gould has been actively pursuing since 1980. This preliminary analysis has been limited to projecting:

1) The specific energy profile of a battery discharged at constant power in the range 20-200 W/kg.

2) The peak power performance of the battery as a function of the state-of-charge as defined for a nominal C/3 discharge rate.

I. The Bipolar Design

The electrochemical couple proposed in the bipolar design is the same as that employed in the prismatic-monopolar design. This is a LiAl:LiSi alloy negative electrode and an iron monosulfide positive electrode operated in a ternary lithium halide electrolyte (Li:Br, F, Cl) in the temperature range of 450-500°C. The separator is also the magnesium oxide powder type.

A conceptual design of the proposed bipolar battery is shown in Figure B-1. The basic components of the battery are the bipolar element, the current collector-terminal-feedthrough system and the container for the stack. The bipolar element comprises one positive and one negative electrode placed either side of a thin metal current collector membrane. In addition a separator layer has been included in the bipolar element in order to simplify the battery calculations. The battery is assembled by stacking the required number of bipolar elements in order to obtain the desired battery energy.

The advantages offered by a bipolar design over that of a monopolar design are:
Figure 8-1 Bipolar cell stack design

G-38
i) The weight of the current collection system can be considerably reduced since the current path is perpendicular to the face of the electrodes, i.e., bus bars and distribution plates necessary in a monopolar design can be eliminated.

ii) A more uniform current distribution can be obtained on the electrodes and therefore the active material utilization is improved particularly at the higher rates of discharge.

II. Methodology for Bipolar Design Calculations

The first step in designing the conceptual bipolar battery proposed in Figure B-1 is to assign physical and electrochemical parameters to the various components in the battery. The values assigned to these parameters are based on data that has been obtained from engineering and experimental pellet cells. The facial area of the electrodes has been maintained the same as in the prismatic-monopolar design (i.e. ~214 cm²) so that the performance between the two batteries can be directly compared. However, for the bipolar battery we have opted for a circular electrode instead of a rectangular electrode.

From these key parameters and empirical relationships that have been derived for utilization, voltage against current density and depth of discharge for the Li-MS system it is possible to calculate the specific energy and sustained power. The parameters assigned to the various components are listed in Table B-1.

In order to calculate the available energy from the battery at various discharge rates it is necessary to know the relationship between active material utilization and current density. The following, empirical equation has been derived from experimental data on advanced cell work performed both at ANL1 and Gould2.

2. S. Misra private communication.
Table B-1

Bipolar Battery Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode Diameter</td>
<td>16.51 cm</td>
</tr>
<tr>
<td>Electrode Area</td>
<td>214.08 cm²</td>
</tr>
<tr>
<td>No. of Bipolar Elements</td>
<td>24</td>
</tr>
<tr>
<td>Theoretical Capacity of Positive Electrode</td>
<td>40.78 Ah</td>
</tr>
<tr>
<td>Positive Plaque Loading Density</td>
<td>1.5 Ah/cm³</td>
</tr>
<tr>
<td></td>
<td>0.45 Ah/g</td>
</tr>
<tr>
<td>Negative Plaque Loading Density</td>
<td>1.0 Ah/cm³</td>
</tr>
<tr>
<td></td>
<td>0.63 Ah/g</td>
</tr>
<tr>
<td>Separator Density</td>
<td>2.35 g/cm³</td>
</tr>
<tr>
<td>Negative:Positive Capacity Ratio</td>
<td>1.3:1</td>
</tr>
<tr>
<td>Positive Electrode Thickness</td>
<td>0.127 cm</td>
</tr>
<tr>
<td>Negative Electrode Thickness</td>
<td>0.248 cm</td>
</tr>
<tr>
<td>Separator Thickness</td>
<td>0.152 cm</td>
</tr>
<tr>
<td>Bipolar Membrane Thickness</td>
<td>0.008 cm</td>
</tr>
<tr>
<td>Weight of Bipolar Element</td>
<td>300 g</td>
</tr>
<tr>
<td>Weight of Terminal/Collector/Battery End Cover</td>
<td>300 g</td>
</tr>
<tr>
<td>Total Battery Weight</td>
<td>8.1 kg</td>
</tr>
<tr>
<td>Total Battery Volume</td>
<td>4.27 liters</td>
</tr>
</tbody>
</table>
Utilization (\%) = (1 - 1.67 \times i) \times 100

where \(i\) is current density in A/cm². This equation has been plotted in Figure B-2. Another factor which affects the utilization of an electrode is the thickness (i.e. the thicker the electrode the poorer the utilization). However for electrodes with a thickness of 0.15 cm the variation in utilization with thickness is insignificant and therefore, since we have chosen for this analysis a positive electrode thickness of 0.127 cm, we have ignored this effect.

The average voltage on discharge for a Li alloy-FeS cell as a function of the discharge rate has been integrated from experimental data measured on a pellet cell, since this type of cell closely approximates to the electrode arrangement in a bipolar stack. This data, plotted in Figure B-3, shows the average discharge voltage as a function of current density for a single cell. The bipolar battery voltage is assumed to be \(n+1\) times the single cell voltage, where \(n\) is the number of bipolar units in the battery. Hence the battery energy and sustained power can be calculated by multiplying the average bipolar stack voltage by the cell capacity and average discharge current, respectively. The specific energy versus discharge rate is plotted in Figure B-4 for the bipolar battery, including a derating factor of 23% to take into account all other ancillary hardware.

In order to calculate the peak power for the bipolar battery it is necessary to know the peak power flux, W/cm². Again, such data are available from 30 sec. peak power pulse tests performed on advanced design pellet cells and higher power prismatic cells with lithium alloy and iron monosulfide electrodes. The peak power flux data are plotted in Figure B-5 as a function of state-of-charge for both state-of-the-art and advanced design cells. The 30 sec peak power for the bipolar battery was then calculated by multiplying the flux values by the area of electrode in the battery. These values were derated by a multiplying factor of 0.75 to compensate for the ancillary battery hardware. The results of these computations are presented in Table B-2 which are the 30 sec. specific peak power capability at various states-of-charge for the complete battery.
Figure B-2 Positive electrode utilization as a function of current density for lithium alloy-iron monosulfide cells.
Figure B-3 Average discharge voltage for a lithium alloy-iron sulfide cell as a function of current density.
Figure B-4 Specific energy of bipolar lithium alloy-iron monosulfide battery as a function of constant power discharge rate.
Figure 8-5 The peak power flux for lithium alloy-iron monosulfide electrodes as a function of state-of-charge.
Table B-2

Peak Power of Bipolar Battery at Various States-of-Charge

<table>
<thead>
<tr>
<th>State of Charge (%)</th>
<th>80</th>
<th>50</th>
<th>30</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced</td>
<td>272</td>
<td>233</td>
<td>188</td>
<td>129</td>
</tr>
<tr>
<td>State-of-the-Art</td>
<td>213</td>
<td>163</td>
<td>114</td>
<td>49</td>
</tr>
</tbody>
</table>
Appendix C

BATTERY MANUFACTURING COST PROJECTIONS

I. Introduction

The cost projections are based on existing technology at Gould for the monopolar-prismatic battery and have assumed some modest improvements in this technology for estimating the cost of the bipolar battery.

The present technology at Gould utilizes a lithium-aluminum-silicon negative electrode and an iron monosulfide positive electrode. The separator is magnesium oxide powder and the electrolyte is a ternary lithium halide salt of 22 w/o LiCl - 68 w/o LiBr - 10 w/o LiF. The current collection system is fabricated from Nickel 200 in order to provide good electrical conductivity. All other hardware is made from Grade 304 stainless steel.

The plant for manufacturing these batteries at the rate of 100,000 units/year is assumed to be highly automated and hence manual labor is minimal. All the processing steps involved in manufacturing Li-MS batteries are typical of present-day battery and powder metallurgy establishments. The only special feature of a Li-MS battery plant would be that a number of the processing steps have to be performed in a dry-room atmosphere since the negative active material and electrolyte are highly moisture sensitive. It has been assumed that most of the cell hardware components will be bought-in items since they can be readily made by conventional metal stamping and forming operations. Many of the cell components are already made this way even for our present needs.
II. Cost Analysis

The following cost analysis has been performed as per the ADL guidelines* except where indicated in the following and noted in the tables of this appendix.

The main assumptions in the ADL costing methodology and deviations proposed are:

i) Overhead Rates

The labor overhead rate is 150% of the direct labor and the materials overhead is 10% of the materials cost. It should be noted that in the Consiglio/Symons costing, (see Table C-2) they applied a 280% labor overhead rate. In their report they reference this overhead rate to Gould. However, it should be pointed out that when this rate is applied it includes equipment depreciation, rent and warranty costs. Therefore their analysis will be somewhat high since they have included these costs twice, but figured in two different ways.

ii) Direct Labor

In this analysis we have chosen to figure the direct labor as 9% of the materials cost, instead of at a fixed hourly rate.

iii) Equipment and Depreciation

The capital equipment costs have been figured on the basis of $20/kWh for the theoretical capacity within the battery. The capital equipment has been amortized linearly over a ten-year period, hence a 10% depreciation factor is used in the calculation.

iv) Rent

This has been figured at $6/ft² for the conceptualized plant.

v) Working Capital Requirements

The working capital requirements are assumed to be equal to 30% of the value of annual production based on the factory cost.

vi) After-Tax Return on Investment and Taxes

Each of these two items are assumed to be equal to 15% of the total investment on an annual basis. The total investment is the sum of the equipment cost plus the working capital.

The basic raw material prices used in the calculations are listed in Table C-1 and a summary of the costs leading to the estimates for the OEM selling price for both monopolar prismatic and bipolar batteries are given in Table C-2. For comparison, the costing performed by Consiglio and Symons is listed also in Table C-2. However, it should be noted that their costs are based on an annual production rate of 20,000 batteries whereas the Gould estimates are for a rate of 100,000 units per year.
<table>
<thead>
<tr>
<th>Material</th>
<th>Market Price $/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium Metal</td>
<td>47.74</td>
</tr>
<tr>
<td>Lithium Bromide</td>
<td>14.32</td>
</tr>
<tr>
<td>Lithium Chloride</td>
<td>6.60</td>
</tr>
<tr>
<td>Lithium Fluoride</td>
<td>10.38</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.38</td>
</tr>
<tr>
<td>Silicon</td>
<td>1.45</td>
</tr>
<tr>
<td>Iron Sulfide</td>
<td>0.90</td>
</tr>
<tr>
<td>Magnesium Oxide</td>
<td>1.76</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>0.12</td>
</tr>
<tr>
<td>Nickel</td>
<td>14.48</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>3.01</td>
</tr>
<tr>
<td>Iron Powder</td>
<td>0.62</td>
</tr>
<tr>
<td>Low Carbon Steel</td>
<td>0.73</td>
</tr>
</tbody>
</table>

*Chemical Marketing Reporter February 84
American Metal Market March 84
<table>
<thead>
<tr>
<th>Cost Item</th>
<th>1984 Dollars/Battery</th>
<th>Remarks on Gould Costing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consiglio/Symons 20,000 Batts/yr</td>
<td>Gould 100,000 Batts/yr</td>
</tr>
<tr>
<td></td>
<td>Monopolar</td>
<td>Prismatic</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium Bearing Compounds</td>
<td>1552</td>
<td>1405</td>
</tr>
<tr>
<td>Other Materials</td>
<td>690</td>
<td>600</td>
</tr>
<tr>
<td>Insulating Enclosure</td>
<td>650</td>
<td>290</td>
</tr>
<tr>
<td>Material Overhead</td>
<td>289</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>3181</td>
<td>2524</td>
</tr>
<tr>
<td>Direct Labor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell</td>
<td>241</td>
<td>207</td>
</tr>
<tr>
<td>Cell/Battery</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>Direct Labor Overhead</td>
<td>843</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>1144</td>
<td>648</td>
</tr>
<tr>
<td>Equipment Depreciation</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Rent</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>Factory Cost</td>
<td>6488</td>
<td>3278</td>
</tr>
<tr>
<td>Capital Investment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Capital</td>
<td>1346</td>
<td>983</td>
</tr>
<tr>
<td>Equipment</td>
<td>1000</td>
<td>580</td>
</tr>
<tr>
<td>Total Investment</td>
<td>2346</td>
<td>1563</td>
</tr>
<tr>
<td>ROI + Taxes</td>
<td>704</td>
<td>469</td>
</tr>
<tr>
<td>Warranty</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>OEM Selling Price</td>
<td>5292</td>
<td>3847</td>
</tr>
</tbody>
</table>
III. Summary Remarks

It can be seen from Table C-2 that the cost per kWh for lithium alloy-metal sulfide batteries employing existing technology are substantially more expensive than the desired $100/kWh target for the advanced battery systems in electric vehicle applications. However, a major portion of the cost is attributed to the lithium bearing compounds (i.e. ~40%). Therefore, if the cost goal is to be attained, this area should receive greatest attention. In the report submitted by ANL under this contract, Chilenskas and Shimotake have proposed a number of feasible ideas which can be shown to significantly reduce the price of lithium-metal sulfide batteries. In particular they have suggested using lithium carbonate as an inexpensive feed stock for manufacturing all the required lithium bearing compounds necessary for the battery. It may be possible also to use a LiCl-KCl electrolyte in place of the all-lithium-halide electrolyte in the less demanding vehicle applications.

The OEM selling price from this and the ANL report is projected to be in the range of $154-99 per kWh. The upper end of the range relates to existing technology whereas the lower end can probably be realized in a second generation plant.
Appendix D

LIFE CONSIDERATIONS

I. Cells

A summary of the cycle-life tests performed on Gould immobilized-electrolyte-powder separator type cells (see Figure 2) at both ANL and Gould is presented in Table D-1. The tests performed at ANL were on cells specifically designed for the EV application. These cells were cycled on a 12 hour regime (i.e. 8h charge/4h discharge) to 100% DOD or 1.0 V lower cut-off voltage. The end of life was defined as either a 20% loss in the initial capacity or a decline in the coulombic efficiency below 95%. The highest mean-time-to-failure for these cells was 330 cycles; with a Weibull Slope, which defines the distribution of failures of 2.9. The average capacity loss was 0.06% per cycle.

The tests performed at Gould were on cells designed for a high rate application and consequently the specific energy is substantially reduced due to the heavier current collection system. The electroactive materials, electrolyte and separator, however, were essentially the same as those in the Group II EV cells. Two different test regimes were examined, one was a 6h regime (5.25h charge, 0.75h discharge) the other a 24h regime (22.8h charge, 1.2h discharge). The cells were discharged also to different depths-of-discharge between 40% and 80%. The end of life for these cells was when the leakage current exceeded 1000 mA.

It was concluded from the Gould tests that the cell life is somewhat dependent upon depth of discharge (i.e. longer life for lower depths of discharge) but this is a second order effect and the primary factor limiting the life of the Gould cells is the time at operating temperature. This time is in the region of 150 days and is arrived at by dividing the number of cycles by the cycles per day of the test regime.
Table D-1. Summary of Gould Li Alloy-FeS Cell Performance in Tests at ANL and Gould

<table>
<thead>
<tr>
<th>No. of Cells in Group</th>
<th>Status Cells Tests (ANL)</th>
<th>Gould Tests</th>
<th>Gould Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>A</td>
</tr>
<tr>
<td>Theo. Capacity, Ah</td>
<td>114</td>
<td>114</td>
<td>119</td>
</tr>
<tr>
<td>Av. Operating Temp., °C</td>
<td>465</td>
<td>a</td>
<td>465</td>
</tr>
<tr>
<td>Av. Peak Capacity, Ah</td>
<td>150</td>
<td>157</td>
<td>101.3</td>
</tr>
<tr>
<td>Std. Dev. in Peak Capacity, %</td>
<td>4.5</td>
<td>3.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Av. Specific Energy, Wh/kg</td>
<td>74</td>
<td>80</td>
<td>69.7</td>
</tr>
<tr>
<td>Peak Specific Power, W/kg at 50% DOD</td>
<td>70</td>
<td>70</td>
<td>100±10</td>
</tr>
<tr>
<td>Cycle Life to 100 DOD</td>
<td>100</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>High/Low Cycles</td>
<td>307/14</td>
<td>467/121</td>
<td>342/138</td>
</tr>
<tr>
<td>Mean Time to Failure Cycles</td>
<td>218/26°C</td>
<td>268</td>
<td>330</td>
</tr>
<tr>
<td>Weibull Slope</td>
<td>2.0/3.6</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Av. Capacity Loss Rate, % per Cycle</td>
<td>0.00</td>
<td>0.06</td>
<td>--</td>
</tr>
<tr>
<td>Charge/discharge cycle, h</td>
<td>8/6</td>
<td>8/6</td>
<td>5.25/0.75</td>
</tr>
</tbody>
</table>

*Temperature was 455°C until 20% capacity loss, then raised in 5°C increments to 455-475°C.
End of life defined as 20% capacity loss or coulombic efficiency decrease to <95%.
Correlated as five- and seven-cell groups. Single group correlation not possible.
Gould Status Cells, Group II, showing the improved performance obtained by raising the temperature to 475°C.
Cells still cycling.
The failure mechanism which is limiting the life of these most recent cells has not yet been investigated. Post-test examination of earlier cells, however, has shown the failure to be due to shorts which develop as the positive active material is exuded through the particle retainer basket into the separator and eventually this material comes into contact with the negative electrode, or other conductive material that with time becomes deposited in the separator layer (i.e. iron particles).

Recent Eagle-Picher cell tests, performed under a program for the U.S. Army, have demonstrated a life in excess of 1000 cycles and 500 days of operation to 80% DOD. Therefore, there is no reason to believe that with modification the Gould immobilized electrolyte-powder separator cells cannot achieve a similar lifetime at temperature.

II. Battery Modules

Within Gould minimal lifetime information has been generated on Li alloy-MS battery modules since only three have been assembled and tested. One of these was a three cell module and the other two were ten-cell 2.5 kWh modules. However, a reasonable amount of operational experience and information was gathered during the testing of these latter two modules. The early performance of the modules were as expected with the battery capacity declining steadily with cycling as the cell imbalance increased due to minor differences in the coulombic efficiency of the cells. The full battery capacity, however, could be restored by performing an equalization after 14 cycles. It was possible to repeat this cycling-equalization routine at least 5 times before problems arose with the batteries. These problems were partially attributable to electrolyte leakage from the positive feedthrough seals and the subsequent “wicking-action” along the insulation on the intercell connectors. In general the life of the two battery modules was in line with the cycle life of the individual cells from which they were constructed. The thermal management systems used in these battery modules were capable of maintaining the cells within their operating temperature range during both charge and discharge and it was concluded that a minimal cooling system will be required.
As part of the current EPRI program, Gould is to build 9-cell battery modules that are to be tested at ANL in a high-efficiency thermal insulated housing fitted with an integrated thermal management system. This system will provide both heating and cooling during operation of the battery.
BATTERY DESIGN ANALYSIS

FEBRUARY 1984

Prepared for
Jet Propulsion Laboratory
California Institute of Technology

Prepared by
Aeronutronic Division
Ford Aerospace & Communications Corporation
Newport Beach, California

PRECEIVING PAGE BLANK NOT FILMED

Ford Aerospace &
Communications Corporation
Aeronutronic Division
Newport Beach, California 92660

H-3

PAGE H-2 INTENTIONALLY BLANK
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Performance Modelling</td>
<td>3</td>
</tr>
<tr>
<td>Cost Projections</td>
<td>17</td>
</tr>
<tr>
<td>Technical Support for Projections</td>
<td>19</td>
</tr>
<tr>
<td>Energy Balance</td>
<td>21</td>
</tr>
<tr>
<td>Life Considerations</td>
<td>27</td>
</tr>
<tr>
<td>Other Operational Characteristics</td>
<td>31</td>
</tr>
<tr>
<td>Packaging Flexibility</td>
<td>34</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Candidate Missions</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Assumptions for Performance Modelling</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Initial Sizing of Batteries</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Initial Characteristics - Cells and Batteries</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Characteristics of 1-Year Old Battery</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Size & Weight of Battery Systems</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Discharge Characteristics after 1-Year Service</td>
<td>16</td>
</tr>
<tr>
<td>1.8</td>
<td>Specific Pulsed Power after 1-Year Service</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Battery & Cell Price Estimates</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Technical Support for Projections</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Modified JPL Profile #3</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Thermal Response</td>
<td>23</td>
</tr>
<tr>
<td>4.3</td>
<td>24-Hour Energy Balance</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>Estimates of In-Use Energy Consumption</td>
<td>26</td>
</tr>
<tr>
<td>5.1</td>
<td>Deterioration of Battery Performance</td>
<td>30</td>
</tr>
<tr>
<td>7.1</td>
<td>Volume Requirements</td>
<td>34</td>
</tr>
<tr>
<td>7.2</td>
<td>Scale Factors at Constant P/E</td>
<td>35</td>
</tr>
<tr>
<td>7.3</td>
<td>Scale Factors at Constant Power</td>
<td>36</td>
</tr>
</tbody>
</table>

List of Illustrations

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Relationship of State of Charge and F Values.</td>
<td>6</td>
</tr>
</tbody>
</table>

References

SUMMARY

A brief design analysis was performed which confirms that sodium-sulfur (Na/S) batteries can be designed to match a wide range of mobile application requirements. These missions range from low-power commuter EVs to full performance +s to very high power hybrid vehicles. In spite of the need for high temperature operation, the projected specific energy, power density and energy efficiency of the complete Na/S battery system are excellent, enabling all the missions to be considered technically viable. Economic estimates are less certain, but indicate that battery initial cost is likely to be relatively high. Economic viability would depend on alternate fuel costs as well as on attaining the projected cycle life and high-rate production.

It would appear that the appropriate next step should include demonstration of hardware and validation of projections for both performance and cost.
INTRODUCTION

The applicability of sodium-sulfur batteries to a wide range of mobile missions was addressed in this brief analysis. The influence of battery size and power-to-energy ratio was determined at a system level through a series of four point designs, each targeted at a representative application. These include three EV vehicles and a battery hybrid vehicle. In all cases, the exceptional efficiency and high specific energy of individual cells lead to practical performance projections for the complete battery systems. Obviously, larger batteries are favored as a consequence of the weight and volume requirements for thermal control, but even the small commuter battery has a specific energy of about 90 Wh/kg.

These analyses addressed issues of thermal and charge control, packaging, overall energy balance, aging, maintenance and cost estimates. For this study, the design guidelines supplied by JPL were followed with few exceptions in order to facilitate battery comparisons. As a result, some performance parameters are lower than could otherwise be claimed with a more detailed design. In areas of battery reliability, maintenance and cost, the state of Na-S technology development does not support firm projections.
1.0 PERFORMANCE MODELLING

Four candidate missions were specified along with their energy and power requirements. These are listed in Table 1.1. Using assumptions specified in the guidelines and augmented by the others discussed with the JPL Program Manager, sodium-sulfur batteries were designed for each of the four missions. The principal assumptions are listed in Table 1.2.

The sizing (initial rating) of each battery is increased by 10% in both energy and power to approximately offset deterioration during life. The balance between credits for providing excess capability in early life and penalties for having inadequate performance in later life is poorly quantified. The issue is clouded by the probable spread in customer tolerance to performance shortfall and willingness to follow recommended maintenance schedules. The fixed 10% factor for all missions is considered more appropriate than trying to estimate separate life-cycle averages for each mission. Small additional adjustments are made to the power and energy goals of each mission to compensate for controller limitations. The performance ratings of the batteries are estimated in accordance with the guidelines (i.e., 1-year battery), and battery outputs over life are projected Section 5.

1.1 BATTERY DESIGN

In this study, it is assumed that cells are connected in long series strings to provide either full- or half-battery voltage. Full battery capacity is obtained by paralleling the appropriate number of strings. The response of long strings is to average (sum) the individual cell resistances, thus reducing the effect of cell variability. However, the effective string capacity is determined by that of the weakest cell since it blocks further current. Based on present modelling studies, this long string interconnection topology appears to provide best battery reliability.
Table 1.1. Candidate Missions

<table>
<thead>
<tr>
<th>Applications</th>
<th>Range</th>
<th>Energy Consumed</th>
<th>Maximum Pulse Power Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Commuter EV</td>
<td>128 km</td>
<td>12 kWh</td>
<td>25 kW</td>
</tr>
<tr>
<td>II. Hybrid Vehicle</td>
<td>80 km</td>
<td>15 kWh</td>
<td>50 kW</td>
</tr>
<tr>
<td>III. General Purpose EV/Van</td>
<td>160 km</td>
<td>25 kWh</td>
<td>60 kW</td>
</tr>
<tr>
<td>IV. Full Performance EV</td>
<td>400 km</td>
<td>50 kWh</td>
<td>50 kW</td>
</tr>
</tbody>
</table>

Table 1.2. Assumptions for Performance Modelling

1. Controller Voltage Range Fixed Over Life
 - Nominal 240 V battery (except 120 V for commuter)
 - Allowable range: $OCV \pm 0.54 OCV$
 - No provision for regeneration voltage
 - Controller limits removed for charge

2. Mission Requirements Considered "Mid-Life"
 - 110% used to size "new" battery
 - 1-year old battery used to project performance
 - 1-year old battery used for "energy balance"

3. Battery Aging Model (circa 1990)
 - $dN/N = -0.00 \text{ per freeze-thaw cycles (} N = \text{number of good cells)}$
 - dN/N: Weibull statistics ($\alpha = 1500$ cycles, $\beta = 3.0$)
 - $dR/R = +1(1.0 \pm 0.5) \times 10^{-4} \text{ per electrical cycle (} R = \text{resistance)}$
 - $dC/C = -(1.0 \pm 0.5) \times 10^{-4} \text{ per electrical cycle (} C = \text{capacity)}$
 - Failed cells have 1 m\Omega resistance

4. Balance of System Components
 - Structural support weight proportional to cell weight.
 - Thermal enclosure size & losses scale as (volume)$^{2/3}$
 - Thermal control proportional to square of sustained power.
For Na/S cells, the principal design factors are the capacity (both theoretical and rated) and internal resistance (both pulsed and steady). The resistance values are nearly constant throughout a cycle except at the extreme ends of the charge or discharge. The common convention in Na/S technology is to define theoretical capacity between "sulfur" as charged and \(\text{Na}_2\text{S}_3 \) as discharged. At Ford Aerospace, a linear chemical state-of-charge scale is used which conveniently represents the relative Ah content for a sulfur-limited design. Using the F-scale (corresponding to composition \(\text{Na}_2\text{F}_3\text{S}_3 \)), the theoretical capacity ranges from sulfur (\(F=0 \)) to \(\text{Na}_2\text{S}_3 \) (\(F=1 \)). A value \(F_1 \) represents the end of charge defined by the dynamics of the recharge processes which are affected principally by the charge rate, voltage limit and temperature. Similarly, \(F_2 \) represents the dynamic end of discharge. The utilization (\(U \)) of the sulfur electrode is \(F_2 - F_1 \) and thus depends on operating conditions.

It may be desirable for other system considerations to limit the range of cathode operation and define "design" or "rated" values for \(F_{1R} \), \(F_{2R} \) and \(U_R \). In this present study, the design \(F_{2R} \) is chosen between 0.6 and 0.8 for reasons related to improving the constancy of pulse power, for reduction of entropic heating, and in order to retain more voltage swing at the end of discharge (EOD) to offset additional battery deterioration thereby extending the interval before maintenance. The 100% state-of-charge (SOC) condition corresponds to the design point \(F_{1R} \), and the 0% SOC corresponds to \(F_{2R} \). With this convention, the battery can operate beyond the 0% - 100% range in SOC. The relationships of these notations to cell voltage are depicted in Figure 1.1.

In other EV analyses, it was often desirable to provide some "limp-home" range at less than specified power. To do this with Na/S technology,
Figure 1.1. Relationship of State of Charge and F Values.
the battery is designed to meet or exceed specified power out to its rated discharge condition, \(F_{2R} \), until it reaches its defined end-of-life. By increasing the cells' sodium content slightly, additional range capability at lower power is provided at very low incremental weight and volume. Furthermore, with its higher performance early in life, the battery can deliver the specified power throughout the additional range as well. However, in keeping with this study's guidelines, no "limp-home" provision is included.

1.1.1 INITIAL SIZING

Throughout most of its discharge cycle, the Na/S cell is well represented as a fixed linear resistor in series with a voltage source which varies slightly with SOC, as shown in Figure 1.1. Because part of the voltage loss results from concentration polarization which is nearly linear with current, the effective resistance for pulse operation is somewhat lower than for steady operation (e.g., \(R_p / R_s \approx 0.8 \) to 0.95). This is beneficial in meeting the peak power specifications.

With the simple linear electrical circuit, the relationships between energy, power, efficiency, voltage, current, capacity and time are straightforward. The voltage range set by the motor/controller interacts with the battery characteristics to limit the deliverable energy and power. In this study, the voltage ratio \(K_1 = V_{min} / V_{max} = 0.54 \) was selected to correspond to the hardware under development at JPL and the DOE-Ford ETX program. These controllers operate between 265 V and 143 V. By removing provisions for regeneration in a new battery, the battery OCV is taken as large as possible: thus \(K_2 = OCV (\theta \text{ SOC} = 100%) / V_{max} = 1.0 \). For convenience, several other ratios were defined. The cell's OCV varies with SOC as shown in Figure 1.1, with \(K_3 = OCV (\theta \text{ SOC} = 0%) / OCV (\theta \text{ SOC} = 100%) \) varying from 0.85 to unity as a
function of the selected F_2 value for the cathode. The delivered energy is related to the average cell voltage, hence to the average OCV. The ratio, $K_4 = \frac{OCV}{OCV (\theta \text{ SOC} = 100\%)}$, is very nearly unity. Although the sulfur electrode response to pulse loads differs appreciably from its steady operation, the ratio of cell resistances, $K_5 = \frac{R_p}{R_s}$, varies with design and is seldom less than 0.8.

Using these normalizing factors, the response of a new battery can be approximated as follows:

\[E_{DEL} = (\widehat{OCV} = I_D R_S) \cdot C \]
\[= V_{\text{max}} \cdot K_2 \cdot K_4 \cdot C \cdot \bar{\eta}_D \] \hspace{1cm} (1)

\[P_{AVG} = \frac{E_{DEL}}{T_D} \] \hspace{1cm} (2)

\[P_{DEL (SOC = 0)} = \frac{V_{\text{MIN}}}{i_p} \]
\[= \frac{V_{\text{MAX}}^2}{i_p} \left(K_2 \cdot K_3 - K_1 \right) K_1 / R_p \] \hspace{1cm} (3)

\[P_{BAT (SOC = 0)} = \frac{V_{\text{MAX}}^2}{i_p} K_2 \cdot K_3 / 4 R_p \] \hspace{1cm} (4)

where $\bar{\eta}_D = 1 - (i_D R_S / \widehat{OCV})$ is average discharge efficiency;

V_{MAX} and V_{MIN} are controller voltage limits;

R_p, R_s, and C are pulse and steady resistance, and capacity of the t

T_D, and i_D are effective time and average current during motoring;

and $K_1 \ldots K_5$ are ratios defined in text.

The initial capacity of the battery must be oversized by a factor $(1/\bar{\eta}_D)$ to account for voltage losses. The peak battery power at SOC = 0 must exceed the vehicle demand by a factor $K_2^2 K_3^2 / 4 K_1 (K_2 K_3 - K_1)$ to offset the controllers' voltage range limitation. The resulting beginning-of-life goals

H-18
for the four missions are adjusted by the appropriate factors and are summarized in Table 1.3. A representative cell design for each mission is then generated. Salient features of each cell are listed in Table 1.4, along with the resulting initial battery characteristics.

1.1.2 ONE YEAR OLD BATTERY

The effect of cell deterioration and cell (electrolyte) failures on the response of the Na/S battery is strongly influenced by cell interconnection topology. Present analyses indicate a preference for several long "strings" of cells, paralleled at the battery terminals. Under these assumptions, the battery characteristics decay gracefully.

Three modes of cell deterioration are assumed: electrolyte fracture, resistance rise, and capacity decline. Present experience indicates that some failures occur with the freeze-thaw phase change, and other electrolyte failures follow a Weibull statistic. The effect of cell loss is to reduce the OCV by an amount proportional to the fraction of failed cells in the battery. (Unsymmetrically distributed failures cause temporary unbalance in string currents, but these generally average out when the cell OCV begins to fall near the end of discharge.) The effect of 1-year service (<10,000 miles/year or ~250 partial cycles) is modelled as an equivalent number of full cycles which provides the same range.

Cell performance deteriorates continuously with service with resistance and capacity worsening at an average fraction rate of 1×10^{-4} per cycle. The present average rate and width of distribution of decay rates are projected to improve by 1990 technology (Table 1.2).
Table 1.3. Initial Sizing Goals for Batteries

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commuter</td>
<td>Hybrid</td>
<td>EV/VAN</td>
<td>Full Perf.</td>
</tr>
<tr>
<td>Range (km)</td>
<td>128</td>
<td>80</td>
<td>160</td>
<td>400</td>
</tr>
<tr>
<td>Discharge Time (h)</td>
<td>2.0</td>
<td>1.25</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Charge Time (h)</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Average Power (kW)</td>
<td>6.0</td>
<td>12.0</td>
<td>8.33</td>
<td>10.0</td>
</tr>
<tr>
<td>Sustained Power* (kW)</td>
<td>12.5</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Nominal Volts (V)</td>
<td>120</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Energy (kWh)</td>
<td>13.2</td>
<td>16.5</td>
<td>27.5</td>
<td>55.0</td>
</tr>
<tr>
<td>Peak Power** (kW)</td>
<td>27.9</td>
<td>55.4</td>
<td>67.1</td>
<td>56.8</td>
</tr>
</tbody>
</table>

*for 20 minutes

**at SOC = 0%
Table 1.4. Initial Characteristics - Cells and Batteries

<table>
<thead>
<tr>
<th>CELLS</th>
<th>I Commuter</th>
<th>II Hybrid</th>
<th>III EV/VAN</th>
<th>IV Full Perf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD (cm)</td>
<td>3.02</td>
<td>2.74</td>
<td>3.18</td>
<td>3.78</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>31.9</td>
<td>29.6</td>
<td>35.4</td>
<td>35.1</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>473</td>
<td>380</td>
<td>582</td>
<td>755</td>
</tr>
<tr>
<td>Volume (cm^3)</td>
<td>229</td>
<td>175</td>
<td>280</td>
<td>394</td>
</tr>
<tr>
<td>Capacity (Ah)</td>
<td>37.8</td>
<td>23.7</td>
<td>38.4</td>
<td>77.8</td>
</tr>
<tr>
<td>Energy (Wh)</td>
<td>73.6</td>
<td>46.2</td>
<td>76.7</td>
<td>153</td>
</tr>
<tr>
<td>PP* (W)</td>
<td>155</td>
<td>154</td>
<td>186</td>
<td>158</td>
</tr>
<tr>
<td>Dis. Eff. (-)</td>
<td>0.943</td>
<td>0.938</td>
<td>0.968</td>
<td>0.957</td>
</tr>
<tr>
<td>Pulse Resistance* (mΩ)</td>
<td>6.36</td>
<td>6.91</td>
<td>5.30</td>
<td>5.73</td>
</tr>
<tr>
<td>SE (Wh/kg)</td>
<td>156</td>
<td>121</td>
<td>132</td>
<td>202</td>
</tr>
<tr>
<td>ED (Wh/l)</td>
<td>322</td>
<td>264</td>
<td>274</td>
<td>387</td>
</tr>
<tr>
<td>SPP* (W/kg)</td>
<td>328</td>
<td>405</td>
<td>320</td>
<td>209</td>
</tr>
<tr>
<td>PPD* (W/l)</td>
<td>678</td>
<td>880</td>
<td>664</td>
<td>400</td>
</tr>
</tbody>
</table>

BATTERIES				
No. of Cells (-)	180	360	360	360
OCV (SOC = 100%) (V)	124	249	249	249
Capacity (Ah)	113	71	115	233
Resistance - steady (mΩ)	137	296	224	247
- pulse (mΩ)	127	276	212	229
Energy (kWh)	13.3	16.6	27.7	54.9
PP* (kW)	27.9	55.4	67.0	56.8

* At SOC = 0%
The effect of resistance rise is determined principally by the average rise rate since long series strings average the distribution. However, capacity decline rate is established by that of the worst cell in the string. Thus a $(\bar{X} - 3\sigma)$ value is appropriate for the worst cell in a 360-cell battery. Extreme capacity loss (e.g., >20%) would be prevented (eliminated) by a maintenance operation which shorts out the cell.

The projected deterioration factors for a 1 year old "1990" battery are listed in Table 1.5, along with resulting battery characteristics for the four missions.

1.1.3 STRUCTURAL AND PACKAGING

Each cell must be electrically insulated to prevent shorting to its neighbors. Sixty-cell groups are then assembled into modules and supported by an enamelled steel enclosure. Provisions for cell interconnections, bus bar connections, heaters, and thermal control are included within the module structure. The modules are enclosed within a vacuum thermal insulation enclosure. The thermal control system and battery are supported on a tray bolted onto the vehicle frame.

The weight of the module hardware is modelled as proportional to cell weight and estimated by analogy to Ford Aerospace's CARBAT-1 experience. The weight of the thermal enclosure is scaled as the $2/3$ power of battery size. Weight of the thermal control system is taken proportional to the square of sustained power which reflects the heat rejection requirements.

Estimates of the packaging requirements include: 5-mm allowance between modules and around the outside of the module pack; 3-cm allowance for internal support platforms including heating/cooling ducts; a 2.5-cm thick evacuated
Table 1.5. Characteristics of 1-Year Old Battery

<table>
<thead>
<tr>
<th></th>
<th>I Commuter</th>
<th>II Hybrid</th>
<th>III EV/VAN</th>
<th>V Full Perf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Range (km)</td>
<td>12000</td>
<td>16000</td>
<td>16000</td>
<td>24000</td>
</tr>
<tr>
<td>Equivalent Cycles (-)</td>
<td>100</td>
<td>150</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Deterioration Factors* (1990 Technology)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolyte Failures</td>
<td>0.0033</td>
<td>0.0040</td>
<td>0.0031</td>
<td>0.0031</td>
</tr>
<tr>
<td>Resistance Rise</td>
<td>1.010</td>
<td>1.015</td>
<td>1.010</td>
<td>1.006</td>
</tr>
<tr>
<td>Capacity Decline</td>
<td>0.976</td>
<td>0.964</td>
<td>0.976</td>
<td>0.984</td>
</tr>
<tr>
<td>Battery Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Cells (-)</td>
<td>179</td>
<td>358</td>
<td>359</td>
<td>359</td>
</tr>
<tr>
<td>OCV (SOC=100%) (V)</td>
<td>123.8</td>
<td>247.5</td>
<td>248.2</td>
<td>248.2</td>
</tr>
<tr>
<td>Capacity (Ah)</td>
<td>110.6</td>
<td>68.6</td>
<td>112.2</td>
<td>229.8</td>
</tr>
<tr>
<td>Energy (kWh)</td>
<td>12.86</td>
<td>15.90</td>
<td>26.88</td>
<td>53.91</td>
</tr>
<tr>
<td>Peak Power (SOC=0%) (kW)</td>
<td>27.47</td>
<td>54.24</td>
<td>66.14</td>
<td>56.24</td>
</tr>
<tr>
<td>Peak Power (@ V_{min}, SOC=0%) (kW)</td>
<td>26.98</td>
<td>53.77</td>
<td>65.01</td>
<td>54.40</td>
</tr>
<tr>
<td>Average Dis Eff. (-)</td>
<td>0.942</td>
<td>0.937</td>
<td>0.968</td>
<td>0.957</td>
</tr>
</tbody>
</table>

*Multiplicative Factor
enclosure, and a 12.5-cm long bottom superinsulating end plug which provides space for the air blowers, fuses, connecting plugs, and microprocessor-based charging control. The charger is off-board and not included in this analysis.

A summary of the weights and sizes of the battery components and for the total system is given in Table 1.6.

1.1.4 BATTERY DISCHARGE CHARACTERISTICS

For each 1-year old battery, the energy delivered at various discharge rates is calculated. These calculations are based on the "steady" resistance value and average OCV and result in a Ragone curve. The discharge characteristics are summarized in Table 1.7.

The variation in deliverable peak pulse power throughout the discharge cycle is calculated by using the batteries' pulse resistance and the voltage difference between the battery OCV and controller limit, V_{MIN}, to determine maximum pulse current at the controller voltage. The results are presented in Table 1.8, and are very flat as a consequence of limiting the design depth of discharge and avoiding the normal voltage droop associated with a deeper depth of discharge.
Table 1.6. Size & Weight of Battery System

<table>
<thead>
<tr>
<th></th>
<th>I: Commuter</th>
<th>II: Hybrid</th>
<th>III: EV/VAN</th>
<th>IV: Full Perf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-Cell Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width (cm)</td>
<td>14.4</td>
<td>13.1</td>
<td>15.1</td>
<td>17.8</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>40.3</td>
<td>36.8</td>
<td>42.2</td>
<td>49.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>33.9</td>
<td>31.6</td>
<td>37.4</td>
<td>37.1</td>
</tr>
<tr>
<td>Volume (l)</td>
<td>19.6</td>
<td>15.2</td>
<td>23.8</td>
<td>32.8</td>
</tr>
<tr>
<td>Cell Wt. (kg)</td>
<td>28.4</td>
<td>22.8</td>
<td>34.9</td>
<td>45.3</td>
</tr>
<tr>
<td>Total Weight (kg)</td>
<td>34.6</td>
<td>27.8</td>
<td>42.6</td>
<td>55.3</td>
</tr>
<tr>
<td>Module Pack with Support & Thermal Manifolds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Arrangement</td>
<td>3 x 1</td>
<td>3 x 2</td>
<td>3 x 2</td>
<td>3 x 2</td>
</tr>
<tr>
<td>Width (cm)</td>
<td>45.1</td>
<td>43.0</td>
<td>48.7</td>
<td>56.7</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>42.1</td>
<td>75.0</td>
<td>86.0</td>
<td>101.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>36.9</td>
<td>34.6</td>
<td>40.4</td>
<td>40.1</td>
</tr>
<tr>
<td>Volume (l)</td>
<td>70.1</td>
<td>111.5</td>
<td>169.1</td>
<td>228.8</td>
</tr>
<tr>
<td>Manifold & Support Tray (kg)</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Weight of Modules (kg)</td>
<td>103.9</td>
<td>116.9</td>
<td>255.6</td>
<td>331.6</td>
</tr>
<tr>
<td>Total Weight (kg)</td>
<td>109</td>
<td>174</td>
<td>266</td>
<td>345</td>
</tr>
<tr>
<td>Thermal Enclosure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Dimensions (cm)</td>
<td>50.2</td>
<td>48.0</td>
<td>53.8</td>
<td>61.6</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>47.2</td>
<td>80.1</td>
<td>91.1</td>
<td>106.1</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>52.1</td>
<td>49.8</td>
<td>55.6</td>
<td>55.3</td>
</tr>
<tr>
<td>Volume (l)</td>
<td>124</td>
<td>192</td>
<td>272</td>
<td>362</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
</tr>
<tr>
<td>Blowers & Ducts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>5.0</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Misc. Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg)</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Total Battery Weight (kg)</td>
<td>145</td>
<td>227</td>
<td>326</td>
<td>412</td>
</tr>
<tr>
<td>Total Battery Volume (l)</td>
<td>124</td>
<td>192</td>
<td>272</td>
<td>362</td>
</tr>
</tbody>
</table>
Table 1.7. Discharge Characteristics after 1-Year Service

Sp. Energy (Wh/kg) vs. Discharge Rate

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>85.8</td>
<td>80.2</td>
<td>73.5*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Commuter</td>
<td>91.5</td>
<td>88.8</td>
<td>86.0</td>
<td>82.9</td>
<td>79.5</td>
<td>68.8*</td>
<td>-</td>
</tr>
<tr>
<td>Hybrid</td>
<td>73.1</td>
<td>71.3</td>
<td>69.4</td>
<td>67.4</td>
<td>65.2</td>
<td>59.0*</td>
<td>49.9*</td>
</tr>
<tr>
<td>EV/VAN</td>
<td>83.4</td>
<td>81.2</td>
<td>78.8</td>
<td>76.3</td>
<td>73.5*</td>
<td>65.3*</td>
<td>-</td>
</tr>
<tr>
<td>Full Performance</td>
<td>131.9</td>
<td>126.7</td>
<td>121.0</td>
<td>114.6*</td>
<td>107.1*</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*May require increased heat exchange for prolonged operation.

Table 1.8. Specific Pulsed Power After 1-Year Service
Limited by Controller Voltage

<table>
<thead>
<tr>
<th>Battery Design</th>
<th>SOC = 80%</th>
<th>50%</th>
<th>30%</th>
<th>10%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>122</td>
<td>122</td>
<td>105</td>
<td>87</td>
<td>79</td>
</tr>
<tr>
<td>Commuter</td>
<td>211</td>
<td>209</td>
<td>207</td>
<td>198</td>
<td>186</td>
</tr>
<tr>
<td>Hybrid</td>
<td>247</td>
<td>244</td>
<td>242</td>
<td>241</td>
<td>237</td>
</tr>
<tr>
<td>EV/VAN</td>
<td>227</td>
<td>224</td>
<td>222</td>
<td>212</td>
<td>199</td>
</tr>
<tr>
<td>Full Performance</td>
<td>167</td>
<td>165</td>
<td>162</td>
<td>143</td>
<td>132</td>
</tr>
</tbody>
</table>
2.0 COST PROJECTIONS

Funding did not permit a detailed cost analysis to be performed for this study. Estimates of OEM cost were derived by extrapolation and revision of prior (1980) costing studies that had been performed as part of Department of Energy Contract No. DE-AM04-79CH10012.

A number of modifications were incorporated into the 1980 study to generate the present estimates. These include:

a) Allowance for balance of system costs ranging from $600 to $1000

b) Use of recommended scaling factors for high production rates:
 - materials $\sim(\text{Production Rate})^{0.9}$, labor $\sim(\text{PR})^{0.6}$, and capital equipment $\sim(\text{PR})^{0.6}$

c) The electrolyte assembly was costed at $0.015/cm^2$ of electrolyte surface (at 10^7/year) on the basis of purchase from a supplier, rather than internal manufacture.

d) Capitalization only for cell assembly and battery fabrication

The results of these price projections are presented in Table 2.1 which gives battery selling price to vehicle OEM manufacturers for each of the four missions. In addition, the cost of incremental cell production is estimated for each cell type. No information is listed for "present design" since it is at the first engineering prototype stage.

The conductive ceramic electrolyte is the dominant cost item in the cell, accounting for $\sim80\%$ of its material costs. A sensitivity analysis to the cost of electrolyte was made. For a 10% increase in electrolyte cost, the incremental cell price increased by 6% and battery price increased by 3%.
<table>
<thead>
<tr>
<th>Battery Design</th>
<th>Battery Selling Price</th>
<th>Cell Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Commuter</td>
<td>$2430.00</td>
<td>$4.92</td>
</tr>
<tr>
<td>II. Hybrid</td>
<td>3128.00</td>
<td>4.13</td>
</tr>
<tr>
<td>III. EV/Van</td>
<td>3802.00</td>
<td>5.63</td>
</tr>
<tr>
<td>IV. Full Performance</td>
<td>4059.00</td>
<td>6.13</td>
</tr>
</tbody>
</table>
3.0 TECHNICAL SUPPORT FOR PROJECTIONS

A number of improvements are under development in the laboratories of Na/S developers, or have been identified as critical needs. R&D efforts are being initiated to establish the technical base for resolution of these present shortcomings, none of which appear to be of fundamental nature.

Improvements in cell components are expected for nearly every element in the cell, especially in regard to cost reduction and quality control. Manufacturing development will overcome many present difficulties associated with lack of reproducibility. The anticipated modifications to the battery and balance-of-system components relate to engineering refinements of the structural, thermal and charge control designs. A listing of probable changes is provided in Table 3.1.
Table 3-1. Technical Support for Projections

A. Cell

<table>
<thead>
<tr>
<th>electrolyte</th>
<th>Present Status</th>
<th>Design Change</th>
<th>Performance Change</th>
<th>Cost Change</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>High purity Bzikowski</td>
<td>Low Cost Powders</td>
<td>0-20% resistance increase</td>
<td><52/kg vs. $15/kg</td>
<td>Battery developers are working with aluminum suppliers to provide control on specific impurities in low cost powders.</td>
<td></td>
</tr>
<tr>
<td>Zeta processing</td>
<td>Spray dried powders</td>
<td>Thinner, lower resistance electrolytes</td>
<td>Faster, automatic green forming, Eliminates calcining and bisque steps</td>
<td>Permits high rate dry bag process.</td>
<td></td>
</tr>
<tr>
<td>Batch sintering</td>
<td>Continuous sintering</td>
<td>More uniform product</td>
<td>Reduced energy consumption and higher throughput</td>
<td>Adaptable to single step sinter/anneal process. Single furnace supports high rate production.</td>
<td></td>
</tr>
</tbody>
</table>

B. Sodium electrode

<table>
<thead>
<tr>
<th>Sodium Electrode</th>
<th>High purity sodium</th>
<th>Automated QC</th>
<th>Eliminate defective parts</th>
<th>Improved yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rayon precursor graphite</td>
<td>Selective impurity control</td>
<td>Increased life</td>
<td>Reduced touch labor</td>
<td>Combines with automated filling & sealing.</td>
</tr>
</tbody>
</table>

C. Positive Current Collector

Chromium based corrosion protection layer	Pitch based fibers	Increased life	$1/kg vs. $10/kg	Eliminate occasional defective coating.
Steel substrate	Improved chromium	Stable performance	$10/kg vs. $250/kg	Enamelling operation is in common commercial use.
Conductive glass, oxides or other layers	Improved electronic conductivity. Reduced wt., longer cells	Reproducible product	None	Permits larger cells. Reduces cell wt. substantially. Concerned with long-term intermetallic diffusion.
Aluminum cladding	Stress relief design	<0.3% freeze-thaw failures	Reduced labor & energy	Requires extensive capitalization.
	Modified design	No penalty	Negligible	Ensures good startup and maintenance of battery.

D. Cell Assembly

| Cell Characteristics | 3% freeze-thaw failures | <0.3% freeze-thaw failures | Negligible Increase | Designed for periodic maintenance. Battery performance not critically affected by individual cell failures. |
| Fail shorted | Long strings | Improved load share | Negligible | EV requires evacuated insulation. Single location necessary to minimize heat loss. |

E. string/Module

Under development	Evacuated enclosure	Reduced deterioration rate	Negligible Increase	Heat exchange sized for sustained power.
Thermal Enclosure	Evacuated end plugs	Some volume increase 150 W vs. 300 W	Linde projects $300	Design for easy maintenance.
Thermal Control	Combined radiation/ convection	Reduced control power	Minor reduction	Design for easy maintenance.
Support Structure Cells/Modules	Reduce amount of structure	Supports higher exchange rate	Same	Eliminates extraneous faults.
Battery/Vehicle	Simplified installation, interactive vehicle/battery design	Reduced weight	Same	T.B.D.
Charge Control and Monitoring	Status calculated from string response	Improved reliability	Reduced labor	T.B.D.
	On-board likely	Lower efficiency, wt. penalty	Negligible	T.B.D.
4.0 ENERGY BALANCE

The Na/S battery is very energy efficient during use because of 100% coulombic efficiency and good voltage efficiency during both charge and discharge. Thermal losses are minimized by incorporating the advanced evacuated insulation currently under development at Linde Division, Union Carbide Corporation. In addition, the large thermal mass and wide permissible range of operating temperature permit most of the electrical losses during operation to be retained to offset thermal losses during idle. During sustained high-power operation, heat must be rejected from the battery to restrict the temperature rise. In this mode of operation, thermal efficiency is lower; however, the thermal penalty is small compared to the energy consumption at high power. Since JPL-Driving Cycle #3 does not incorporate a sustained load, it does not apply to this study.

Calculations of energy balance throughout a 24-hour period were made for the general purpose EV/Van battery with a nominal 1500-kg test weight vehicle. For these calculations, a 1-year old battery condition is assumed. The recommended cycle, JPL Profile #3, was modified in two aspects for the energy balance calculations. The extreme high-power demand, 89 W/kg, (133 kW peak) is not real. The 4-second period was extended to 8-seconds to lower its average power to 47 W/kg, equal to the subsequent demand. Secondly, all power levels were reduced by a factor 1.5 to bring the maximum power demand down to more nearly proper levels (47 kW). Even with this reduction factor, the energy consumed per mile with regeneration is 398 Wh/mile, a value that is still about 1.4 times too large based on the Ford ETX projections. The modified profile used in these calculations is given in Table 4.1.

The thermal response of the battery is summarized in Table 4.2. The final temperature during each segment is estimated. The 17°C rise during
Table 4.1. Modified JPL Profile #3

<table>
<thead>
<tr>
<th>Segment</th>
<th>Guidelines</th>
<th>Modified</th>
<th>1500 kg Vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>W/kg</td>
<td>Time</td>
</tr>
<tr>
<td>1. 1.</td>
<td>0-26</td>
<td>12</td>
<td>I. 1.</td>
</tr>
<tr>
<td></td>
<td>26-30</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-74</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74-76</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76-171</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>171-196</td>
<td>0</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>196-211</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>211-236</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>236-251</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Same as 2</td>
<td></td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>Same as 2 plus idle</td>
<td></td>
<td>4.</td>
</tr>
</tbody>
</table>
Table 4.2. Thermal Response

<table>
<thead>
<tr>
<th></th>
<th>Temperature Variation</th>
<th>Net Heat Generation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(°C)</td>
<td>(Wh)</td>
<td>W/Regen</td>
</tr>
<tr>
<td></td>
<td>W/Regen</td>
<td>W/O Regen</td>
<td></td>
</tr>
<tr>
<td>Start of Drive</td>
<td>To</td>
<td>To</td>
<td>-</td>
</tr>
<tr>
<td>End of Segment 1</td>
<td>To +17.39</td>
<td>To +17.30</td>
<td>1039</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>To -7.43</td>
<td>-1483</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>To +9.96</td>
<td>1039</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>To -4.14</td>
<td>-843</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>requires supplemental heat</td>
<td></td>
</tr>
</tbody>
</table>

Battery Heat Capacity \(\sim 59.7\) Wh/°C

Battery Heat Loss Rate \(\sim 160\) Watts

Required Supplemental Heat

- W/Regen 1820 Wh
- W/O Regen 1870 Wh
the morning use is well within the acceptable operating range. No blower power is required. For this drive cycle, no heating or cooling is required during the daytime. About 2 kWh is required overnight to restore the battery temperature.

Calculations of the electrical battery parameters, with and without regeneration, are summarized in Table 4.3. The average electrical discharge efficiency is high, even with the peaked driving cycle. Because daily range is small, the Na/S battery operates on its voltage plateau at a high state of charge which also is the region of low entropy. The overall daily efficiency, including thermal makeup energy, is about 75%. These data are transcribed onto the guideline format in Table 4.4.
Table 4.3. 24-Hour Energy Balance

<table>
<thead>
<tr>
<th></th>
<th>Energy At Terminals (Wh)</th>
<th>Capacity (Ah)</th>
<th>Average Efficiency (%)</th>
<th>Heat Generation (Wh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/Regen</td>
<td>5774</td>
<td>27.32</td>
<td>85.1</td>
<td>1156</td>
</tr>
<tr>
<td>W/O Regen</td>
<td>6990</td>
<td>32.11</td>
<td>87.7</td>
<td>1151</td>
</tr>
<tr>
<td>Recharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/Regen</td>
<td>13642</td>
<td>54.64</td>
<td>99.3</td>
<td>-292</td>
</tr>
<tr>
<td>W/O Regen</td>
<td>16050</td>
<td>64.22</td>
<td>99.3</td>
<td>-332</td>
</tr>
<tr>
<td>Overall Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disch Energy</td>
<td>11.55</td>
<td>13.64</td>
<td>84.7</td>
<td>1.82</td>
</tr>
<tr>
<td>Chg Energy</td>
<td>13.98</td>
<td>16.05</td>
<td>87.1</td>
<td>1.87</td>
</tr>
</tbody>
</table>
Table 4.4. Estimates of In-Use Energy Consumption

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup & shutdown</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Self Discharge</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shunt Current</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parasitics</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thermal Loss W Regen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.82</td>
</tr>
<tr>
<td>W/O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.87</td>
</tr>
<tr>
<td>Delivered Energy W</td>
<td>5.77</td>
<td>-</td>
<td>5.77</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W/O</td>
<td>6.99</td>
<td>-</td>
<td>6.99</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Recharge Energy W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13.64</td>
</tr>
<tr>
<td>W/O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16.05</td>
</tr>
<tr>
<td>Charge Eff* (%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.993</td>
</tr>
<tr>
<td>W/O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.993</td>
</tr>
</tbody>
</table>

*Uses Standard Charger
5.0 LIFE CONSIDERATIONS

The service life of an EV battery is dominated by the failure modes and deterioration rates of individual cells. Some of these factors were discussed in Section 1.1.2. The selected cell interconnection topology, control strategy and maintenance procedure generally reduce the influence of cell degradation on battery response. However, certain cell failure modes could be enhanced by the battery configuration and lead to worsened life statistics for the battery than for the cell.

At this point in technology development, system reliability is one of the principal active areas of analysis. Response to the following topics is mostly qualitative and tentative.

5.1 PRESENT LIFE STATUS

Cell durability is affected by electrical operating conditions, mechanical abuse and design features in addition to the manufacturing variables. Although several thousands of cells have been tested, actual life data from carefully controlled tests are meager. Few modules have been evaluated, and only one full size EV battery has been fabricated for test.

5.1.1 CELL LIFE

For a population of 384 load-leveling cells operating about 5 cycles per week, the failure statistics give fair fit to a Weibull curve with $\alpha = 1400$ days (\sim1000 cycles), $\beta = 2.0$ [Ref. 1]. This on-going test began in January 1981 and has progressed to a condition in which about 20% of the cells have failed. A previous 20-cell test (circa 1980) of load-leveling cells gave a similar time projection with a shape factor near unity.

We have not undertaken a statistically significant test to determine life of our EV cells. Although many have been on test for considerable time, the test conditions are frequently varied to explore response to other variables.
The longest cycle life of an EV cell presently on test is 1100 cycles, 16 months.

The effect of depth of discharge on cell life appears minor, although excessive overdischarge is likely to damage the cell. The life limiting mechanisms were discussed in Section 1.1.2.

5.1.2 MODULE AND BATTERY LIFE CONSIDERATIONS

Many concept strategies for cell interconnection and battery maintenance are being analyzed. No thorough validation of models or optimization of design exists to date.

5.2 PROJECTED LIFE IMPROVEMENTS

The planned approach to attain improved cell life consists of incorporating more manufacturing QC with more extensive NDE, coupled with continued basic R&D efforts to identify causes of cell failure. Control of specific impurities and defects could extend life significantly and be cost effective.

A list of expected technical improvements within the cell was presented in Section 3. These improvements apply to cells of either high-power or high-energy designs.

5.3 PERFORMANCE DETERIORATION

The basic effects of resistance rise, capacity decline and cell failure during life were described in Section 1.1.2. Initial response is expected to show a linear decrease in all battery performance parameters with cycling. The linear resistance rise model produces a corresponding linear fall in peak power capability. The linearly modelled capacity decline produces a linear drop in energy. Since the efficiency is high under steady loads, the interaction of increased resistance with lower capacity does not cause further reduction in energy.
As the battery ages significantly, cell failures become more frequent. The accelerating rate of cell failures causes the battery voltage to drop at an increasing rate. Energy varies about linearly with voltage, although efficiency also begins to fall. Most significantly, the peak power delivered at the controller's minimum voltage drops quickly. The peak current is determined by the voltage spread between battery OCV and the controller V_{MIN}. Since V_{MIN} is greater than half of the initial voltage, the fractional loss of peak current is more than twice the fractional loss of cells.

An illustration of the decrease of battery performance over the early portion of life including the first maintenance operation is given in Table 5.1. In this example, the battery designed for the general purpose EV/Van mission is assumed, along with the assumptions listed in Table 1.2 for deterioration and failure rates of cells.

5.4 RELIABILITY

At present, the battery is imagined to consist of six 60-cell modules for purposes of packaging and support. However, it is assumed that individual cells can be replaced during a "cool-down" repair.

As seen in the previous example of battery aging, Table 5.1, the time-to-first-repair is long but the time between failures becomes much shorter as the battery ages. A crude estimate of a possible repair schedule calls for replacement of about 15 cells after 5, 6½, 7½, 8½, 9, and 9½ years. This schedule suggests replacement of $\approx 1/4$ of the cells to obtain a 10-year battery.
Table 5.1. Deterioration of Battery Performance

<table>
<thead>
<tr>
<th>In Service Years</th>
<th>Cycles</th>
<th>Deterioration Factors</th>
<th>Battery Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. of Good Cells</td>
<td>Resistance Factor</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>359</td>
<td>0.997</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>359</td>
<td>1.008</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>358</td>
<td>0.992</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>356</td>
<td>1.021</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>352</td>
<td>1.022</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>345</td>
<td>1.017</td>
</tr>
</tbody>
</table>

Repaired - Replaced 15 Cells

<table>
<thead>
<tr>
<th>5</th>
<th>500</th>
<th>359</th>
<th>1.046</th>
<th>0.8895</th>
<th>62.58</th>
<th>24.47</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>600</td>
<td>350</td>
<td>1.035</td>
<td>0.8674</td>
<td>61.78</td>
<td>23.23</td>
</tr>
</tbody>
</table>
6.0 OTHER OPERATIONAL CHARACTERISTICS

The sodium-sulfur battery has a number of distinctive operating characteristics. Many of these are incompletely characterized or are significantly affected by details of design. The following responses are provided based on our present preferred cell interconnection topology and state-of-art cell design.

6.1 SPECIAL CHARGE REQUIREMENTS

Special charge control requirements are discussed below.

6.1.1 OVERCHARGE OR OVERDISCHARGE EFFECTS

At the end of charge, the cell exhibits a high polarization related to loss of electrochemically active area. As the available polysulfide (Na$_2$S$_5$) decreases and is replaced by insulating sulfur, the charging current is focused onto smaller areas of the electrolyte. Current densities can become large, and gradients of current density can become extremely high. Ultimately, cell voltage rises until limited by the power source or until the electrolyte fractures.

At rated current, the cells normally withstand ~5 V repeatedly without failure. At low currents (1/10 rated), most cells withstand 10 V and frequently withstand 20 V without apparent damage. All electrolytes have been failed by 40 V.

Following electrolyte fracture, cell failure goes to completion in a benign mode as a consequence of the safety devices incorporated into the sodium reservoir. A possible exception occurs if the conditions prior to failure have caused excessive cell heating, and fracture occurs when the cell is already above about 450°C. Cell rupture then becomes possible.

Overdischarge of a cell with excess sodium causes the polysulfide to solidify (Na$_2$S$_2$) and either rupture the casing due to expansion, or develop high internal resistance with accompanying voltage reversal and copious heat.
generation. Overdischarge of a cell with limited sodium leads to a loss of active anode area, high current densities and extreme gradients of current density.

These characteristics are not well quantified. Most cells withstand overdischarge to below 1 V. Not many cells survive voltage reversal at rated current. Following voltage reversal failure, completion of cell failure is generally benign.

6.1.2 CELL BALANCING REQUIREMENTS

With long series string connections, it is not necessary to adjust the individual cells' SOC since each functional cell is 0.99999 faradaic. Should a cell become nonfaradaic due to electrolyte deterioration, that cell is expected to be driven to failure by becoming out of balance, hence overdischarged.

6.1.3 PERIODIC DISCHARGE REQUIREMENTS

Sodium-sulfur cells do not require complete discharge cycles.

6.1.4 EQUALIZING REQUIREMENTS

As discussed above in Section 6.1.2, each string does not require internal equalization. As cell failures occur and strings become unbalanced, the ability to recharge each string to equal SOCs depends on the charging algorithm. A moderate duration of taper charge could be required each cycle to restore full capacity. This taper period is easily contained within the 8-h recharge time allotment.

6.2 MAINTENANCE REQUIREMENTS

Some maintenance options are discussed below.

6.2.1 REGULAR MAINTENANCE

Ford Aerospace has limited experience in operation of full-scale batteries. Conceptual maintenance strategies have been generated but not validated.
A plausible strategy is described below. With a 10% initial margin in battery performance, a significant number of cell failures can occur before performance falls below specifications. Deterioration is graceful. Maintenance can be scheduled at operator's convenience. During a 1-day repair, the battery would be cooled, and most defective cells replaced (perhaps cell packs or modules would be substituted and then restored ex situ). The interval between such required maintenance operations would be large at first and then shorten near end-of-life. Maintenance should not be more frequent than 6 months.

Between scheduled repairs, occasional brief maintenance could become necessary if a cell fails "open" and blocks its string current. This repair, at temperature, involves shorting out the defective cell and could be accomplished quickly if access into the thermal enclosure is provided.

6.2.2 REFURBISHMENT OPTIONS

A number of options for refurbishment have been proposed. The practicality of any of these will likely be determined by the state of health of the remaining "good" cells, and the characteristics of the cells after the refurbishment function. Some preliminary experience at Ford Aerospace is encouraging. The cost benefits of such refurbishment cannot be estimated at this time.
7.0 Packaging Flexibility

The sodium-sulfur battery offers good energy density provided that the system can be packaged into a single volume with reasonable aspect ratios.

7.1 Volume Requirements

For the design developed for each mission in Section 1, the resulting battery volumes are listed in Table 7.1.

<table>
<thead>
<tr>
<th>Mission</th>
<th>Volume</th>
<th>ED*</th>
<th>PD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Present</td>
<td>285 (1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. Commuter</td>
<td>124 (1)</td>
<td>103</td>
<td>216</td>
</tr>
<tr>
<td>3. Hybrid</td>
<td>192 (1)</td>
<td>82</td>
<td>279</td>
</tr>
<tr>
<td>4. EV or Van</td>
<td>272 (1)</td>
<td>98</td>
<td>239</td>
</tr>
<tr>
<td>5. Full Performance</td>
<td>362 (1)</td>
<td>148</td>
<td>150</td>
</tr>
</tbody>
</table>

*After 1 year service

7.2 Size Limitations

There is no absolute limit to cell dimensions. Present technology is based on "single-electrolyte tube" cells. To maximize active area (power) per unit seal perimeter, cell length is usually extended toward maximum manufacturability limits. At short lengths, SE, ED, and cost per unit performance are degraded because of the relatively large weight of the seals and ends and reduced energy per cell. At present, a "soft" limit of about 20 cm length applies to EV applications. Advanced cell concepts (e.g., multitube) would permit shorter cells to be developed which retain good performance characteristics.

7.3 Placement of Auxiliaries

Sodium-sulfur cells are self-contained and do not require external storage, pumps or crystalizers. All components are enclosed within a single thermal enclosure, except for the thermal control system and battery disconnects.
The air blower and ducting must be located near the battery and have access to the outside (preferably underneath) of the vehicle to exhaust the high-temperature air when cooling is required. The battery disconnect devices are to be mounted near the enclosure to minimize copper losses.

7.4 SCALE EFFECTS

A major feature of Na/S cells is that power and energy are separately adjustable by design of the cathode and electrolyte. The resulting scale effects for a battery are determined by both the power and energy levels.

7.4.1 SCALING FACTORS FOR FIXED P/E RATIO

When the specified power-to-energy ratio remains fixed while the size of the battery is varied, the individual cell design remains fixed. The number of cells would be varied to meet the battery output. With a smaller battery-core, the thermal enclosure and auxiliaries are reduced, but their weights and volumes do not decrease in proportion to the energy or power. Hence the resultant specific energy and energy density are degraded as size is reduced.

An example of the scaling factor effects was generated by using the commuter mission battery as base design and comparing it to 2X and 4X designs. The results are indicated in Table 7.2.

<table>
<thead>
<tr>
<th>Table 7.2. Scale Factors at Constant P/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 kw/12 kWh</td>
</tr>
<tr>
<td>SE (Wh/kg)</td>
</tr>
<tr>
<td>ED (Wh/l)</td>
</tr>
<tr>
<td>TD (h)</td>
</tr>
</tbody>
</table>

7.4.1 SCALING FACTORS AT FIXED POWER

When power is fixed, the area of electrolyte is about constant. Additional energy is incorporated into the cell by increasing the reactant volumes and weights. To utilize the additional energy at fixed power, discharge time must be increased accordingly.
An example of the scaling factors applicable to this case was generated by taking the EV/Van battery design as base, and comparing to half-energy and double-energy batteries at fixed power. The resultant effects on SE and ED are indicated in Table 7.3.

Table 7.3. Scale Factors at Constant Power

<table>
<thead>
<tr>
<th></th>
<th>60 kW/12.5 kWh</th>
<th>60 kW/25 kWh</th>
<th>60 kW/50 kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE (Wh/kg)</td>
<td>55.5</td>
<td>82.7</td>
<td>116.0</td>
</tr>
<tr>
<td>ED (Wh/l)</td>
<td>65.1</td>
<td>99.0</td>
<td>137.3</td>
</tr>
<tr>
<td>T_D (h)</td>
<td>1.5</td>
<td>3.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

References

APPENDIX I

CONTRACTOR RESPONSE: ALUMINUM-AIR BATTERY and ALUMINUM-AIR POWER CELL RESEARCH AND DEVELOPMENT PROGRESS REPORT
RESPONSE TO QUESTIONNAIRE

1. **Performance Modelling**

 (a) Performance modelling is based on an equation interrelating battery weight (W_b, kg), peak sustainable power (P, kW), and peak energy yield (E, kWh):

 $$ W_b = 36(P/p) + 3.5 \left(\frac{E}{e}\right) $$

 where p is the peak power density (kW/m2 of cell area) and e is the peak gross energy yield of aluminum (kWh/kg-Al). The coefficients depend on the choice of scale ratios (P/p = electrode area; and E/e = of aluminum). The values of the coefficients are derived by dividing the components of a battery into those which scale according to electrode area, and those which scale according to aluminum fuel mass. In Table 1.1 below, component weights are given for (arbitrary) $E = 70$ kWh, $P = 31$ kW, $e = 5$ kWh/kg and $p = 7$ kW/m2.

Table 1.1

Component weights based on M3-2 wedge-cassette and crystallizer scale parameters: $f_s = 0.3$ (solid fraction of seed in crystallizer by volume); $a_p = 0.1$ m2/kg (area/weight ratio of seed); volume of electrolyte in cells = 133% of interelectrode volume for 2 mm gap.

<table>
<thead>
<tr>
<th>Component</th>
<th>Basis</th>
<th>Weight (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cells</td>
<td>M3 cell design; 1.1 g/cm2; $p = 7$ kW/m2</td>
<td>49</td>
</tr>
<tr>
<td>2. Cyclones</td>
<td>Krebs PC-1; cast in PVC</td>
<td>2</td>
</tr>
<tr>
<td>3. Electrolyte</td>
<td>Crystallizer and cyclone circuit</td>
<td>21</td>
</tr>
<tr>
<td>4. Seed charge</td>
<td>Alcoa rate equation; $C_{Sn} = 0.06$; $T = 70^\circ$C scaled for control at 2.7 M Al(OH)$_4$</td>
<td>18</td>
</tr>
<tr>
<td>5. Wedge</td>
<td>30$^\circ$ wedge angle</td>
<td>26</td>
</tr>
<tr>
<td>6. Misc.</td>
<td>case, impellers, air-pretreatment, drive motor and start-up battery</td>
<td>30</td>
</tr>
<tr>
<td>7. Aluminum</td>
<td>plates; 5 kWh/kg-Al</td>
<td>14</td>
</tr>
<tr>
<td>8. Water</td>
<td>for reaction and evaporation losses</td>
<td>32</td>
</tr>
<tr>
<td>9. Tankage</td>
<td>water, electrolyte, Al(OH)$_3$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>209</td>
</tr>
</tbody>
</table>

I-3
The first six entries are treated as being proportional to electrode area (P/p); the last three are proportional to aluminum fuel mass (E/e). P and E should not be confused with the integrated energy or power delivered as these quantities depend on drive cycle. However, peak gross and net power yields are the same, as the auxiliary battery provides pumping energy during peak excursions. Net energy yield is equal to 96% of gross energy yield.

Best electrode combinations and cell dimensions indicate a peak energy \(e = 4.4 \text{ kWh/kg-Al} \) and a peak power \(p = 6.5 \text{ kW/m}^2 \) at temperatures of 60-70°C. These values are derived from the polarizations of best electrodes and thin interelectrode gaps. Current electrode research is motivated by the possibility of improvements to \(e = 6.0 \text{ kWh/kg-Al} \) and \(p = 9 \text{ kW/m}^2 \). The latter values may be taken as a difficult but potentially achievable goal, combining successes in anode alloy and air-electrode research with advances in cell design. The former values are those used by Behrin et al. (Design Analysis of an Aluminum-Air Battery for Vehicle Operations; Final report to OVERU; UCRL-53382; March 1983), and are the basis for the present calculation. The latter were revised this year, and are the basis for projections for the full-performance electric vehicle in the 1990s time frame. These values are summarized below.

Table 1.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present</th>
<th>Full Perf. EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-energy yield of Al</td>
<td>4.4</td>
<td>6.5 kWh/kg</td>
</tr>
<tr>
<td>Peak sustainable surface power</td>
<td>6.5</td>
<td>9 kW/m²</td>
</tr>
<tr>
<td>Open circuit corrosion</td>
<td>0.12</td>
<td>0.01 kA/m²</td>
</tr>
</tbody>
</table>

Table 1.3

Data for Question 1. Battery weights, peak power, and power characteristics for \(E = 50 \text{ kWh} \) and \(P = 50 \text{ kW} \).

<table>
<thead>
<tr>
<th>(W_b) kg</th>
<th>Peak Power W/kg</th>
<th>Specific energy (Wh/kg) vs Rate (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W/kg 20 60 80 100 157 200 218 W/kg</td>
<td></td>
</tr>
<tr>
<td>1. Present</td>
<td>317 kg 157</td>
<td>147 158 158 151 126 -- --</td>
</tr>
<tr>
<td>5. Full Perf. EV</td>
<td>229 kg 218</td>
<td>218 204 196 192 -- 164 145</td>
</tr>
</tbody>
</table>

(b) The 30-second peak specific power capability is independent of the state of charge (i.e., remaining quantity of limiting reactant, aluminum or water). Consistent with current cell and electrode technologies, the peak power is associated with \(6.5 \text{ kW/m}^2 \), and is not decreased by system operation power which is delivered by the auxiliary battery (under peak power conditions only.) Full-performance is consistent with \(9 \text{ kW/m}^2 \).
2. Cost Projections

Manufacturing cost of an aluminum-air battery designed for Al-air-only (i.e., non-hybrid) vehicles is estimated to be approximately $32/kW-peak-sustainable-power, for "present" characteristics (6.5 kW/m²). The cost scales with peak power rating, and should become 23 $/kW-peak-power if the Full-Performance value, 9 kW/m² is achieved in practical cells. (That is to say, nearly all battery components scale with electrode area, which is inversely proportional to peak power density.) The cost assumes present battery characteristics as described in the report, "Design Analysis of an Aluminum-Air Battery for Vehicle Operations," E. Behrin, et al., LLNL Report UCRL-53382, March 18, 1983 (Final report of work undertaken for OVERD).

Although design specifics and electrode performance objectives have changed radically since publication of Behrin's report, such changes have resulted in simplification of battery subsystems. Specifically, the sealed parallel-plate cell-stack design described in the report has been replaced by the gravity-fed wedge-cells which have no flexing or moving mechanical parts and are unpressurized. The rotating drum filter/separator has been replaced by a single stationary vessel equipped with hydrocyclone separators of commercially-available designs. The essential operating characteristics of wedge cells and hydrocyclones have been verified experimentally and are reported in UCRL-90465.

3. Technical Support for Projections.

Discussion on Cost Projections and Electrode Improvements

Electrode performance estimates. (See also answers to questions 2 and 3, below.) The cost of any fuel cell is generally proportional to the surface area of the cathode and inversely proportional to the surface power density of the cell. Power densities in excess of 10 kW/m² have been achieved using unalloyed aluminum and air-depolarized electrodes in cells tested at Hoppeka Battery Company (Brilon, West Germany) at high temperatures (800°C or above) in the more conductive KOH solutions.

The "present" open circuit corrosion is routinely achieved with unalloyed aluminum; and also with certain alloys developed on a proprietary basis for Eltech Systems by OSU. The "EV" value for open circuit corrosion has been approached with the use of a NaCN corrosion inhibitor (0.01 M NaCN, 4M NaOH, T=40°C) in combination with certain alloys; here o.c. corrosion was 2 mA/cm² and fell below the limit of detection (ca. 0.5 mA/cm²) at -1.6 V vs Hg/HgV; this result and homologous compositions may be patentable and should not be disclosed.

Life-cycle advances in the air electrodes catalyzed with macrocyclic catalysts were reported in UCRL-90455; currently drive-cycle life stands at about 1500 cold startups, an increase by an order of magnitude since the start of the program. Aluminate and aluminum-trihydroxide have been found to be catalysts for peroxide decomposition. Parallel tests in electrolytes bearing aluminate and pure caustic electrolytes indicated longer lives in the former. We believe that 3000 drive cycles (4 year road life) might be a reasonable goal; however, current attention at Eltech Systems, Inc. is focused not on extension of cycle life but on developing continuous processes for cathode mass production.
The standard drive cycle life consists of a series of constant-current plateaus between 1- and 6 kA/m² followed by standby at open circuit. Drive-cycles are designed to imitate a typical trip, 750 of which are covered in single year. Failure is associated with processes occurring within the first hour of shut down and hold on open circuit. The deterioration is associated with a loss of catalytic activity, possibly the result of corrosion and isolation of carbon particles. The process apparently is self-inhibiting, and does not continue beyond the first hours of standby. Life extension is being sought through the use of corrosion-resistant carbons, heavier loadings of macromolecular catalysts, self-regenerating catalysts (e.g., sparingly-soluble catalysts), improved wet-proofing agents, and improved mechanical support of the carbon-Teflon matrix.

Beyond any doubt, the area of greatest potential improvement is that of the anode-alloy/electrolyte/operating-temperature combination. With the exception of work performed by Reynolds under subcontract to LLNL, almost no research has been undertaken under DoE sponsorship. This area is being actively pursued by privately-sponsored projects by Eltech (at OSU); Alcan, Ltd. (ca. $1M/y); at Atlantic Richfield (Harvey), ca. $300K/y; and at General Motors (Warren, MI), undisclosed level. A small research program is believed to be conducted at South African National Research Center.

Generic approaches to the modification of energy yield and power include:

1. Vacancy injection or lattice modifications. Use of trace (100 ppm) loadings of disimilar-valence metals (Si, V, Ga) to alter the vacancy concentration in either the metal or oxide sublattice of the anodic surface film; hence alteration of the resistance of the film to the mobile ion (either Al or O). Broad classes of lattice expanders” or “lattice contractors” have been identified and discussed in the literature; these effect changes in mobility of the aluminum or oxidic species.

2. Selective inhibition of the water-reduction reaction. Use of metal-phase or electrolyte-phase poisons for the water-reduction mechanism responsible for hydrogen evolution. Examples here include Sn, CN, P, Tl, and Pb. Often these materials tend to deposit on grain boundaries or inclusions having low overpotentials for H₂ evolution.

3. Complexing or segregation of undesirable materials. Certain materials are used to segregate undesirable impurities common to low-cost smelter-grade aluminum. For example, Mn is used to form intermetallic clusters of Mn, Fe, and Al, which have greatly reduced activities from the standpoint of water reduction. The alloy developed by Reynolds was found to yield 85% of the energy of RX808, yet cost essentially the same as 5A base smelter metal. (See UCRL-90465.)

4. Alteration of thick surface layers. The addition of Mg to the alloy has an indirect by profound effect on coulombic efficiency. Surface layers of insoluble, loosely-adherent MgO may entrap electrolyte and create a local electrolyte composition different from that of the bulk. Gallium may effect a reduction in anode surface film adherence. The combination of Mg and Ga is responsible for the high surface power density and coulombic efficiency of RX868. This is currently under investigation by Eltech under subcontract at OSU.
(5) Use of high purity metals. Iron, being deleterious to coulombic efficiency, can be largely removed from Hall-Cell metal through control of coke, alumina, cell lining, and plant practices. (For example, a iron pick is used to break the cryolyte crust each time alumina is added to the cell; it readily dissolves in the melt.) Reynolds assessed the increase of cost associated with achieving 0.04% Fe levels; results are reported in UCRL-90465.

Production of high purity Hall cell metal may be unnecessary. Current processes exist for the partial crystallization of highly pure metal from a molten stream combining the separate outputs from a large array of Hall cells. This "single pass zone refining" might be used to produce highly pure metal for battery fuel applications as a byproduct of a large plant. Currently there is very little market for high purity aluminum other than experimental uses or "sweeteners" for certain aircraft alloys.

Advanced processes for aluminum production (likely to be introduced within the early 1990's) do not have the same impurities or levels of impurities associated with Hall Smelter. The Alcoa Smelting Process utilizes a vapor-phase separation of AlCl₃, and uses no dissolving iron parts; the process incidently consumes only 8.3 kWh/kg-Al. The Mitsui carbothermic reduction process, now in pilot investigations, distills Al from a Al/Pb melt used to extract the metal from alumina/carbon brickets. The iron content is well below that of common smelter-grade aluminum.

In all, it should not be assumed a priori that a cheap aluminum alloy must be based on metal of current commercial purities.

(6) Alterations of electrolyte composition and operating temperature. One-half of the resistance of the aluminum-air cell (3.2 mm spacing) is associated with resistance of the NaOH electrolyte in the interelectode gap. Electrolytes of higher conductivity (KOH or KOH/NaOH) are being investigated, together with interelectrode gaps below 2 mm to decrease this loss. Cell power increases by 20% per 10 °C increase in temperature—as expected for an electrolyte resistance. Increase of operating temperature from 60 to 80 °C should increase surface power density from typical values of 6 kW/m² to nearly 9 kW/m², when electrolyte resistance and electrode polarizations are taken into account. The limiting factor in temperature increase is water-reduction rate, which also shows an Arrhenius dependence on temperature. The reader is reminded that advances in coulombic efficiency have their primary benefit, not in increased energy yield (coulombic efficiencies are generally above 90%), but in increased power density.

Anode research will receive the major emphasis following successful operation of full-scale, integrated batteries (five-cell modules) at the end of the current calendar year. Alcan has reported to us the existence of a number of new alloys of performance superior to either pure aluminum or 6x808 models, including new classes of alloys not requiring electrolyte corrosion inhibitors. A cell operating at 2 V is claimed. This work is not done under DoE auspices and exact compositions were not disclosed to us. Hence, I am unable to independently confirm these claims, although I have no reason to believe that they are exaggerated.

Component Improvements. The use of hydrocyclones of advanced design has resulted in a major simplification of battery design as well as cost reductions. The hydrocyclones were developed by Krebs Engineers for
industrial applications. The units tested in our laboratory with the
experiments on integrated cells and crystallizers feature involute-spiral
entrance chambers which greatly increases operating efficiency. Two or three
units would consume about 1% of gross battery power output; power consumption
can be further reduced by placing cyclones in series to stage the particle
separation.

Air Electrode Cassettes. The use of air-electrode cassettes which are
individually removable and replaceable relax quality control constraints on
the air electrodes. Incipient failure or deterioration can be detected, and
the electrode may \(\sim \) replaced without loss of the stack. (This is not
practical with fuel cells because of the 5-6-fold increase in gas-diffusion
electrode area per unit of gross power, and the corresponding increase in the
weight of the supporting cassettes.)

Air electrode cost projections of $100/m\(^2\) assuming large scale
production and semi-automated continuous fabrication processes (replacing
current small-scale batch processes) and non-precious metal catalysts. This
goal is consistent with those of many air-electrode developers. The cost
includes a stamped or injection-molded polypropylene holder (cassette). Note
that the replaceable unit does not necessarily include electrolyte manifolding
as in the Reference Cells. Solution side current collectors need not be
replaced along with the cassettes and are expected to last the life of the
vehicle.

4. Energy Balance

Startup and shut-down. Current approach to shut down involves draining
electrolyte from the cells into the crystallizer, followed evaporation of
electrolyte adhering to the anodes. Using the latent heat of the anode mass,
this is accomplished in a few seconds. Tests on 50-cm\(^2\) cells show that the
loss approaches a steady-state value of 1.2 g/m\(^2\)-shutdown. For \(e = 4.4 \)
kw/k = 6.5 kw/m\(^2\) and 730 shutdowns per year, this constitutes a loss of
29 kWh/year; or 40 Wh per shutdown for segments 2 and 4. For \(e = 0 \)
kw/k = Al and \(p = 9 \) kw/m\(^2\), the loss per shutdown is also about 40 Wh. This effect is
certainly dependent on alloy composition and electrolyte composition, and
passivation of the aluminum cannot a priori be expected to occur. It will be
difficult to satisfy this constraint while achieving the high energy yield and
high power density levels. Nevertheless flash evaporation and induced
passivation is one of the constraints that should be observed in our alloy
development project.

Shunt currents are generally not a problem as we are not concerned with
redistribution of metal upon prolonged cycling. The resistance of the
electrolyte paths between adjacent cells is currently on the order of 6 ohms,
and could be reduced further; cell-cell voltage difference is about 1.6 V;
current delivered per cell is 120 A. Therefore loss is about 0.2%.

Parasitic losses are associated with the hydrogen evolution reaction. For
model electrodes this ranges from 2-25 mA/cm\(^2\) on open circuit and falls off
with increasing current density. Segments 1-3 contain 25 s each of standby,
resulting in losses of 1.5-19 Wh/segment, for EV and present calculations.
Segment 4 contains 50 s standby, resulting in a loss of 3-36 Wh/segment for EV
and present calculations.

Self-discharge. (Answered separately under parasitic and shut-down
categories).
Thermal loss. N/A under specified operating conditions and cycles.

Charge efficiency. N/A

5. Life Considerations

As anodes are intended to last only one cycle, life cycle is limited by cathode failure. Current life cycles of 1500 have been achieved, and actual life may be longer: the most recent tests failed because of computer malfunction, not cathode failure. Very little statistical data is available as identical electrodes have been tested in insufficient numbers.

Polypropylene is indefinitely stable in caustic aluminate. PVC is effectively stable as well, and can be extended with alumina.

I am not too concerned that scale formation will be a serious problem in this battery, although we are currently planning experiments to investigated this. If growth mechanisms apply to the development of scale on the inside of the crystallizer, the mass of the scale cannot be more than the annual throughput of hydargillite (ca. 1500 kg) multiplied by the ratio of vessel surface area to seed-surface area (1 m²/1500 m²), which indicates a film growth of 0.4 mm/year; this is trivial. While scale formation may entail agglomeration or porous material at an order of magnitude higher rates, our colleagues at Alcoa and more recently at Alcan, Ltd. tell us that convection, vibration (flexing of walls) and non-stick walls reduce scale formation or adhesion. Coating critical parts (valves and impellers) with Teflon may be necessary. An ice-cream scrapper may be useful in the crystallizer vessel.

Again, air electrode cassettes which form the body of the cell in contact with electrolyte are designed to be individually replaced upon failure or malfunction. Electrolyte residence is to brief in the cells given normal driving patterns for scale buildup to be a problem. We do not expect solution-side current collectors to constitute a failure mechanism, as these are cathodically protected by the aluminum. Pumps and valves are the likely sites of failures.

6. Other Operational Characteristics

(a). Special charge requirements. Over-discharge results in a gradual, non-destructive loss of power. This would be accompanied by the gradual withdrawal anode wedge into the cell. As the anode falls at a rate of about 1.2 micrometers/s at cruise velocities, one would travel 140 miles per cm of fall, accompanied by an 8% loss of power.

Cell equalizing will be required at a frequency which we cannot now estimate. This is accomplished by adding fuel plates of different heights to the various cells. The cells share a common electrolyte through exchange with the crystallizer; hence no individual balancing is required.

Periodic complete discharge is not required.

(b). Maintenance. Refueling is to be accomplished by tap water additions (250 miles) and aluminum additions (at frequencies of 100-3000 miles) by the vehicle owner in his own garage. Aluminum fuel plates could also be vended by machines or service stations. Cells are designed for refueling by adding
plates of appropriate height to a dry chamber above the cell; the wedge is not disturbed by this operation, nor is contact to be expected with electrolyte or electrolyte-wetted components. Hydrargillite withdrawals at frequencies of 250-500 miles are required. The hydrargillite is in water-washed, drained form. Again this may be done either in the owner's garage or at central stations (in a manner commercially analogous to collection of aluminum cans). In the long range, service stations might compete with owner servicing.

Battery refurbishment has not been explored. Possibility of refurbishing the air electrodes by doping with a sparingly soluble macrocyclic catalyst has been discussed. We do not regard this issue as premature.

7. Packaging Flexibility

Overall specific gravity is about 0.6. Nevertheless we do not consider volume to be a limiting factor for three reasons.

(1) Much of the volume of the battery is in the form of water and product tankage, which can be shaped to fit the contours and placed in parts of the vehicle not normally used (e.g., doors, underpan spaces, structural tubes, spaces under the seat, etc.). Without any special care, Alcan was able to fit the entire quarter-scale battery (based on Behrin's 1982 design), motor, and motor controller within a quarter-scale Chrysler for the SAE conference. The only component of rigid design is the cell stack, which occupies 180 liters per 100 cells. An efficient crystallizer/separator design may require a specially allocated volume.

(2) The open spaces required for heat transfer in the aluminum-air battery are located within the cassettes in electrolyte return channels and in air-manifolding channels. Heat transfer interfaces for batteries with exothermic charge or discharge reactions generally coincide with the surface of the battery box; hence the volumes are likewise required but are not counted in specific gravity. For this reason, a volume specification cannot be applied uniformly to these different configurations.

(3) The apparent volume/power density limitation is the consequence of over-constraining the JPL vehicle baseline. If volume were a problem, it is all too easy to buy additional space by raising the hood or choosing a longer car. Raising the hood two inches buys about 140 liters of additional volume (1/3 the volume of the "present" battery!).

(c) Relative placement considerations allow some flexibility in using tankage to absorb collision impact, or to absorb caustic spills.

(d) The battery scales according to power rating. A 10 kWh battery is immaterially different from a 70 kWh battery of the same power: the only differences are size of the water and product tanks and the mass of aluminum.
Some updating of this material is warranted. Comments are by section.

Battery Description. Regenerative breaking is quite appropriate for this battery, as it can offset or eliminate the system power requirements which (except under peak power conditions) come from an auxiliary secondary battery. Moreover, some peak shaving power can be supplied by regenerative breaking with an appropriately designed battery which could provide auxiliary power as well. I understand that JPL is taking this into consideration in the revised modelling, this important option should be included.

The hydrargillite is washed and drained to yield Al(OH)₃, not alumina.

The refueling time estimate by Interplan (15 minutes for aluminum plate addition) was not updated for the wedge cells. Here plates are dropped into individual slots on the battery box, and refueling should be comparable to automotive refueling, i.e., about 5 minutes.

Performance characteristics. Possibly, the water of reaction would be stored within the hydrargillite container, as the product powder is about 45% air.

Energy Efficiency. The production of aluminum is not inherently inefficient: aluminum can be electrowon from the melt under conditions approaching reversibility. Most older Hall smelters were designed for maximum production and not energy efficiency. Until the last 10-15 years, the cost of energy did not appear in the equation for economic optimization of cell design (although energy costs dictated geographical location of the cell). Currently, commercial Hall cells have been operated Pechinney St. Lucienne at an average rate of 11.3 kWh/kg. The Alcoa smelting process in large cells consumes 8.3 kWh/kg of electrical energy. Finally, a consortium of Japanese industries is currently developing the Mitsui carbothermic reduction process which consumes no net electricity yet produces a highly pure product. Commercial application of at least one advanced process is highly likely in the 1990's, as the aluminum industry is evolving under the same energy-economy pressures which motivate electric vehicle development.

Advanced electrochemical processes for aluminum production indicate electrical efficiencies (utility to battery terminals) of 51-72%, based on 4.3- and 6 kWh/kg-Al peak yields. Carbothermic reduction processes would reduce energy consumption still further, and result in aluminum being among the most efficient of all uses of primary coal energy in transportation. We believe it is unwarranted to (1) assume major advances in electric vehicle battery technology while (2) assuming no advances in aluminum smelter technology.

There are other differences between secondary battery and electrochemical fuels. Unlike the use of distributed electricity, aluminum smelters pay relatively little electricity "distribution" losses, and energy loss of transporting metal and product is small compared to electrical distribution. Moreover, the practice of locating aluminum smelters in remote power sites
James Bay or N. Australia coal districts or with very large utilities (Parana River) allow aluminum production to "scavenge" energies of lower than average economic value. There is simply no basis for attempting to cross-compare energy systems based on so radically different energy sources and economics as the aluminum industry and distributed urban electricity.

Charge efficiency The value of 36% for electrical energy generation efficiency does not derive from an assumption of on-site electrical generation and use. Rather it is based on the fact that the industry is a user of base-load energy, the production of which is more efficient than that of distributed urban electricity, which includes contributions of peak-shaving plants. (Despite the mythology, there is no a priori reason for assuming the consumer will charge his vehicle late at night unless he is given an economic incentive for doing so.)

Cost Projections. The estimated cost of the air electrode cassette (electrode and minimum supporting structure) is $100/m², assuming a macrocyclic catalyst and continuous fabrication processes. Platinum is not under consideration for a vehicle catalyst because of higher cost, poorer polarization and life-cycle values, and limited availability. On-road cycle-life is not expected to be below two years (1460 cold-startups) and a 1990's projected level of 3000 is a reasonable goal for electrode development.

Conclusions. Again, the apparent problem arising from the low specific gravity of the system is an artifact of JPL vehicle baseline assumptions and the result of Al/Air battery design considerations (which make use of a large internal air volume for heat transfer). With a different choice of vehicle, no problem arises (except for modellers!).
ALUMINUM-AIR POWER CELL RESEARCH AND DEVELOPMENT
PROGRESS REPORT

John F. Cooper

This paper was prepared for submittal to the:
Electric & Hybrid Vehicle Systems Assessment Seminar
Gainesville, Florida
December 15-16, 1983

February 22, 1984
ALUMINUM-AIR POWER CELL RESEARCH AND DEVELOPMENT
PROGRESS REPORT

Paper delivered to
Electric and Hybrid Vehicle Systems Assessment Seminar

December 15-16, 1983
Gainesville, Florida

by
John F. Cooper

Department of Chemistry and Materials Science
Lawrence Livermore National Laboratory
ALUMINUM-AIR POWER CELL RESEARCH AND DEVELOPMENT: PROGRESS REPORT*

John F. Cooper

Abstract

An aluminum-air battery is under development with the objective of providing an electric vehicle with the range, acceleration and rapid refueling capability of common automobiles. From tested refuelable cell designs, a wedge-shaped cell was chosen for mechanical simplicity and for its capability of full anode utilization and rapid partial- or full recharge. The cell uses tin-plated copper tracks (triangular cross section) to maintain a constant interelectrode separation and to collect anodic current. Rectangular slabs of aluminum enter the cell under gravity feed and gradually assume the wedge shape during dissolution. The feed is constant and continuous and tin/aluminum junction losses are 7 mV at 2 kA/m². A second generation wedge cell has been developed which incorporates air- and electrolyte manifolding into individually-replaceable air-cathode cassettes.

A prototype wedge cell using replaceable cassettes was operated simultaneously with a crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between cell and fluidized-bed crystallizer, and particles of sizes greater than 0.015 mm were retained within the crystallizer using a hydroyclone.

Air electrodes have been tested over simulated vehicle drive cycles which include a standby phase in cold, supersaturated electrolyte. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a non-noble metal catalyst (CoTMP) have been operated for over 1400 drive-cycles (corresponding to a two-year road life).

Fuel costs of $1.72/kg-Al (installed) were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8-10¢/mile, depending on alloy and vehicle drive-train efficiencies. Unalloyed aluminum yields a peak of 4.5 kWh/kg, while an advanced industrial Hall Process and the pilot-plant Alcoa Smelting Process have electrical energy consumptions of 11.3- and 8.3 kWh/kg, respectively. The significance of energy-use estimates for the 1990's and beyond is discussed.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract no. W-7405-ENG-48.
1.0 Objectives

The refuelable aluminum-air battery is being developed for electric vehicle applications because of its potential for providing the range, acceleration and refuelability of common automobiles.1,2 Aluminum as a vehicular fuel cannot compete with gasoline derived from conventional sources of petroleum and selling at today's prices. Nevertheless mechanical refuelability, high specific energy and power, and the energetics of aluminum production suggest a route to conserving the quality of transportation in an era of petroleum scarcity and price increases brought about by political or natural causes.

The use of aluminum as a recyclable electrochemical fuel would be roughly comparable in energy use and cost to synthetic liquid fuels derived from coal.3,4 However, it would avoid the essential dependence on carbonaceous primary resources and the environmental degradation associated with the massive conversion of coal. The production of aluminum as such does not presuppose particular primary energy resource, a strategy for its conversion, or a specific geographical location for industrial production. The metal is light enough to be transported trans-oceanic distances without incurring prohibitive freight costs—thus bringing a national fleet of vehicles access to a world production market.4,5 The existence of a large aluminum industry is an additional advantage. Projected aluminum demand in the 1990's is large enough—roughly 12 Mtonnes/y—to absorb the gradual introduction of a million aluminum-air vehicles (0.58 Mtonne/y). Finally the aluminum industry will evolve within the time frame of possible vehicle introduction as a result of rising electricity costs. This expectation requires that we consider the impact of new industrial processes that are operating now or likely to be introduced in the next decade.
Figure 1. The aluminum-air battery consists of two essential components: a galvanic cell stack of wedge-shaped cells and a fluidized bed crystallizer. Current collection in the cell is effected by parallel tracts of copper which make contact with the aluminum at the electrolyte interface.
2.0 Background

Two basic components of an aluminum-air battery--cell and crystallizer--are shown in Figure 1. We have developed a wedge-shaped cell (based on a concept proposed to A. Despic) with the objective of full utilization of the aluminum fuel. The cell consists of two sir-cathode cassettes held at an angle of 3 or 6°. On the surface of each cassette are metal tracts serving as cell separator and anode current collector. The aluminum dissolves on the faces opposite the cathodes and maintains a wedge shape as it is consumed. Rectangular-slab fuel plates gradually assume the wedge shape as they enter the cell under gravity feed.

Refueling is accomplished by addition of the rectangular plates to a dry chamber above the cell and tap water to a storage tank. Plate addition is simple and safe enough (from the perspective of the refueler and the fragility of the cell) to suggest refueling by the owner in his own garage. A year's supply of aluminum plates would occupy 0.21 m³ (7 cu ft), while a month's accumulation of reaction product would occupy about 0.12 m³ (i.e., about one standard 35 gallon container).

Individual cassettes (Figure 2) may be removed and replaced upon electrode disfunction or failure. The use of cassettes reduces cost and quality control requirements relative to multiple-cell stacks which cannot easily be disassembled.

The predominant electrochemical reaction in the cell is:

\[\text{Al} + \frac{3}{2}\, \text{H}_2\text{O} + \frac{3}{4}\, \text{O}_2 + \text{NaOH} = \text{NaAl(OH)}_4 \]

(1)

Also hydrogen gas is evolved at the anode as a side reaction at a rate depending on composition of the anode alloy, aluminate concentration,
temperature, and the use of corrosion inhibitors (e.g., sodium stannate).

This reaction does not generally exceed 5-10% of the rate of aluminum dissolution and coulombic efficiencies exceeding 97% are obtained with unalloyed aluminum under time-averaged discharge rates of 2 kA/m². Catalytic recombination (or controlled combustion) of hydrogen and oxygen in the air stream over the cell will be required for safe vehicle operation.

The crystallizer catalyzes the decomposition of the supersaturated caustic-aluminate to form granular aluminum trihydroxide in the hydrargillite polymorph:

\[\text{NaAl(OH)}_4 \rightarrow \text{Al(OH)}_3 + \text{NaOH} \]

(2)

As hydrargillite is an intermediate feedstock of the aluminum industry, reaction (2) suggests the possibility of recycling to produce either aluminum or alumina products. (Explicit recycling to produce aluminum fuel plates is conceivable but not necessary until the vehicle fleet becomes large enough to seriously perturb the alumina market).

The crystallizer is a fluidized bed charged with about 18 kg of hydrargillite particles of maximum size, 50 micrometers. As shown in the system flow chart of Figure 3, a hydrocyclone has been chosen as the means of separating the relatively clear caustic aluminate electrolyte from the exit stream of the crystallizer. The power required by the hydrocyclone is not more than 1% of the gross battery power for a separation cut point of 15 micrometers. This separation would confine 99+2% of the hydrargillite to the crystallizer. The other components are provided for selectively removing, washing, and draining the mature hydrargillite particles (50 micrometers and larger).
Figure 2. Wedge-shaped cells are formed by positioning two air-electrode cassettes at an angle of 3-6°. Individual cassettes can be removed and replaced following disfunction or failure.

Figure 3. Electrolyte is circulated between cell stack and crystallizer. Particles are retained in the crystallizer by means of a hydrocyclone separator, which may also be used to selectively remove mature particles for storage. Numbers indicate approximate volumetric flow rates (ml/s).
3.0 Technical Approach

Early in the program we adopted a development strategy which split the problems of battery process and configuration development from those associated with development of cost-effective and efficient electrodes. This decision reflected the essential independence of the technical problems facing each of these areas. Early phases of the program addressed problems associated with refuelable battery hardware and processes. Model electrodes were used for testing refuelable cell designs, developing precipitation models, and integrating cell and crystallizer processes. The model anode and cathode were taken, respectively, from a torpedo-propulsion battery and an advanced chlor-alkali process using an air-depolarized cathode. (Currently, unalloyed aluminum is used as a model anode.) These are not necessarily advanced as commercially feasible fuels. Progress in the development of the battery is shown in Figure 4. Recently we have integrated a 600-cm² prototype cell (wedge configuration) with crystallizer and hydrocyclone separator, and operated these over conditions anticipated in the vehicle. This allows accurate determination of the weights of a full scale vehicle battery. Currently, support auxiliaries are being developed. A fullscale vehicle prototype battery design will be developed by 1986.

This year we have chosen a prime industrial contractor: Eltech Systems, Inc.—formerly Diamond Shamrock Company—in association with the Aluminum Company of Canada (Alcan, Ltd.). Eltech will pursue development of the battery for commercial applications and place increasing emphasis on the development of commercially attractive alloys. The industrial partner contributes to the support of the program in return for foreground patent rights. In addition, Alcan carries on a larger internal program devoted solely to the proprietary development of alloys meeting the cost-constraints of
<table>
<thead>
<tr>
<th>Fiscal year</th>
<th>Development stage</th>
<th>Activities and milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>Small cells</td>
<td>Small cells (25-cm²) cathode life tests</td>
</tr>
<tr>
<td>80</td>
<td>Large cells and precipitator</td>
<td>Scaleup (1000-cm²) operate with precipitator</td>
</tr>
<tr>
<td>81</td>
<td>Refuelable cells</td>
<td>M1-LLNL M1-3 LMSC (1000-cm² bicell)</td>
</tr>
<tr>
<td></td>
<td>Refuelable cell stacks</td>
<td>M2-LLNL (6-cell) M2-3 LMSC (200-cm², 6 cell)</td>
</tr>
<tr>
<td>83</td>
<td>Integration of stack and precipitator</td>
<td>M1-wedge LLNL (600-cm²) Integration of scalable systems</td>
</tr>
<tr>
<td>84</td>
<td>Support auxiliaries</td>
<td>M3-wedge LLNL (600-cm², 5-cell) and crystallizer, separator Components for removal, post-treatment of mature seed; heat rejection Full scale crystallizer, auxiliaries Vehicle battery design complete</td>
</tr>
<tr>
<td>85</td>
<td>Laboratory prototype battery</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. The aluminum-air battery technology evolved from single primary cells through rapidly-refuelable cell stacks and integrated cell/crystallizer/hydrocyclone systems. Current efforts include development of auxiliaries for withdrawal and post-treatment of mature hydrargillite.
vehicle applications. LLNL manages the program for DOE, Energy Storage Division. In support of the program we conduct process research focused on the integration of multicells, fluidized bed crystallizers, and hydrocyclone separators.

4.0 Technical Status and Problems

4.1 Cell and Cell Stack Research. The battery technology was developed in stages from small single cells to large refuelable multicell stacks without suffering a degradation of power or voltage, as shown in Figure 5. The voltage and power density curves were obtained with identical pairs of electrodes and operating conditions. The increase in power density attained with the M2 6-cell stack resulted from improvements in air distribution and cathode current collection techniques. Figure 6 shows performance of a low gallium alloy and Diamond Shamrock Standard air electrode in cells with interelectrode separations of 1.5 mm.

A cutaway drawing of the M3-wedge cell tested over the last year is shown in Figure 2. High conductivity copper tracks (with equilateral-triangle cross sections) support the wedge and provide a permanent solution-side anode current collector. The casettes of the test cell (Figure 7) weigh 1.1 g/cm² and the cell typically delivers a peak power of 5 kW/m². Figure 8 shows vertical displacement is continuous and constant, while the junction losses amount to 7 mV—about 0.2% of cell voltage.

We have optimized the current collection in these cells by determining the current distribution as a function of collector design. Figures 9 and 10 describe respectively the modeled cell resistance network and the corresponding current distribution.
Figure 5(a). Surface power density based on medial cell area. RX808 and Diamond Shamrock standard air-electrode; 4M NaOH + 1M Al(OH)_3 + 0.06M Na_2Sn(OH)_6; 60°C. 5(b) Cell and electrode polarization (uncorrected for IR drop) for systems of 5(a).
Figure 6. Polarization characteristics of 25-cm² aluminum-air cell, using Reynolds alloy RX808-F and Diamond-Shamrock Standard Air Electrode. Electrolyte as in Figure 5. Operating conditions: 60 °C; 4M NaOH + 1M Al(OH)₃ + 0.06M Na₂Sn(OH)₆; flowing electrolyte, Re = 1000. Interelectrode gap: (a) 1.5 mm, (b) 3.2 mm.
Figure 7: Wedge-shaped cell M3-1 consists of two replaceable air-electrode cassettes held in a slotted plexiglass tank.
Figure 8. Displacement of the anode into the cell under gravity feed is continuous and constant at a rate of 1.24 micrometers/s. The theoretical rate of fall (1.4 micrometers/s) is calculated on the basis of idealized cell geometry and Faraday's law. Anode/SSCC voltage losses of 7 mV are small compared to the cell voltage (1.5 V) under these operating conditions.

Figure 9. Network analysis of the wedge-shaped cell, M3, leads to the dimensionless current distribution equation discussed in the text.
Figure 10. Relative current density increases with the relative distance from the leading edge of the anode. Parameter r is a dimensionless ratio of cell resistivities and geometric ratios given in Table 1.
Table 1 gives the magnitudes of the resistance elements in the M3 cassette. The relative current distribution obtained by the solution of the network problem is given by:

\[j = \frac{\cosh(x r^{1/2})}{\cosh(r^{1/2})}, \]

\[r = \frac{(R \cdot W + R_a)A^2_a}{(M^0 + gR_e + R_a \cdot W)} \]

where \(r \) is a dimensionless ratio of resistance elements defined in Table 1, \(j \) is the current density relative to that at the point where metal enters the cell, and \(x \) is the dimensionless distance from the leading edge (apex) of the wedge. \(A_a \) is anode length (parallel to ribs), \(g \) = interelectrode gap; and \(W \) is rib separation. For the M3 cell, \(r = 0.13 \), and current density is uniform to within +/- 3%. This nonuniformity imparts a steady-state curvature to the anode which differs from a plane by less than 5 micrometers over the entire surface.

Table 1. Cell Resistance Elements in the M3-Cassette for \(w = 28 \text{ mm}, g = 2 \text{ mm}, \) and \(A_a = 0.123 \text{ m}. \)

<table>
<thead>
<tr>
<th>Element</th>
<th>Resistivity</th>
<th>Units</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode screen</td>
<td>1.0 ((10^{-3}))</td>
<td>ohm</td>
<td>k</td>
</tr>
<tr>
<td>Electrode polarization</td>
<td>1.0</td>
<td>ohm-cm²</td>
<td>m₀</td>
</tr>
<tr>
<td>Interelectrode gap</td>
<td>1.770</td>
<td>ohm-cm</td>
<td>kₑ</td>
</tr>
<tr>
<td>Anode/SSCC rib junction</td>
<td>0.042</td>
<td>ohm-cm</td>
<td>kₐ</td>
</tr>
<tr>
<td>SSCC rib</td>
<td>7.5 ((10^{-5}))</td>
<td>ohm/cm</td>
<td>Rᵣ</td>
</tr>
<tr>
<td>Characteristic resistance</td>
<td>0.13</td>
<td>--</td>
<td>r</td>
</tr>
</tbody>
</table>
We have developed an advanced Al/air cell based on this geometry (Figure 1) which will provide the program with a reproducible basis, or "reference" for aluminum-air full-cell testing. The cells are machined by computer control, which allows low-cost modifications of dimensions and design according to the intended use of the cells -- e.g., research cell, massive reserve battery, low-weight vehicle module. In this cell, electrolyte and air flows are internally manifolded. The module stack at LLNL is plumbed for series electrolyte flow. Smaller cells (25 cm² anodes) are also available for program-wide uses.

Wedge cells were originally developed by this program because of full-utilization and partial recharge capability, and simple refueling by addition to plates to a dry chamber above the (undisturbed) cell. The feed slab thickness is independent of cell capacity and can be manufactured by continuous casting operations at an optimum thickness. There are no moving mechanical parts in this design, other than the gravity-fed anode.

4.2 Integration of Prototype Cell, Hydrocyclone and Crystallizer

The hydraulic power consumption of a hydrocyclone can be minimized with the use of an involute entrance chamber. A hydrocyclone of this design (supplied by Krebs Engineers, Menlo Park, CA), was tested with a wedge cell and crystallizer. We confirmed manufacturer's specifications by means of the operation of this cyclone with a single cell. As this unit was large enough for a crystallizer sized for 30-50 of the 600-cm² cells, 97% of the overflow was returned to the crystallizer. Measured hydraulic power consumption (product of flow rate and pressure drop) was 35 W. Three would consume about 1% of the 18 kW gross power output of 100 cells (assuming 50% motor/pump power efficiency).
Figure 11. Reference Al/Air cells (advanced generation wedge cells) consist of trapezoidal cassettes with internal manifolding of air and electrolyte flows. Anode area is 600 cm², and SSGC design is identical to that of earlier cells.
The rate equation derived by Alcoa describes the kinetics of hydragillite particle growth:\(^{10}\)
\[
-dC_{Al}/dt = K_0 \exp(-E/RT) A_t (C_{Al} - C_{Al\text{ (sat)}}) / (C_{Na} - C_{Al})^2
\]

where \(C_{Al\text{ (sat)}}\) is the solubility of \(Al(OH)_3\), a function of temperature.

Independent particle growth is the predominate mode of precipitation under anticipated battery operating conditions: 40-80\(^{\circ}\)C; well-stirred bed; seed-area/electrolyte-volume ratio, \(A_t = 10-70 \text{ m}^2/\text{liter}\); and \(C_{Al}\) less than 2.8 M. Under these conditions, particle nucleation is suppressed. Some particle breakage (attrition) or agglomeration is expected. Precipitation rate in the bed is proportional to the total surface area of the crystals, the square of supersaturation, and the inverse square of a term reflecting caustic activity.\(^{10,11}\) The term in the denominator explains the sharp increase in the rate above \(C_{Al} = 2.3 \text{ M}\) (Figure 12).

Figure 13 shows time dependence of electrolyte composition when a crystallizer/hydrocyclone system was used to control aluminate concentration. The crystallizer was initially charged with 0.18 kg of seed (specific area, 120 \(\text{ m}^2/\text{kg}\)), and \(Al(OH)_3\) solids were retained in the crystallizer for the duration of the 6 hour run. The peaking of aluminate concentration in cell and crystallizer after 3 h reflects equal rates of dissolution and precipitation. The current density, 2.3 kA/m\(^2\), is the highest long-duration dissolution rate anticipated for vehicle operation. In this experiment we used unalloyed aluminum; coulombic efficiency exceeded 97% for the duration of the experiment.

Evaluating Alcoa's rate equation at points during the experiment, we determined the rate of precipitation (Figure 14). This rate was then integrated to predict the accumulation of solid \(Al(OH)_3\). As shown, this
Figure 12. Rate of hydrargillite precipitation increases with temperature and oversaturation, and depends on the nature and concentration of impurities. Rate relations were independently determined by LLNL11 and Alcoa10.

Figure 13. Time dependences of the electrolyte volume and composition, and of dissolution current (I_A) during joint operation of wedge cell and crystallizer/hydrocyclone. Concentration of aluminate is given for the crystallizer as well as the cell circuit.
Figure 14. Rate of precipitation, integrated rate of precipitation, and mass of seed (determined from mass-balance calculations) are plotted against dissolution time for the joint operation of wedge cell and crystallizer.

Figure 15. Increases in air-electrode cycle life reflect advances in catalysis as well as electrode carbons, wet-proofing, and sintering processes.
agrees well with the separate experimental mass balance based on Faraday's law, changes in aluminate concentration, and anode weight loss. The salient conclusions are (1) Alcoa rate equation applies to the simultaneous operation of prototype cell and hydrocyclone/crystallizer and (2) this verification was done within the range of critical vehicular operating conditions shown in Table 2. This is the first time that the basic processes of dissolution and crystallization have been integrated using either full-scale prototype components (cell and hydrocyclone).

Table 2. Anticipated operating conditions of a vehicle battery and actual operating conditions of the M3-wedge/hydrocyclone/crystallizer. T = 60°C.

<table>
<thead>
<tr>
<th>Experimental System</th>
<th>Seed Mass</th>
<th>Seed area/volume</th>
<th>Seed mass/amperage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>m²/l</td>
<td>g/A</td>
</tr>
<tr>
<td>1-Cell System (60°C)</td>
<td>0.18-0.83</td>
<td>8-55</td>
<td>1.3-6</td>
</tr>
<tr>
<td>100-cell system</td>
<td>25</td>
<td>20-30</td>
<td>2</td>
</tr>
<tr>
<td>100-cell vehicle system (optimum 70°C operation)</td>
<td>18</td>
<td>20-30</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Current efforts will integrate a five-celled prototype module with an appropriately scaled hydrocyclone separator. The larger scale is convenient for investigation of long term behavior of anode shape, particle size distribution, mass balance of minor components (stannate, or gallium in case of KX808), and behavior of crystallizer during standby when all electrolyte is drained into the crystallizer. This same system will be integrated with auxiliaries for withdrawal and post treatment of mature seed by the prime subcontractor in the first year of the program.
4.3 Progress in Electrode Research and Development

There has been considerable progress in the development of durable and cost-effective air electrodes. Air electrodes are tested on a standard driving cycle consisting of constant current plateaus of 1-, 6, and 2 kA/m² and lasting a total of 14 min/cycle; this is followed by a period on standby in cold, supersaturated electrolyte lasting between 1 and 24 h, and typically 3 h. This sequence is representative of a typical automobile trip of 11 km length. By correlating life under such drive cycles with changes in the duration of a specific phase of the cycle, Eltech determined that cycle life depends strongly on the number of cold startups. The original program goal of 1500 cold startups, or two year road life, has now been met (Figure 15). The current generation of air electrodes are projected to survive beyond 2000 cycles. The goal has been reset to 3000 drive cycles, which corresponds to a four-year road life. Table 3 provides air-electrode polarization data for current air electrodes (catalyzed with CoTMPP), program goal, and earlier LLNL specifications in FY 1979 RFP.

Table 3. Current performance, technical goal, and LLNL Specifications for air electrode polarization (initial performance) T = 60°C; 4M NaOH + 1M Al(OH)₃.

<table>
<thead>
<tr>
<th>Current density kA/m²</th>
<th>Best Obtained CoTMPP V vs. RHE</th>
<th>Technical goal V vs. RHE</th>
<th>LLNL specs V vs. RHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>807</td>
<td>841</td>
<td>836</td>
</tr>
<tr>
<td>2</td>
<td>766</td>
<td>830</td>
<td>796</td>
</tr>
<tr>
<td>3</td>
<td>741</td>
<td>823</td>
<td>756</td>
</tr>
<tr>
<td>4</td>
<td>706</td>
<td>816</td>
<td>716</td>
</tr>
<tr>
<td>5</td>
<td>667</td>
<td>810</td>
<td>676</td>
</tr>
<tr>
<td>6</td>
<td>583</td>
<td>805</td>
<td>636</td>
</tr>
</tbody>
</table>

I-38
These drive cycles lives were attained with the use of a non-noble metal catalyst (CoTMPP) as necessary to meet programmatic goals of $100/m^2 cathode.

Progress in anode development has been slow because of the greater emphasis on the development of refuelable cells and crystallization processes. Economic feasibility will ultimately depend on energy yield/cost ratio of the alloy. Common scrap aluminum containing iron generally shows low coulombic efficiency associated with the low overpotential for hydrogen evolution on iron inclusions. Under subcontract, Reynolds Aluminum took the approach of segregating iron as Mn-Fe(Al)₃ intermetallic clusters with greatly reduced activity from the standpoint of hydrogen evolution. The effect of the introduction of 0.04% Mn to commercial purity aluminum containing 0.04-0.06% Fe is shown in Figure 16. Coulombic efficiency is greatly increased, approaching that of an analogous alloy, RX808, based on 4-9's purity metal. This Al-Ga-Mn-Fe class of alloys was never optimized by the Reynolds subcontract. This and other approaches will be again be pursued in 1984 by Eltech and Ohio State University under subcontract. Although compositions are proprietary, Alcan has produced a number of alloys using the Ca 0.05% commercial purity base with net performance at least as good as this. In all, the program has yet to pursue the scope of research necessary to develop cost-effective anodes; the major effort here will be lead by the prime industrial subcontractor because of the potential value of basic patents in this area.

4.4 Battery Weight Determinations

The battery weight determination given in Table 4 reflects the actual weights of dry laboratory cells, the weights of reactants and hydrargillite seed, and the weights of electrolyte required for battery operation. We have
Figure 16. Improvement of coulombic efficiency of RX808 analogues based on commercial purity aluminum is achieved by additions of Mn. The additions form intermetallic clusters which segregate and reduce the activity of Fe from the standpoint of hydrogen evolution. Operating conditions: 60°oC; 4M NaOH + 1M Al(OH)₃ + 0.06M Na₂Sn(OH)₆. (a) RX808 (Al -0.04Ga -0.8Mg). (b) Al -0.04Ga -0.04Sn -0.8Mg. (c) Al -0.04Ga -0.04Fe -0.8Mg. (d) Al -0.04Ga -0.06Fe -0.8Mg.
assumed a hydrocyclone of cast PVC construction, and surface power density \((W \ m^2)\) and aluminum energy yields which span those of current model electrodes. The optimum weight of the battery and efficiency is achieved if crystallizer and cell operating temperatures are allowed to increase with aluminate concentration such that power density and coulombic efficiency roughly constant. The battery weight resulting from this optimization indicates specific energy of 320 Wh/kg and specific power of about 140 W/kg. Improvements in surface power density anticipated with further alloy development would increase specific power proportionately. These figures reflect the characteristics of reserve batteries as well as large traction systems, were they to be built consistent with today's understanding. The aluminum-air battery is a fuel cell; hence specific power and energy have no unique meaning. These parameters can be changed by changing the ratio of mass of the limiting reactant (either water of aluminum) to the total area of the cells.
Table 4. Battery Weight Determination: 70 kWh, 31 kW (peak) Scale.

<table>
<thead>
<tr>
<th>Component</th>
<th>Basis for Determination</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td>M3 wedge cassettes: 1.1 g/cm²; 5-7 kW/m²</td>
<td>69-49</td>
</tr>
<tr>
<td>Cyclones</td>
<td>Krebs PC-1; PVC construction</td>
<td>2</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>Contained in cells, crystallizer, cyclones and manifolding</td>
<td>35<sup>a</sup></td>
</tr>
<tr>
<td>Seed</td>
<td>Alcoa rate equation; C<sub>Sn</sub> = 0.06 M</td>
<td>18<sup>a</sup></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Fuel requirement, 4-5 kWh/kg</td>
<td>17.5-14</td>
</tr>
<tr>
<td>Wedge</td>
<td>3° angle geometry</td>
<td>26</td>
</tr>
<tr>
<td>Water</td>
<td>Reaction and evaporation losses</td>
<td>32</td>
</tr>
<tr>
<td>Storage</td>
<td>Water, electrolyte, hydrargillite storage tanks</td>
<td>3</td>
</tr>
<tr>
<td>Misc.</td>
<td>Cell case, impellers, air-pretreatment, drive motor, startup battery etc. (estimate)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Total:</td>
<td>209-233</td>
</tr>
</tbody>
</table>

^a Temperature = 70° at maximum C_{Al} = 2.7 M; seed area/mass ratio = 66.1 m²/kg; seed area/electrolyte volume ratio = 30 m²/liter.

5.0 Major Problem Areas and Technical Approach

Vehicle operating cost depends predominately on the energy yield and production cost of the fuel alloys. An increase in energy/cost ratio of 30% over that of the Reynolds Al-Mn-Ga is required before our goal of 8.5-10¢/mile is to be realized. The approaches to be taken include (1) reduction of dissolution overpotential through alloying with such materials as Ga at 0.02-0.04% levels; (2) selective poisoning of the hydrogen evolution reaction by use of alloyed or dissolved corrosion inhibitors (e.g. Sn, P) or intermetallic formation to segregate Fe or other undesirable impurities;
(3) use of a porous surface barrier formed by the reaction of an alloyed component (e.g., Mg) to form a high-concentration layer with higher coulombic efficiency; (4) use of trace metals to expand or contract the metal sublattice of the surface film which affects the balance of electronic and ionic conduction, and hence relative rates of water reduction and aluminum dissolution. Fundamental anode research will be emphasized as battery development approaches full-scale verification. No definitive projection of fuel cost can be made until this area is understood.

A potentially important area is the chemical balance of the battery, i.e., problems in battery efficiency and operating stability that could conceivably arise from the inadvertent buildup of trace impurities in the electrolyte and on the electrodes, or from the depletion of corrosion inhibitors. The control of impurities will be investigated by Alcan, Ltd.

It is important to determine or predict purity constraints of current and projected aluminum production techniques. In addition to alloys based on the limiting commercial purity of conventional Hall smelter operation (0.04–0.06% Fe), higher purity bases may be obtained through partial recrystallization from the combined outputs of large arrays of undedicated cells. Advanced processes such as the Alcoa Smelting Process, subhalide processes, sulfide or nitride electrolysis, or dimensionally-stable anode processes do not have the purity limits of the conventional Hall Process. The Mitsui Carbothermic Reduction Process involves the sublimation of Al from an Al/Pb intermediate product; the purity of the aluminum exceeds that of the common Hall Smelters yet the process consumes no net electricity. Thus research in alloy development must take into consideration parallel advances likely to occur within the appropriate time frame for vehicle fleet introduction and growth.
Another barrier is cathode reliability (as distinct from drive cycle life). Insufficient experiments have been conducted to allow a statistical understanding of the failure rate. This problem is less severe than with fuel cells because of the ability to sense incipient failure from electrode potential decay and to replace individual cathode cassettes.

None of these problems, if given appropriate attention, is expected to deter the different but straightforward development and testing of a vehicular prototype battery—a major and necessary step toward the realization of this concept. Required development separating the current level of technology from that of the prototype vehicle battery is difficult but reasonably straightforward. The prospects for developing cost-effective alloys are still unknown, but the range of variables known to affect electrode efficiency is cause for optimism.

6.0 Cost and Energy Consumption

The alloys (RX8O8 and analogues) used as a model anode for cell testing and process development are not economically suitable for a consumer vehicle, as they are based on metal purities (99.99+% Al) greater than those achievable with conventional Hall smelter practice. McMinn and Brandscomb of Reynolds determined the cost of the Al-0.04Mn-0.04Fe-0.04Ga alloy mentioned above, as part of an effort to bracket the production cost of fuel plates. The composition of a cost-effective alloy will no doubt differ; the unit costs of fabrication and alloying will probably not differ appreciably from those shown in Table 5. To estimate fuel cost, the cost of alloying agents is added to the U.S. Industry published price (which includes delivery charges to any point in Continental U.S.). This in turn is increased by the costs of continuous casting and shearing operations; and retail markups to equalize profitability of aluminum and ICE refueling. Credit for recycled Al(OH)₃ is derived from producers' price less 15% profit, collection and handling,
freight and calcining costs. The fuel cost requires assumptions concerning energy yield. Time-averaged energy yields of 4.3-5.9 kWh/kg-Al correspond to roughly 36-42 tonne-km/kg vehicular efficiencies, which in turn indicate fuel costs of 8-10 $/mile. (See Ref. 4 for details of these relations.)

Table 5. Estimates of the Cost of Fuel Plates with Reference to Al-0.04Ga-0.04Fe-0.04Mn

<table>
<thead>
<tr>
<th>Cost Factor</th>
<th>Basis for Estimate</th>
<th>Cost ($/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base price</td>
<td>U.S. Industry published price (ingot delivered to point in continental U.S. (1981 $)a</td>
<td>1.670</td>
</tr>
<tr>
<td>Fabrication</td>
<td>Continuous casting and shearing to rectangular slabs</td>
<td>0.154</td>
</tr>
<tr>
<td>Alloying agents</td>
<td>Ga and Mn</td>
<td>0.053</td>
</tr>
<tr>
<td>Premium purity</td>
<td>5A base containing 0.04% Fe</td>
<td>0.077</td>
</tr>
<tr>
<td>Retail markup</td>
<td>Profit equivalent to that of gasoline used in comparable vehicle</td>
<td>0.070</td>
</tr>
<tr>
<td>Recycle credit</td>
<td>Producer's price less 15% profit, collection, transport, and calcining charges</td>
<td>-0.30b</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>$1.72/kg</td>
</tr>
</tbody>
</table>

aThis is also the current price as of January, 1984.

Electrical energy uses for current and advanced processes for aluminum production are shown in Table 6. Since our earliest studies of energy cost of aluminum production, several process advancements or new processes have emerged and been demonstrated in pilot plant operation. A new plant built in
The 1990's time frame will likely reflect these or comparable advances.

The significance of energy use calculations is rather questionable. Ideally, we make such calculations in an effort to estimate the impact of the introduction of a fleet of vehicles on national energy consumption. The introduction of one million aluminum-air vehicles in the 1990's may cause an increase in the nation's consumption of energy or a decrease; or no measurable change at all. The change of energy use depends on how the production market responds to small perturbation on demand—i.e., whether the demand is met by new (efficient) plant construction increase of production at existing (less efficient) plants. Electrical energy use would go down if aluminum (as fuel) merely displaces other uses of aluminum where cheaper alternatives are available (for example, containers and packaging). The net change in primary energy use will reflect the net changes in electrical energy use and petroleum (or synfuel) savings. The fact of the matter is simply: there is no way to predict the short-term effect on energy use caused by a small fleet of aluminum-air vehicles.

In the very long run (year 2000 and beyond) new production plants will have to be built to accommodate a growing fleet of aluminum-air vehicles, and the energy use of new processes will enter the determination. We are in no position today to speculate which process (or processes) or how much electricity (if any) is used by the new plants constructed in so remote a time frame. The evolution of the aluminum industry is a currently ongoing process and is driven by the same basic energy considerations that mandate the development of alternative fuels for transportation. Thus the process of Table 6, which represents current industrial (Pechiney) or pilot processes are conservative estimates for the year 2000 and beyond.
Table 6. Electrical Energy Use of Current and Advanced Processes for Aluminum Production. (For comparison, unalloyed aluminum yields a maximum of 4.5 kWh/kg in test cells).

<table>
<thead>
<tr>
<th>Process</th>
<th>Basis</th>
<th>DC Electrical Energy Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pechiney, St. Lucienne</td>
<td>Advanced Hall process</td>
<td>11.3 kWh/kg</td>
</tr>
<tr>
<td>Alcos Smelting Process</td>
<td>Electrolysis of AlCl₃</td>
<td>8.3 kWh/kg</td>
</tr>
</tbody>
</table>

16
17
REFERENCES

REFERENCES (cont.)

APPENDIX J

METHOD OF ANALYSIS
METHOD OF ANALYSIS

Joseph A. Consiglio
Solva-Tek Associates
277 High St.
 Topsfield, Mass. 01983

PRECEDING PAGE BLANK NOT FILMED
METHOD OF ANALYSIS

This appendix describes the method of analysis used to assess Battery Developer Estimates for the projected selling price of advanced batteries. The method yields a revised subjective estimate which is identified as an Investigator Estimate. The method has been developed in a series of battery cost analysis projects performed by the author beginning in 1978 (Ref. Resource List).

From this experience, the following general observations can be made. The margin of uncertainty or potential error in any early new product cost estimates is strongly related to the level of knowledge, and the related experience the developer has for both product design and manufacture at the time the estimate is generated. The higher the level of knowledge and related experience the lower is the likely margin of uncertainty or potential error in the estimate.

In my judgement, early product cost estimates are more likely to underestimate rather than to overestimate the realized product cost.

The analysis procedures provide a framework for systematically examining the available information. The major thrust of the analysis is to identify qualitative and quantitative factors which permit an assessment of the developer's level of knowledge and related experience at the time the estimate was generated.

On the basis of this assessment subjective quantitative adjustments are made to the three key parameters—material and component costs, direct labor hours, and installed equipment costs—to obtain the Investigator Estimate.

The major segments of the method of analysis are outlined in Table J-1. A brief elaboration is given for each segment with illustrations of some for the factors examined in each segment.
BATTERY TECHNOLOGY

The primary interest is to identify materials or components not fully developed or commercially available which if current goals are not achieved could significantly impact on the cost estimate. Examples of the these factors are porous graphite cost projections for the zinc-chloride battery and electrolyte tube material purity and cost projections for the sodium-sulfur battery.

MANUFACTURING TECHNOLOGY

The primary interest is to examine the process flow sheet definition and the extent of process development and equipment development needs. Examples of these factors are the need to demonstrate that large scale graphite production costs will meet projected costs used in the estimates for zinc-chloride battery. Another example is the ability to achieve projected yields of electrolyte tubes for the sodium-sulfur battery.

KEY PARAMETERS

The primary interest is to establish on a quantitative basis the reasonableness of the values generated by the developer for material and component costs, direct labor hours, and installed equipment costs.

Material and Component Costs

The factors of interest in this category are the development status of dominant cost items, consistency in estimates made at different times, recent progress in performance and design improvements, the level at which these improvements have been demonstrated i.e. single cell versus full scale hardware at current level of demonstration, and finally the basis for and documentation of process yields and unit costs assumed.
Direct Labor Hours and Equipment Costs

The direct labor hours and equipment costs must be examined together since for a given product design and manufacturing process they are interrelated. The exact relationship depends on the type of processes and equipment employed; and the trade-offs made between decreasing labor content and the increased costs of automation or scaling of equipment as a function of production rate.

The principal considerations in the analysis for this segment are:

- The development status and definition of the manufacturing process and equipment needs.
- The basis and documentation of the direct labor and equipment estimates.
- The consistency of the estimates referenced to a lead-acid battery manufacturing parameter correlation.

The choice of the lead-acid battery as reference for measuring the consistency of the developer estimates is based on several factors. Lead-acid battery manufacture is based on a mature technology, and reflects the benefits of optimized and automated process and plants. The data base for the lead-acid battery system is more accurate than the data base generated for batteries still under development.

The consistency of the developer estimates for direct labor hours and manufacturing equipment costs is based on examining how these values correlate with corresponding lead-acid values. The correlating parameter utilized is the ratio of the total number of manufacturing operations required for the battery under consideration to the total number of manufacturing operations for the lead-acid battery. Interpretation of this correlation requires a comparison of three other parameters for the battery under consideration and the lead-acid battery. These parameters are the scaling
factors for the operations, the number of components processed per unit of product, and the capacity of the manufacturing plant. From this analysis it is possible to obtain a subjective quantitative estimate of the consistency of the developer's estimates. A more detailed description and derivation of this analysis is given in the Appendix K.

DEVELOPER DISCUSSIONS

Issues and questions raised in the above segments are discussed with the developer for clarification. It is my experience that these discussions do not yield uniform clarification. The major barrier is the developer's position or perception that the issues impinge upon information that is considered company proprietary. It should be noted that the extent to which this method of analysis can be implemented depends significantly on the amount of information the developer wishes to share. The greater the cooperation between the developer and investigator, the less important is the subjective element in the Investigator Estimate.

DEVELOPER CAPABILITY ASSESSMENT

From the analysis results of the first four segments described above, an assessment is made of the developer's overall capability at the time the developer generated the estimates under evaluation. This assessment considers three factors:

- Level of knowledge with respect to product design and product manufacture.
- Extent of related experience with respect to product design and product experience.
- Depth, detail and the extent of documentation presented in the design and cost estimate study supporting the estimates made by the developer.
An additional subjective estimate is made as to whether the overall approach of the estimate is conservative or optimistic.

This assessment is one factor utilized in making the determination of the Investigator Estimate.

INVESTIGATOR ESTIMATE

On the basis of the results of the Key Parameter Analysis, Developer Discussions, and Developer Overall Capability Assessment subjective adjustments are made to the Key Parameters to determine the Investigator Estimate.
Table J-1. Outline for Determining Investigator Estimate

(1) Status of Battery Technology, especially in relation to battery design, materials and components and performance specification assumed in the design for the cost estimate.

(2) Status of Manufacturing Technology, especially with regard to the definition or demonstration of process flowsheet, process and equipment development needs for manufacturing the battery design assumed for cost estimate.

(3) Analysis of developer's estimates for the three key parameters—materials and component costs, direct labor hours, and installed equipment costs for the production rate specified.

(4) Discussion with developer to clarify issues raised in the above analyses.

(5) Evaluation of developer's "overall capability" at the time of generating his developer selling price estimate.

(6) Determine Investigator's Estimate by making subjective adjustments to item (3) parameters in conjunction with evaluations made in items (3), (4) and (5).
RESOURCE LIST

Method of Analysis

(1) Cost Analyses - Nickel-Iron and Nickel-Zinc Batteries; and Lead-Acid Batteries (1978)
J.A. Consiglio, Solva-Tek Associates
Argonne National Laboratory Purch. Order No. 955230

(2) Advanced Batteries Cost Analyses For Electric Vehicle Applications (1980)
J.A. Consiglio, Solva-Tek Associates
Dept. of Energy Contract No. DE-AC02-ET25418

(3) An Assessment of Westinghouse Ni-Fe Battery Cost Parameters (1981)
J.A. Consiglio, Solva-Tek Associates
Westinghouse Electric Corp. Purch. Order No. 54-7WAE 318866

(4) Evaluation of Developmental Battery Cost Estimates (1983-84)
P.C. Symons, Electrochemical Engineering Consultants, Inc.
J.A. Consiglio, Solva-Tek Associates
Electric Power Research Institute
Agreement RP-1136-24,25
APPENDIX K

DIRECT LABOR AND EQUIPMENT COST CORRELATIONS
DIRECT LABOR AND EQUIPMENT COST CORRELATIONS

Joseph A. Consiglio
Solva-Tek Associates
277 High St.
Topsfield, Mass. 01983

PRECEDEDING PAGE BLANK NOT FILMED
This appendix describes the method utilized to assess the magnitude of the direct labor and installed equipment cost estimates prepared by the developers. This assessment is then utilized to make subjective adjustments to these two parameters to generate the Investigator Estimate. (Reference Method of Analysis Text.)

The assessment is based on the use of corresponding information (direct labor and equipment cost estimates) for the lead-acid battery as a reference point. The following discussion includes three topics:

- Relation of direct labor and equipment costs to parameters
- Correlation of direct labor and equipment costs
- Correlation results

DIRECT LABOR AND EQUIPMENT COST PARAMETERS

A manufacturing process for the production of a battery can be represented by a number of process operations by which materials and components are fabricated and assembled into the battery. A given material or component may require a number of different operations prior to being assembled into the battery. Thus, for a specific battery design with a known number of components, a total manufacturing process can be specified with process operations of the appropriate type and capacity to produce the battery at a specified rate.

These concepts are illustrated for a single manufacturing operation and a single component in Figure K-1. Note that the illustration is for Direct Labor, but the arguments and relationships to the parameters also apply to Equipment Costs.
For this process operation, there is associated a direct labor content per component expressed as DL_C in hours per component. DL_C can be expressed as a function of three parameters: the capacity of the process operation (components per unit time); and a scaling factor and a complexity factor which characterize the type of operation. This relation is expressed symbolically in the first equation. The term $F_C(SF \cdot CF)$ signifies a function F_C of the two parameters scaling factor (SF) and complexity factor (CF).

The scaling factor (SF) is expressed as an exponent. For example, in the case of a punch press having a specified capacity, if there is a need to double the production rate, then two punch presses would be required. The corresponding amount of labor and/or equipment requirement is doubled. For this type of operation the scaling factor exponent has a value of 1.0.

Another type of operation is illustrated by a chemical reactor in which the volume of the reactor is the critical parameter. The capacity of the reactor can be doubled by doubling the volume of the reactor. The scaling factor exponent for this type of operation, based on experience, is generally less than 1.0—varying from 0.6 to .8. In this case, labor and/or equipment costs would range from 1.52 - 1.74 instead of doubling as in the first case.

The complexity factor (CF) reflects the fact that a more complex process operation will have associated with it a higher intrinsic labor requirement and/or equipment cost. Examples of this situation are a machining operation on a lathe operating to a variable slope pattern and high tolerances versus the stamping out of metal pieces in a punch press. The former will have higher intrinsic labor content and higher equipment cost than the latter.
The second equation in Figure K-1 expresses the labor requirement on a per unit product basis. This is obtained by multiplying the DL_C value of the first equation by the number of components required per unit product. The last equation represents symbolically the total labor required to produce a product by summing up all component and associated operations in the manufacturing process to produce the product.

The estimates from the developer in most cases were not presented with the detailed information for the parameters just described. The most common set of information included a process flowsheet indicating the number and types of operation. From this information a subjective judgement could be made as to the scaling factor being 1.0 or less than 1.0. The production capacity of the battery manufacturing facility was also specified. From the battery design specification the total number of components per product unit could usually be determined.

Thus, the common set of available information permits an assessment based on:

- The number of total manufacturing operations
- The fraction of total operations having scaling factors of 1.0 or conversely less than 1.0
- The total number of components per product unit
- The capacity of the manufacturing facility

The method whereby this information is correlated to the corresponding lead-acid battery data is presented in the next sub-section.
DIRECT LABOR AND EQUIPMENT COST CORRELATION

The following discussion is facilitated by defining a number of terms which will be used in abbreviated form as follows:

DL direct labor estimate in hours per KWH of battery rated capacity

EQ equipment cost estimate (installed basis) in $/KWH of annual manufacturing capacity

EXP the exponent of a straight line on a log-log plot, which is the value for the slope of the line.

Manufacturing Operation Ratio The ratio of the number of manufacturing process operations for the production of a given battery to the number of manufacturing process operations for the production of the reference lead-acid battery. These are obtained from an analysis of a manufacturing process flow sheet.

The primary comparison is made by examining the relationship of DL and EQ for a given battery versus the Manufacturing Operations Ratio. The values of DL and EQ for the lead-acid battery are used as reference point origins for drawing tie lines between the origin and the given battery data points. One plot is made for DL comparisons and one for EQ comparisons.

The data are plotted as log-log type plots. This type of plot is illustrated in Figure K-2 for the Ni-Fe and Na-S batteries with selected non-proprietary data generated in earlier studies.

The dotted line extension from the origin point with an exponent of 1.0 represents an Imaginary lead-acid plant with additional number of operations. The mix 'n types of
the additional operations in terms of scaling factor exponents, and DL to EQ ratio are the same as the original reference lead-acid battery plant. The plant capacity for the Imaginary plant adds no additional capacity. The capacity of the original lead-acid plant combined with the Imaginary plant equals the original lead-acid battery capacity.

The question addressed in the comparison - are the positions, or slopes, or exponents for the DL and EQ lines, in each plot, consistent with reference to the Imaginary lead-acid plant line of slope 1.0?

Three parameters in Table K-1 impact on the value of the exponents of the tie lines to differing degrees and in different directions. The parameters are:

- Plant capacity or production rate
- Number of components per KWH of battery rating (in this illustration limited to components through the cell level or equivalent thereof).
- Percentage of manufacturing operations judged to have a scaling factor exponent of approximately 1.0 with respect to production rate.

The procedure used is to make a comparison of the parameter values for the given battery versus the lead-acid battery values for the same parameter - Table K-1. From this comparison a judgement is made as to the expected impact of the parameter on the position of DL or EQ tie line with respect to the Imaginary lead acid plant tie line with an exponent of 1.0.

The complexity factor (CF) also impacts on the value of the exponents of the tie line. This information was not quantifiable in this analysis. A qualitative subjective assessment of this factor was utilized as a guide in making the judgement of the expected impact of the three parameters listed above.
The process is illustrated for one parameter - **Plant Capacity** for Ni-Fe. Nickel-Iron plant capacity is much less than the capacity of reference plant (21 MWH versus 2500 MWH per year). At lower production rates DL and EQ increase markedly, therefore the expectation is that for this parameter, Ni-Fe DL and EQ tie lines will be much greater than 1.0.

This process is repeated for each parameter for each battery. The results are summarized in Table K-2. All entries are expectations against the reference exponent value of 1.0.

In summary the expectation is that the exponents for Ni-Fe DL and EQ lines are much greater than 1.0 and for Na-S the exponents are about equal to 1.0. A comparison with Figure K-2 indicates that the results for Ni-Fe and Na-S meet the expectations.

For cases in which the developer DL or EQ values do not meet the expected values as obtained by comparisons drawn in Table K-2 a qualitative assessment is made to determine if there are significant differences between the complexity factor for the developer's process operations and the reference lead-acid process operations. A subjective adjustment is made to the developer's DL and EQ values taking into consideration the above assessment.
PARAMETERS

DIRECT LABOR (DL_C)
- HOURS/COMPONENT

A M'F'G
PROCESS
OPERATION

CAPACITY (CAP) - COMPONENTS/TIME
SCALING FACTOR - SF
COMPLEXITY FACTOR - CF
NUMBER OF COMPONENTS - NO. COMP.

Basis per component

\[DL_C = \frac{FC (SF*CF)}{CAP} \]

Basis per product

\[DL = NO.\ COMP. \times DL_C \]

Basis per Total M'f'g Process

\[DL = \text{SUM OF TOTAL NO. OF OPERATIONS} \]

Figure K-1. Direct Labor Correlation Parameters
Figure K-2. Direct Labor and Equipment Costs vs Manufacturing Operations Ratio
Manufacturing Operations Ratio
Referenced to Lead-Acid Cell Level or Equivalent Values
Refer to Text for Interpretation
Table K-1. Selected Parameters for Direct Labor and Equipment Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Pb/Acid Ref.</th>
<th>Ni/FE EPI</th>
<th>Na/S FORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components-No. KWH</td>
<td>218</td>
<td>230</td>
<td>70</td>
</tr>
<tr>
<td>M'f'g Operations-No.</td>
<td>29</td>
<td>34</td>
<td>139</td>
</tr>
<tr>
<td>M'f'g Operations Ratio(^b)</td>
<td>1</td>
<td>1.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Percentage of Operations with Scaling Factor Exponent = 1.0</td>
<td>66</td>
<td>38</td>
<td>74</td>
</tr>
<tr>
<td>M'f'g Production Capacity--MWH/y</td>
<td>2500</td>
<td>21</td>
<td>3000</td>
</tr>
<tr>
<td>Direct Labor--hr/KWH</td>
<td>.25</td>
<td>.99</td>
<td>.9</td>
</tr>
<tr>
<td>Equipment Inv.--$/KWH of annual m'f'g capacity</td>
<td>6.0</td>
<td>58</td>
<td>31</td>
</tr>
</tbody>
</table>

\(^a\)Values for Cell Level.

\(^b\)See text for definition.
Table K-2. Expected Impact of Parameters on Direct Labor and Equipment Cost Tie Lines in Figure K-2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expectation Referenced to Exponent Line Value of 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni/Fe Eagle Picher</td>
</tr>
<tr>
<td>Production Rate</td>
<td>Much Greater Equal</td>
</tr>
<tr>
<td>No. Components Per KWH</td>
<td>Equal Less</td>
</tr>
<tr>
<td>% of M'f'g Operations with Scaling Factor</td>
<td>Some-what Less Greater Some-what Greater</td>
</tr>
<tr>
<td>Summary Expectation</td>
<td>Much Greater About Equal</td>
</tr>
</tbody>
</table>
APPENDIX L

WEIGHT AND COST COMPARISON OF ALUMINUM AND STEEL VEHICLE BODIES
Weight and Cost Comparison of
Aluminum and Steel Vehicle Bodies

A. Marshall Zann
Consulting Engineer
Santa Barbara, CA
I. INTRODUCTION

Efforts by transportation system designers and manufacturers to produce more efficient and higher performance vehicles have led to weight reduction through downsizing and material substitution. The most efficient approach to weight reduction is accomplished by a combination of vehicle redesign in conjunction with material substitution. This allows for the most efficient use of the selected materials.

The purpose of this study is to analyze the impact on the different aspects of manufacturing and to determine a weight and cost comparison of an aluminum body to that of a steel body. For this study it was assumed that the vehicle was redesigned to obtain the optimal use of aluminum while incorporating the necessary changes to effect proper aluminum processing in fabrication and assembly. It was also assumed that the production methods utilized would produce 300,000 units per year.

Supportive materials published over the past six years were reviewed along with discussions with automotive manufacturers and manufacturing development personnel to determine the present status and development of aluminum in automobiles.
along with any advantages or disadvantages encountered. The writer also relied on his experience with substitution of aluminum in the fabrication and assembly processes at the GM Lordstown facility. During this time the Vega 15 style substituted aluminum for steel on the load floor cover and a production tryout of aluminum deck lids was conducted on the 11 style.

The published materials were well documented in the material costs and forming of component panels. In most studies when no weight savings was accomplished the component item was then left as steel. This would not be practical in a unitized body due to galvanic reaction, therefore, components would require to be made of aluminum even though a weight reduction were not realized and a resultant cost penalty would be encountered.

The technology exists to design and manufacture vehicles with an all aluminum construction. Existing aluminum alloys have the capability to be formed and welded with existing mass production techniques. In reviewing the materials it was noted that cost penalties were found in all facets of manufacturing that would increase the purchase price of the vehicle. The
trade off of economy and performance to the increased purchase price must be analyzed to determine if the material substitution is economically desirable.

This report is divided into four sections as follows:

II Summary

III Material Weight and Cost Comparison

IV Impact on Fabrication Operations

V Impact on Assembly Operations

An area not covered would be the impact on after market and repair procedures. Increased skills and improved equipment will be required in welding and repair of the aluminum primary and secondary structural components. This would result in higher repair costs and possibly insurance premium increases.
II CONCLUSIONS

Construction of an all aluminum body can be accomplished with existing mass production methods and obtain a weight savings of approximately 41% in the body structure. This, when related to the total automobile, including the propagated weight savings would be approximately 21% of a base 820Kg vehicle.

The cost impacts were found in all areas of manufacturing. This included higher base material cost increased tooling, facilities, and manpower. All areas considered, it is estimated that the body would cost 240% more than the steel body.
III. MATERIAL WEIGHT AND COST COMPARISON

As a basis for this comparison the vehicle used in SAE papers 810228(1) and 810229(2) was used. This was a 1981 front wheel drive, four passenger compact vehicle. The components evaluated for alternate material were the body-in-white primary structural and secondary structural components. These components made up the major portion of the body structure with a total mass of 315 Kg. This breakdown is shown pictorially in figure 1.

The major consideration in determining material substitution is to insure that the resultant component has adequate stiffness and strength. The material thickness must also be sufficient to withstand the manufacturing processes such as forming, surface finishing and handling. Exposed components must have sufficient resistance to denting.

The costs for steel and aluminum used were the same as the GM reports. Aluminum costing $1.79/Kg and steel at $0.40/Kg. Only one cost for aluminum at a median price was used rather than the different prices for exposed and unexposed finish materials. Also no price difference was established for blank size and offal. Such an analysis would be time consuming and require full design and processing information. A penalty of 15% was assumed in the price impact to compensate for the larger blank requirement and increased material cost.
Figure 1- Pictoral Breakdown of Automotive Body
The primary structural members function as the main load carrying structures. These consist of upper and lower front frames, all pillars, rockers, roof rails, headers, floor tunnel, etc. The secondary structural members do not contribute significantly to the structural stiffness requirements. The design criteria of the secondary structural members are generally governed by localized requirements. These consist of the roof panel, doors, floor pan, hood, deck lid, etc.

The total mass of the vehicle as developed in the GM reports are shown in Table 1. The primary structure was developed in aluminum and optimized utilizing the computerized program ODYSSEY, developed by GM. This program, through material substitution and optimization of component design, established an all aluminum primary structure mass of 71Kg or a savings of 34Kg. The secondary structural components were developed as shown in Table 2. A secondary structural mass of 122.5Kg was established or a savings of 52.25Kg.

Approximately 54Kg of the body weight is in brackets, braces, reinforcements and attaching parts that would not benefit from the primary reduction of material substitution. However, some weight reduction would be obtained by the propagated weight savings. This is the weight savings that can be obtained in the chassis, engine, brakes, etc. as a result of the base weight
reduction. Each manufacturer and the different research firms have developed different methods of calculating the propagated weight savings. For this report a factor of 1:1 was used. This means that for every 1Kg of weight saved by material substitution a secondary savings of 1Kg would be obtained. As this is a unitized body it was assumed that half of this amount was to be realized in the auto body and the other half in the drive and suspension. This relates to an additional 43Kg savings in the body or a total of 86Kg for the total vehicle.

As shown in Table 1 this would be an increased material cost of $237.15 or a 289% increase. This related to the finished component and assembly purchase price would be a 30% increase of the final product.
MATERIAL WEIGHT AND COST COMPARISON

<table>
<thead>
<tr>
<th>Vehicle Area</th>
<th>Steel Weight</th>
<th>Steel Cost</th>
<th>Aluminum Weight</th>
<th>Aluminum Cost</th>
<th>Weight Savings Kg</th>
<th>Cost Penalty $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Structure</td>
<td>105 Kg</td>
<td>$42.00</td>
<td>71 Kg</td>
<td>$120.70</td>
<td>34 Kg</td>
<td>$78.70</td>
</tr>
<tr>
<td>Secondary Structure</td>
<td>175 Kg</td>
<td>$70.00</td>
<td>122.75 Kg</td>
<td>$208.68</td>
<td>52.25 Kg</td>
<td>$138.68</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>35 Kg</td>
<td>$14.00</td>
<td>35 Kg</td>
<td>$59.50</td>
<td>---</td>
<td>$45.50</td>
</tr>
<tr>
<td></td>
<td>315 Kg</td>
<td>$126.00</td>
<td>228.75 Kg</td>
<td>$388.88</td>
<td>86.25 Kg</td>
<td>$262.88</td>
</tr>
<tr>
<td>Secondary Savings</td>
<td>-43 Kg</td>
<td>-73.10</td>
<td>+43 Kg</td>
<td></td>
<td></td>
<td>-73.10</td>
</tr>
<tr>
<td></td>
<td>185.75 Kg</td>
<td>$315.78</td>
<td>129.25 Kg</td>
<td></td>
<td></td>
<td>$189.78</td>
</tr>
<tr>
<td>Offal penalty 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$47.37</td>
</tr>
</tbody>
</table>

						$363.15
						$237.25

Table 1
MATERIAL WEIGHT/COST COMPARISON FOR MAJOR SECONDARY STRUCTURAL COMPONENTS

CRS vs ALUMINUM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>STEEL</th>
<th>ALUMINUM</th>
<th>Weight Savings</th>
<th>Cost Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mass</td>
<td>Cost</td>
<td>Mass</td>
<td>Cost</td>
</tr>
<tr>
<td>Compt Pan Prt</td>
<td>1</td>
<td>6.75Kg</td>
<td>$2.70</td>
<td>3.58Kg</td>
<td>$6.09</td>
</tr>
<tr>
<td>Compt Pan Pr</td>
<td>1</td>
<td>7.16</td>
<td>2.86</td>
<td>3.79</td>
<td>6.44</td>
</tr>
<tr>
<td>Mtr Compt Prt</td>
<td>1</td>
<td>3.03</td>
<td>1.21</td>
<td>1.48</td>
<td>2.52</td>
</tr>
<tr>
<td>Dash Ext Upr</td>
<td>1</td>
<td>1.98</td>
<td>0.79</td>
<td>0.97</td>
<td>1.65</td>
</tr>
<tr>
<td>Dash Prn</td>
<td>1</td>
<td>5.30</td>
<td>2.12</td>
<td>2.60</td>
<td>4.42</td>
</tr>
<tr>
<td>Roof Prn</td>
<td>1</td>
<td>12.75</td>
<td>5.10</td>
<td>7.51</td>
<td>12.77</td>
</tr>
<tr>
<td>Rr End Upr Prn</td>
<td>1</td>
<td>2.26</td>
<td>0.90</td>
<td>1.33</td>
<td>2.26</td>
</tr>
<tr>
<td>Qty Innr Rr Prn</td>
<td>2</td>
<td>1.02</td>
<td>0.41</td>
<td>0.50</td>
<td>0.85</td>
</tr>
<tr>
<td>Qty Otr Prn</td>
<td>2</td>
<td>9.63</td>
<td>3.85</td>
<td>5.68</td>
<td>9.66</td>
</tr>
<tr>
<td>W/H Otr</td>
<td>2</td>
<td>3.61</td>
<td>1.44</td>
<td>2.13</td>
<td>3.62</td>
</tr>
<tr>
<td>W/H Innr</td>
<td>2</td>
<td>4.85</td>
<td>1.94</td>
<td>2.97</td>
<td>5.05</td>
</tr>
<tr>
<td>Rr End Lwr</td>
<td>1</td>
<td>2.23</td>
<td>0.89</td>
<td>1.18</td>
<td>2.01</td>
</tr>
<tr>
<td>Compt Lid Otr</td>
<td>1</td>
<td>6.28</td>
<td>2.51</td>
<td>3.33</td>
<td>5.66</td>
</tr>
<tr>
<td>F/D Innr</td>
<td>2</td>
<td>6.62</td>
<td>2.65</td>
<td>3.24</td>
<td>5.51</td>
</tr>
<tr>
<td>F/D Outer</td>
<td>2</td>
<td>9.19</td>
<td>3.68</td>
<td>5.42</td>
<td>9.21</td>
</tr>
<tr>
<td>R/D Innr</td>
<td>2</td>
<td>5.65</td>
<td>2.26</td>
<td>2.77</td>
<td>4.71</td>
</tr>
<tr>
<td>R/D Outer</td>
<td>2</td>
<td>6.95</td>
<td>2.78</td>
<td>4.10</td>
<td>6.97</td>
</tr>
<tr>
<td>Frt Fndr</td>
<td>2</td>
<td>7.98</td>
<td>3.19</td>
<td>3.91</td>
<td>6.65</td>
</tr>
<tr>
<td>Hood</td>
<td>1</td>
<td>14.58</td>
<td>5.83</td>
<td>8.67</td>
<td>14.74</td>
</tr>
<tr>
<td>Fnr Prn</td>
<td>1</td>
<td>15.28</td>
<td>6.11</td>
<td>15.28</td>
<td>25.98</td>
</tr>
<tr>
<td>Compt Lid Innr</td>
<td>1</td>
<td>5.53</td>
<td>2.21</td>
<td>5.53</td>
<td>9.40</td>
</tr>
<tr>
<td>Mtr Compt Shk Hg</td>
<td>2</td>
<td>3.98</td>
<td>1.59</td>
<td>3.98</td>
<td>6.77</td>
</tr>
<tr>
<td>Mtr Compt Sr Br</td>
<td>1</td>
<td>0.93</td>
<td>0.37</td>
<td>0.93</td>
<td>1.58</td>
</tr>
<tr>
<td>Mtr Compt Sr Lt</td>
<td>1</td>
<td>1.31</td>
<td>0.52</td>
<td>1.31</td>
<td>2.22</td>
</tr>
<tr>
<td>Mtr Compt Sr W/H</td>
<td>2</td>
<td>3.77</td>
<td>1.51</td>
<td>3.77</td>
<td>6.41</td>
</tr>
<tr>
<td>Misc</td>
<td></td>
<td>2.29</td>
<td>1.32</td>
<td>2.79</td>
<td>4.24</td>
</tr>
</tbody>
</table>

1. Steel 7.83 g/cm³ $0.40/Kg
2. Aluminum 2.71g/cm³ $1.70/Kg

Table 2
The substitution from CRS to aluminum would impact the fabrication plant's tooling, facilities and manpower costs as follows:

1. Increased Manpower
 a. The use of aluminum creates problems in removal of protective materials in the form of edge protectors and separators from the sheets and coils prior to any cutting or forming operations.
 b. Increased line maintenance on material handling equipment, increased line cleaning and die maintenance to eliminate surface damage.
 c. Offal separation from steel. This may be accomplished automatically, however, the system would require maintenance.
 d. The increased possibility of process damage would increase the inspection required throughout the fabrication processes.

Estimated cost impact 23%

2. Increased Tooling Cost
 Aluminum can be formed using the same equipment as steel, however, experience has shown greater care is required in making the dies and in some cases additional dies are required to obtain the required quality. Increased die maintenance, numbers of dies and associated equipment would affect the facility usage, set up
time, and secondary equipment usages.

Estimated cost impact 35%

3. Increased Material Handling Equipment

The ease with which aluminum surfaces can be damaged in the processing of the component requires special care and increased expenditures in the handling equipment. This can range from air stackers, increased and padded rollers, increased and larger vacuum lifters, redesigned die clearing tools, etc. The entire processing of some components may require revision to eliminate surface damage. Exposed surfaces that normally are processed with the exposed surfaces against conveyors would have to be processed with the exposed surface free of contact.

Estimated cost impact 20%

4. New Material Shipping Systems

Aluminum components shipped from fabrication to assembly plants will require newly designed shipping racks and containers. Where steel deck lids or hoods may be shipped on edge, aluminum components would be severely damaged. This item would vary greatly dependent on the banks required, shipping distance, the number of plants involved and line speed differences between fabrication and assembly.

Estimated cost impact 30%
5. Increased Scrap and Repair

With all the precautions that are taken it would be expected that a higher incidence of scrap and repair would be generated in the fabrication processes. The creation of special containers or shipping racks would require increased maintenance and if special separators are used automated systems or manpower to install the items would be required.

Estimated cost impact 10%
V. IMPACT ON ASSEMBLY OPERATIONS

Little information was available on the impact of aluminum on assembly plan operations and costs. The majority of information related to tip wear and recommended procedures in welding. These are of major importance, but don’t address the many areas and costs that would be affected. All of the problems seen in the fabrication plant would be present in the assembly operations, plus a major impact in the body shop welding equipment, facilities, maintenance and repair areas.

1. Resistance Welding

Aluminum requires a higher current for welding than required for steel. Approximately three times when welding the same material thickness. The material is seldom substituted on a one to one material thickness basis, therefore, the welding current increase would be in excess of three times.

In welding aluminum a preliminary forging force is recommended to prepare for the weld. This force application is higher than the welding force and requires added controls and larger weld gun cylinders. The requirement for alternate gun application to the weld surface to prevent shunting also increases the control
systems and weld cycle time.

Structural adhesive bonding may alleviate some areas of difficulty, however, the technology is not adequate at this time to be considered reliable for structural components and high production rates. It is being used on secondary structural components such as doors, deck lids and hoods.

The increased power, pressure and control requirements would affect the following:

a. Facility power requirements and installations
b. Facility welder water installations
c. Welder control systems
d. Increased transformer sizes
e. Weld gun cable size increase and increased use of water cooled jumpers.
f. Weld gun arm size increases
g. Increased tip wear
h. Increased cylinder sizes including use of sav-air or hydraulic systems.
i. Increased support equipment. The increased sizes of weld guns, cables, transformers, and gun arms would increase the number of welders to hold the multiple gun stations. Also the larger robotic systems would be required to manipulate the increased weight.
Estimated cost impact 40%

2. Material Handling.
The same problems faced in fabrication would be present in the assembly plant. Subassembly and assembly operation would require gaging, clamping, conveyors, and handling devices that would not damage exposed surfaces or mutilate weld flanges. Once designed and built greater maintenance costs will be incurred.
Estimated cost impact 2%

3. Repair and Surface Finish
An area not covered in available materials is the effect of any repairs or joint finishing that will require a filler material. With steel bodies solder is used that requires minimal line space for application and set up. For aluminum, epoxy fillers are required that require a large line space plus heaters to cure for finish. At 60 units/hour and 20 foot line spacing a 600 foot line area would be consumed for curing when a half hour is required. Also, like solder, the epoxies require special booths for grinding with operator hoods and make-up air to prevent respiratory diseases.

Standard tools are required for the surface finishing of aluminum, however, with its susceptibility to damage increased finish operations would be expected. Secondary problems occur with paint cycles as the filler and body expand at different rates and the repair or finished joint develops a crack around the perimeter.
The joint problems can be reduced in the vehicle design.
Estimated cost impact 20%.

4. Scrap Increase.
The susceptibility of aluminum to be damaged in sub assembly and line operations will increase the scrap that will be generated. Where steel panels may be repaired and used aluminum may have to be scrapped as the most economical method.
Estimated cost impact 5%
REFERENCES

10. C. Difiglio, D. Kulash, "Marketing and Mobility", March 1976

17. N. W. Smith and J.E. Grant, "Reducing the Cost of Aluminum Body Panels.", SAE 800931

APPENDIX M

AVSIZING COMPUTER PROGRAM
ADVANCED VEHICLE ENERGY PROGRAM (AVEnergy)
ADVANCED VEHICLE COST PROGRAM (AVCost)
AVSIZING COMPUTER PROGRAM

M.A. Gyamfi
S.A. Herman
1.0 INTRODUCTION

AVISIZING is a computer program written for the IBM Personal Computer on the IBM version of Microsoft BASIC. The purpose of AVISIZING is to size a preliminary vehicle and (at the user's request) write to disk input files to the ELVEC computer program and also input files with partial sets of inputs to the programs AVENERGY and AVCOST. (AVENERGY and AVCOST are written in BASIC for the IBM Personal Computer).

In running AVISIZING the user has the following options:

1. Size a new vehicle targeted to a desired range. This logic allows for multiple passes and when a satisfactory vehicle is sized the user may generate an ELVEC input file using one of the 3 cycles:
 a. Federal
 b. Highway
 c. Van

2. Generate a 24-hour cycle input file for ELVEC using a previously-sized vehicle. (This vehicle may have been sized using option 1 or option 3.)

3. Redesign a vehicle previously sized by option 1 by changing the battery mass fraction (BMF).

2.0 PROGRAM STRUCTURE

For any run, whether it is a run to size a new vehicle or a redesign of a previous vehicle, the following basic set of variables must be defined.

a. Is the vehicle electric or hybrid?

b. Battery type chosen from the following list:

 1. AL-AIR
 2. FE-AIR
 3. LI-FE-S
 *4. LI-FE-S2
 5. NA-S
 6. NI-FE
 7. NI-ZN
 8. PB-AC/ADV
 9. PB-AC/BIPL
 10. ZN-BR
 11. ZN-CL2

* LI-FE-S2 is not currently operational
c. Power to energy ratio from the following list:

1. P/E = 1.0
2. P/E = 2.1
3. P/E = 2.4
4. P/E = 3.3

From the values of b and c, a valid battery name for the ELVEC program is constructed, e.g., Fe-AIR2.4.

Some of the batteries have a single name independent of the power to energy ratio. These names are:

1. AL-AIR
2. NI-ZN2.0
3. PB-AC/BIPL

Some of the batteries names are the same for the power to energy ratios of 2.1 and 2.4 and are given the 2.1 designation. These names are:

1. LI-FE-S2.1 (also 2.4)
2. Ni-FE 2.1 (also 2.4)
3. PB-AC/AD2.1(also 2.4)

The fusion of names occurs because in ELVEC these batteries have the same specific power X cutoff DOD tables. This implies that the user must provide CH-coefficients and other battery data whenever the battery with the omitted power to energy ratio is used. AVSIZING supplies its own battery data (including CH-coefficients) for each power to energy ratio.

2.1 THE RANGE EQUATIONS

For each battery and power to energy ratio there is a set of coefficients A,B which define the BMF as a function of ELVEC range. (A and B are part of the battery data set). The equations are given by:

\[BMF = \frac{(A*R + B)}{100} \]

where R is the ELVEC range.

These equations are used only when running a new vehicle targeted to a desired range. Because of recent changes made to ELVEC after A and B were determined, they probably should be rederived.

2.2 NUMBER OF CYCLES FOR 5-PASSENGER VEHICLES

When running a 24-hour cycle, the number of cycles used is dependent upon the desired ranges for the 5-passenger vehicle.
The choices are:
1. 100 mi. (uses 10 cycles)
2. 150 mi. (uses 11 cycles)
3. 250 mi. (uses 12 cycles)

2.3 MOTOR TYPE

Only the AC option is currently operational although some coding for a DC option is in place.

2.4 BATTERY DATA SETS

AVSIZING Supplies the following information for each battery:

a. battery name
b. the variables ---
 1. EFFCK
 2. SLFD
 3. ACC

c. The coefficients of the range equations i.e., A, B
d. constants in the volume equations Q1, Q2 and the battery power equation PBC.
e. The CH-coefficients.

2.4 VEHICLE PARAMETERS

The values for grade power (GRADE) cycle power (CYCLE) and acceleration power (ACCN) are given in the following table.

<table>
<thead>
<tr>
<th>CAPACITY</th>
<th>GRADE</th>
<th>CYCLE</th>
<th>ACCN*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17.5</td>
<td>25.9</td>
<td>21.5</td>
</tr>
<tr>
<td>4 or 5</td>
<td>28.0</td>
<td>26.0</td>
<td>24.0</td>
</tr>
<tr>
<td>6</td>
<td>20.3</td>
<td>20.3</td>
<td>20.3</td>
</tr>
</tbody>
</table>

* unit is w/kg for GRADE, CYCLE and ACCN

The following parameters are used in the equation for test weight (see next section).

WMOT1 = 0.9* GRADE/MOTSW
WCON1 = X1/CONSW
WTF1 = X1/TRFSW
WHE1 = GRADE/HESW (for hybrid)
WTCVT1 = GRADE/TRECVTSW (for hybrid)
WTR1 = WTF1 (for electric)
 WTF1 + WTCVT1 (for hybrid)
where for capacity 2 or 6 we have

\[X_1 = \text{cycle} \]

and \[X_1 = \text{GRADE} \] otherwise.

The various constants in the above equations are given below:

- MOTSW = 490
- CONSW = 2500
- TRFSW = 1418
- TRGVT SW = 1096
- HESW = 450

2.5 THE WEIGHT EQUATIONS

The unit of weight is kilograms, volume is liter and power is kilowatt unless otherwise noted.

The basic equation is:

\[WT = WSH + PANDPL + 1.3 \text{ (SUM)} \]

where

- WSH is the shell weight
- PANDPL is passenger and payload weight

and SUM is given by

\[SUM = WB + WMOT1*WT + WCON1*WT + WTR1*WT + WHE1*WT \]

where

- WT is the test weight
- WB is the battery weight

The remaining terms were defined in the previous sub-section.

Using the definition \(WB = BMF*WT \) and solving for WT we obtain:

\[WT = \frac{WTERM1}{1 - 1.3(WTERM2)} \]

where

\[WTERM1 = WSH + PANDPL \]

and

\[WTERM2 = BMF + WMOT1 + WCON1 + WTR1 + WHE1 \]
The curb weight (WC) is the given by

\[WC = W + PANDPL \]

The motor weight (WMOT) is given by

\[WMOT = (0.9 \times \text{GRADE/MOTSW}) \times WT \]

The weights of the controller (WCON) fixed transmission (WTF), EV transmission power and controller power (CKW) are summarized by the equations:

\[
\begin{align*}
\text{CKW} &= X1/1000 \\
\text{WCON} &= X1/\text{CONSW} \\
\text{STF} &= X1/\text{TRFSW} \\
\text{ETKW} &= X1/1000
\end{align*}
\]

Where for capacity 2 or 6 we have

\[
\begin{align*}
X1 &= \text{CYCLE}\times WT \\
\text{and } X1 &= \text{GRADE}\times WT \text{ otherwise}
\end{align*}
\]

Further, if the vehicle is a hybrid we have:

\[
\begin{align*}
\text{WTCVT} &= (\text{GRADE}/\text{TRCVTSW}) \times WT \\
\text{EPOW} &= (\text{GRADE}\times WT)/1000 \\
\text{ENGHPR} &= \text{EPOW}/.746 \text{ (horsepower units)} \\
\text{ENGKW} &= \text{EPOW} \text{ (kilowatt units)} \\
\text{WHE} &= (\text{GRADE}/\text{HESW}) \times WT \\
\text{PEFPWR} &= 0.9 \times \text{GRADE}\times WT/1000
\end{align*}
\]

where

\[
\begin{align*}
\text{WTCVT} \text{ is the weight of the CVT} \\
\text{EPOW} \text{ is the ICE transmission power} \\
\text{ENGHPR} \text{ the engine power in horsepower} \\
\text{ENGKW} \text{ is the engine power in kw.} \\
\text{WHE} \text{ is the weight of the heat engine} \\
\text{PEFPWR} \text{ is the motor power}
\end{align*}
\]

The volumes are computed by the following equations:

\[
\begin{align*}
\text{VMOT} &= \text{PEFPWR}/1.54 \\
\text{VCT} &= \text{CKW}/2.15 \\
\text{VTTIF} &= \text{ETKW}/2.8
\end{align*}
\]

For hybrids only

\[
\begin{align*}
\text{ENGVOL} &= \text{EPOW}/.5 \\
\text{GTRANVOL} &= \text{ETKW}/2.8
\end{align*}
\]
where

\[\text{VMOT is the motor volume} \]
\[\text{VCT is the controller volume} \]
\[\text{VTTIF is the EV transmission volume} \]
\[\text{ENGVOL is the engine volume} \]
\[\text{GTRANVOL is the ICE transmission volume} \]

The volume of the batteries (BVOL) is given by:

\[\text{BVOL} = \frac{(Q1\times WB)}{Q2} \]

Where Q1 and Q2 are part of the battery data sets.

The battery power (PB) is given by:

\[\text{PB} = \frac{(PBC\times WB)}{1000} \]

Where PBC is part of the battery data sets.

All of the above weight-dependent variables are computed in subroutine WEIGHT.

2.6 ITERATION PROCEDURE FOR ACTUAL RANGE.

From the desired range (DRAM) which is input by the user, an estimate of the ELVEC range (R) is made:

\[R = 1.2 \times \text{DRAM} \]

The iteration procedure begins by using the range equation to compute BMF.

\[\text{BMF} = \left(\frac{A \times R + B}{100} \right) \]

The specific power (WKG) is now computed

\[\text{WKG} = \frac{\text{ACCN}}{\text{BMF}} \]

Call subroutine ACTUAL RANGE where a cutoff DOD is determined and an actual range (ACTRAN) is computed by the equation

\[\text{ACTRAN} = \frac{\text{DOD} \times R}{100} \]

If the actual range is within 5% of the desired range then the iteration procedure is terminated. If not, then the ELVEC range (R) is updated by the factor DRAN/ACTRAN and the BMF is computed beginning another iteration. The upper limit to the number of iterations is now set to 30.
2.7 DOMINANT BMF

The power density is given by

\[PD = \exp(LPD) \]

where

\[LPD = CH(1) + CH(2) \log(TAU) + CH(3) \times (\log(TAU))^2 \]

and \[TAU = \frac{6.6}{60} \]

If GRADE/PD BMF and the BMF is not input by the user, then the dominant BMF is "GRADE". Otherwise, the dominant BMF is "RANGE". For the case where the user enters the BMF (the redesign option) then the dominant BMF is "INPUT".

2.8 THE AVSIZING OUTPUT REPORT

The AVSIZING output report contains the following information:

a. Vehicle capacity
b. Vehicle type
c. Desired Rage
d. Dominant BMF
e. Battery name
f. BMF
g. Test weight
h. Actual range (est)

In addition, the weight (kg) and power (kw) are given for:

a. Motor
b. Controller
c. EV transmission
d. Battery
e. ICE transmission
f. Engine
A sample output report follows:

```
AVSIZING OUTPUT REPORT
-----------------------

Range converged in 2 iterations.

TEST CASE - 3 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC

<table>
<thead>
<tr>
<th>Description</th>
<th>WT (kg)</th>
<th>VOL (LTR)</th>
<th>PWR (kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE VEHICLE CAPACITY IS</td>
<td>9</td>
<td>28.75</td>
<td>44.27</td>
</tr>
<tr>
<td>THE VEHICLE TYPE IS</td>
<td>90.35</td>
<td>23.75</td>
<td>44.27</td>
</tr>
<tr>
<td>THE DESIRED RANGE IS</td>
<td>100.00</td>
<td>22.00</td>
<td>49.19</td>
</tr>
<tr>
<td>THE DOMINANT BMF IS RANGE</td>
<td>34.69</td>
<td>17.57</td>
<td>49.19</td>
</tr>
<tr>
<td>THE BATTERY IS NI-FE1.0</td>
<td>499.02</td>
<td>288.48</td>
<td>39.68</td>
</tr>
<tr>
<td>THE BMF IS</td>
<td>0.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE TEST WEIGHT IS</td>
<td>1756.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE CURB WEIGHT IS</td>
<td>1620.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THE ACTUAL RANGE IS</td>
<td>101.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**END OF PROGRAM OPERATIONS**
```
2.9 PURPOSE OF SUBROUTINES

<table>
<thead>
<tr>
<th>SUBROUTINE</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT-END</td>
<td>Writes statement to disk that when sent to the VAX will create (open) the appropriate file. Writes the initial portion of the various cycles to disk. This subroutine is used by all cycles (Federal Highway, Van, and 24-hr. cycle).</td>
</tr>
<tr>
<td>PARAMVAR</td>
<td>Writes further statements for the various cycles to disk.</td>
</tr>
<tr>
<td>CYCLE - 1 (I=1 to 12)</td>
<td>Writes the individual cycles (1-12) to disk for the 24-hr. cycle.</td>
</tr>
<tr>
<td>CYCLE-VAN</td>
<td>Writes portion of VAN cycle to disk.</td>
</tr>
<tr>
<td>VEHICLE-DATA</td>
<td>If not running a 24-hr. cycle, writes vehicle data to disk. It is called after a non-24-hr. cycle is written to disk. The file written by this subroutine is read only if a new vehicle is not being run.</td>
</tr>
<tr>
<td>CH-READ</td>
<td>Reads the CH-coefficient from data statements.</td>
</tr>
<tr>
<td>BATNM$-READ</td>
<td>Reads battery names from data statements.</td>
</tr>
<tr>
<td>ACTUAL-RANGE</td>
<td>Contains the cutoff DOD vs. specific power tables. Computes actual range.</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Computes weight-dependent quantities.</td>
</tr>
<tr>
<td>HYBRID</td>
<td>Writes hybrid inputs to ELVEC program to disk.</td>
</tr>
<tr>
<td>DATA</td>
<td>Writes data for ELVEC program to disk.</td>
</tr>
</tbody>
</table>
1.0 PRELIMINARIES

It is assumed that the SMARTCOMI communication package disk (Hayes Microcomputer Products Corp.) with a macro set for automatic log on is inserted in drive A. Drive B is reserved for a disk containing the programs: AVSIZING. BAS, AVENERGY. BAS and AVCOST. BAS. Normally the disk in drive A is used to boot the system.

Figure M-1. Design Procedure Flow Diagram
WRITE RNGE.DAT TO DISK

RUN AVENERGY AND AVCOST

FINISH
3.0 OUTLINE OF DESIGN PROCEDURE TERMINAL SESSION

This section steps through the design of a preliminary vehicle, 24-hour cycle and running of the energy and costing programs. Each step is numbered and represents an action taken by the user. The actions indicated are entered at the keyboard. Non-specific actions are braketed and are not numbered. Comments are also braketed or enclosed in parenthesis or explicitly labeled.

3.1 PHASE 1 (design preliminary vehicle)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(prompt = A>)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IBMPC</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>B:</td>
<td>Change to B drive.</td>
</tr>
<tr>
<td>2.</td>
<td>BASIC AVSIZING</td>
<td>Request version of basic, load and run AVSIZING.</td>
</tr>
<tr>
<td></td>
<td>[Respond to prompts]</td>
<td>[in AVSIZING]</td>
</tr>
<tr>
<td>3.</td>
<td>SYSTEM</td>
<td>Return to system.</td>
</tr>
<tr>
<td>4.</td>
<td>A:</td>
<td>Change to A drive</td>
</tr>
<tr>
<td>5.</td>
<td>SCOM</td>
<td>Activate SMARTCOM II</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Begin communications</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>originate transmission</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>dial</td>
</tr>
<tr>
<td></td>
<td>[Macro is activated for automatic log on.]</td>
<td>VAX environment)</td>
</tr>
<tr>
<td></td>
<td>(prompt = $)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Ready to send file LOCAL.DAT to VAX]</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>F1</td>
<td>Display SMARTCOM menu</td>
</tr>
<tr>
<td>STEP</td>
<td>ACTION</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>7 (optional)</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>LOCAL.DAT [Wait until transmission] [of file is complete.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>control Z</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>@MAX* run</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>NG (normally) or YES</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>(normally)</td>
<td></td>
</tr>
</tbody>
</table>

RESULT

- printer on
- send file
- start/stop protocol
- Enter file name
- Completes the creation of the file STAREL.COM
- Execute MAX.COM to run ELVEC in demand mode.
- Response to question: do you wish to see 1 July message?
- Response to: BULK DATA FILE TO BE USED (NULL RETURN FOR DEFAULT):

```bash
The command file STAREL.COM will supply automatic inputs to the ELVEC program until run is completed. (prompt = $)
```

- LOG
- Fl

Display SMARTCOM menu

* It is assumed that ELVEC is to be run in demand. If you wish to run ELVEC in batch (the correct response to question in AVSIZING must have been given) replace @MAX with SUBMIT STAREL.COM/NO PRINT/QUE= FIFO.
Step-by-Step Guide

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. 0</td>
<td></td>
<td>end communications/program</td>
</tr>
<tr>
<td>22. Y</td>
<td></td>
<td>Response to question: Exit program?</td>
</tr>
</tbody>
</table>

(Prompt = A>)

Repeat above sequence (steps 1-22) until range constraint is satisfied.

3.2 Phase 2 (generate 24-hour cycle)

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Repeat steps 1-9]</td>
<td></td>
<td>Comment: In this case AVSIZING is used to generate a 24-hr. cycle</td>
</tr>
<tr>
<td>Macro is activated for automatic log on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prompt = $)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ready to send file XXX.DAT (batch) or STAREL.DAT (demand)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Repeat steps 10-13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. XXX.DAT (for batch) or STAREL.DAT (for demand)</td>
<td>Enter file name</td>
<td></td>
</tr>
<tr>
<td>(XXX is file name of 24-hr. input file)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wait 'till transmission of file is complete.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Control Z</td>
<td>Completes creation of appropriate file.</td>
<td></td>
</tr>
<tr>
<td>If batch mode then XXX.COM is created. If demand mode then STAREL.COM is created.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. @MAX (for demand) or run ELVENC (in demand or batch)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td>ACTION</td>
<td>RESULTS</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>SUBMIT XXX.COM/NOPRINT/ QUE=FIFO (for batch)</td>
<td></td>
</tr>
<tr>
<td>[if demand mode respond]</td>
<td>[to first two prompts.]</td>
<td>(steps 17 and 18)</td>
</tr>
<tr>
<td>(prompt = $)</td>
<td></td>
<td>VAX</td>
</tr>
<tr>
<td>[repeat steps 19-22]</td>
<td></td>
<td>IBMPC</td>
</tr>
<tr>
<td>(prompt = A>)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After running ELVEC with a set of inputs for a 24-hour cycle a VAX file named RNGE.DAT is created. This file contains a partial set of inputs for the IBMPC program AVENERGY.BAS. Therefore, this file (or at least a portion of it) must be written to disk. This is done as follows:

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(prompt = $)</td>
<td>(VAX environment)</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>TYPE RNGE.DAT ** but do not enter.</td>
<td>prepare to type RNGE.DAT</td>
</tr>
<tr>
<td>27.</td>
<td>F4</td>
<td>Receive file</td>
</tr>
<tr>
<td>28.</td>
<td></td>
<td>complete typing of RNGE.DAT</td>
</tr>
<tr>
<td>29.</td>
<td>F1</td>
<td>Completes file reception</td>
</tr>
<tr>
<td>[enter file name to be used on disk in B drive]</td>
<td>Rename file</td>
<td></td>
</tr>
<tr>
<td>(This is optional since default = TEMP) SMARTCOM</td>
<td>(This file is called the ELVEC OUTPUT FILE in AVENERGY.BAS)</td>
<td></td>
</tr>
<tr>
<td>[repeat steps 19-22]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(prompt = A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For simplicity it is assumed that RNGE.DAT contains only the inputs for the current run. The case where this is not true will be discussed in section 4.
If ELVEC is run in batch, a file XXX.LOG is created which contains the result of the run. (XXX is the file name of the 24-hour input file.)

The user is now ready to run the programs AVENERGY and AVCOST. Nearly all of the input procedure has been made automatic, however, each of these programs prompts the user for some information. Part of the inputs are the names of files on disk which contain data for these programs. These files are:

- XXX.ENG (input to AVENERGY)
- ELVEC OUTPUT FILE (input to AVENERGY)
- XXX.COS (input to AVCOST)
- ENERGY.DAT (input to AVCOST -- but not requested. This file is created by AVENERGY.)

IMPORTANT: AVENERGY and AVCOST must be run in tandem.

The following section will discuss these and other files on disk in more detail.

4. FILES ON DISK

This following is a list of all the files on disk (B drive) generated or used by the various programs.

1 ELVEC OUTPUT FILE (Actual name specified by user)

This file contains information required by AVENERGY that is created when ELVEC is run for a 24-hour cycle. It is a copy on disk of all or a part of the file RNGE.DAT created in the VAX environment. The user specifies its name when downloading RNGE.DAT (all or part) to disk. If a name is not specified, the default name is TEMP.

If RNGE.DAT is not erased before running a 24-hour cycle, then the data contained in RNGE.DAT may be stacked for several runs. The data in the ELVEC OUTPUT FILE must contain the data for a single run. This can be accomplished by creating another file, i.e. XXX.RAN, which contains only the required information. The procedure is as follows:

1. Copy RNGE.DAT to XXX.RAN
 (the command is: COPY RNGE.DAT XXX.RAN).

2. Delete unwanted lines using the VAX editor.

3. Download XXX.RAN to disk.

The data in the ELVEC OUTPUT FILE are:

- ELVEC range (one for each cycle)
- Actual range (one for each cycle)
Maximum DOD
Maximum PD
Energy consumption (one for each cycle)
gal. per mi (one for each cycle)
date (one for each cycle)
time (one for each cycle)

AVENERGY Requests the name of the ELVEC OUTPUT FILE in order to obtain the above information. If the user responds to this request with a carriage return (null response) then this allows the user to input the information from the keyboard.

2. ENERGY.DAT

This file is created by AVENERGY and transfers information to AVCOST.

The data are:

<table>
<thead>
<tr>
<th>In AVENERGY</th>
<th>In AVCOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETKM</td>
<td>TKM</td>
</tr>
<tr>
<td>E</td>
<td>AELC</td>
</tr>
<tr>
<td>ENER</td>
<td>EOLY</td>
</tr>
<tr>
<td>FUEL</td>
<td>RICE</td>
</tr>
<tr>
<td>DCON</td>
<td>KMYR</td>
</tr>
<tr>
<td>LITM</td>
<td>AFUS</td>
</tr>
<tr>
<td>ECL</td>
<td>CYCB</td>
</tr>
<tr>
<td>X365</td>
<td>ADOD</td>
</tr>
<tr>
<td>WB</td>
<td>WB</td>
</tr>
<tr>
<td>TIT$</td>
<td>PHD$</td>
</tr>
<tr>
<td>VEH</td>
<td>IVTYP</td>
</tr>
</tbody>
</table>

3. LOCAL.DAT

This file is the local file (on disk) created by AVSIZING whenever a new vehicle is being designed. It is also created when the redesign option is used. It is sent to the VAX where it creates a file called STAREL.COM which contains the inputs for the ELVEC program. (STAREL.COM is called the remote file). STAREL.COM may be used to run ELVEC in demand or batch mode.

4. STAREL.DAT

This is the local file (on disk) for running a 24-hour cycle in demand. The remote file is STAREL.COM. This file is created by AVSIZING.

5. XXX.COS (XXX is file name of 24-hour input file)

This file is created by AVSIZING. It contains data required by AVCOST.
The data are:

<table>
<thead>
<tr>
<th>IN AVSIZING</th>
<th>IN AVCOST</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEFPWR</td>
<td>MKW</td>
</tr>
<tr>
<td>CKW</td>
<td>CKW</td>
</tr>
<tr>
<td>ETKW</td>
<td>ETKW</td>
</tr>
<tr>
<td>EPOW</td>
<td>EPOW</td>
</tr>
<tr>
<td>NAM$</td>
<td>DA:TS</td>
</tr>
<tr>
<td>WC</td>
<td>CURBWT</td>
</tr>
</tbody>
</table>

6. XXX.DAT (XXX is file name of 24-hour input file)
This file is created by AVSIZING. It is the local file (on disk) for running a 24-hour cycle in batch. The remote file is XXX.COM.

7. XXX.ENG (XXX is file name of 24-hour input file)
This file is created by AVSIZING. It contains data required by AVENERGY. The data are:

<table>
<thead>
<tr>
<th>IN AVSIZING</th>
<th>IN AVENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB</td>
<td>WB</td>
</tr>
<tr>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>TLE$</td>
<td>TIT$</td>
</tr>
<tr>
<td>VEH$</td>
<td>VEH</td>
</tr>
</tbody>
</table>

8. VEHICLE.DAT
This file is created by AVSIZING and is used to transfer information from a new vehicle design to a redesign, or 24-hour cycle option. AVSIZING is the only program which uses the data in this file.
1.0 SAMPLE CASE

The vehicle used in this sample has the following parameters:

1. 5-passengers
2. electric
3. battery is NI-Fe1.0
4. desired range is 100 miles

2.0 SIZING NEW VEHICLE USING AVSIZING

The federal cycle was used along with the inputs given above to size a preliminary vehicle.

The local file (on disk) LOCAL.DAT was created by AVSIZING using the demand mode option. Sending LOCAL.DAT to the VAX created the file in the VAX environment STAREL.COM. Executing the command file MAX.COM then ran ELVEC in the demand mode.

2.1 RUNNING 24-HOUR CYCLE

AVSIZING was used to generate a 24-hour cycle corresponding to the preliminary vehicle indicated above. The file name of the 24-hour input file was chosen to be ELTEST.

This created the following files on disk:

ELTEST.DAT
ELTEST.ENG
ELTEST.COS

ELTEST.DAT was sent to the VAX in order to create the file ELTEST.COM which was used to run ELVEC in the batch mode. This, in turn created the files (in the VAX environment):

ELTEST.LOG
RNGR.DAT

RNGE.DAT was downloaded to disk under the name ELTEST.RAN.

3.0 RUNNING AVENERGY

The inputs for this sample case are:

FILE OF THE FORM XXX.ENG ELTEST.ENG
ELVEC OUTPUT FILE ELTEST.RAN
VEHICLE NUMBER 3
BATTERY CYCLE LIFE 750
4.0 RUNNING AVCOST

The inputs for this sample case are:

FILENAME OF THE FORM XXX.COS ELTEST.COS
COST OF ELECTRICITY IN C/KW-H 5
BATTERY SHELF LIFE IN YEARS 10
DEPTH OF DISCHARGE 0.8
MAINTENANCE FACTOR 1
LIFE OF VEHICLE IN YEARS 10
MOTOR TYPE 1
CONTROLLER TYPE 1
SALVAGE VALUE (%) 10
REAL INTEREST RATE (%) 10
REAL DISCOUNT RATE (%) 10
FINANCE TERM IN YEARS 4
EV TRANSMISSION TYPE 1

The computer output for this sample case starting with the AVSIZING output report for the preliminary vehicle and ending with the results of AVCOST follows.

AVSIZING OUTPUT REPORT

Range converged in 2 iterations.

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC

<table>
<thead>
<tr>
<th>THE VEHICLE CAPACITY IS 5</th>
<th>MT(KG)</th>
<th>VOL(LTR)</th>
<th>PWRT(KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE VEHICLE TYPE IS ELECTRIC</td>
<td>MOTOR</td>
<td>90.35</td>
<td>23.75</td>
</tr>
<tr>
<td>THE DESIRED RANGE IS 100.00 MI</td>
<td>CONTR</td>
<td>19.68</td>
<td>22.98</td>
</tr>
<tr>
<td>THE DOMINANT MPF IS RANGE</td>
<td>EV TRANS</td>
<td>34.69</td>
<td>17.57</td>
</tr>
<tr>
<td>THE BATTERY IS NI-FE1.0</td>
<td>BATIR</td>
<td>489.02</td>
<td>266.48</td>
</tr>
<tr>
<td></td>
<td>ICE TRANS</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>ENGINE</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

THE MPF IS 0.378
THE TEST WEIGHT IS 1756.66 KG
THE CUBE WEIGHT IS 1620.66 KG
THE ACTUAL RANGE IS 101.56 MI

END OF PROGRAM OPERATIONS
CREATE/LVO STAREL.COM
E
N
N
N
US$DATA
ADV$EV
MULTI ANALYT
MULTI PCHNO
NAMBAT NI=FE1.0
NAMCYC FEDERAL
RUN
N
SLFDSC .016
ECHO ON
PACC 0
WT 1794.86
WB 489.0176
CDA .6
CHDIAL 1
PTIME 36
PEPPR KG 44.27287 44.27287
PXLAML KG 3.54573KG
PK$FF .93 .98
EFFLID .50
CH 3.85054 -.723494 -9.85473E-03
END
TEST CASE - 5 PAS - NI=FE1.0 - 100MI. DESIRED RANGE - ELECTRIC
N
QUIT
®
%CREATE-I-CREATED. SIARO1[ORCUSER]STAREL.COM!59B created
(RUNNING ELVEC
IN DEMAND MODE
WITH MAX MAX.COM)

Do you want to see I July message? 1
BULK DATA FILE TO BE USED(NULL RETURN FOR DEFAULT)? 1
ORC ELECTRIC VEHICLE/BATTERY SIMULATION. VERSION 8.4 16APR84
SPECIFY DESIRED OUTPUT UNITS - METRIC OR ENGLISH . . .
> INITIATING BULK READ...DO YOU WANT TO SEE INTRODUCTORY PRINTOUT(Y OR N)?
> BULK READ COMPLETE-
> BULKDATA NOT CURRENTLY IN CORE
> SEARCHING BULKDATA FILE FOR IT.
> DO YOU WANT CARD IMAGES OF SPECIAL DATA PRINTED (Y OR N)?
> EV2-13/A BULKDATA NOT CURRENTLY IN CORE
> SEARCHING BULKDATA FILE FOR IT.
> DO YOU WANT CARD IMAGES OF SPECIAL DATA PRINTED (Y OR N)?
> INPUT CHANGES FOR NEXT RUN-
> NAME OF DATA PACKAGE...
> WT 1060 KG 166 CDA 0.955 CHDIAL 0.85
NAMCYC FEDERAL NEGON 2 VMING 5MPH ACLFAC 0.5 ACLRCS 1.5MPH
NAMEBY EV
MOLATUT MAMBAT AL-AIR
MOLNAT ANALYT PKEFF 0.9 0.9 EIPTRG 0.15 0.15 PKFRM1 RPM 10000 10000
PKFRM1 KM 20 20
MOLNAT DPCGUP RATIO .262 16 GEAR 1 1 1 1
VINSCLD 300 300 300 SHINDAN 300 300 300 EFFCT 0.9 0.9 0.9 0.9
DELT 1 TSTOP 20000
END DATA
>
>
>
>
>
INPUT COMPLETE FOR THIS CASE
NI-Fe1.0 BATTDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
DO YOU WANT CARD IMAGES OF SPECIAL DATA PRINTED (Y OR N)?
>
VALUE DEFINED FOR UNIT NAME SCLF
NEW DATA READ IN TABLES...OVERRIDE, IF NECESSARY
>
>
PACC 0
>
WI 1756.96
>
WB 489.0176
>
CDA .6
>
CROSSAL 1
>
PTIME 38
>
PKFRM1 KM 44.27287 44.27287
>
PMXAL 88.54573Km
>
PKEFF .95 .95
>
EFFCD .86
>
CH 3.89894 -723694 -9.854736-03
>
END
INPUT COMPLETE FOR THIS CASE
INPUT A 1-70 CHARACTER TITLE FOR THIS CASE-
>
TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC
DATE 20-SEP-64
TIME 03:31:26
FEDERAL BCDDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
FEDERAL CYCLE: 1372 VALUES READ.
KEY PARAMETERS (METRIC UNITS)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/WT</td>
<td>489.0</td>
</tr>
<tr>
<td>DIA.</td>
<td>1757.0</td>
</tr>
<tr>
<td>VEH.</td>
<td>38.0</td>
</tr>
<tr>
<td>AGE</td>
<td>0.50</td>
</tr>
<tr>
<td>ABC</td>
<td>0.30</td>
</tr>
<tr>
<td>EFF</td>
<td>2.00</td>
</tr>
<tr>
<td>EFF</td>
<td>0.585</td>
</tr>
</tbody>
</table>

MODELS

<table>
<thead>
<tr>
<th>SCHEDULE</th>
<th>PERIOD</th>
<th>RANGE</th>
<th>AVERAGE ROAD</th>
<th>ENERGY</th>
<th>MAX ROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC</td>
<td>MI/M</td>
<td>WH/MI</td>
<td>HP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEDERAL</td>
<td>1371</td>
<td>7.450</td>
<td>19.6</td>
<td>202.4</td>
<td>97.6</td>
</tr>
</tbody>
</table>

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED

<table>
<thead>
<tr>
<th>MAJOR SUBSYSTEM</th>
<th>LOSSES AND EFFICIENCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATT SYS</td>
<td>MTR/CNT</td>
</tr>
<tr>
<td>WH/MI</td>
<td>227.5</td>
</tr>
<tr>
<td>PERCENT(PMTRN)</td>
<td>333.2</td>
</tr>
<tr>
<td>PERCENT(OVERALL)</td>
<td>53.1</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.528</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENT LOSS BY DRIVING PHASE(WH/MI AND PERCENT OF OVERALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
</tr>
<tr>
<td>OVERALL WH/MI</td>
</tr>
<tr>
<td>EFFICIENCY</td>
</tr>
<tr>
<td>MOTOR</td>
</tr>
<tr>
<td>PERCENT</td>
</tr>
<tr>
<td>EFFICIENCY</td>
</tr>
<tr>
<td>TRANSMISSION</td>
</tr>
<tr>
<td>PERCENT</td>
</tr>
<tr>
<td>EFFICIENCY</td>
</tr>
<tr>
<td>AERO</td>
</tr>
<tr>
<td>PERCENT</td>
</tr>
<tr>
<td>TIRES</td>
</tr>
<tr>
<td>PERCENT</td>
</tr>
<tr>
<td>MISCELLAN</td>
</tr>
<tr>
<td>PERCENT</td>
</tr>
</tbody>
</table>

ENERGY

<table>
<thead>
<tr>
<th>BATTERY AND CHARGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
</tr>
<tr>
<td>WH/MI</td>
</tr>
<tr>
<td>255</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>ELECT CONSUM.</th>
<th>ELECT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>AT WALL</td>
</tr>
<tr>
<td>MI</td>
<td>WH/MI</td>
</tr>
<tr>
<td>130.9</td>
<td>428.6</td>
</tr>
</tbody>
</table>

103.9

* - BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KU).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>CONSUMPTION</th>
<th>ECONOMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY ENERGY</td>
<td>LIT/KM</td>
<td>KH/LIT</td>
</tr>
<tr>
<td>PETROLEUM</td>
<td>0.076#</td>
<td>13.0</td>
</tr>
<tr>
<td>COAL</td>
<td>0.0481</td>
<td>22.5</td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAFE VALUE COMPUTED?

N

INPUT CHANGES FOR NEXT RUN

QUIT
Range converged in 2 iterations.

TEST CASE - 5 PAS - Ni-FeI.0 - 100MI. DESIRED RANGE - ELECTRIC

<table>
<thead>
<tr>
<th>The Vehicle Capacity Is</th>
<th>MT(KG)</th>
<th>VOL(LTR)</th>
<th>PWM(KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Vehicle Type Is Electric</td>
<td>mutur</td>
<td>90.55</td>
<td>28.75</td>
</tr>
<tr>
<td>The Desired Range Is 100,00 MI</td>
<td>lunih</td>
<td>19.68</td>
<td>22.88</td>
</tr>
<tr>
<td>The Dominant BMP Is Range</td>
<td>ev trans</td>
<td>34.69</td>
<td>17.56</td>
</tr>
<tr>
<td>The Battery Is Ni-FeI.0</td>
<td>BATR</td>
<td>489.02</td>
<td>268.48</td>
</tr>
<tr>
<td></td>
<td>ice trans</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>engine</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The BPM Is 0.2/8
The Test Weight Is 1/56.86 KG
The Curb Weight Is 1/620.86 KG
The Actual Range Is 1/01.56 MI

END OF PROGRAM OPERATIONS
AN INPUT FILE HAS BEEN WRITTEN TO DISK USING THE 24 HOUR CYCLE AND DATA FROM THE LAST RUN FOR WHICH A FEDERAL, HIGHWAY, OR VAN INPUT FILE WAS CREATED.

YOU WISH TO RUN THE 24 HR. CYCLE IN BATCH THEREFORE:
THE LOCAL FILE IS ELTEST.DAT
THE REMOTE FILE IS ELTEST.COM
THE SUBMIT COMMAND IS SUBMIT ELTEST.COM/NOPRINT/QUE=FIFO

** END OF PROGRAM OPERATIONS **

TYPE RUN TO RE-START
CREATE/LUG ELTEST.COM
% SIACU (ffcUSER.STORE) RUNELVEC

USERDATA

ADVEV
MLMOT ANALYT
MLBAC ACTNUM
MAMBAT NI-FE1.0
PARAMVAR
NAMCVC

N
URB1 1 URB2 1
Park 1.9hr
URB3 1 URB4 1 URB5 1 URB6 1 URB7 1 URB8 1
Park 21.90hr
END
RUN
N
SLFDSO .016
ECHO ON
PACC 0
IT 1756.86
WB 489.0176
CDA .6
CRDIAL 1
PTIRE 36
PEPWR KW 44.2797 44.2797
PMXIAL 88.54873K
PKEFF .95 .95
EFFCD .58
CH 3.85654 -.723694 -9.85473E-03
END
TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 1
N
PARAMVAR
NAMCVC

N
URB1 1 URB2 1 URB3 1 URB4 1 URB5 1 URB6 1
Park 5.01hr
URB7 1 URB8 1 URB9 1 URB10 1 URB11 1 URB12 1 URB13 1 URB14 1 URB15 1 URB16 1
URB17 1
Park 18.60hr
END
RUN
TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 2
N
PARAMVAR
NAMCVC
N
URB1 1
Park 5.16hr
URB2 1 URB3 1 URB4 1 URB5 1 URB6 1
Park 0.75hr
URB7 1 URB8 1 URB9 1 URB10 1 URB11 1 URB12 1 URB13 1 URB14 1 URB15 1 URB16 1
URB17 1

M-36
TEST CASE - 3 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 3
N
PARAMVAR
NAMCyc
N
fedral 1
park 0.95hr
URB2 1
park 3.44hr
fedral 1
park 18.79hr
END
RUN
TEST CASE - 3 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 4
N
PARAMVAR
NAMCyc
N
URB1 1 URB2 1 URB3 1 URB4 1 URB5 1 URB6 1
park 7.15hr
URB7 1 URB8 1 URB9 1 URB10 1 URB11 1 URB12 1 URB13 1 URB14 1 URB15 1 URB16 1
URB17 1
park 1.54hr
fedral 1
park 6.07hr
fedral 1
park 7.28hr
END
RUN
TEST CASE - 3 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 5
N
PARAMVAR
NAMCyc
N
fedral 2
park 1.04hr
URB1 1 URB2 1 URB3 1 URB4 1 URB5 1 URB6 1
URB7 1 URB8 1 URB9 1
park 0.87hr
URB1 1 URB2 1
park 6.03hr
URB3 1 URB4 1 URB5 1 URB6 1 URB7 1 URB8 1 URB9 1 URB10 1 URB11 1
URB12 1 URB13 1 URB14 1 URB15 1 URB16 1 URB17 1
park 1.63hr
fedral 1
park 11.69hr
END
RUN
TEST CASE - 3 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 6
N
PARAMVAR
NAMCyc
N
fedral 2
TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 7

PARAMVAR
NAMCYC
N
federal 2
park 0.62hr
federal 2
park 0.15hr
federal 2
park 3.73hr
URBB 1 URB2 1
park 0.216hr
URBB 1 URB4 1 URB5 1 URB6 1 URB7 1 URB8 1 URB9 1 URB10 1 URB11 1
URBB 1 URB12 1 URB13 1 URB14 1 URB15 1 URB16 1 URB17 1
park 16.42hr
END
RUN

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 8

PARAMVAR
NAMCYC
N
highway 4
park 7.04hr
federal 1
highway 1
federal 1
park 0.66hr
federal 1
park 14.09hr
END
RUN

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 9

PARAMVAR
NAMCYC
N
highway 4
park 6.5hr
federal 1
highway 4
federal 1
park 15.04hr
END
RUN

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 10

PARAMVAR
NAMCYC
N
highway 4
park 6.5hr
federal 1
highway 4
federal 1
park 15.04hr
END
RUN
QUIT
%CREATE-I-CREATED. SIA01[ORCUSER]ELTEST.COM:1 created

SUBMIT ELTEST.COM/NOPRINT/QUE=FIFO

Job 338 entered on queue FIFO

(SUBMIT BATCH JOB)
$ log

type eltest.log

ON CONTROL-Y THEN SET NOCONTROL-Y ! Trap for escapes to the $ON CONTROL-V THEN $SET NOCONTROL-Y

If FNmatch() .eqs. "BATCH" Then Goto Batch.Exit

Batch.Exit ! These are only commands executed by everyone.

Exit

Set PROT=(SIREM.OIREM)OIREM!OREM!OIREM)/DEFAULT

If "BATCH".eqs. "BATCH" Then Goto BATCH

SETcreativecommons(1)

$SET NOCONTROL-Y

! Tra

p for osca es to tht 6 -(ELTEST.LOG)

if FN1odo()

o

qs.

"BATCH"

'fhon Ooto Batch-Exit

• if OBATCH".tEi1So"BATCHN THEN

OOTO BATCH

$ UATCHt

"SIA011ORCUSER.STOREIRUNELVEC

as*t novorify

ORC ELECTRIC VEHICLE/BATTERY SIMULATION. VERSION 8.4 16APR64 -

SPECIFY DESIRED OUTPUT UNITS - METRIC OR ENGLISH ...

INITIATING BULK READ...DO YOU WANT TO SEE INTRODUCTORY PRINTOUT(Y OR N)?

BULK READ COMPLETE-

SEARCHING BULKDATA FILE FOR IT.

DO YOU WANT CARD IMAGES OF SPECIAL DATA PRINTED (Y OR N)?

SEARCHING BULKDATA FILE FOR IT.

DO YOU WANT CARD IMAGES OF SPECIAL DATA PRINTED (Y OR N)?

INPUT CHANGES FOR NEXT RUN-

NAME OF DATA PACKAGE...

WT 1060 HB 166 CDA 0.555 CRDIAL 0.85

NAMCYC FEDERAL MREGEN 2 VMINGD 5MPH ACLFAC 0.5 ACLRCS 1.5MPH

NAMCYC EV

MDLMAT FRC1UT NMBAT AL-AIR

MDLMAT ANALYT PKEFF 0.9 0.9 EXPTRA 0.15 0.15 PEFMON RPM 10000 10000

PEFMON KW 20 20

NAMCYC DRCAP RATIO .282 16 GEAR 1 1 1 1

VELSCD 300 300 300 SHFDWN 300 300 300 EFFCT 0.9 0.9 0.9 0.9

DELT 1 TSTOP 20000

END DATA

>

>

>

>

>

>

>

>

>

>

INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-

FEDERAL SCHDATA NOT CURRENTLY IN CORE

SEARCHING BULKDATA FILE FOR IT.

FEDERAL CYCLE. 1372 VALUES READ.

DO YOU WANT A SUMMARY OF THE URBAN SUBSEGMENTS (Y OR N)?

INPUT NAME AND NUMBER OF CYCLES. INPUT END WHEN DONE.

FOR 'PARK' AND 'IDLE' CYCLES, INPUT NAME AND PERIOD

>

>

>

>

>

>

>

>

>

>

INPUT COMPLETE FOR THIS CASE

M-40
NI-FE1.0 BATTDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
DO YOU WANT CARD IMAGES OF SPECIAL DATA PRINTED (Y OR N)?

VALUE DEFINED FOR UNIT NAME SCLF -
NEW DATA HEAD IN TABLES...OVERWRITE IF NECESSARY

PACC 0

MT 1754.06
MB 489.0176
CDA .6
ORDIAL 1
PTIRE 38
PEFFM KW 44.27267 44.27267
PMXIAL 88.54537KW
PKHEF .95 .95
EFFCD .58
CH 3.85834 -.723694 -9.83473E-03

END

INPUT COMPLETE FOR THIS CASE
INPUT A 1-76 CHARACTER TITLE FOR THIS CASE-

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 1
DATE 4-OCT-84
TIME 09:56:19

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 1 OF THE URBAN SCHEDULE

KEY PARAMETERS (METRIC UNITS)

-------------------VEHICLE----------------- STRATEGY---------------------
MB MT CDA TTIRE PTIRE ACLFAC ACLRCS FORKS NHEGEN EFFCM EFFCFW
489 1757 0.600 RADIAL 38.0 0.50 -0.67 0.30 2 0.000 0.585

-------------------MODELS-----------------------
DRCOUP ANALYT NI-FE1.0 EV

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE

PARKING FOR 1.900 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 3 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE

M-41
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE

PARKING FOR 21,900 HOURS

<table>
<thead>
<tr>
<th>SCHEDULE PERIOD RANGE</th>
<th>AVERAGE ROAD ENERGY MAX ROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPEED W/O RON W RON POWER</td>
</tr>
<tr>
<td>SEC MI</td>
<td>MI/MI HH</td>
</tr>
<tr>
<td></td>
<td>86373 4.224 0.2 215.5 110.5 50.6</td>
</tr>
</tbody>
</table>

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED-

<table>
<thead>
<tr>
<th>MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES-</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATT SYS</td>
</tr>
<tr>
<td>WH/MI</td>
</tr>
<tr>
<td>PRCTN(PHWRN)</td>
</tr>
<tr>
<td>PHCTN(OVERALL)</td>
</tr>
<tr>
<td>EFFICIENCY</td>
</tr>
</tbody>
</table>

COMPONENT LOSS BY DRIVING PHASE(WH/MI AND PERCENT OF OVERALL)-

<p>| OVERALL WH/MI | 537.1 |
| EFFICIENCY | 0.270 |
| MOTO | 36.1 |
| PERCENT | 6.7 |
| EFFICIENCY | 0.691 |
| TRANSMISSION | 31.7 |
| PERCENT | 5.9 |
| EFFICIENCY | 0.898 |
| AERO | 48.6 |
| PERCENT | 9.1 |
| TIIRES | 61.9 |
| PERCENT | 11.5 |
| MISCELLAN | 44.4 |</p>
<table>
<thead>
<tr>
<th>PERCENT</th>
<th>8.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTERY AND CHARGER------------------</td>
<td></td>
</tr>
<tr>
<td>OUT IN LOSS</td>
<td>OUT IN STATE EFF</td>
</tr>
<tr>
<td>WH/MI</td>
<td>WH/MI</td>
</tr>
<tr>
<td>313</td>
<td>55</td>
</tr>
</tbody>
</table>

TOTAL ELECT CONSUM ELECT COST
<table>
<thead>
<tr>
<th>RANG</th>
<th>AT WALL</th>
<th>(AT 10.00/KWH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>WH/MI</td>
<td>WH/MI @ TUN</td>
</tr>
<tr>
<td>101.8</td>
<td>537.2</td>
<td>277.4</td>
</tr>
<tr>
<td>80.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD
SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KO).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE)-

<table>
<thead>
<tr>
<th>SOURCE OF PRIMARY ENERGY</th>
<th>CONSUMPTION LIT/KM</th>
<th>ECONOMY KM/LIT</th>
<th>ECONOMY M1/0AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.09947</td>
<td>10.2</td>
<td>23.9</td>
</tr>
<tr>
<td>COAL</td>
<td>0.05693</td>
<td>17.6</td>
<td>41.3</td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAFE VALUE COMPUTED?
> N

**

INPUT CHANGES FOR NEXT RUN-
>
PARAMVAR
INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-
>
NAMCYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSEGSMENTS (Y OR N)?
> N
INPUT NAME AND NUMBER OF CYCLES. INPUT END WHEN DONE.
FOR 'PARK' AND 'IDLE' CYCLES, INPUT NAME AND PERIOD
>
URB1 1 URB2 1 URB3 1 URB4 1 URB5 1 URB6 1
> PARK 5.01HR
>
URB7 1 URB8 1 URB9 1 URB10 1 URB11 1 URB12 1 URB13 1 URB14 1 URB15 1 URB16 1
> URB17 1
> PARK 18.60HR
> END
> RUN
INPUT COMPLETE FOR THIS CASE
INPUT A 1-76 CHARACTER TITLE FOR THIS CASE-
>
TEST CASE - 5 PAS - Ni-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 2
DATE 4-OCT-94
TIME 09:57:07

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 1 OF THE URBAN SCHEDULE

KEY PARAMETERS (METRIC UNITS)

--------VEHICLE-------- STRATEGY--------
 MB WT CD TTIME PTIME ACLFAC ACLAGS FBRKS NEGEN EFFCM EFFCFW
489 1757 0.600 RADIAL 38.0 0.50 -0.67 0.30 2 0.000 0.505

--------MODELS--------
DNCOUP ANALYT NI-FE1.0 EV

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 3 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 9 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 10 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 11 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 12 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 13 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 14 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 15 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 16 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 17 OF THE URBAN SCHEDULE

PARKING FOR 5.010 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 3 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 9 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 10 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 11 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 12 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 13 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 14 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 15 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 16 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 17 OF THE URBAN SCHEDULE

PARKING FOR 18.600 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD SPEED W/O RON W RON POWER SEC MI MI/H MH/MI HP
URBI 86367 7.455 0.3 202.3 97.6 50.6

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED-

<table>
<thead>
<tr>
<th>MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES-</th>
<th>Batt Sys</th>
<th>HTR/CNT</th>
<th>DRVTRN</th>
<th>PHRTN</th>
<th>Brakes</th>
<th>Misc</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH/MI</td>
<td>250.1</td>
<td>37.9</td>
<td>30.3</td>
<td>44.4</td>
<td>14.3</td>
<td>7.3</td>
</tr>
<tr>
<td>PHRTN (PHRTN)</td>
<td>366.5</td>
<td>55.6</td>
<td>44.4</td>
<td>100.0</td>
<td>50.7</td>
<td>38.9</td>
</tr>
<tr>
<td>POWER (OVERALL)</td>
<td>52.6</td>
<td>8.0</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.528</td>
<td>0.981</td>
<td>0.829</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENT LOSS BY DRIVING PHASE (MH/MI AND PERCENT OF OVERALL)-</th>
<th>TOTAL</th>
<th>ACCEL</th>
<th>CRUISE</th>
<th>COAST</th>
<th>BRAKE</th>
<th>DWELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL MH/MI</td>
<td>475.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR</td>
<td>37.9</td>
<td>23.7</td>
<td>2.3</td>
<td>0.0</td>
<td>11.9</td>
<td>0.0</td>
</tr>
<tr>
<td>PE CLERENT</td>
<td>6.0</td>
<td>5.0</td>
<td>0.5</td>
<td>0.0</td>
<td>2.5</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.891</td>
<td>0.893</td>
<td>0.871</td>
<td>0.060</td>
<td>0.850</td>
<td>0.000</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>30.3</td>
<td>19.8</td>
<td>1.7</td>
<td>0.0</td>
<td>9.8</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>6.4</td>
<td>4.2</td>
<td>0.4</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.099</td>
<td>0.099</td>
<td>0.095</td>
<td>0.000</td>
<td>0.095</td>
<td>0.000</td>
</tr>
<tr>
<td>AER</td>
<td>34.0</td>
<td>14.7</td>
<td>5.6</td>
<td>0.0</td>
<td>15.7</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>7.6</td>
<td>3.1</td>
<td>1.2</td>
<td>0.0</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>TIRES</td>
<td>61.6</td>
<td>27.6</td>
<td>7.6</td>
<td>0.0</td>
<td>26.4</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>12.9</td>
<td>5.8</td>
<td>1.6</td>
<td>0.0</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>MISCELLAN</td>
<td>25.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>24.9</td>
</tr>
<tr>
<td>PERCENT</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>

------------------------------- BATTERY AND CHARGER -------------------------------

--- ENERGY --- POWER/MILE FINAL BATT --- CHARGER ---

<table>
<thead>
<tr>
<th>OUT</th>
<th>IN</th>
<th>LOSS</th>
<th>OUT</th>
<th>IN</th>
<th>STATE</th>
<th>EFF</th>
<th>LOSS</th>
<th>EFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MILE</td>
<td>WH/MILE</td>
<td>PCNT</td>
<td>W/LB</td>
<td>WH/MILE</td>
<td>PCNT</td>
<td>W/LB</td>
<td>WH/MILE</td>
<td>PCNT</td>
</tr>
<tr>
<td>200</td>
<td>54</td>
<td>203</td>
<td>42.6</td>
<td>41.2</td>
<td>16.9</td>
<td>0.000</td>
<td>0.58</td>
<td>48</td>
</tr>
</tbody>
</table>

TOTAL ELECT CONSUME ELECT COST

<table>
<thead>
<tr>
<th>RANGE</th>
<th>AT WALL</th>
<th>AT 10.0C/KWH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>WH/MILE</td>
<td>WH/MILE +TON C/HI</td>
</tr>
<tr>
<td>119.9</td>
<td>475.8</td>
<td>245.7</td>
</tr>
<tr>
<td>93.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KG).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE):

<table>
<thead>
<tr>
<th>SOURCE OF PRIMARY ENERGY</th>
<th>CONSUMPTION LIT/KM</th>
<th>ECONOMY KM/LIT</th>
<th>MI/OAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.08442</td>
<td>11.6</td>
<td>27.2</td>
</tr>
<tr>
<td>COAL</td>
<td>0.04996</td>
<td>20.0</td>
<td>47.1</td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAFE VALUE COMPUTED?

N

**

INPUT CHANGES FOR NEXT RUN-

PARAMVAK
INPUT NAME OF PARAMETER: INITIAL VALUE, FINAL VALUE, AND NUM STEPS-

NAMCYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSEGMENTS (Y OR N)?

N
INPUT NAME AND NUMBER OF CYCLES. INPUT END WHEN DONE.
FOR 'PARK' AND 'IDLE' CYCLES: INPUT NAME AND PERIOD

> URBI 1
> PARK 5.16 HR
> URB2 1 URB3 1 URB4 1 URB5 1 URB6 1

H-45
> PARK 0.75HR
> URS17 1
> PARK 2.77HR
> URS17 1
> PARK 14.73HR
> END
>
> INPUT COMPLETE FOR THIS CASE
> INPUT A 1-78 CHARACTER TITLE FOR THIS CASE.
>
> TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 3
> DATE 4-OCT-94
> TIME 09:50:02

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 1 OF THE URBAN SCHEDULE

KEY PARAMETERS (METRIC UNITS)
------------------VEHICLE------------------STRADEY------------------
MB WT CD FA DIRA FAC ACLRC SFRK NREOEN EFFCM EFFCFW
469 1737 0.600 RADIAL 36.0 0.50 -0.67 0.30 2 0.000 0.505

------------------MODELS------------------
DRCPUP ANALYT NI-FE1.0 EV

PARKING FOR 5.160 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE

PARKING FOR 0.750 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 9 OF THE URBAN SCHEDULE

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 10 OF THE URBAN SCHEDULE

M-46
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 11 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 12 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 13 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 14 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 15 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 16 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 17 OF THE URBAN SCHEDULE

PARKING FOR 2,770 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 1 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 2 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 3 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMEN'T 9 OF THE URBAN SCHEDULE

PARKING FOR 14,730 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD SPEED W/O RON W RON POWER

<table>
<thead>
<tr>
<th>SEC</th>
<th>MI</th>
<th>MI/H</th>
<th>WH/MI</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBI</td>
<td>86413</td>
<td>12,002</td>
<td>0.5</td>
<td>208.4</td>
</tr>
</tbody>
</table>

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED-

| MAJOR SUBSYTEM LOSSES AND EFFICIENCIES- |
BATT SYS	MTR/CNT	DRVRTRN	PWRTRAN	BRAKES	MISC	
WH/MI	247.5	37.9	31.1	69.0	35.2	15.6
PRONT(PWRTRAN)	358.6	54.9	45.1	100.0	51.1	22.7
PRONT(OVERALL)	82.0	8.1	6.6	14.7	7.5	3.3
EFFICIENCY	0.520	0.684	0.898	0.796		

COMPONENT LOSS BY DRIVING PHASE(WH/MI AND PERCENT OF OVERALL)-

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>ACCEL</th>
<th>CRUISE</th>
<th>COAST</th>
<th>BRAKE</th>
<th>D W E L L</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL, WH/MI</td>
<td>468.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.292</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR</td>
<td>37.9</td>
<td>23.6</td>
<td>2.4</td>
<td>0.0</td>
<td>11.8</td>
</tr>
<tr>
<td>PERCENT</td>
<td>8.1</td>
<td>5.0</td>
<td>0.3</td>
<td>0.0</td>
<td>2.3</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.894</td>
<td>0.895</td>
<td>0.875</td>
<td>0.000</td>
<td>0.854</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>31.1</td>
<td>20.3</td>
<td>1.8</td>
<td>0.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

M-47
PERCENT	6.6	4.3	0.4	0.0	1.9	0.0
EFFICIENCY	0.898	0.899	0.896	0.000	0.895	0.000
AERO	39.9	16.4	6.2	0.0	17.3	0.0
PERCENT	8.5	3.3	1.3	0.0	3.7	0.0
TIRES	61.7	27.8	7.5	0.0	26.3	0.0
PERCENT	13.2	5.9	1.6	0.0	5.6	0.0
PERCENT	13.6	5.9	1.6	0.0	5.6	0.0
MISC	13.6	5.9	1.6	0.0	5.6	0.0
MISC	3.3	0.2	0.0	0.0	0.1	15.3

BATTERY AND CHARGER

<table>
<thead>
<tr>
<th>ENERGY</th>
<th>POWER</th>
<th>FINAL</th>
<th>BATT</th>
<th>CHARGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>IN</td>
<td>LOSS</td>
<td>OUT</td>
<td>IN</td>
</tr>
<tr>
<td>WH/M</td>
<td>W/H</td>
<td>PRCNT</td>
<td>W/LB</td>
<td>WH/M</td>
</tr>
<tr>
<td>277</td>
<td>56</td>
<td>201</td>
<td>42.8</td>
<td>41.2</td>
</tr>
</tbody>
</table>

TOTAL ELECT CONSUMPTION AND ELECTRIC COST

<table>
<thead>
<tr>
<th>RANGE</th>
<th>ELECT CONSUMPTION</th>
<th>ELECTRIC Cost</th>
<th>ELECTRICAL</th>
<th>AT WALL (AT 10.00/KWH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>WH/M</td>
<td>WH/M*TON</td>
<td>C/MI</td>
<td></td>
</tr>
<tr>
<td>116.7</td>
<td>469.0</td>
<td>242.2</td>
<td>4.69</td>
<td></td>
</tr>
</tbody>
</table>

* Based on lowest depth of discharge (0.794) which could sustain the maximum power density (90.9 W/KG).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE)

<table>
<thead>
<tr>
<th>SOURCE OF PRIMARY ENERGY</th>
<th>CONSUMPTION</th>
<th>ECONOMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.06483</td>
<td>11.0</td>
</tr>
<tr>
<td>COAL</td>
<td>0.04905</td>
<td>20.4</td>
</tr>
</tbody>
</table>

Do you want the CAPE value computed?

> N

INPUT CHANGES FOR NEXT RUN

> PARAM
> INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS
> NAMCYC
> Do you want a summary of the urban subsegments (Y or N)?
> N
> INPUT NAME AND NUMBER OF CYCLES, INPUT END WHEN DONE.
> FOR 'PARK' AND 'IDLE' CYCLES, INPUT NAME AND PERIOD
> FEDERAL
> > PARK 0.95HR
> > URB 1
> >
INPUT COMPLETE FOR THIS CASE

INPUT A 1-76 CHARACTER TITLE FOR THIS CASE-

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 4
DATE 4-OCT-84
TIME 10:04:02

ITERATION NUMBER 1 NAMCYC = FEDERAL

KEY PARAMETERS (METRIC UNITS)

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB</td>
<td>MT</td>
</tr>
<tr>
<td>489</td>
<td>1737</td>
</tr>
</tbody>
</table>

MODELS

PARKING FOR 0.930 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE

PARKING FOR 3.440 HOURS

ITERATION NUMBER 1 NAMCYC = FEDERAL

PARKING FOR 18.790 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD

<table>
<thead>
<tr>
<th>SPEED</th>
<th>W/O RON</th>
<th>W RON</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEC</td>
<td>MI</td>
<td>MI/H</td>
<td>WH/MI</td>
</tr>
<tr>
<td>FEDERAL</td>
<td>86373</td>
<td>16.862</td>
<td>0.7</td>
</tr>
</tbody>
</table>

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED

<table>
<thead>
<tr>
<th>MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>237.1</td>
</tr>
<tr>
<td>395.3</td>
</tr>
<tr>
<td>52.6</td>
</tr>
</tbody>
</table>

COMPONENT LOSS BY DRIVING PHASE (WH/MI AND PERCENT OF OVERALL)

<table>
<thead>
<tr>
<th>OVERALL, WH/MI</th>
<th>ACCEL</th>
<th>CRUISE</th>
<th>COAST</th>
<th>BRAKE</th>
<th>DMELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>450.4</td>
<td>0.201</td>
<td>0.0</td>
<td>0.0</td>
<td>11.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

M-49
PERCENT 8.1 5.1 0.5 0.0 2.6 0.0
EFFICIENCY 0.864 0.896 0.875 0.000 0.852 0.000
TRANSMISSION 30.0 19.6 1.8 0.0 8.6 0.0
PERCENT 6.7 4.4 0.4 0.0 1.9 0.0
EFFICIENCY 0.898 0.899 0.896 0.000 0.895 0.000
AERO 40.7 16.3 6.4 0.0 17.8 0.0
PERCENT 9.0 3.7 1.4 0.0 4.0 0.0
TINES 61.7 27.3 7.7 0.0 26.7 0.0
PERCENT 13.7 6.1 1.7 0.0 5.9 0.0
MISCELLANEOUS 11.1 0.1 0.0 0.0 0.1 10.0
PERCENT 2.5 0.0 0.0 0.0 0.0 2.4

-----------BATTERY AND CHARGER-----------

TOTAL ELECT CONSUMPTION ELECTRIC COST
RANGE AT WALL (AT 10.0C/KWH)
MI WH/MM WH/MM*TON C/MM
123.1 450.5 232.6 4.50
97.7 *

* - BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KG).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE)-

SOURCE OF CONSUMPTION ECONOMY
PRIMARY ENERGY LIT/KM KM/LIT MI/GAL
PETROLEUM 0.08171 12.2 28.8
COAL 0.04724 21.2 49.8

DO YOU WANT THE CAFE VALUE COMPUTED?
>
N

INPUT CHANGES FOR NEXT RUN-
>
PARAMVAR
INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-
>
NAME CYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSECTIONS (Y OR N)?
>
N
INPUT NAME AND NUMBER OF CYCLES. INPUT END WHEN DONE.
FOR ‘PARK’ AND ‘IDLE’ CYCLES, INPUT NAME AND PERIOD
>
URB1 1 URB2 1 URB3 1 URB4 1 URB5 1 URB6 1
>
PARK 7.15 HR
INPUT COMPLETE FOR THIS CASE

INPUT A 1-78 CHARACTER TITLE FOR THIS CASE—

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 5
DATE 4-OCT-84
TIME 10:06:08

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 1 OF THE URBAN SCHEDULE

KEY PARAMETERS (METRIC UNITS)

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB 489</td>
<td>MT 1757</td>
</tr>
<tr>
<td>WT 157</td>
<td>CDA 0.600</td>
</tr>
<tr>
<td>TIRE 38.0</td>
<td>ACLFAC 0.50</td>
</tr>
<tr>
<td>PTIRE -0.67</td>
<td>ACLRCS 0.30</td>
</tr>
<tr>
<td>FORKS 2</td>
<td>NREGEN 0.00</td>
</tr>
<tr>
<td>EfFCM 0.585</td>
<td>EFFCFM 0.585</td>
</tr>
</tbody>
</table>

DRCOUP ANALYT NI-FE1.0 EV

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 3 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE

PARKING FOR 7.150 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 9 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 10 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 11 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 12 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 13 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 14 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 15 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 16 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 17 OF THE URBAN SCHEDULE

PARKING FOR 1.560 HOURS

ITERATION NUMBER 1 NANCYC = FEDRAL

PARKING FOR 6.870 HOURS

ITERATION NUMBER 1 NANCYC = FEDRAL

PARKING FOR 7.280 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD

<table>
<thead>
<tr>
<th></th>
<th>SEC</th>
<th>MI</th>
<th>MI/H</th>
<th>WH/MI</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>URB1</td>
<td>86409</td>
<td>22.355</td>
<td>0.9</td>
<td>202.3</td>
<td>97.6</td>
</tr>
</tbody>
</table>

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED-

MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES-

<table>
<thead>
<tr>
<th></th>
<th>W/H/MI</th>
<th>PRCNT(PWRTRN)</th>
<th>PRCNT(OVERALL)</th>
<th>EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATT SYS</td>
<td>234.8</td>
<td>344.0</td>
<td>0.520</td>
<td>0.328</td>
</tr>
<tr>
<td>MTR/CNT DRVTRN</td>
<td>37.9</td>
<td>55.6</td>
<td>0.861</td>
<td>0.881</td>
</tr>
<tr>
<td>PWTRN</td>
<td>30.3</td>
<td>19.8</td>
<td>0.699</td>
<td>0.898</td>
</tr>
<tr>
<td>BRAKES</td>
<td>6.6</td>
<td>4.5</td>
<td>0.699</td>
<td>0.893</td>
</tr>
<tr>
<td>MISC</td>
<td>8.4</td>
<td>4.2</td>
<td>0.699</td>
<td>0.893</td>
</tr>
</tbody>
</table>

COMPONENT LOSS BY DRIVING PHASE(W/H/MI AND PERCENT OF OVERALL)-

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
<th>ACCEL</th>
<th>CRUISE</th>
<th>COAST</th>
<th>BRAKE</th>
<th>DWELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL W/H/MI</td>
<td>443.7</td>
<td>0.279</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR</td>
<td>37.9</td>
<td>23.7</td>
<td>2.3</td>
<td>0.0</td>
<td>11.9</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>8.6</td>
<td>5.3</td>
<td>0.5</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.891</td>
<td>0.871</td>
<td>0.899</td>
<td>0.899</td>
<td>0.899</td>
<td>0.899</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>30.3</td>
<td>19.8</td>
<td>1.7</td>
<td>0.0</td>
<td>8.9</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>6.6</td>
<td>4.5</td>
<td>0.4</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.899</td>
<td>0.899</td>
<td>0.895</td>
<td>0.895</td>
<td>0.895</td>
<td>0.895</td>
</tr>
<tr>
<td>AERD</td>
<td>36.1</td>
<td>14.8</td>
<td>5.6</td>
<td>0.0</td>
<td>15.7</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>8.1</td>
<td>3.3</td>
<td>1.3</td>
<td>0.0</td>
<td>3.5</td>
<td>0.0</td>
</tr>
<tr>
<td>TIMES</td>
<td>61.6</td>
<td>27.6</td>
<td>7.6</td>
<td>0.0</td>
<td>26.4</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>13.9</td>
<td>6.2</td>
<td>1.7</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MISCELLAN</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>PERCENT</td>
<td>1.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

ENERGY AND BATTERY CHARGER-

<table>
<thead>
<tr>
<th></th>
<th>POWER W/H/MI</th>
<th>FINAL BATT</th>
<th>CHARGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT IN LOSS</td>
<td>OUT IN STATE EFF</td>
<td>LOSS EFF</td>
<td></td>
</tr>
<tr>
<td>W/H/MI</td>
<td>W/H/MI PRCNT</td>
<td>W/LB</td>
<td>W/H/MI PRCNT</td>
</tr>
<tr>
<td>263</td>
<td>54</td>
<td>190</td>
<td>42.9</td>
</tr>
</tbody>
</table>

M-52
TOTAL ELECT CONSM ELECT COST
RANGE AT WALL (AT 10.00/KWH)
MI WH/MI WH/MI=TON C/MI
127.1 443.8 229.2 4.44
100.9 *

- BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KU).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE)–

<table>
<thead>
<tr>
<th>SOURCE OF PRIMARY ENERGY</th>
<th>CONSUMPTION LIT/KM</th>
<th>ECONOMY KM/LIT</th>
<th>MI/GAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.08002</td>
<td>12.5</td>
<td>29.4</td>
</tr>
<tr>
<td>COAL</td>
<td>0.04627</td>
<td>21.6</td>
<td>50.8</td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAFE VALUE COMPUTED?

N

INPUT CHANGES FOR NEXT RUN–

PARAMVAR
INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS–

NAMECYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSEOMENTS (Y OR N)?

N

INPUT NAME AND NUMBER OF CYCLES, INPUT END WHEN DONE,
FOR ‘PARK’ AND ‘IDLE’ CYCLES, INPUT NAME AND PERIOD

FEDERAL 2

PARK 1.04HR

URB1 1 URB2 1 URB3 1 URB4 1 URB5 1 URB6 1

URB7 1 URB8 1 URB9 1

PARK 0.87HR

URB1 1 URB2 1

PARK 6.83HR

URB3 1 URB4 1 URB5 1 URB6 1 URB7 1 URB8 1 URB9 1 URB10 1 URB11 1

URB12 1 URB13 1 URB14 1 URB15 1 URB16 1 URB17 1

PARK 1.63HR

>
TEST CASE - 5 PAS = NI-Fe1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE &
DATE 4-OCT-84
TIME 10:18:13

ITERATION NUMBER 1 NAMCYC = FEDRAL

KEY PARAMETERS (METRIC UNITS)

VEHICLE------------------------ STRATEGY------------------------
MB MT CDA TIRE PTIRE ACLFAC ACLRCS FORMS NREGEN EFFCM EFFCFW
489 1737 0.600 RADIAL 38.0 0.30 -0.67 0.30 2 0.000 0.383

MODELS------------------------
DRGOUP ANALYT NI-Fe1.0 EV

ITERATION NUMBER 2 NAMCYC = FEDRAL

PARKING FOR 1.040 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 1 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 3 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 9 OF THE URBAN SCHEDULE

PARKING FOR 0.870 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 1 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 2 OF THE URBAN SCHEDULE

PARKING FOR 6.830 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 3 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 9 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 10 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 11 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 12 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 13 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 14 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 15 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 16 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEGMENT 17 OF THE URBAN SCHEDULE

PARKING FOR 1.630 HOURS

ITERATION NUMBER 1 NAMCYC = FEDERAL

PARKING FOR 1.890 HOURS

<table>
<thead>
<tr>
<th>SCHEDULE PERIOD RANGE</th>
<th>AVERAGE ROAD ENERGY</th>
<th>MAX ROAD SPEED</th>
<th>W/O RON</th>
<th>W RUN</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL</td>
<td>86385</td>
<td>34.353</td>
<td>1.4</td>
<td>204.3</td>
<td>99.0</td>
</tr>
</tbody>
</table>

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED:

<table>
<thead>
<tr>
<th>MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES -</th>
<th>WH/MI</th>
<th>EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATT SYS</td>
<td>234.3</td>
<td>0.903</td>
</tr>
<tr>
<td>MTR/CNT</td>
<td>37.9</td>
<td>0.894</td>
</tr>
<tr>
<td>DRVTRN</td>
<td>30.6</td>
<td>0.873</td>
</tr>
<tr>
<td>PWTRN</td>
<td>68.5</td>
<td>0.000</td>
</tr>
<tr>
<td>BRAKES</td>
<td>34.8</td>
<td>0.851</td>
</tr>
<tr>
<td>Misc</td>
<td>5.5</td>
<td>0.000</td>
</tr>
</tbody>
</table>

COMPONENT LOSS BY DRIVING PHASE(WH/MI AND PERCENT OF OVERALL)-

<table>
<thead>
<tr>
<th>OVERALL: WH/MI</th>
<th>442.1</th>
<th>EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR</td>
<td>37.9</td>
<td>23.7</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>8.6</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>0.882</td>
<td>0.0</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>30.6</td>
<td>20.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>6.9</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>0.899</td>
<td>0.0</td>
</tr>
<tr>
<td>AERO</td>
<td>37.4</td>
<td>15.3</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

M-55
<table>
<thead>
<tr>
<th>PERCENT</th>
<th>8.5</th>
<th>3.5</th>
<th>1.3</th>
<th>0.0</th>
<th>3.7</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIRES</td>
<td>61.6</td>
<td>27.7</td>
<td>7.6</td>
<td>0.0</td>
<td>26.4</td>
<td>0.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>13.9</td>
<td>6.3</td>
<td>1.7</td>
<td>0.0</td>
<td>6.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MISCELLAN</td>
<td>5.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>5.1</td>
</tr>
<tr>
<td>PERCENT</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

--------------BATTERY AND CHARGER--------------

-------ENERGY------- POWER, M/LB FINAL WATT -------CHARGER-------

<table>
<thead>
<tr>
<th>OUT</th>
<th>IN</th>
<th>LOSS</th>
<th>OUT</th>
<th>IN</th>
<th>STATE</th>
<th>EFF</th>
<th>LOSS</th>
<th>EFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
<td>WH/MI</td>
<td>PRCT</td>
<td>W/LB</td>
<td>WH/MI</td>
<td>PRCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>55</td>
<td>190</td>
<td>43.0</td>
<td>41.2</td>
<td>16.9</td>
<td>0.000</td>
<td>0.38</td>
<td>44</td>
</tr>
</tbody>
</table>

TOTAL ELECT CONSUME ELECT COST RANGE AT MALL (AT 10.0C/KWH)

<table>
<thead>
<tr>
<th>MI</th>
<th>WH/MI</th>
<th>WH/MI/TON</th>
<th>C/MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>126.5</td>
<td>442.2</td>
<td>228.3</td>
<td>4.42</td>
</tr>
</tbody>
</table>

100.4 *

* = BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KG).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (OASOLINE)-

<table>
<thead>
<tr>
<th>SOURCE OF CONSUMPTION</th>
<th>ECONOMY</th>
<th>LIT/KM</th>
<th>KM/LIT</th>
<th>MI/OAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.07962</td>
<td>12.6</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>COAL</td>
<td>0.04603</td>
<td>21.7</td>
<td>51.1</td>
<td></td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAFE VALUE COMPUTED?

N

INPUT CHANGES FOR NEXT RUN-

PARAM
INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-

NAMCYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSECTEENTS (Y OR N)?

N

INPUT NAME AND NUMBER OF CYCLES, INPUT END WHEN DONE, FOR 'PARK' AND 'IDLE' CYCLES, INPUT NAME AND PENIUD

FEDERAL 2

PARK 4.57HR

URB1 1

PARK 0.60HR

FEDERAL 2
INPUT COMPLETE FOR THIS CASE
INPUT A 1-76 CHARACTER TITLE FOR THIS CASE-

TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 7
DATE 4-OCT-84
TIME 1144140

ITERATION NUMBER 1 NANCY = FEDERAL

KEY PARAMETERS (METRIC UNITS)

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>469</td>
<td>1757</td>
</tr>
</tbody>
</table>

ORCOUP ANALYT NI-FE1.0 EV

ITERATION NUMBER 2 NANCY = FEDERAL

PARKING FOR 4.570 HOURS

ITERATION NUMBER 1 CONSISTING OF SUBSEGMNT 1 OF THE URBAN SCHEDULE

PARKING FOR 0.600 HOURS

ITERATION NUMBER 1 NANCY = FEDERAL

ITERATION NUMBER 2 NANCY = FEDERAL

PARKING FOR 2.570 HOURS

ITERATION NUMBER 1 NANCY = FEDERAL

PARKING FOR 1.380 HOURS

ITERATION NUMBER 1 NANCY = FEDERAL

PARKING FOR 12.350 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD

<table>
<thead>
<tr>
<th>SECONDS</th>
<th>MI</th>
<th>MI/H</th>
<th>WH/MI</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FEDERAL 86401 45.376 1.9 202.2 97.4 50.6

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED

<table>
<thead>
<tr>
<th>Component Loss by Driving Phase (WH/MI and Percent of Overall)</th>
<th>Total</th>
<th>Accel</th>
<th>Cruise</th>
<th>Coasting</th>
<th>Braking</th>
<th>Dwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERALL (WH/MI)</td>
<td>435.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOTOR</td>
<td>37.9</td>
<td>23.7</td>
<td>2.3</td>
<td>0.0</td>
<td>11.9</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.081</td>
<td>0.092</td>
<td>0.071</td>
<td>0.000</td>
<td>0.850</td>
<td>0.000</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>30.3</td>
<td>19.9</td>
<td>1.7</td>
<td>0.0</td>
<td>8.8</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.599</td>
<td>0.599</td>
<td>0.599</td>
<td>0.000</td>
<td>0.895</td>
<td>0.000</td>
</tr>
<tr>
<td>AEROSYSTEM</td>
<td>8.2</td>
<td>3.4</td>
<td>1.3</td>
<td>0.0</td>
<td>3.6</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.041</td>
<td>0.041</td>
<td>0.041</td>
<td>0.000</td>
<td>0.885</td>
<td>0.000</td>
</tr>
<tr>
<td>TIRES</td>
<td>61.6</td>
<td>27.7</td>
<td>7.5</td>
<td>0.0</td>
<td>26.4</td>
<td>0.0</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>14.2</td>
<td>6.4</td>
<td>1.7</td>
<td>0.0</td>
<td>6.1</td>
<td>0.0</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Battery and Charger

<table>
<thead>
<tr>
<th>Energy</th>
<th>Power (kW)</th>
<th>Final Batt</th>
<th>Charger</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT IN</td>
<td>WH/MI</td>
<td>IN</td>
<td>OUT IN</td>
</tr>
<tr>
<td>Loss</td>
<td>WH/MI</td>
<td>STATE EFF</td>
<td>LOSS</td>
</tr>
<tr>
<td>W/LB</td>
<td>WH/MI</td>
<td>EFF</td>
<td>W/LB</td>
</tr>
<tr>
<td>259</td>
<td>54</td>
<td>187</td>
<td>43.0</td>
</tr>
<tr>
<td>41.2</td>
<td>16.9</td>
<td>0.000</td>
<td>0.58</td>
</tr>
<tr>
<td>44</td>
<td>10.00</td>
<td>0.900</td>
<td></td>
</tr>
</tbody>
</table>

Total Elect Cost

<table>
<thead>
<tr>
<th>Range (mi)</th>
<th>Elect Consum</th>
<th>Elect Cost (at 10.0c/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>WH/MI</td>
<td>WH/MI#T/ON</td>
</tr>
<tr>
<td>127.4</td>
<td>435.3</td>
<td>224.8</td>
</tr>
<tr>
<td>4.35</td>
<td></td>
<td>102.7*</td>
</tr>
</tbody>
</table>

* - Based on lowest depth of discharge (0.794) which could sustain the maximum power density (90.9 W/kg).

Equivalent Fuel Consumption and Economy (Gasoline)

<table>
<thead>
<tr>
<th>Source of Consumption</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMARY ENERGY</td>
<td>LIT/KM</td>
</tr>
<tr>
<td>PETROLEUM</td>
<td>0.07631</td>
</tr>
<tr>
<td>COAL</td>
<td>0.04526</td>
</tr>
</tbody>
</table>

Do you want the CAFE value computed?

> N

M-58
INPUT CHANGES FOR NEXT RUN-
>
PARAMVAR
INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-
>
NAMCYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSECTIONS (Y OR N)?
>
N
INPUT NAME AND NUMBER OF CYCLES. INPUT END WHEN DONE.
FOR 'PARK' AND 'IDLE' CYCLES, INPUT NAME AND PERIOD
>
FEDERAL 2
>
PARK 0.62HR
>
FEDERAL 2
>
PARK 0.15HR
>
FEDERAL 2
>
PARK 3.73HR
>
URBI 1 URM2 1
>
PARK 0.216HR
>
URBI 1 URB4 1 URB5 1 URB6 1 URH7 1 URH8 1 URB9 1 URB10 1 URB11 1
>
URB12 1 URB13 1 URB14 1 URB15 1 URB16 1 URB17 1
>
PARK 16.42HR
>
END
>
RUN
> INPUT COMPLETE FOR THIS CASE
> INPUT A 1-70 CHARACTER TITLE FOR THIS CASE-
>
TEST CASE - 3 PAS - NI-FEI.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 0
DATE 4-OCT-84
TIME 11:56:12

ITERATION NUMBER 1 NAMCYC = FEDERAL

KEY PARAMETERS (METRIC UNITS)
-------------VEHICLE------------- STRATEGY-------------
WB WT CD TC TIRE PTIRE ACFAC ACLKS FORKS NREDEN EFFCH EFFCFM
489 1757 0.600 RADIAL 34.0 0.50 -0.67 0.30 2 0.000 0.385

-------------MODELS-------------
ORCoup ANALYT NI-FEI.0 EV

M-59
ITERATION NUMBER 2 NAMCYC = FEDRAL
PARKING FOR 0.820 HOURS
ITERATION NUMBER 1 NAMCYC = FEDRAL
ITERATION NUMBER 2 NAMCYC = FEDRAL
PARKING FOR 0.150 HOURS
ITERATION NUMBER 1 NAMCYC = FEDRAL
ITERATION NUMBER 2 NAMCYC = FEDRAL
PARKING FOR 3.730 HOURS
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 1 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 2 OF THE URBAN SCHEDULE
PARKING FOR 0.216 HOURS
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 2 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 4 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 5 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 6 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 7 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 8 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 9 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 10 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 11 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 12 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 13 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 14 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 15 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 16 OF THE URBAN SCHEDULE
ITERATION NUMBER 1 CONSISTING OF SUBSEQUENT 17 OF THE URBAN SCHEDULE
PARKING FOR 16.420 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD
ESPEED W/O RON W RON POWER
DEC MI MI/H W/H/MI HP
FEDERAL 0625 32.157 2.2 202.3 97.6 50.6

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVERSE--
MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES -

<table>
<thead>
<tr>
<th>Component</th>
<th>Balanced HZ</th>
<th>Motor/CNT</th>
<th>Drivetrain</th>
<th>Powertrain</th>
<th>Brakes</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
<td>220.3</td>
<td>37.9</td>
<td>30.3</td>
<td>66.3</td>
<td>34.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Percent (Powertrain)</td>
<td>33.7</td>
<td>55.6</td>
<td>44.4</td>
<td>100.0</td>
<td>50.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Percent (Overall)</td>
<td>53.0</td>
<td>6.7</td>
<td>7.0</td>
<td>15.7</td>
<td>8.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.532</td>
<td>0.881</td>
<td>0.698</td>
<td>0.793</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPONENT LOSS BY DRIVING PHASE (WH/MI AND PERCENT OF OVERALL) -

<table>
<thead>
<tr>
<th>Component</th>
<th>Total ACCEL</th>
<th>Cruise</th>
<th>Coast</th>
<th>Brake Dwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>37.9</td>
<td>23.7</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>33.7</td>
<td>53.3</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Transmission</td>
<td>30.3</td>
<td>19.8</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>33.7</td>
<td>53.3</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.891</td>
<td>0.893</td>
<td>0.871</td>
<td>0.000</td>
</tr>
<tr>
<td>Aero</td>
<td>36.0</td>
<td>14.8</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>33.7</td>
<td>53.3</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Tires</td>
<td>61.6</td>
<td>27.6</td>
<td>7.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>33.7</td>
<td>53.3</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>3.6</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>33.7</td>
<td>53.3</td>
<td>2.3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

BATTERY AND CHARGER-------

<table>
<thead>
<tr>
<th>Battery</th>
<th>Power</th>
<th>Final Batt</th>
<th>Charger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
<td>54</td>
<td>43.0</td>
<td>41.2</td>
</tr>
<tr>
<td>Percent</td>
<td>14.2</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.893</td>
<td>0.893</td>
<td>0.895</td>
</tr>
</tbody>
</table>

ENERGY-----

<table>
<thead>
<tr>
<th>Battery</th>
<th>Power</th>
<th>Final Batt</th>
<th>Charger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
<td>54</td>
<td>43.0</td>
<td>41.2</td>
</tr>
<tr>
<td>Percent</td>
<td>14.2</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.893</td>
<td>0.893</td>
<td>0.895</td>
</tr>
</tbody>
</table>

TOTAL ELECT CONSUMPTION AND ELECTRIC COST

<table>
<thead>
<tr>
<th>Battery</th>
<th>Power</th>
<th>Final Batt</th>
<th>Charger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
<td>54</td>
<td>43.0</td>
<td>41.2</td>
</tr>
<tr>
<td>Percent</td>
<td>14.2</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.893</td>
<td>0.893</td>
<td>0.895</td>
</tr>
</tbody>
</table>

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE) -

<table>
<thead>
<tr>
<th>Source of Primary Energy</th>
<th>Consumption</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>0.07819</td>
<td>12.8</td>
</tr>
<tr>
<td>Coal</td>
<td>0.04521</td>
<td>22.1</td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAPE VALUE COMPUTED?

N

INPUT CHANGES FOR NEXT RUN -

PARAMVAR
INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-
>
NAMCYC
DO YOU WANT A SUMMARY OF THE URBAN SUBSEGMENTS (Y OR N)?
>
N
INPUT NAME AND NUMBER OF CYCLES. Input END WHEN DONE.
FOR 'PARK' AND 'IDLE' CYCLES: INPUT NAME AND PERIOD
>
HIWAY 4
>
PARK 7.04HR
>
FEDRAL 1
>
HIWAY 1
>
FEDRAL 1
>
PARK 0.66HR
>
FEDRAL 1
>
PARK 14.09HR
>
END
>
RUN
INPUT COMPLETE FOR THIS CASE
>
INPUT A 1-79 CHARACTER TITLE FOR THIS CASE-
>
TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 9
DATE 4-OCT-94
TIME 12:02:45

ITERATION NUMBER 1 NAMCYC = HIWAY
HIWAY SCHIDDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
HIWAY CYCLE. 766 VALUES READ.

KEY PARAMETERS (METRIC UNITS)
--------------VEHICLE------------- ---------STRATEGY---------
WB HT CDA TIRES TIRES ACLFAC ACHRCS FBRS NMVEN EFFCM EFFCFW
489 1757 0.600 RADIAL 36.0 0.50 -0.67 0.30 2 0.000 0.505

--------------MODELS-------------
DRCOUP ANALYT NI-FE1.0 EV

ITERATION NUMBER 2 NAMCYC = HIWAY
ITERATION NUMBER 3 NAMCYC = HIWAY
ITERATION NUMBER 4 NAMCYC = HIWAY

M-62
PARKING FOR 7.040 HOURS

ITERATION NUMBER 1 NAMCYC = FEDERAL

FEDERAL SCHUDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
FEDERAL CYCLE. 1372 VALUES READ.

ITERATION NUMBER 1 NAMCYC = HIMAY

HIMAY SCHUDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
HIMAY CYCLE. 766 VALUES READ.

ITERATION NUMBER 1 NAMCYC = FEDERAL

FEDERAL SCHUDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
FEDERAL CYCLE. 1372 VALUES READ.

PARKING FOR 0.660 HOURS

ITERATION NUMBER 1 NAMCYC = FEDERAL

PARKING FOR 14.090 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD
SEC MI MI/H WH/MI HN
HIMAY 64369 73.635 3.1 101.2 132.6 50.6

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED-

<table>
<thead>
<tr>
<th>MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES</th>
<th>BATT SYS</th>
<th>MTR/CNT</th>
<th>DRYTRN</th>
<th>PMWTRN</th>
<th>BRAKES</th>
<th>MISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH/MI</td>
<td>205.5</td>
<td>32.0</td>
<td>23.6</td>
<td>50.6</td>
<td>15.8</td>
<td>2.9</td>
</tr>
<tr>
<td>PERCENT(PMWTRN)</td>
<td>404.6</td>
<td>53.1</td>
<td>46.9</td>
<td>100.0</td>
<td>31.1</td>
<td>5.0</td>
</tr>
<tr>
<td>PERCENT(OVERALL)</td>
<td>50.5</td>
<td>6.6</td>
<td>5.8</td>
<td>12.5</td>
<td>3.9</td>
<td>0.6</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.525</td>
<td>0.894</td>
<td>0.899</td>
<td>0.906</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPONENT LOSS BY DRIVING PHASE(WH/MI AND PERCENT OF OVERALL)-

<table>
<thead>
<tr>
<th>OVERALL WH/MI</th>
<th>407.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFICIENCY</td>
<td>0.364</td>
</tr>
<tr>
<td>MOTOR</td>
<td>27.0</td>
</tr>
<tr>
<td>PERCENT</td>
<td>6.6</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.894</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>23.8</td>
</tr>
<tr>
<td>PERCENT</td>
<td>5.6</td>
</tr>
<tr>
<td>EFFICIENCY</td>
<td>0.899</td>
</tr>
<tr>
<td>AERO</td>
<td>70.1</td>
</tr>
<tr>
<td>PERCENT</td>
<td>17.2</td>
</tr>
<tr>
<td>TIRES</td>
<td>62.5</td>
</tr>
<tr>
<td>PERCENT</td>
<td>15.3</td>
</tr>
<tr>
<td>MISCELLAN</td>
<td>2.5</td>
</tr>
<tr>
<td>PERCENT</td>
<td>0.6</td>
</tr>
</tbody>
</table>

-----------------------BATTERY AND CHARGER----------------------

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY-----</td>
<td>POWER.MI</td>
<td>FINAL</td>
<td>BATT-----</td>
<td>CHARGER---</td>
</tr>
<tr>
<td>.OUT IN LOSS</td>
<td>OUT IN</td>
<td>STATE</td>
<td>LOSS</td>
<td>EFF</td>
</tr>
<tr>
<td>WH/MI</td>
<td>WH/MI</td>
<td>W/LB</td>
<td>WH/MI</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>26</td>
<td>163</td>
<td>40.5</td>
<td>41.2</td>
</tr>
</tbody>
</table>

M-63
<table>
<thead>
<tr>
<th>TOTAL ELECT CONSM</th>
<th>ELECT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>AT WALL</td>
</tr>
<tr>
<td>MI</td>
<td>(AT 10.0C/KWH)</td>
</tr>
<tr>
<td>MI/W/MI</td>
<td>WH/MI*TON</td>
</tr>
<tr>
<td></td>
<td>C/MI</td>
</tr>
<tr>
<td>134.4</td>
<td>407.2</td>
</tr>
<tr>
<td>210.3</td>
<td>4.07</td>
</tr>
<tr>
<td>106.7</td>
<td></td>
</tr>
</tbody>
</table>

- BASED ON LOWEST DEPTH OF DISCHARGE (0.794) WHICH COULD SUSTAIN THE MAXIMUM POWER DENSITY (90.9 W/KG).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE)-

<table>
<thead>
<tr>
<th>SOURCE OF PRIMARY ENERGY</th>
<th>CONSUMPTION</th>
<th>ECONOMY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROLEUM</td>
<td>0.07724</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>0.04466</td>
<td>22.4</td>
</tr>
</tbody>
</table>

DO YOU WANT THE CAFE VALUE COMPUTED?

N

INPUT CHANGES FOR NEXT RUN-

PARAMVAR

INPUT NAME OF PARAMETER, INITIAL VALUE, FINAL VALUE, AND NUM STEPS-

NANCYC

DO YOU WANT A SUMMARY OF THE URBAN SUBSECTIONS (Y OR N)?

N

INPUT NAME AND NUMBER OF CYCLES, INPUT END WHEN DONE.

FOR 'PARK' AND 'IDLE' CYCLES, INPUT NAME AND PERIOD

HIWAY 4

PARK 6.5HR

FEDRAL 1

HIWAY 4

FEDRAL 1

PARK 15.04HR

END

RUN

INPUT COMPLETE FOR THIS CASE

INPUT A 1-8 CHARACTER TITLE FOR THIS CASE-
TEST CASE - 5 PAS - NI-FE1.0 - 100MI. DESIRED RANGE - ELECTRIC - CYCLE 10
DATE 4-OCT-84
TIME 12108107

ITERATION NUMBER 1 NAMCYC = HIWAY
HIWAY SCHDDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
HIWAY CYCLE, 766 VALUES READ.

KEY PARAMETERS (METRIC UNITS)

----------------VEHICLE---------- ----------STRATEGY-----------
_MB _MT _CDA TIRE PIRE ACLFAC ALCRCS FBRKS NREGEN EFFCM EFFCFM
46V 1737 0.600 RADIAL 38.0 0.50 -0.67 0.30 2 0.000 0.565

----------------MODELS-----------------
DRC0UP ANALYT NI-FE1.0 EV

ITERATION NUMBER 2 NAMCYC = HIWAY

ITERATION NUMBER 3 NAMCYC = HIWAY

ITERATION NUMBER 4 NAMCYC = HIWAY

PARKING FOR 6.500 HOURS

ITERATION NUMBER 1 NAMCYC = FEDERAL
FEDERAL SCHDDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
FEDERAL CYCLE, 1372 VALUES READ.

ITERATION NUMBER 1 NAMCYC = HIWAY
HIWAY SCHDDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
HIWAY CYCLE, 766 VALUES READ.

ITERATION NUMBER 2 NAMCYC = HIWAY

ITERATION NUMBER 3 NAMCYC = HIWAY

ITERATION NUMBER 4 NAMCYC = HIWAY

ITERATION NUMBER 1 NAMCYC = FEDERAL
FEDERAL SCHDDATA NOT CURRENTLY IN CORE
SEARCHING BULKDATA FILE FOR IT.
FEDERAL CYCLE, 1372 VALUES READ.

PARKING FOR 15.040 HOURS

SCHEDULE PERIOD RANGE AVERAGE ROAD ENERGY MAX ROAD
 SPEED W/O RON W RON POWER
SEC MI MI/H WH/MI HP
HIWAY 66406 96.954 4.0 176.7 140.1 50.6

ENERGY AND EFFICIENCY SUMMARY FOR RANGE TRAVELED-

MAJOR SUBSYSTEM LOSSES AND EFFICIENCIES-

BATT SYS MTR/CNT DRVTRN PWRTRN BRAKES MISC
WH/MI 199.7 24.6 22.4 47.0 11.8 1.9
<table>
<thead>
<tr>
<th>Component Loss By Driving Phase (Wh/Mi and Percent of Overall)</th>
<th>Total</th>
<th>Accel</th>
<th>Cruise</th>
<th>Coast</th>
<th>Brake</th>
<th>Dwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall, Wh/Mi</td>
<td>400.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.379</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>24.6</td>
<td>13.7</td>
<td>3.6</td>
<td>0.0</td>
<td>7.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>6.1</td>
<td>3.4</td>
<td>0.9</td>
<td>0.0</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.899</td>
<td>0.911</td>
<td>0.687</td>
<td>0.000</td>
<td>0.868</td>
<td>0.000</td>
</tr>
<tr>
<td>Transmission</td>
<td>22.4</td>
<td>14.0</td>
<td>2.9</td>
<td>0.0</td>
<td>5.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>5.6</td>
<td>3.5</td>
<td>0.7</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.899</td>
<td>0.900</td>
<td>0.699</td>
<td>0.000</td>
<td>0.897</td>
<td>0.000</td>
</tr>
<tr>
<td>Aeru</td>
<td>77.5</td>
<td>31.4</td>
<td>15.2</td>
<td>0.0</td>
<td>30.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>19.3</td>
<td>7.8</td>
<td>3.8</td>
<td>0.0</td>
<td>7.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Tires</td>
<td>62.6</td>
<td>27.0</td>
<td>10.8</td>
<td>0.0</td>
<td>24.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Percent</td>
<td>15.6</td>
<td>6.7</td>
<td>2.7</td>
<td>0.0</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Miscellany</td>
<td>1.9</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Percent</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

BATTERY AND CHARGER

--- ENERGY ---

<table>
<thead>
<tr>
<th>Power Method</th>
<th>Final Batt</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>IN</td>
<td>LOSS</td>
</tr>
<tr>
<td>Wh/Mi</td>
<td>Wh/Mi</td>
<td>Percent</td>
</tr>
<tr>
<td>220</td>
<td>20</td>
<td>160</td>
</tr>
</tbody>
</table>

TOTAL ELECT CONSUMPTION AND ELECTRIC COST

<table>
<thead>
<tr>
<th>Range</th>
<th>Elect Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>Wh/Mi</td>
</tr>
<tr>
<td>135.7</td>
<td>400.5</td>
</tr>
<tr>
<td>107.7</td>
<td>99</td>
</tr>
</tbody>
</table>

* - based on lowest depth of discharge (0.794) which could sustain the maximum power density (90.9 W/Kg).

EQUIVALENT FUEL CONSUMPTION AND ECONOMY (GASOLINE)

<table>
<thead>
<tr>
<th>Source of Primary Energy</th>
<th>Consumption</th>
<th>Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum</td>
<td>LIT/KM</td>
<td>KM/LIT</td>
</tr>
<tr>
<td>Coal</td>
<td>0.076489</td>
<td>13.0</td>
</tr>
<tr>
<td>Coal</td>
<td>0.04445</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Do you want the CAFE value computed?

N

INPUT CHANGES FOR NEXT RUN

> WUIU

ORCUSER Job terminated at 4-OCT-1984 12:14:15.763

Accounting Information:

<table>
<thead>
<tr>
<th>Buffed I/O count</th>
<th>115</th>
<th>Peak working set size</th>
<th>529</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct I/O count</td>
<td>1963</td>
<td>Peak page file size</td>
<td>493</td>
</tr>
<tr>
<td>Page faults</td>
<td>1290</td>
<td>Mounted volumes</td>
<td>0</td>
</tr>
<tr>
<td>Elapsed CPU time</td>
<td>00:09:14.638</td>
<td>Elapsed time</td>
<td>0 02:30:156.90</td>
</tr>
</tbody>
</table>
Electric and Hybrid Vehicle Cost Model

Test Case - S PAS - NI-FE1.0 - 100Mls, Extended Range - Electric

Inputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Type</td>
<td>5-Passenger</td>
</tr>
<tr>
<td>Model</td>
<td>1982</td>
</tr>
<tr>
<td>Real Interest Rate</td>
<td>10.5%</td>
</tr>
<tr>
<td>Vehicle Weight</td>
<td>4,000 lbs</td>
</tr>
<tr>
<td>Fuel Efficiency</td>
<td>75 miles/liter</td>
</tr>
<tr>
<td>Mileage</td>
<td>10,000 miles</td>
</tr>
<tr>
<td>Battery</td>
<td>400 Ah / 120V</td>
</tr>
<tr>
<td>Battery Cycle Life</td>
<td>720 cycles</td>
</tr>
<tr>
<td>Li-ion Battery Life</td>
<td>10 years</td>
</tr>
<tr>
<td>Average Daily Depth of Discharge</td>
<td>0.77375</td>
</tr>
<tr>
<td>Maintenance Factor</td>
<td>1</td>
</tr>
<tr>
<td>Transmission Type</td>
<td>CVT</td>
</tr>
<tr>
<td>Motor</td>
<td>44.7 kW / 80 V</td>
</tr>
<tr>
<td>Controller</td>
<td>49.1 kW / 80 V</td>
</tr>
<tr>
<td>Driving</td>
<td>1606.6 miles / year</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Salvage Value</td>
<td>$5,807.14</td>
</tr>
<tr>
<td>Battery Salvage Value</td>
<td>$2,286.04</td>
</tr>
<tr>
<td>Total Life Cycle Cost</td>
<td>$3,803.12</td>
</tr>
</tbody>
</table>

≤ (AVCOST Output Report)
AVSIZING

SIZES A PRELIMINARY VEHICLE TARGETED TO A DESIRED RANGE.

```basic
10 KEY ON
20 '**********************************************************************
30 ' ** AVSIZING **
40 ' SIZES A PRELIMINARY VEHICLE TARGETED TO A DESIRED RANGE.
50 '  
60 '  
70 '  
80 '**********************************************************************
90 '  
100 '  
110 PRINT TAB(24)"WELCOME TO THE AVSIZING PROGRAM"
120 PRINT  
130 DIM CON(6), UH(20), CY(12), PES(4), CH(3), BALN(4), DOM(50), RAN(50)
140 ERROR%=0
150  
160 REM PROMPT FOR THE INPUT DATA
170  
180 PRINT "DO YOU WISH TO RUN ?"
190 PRINT "1. NEW VEHICLE USING AN URBAN OR HIGHWAY CYCLE?"  
200 IF TORX<>1 AND TORX<>2 AND TORX<>3 THEN 200
210 IF TORX=1 THEN 1000
220  
230 REM OPEN FILE VEHICLE.DAT
240  
250 IF 100%=1 THEN 370
260 OPEN "VEHICLE.DAT" FOR INPUT AS 02
270 INPUT#1, ILES, VEH%, CART, LIN, NUM%, SNUM%, CDA, CNUM%, BMF1, BMF2, PFA%
280 CLOSE#2
290 IF TORX=2 THEN 1000
300  
310  
320 PRINT  
330 PRINT "ENTER THE VALUE BETWEEN" BMF1" AND 0.45"
340 PRINT  
350 INPUT " ENER THE VALUE BETWEEN" BMF1" AND 0.45"
360 GOTO 1000
370  
380 REM SET RUN FlAW TO ZERO. (FIRST RUN)
390  
400 FM%=0
410 PRINT  
420 IF " ENER THE TITLE OF RUN( 67 CHARACTERS OR LESS - DO NOT USE COMMAS )"
430 INPUT " ENER THE TITLE OF RUN( 67 CHARACTERS OR LESS - DO NOT USE COMMAS )"
440 PRINT  
450 PRINT "VEHICLE CAPACITY"
460 PRINT  
470 PRINT "2.4.5 OR 6 PASSENGERS"
480 PRINT  
490 IF"" IF THE VEHICLE IS A VAN THEN SET CAPACITY EQUAL TO 6"
500 '  
510 REM IF INVALID NUMBER OF PASSENGERS THEN TRY AGAIN
520 '  
530 IF "" IF THE VEHICLE IS A VAN THEN SET CAPACITY EQUAL TO 6"
540 IF "" IF THE VEHICLE IS A VAN THEN SET CAPACITY EQUAL TO 6"
550 IF "" IF THE VEHICLE IS A VAN THEN SET CAPACITY EQUAL TO 6"
560 IF "" IF THE VEHICLE IS A VAN THEN SET CAPACITY EQUAL TO 6"
570 PRINT "VEHICLE TYPE"
580 PRINT  
```

PRECEDING PAGE BLANK NOT FILMED
1. ELECTRIC VEHICLE
2. HYBRID VEHICLE

ENTER VEHICLE TYPE (1 OR 2) +

REM IF INVALID VEHICLE TYPE NUMBER THEN TRY AGAIN

IF VEHX<>1 AND VEHX<2 THEN 400
CLS
PRINT
REM "ENTER DESIRED RANGE(MI) : ", RANGE
700 REM INPUTS FOR THE DC OPTION. (NOT CURRENTLY AVAILABLE.)
710
REM PRINT "MOTOR TYPE"
720 REM PRINT STRING$(10,196)
730 REM PRINT "$1, AC" : PRINT "$2, DC"
740 REM INPUT "ENTER MOTOR TYPE NUMBER +. MTX"
750 REM IF INVALID VEHICLE TYPE NUMBER THEN TRY AGAIN.
760 REM IF MTX<>1 AND MTX<>2 THEN 350
800 PRINT "BATTERY TYPE NUMBER LIST"
860 PRINT " 5. NA-S" : PRINT " 6. NI-FE" : PRINT " 7. NI-IN"
870 PRINT " 8. PB-AC/AC" : PRINT " 9. PB-AC/BIPL" : PRINT " 10. IN-BR"
880 PRINT " 11. IN-CL2"
890 INPUT "ENTER BATTERY TYPE NUMBER + , NUMX"
900 REM IF INVALID BATTERY NUMBER THEN TRY AGAIN
910 REM IF NUMX<1 AND NUMX<>2 AND NUMX<>3 AND NUMX<>4 AND NUMX<>5 AND NUMX<>6 AND NUMX<>7 AND NUMX<>8 AND NUMX<>9 AND NUMX<>10 AND NUMX<>11 THEN 890
940 PRINT
950 PRINT "POWER TO ENERGY RATIO"
960 PRINT STRING$(10,196)
970 PRINT " 1. P/E = 1.0" : PRINT " 2. P/E = 2.1" : PRINT " 3. P/E = 2.4"
980 PRINT " 4. P/E = 3.3"
990 INPUT "ENTER POWER TO ENERGY RATIO NUMBER +. SNUMX
990 IF SNUMX<>1 AND SNUMX<>2 AND SNUMX<>3 AND SNUMX<>4 THEN 990
1000 CLS : PRINT : PRINT : PRINT
1010 PRINT "DU YOU WISH TO RUN ELVEC IN 1	 1 PLAINT "
1020 INPUT "ENTER TYPE OF RUN (1 OR 2) + , TOX"
1030 IF TOX<>1 AND TOX<>2 THEN 1020
1040 IF TOKX=2 THEN CLS
1050 IF TOKX=2 THEN PRINT
1060 IF TOKX=2 THEN PRINT
1070 IF TOKX=2 AND DOX<>2 THEN INPUT "ENTER FILENAME OF 24 HR. INPUT FILE + , IN
1080 ELSE NA248="STAREL"
1090 REM INPUT RANGE FOR 5 PAS VEHICLE
1100 REM INPUT RANGE FOR 5 PAS VEHICLE
1110 IF TOKX=2 AND CAPX<>5 THEN CLS
1120 IF LUX=2 AND CAPX<>5 THEN PRINT
1130 IF TUX=2 AND CAPX<>5 THEN PRINT
1140 IF TUX=2 AND CAPX<>5 THEN PRINT
1150 IF TUX=2 AND CAPX<>5 THEN PRINT $1KING$(25.196)
1160 IF TUX=2 AND CAPX<>5 THEN PRINT "$100 NI VEHICLE" : PRINT "$140
M1. VEHICLE" PRINT " 3. 250 M1. VEHICLE"
1170 IF TORX=2 AND CAPX<>5 THEN INPUT "ENTER VEHICLE RANGE NO. (1, 2 OR 3) : " : YC
1180 IF TORX=2 AND CAPX<>5 THEN IF SCAPX<>1 AND SCAPX<>2 AND SCAPX<>3 THEN 1170
1190 IF CAPX=2 THEN CYCLEX=9
1200 IF CAPX=5 AND SCAPX=1 THEN CYCLEX=10
1210 IF CAPX=5 AND SCAPX=2 THEN CYCLEX=11
1220 IF CAPX=5 AND SCAPX=3 THEN CYCLEX=12
1230 IF CAPX=6 THEN CYCLEX=12
1240 CLS
1250 REM SET MTX=1 FOR THE AC OPTION ONLY.
1260 MTX=1
1270 IF NUMX=1 THEN 1440 'BRANCH TO AL—AIR DATA SET
1280 IF NUMX=2 THEN 1530 'BRANCH TO FE—AIR DATA SET
1290 IF NumX=3 THEN 1760 'BRANCH TO Li—FE—S DATA SET
1300 IF NUMX=4 THEN 2000 'BRANCH TO Li—FE—V2 DATA SET
1310 IF NUMX=5 THEN 2100 'BRANCH TO NA—S DATA SET
1320 IF NUMX=6 THEN 2350 'BRANCH TO NI—FE DATA SET
1330 IF NUMX=7 THEN 2600 'BRANCH TO NI—2N DATA SET
1340 IF NUMX=8 THEN 2700 'BRANCH TO PB—AC/ADV DATA SET
1350 IF NUMX=9 THEN 2950 'BRANCH TO PB—AC/BIPL DATA SET
1360 IF NUMX=10 THEN 3170 'BRANCH TO IN—BR DATA SET
1370 IF NUMX=11 THEN 3420 'BRANCH TO IN—CL1 DATA SET
1380 IF NUMX=12 THEN 3660 'BRANCH TO PB—AC/ADV DATA SET
1390 '
1400 REM BATTERY DATA SETS
1410 ' DATA SETS CONTAIN MASS DENSITY, SPECIFIC ENERGY AND SPECIFIC POWER —
1420 ' FOLLOWED BY THE CM COEFFICIENTS.
1430'
1440 NAME = "AL—AIR" : EFFCD=.18 : SLFD=0 : ACC=5!
1450 DATA 0.21,187,158,165,157
1460 DATA 4.9078,-.723035,-.094402
1470 RESTORE 1430
1480 READ A • B,111,02 • PBC
1490 RESTORE
1500 GOSUB 9990
1510 UOTO 3660
1520 '
1530 DATA "FE—AIR1.0", "FE—AIR2.1", "FE—AIR2.4", "FE—AIR3.3" : EFFCD=.9
1540 SLFD=,.44 : ACC=1.67
1550 RESTORE 1530
1560 GOSUB 10000
1570 NAMX=BATNX(SNUMX)
1580 DATA .12,3.671,109,148,110
1590 DATA .216,.201,68,74,140
1600 DATA .393,69,54,157
1610 DATA .396,52,75,165
1620 DATA 4,48115,-.723079,-.0850794
1630 DATA 4,12545,-.832983,-.0698404
1640 DATA 4,13931,.858081,.0612641
1650 DATA 3,90664,.884569,.0563951
1660 IF SNUMX=1 THEN RESTORE 1580
1670 IF SNUMX=2 THEN RESTORE 1590
1680 IF SNUMX=3 THEN RESTORE 1600
1690 IF SNUMX=4 THEN RESTORE 1610
1/0 READ A.B,GU,01,02,1 abc
1710 IF SNUMX=1 THEN RESTORE 1620
1720 IF SNUMX=2 THEN RESTORE 1630
1730 IF SNUMX=3 THEN RESTORE 1640
1740 IF SNUMX=4 THEN RESTORE 1650
1750 GOSUB 9990
1760 UOTO 3660
1770
1780 DATA "LI-FE-81.0", "LI-FE-82.1", "LI-FE-82.1", "LI-FE-83.3" \ EFFCD=.6
1790 SLFD=0! ACC=0
1800 RESTORE 1790
1810 GOSUB 10080
1820 NAME=BATHS(SNUM)
1830 DATA .119.4.396.102.190.161
1840 DATA .119.4.396.190.163
1850 DATA .119.4.396.190.163
1860 DATA .134.4.181.71.190.175
1870 DATA .4.37903.7140.714.0833693
1880 DATA .21177.749451.08466495
1890 DATA .21177.749451.08466495
1900 DATA .21332.79480.081344
1910 IF SNUM%=1 THEN RESTORE 1830
1920 IF SNUM%=2 THEN RESTORE 1840
1930 IF SNUM%=3 THEN RESTORE 1850
1940 IF SNUM%=4 THEN RESTORE 1860
1950 READ A,8,01.62,6C
1960 IF SNUM%=1 THEN RESTORE 1870
1970 IF SNUM%=2 THEN RESTORE 1880
1980 IF SNUM%=3 THEN RESTORE 1890
1990 IF SNUM%=4 THEN RESTORE 1900
2000 GOSUB 9990
2010 GOTO 3660
2020 PRINT PRINT PRINT
2030 PRINT "The battery LI-FE-82 is not currently available."
2032 GOTO 7250
2035 NAME = "LI-FE-82" \ EFFCD=.45
2040 ACC=0
2050 DATA 2.2.110.144,
2060 RESTORE 2050
2070 READ MU, ED, PD
2080 GOTO 3660
2090
2100 DATA "NA-81.0", "NA-82.1", "NA-82.4", "NA-83.3" \ EFFCD=.66
2110 SLFD=0! ACC=0
2120 RESTORE 2100
2130 GOSUB 10080
2140 NAME=BATHS(SNUM)
2150 DATA .216.2.88.121.133.146
2160 DATA .134.1.997.87.94.199
2170 DATA .141.1.717.83.75.226
2180 DATA .134.4.181.73.81.244
2190 DATA .6.57375.-.790541.-.04973
2200 DATA .4.36547.-.894157.-.0799447
2210 DATA .4.33048.-.894593.-.07749AA
2220 DATA .4.21601.-.902732.-.0772804
2230 IF SNUM%=1 THEN RESTORE 2150
2240 IF SNUM%=2 THEN RESTORE 2160
2250 IF SNUM%=3 THEN RESTORE 2170
2260 IF SNUM%=4 THEN RESTORE 2180
2270 READ A,8,01.62,6C
2280 IF SNUM%=1 THEN RESTORE 2190
2290 IF SNUM%=2 THEN RESTORE 2200
2300 IF SNUM%=3 THEN RESTORE 2210
2310 IF SNUM%=4 THEN RESTORE 2220
2320 GOSUB 9990
2330 GOTO 3660
2340
2350 DATA "NI-FEI.0", "NI-FF2.1", "NI-FE2.1", "NI-FE3.3" \ EFFCD=.54
2360 SLFD=.016! ACC=0
2370 RESTORE 2350
REM BASIC EQUATIONS (DEFINE VEHICLE PARAMETERS)

300 RESTORE 3010
310 DOSUB 9990
3150 GOTO 3660
3160 RESTORE 3170
3200 DOSUB 10080
3210 NAM*BATNS(SNUM%)
3220 DATA .145,9,3Y2,6,91,83
3230 DATA .244,4,402,4,62,115
3240 DATA .233,2,526,49,49,135
3250 DATA .32,2,678,40,53,150
3260 DATA .4,3,572,.627964,-.151306
3270 DATA 3.10,99,-.819456,-.0951689
3280 DATA 3.69,12,-.397169,-.0851764
3290 DATA 3.65918,-.874489,-.0779032
3300 IF SNUM%-1 THEN RESTORE 3220
3310 IF SNUM%=2 THEN RESTORE 3230
3320 IF SNUM%=3 THEN RESTORE 3240
3330 IF SNUM%=4 THEN RESTORE 3250
3340 READ A,B,Q1,Q2,PBC
3350 IF SNUM%=1 THEN RESTORE 3260
3360 IF SNUM%=2 THEN RESTORE 3270
3370 IF SNUM%=3 THEN RESTORE 3280
3380 IF SNUM%=4 THEN RESTORE 3290
3390 DOSUB 9990
3400 GOTO 3660
3410
3420 DATA "ZN-CL2/1.0","ZN-CL2/2.1","ZN-CL2/2.4","ZN-CL2/3.3" EFFCD=.53
3430 SLFD=.02 ACC=.44
3440 RESTORE 3420
3450 DOSUB 10080
3460 NAM*BATNS(SNUM%)
3470 DATA .127,2.882,69,111,86
3480 DATA .214,2.766,54,64,110
3490 DATA .215,2.242,54,46,127
3500 DATA .278,2.066,42,56,130
3510 DATA 4.2577,-.659475,-.117385
3520 DATA 3.90924,-.820198,-.0882048
3530 DATA 3.92596,-.841845,-.0752426
3540 DATA 3.69999,-.878004,-.0770732
3550 IF SNUM%=1 THEN RESTORE 3470
3560 IF SNUM%=2 THEN RESTORE 3480
3570 IF SNUM%=3 THEN RESTORE 3490
3580 IF SNUM%=4 THEN RESTORE 3500
3590 READ A,B,Q1,Q2,PBC
3600 IF SNUM%=1 THEN RESTORE 3510
3610 IF SNUM%=2 THEN RESTORE 3520
3620 IF SNUM%=3 THEN RESTORE 3530
3630 IF SNUM%=4 THEN RESTORE 3540
3640 DOSUB 9990
3650 GOTO 3660
3660 REM BASIC EQUATIONS (DEFINE VEHICLE PARAMETERS)
3670
3700 IF VEH%=1 THEN VT="ELECTRIC"
3710 IF VEH%=2 THEN VT="HYBRID"
3720 IF CAP%=2 THEN WSH=451
3730 IF CAP%=4 THEN WSH=596
3740 IF CAP%=5 THEN WSH=797
3750 IF CAP%=6 THEN WSH=989
3760 IF CAP%-2 THEN ORADE-17.3
3770 IF CAPX-2 THEN ACCN-21.5
3790 IF CAPX-2 THEN CYCLE-23.9
3790 IF CAP%-4 OR CAP%-3 THEN ORADE-28
3900 IF CAP%-4 OR CAP%-3 THEN ACCN-24
3810 IF CAP%-4 OR CAP%-3 THEN CYCLE-26
3820 IF CAP%-6 THEN ORADE-20.3
3830 IF CAPX-6 THEN ACCN-20.3
3840 IF CAPX-6 THEN CYCLE-20.3
3850 MOTSW=490: CONSW=2500: TRFSW=1.418: TRCVTSW=1096: HESW=430
3860 WMOT1=9000001:ORADE/MOTSW
3870 IF CAP%-4 OR CAP%-5 THEN WCON1=GRADE/CONSW
3880 IF CAP%-3 THEN WTFR1=GRADE/TRAWS
3890 IF CAP%-2 THEN WTFR1=CYCLE/TRAWS
3900 IF CAP%-4 THEN WTFR1=GRADE/TRAWS
3920 IF CAP%-4 AND VEH%-2 THEN WTCVT1=GRADE/TRCVTSW
3930 IF CAP%-3 AND VEH%-2 THEN WTCVT1=GRADE/TRCVTSW
3940 IF VEH%-1 THEN WTCVT1=0 ELSE WTCVT1=GRADE/TRCVTSW
3950 IF VEH%-2 THEN WHE1=GRADE/HESW ELSE WHE1=0
3960 IF VEH%-1 THEN WTR1=WTFR1 ELSE WTR1=WTCVT1
3970 IF PTOR%-3 AND TOR%-2 THEN OOTO 4190
3990 IF TOR%-3 THEN OOTO 4170
3991 ' REM ITERATION PROCEDURE FOR ACTUAL RANGE.
3993 ' 4000 R=1.2*DRAN
4020 ICOUNT%-1
4025 REM COMPUTE BMF AS A FUNCTION OF ELVEC RANGE
4030 BMF=(A*R+B)/100
4035 IF NUM%-1 THEN OOTO 4120
4040 WKO=ACCN/BMF
4050 STA%=0
4060 OOSUB 10170
4070 IF ACTRAN>DRAN AND ACTRAN <=1.05*DRAN THEN 4100 ELSE ICOUNT%=ICOUNT%+1
4080 R=DRAN+R/ACTRAN
4090 IF ICOUNT% >=30 THEN OOTO 4100 ELSE 4030
4100 LIMPRT%=0
4110 IF ACTRAN<DRAN OR ACTRAN >=1.05*DRAN THEN LIMPRTX = 1
4120 TAU=6.6/60: LPD=CH(1)+CH(2)*LOG(TAU)+CH(3)*LOG(TAU)^2
4130 PD=EXP(LPDP)
4140 BMF1=GRADE/PD
4150 IF BMF>BMF THEN BMF=BMF
4160 IF BMF>BMF THEN BMF="GRADE" ELSE BMF="RANGE"
4170 IF TOR%V3 THEN BMF=BMFIN
4180 IF TOR% THEN BMF="INPUT"
4190 IF PTOR% AND TOR% THEN BMF=BMFIN
4200 IF PTOR% AND TOR% THEN BMF="INPUT"
4210 IF PTOR% AND TOR% THEN R=((BMF*100-B)/A)
4220 IF TOR% THEN R=((BMF*100-B)/A)
4230 WKO = ACCN/BMF
4240 STA%=1
4250 OOSUB 10170
4260 IF ERROR%=1 THEN 7220 END OF PROGRAM OPERATIONS
4270 OOSUB 13910 COMPUTE WEIGHTS AND WEIGHT DEPENDENT VARIABLES.
4270 OOSUB 13920 COMPUTE WEIGHTS AND WEIGHT DEPENDENT VARIABLES.
4380 REM PRINT AVSIZINO OUTPUT REPORT
4390 4400 REM IF RF% = 1 THEN SKIP OUTPUT REPORT HEADER.
4410 4420 IF RF% #1 THEN 4430
4420 PRINT "AVSIZING OUTPUT REPORT"
4440 LPRINT TAB(29)"AVIIZING OUTPUT REPORT"
4450 X = CSRLN
4460 LOCATE X,29;PRINT STRING$(22,196)
4470 X=STRING$(22,95)
4480 LPRINT TAB(29)X$;
4490 PRINT : LPRINT
4495 IF NUM%=1 THEN GOTO 4565
4500 TORCHECK=TOR%
4510 WHILE TORCHECK<3
4520 NOCONV%=" WARNING! Iteration limit exceeded. THE RESULTS BELOW MAY NOT BE MEANINGFUL."
4530 IF LPRINTX=1 THEN PRINT NOCONV$ ELSE PRINT CONV$:COUNTX="iterations."
4540 IF LPRINTX=1 THEN LPRINT NOCONVX ELSE LPRINT CONV$:COUNTX="iterations."
4550 TORCHECK=3
4560 WEND
4565 IF NUM%=1 THEN PRINT "Actual range not computed for AL-AIR."
4570 PRINT : LPRINT
4580 X=(180-LEN(TLE))/2
4590 PRINT TAB(X)TLE$;
4600 LPRINT TAB(X)TLE$;
4610 PRINT : LPRINT
4620 F6=0%
4630 PRINT TAB(30);PRINT TAB(50)"WT(KG) VOL(LTR) PWR(KW)"
4640 LPRINT TAB(30);LPRINT TAB(50)"WT(KG) VOL(LTR) PWR(KW)"
4650 PRINT USING "; # # "; "THE VEHICLE CAPACITY IS " ; CAP%
4660 LPRINT USING "; # # "; "THE VEHICLE CAPACITY IS " ; CAP%
4670 PRINT USING F6; "THE VEHICLE TYPE IS "; VT
4680 LPRINT USING F6; "THE VEHICLE TYPE IS "; VT
4690 PRINT USING "; # # "; "THE DESIRED RANGE IS " ; IDRAN%
4700 LPRINT USING "; # # "; "THE DESIRED RANGE IS " ; IDRAN%
4710 PRINT USING "; # # "; "THE DOMINANT BMF IS "; BMFT%
4720 LPRINT USING "; # # "; "THE DOMINANT BMF IS "; BMFT%
4730 PRINT USING "; # # "; "THE BATTERY IS "; BATTR%
4740 LPRINT USING "; # # "; "THE BATTERY IS "; BATTR%
4750 PRINT USING "; # # "; "THE TEST WEIGHT IS "; WT
4760 LPRINT USING "; # # "; "THE TEST WEIGHT IS "; WT
4770 PRINT USING "; # # "; "THE CURB WEIGHT IS "; WC
4780 LPRINT USING "; # # "; "THE CURB WEIGHT IS "; WC
4790 PRINT USING " \\
4800 PRINT USING " \\
4810 PRINT USING " \\
4820 PRINT USING " \\
4830 PRINT USING " \\
4840 PRINT USING " \\
4850 PRINT USING " \\
M-78
4860 PRINT USING "N	
NNN.NN" "THE ACTUAL RANGE IS	" ACT
4870 LPRINT USING "$N	
NNN.NN" $"THE ACTUAL RANGE IS	" AC
4880 IF TOR%-2 THEN 5100
4890 '
4900 REM MULTIPLE RUN LOGIC
4910 '
4920 PRINT
4930 LOCATE 22.41: PRINT "DO YOU WISH TO MAKE ANOTHER RUN?" 1
4940 ANSI*INKEY*: IF ANSI*"N" AND ANSI*"n" AND ANSI*"Y" AND ANSI*"y" THEN GOTO 0 4940
4950 IF ANSI*"N" OR ANSI*"n" THEN LOCATE 22.40:PRINT SPACE$(33):GOTO 4980
4960 IF ANSI*"y" OR ANSI*"Y" THEN RFX%=1: LPRINTCLS
4970 IF TOR%=3 GOTO 320 ELSE GOTO 410
4980 PRINT "DO YOU WISH TO RUN ELVEC FOR THE VEHICLE SIZED IN THE LAST RUN(Y/N)?"
4990 ANSI*INKEY*: IF ANSI*"N" AND ANSI*"n" AND ANSI*"Y" AND ANSI*"y" THEN 0010 4990
5000 IF ANSI*="N" OR ANSI*="n" GOTO 7260
5010 '
5020 REM INPUTS TO THE ELVEC PROGRAM.
5030 '
5040 IF VEH%=1 AND CAP%=2 THEN CDA=.51
5050 IF VEH%=1 AND CAP%=4 THEN CDA=555
5060 IF VEH%=1 AND CAP%=5 THEN CDA=.6
5070 IF VEH%=1 AND CAP%=6 THEN CDA=1.18
5080 IF VEH%=2 AND CAP%=4 THEN CDA=.59
5090 IF VEH%=2 AND CAP%=5 THEN CDA=.64
5100 PTIRE=38!
5110 PKEFF=.95
5120 CRIAL=1!
5130 PMAIN=.2#PEFPW:
5140 UN$(1)="URB1 1"
55$(2)="URB2 1"
55$(3)="URB3 1"
55$(4)="URB4 1"
5150 UN$(5)="URB5 1"
55$(6)="URB6 1"
55$(7)="URB7 1"
55$(8)="URB8 1"
5160 UN$(9)="URB9 1"
55$(10)="URB10 1"
55$(11)="URB11 1"
55$(12)="URB12 1"
5170 UN$(13)="URB13 1"
55$(14)="URB14 1"
55$(15)="URB15 1"
55$(16)="URB16 1"
5180 UN$(17)="URB17 1"
5190 CY$(1)=" - CYCLE 1"
55$(2)=" - CYCLE 2"
55$(3)=" - CYCLE 3"
5200 CY$(4)=" - CYCLE 4"
55$(5)=" - CYCLE 5"
55$(6)=" - CYCLE 6"
5210 CY$(7)=" - CYCLE 7"
55$(8)=" - CYCLE 8"
55$(9)=" - CYCLE 9"
5220 CY$(10)=" - CYCLE 10"
55$(11)=" - CYCLE 11"
55$(12)=" - CYCLE 12"
5230 '
5240 REM CONSTRUCT SOME COMMON CYCLE SEQUENCES
5250 '
5260 UC7.166=UN$(7)
5270 FOR I=8 TO 16
5280 UC7.166=UC7.166+UN$(I)
5290 NEXT I
5300 UC3.116=UN$(3)
5310 FOR I=4 TO 11
5320 UC3.116=UC3.116+UN$(I)
5330 NEXT I
5340 UC12.178=UN$(12)
5350 FOR I=13 TO 17
5360 UC12.178=UC12.178+UN$(I)
5370 NEXT I
5380 UC3.86=UN$(3)
5390 FOR I=4 TO 9
5400 UC3.86=UC3.86+UN$(I)
5410 NEXT I
LOC1.6E=US(1)
1=2 TO 6
LOC1.6E=US(1)
NEXT I
PRINT
PRINT
IF TOR%=2 THEN 6260
IF TOR%=3 THEN 5650
REM DETERMINE CYCLE (FEDERAL, HIGHWAY OR VAN)
CLS
PRINT "CYCLE TYPE NUMBER LIST"
PRINT STRING$(22, "")
PRINT " 1. FEDERAL CYCLE"
PRINT " 2. HIGHWAY CYCLE"
PRINT " 3. VAN CYCLE"
PRINT " ENTER CYCLE TYPE NUMBER (1, 2 OR 3)", CNUM%
IF CNUM%<>1 AND CNUM%<>2 AND CNUM%<>3 THEN 3610
CLS
WRITE APPROPRIATE CYCLE TO DISK.
OPEN "LOCAL.DAT" FOR OUTPUT AS 01
GOSUB 7460 'CALL SUBROUTINE FRONT-END
IF CNUM%1 THEN PRINT0.1. "NAMCYC FEDERAL"
IF CNUM%3 THEN GOSUB 7760 'CALL SUBROUTINE PARAMVAR
IF CNUM%3 THEN PRINT0.1. "END"
IF CNUM%2 THEN PRINT0.1. "NAMCYC HIWAY"
PRINT0.1. "RUN"
PRINT0.1. "N"
GOSUB 14250
PRINT0.1. "END"
PRINT0.1. "QUIT"
CLOSE 01
PRINT "AN INPUT FILE HAS BEEN WRITTEN TO DISK USING THE "
PRINT " CYCLE AND DATA FROM THE LAST RUN."
IF TOR%<>2 THEN GOSUB 9900 'WRITE TO THE VEHICLE.DAT FILE
DOBX%=0
WEND
GOSUB 7260
RFM WRITE 24 HR. CYCLE TO DISK.
DOBX%=0
WEND
REM OPEN REMOTE DAT FILE FOR INPUT AS #1
M-80
6270 IF CAP%=6 THEN 6630
6280 GOSUB 7460 'CALL SUBROUTINE FRONT-END
6290 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6300 GOSUB 7950 'CALL SUBROUTINE CYCLE — T
6310 PRINT1: TLE*+CY*(1)
6320 PRINT1: "N"
6330 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6340 GOSUB 8000 'CALL SUBROUTINE CYCLE — 2
6350 PRINT1: TLE*+CY*(2)
6360 PRINT1: "N"
6370 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6380 GOSUB 8130 'CALL SUBROUTINE CYCLE — 3
6390 PRINT1: TLE*+CY*(3)
6400 PRINT1: "N"
6410 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6420 GOSUB 8310 'CALL SUBROUTINE CYCLE — 4
6430 PRINT1: TLE*+BAT*+CY*(4)
6440 PRINT1: "N"
6450 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6460 GOSUB 8450 'CALL SUBROUTINE CYCLE — 5
6470 PRINT1: TLE*+CY*(5)
6480 PRINT1: "N"
6490 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6500 GOSUB 8620 'CALL SUBROUTINE CYCLE — 6
6510 PRINT1: TLE*+CY*(6)
6520 PRINT1: "N"
6530 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6540 GOSUB 8820 'CALL SUBROUTINE CYCLE — 7
6550 PRINT1: TLE*+CY*(7)
6560 PRINT1: "N"
6570 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6580 GOSUB 9000 'CALL SUBROUTINE CYCLE — 8
6590 PRINT1: TLE*+CY*(8)
6600 PRINT1: "N"
6605 IF VEH%=2 THEN GOSUB 14110 'CALL HYBRID SUBROUTINE
6610 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6620 GOSUB 9190 'CALL SUBROUTINE CYCLE — 9
6630 PRINT1: TLE*+CY*(9)
6640 PRINT1: "N"
6650 IF CYCLE%=9 THEN /040
6660 REM CYCLE 10
6670 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6680 GOSUB 9350 'CALL SUBROUTINE CYCLE — 10
6690 PRINT1: TLE*+CY*(10)
6700 PRINT1: "N"
6710 IF CYCLE%=10 THEN 7040
6720 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6730 GOSUB 9490 'CALL SUBROUTINE CYCLE — 11
6740 PRINT1: TLE*+CY*(11)
6750 PRINT1: "N"
6760 IF CYCLE%=11 THEN 7040
6770 REM CYCLE 12
6780 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6790 GOSUB 9630 'CALL SUBROUTINE CYCLE — 12
6800 PRINT1: TLE*+CY*(12)
6810 PRINT1: "N"
6820 IF CYCLE%=12 THEN 7040
6830 REM BEGIN VAN CYCLES
6840 IF CAP%>6 THEN 7040
6845 GOSUB 7460 'CALL SUBROUTINE FRONT-END
6850 GOSUB 7760 'CALL SUBROUTINE PARAMVAR
6860 GOSUB 9770 'CALL SUBROUTINE CYCLE — VAN
A7A7 PRINT1: "MARK 10.5 hr"
REM END 24 HR. CYCLE STATEMENTS
REM OPEN FILES OF THE FORM XXX.COS AND XXX.END
REM DISPLAY WARNINGS OR ERROR MESSAGES (IF REQUIRED) BEFORE ENDING PROGRAM OPERATIONS.
7259 '
7260 PRINT 1, PRINT 1, PRINT
7270 PRINT 1, LPRINT
7280 IF ERROR%=1 THEN PRINT "SPECIFIC POWER IS OUT OF RANGE."
7290 IF ERROR%=1 THEN LPRINT "SPECIFIC POWER IS OUT OF RANGE."
7300 IF ERROR%=1 AND LIMPRT%=1 THEN PRINT "WARNING! The iteration limit in the
Actual Range calculation was exceeded. Therefore the Actual Range may not have
converged."
7310 IF ERROR%=1 AND LIMPRT%=1 THEN LPRINT "WARNING! The iteration limit in the
Actual Range calculation was exceeded. Therefore the Actual Range may not have
converged."
7320 IF ERROR%=1 AND LIMPRT%=1 THEN PRINT " The current value is"
7330 IF ERROR%=1 AND LIMPRT%=1 THEN LPRINT " The current value is"
7340 '
7350 REM END OF PROGRAM OPERATIONS
7360 '
7370 LOCATE 23,1 PRINT SPACES(75)
7380 LOCATE 23,25 PRINT "** END OF PROGRAM OPERATIONS **"
7390 LPRINT TAB(25)"**END OF PROGRAM OPERATIONS**"
7400 LPRINT CHR$(12)
7410 '
7420 REM RESTART OPTION
7430 '
7440 LOCATE 25,30 PRINT"TYPE RUN TO RE-START"
7450 END
7460 '***
7470 '
7480 REM SUBROUTINE FRONT-END.
7490 '
7500 '***
7510 IF TDIR=1 OR TDIR=3 THEN PRINT01, "CREATE/LOG STAREL.COM"
7520 IF TDIR=2 THEN PRINT01, "CREATE/LOG "+NAM2499+.COM"
7530 IF DOB%=1 THEN 7570
7540 PRINT01, "**DATA(ORCUSER,STORE)RUNELVEC"
7550 PRINT01, "N"
7560 PRINT01, "N"
7570 PRINT01, "E"
7580 PRINT01, "N"
7590 PRINT01, "N"
7600 PRINT01, "N"
7610 PRINT01, "USERDATA"
7620 PRINT01, "ADVEV"
7622 PRINT01, "MDLPOT ANALYT"
7625 IF NNUMC>1 THEN PRINT01, "MDLBAT ACTRNO"
7630 PRINT01, "NAMBAT "INAMES
7750 RETURN
7760 '***
7770 '
7780 REM SUBROUTINE PARAMVAR
7790 '
7800 '***
7810 PRINT01, "PARAMVAR"
7820 PRINT01, "NAMCYC"
7830 PRINT01, "N"
7840 RETURN
7850 '***
7860 '
7870 REM SUBROUTINE CYCLE - 1
7880 '
7890 '***
7900 PRINT01, U0(1)+U0(2)
7910 PRINT01, "park 1.9hr"
7920 PRINT01, "NAM 0"

M-83
7920 PRINT1, "park 21.90hr"
7940 PRINT1, "END"
7950 PRINT1, "RUN"
7960 PRINT1, "N"
7975 GO TO 1250
7980 PRINT1, "END"
7990 RETURN

8000 ' SUBROUTINE CYCLE - 2
8020 REM SUBROUTINE CYCLE - 2
8040 ' ..
8060 PRINT1, UC7.160
8080 PRINT1, "park 5.01hr"
8100 PRINT1, UC7.160
8120 PRINT1, "park 16.60hr"
8140 PRINT1, UC7.160
8160 PRINT1, "END"
8180 PRINT1, "RUN"
8200 RETURN

8190 ' SUBROUTINE CYCLE - 3
8210 ' ..
8230 PRINT1, UC1.66
8250 PRINT1, "park 7.15hr"
8270 PRINT1, UC7.160
8290 PRINT1, "park 1.56hr"
8310 PRINT1, UC1.66
8330 PRINT1, "END"
8350 PRINT1, "RUN"
8370 RETURN

8380 ' SUBROUTINE CYCLE - 4
8400 ' ..
8420 PRINT1, UC1.66
8440 PRINT1, "park 5.16hr"
8460 PRINT1, "park 2.77hr"
8480 PRINT1, UC1.66
8500 PRINT1, UC7.160
8520 PRINT1, UC7.160
8540 PRINT1, UC7.160
8560 PRINT1, "park 2.77hr"
8580 PRINT1, "park 0.75hr"
8600 PRINT1, UC7.160
8620 PRINT1, UC1.66
8640 PRINT1, UC1.66
8660 PRINT1, "park 7.15hr"
8680 PRINT1, "park 1.56hr"
8700 PRINT1, UC1.66
8720 PRINT1, "park 2.77hr"
8740 PRINT1, "park 0.75hr"
8760 PRINT1, "park 7.15hr"
8780 PRINT1, "park 1.56hr"
8800 RETURN

8810 ' SUBROUTINE CYCLE - 5
8830 ' ..
8850 PRINT1, UC7.160
8870 PRINT1, UC7.160
8890 PRINT1, UC7.160
8910 PRINT1, UC7.160
8930 PRINT1, UC7.160
8950 PRINT1, UC7.160
8970 PRINT1, "park 7.15hr"
8990 PRINT1, "park 1.56hr"
9010 PRINT1, "END"
9030 PRINT1, "RUN"
9050 RETURN
6360 PRINT11, "park 6.97hr"
6370 PRINT11, "federal 1"
6380 PRINT11, "park 7.26hr"
6390 PRINT11, "END"
6400 PRINT11, "RUN"
6410 RETURN
6420 '**
6430 ' 6440 REM SUBROUTINE CYCLE - 6
6440 ' 6450 '**
6460 ' **
6470 PRINT11, "federal 2"
6480 PRINT11, "park 1.04hr"
6490 PRINT11, UC1.68
6500 PRINT11, U6(7)+U8(8)+U8(9)
6510 PRINT11, "park 0.57hr"
6520 PRINT11, U8(1)+U8(2)
6530 PRINT11, "park 6.63hr"
6540 PRINT11, UC3.118
6550 PRINT11, UC12.178
6560 PRINT11, "park 1.63hr"
6570 PRINT11, "federal 1"
6580 PRINT11, "park 11.69hr"
6590 PRINT11, "END"
6600 PRINT11, "RUN"
6610 RETURN
6620 '**
6630 ' 6640 REM SUBROUTINE CYCLE - 7
6640 ' 6650 '**
6660 ' **
6670 PRINT11, "federal 2"
6680 PRINT11, "park 4.57hr"
6690 PRINT11, UC1.68
6700 PRINT11, U6(1)
6710 PRINT11, "park 0.60hr"
6720 PRINT11, "federal 2"
6730 PRINT11, "park 2.57hr"
6740 PRINT11, "federal 1"
6750 PRINT11, "park 1.38hr"
6760 PRINT11, "federal 1"
6770 PRINT11, "park 12.35hr"
6780 PRINT11, "END"
6790 PRINT11, "RUN"
6800 RETURN
6810 '**
6820 ' 9000 '**
9000 '**
9190 '..
9200 '
9210 REM SUBROUTINE CYCLE - 9
9220 '
9230 '..
9240 PRINT11, "hiway 4"
9250 PRINT11, "park 7.04hr"
9260 PRINT11, "federal 1"
9270 PRINT11, "hiway 1"
9280 PRINT11, "federal 1"
9290 PRINT11, "park 0.66hr"*
9300 PRINT11, "federal 1"
9310 PRINT11, "park 14.09hr"
9320 PRINT11, "END"
9330 PRINT11, "RUN"
9340 RETURN
9350 '..
9360 '
9370 REM SUBROUTINE CYCLE - 10
9380 '
9390 '..
9400 PRINT11, "hiway 4"
9410 PRINT11, "park 6.5hr"
9420 PRINT11, "federal 1"
9430 PRINT11, "hiway 4"
9440 PRINT11, "federal 1"
9450 PRINT11, "park 15.04hr"
9460 PRINT11, "END"
9470 PRINT11, "RUN"
9480 RETURN
9490 '..
9500 '
9510 REM SUBROUTINE CYCLE - 11
9520 '
9530 '..
9540 PRINT11, "hiway 15"
9550 PRINT11, "park 2.61hr"
9560 PRINT11, U8(1)+U8(2)
9570 PRINT11, "park 0.57hr"
9580 PRINT11, UC3.844/8(9)
9590 PRINT11, "park 17.42hr"
9600 PRINT11, "END"
9610 PRINT11, "RUN"
9620 RETURN
9630 '..
9640 '
9650 REM SUBROUTINE CYCLE - 12
9660 '
9670 '..
9680 PRINT11, "federal 1"
9690 PRINT11, "hiway 16"
9700 PRINT11, "park 1.0hr"
9710 PRINT11, "hiway 7"
9720 PRINT11, "federal 1"
9730 PRINT11, "park 17.35hr"
9740 PRINT11, "KHP"
9750 PRINT11, "RUN"
9760 RETURN
9770 '..
9780 '
9790 REM SUBROUTINE CYCLE - VAN
9800 '
9810 '..
9920 PRINT01: US(1)+UC3.118
9930 PRINT01: UC12.176
9940 PRINT01: "Park 1.5hr"
9950 PRINT01: US(1)+UC3.118
9960 PRINT01: UC12.176
9970 RETURN
9980 '***
9990 'REM SUBROUTINE VEHICLE - DATA
10000 /
10010 OPEN "VEHICLE.DAT" FOR OUTPUT AS 02
10020 WRITE 02, TC, NAMS, VEH, ICNT, DRAN, NUM%, SNUM%, CDA, CNUM%, BMF1, BMF, TMS
10030 CLOSE 02
10040 RETURN
10050 '***
10060 'REM SUBROUTINE 04 - REM
10070 /
10080 FOR I=1 TO 3
10090 READ 0441)
10100 NEXT I
10110 RETURN
10120 '***
10130 'REM SUBROUTINE BATNS- READ
10140 /
10150 FOR I=1 TO 4
10160 READ 0641)
10170 NEXT I
10180 RETURN
10190 '***
10200 'REM SUBROUTINE ACTUAL - RANGE
10210 /
10220 ERRORF=0
10230 IF NUM%= 1 THEN 10360 'BRANCH TO AL-AIR DATA SET
10240 IF NUM%= 2 THEN 10450 'BRANCH TO FE-AIR DATA SET
10250 IF NUM%= 3 THEN 10820 'BRANCH TO LI-FE-S DATA SET
10260 IF NUM%= 4 THEN 11190 'BRANCH TO LI-FE-S2 DATA SET
10270 IF NUM%= 5 THEN 11280 'BRANCH TO NA-S DATA SET
10280 IF NUM%= 6 THEN 11650 'BRANCH TO NI-TE DATA SET
10290 IF NUM%= 7 THEN 12020 'BRANCH TO NI-IN DATA SET
10300 IF NUM%= 8 THEN 12110 'BRANCH TO PB-ACID DATA SET
10310 IF NUM%= 9 THEN 12480 'BRANCH TO PB-ACID/EP DATA SET
10320 IF NUM%= 10 THEN 12850 'BRANCH TO IN-BR2 DATA SET
10330 IF NUM%= 11 THEN 13220 'BRANCH TO IN-CLZ DATA SET
10340 'REM DATA TAKEN FROM SPECIFIC POWER X DOD CHARTS FOR THE ELEVEN BATTERY TYPES
10350 'AL-AIR DATA SET
10360 AL-AIR DATA SET
10370 N=2
10380 DATA 0.157
10390 DATA 0.957
10400 STORE 10380
10410 Gosub 134620
10420 Restore 10380

M-87
10430 GOSUB 13690
10440 GOTO 13760
10450 ' FE-AIR DATA SET
10460 IF SNM%1 THEN 10500
10470 IF SNM%2 THEN 10580
10480 IF SNM%3 THEN 10640
10490 IF SNM%4 THEN 10740
10500 N = 3 P/E=1.0
10510 DATA 0.102,1.07,1.10,1.12
10520 DATA 100.90,70,90,40
10530 RESTORE 10510
10540 GOSUB 13620
10550 RESTORE 10520
10560 GOSUB 13690
10570 GOTO 13760
10580 N = 4 P/E=2.1
10590 DATA 0.115,1.125,1.13,1.14,1.16
10600 DATA 100.90,70,70,50,40
10610 RESTORE 10590
10620 GOSUB 13620
10630 RESTORE 10600
10640 GOSUB 13690
10650 GOTO 13760
10660 N = 6 P/E=2.4
10670 DATA 0.136,1.145,1.150,1.157,1.16
10680 DATA 100.90,70,70,50,40
10690 RESTORE 10670
10700 GOSUB 13620
10710 RESTORE 10680
10720 GOSUB 13690
10730 GOTO 13760
10740 N = 6 P/E=2.3
10750 DATA 0.146,1.156,1.162,1.165,1.17
10760 DATA 100.90,90,70,70,50,40
10770 RESTORE 10750
10780 GOSUB 13620
10790 RESTORE 10760
10800 GOSUB 13690
10810 GOTO 13760
10820 'LI-FE-S DATA SET
10830 IF SNM%1 THEN 10870
10840 IF SNM%2 THEN 10950
10850 IF SNM%3 THEN 11030
10860 IF SNM%4 THEN 11110
10870 N = 5 P/E=1.0
10880 DATA 0.99,1.26,1.16,1.17
10890 DATA 100.90,70,50,40
10900 RESTORE 10880
10910 GOSUB 13620
10920 RESTORE 10890
10930 GOSUB 13690
10940 GOTO 13760
10950 N = 6 P/E=2.1
10960 DATA 0.90,1.10,1.14,1.16,1.17
10970 DATA 100.90,70,70,50,40
10980 RESTORE 10960
10990 GOSUB 13620
11000 RESTORE 10970
11010 GOSUB 13690
11020 GOTO 13760
11030 N = 6 P/E=2.4
11040 DATA 0.90,1.10,1.14,1.16,1.17
11050 DATA 100.90,70,50,40
11060 RESTORE 11040
11070 GOSUB 13620
11080 RESTORE 11050
11090 GOSUB 13640
11100 GOTO 13760
11110 N = S + "P/E=3.3
11115 DATA 0.107,137,175.198
11120 DATA 100.90.70.50.40
11140 RESTORE 11120
11150 GOSUB 13620
11160 RESTORE 11130
11170 GOSUB 13640
11180 GOTO 13760
11190 ' LI-FE-82 DATA SET
11200 N = S + "DATA = "
11210 DATA 0.0,110.0,162.5,165.0,180.0
11220 DATA 100.0,90.0,80.0,60.0,40.0
11230 RESTORE 11210
11240 GOSUB 13620
11250 RESTORE 11220
11260 GOSUB 13640
11270 GOTO 13760
11280 ' NA-8 DATA SET
11290 IF SHUNX=1 THEN 11330
11300 IF SHUNX=2 THEN 11410
11310 IF SHUNX=3 THEN 11490
11320 IF SHUNX=4 THEN 11570
11330 N = S + "P/E=1.0
11340 DATA 0.129,135,141,148,150
11350 DATA 100.0,90.0,80.0,60.0,40.0
11360 RESTORE 11340
11370 GOSUB 13620
11380 RESTORE 11350
11390 GOSUB 13640
11400 GOTO 13760
11410 N = S + "P/E=2.1
11420 DATA 0.190,192,199,200
11430 DATA 100.90.70.50.40
11440 RESTORE 11420
11450 GOSUB 13620
11460 RESTORE 11430
11470 GOSUB 13640
11480 GOTO 13760
11490 N = S + "P/E=2.4
11500 DATA 0.180,210,224,228
11510 DATA 100.90.70.50.40
11520 RESTORE 11500
11530 GOSUB 13620
11540 RESTORE 11510
11550 GOSUB 13640
11560 GOTO 13760
11570 N = S + "P/E=3.3
11580 DATA 0.220,234,244,246
11590 DATA 100.90.70.50.40
11600 RESTORE 11580
11610 GOSUB 13620
11620 RESTORE 11590
11630 GOSUB 13640
11640 GOTO 13760
11650 ' NI-FE DATA SET
11660 IF SHUNX=1 THEN 11700
11670 IF SHUNX=2 THEN 11780
11680 IF SHUNX=3 THEN 11860
11690 IF SNUM=4 THEN 11940
11700 N = 6 1 ' P/E=1.0
11710 DATA 0.45, 75, 105, 120, 124
11720 DATA 100, 97, 90, 70, 50, 40
11730 RESTORE 11710
11740 GOSUB 13620
11750 RESTORE 11720
11760 GOSUB 13690
11770 GOTO 13760
11780 N = 6 1 ' P/E=2.1
11790 DATA 0.75, 90, 120, 141, 150
11800 DATA 100, 95, 90, 70, 50, 40
11810 RESTORE 11790
11820 GOSUB 13620
11830 RESTORE 11800
11840 GOSUB 13690
11850 GOTO 13760
11860 N = 6 1 ' P/E=2.1
11870 DATA 0.75, 90, 120, 141, 150
11880 DATA 100, 95, 90, 70, 50, 40
11890 RESTORE 11870
11900 GOSUB 13620
11910 RESTORE 11900
11920 GOSUB 13690
11930 GOTO 13760
11940 N = 6 1 ' P/E=3.3
11950 DATA 0.90, 110, 140, 180, 215, 0, 195, 0, 199, 0
11960 DATA 100, 95, 90, 70, 50, 40
11970 RESTORE 11950
11980 GOSUB 13620
11990 RESTORE 11960
12000 GOSUB 13690
12010 GOTO 13760
12020 'N-2N DATA SET
12030 N = 8
12040 DATA 0.0, 110, 0.140, 0.160, 0.170, 0, 180, 0, 195, 0, 199, 0
12050 DATA 100, 92, 2, 99, 0, 82.5, 78.5, 72.7, 58, 0, 50.0
12060 RESTORE 12040
12070 GOSUB 13620
12080 RESTORE 12050
12090 GOSUB 13690
12100 GOTO 13760
12110 'PB-ACID DATA SET
12120 IF SNUM=1 THEN 12160
12130 IF SNUM=2 THEN 12240
12140 IF SNUM=3 THEN 12320
12150 IF SNUM=4 THEN 12400
12160 N = 7 1 ' P/E=1.0
12170 DATA 0.50, 80, 93, 105, 120, 124
12180 DATA 100, 96, 90, 82, 70, 50, 40
12190 RESTORE 12170
12200 GOSUB 13620
12210 RESTORE 12180
12220 GOSUB 13690
12230 GOTO 13760
12240 N = 6 1 ' P/E=2.1
12250 DATA 0.70, 90, 115, 135, 145
12260 DATA 100, 96, 90, 70, 50, 40
12270 RESTORE 12250
12280 GOSUB 13620
12290 RESTORE 12260
12300 GOSUB 13690
12310 GOTO 12280

M-90
12320 N = 6 ' P/E=2.4
12330 DATA 0.70,90.115.135,145
12340 DATA 100.969.70.50,40
12350 RESTORE 12330
12360 GOSUB 13620
12370 RESTORE 12340
12380 GOSUB 13690
12390 GOTO 13760
12400 N = 6 ' P/E=3.3
12410 DATA 0.85.100.125.145.155
12420 DATA 100.97.90.70.50,40
12430 RESTORE 12410
12440 GOSUB 13620
12450 RESTORE 12420
12460 GOSUB 13690
12470 GOTO 13760
12480 ' PB-ACID/BP DATA SET
12490 IF SNUMX=1 THEN 12530
12500 IF SNUMX=2 THEN 12610
12510 IF SNUMX=3 THEN 12690
12520 IF SNUMX=4 THEN 12770
12530 N = 5 ' P/E=1.0
12540 DATA 0.275.345.400.426
12550 DATA 100.90.70.50,40
12560 RESTORE 12540
12570 GOSUB 13620
12580 RESTORE 12550
12590 GOSUB 13690
12600 GOTO 13760
12610 N = 5 ' P/E=1.0
12620 DATA 0.275.345.400.426
12630 DATA 100.90.70.50,40
12640 RESTORE 12620
12650 GOSUB 13620
12660 RESTORE 12630
12670 GOSUB 13690
12680 GOTO 13760
12690 N = 5 ' P/E=1.0
12700 DATA 0.275.345.400.426
12710 DATA 100.90.70.50,40
12720 RESTORE 12700
12730 GOSUB 13620
12740 RESTORE 12710
12750 GOSUB 13690
12760 GOTO 13760
12770 N = 5 ' P/E=1.0
12780 DATA 0.275.345.400.426
12790 DATA 100.90.70.50,40
12800 RESTORE 12780
12810 GOSUB 13620
12820 RESTORE 12790
12830 GOSUB 13690
12840 GOTO 13760
12850 ' ZN-BK2 DATA SET
12860 IF SNUMX=1 THEN 12900
12870 IF SNUMX=2 THEN 12980
12880 IF SNUMX=3 THEN 13060
12890 IF SNUMX=4 THEN 13140
12900 N = 6 ' P/E=1.0
12910 DATA 0.35.52.69.83.89
12920 DATA 100.97.90.70.50,40
12930 RESTORE 12910
12940 GOSUB 13A20
12950 RESTORE 12920
12960 GOSUB 13690
12970 GOTO 13760
12980 N = 6 : 'P/E=2.1
12990 DATA 0.55, 72, 64, 115, 125
13000 DATA 100, 97, 92, 70, 50, 40
13010 RESTORE 12990
13020 GOSUB 13620
13030 RESTORE 13000
13040 GOSUB 13690
13050 GOTO 13760
13060 N = 6 : 'P/E=2.4
13070 DATA 0.65, 85, 113, 135, 147
13080 DATA 100, 98, 90, 70, 50, 40
13090 RESTORE 13070
13100 GOSUB 13620
13110 RESTORE 13080
13120 GOSUB 13690
13130 GOTO 13760
13140 N = 6 : 'P/E=3.3
13150 DATA 0.85, 94, 125, 150, 160
13160 DATA 100, 95, 91, 70, 50, 40
13170 RESTORE 13150
13180 GOSUB 13620
13190 RESTORE 13160
13200 GOSUB 13690
13210 GOTO 13760
13220 ' IN-CL2 DATA SET
13230 IF SNUMX=1 THEN 13270
13240 IF SNUMX=2 THEN 13350
13250 IF SNUMX=3 THEN 13430
13260 IF SNUMX=4 THEN 13510
13270 N = 5 : 'P/E=1.0
13280 DATA 0.80, 84, 86, 87
13290 DATA 100, 90, 70, 50, 40
13300 RESTORE 13280
13310 GOSUB 13620
13320 RESTORE 13290
13330 GOSUB 13690
13340 GOTO 13760
13350 N = 6 : 'P/E=2.1
13360 DATA 0.90, 96, 103, 110, 114
13370 DATA 100, 90, 82, 70, 50, 40
13380 RESTORE 13360
13390 GOSUB 13620
13400 RESTORE 13370
13410 GOSUB 13690
13420 GOTO 13760
13430 N = 6 : 'P/E=2.4
13440 DATA 0.110, 116, 121, 127, 131
13450 DATA 100, 90, 81, 70, 50, 40
13460 RESTORE 13440
13470 GOSUB 13620
13480 RESTORE 13450
13490 GOSUB 13690
13500 GOTO 13760
13510 N = 6 : 'P/E=3.3
13520 DATA 0.115, 121, 128, 130, 131
13530 DATA 100, 90, 85, 70, 50, 40
13540 RESTORE 13520
13550 GOSUB 13620
13560 RESTORE 13530
13380 GOTO 13760
13390
13400 REM SUBROUTINE FOR READING THE SPECIFIC POWER DATA INTO THE D(I) ARRAY.
13410
13420 FOR I = 1 TO N
13430 READ DOM(I)
13440 NEXT I
13450 RETURN
13460
13470 REM SUBROUTINE FOR READING THE DOR DATA INTO THE R(I) ARRAY.
13480
13490 FOR I = 1 TO N
13500 READ RAN(I)
13510 NEXT I
13520 RETURN
13530
13540 REM BRANCH TO ERROR MESSAGE AND EXIT IF SPECIFIC POWER IS OUT OF RANGE.
13550
13560 IF STAX•1 THEN IF WKO < 0 OR WKO > DOM(N) THEN ERRORFX=1
13570 IF STAX•1 THEN IF WKO < 0 OR WKO > DOM(N) THEN 13890
13580
13590 REM INTERPOLATION ALGORITHM.
13600
13610 FOR I = 1 TO N-1
13620 IF WKO < DOM(I+1) AND WKO > DOM(I) THEN 13840
13630 NEXT I
13640 DOD = ((RAN(I+1)-RAN(I))/(DOM(I+1)-DOM(I)))*(WKO-DOM(I)) + RAN(I)
13650
13660 REM COMPUTE ACTUAL RANGE.
13670
13680 ACTRAN = DOD/R100
13690 RETURN
13700
13710 '***
13720
13730 REM SUBROUTINE WEIGHT
13740
13750 '***
13760 WTERM1=WSH+PANPL+WMOT/WTRI+WM1+WM1+WM1+WHE1
13770 WT=WTERM1/((1+13*WTERM2))
13780 WBM=WBM*WT
13790 WACC=WACC*WT
13800 WC=WTERM+WBM*WT
13810 WCON=WTERM+WBM*WT
13820 WFO=WTERM+WBM*WT
13830 WPO=WTERM+WBM*WT
13840 WTC=WTERM+WBM*WT
13850 WTR=WTERM+WBM*WT
13860 WTV=WTERM+WBM*WT
13870 '***
13880
VCT=CKW/2.15
VTIF=E TKW/2.8
IF VEH=1 THEN GOTO 14097
ENOVOL=POW/.3
OTRANVOLOEPOW/.8499949
REM DATA ON WH/L ARE FROM SYMONS EQUATIONS
REM AL-AIR WH/L WAS TAKEN FROM GREY REPORT
REM NI-IN WH/L WAS TAKEN FROM OBEY REPORT
B VOLL=(Q1#W)/Q2
P9•(PSCNWB)/1000
RETURN
PRINT019 "U8t'RDATA"
PRINT019 "ADVICE"
PRINTMI. "NAMCLC CURT"
PRINTMI • "NAMHE AUDI"
PRINTMI. "FUELCP l00AL"
PRINTMI• "EFFDC 0.9"
PRINTMI. "FORKS 0.3"
PRINTMI• "EFCVRT 0.9"
PRINTMI• "WT""IWT
PRINTMI• "WB""IWB
PRINTMI • "CDAI"ICDA
PRINTMI • "CRODIAL"ICRODIAL
PRINTMI• "PTIRE"IPTIRE
PRINTMI• "CHOENO"
PRINTMI. ENOW
PRINTMI. "NONE"
RETURN
PRINT019 "SLFDSC"ISLFD
PRINT019 "ECHO ON"
PRINT019 "PACC"IPACC
PRINT019 "WT""IWT
PRINT019 "WB""IWB
PRINT019 "CDA"ICDA
PRINT019 "CRODIAL"ICRODIAL
PRINT019 "PTIRE"IPTIRE
PRINT019 "PEFPWR KM"IPPEFPWRIPEFPW
PRINT019 "PMXANL"+STR$(PMXANL)"KM"
PRINT019 "PKEFF"IPKEFFIPKEFF
PRINT019 "EFFCD"IEFFCD
IF NUM<4 THEN PRINT019. "CH"ICH(1)ICH(2)ICH(3)
RETURN
INPUT: DO YOU WISH TO RUN:
1. NEW VEHICLE USING URBAN OR HIGHWAY CYCLE?
2. PREVIOUS VEHICLE USING 24-h CYCLE?
3. REDESIGN OF VEHICLE BY CHANGING BMF?

1. (NEW VEHICLE)
2. (24-h CYCLE)
3. (REDESIGN)

1, 2 OR 3?

A

OPEN THE FILE: VEHICLE.DAT FOR INPUT AS #2

2 OR 3?

2

A1

INPUT:
ENTER BMF

3

B

PRECEEDING PAGE BLANK NOT FILMED
INPUT: ENTER TITLE OF RUN

IS VEHICLE 2-PASSENGER OR VAN?

YES

INPUT: ENTER VEHICLE TYPE (1 OR 2)
(1 = ELECTRIC, 2 = HYBRID)

NO

INPUT: ENTER DESIRED RANGE
ENTER BATTERY TYPE NUMBER

1. AL-AIR 4. LI-FE-S, 7. NI-ZN
2. FE-AIR 5. NA-S 8. PB-AC/ADV
10. ZN-BR 11. ZN-CL2

ENTER POWER-TO-ENERGY RATIO NUMBER
1.0 2.1 2.4 3.3

THIS BATTERY IS NOT OPERATIONAL IN THIS VERSION OF THE PROGRAM

B
INPUT: DO YOU WISH TO RUN ELVEC IN
1. DEMAND
2. BATCH
ENTER TYPE OF RUN (1 OR 2)

24-h CYCLE ?

INPUT: ENTER FILENAME OF 24-h INPUT FILE

5 PAS ?

INPUT: ENTER VEHICLE RANGE NO. (1, 2, OR 3)
100 mi
150 mi
250 mi

BRANCH TO BATTERY DATA SET:
(NAME, EFFCD, SLFD, ACC, RANGE-BMF COEFFICIENTS, Q1, Q2, PBC, CH-COEFFICIENTS)
FINAL CHECK FOR ACTUAL RANGE CONVERGENCE

DETERMINE IF BMF IS 1. RANGE 2. GRADE

COMPUTE SPECIFIC POWER

COMPUTE ACTUAL RANGE (CALL SUBROUTINE ACTUAL RANGE)

COMPUTE WEIGHTS AND WEIGHT-DEPENDENT VARIABLES

PRINT OUTPUT REPORT
DO YOU WISH TO MAKE ANOTHER RUN?

NEW VEHICLE OR REDESIGN

REDESIGN

A

A1

END

24-h CYCLE

NO YES

DO YOU WISH TO RUN ELVEC FOR THE VEHICLE SIZED IN THE LAST RUN?

NO YES

NEW VEHICLE

COMPUTE CDA

COMPUTE PTIRE PKEFF CRDIAL SOME COMMON CYCLES

F
1. NEW VEHICLE
2. REDESIGN
3. 24-h CYCLE

1 OR 3

WRITE 24-h CYCLE TO DISK

WRITE CHosen CYCLE TO DISK
CALL SUBR VEHICLE DATA (WRITES DATA TO DISK)

WRITE DATA TO THE FILES OF THE FORM XXX.ENG, XXX.COS

THE FILE WRITTEN TO DISK IS LOCAL.DAT. (REGARDLESS WHETHER ELVEC IS TO BE RUN IN DEMAND OR BATCH)

IF ELVEC IS TO BE RUN IN DEMAND, THE FILE WRITTEN TO DISK IS STAREL.DAT.
IF BATCH, IT IS XXX.DAT WHERE XXX IS FILENAME OF 24-h INPUT FILE

END
$ TYPE MAX.COM

$ set noverify
$ ON CONTROL_Y THEN $GOTO EXIT
$ inq rsp "Do you want to see 1 July message?
$ if rsp. eqs. "Y" then TYPE SIA0: [GRCUSER.STORE]MSG284.LIS
$ inq rsp "BULK DATA FILE TO BE USED (NULL RETURN FOR DEFAULT)?
$ if rsp. eqs. "" then goto default
$ assign/user 'rsp' for009
$ goto continue
$ default:
$ assign/user SIAO: [GRCUSER]bulk.dat for009
$ continue:
$ assign/user sav.dat for012
$ assign/user STAREL.COM for005
$ assign/user sys$command for006
$ ON ERROR THEN $ GOTO EXIT
$ run SIAO: [GRCUSER]elv.exe
$ EXIT:
$ del sav.dat::*

$ TYPE RUNELVEC.COM

$ set noverify
$ ON CONTROL_Y THEN $GOTO EXIT
$ inq rsp "Do you want to see 1 July message?
$ if rsp. eqs. "Y" then TYPE SIA0: [GRCUSER.STORE]MSG284.LIS
$ inq rsp "BULK DATA FILE TO BE USED (NULL RETURN FOR DEFAULT)?
$ if rsp. eqs. "" then goto default
$ assign/user 'rsp' for009
$ goto continue
$ default:
$ assign/user SIA0: [GRCUSER]bulk.dat for009
$ continue:
$ assign/user sav.dat for012
$ assign/user sys$command for005
$ assign/user sys$output for006
$ ON ERROR THEN $ GOTO EXIT
$ run SIAO: [GRCUSER]elv.exe
$ EXIT:
$ del sav.dat::*
<table>
<thead>
<tr>
<th>NAME</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>coefficient of the battery mass fraction (BMF) - ELVEC range (R) equation. viz., BMF = AR + B</td>
</tr>
<tr>
<td>ACC</td>
<td>Defined by PACC = ACC*WB</td>
</tr>
<tr>
<td>ACCN</td>
<td>Acceleration power (kw)</td>
</tr>
<tr>
<td>ACTRAN</td>
<td>Actual range (miles)</td>
</tr>
<tr>
<td>ANS$</td>
<td>String variable which obtains the response to question "DO YOU WISH TO MAKE ANOTHER RUN? If not Y or N (including lower case forms) then try again.</td>
</tr>
<tr>
<td>ANSI$</td>
<td>String variable which obtains the response to the question "DO YOU WISH TO RUN ELVEC FOR THE VEHICLE SIZED IN THE LAST RUN?" If not Y or N (including lower case forms) then try again.</td>
</tr>
<tr>
<td>B</td>
<td>Coefficient of the battery mass fraction (BMF) - ELVEC range (R) equation viz., BMF = AR + B</td>
</tr>
<tr>
<td>BATN$</td>
<td>Battery name</td>
</tr>
<tr>
<td>BMF</td>
<td>Battery mass fraction</td>
</tr>
<tr>
<td>BMFIN</td>
<td>Battery mass fraction input by the user in the redesign mode.</td>
</tr>
<tr>
<td>BMF1</td>
<td>$AMP1 = GRADE/PD</td>
</tr>
<tr>
<td>BMF2</td>
<td>BMF value in the file VEHICLE.DAT</td>
</tr>
<tr>
<td>BVOL</td>
<td>Battery volume (1)</td>
</tr>
</tbody>
</table>
CAP% Vehicle capacity
CDA Drag coefficient
CH(I) CH-coefficients
CKW controller power (kw)
CNUM% Cycle type number:
1 = Federal cycle
2 = Highway cycle
3 = Van cycle
CONSW Controller specific weight
CRDIAL ELVEC variable
CYCLE Cycle power
CYCLE% Sets number of cycles in 24-hour cycle
CY$(I) String variable used to label cycle number in the TITLE field of the ELVEC program
DOB% Flag which determines whether 24-hr. cycle will be run in demand or batch. (If set to 1 then demand; if set to 2 then batch).
DOD Cut off depth of discharge
DOM(I) Specific power values for the tables in the subroutine which computes actual range.
DRAN Desired range (miles)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFCVRT</td>
<td>Efficiency of CVT</td>
</tr>
<tr>
<td>EFFBC</td>
<td>Battery charger efficiency</td>
</tr>
<tr>
<td>EFFCD</td>
<td>Charge-discharge efficiency</td>
</tr>
<tr>
<td>ENGHHP</td>
<td>Defined by: $\frac{ENGHP}{ENGKW}/0.746$</td>
</tr>
<tr>
<td>ENGKW</td>
<td>For hybrids defined by $ENGKW = EPOW$</td>
</tr>
<tr>
<td>ENGVOL</td>
<td>Engine volume (l)</td>
</tr>
<tr>
<td>EPOW</td>
<td>Defined by: $EPOW = GRADE \times WT/1000$</td>
</tr>
<tr>
<td>ERROR%</td>
<td>Flag set equal to 1 if the specific power is out of range</td>
</tr>
<tr>
<td>ETKW</td>
<td>Equal to $\frac{GRADE \times WT}{1000}$ or $\frac{CYCLE \times WT}{1000}$</td>
</tr>
<tr>
<td>FBRKS</td>
<td>Fraction of braking energy dissipated by friction</td>
</tr>
<tr>
<td>FUELCP</td>
<td>Fuel capacity</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grade power (kw)</td>
</tr>
<tr>
<td>GTRANVOL</td>
<td>ICE transmission volume (l)</td>
</tr>
<tr>
<td>HESW</td>
<td>Heat engine specific power (w/kg)</td>
</tr>
<tr>
<td>LIMPRV%</td>
<td>Flag set equal to 1 if the iteration limit is exceeded in the iteration procedure for actual range</td>
</tr>
<tr>
<td>MOTSW</td>
<td>Motor specific power (w/kg)</td>
</tr>
<tr>
<td>MT</td>
<td>Motor type (not operational in this version of the program)</td>
</tr>
</tbody>
</table>
the number of points used to define the SPECIFIC POWER X DOD functions. The value of N is dependent upon battery type. However, it is fixed for each run.

String variable which obtains the current battery name.

Battery type number. An integer input variable which directs the program's branching to the correct data set for the desired battery. Must obtain a value between 1 and 11 (inclusive) or try again.

Accessory power (kw)

Passenger and payload wt (kg)

Battery power (kw)

constant in battery power equation

power density

power/energy ratio

pressure of tires (lbs/sq.in.)

value of the variable TOR% for "previous" run.

Constant in battery volume equation

Constant in battery volume equation

Cut off DOD values for the tables in the subroutine which computes actual range.
RFZ

Internal integer variable such that if it is equal to zero then the header of the output report is printed. If it is equal to one then the header is not printed.

SLFD

Self discharge (kw-hr)

SNUMZ

Integer variable which sets the power to energy ratio according to:

1 means P/E = 1.0
2 means P/E = 2.1
3 means P/E = 2.4
4 means P/E = 3.3

TLE$

Title of run

TORX

Integer variable with the following settings:
1 means new vehicle
2 means 24-hr. cycle using previous vehicle
3 means redesign by entering BMF.

TRCVTSW

CVT specific weight

TRFSW

Fixed transmission specific weight

VCT

Controller volume (1)

VEH$

Vehicle type number
1 = electric
2 = hybrid

VMOT

Motor volume (1)

VTT1F

EV transmission volume (1)

WCON

Controller weight (kg)

WCON1

Term in basic weight equation
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHE</td>
<td>Weight of the heat engine (kg)</td>
</tr>
<tr>
<td>WHE1</td>
<td>Term in basic weight equation</td>
</tr>
<tr>
<td>WKG</td>
<td>Specific power (w/kg)</td>
</tr>
<tr>
<td>WMOT</td>
<td>Motor weight (kg)</td>
</tr>
<tr>
<td>WSH</td>
<td>Shell weight (kg)</td>
</tr>
<tr>
<td>WTCVT</td>
<td>CVT weight (kg)</td>
</tr>
<tr>
<td>WTCVT1</td>
<td>Term in basic weight equation</td>
</tr>
<tr>
<td>WTF</td>
<td>Fixed transmission weight (kg)</td>
</tr>
<tr>
<td>WTF1</td>
<td>Term in basic weight equation</td>
</tr>
<tr>
<td>WTR1</td>
<td>Term in basic weight equation</td>
</tr>
</tbody>
</table>
LISTINGS FOR AVENERGY AND AVCOST
0 "AVERERUY.001 - COMBINED PROGRAM FOR 2, 4, 5 PASSENGER AND VAN
10 SUBROUTINE LISTING
390 INPUT "ENTER FILE NAME OF THE FORM XXX.ENO ": ENO$
395$
390 GOSUB 25000 ' INITIALIZATION ROUTINE
395$
400 OPEN ENO* FOR INPUT AS #3
410 INPUT #3, MB, WT, TIT, VEH
420 CLOSE #3
430$
440 REM REQUEST ELVEC OUTPUT FILE
450$
460 INPUT "ENTER ELVEC OUTPUT FILE NAME (NULL IF NO FILE IS BEING USED) ": JRB$
470 IF JRB$="" THEN ELFLAG=0 ELSE ELFLAG=1
475 IF ELFLAG=1 THEN OPEN JRB* FOR INPUT AS 02
477 IF ELFLAG=1 THEN INPUT02, DUMMY1+DUMMY2+RANGE(1)+ACTRN0(1)+DUMNI,PDMAX(1)+
WHPM(1)+OPM(1)+DAT(1)+TIM(1)
490 CLOSE #2
510 PRINT "SELECT THE VEHICLE AS FOLLOWS:
520 PRINT " 1 - TWO-PASSENGER - 9 CYCLES"
530 PRINT " 2 - FOUR-PASSENGER 250m - 12 CYCLES"
540 PRINT " 3 - FIVE-PASSENGER 100m - 10 CYCLES"
550 PRINT " 4 - FIVE-PASSENGER 150m - 11 CYCLES"
560 PRINT " 5 - FIVE-PASSENGER 250m - 12 CYCLES"
570 PRINT " 6 - VAN - 4 CYCLES"
580 PRINT " 0 - EXIT PROGRAM - RETURN TO BASIC"
590 INPUT "PICK A NUMBER ",NPAS
600 IF NPAS=0 THEN CLOSE1:END
610 IF NPAS=2 OR NPAS=1 THEN CLS1:GOTO 510
620 GOSUB 23000 ' VEHICLE TYPE AND INFO SUBROUTINE
625 RESTORE
630 ON WAS GOSUB 100092000s3000940095000.6000
640 CLS1:GOTO 510
1000 'S 1000 SUBROUTINE - 2 PASSENGER - 9 CYCLE
1010 Z=9
1020 GOSUB 10000 ' READ CAR DATA
1030 IF ELFLAG=0 THEN GOSUB 1300 ELSE GOSUB 27000
1040 IF VEH=1 THEN GOSUB 1100
1050 IF VEH=2 THEN GOSUB 1500
1060 RETURN
1100 '2 PASSENGER - 9 CYCLE - VEH = 1
1110 GOSUB 14000 ' PRINT 1 SUBROUTINE
1120 GOSUB 16000 ' PRINT 3 SUBROUTINE
1130 'GOSUB 17000 ' PRINT 4 SUBROUTINE
1150 GOSUB 18000 ' PRINT 5 SUBROUTINE
1160 GOSUB 24000 ' CLOSING SUBROUTINE
1170 RETURN
1500 '2 PASSENGER - 9 CYCLE - VEH = 2
1510 GOSUB 15000 ' PRINT 2 SUBROUTINE
1520 GOSUB 16000 ' PRINT 3 SUBROUTINE
1530 GOSUB 17000 ' PRINT 4 SUBROUTINE
1550 GOSUB 18000 ' PRINT 5 SUBROUTINE
1570 GOSUB 24000 ' CLOSING SUBROUTINE
1580 RETURN
2000 'S 2000 SUBROUTINE - 4 PASSENGER - 12 CYCLE - 250m
2010 Z=12
2020 GOSUB 10000 ' READ CAR DATA
2030 IF ELFLAG=0 THEN GOSUB 1300 ELSE GOSUB 27000
2040 IF VEH=1 THEN GOSUB 2100
2050 IF VEH=2 THEN GOSUB 2500
2060 RETURN
2100 '4 PASSENGER - 12 CYCLE - 250m - VEH = 1

PRECEDING PAGE BLANK NOT FILMED

M-119 PAGE M-115 INTENTIONALLY BLANK
2110 GOSUB 14000 ' PRINT 1 SUBROUTINE
2120 GOSUB 16000 ' PRINT 3 SUBROUTINE
2130 GOSUB 17000 ' PRINT 4 SUBROUTINE
2140 GOSUB 19000 ' PRINT 5 SUBROUTINE
2160 GOSUB 24000 ' CLOSING SUBROUTINE
2170 RETURN
2500 ' 4 PASSENGER - 12 CYCLE - 25mn - VEH = 2
2510 GOSUB 15000 ' PRINT 2 SUBROUTINE
2520 GOSUB 16000 ' PRINT 3 SUBROUTINE
2530 GOSUB 17000 ' PRINT 4 SUBROUTINE
2550 GOSUB 19000 ' PRINT 5 SUBROUTINE
2560 GOSUB 20000 ' PRINT 6 SUBROUTINE
2570 GOSUB 24000 ' CLOSING SUBROUTINE
2580 RETURN
3000 ' s 3000 SUBROUTINE - 5 PASSENGER - 10 CYCLE - 100m
3010 Z=10
3020 GOSUB 10000 ' READ CAR DATA
3030 IF ELFLAG=0 THEN GOSUB 13000 ELSE GOSUB 27000
3040 IF VEH=1 THEN GOSUB 3100
3050 IF VEH=2 THEN GOSUB 3500
3060 RETURN
3100 ' 5 PASSENGER - 10 CYCLE - 100m - VEH = 1
3110 GOSUB 14000 ' PRINT 1 SUBROUTINE
3120 GOSUB 16000 ' PRINT 3 SUBROUTINE
3130 GOSUB 17000 ' PRINT 4 SUBROUTINE
3150 GOSUB 18000 ' PRINT 5 SUBROUTINE
3160 GOSUB 24000 ' CLOSING SUBROUTINE
3170 RETURN
3200 ' 5 PASSENGER - 10 CYCLE - 100m - VEH = 2
3210 GOSUB 15000 ' PRINT 2 SUBROUTINE
3220 GOSUB 16000 ' PRINT 3 SUBROUTINE
3230 GOSUB 17000 ' PRINT 4 SUBROUTINE
3250 GOSUB 18000 ' PRINT 5 SUBROUTINE
3260 GOSUB 20000 ' PRINT 6 SUBROUTINE
3270 GOSUB 24000 ' CLOSING SUBROUTINE
3280 RETURN
3300 ' 5 4000 SUBROUTINE - 5 PASSENGER - 11 CYCLE - 150m
3310 Z=11
3400 GOSUB 10000 ' READ CAR DATA
3410 IF ELFLAG=0 THEN GOSUB 13000 ELSE GOSUB 27000
3420 IF VEH=1 THEN GOSUB 4100
3430 IF VEH=2 THEN GOSUB 4500
3440 RETURN
3490 RETURN
3500 ' 5 PASSENGER - 11 CYCLE - 150m - VEH = 1
3510 GOSUB 14000 ' PRINT 1 SUBROUTINE
3520 GOSUB 16000 ' PRINT 3 SUBROUTINE
3530 GOSUB 17000 ' PRINT 4 SUBROUTINE
3550 GOSUB 18000 ' PRINT 5 SUBROUTINE
3560 GOSUB 24000 ' CLOSING SUBROUTINE
3570 RETURN
3580 RETURN
3590 RETURN
3600 RETURN
3610 RETURN
3620 RETURN
3630 RETURN
3640 RETURN
3650 RETURN
3660 RETURN
3670 RETURN
3680 RETURN
3690 RETURN
3700 RETURN
3710 RETURN
3720 RETURN
3730 RETURN
3740 RETURN
3750 RETURN
3760 RETURN
3770 RETURN
3780 RETURN
3790 RETURN
3800 RETURN
3810 RETURN
3820 RETURN
3830 RETURN
3840 RETURN
3850 RETURN
3860 RETURN
3870 RETURN
3880 RETURN
3890 RETURN
3900 RETURN
3910 RETURN
3920 RETURN
3930 RETURN
3940 RETURN
3950 RETURN
3960 RETURN
3970 RETURN
3980 RETURN
3990 RETURN
4000 RETURN
4010 RETURN
4020 RETURN
4030 RETURN
4040 RETURN
4050 RETURN
4060 RETURN
4070 RETURN
4080 RETURN
4090 RETURN
4100 RETURN
4110 RETURN
4120 RETURN
4130 RETURN
4140 RETURN
4150 RETURN
4160 RETURN
4170 RETURN
4180 RETURN
4190 RETURN
4200 RETURN
4210 RETURN
4220 RETURN
4230 RETURN
4240 RETURN
4250 RETURN
4260 RETURN
4270 RETURN
4280 RETURN
4290 RETURN
4300 RETURN
4310 RETURN
4320 RETURN
4330 RETURN
4340 RETURN
4350 RETURN
4360 RETURN
4370 RETURN
4380 RETURN
4390 RETURN
4400 RETURN
4410 RETURN
4420 RETURN
4430 RETURN
4440 RETURN
4450 RETURN
4460 RETURN
4470 RETURN
4480 RETURN
4490 RETURN
4500 RETURN
4510 RETURN
4520 RETURN
4530 RETURN
4540 RETURN
4550 RETURN
4560 RETURN
4570 RETURN
4580 RETURN
4590 RETURN
4600 RETURN
4610 RETURN
4620 RETURN
4630 RETURN
4640 RETURN
4650 RETURN
4660 RETURN
4670 RETURN
4680 RETURN
4690 RETURN
4700 RETURN
4710 RETURN
4720 RETURN
4730 RETURN
4740 RETURN
4750 RETURN
4760 RETURN
4770 RETURN
4780 RETURN
4790 RETURN
4800 RETURN
4810 RETURN
4820 RETURN
4830 RETURN
4840 RETURN
4850 RETURN
4860 RETURN
4870 RETURN
4880 RETURN
4890 RETURN
4900 RETURN
4910 RETURN
4920 RETURN
4930 RETURN
4940 RETURN
4950 RETURN
4960 RETURN
4970 RETURN
4980 RETURN
4990 RETURN
5000 RETURN
5010 RETURN
5020 RETURN
5030 RETURN
5040 RETURN
5050 RETURN
5060 RETURN
5070 RETURN
5080 RETURN
5090 RETURN
5100 RETURN
5500 IF VEH=2 THEN GOSUB 5500
5540 RETURN
5560 '5 PASSENGER - 12 CYCLE - 2500 - VEH = 1
5570 GOSUB 14000 ' PRINT 1 SUBROUTINE
5580 GOSUB 16000 ' PRINT 3 SUBROUTINE
5590 GOSUB 17000 ' PRINT 4 SUBROUTINE
5600 GOSUB 18000 ' PRINT 5 SUBROUTINE
5610 GOSUB 24000 ' CLOSING SUBROUTINE
5570 RETURN
5560 '5 PASSENGER - 12 CYCLE - 2500 - VEH = 2
5580 GOSUB 15000 ' PRINT 2 SUBROUTINE
5590 GOSUB 16000 ' PRINT 3 SUBROUTINE
5600 GOSUB 17000 ' PRINT 4 SUBROUTINE
5610 GOSUB 18000 ' PRINT 5 SUBROUTINE
5620 GOSUB 20000 ' PRINT 6 SUBROUTINE
5630 GOSUB 24000 ' CLOSING SUBROUTINE
5570 RETURN
5600 '5 6000 SUBROUTINE - VAN - 4 CYCLE
5610 I=4
5620 GOSUB 11000 ' READ VAN DATA
5630 IF ELFLAG=0 THEN GOSUB 13000 ELSE GOSUB 27000
5640 IF VEH=1 THEN GOSUB 6100
5650 IF VEH=2 THEN GOSUB 6500
5660 RETURN
6100 'VAN - 4 CYCLE - VEH = 1
6110 GOSUB 14000 ' PRINT 1 SUBROUTINE
6120 GOSUB 16000 ' PRINT 3 SUBROUTINE
6130 GOSUB 17000 ' PRINT 4 SUBROUTINE
6140 GOSUB 18000 ' PRINT 5 SUBROUTINE
6150 GOSUB 24000 ' CLOSING SUBROUTINE
6160 RETURN
6500 'VAN - 4 CYCLE - VEH = 2
6510 GOSUB 15000 ' PRINT 2 SUBROUTINE
6520 GOSUB 16000 ' PRINT 3 SUBROUTINE
6530 GOSUB 17000 ' PRINT 4 SUBROUTINE
6540 GOSUB 18000 ' PRINT 5 SUBROUTINE
6550 GOSUB 20000 ' PRINT 6 SUBROUTINE
6560 GOSUB 24000 ' CLOSING SUBROUTINE
6570 RETURN
1000 'CAR DATA READ SUBROUTINE
1010 FOR I=1 TO 2
1020 READ M(I),DAYS(I):NEXT I
1030 DATA 4,2,57
1040 DATA 7,45,50
1050 DATA 8,2,43
1060 DATA 16,86,32
1070 DATA 22,25,63
1080 DATA 27,27
1090 DATA 45,4,29
1100 DATA 59,6,18
1110 DATA 3,8,19
1120 DATA 105,5,4
1130 DATA 138,4,7
1140 DATA 250,4
1150 RETURN
1160 'VAN DATA READ SUBROUTINE
1170 FOR M(1) = 35 TO DAYS(1) = 163
1180 M(2) = 35 TO DAYS(2) = 62
1190 M(3) = 35 TO DAYS(3) = 25
1200 M(4) = 35 TO DAYS(4) = 12
1210 FOR I=1 TO 2
1220 READ M(I),DAYS(I):NEXT I
1230 DATA 25,163

M-121
11040 'DATA 25.62
11050 'DATA 45.26
11060 'DATA 55.12
11070 RETURN
13000 'VEHICLE CONSUMPTION AND RANGE SUBROUTINE
13010 PRINT "INPUT THE RANGE, ENERGY CONSUMPTION AND MPG FOR EACH CYCLE"
13020 LPINT "CYCLE", "MILES", "WH/MILE", "MPG"
13030 FOR I=1 TO Z
13040 PRINT "CYCLE ", I: INPUT RANGE(I), WHPM(I), MPG(I)
13050 LPINT 1, RANGE(I), WHPM(I), MPG(I)
13060 NEXT I
13070 RETURN
14000 'PRINT 1 SUBROUTINE
14010 FOR I=1 TO 2
14020 MILES(I)=M(I)*DAYS(I)
14030 EL(I)=WHPM(I)*MILES(I)/1000
14040 IF M(I)>RANGE(I) THEN MILES(I)=RANGE(I)*DAYS(I)
14050 DOD(I)=M(I)/EL(I)
14060 IF M(I)>RANGE(I) THEN DOD(I)=DOD(I)*DAYS(I)
14070 D=MILES(I)/DOD(I)*DAYS(I)
14080 CYCLES(I)=DOD(I)/DAYS(I)
14090 NEXT I
14100 LPINT "cycle","wh/mile","miles/day","days","cum miles","kwh","dod","cycles"
14110 FOR I=1 TO 2
14120 PRINT 1,WHPM(I),M(I),DAYS(I),MILES(I),EL(I),DOD(I),CYCLES(I)
14130 LPINT 1,WHPM(I),M(I),DAYS(I),MILES(I),EL(I),DOD(I),CYCLES(I)
14150 NEXT I
14160 RETURN
15000 'PRINT 2 SUBROUTINE
15010 FOR I=1 TO 2
15020 K=RANGE(I)*DODMX*MILES(I)/DAYS(I)*M(I)
15030 IF M(I)>K THEN GOSUB 15500 ELSE GOSUB 15100
15050 NEXT I
15070 GOSUB 15800 'PRINT 2-3 SUBROUTINE
15080 RETURN
15100 'PRINT 2-1 SUBROUTINE
15110 GM(I)=EM(I)=EL(I)=WHPM(I)*M(I)*DAYS(I)/1000
15120 DOD(I)=M(I)/RANGE(I)
15140 CYCLES(I)=DOD(I)/DAYS(I)
15160 RETURN
15500 'PRINT 2-2 SUBROUTINE
15510 GM(I)=M(I)-K*WHPM(I)*DAYS(I)/1000
15520 EM(I)=K*DOD(I)*DAYS(I)
15610 PRINT 1,WHPM(I),M(I)-K*WHPM(I)*DAYS(I)/1000
15720 RETURN
15800 'PRINT 2-3 SUBROUTINE
15805 LPINT "cycle","wh/mile","e m","f m","miles/day","days","cum mi","kwh","dod","cycles"
15809 FOR I=1 TO 2
15910 CYCLES(I)=DOD(I)*DAYS(I)
15812 GM(I)=9.2
15814 GM(10)=44.8
15816 GM(11)=106.2
15818 GM(12)=197.8
15819 IF I<9 THEN GM(I)=
15820 D=MILES(I)/DODMX*EL(I)=EL(I)*CYCLES(I)=EM(I)+GM(I)*DAYS(I)*K*WHPM(I)*DAYS(I)
15860 LPINT 1,WHPM(I),EM(I),GM(I),M(I),DAYS(I),MILES(I),EL(I),DOD(I),CYCLES(I)
15870 PRINT 1,WHPM(I),EM(I),GM(I),M(I),DAYS(I),MILES(I),EL(I),DOD(I),CYCLES(I)
15880 NEXT I
15890 RETURN
16000 'PRINT 3 SUBROUTINE
16010 LPINT "---
16020 PRINT 11,"miles","kwh","hr","cycles","full miles","miles on electric"
16030 LPINT 11,"miles","kwh","hr","cycles","full miles","miles on electric"
ORIGINAl PAGE IS OF POOR QUALITY
REM
10 "AVCO1.VBS
20 KEY OFF
30 LPRINT CHR$(12)
40 LPRINT CHR$(27) + "5"
50 LPRINT CHR$(27) + "7"
60 OPEN "ENERGY.DAT" FOR INPUT AS #1
70 INPUT#1, TKM, AELC, EOLY, RILE, KMRY, AFUS, CYCB, ADDU, WB, PHD$, IVTYP
80 IF IVTYP=1 THEN IVTYP=2 ELSE IVTYP=1
90 CLOSE #1
90 'TKM=128480! AELC=37372! EOLY=! RILE=! KMRY=12848! AFUS=8! CYCB=800
100 'ADDU=329
105 INPUT "ENTER THE FILE NAME OF THE FORM XXX.CUS ! ", CST$
110 OPEN CST$ FOR INPUT AS #3
120 INPUT#3, KMW, CKW, ETKW, EPWM, BATT$, CURBWT
130 CLOSE #3
140 'PEPW=JOICKN=351ETKW=351EPWM=40
150 'LINE INPUT "TYPE THE PAGE HEADING. "IPHD$
160 REM ** INPUT "TYPE THE NAME OF THE BATTERY. "IBATT$
70 IDUL=1982
.80 IF IDUL=0 THEN IDUL=1982
170 REM ** INPUT "Enter 1 for hybrid, 2 for electric ,3 for ice vehicle"IVTYP
280 PRINT "Type the number of passengers as follows!
210 PRINT "1 - TWU-PASSENGER"
220 PRINT "2 - FOUR-PASSENGER 250m"
230 PRINT "3 - FIVE-PASSENGER 250m"
240 PRINT "4 - FIVE-PASSENGER 100m"
250 PRINT "5 - FIVE-PASSENGER 150m"
260 PRINT "6-VAN"
270 INPUT "INVAS
290 "ON INVOS 00 T0 Z-2,300,310,320,330,340
290 PASS$="2-PASS" IFNANPUL=1361 GOTO 350
310 PASS$="4-PASS" IFPANPUL=1361 GOTO 350
320 PASS$="5-PASS" IFPANPUL=1361 GOTO 350
330 PASS$="5-PASS" IFPANPUL=1361 GOTO 350
340 PASS$="VAN" PANPUL=295
350 REM
360 UIW=200
370 REM ** INPUT "Type the vehicle curb weight in KG."ICURBWT
380 IF INW=6 00 TO 410
390 INW=CURBWT+136
400 00 TO 415
410 INW=CURBWT+295
410 IF IVTYP=3 THEN GOTO 482
420 PRINT "Input section for battery data "
430 REM ** INPUT "Type battery weight in kg."IBW
450 INPUT "Type the cost of electricity in C/KWH."IPRELEC
455 PRINT "RELEC=PRELEC/100
460 INPUT "Type the battery shelf life in years."IMBLF
470 INPUT "Type the depth of a deep discharge (usually .8)."IDDC
480 IF IDDC=0 THEN IDDC=.8
482 INPUT "Type the vehicle maintenance factor--default=1"IFMC
490 IF IFMC=0 THEN IFMC=1
490 INPUT "enter the life of the vehicle in years"IYEAR
495 IF IVTYP=2 THEN RICE=0 EOLY=1 1000 560
497 IF IVTYP=3 THEN RICE=1 EOLY=0 1000 700
570 PRINTI
580 "PRINT " Motor data"
582 INPUT "enter motor type=1 for ac,2 for dc brushless,3 for dc brush"IMTYP
584 MTYP$="ac"
586 IF MTYP$="dc brushless"
588 IF MTYP$="dc brush"
590 PRINT
600 REM INPUT "Type the power of the motor in kW." tMKW
620 MKW=PEF*0.49
630 REM INPUT "Type the controller rated power in kW." tCKW
650 CUNWT=CKW/2.5
652 IF CTYP=2 THEN CUNWT=CKW/.875
654 IF CTYP=3 THEN CUNWT=CKW/1.11
660 REM "Type the vehicle salvage value as percent of new." tSLBV
680 INPUT "Type tank volume volume in L.
800 INPUT "Type the number of years to finance over." tFYEAR
820 IF VTXP=3 THEN GOTO 805
830 PRINT "Calculate the cost of fuel for 1992 in 1982$/L." tPFUEL
840 IF FTYP=3 THEN GOTO 845
845 PRINT "Type 1 for gasoline fuel, 2 for diesel, 3 for methanol." tFTYP
850 FTYP="GASOLINE" 1 IF FTYP=2 THEN FTYP="DIESEL"
860 IF FTYP=3 THEN FTYP="METHANOL"
870 PRINT "Type the annual travel in km/yr." tKMYR
880 INPUT "Type the annual fuel use in liters." tAFUS
890 IF VTXP=2 THEN GOTO 900
900 PRINT "Type the cost of fuel for 1992 in 1982$/L." tPFUEL
910 IF FTYP=3 THEN GOTO 915
915 PRINT "Type the percent real interest rate." tIRINTER
920 PRINT "Type the percent real discount rate." tIRDISR
930 INPUT "Type the power of the motor in kW." tMKW
940 REM INPUT "Type the controller rated power in kW." tCKW
950 REM "Type tank volume volume in L.
960 REM "Type the vehicle salvage value as percent of new." tSLBV
980 INPUT "Type the annual travel in km/yr." tKMYR
990 INPUT "Type the annual fuel use in liters." tAFUS
1000 PRINT "Calculate the cost of fuel for 1992 in 1982$/L." tPFUEL
1010 IF VTXP=3 THEN GOTO 1050
1020 PRINT "1 - CVT"
1030 PRINT "2 - 4-SPEED"
1040 PRINT "3 - FIXED RATIO"
1050 PRINT "4 - 2 speed auto" tTRAN
1060 ON TRNAY 060, 070, 080, 090, 1000
1070 PRINT "CVT" tTRANM=ETKW/1.11 GOTO 1090
1080 PRINT "4-speed" tTRANM=ETKW/1.66 GOTO 1090
1090 PRINT "1 fixed ratio" tTRANM=ETKW/1.42 GOTO 1090
1100 PRINT "2 speed auto" tTRANM=ETKW/0.86 GOTO 1090
1110 PRINT "110" tTRANM=ETKW GOTO 1400
1120 PRINT "111" tTRANM=ETKW GOTO 1400
1130 PRINT "112" tTRANM=ETKW GOTO 1400
1140 PRINT "113" tTRANM=ETKW GOTO 1400
1140 REM
1150 PRINT "TYPE EV TRANSMISSION TYPE."
1160 PRINT " 1 - CVT"
1170 PRINT " 2 - 4-speed"
1180 PRINT " 3 - fixed ratio"
1185 INPUT " 4 - 2 speed auto" TTRAN
1190 ON TTRAN = 13070 1200 91210, 1220 91225
1200 ETRAN$ = "CVT" 1ETRANW = ETKW/1.11 0070 1210
1210 ETRAN$ = "4-speed" 1ETRANW = ETKW/1.061 GOTO 1230
1220 ETRAN$ = "fixed ratio" 1ETRANW = ETKW/1.421 0070 1230
1225 ETRAN$ = "2 speed auto" 1ETRANW = ETKW/0.86
1230 ON TTRAN GOTO 1240, 1250 91260.1265
1240 ECOSTRAN = 11.17*ETKW 1 GOTO 1270
1250 OCOSTRAN = 5.58*ETKW 1 GOTO 1270
1260 GCOSTRAN = 4.65*ETKW 1 GOTO 1270
1265 FC0STRAN = 5.4*ETKW 1270
1270 REM
1280 PRINT "TYPE ICE TRANSMISSION TYPE."
1290 PRINT " 1 - CVT"
1300 PRINT " 2 - 4-speed"
1310 PRINT " 3 - fixed ratio"
1315 INPUT " 4 - 2 speed auto" IRTRAN
1320 ON IRTRAN = 13070 1340, 1350, 1360
1325 IRTRAN$ = "CVT" 1IRTRANW = ETKW/1.11 0070 1330
1330 IRTRAN$ = "4-speed" 1IRTRANW = ETKW/1.061 GOTO 1360
1340 IRTRAN$ = "fixed ratio" 1IRTRANW = ETKW/1.421 0070 1350
1350 IRTRAN$ = "2 speed auto" 1IRTRANW = ETKW/0.86
1355 IRTRAN$ = "2 speed auto" 1IRTRANW = ETKW/1.6599999
1360 ON IRTRAN GOTO 1370 91380, 1390, 1395
1370 GCOSTRAN = 11.17*ETKW 1 GOTO 1400
1380 OCOSTRAN = 5.58*ETKW 1 GOTO 1400
1390 GCOSTRAN = 4.65*ETKW 1 GOTO 1400
1395 GCOSTRAN = 5.4*ETKW
1400 REM
1410 MBV = CURBMT*MB-MOTWT-ENGT-W-CONT-W-TRANWT-ETRANWT-OTRANWT
1420 B1 = (1+RINT)+YEAR
1430 B1 = (1+RDISR)+YEAR
1440 CI = B1/D1
1450 BVCPKG = 9.95
1460 BVCPKG = 9.95 + 48
1470 BVC = (MBV+BVCMPK)*CACC
1470 AUP = 1.5
1480 REM ENGINE COST
1490 ENGC = 1.5*240*EPOM^.33 : IF FTYP = 2 THEN ENGC = 1.5*260*EPOM^.33
1495 REM MOTOR AND CONTROLLER COST
1500 CCON = 45*CKW 1 CMUT = 19*MKW
1510 IF MTYP = 2 THEN CCON = 90*CKW 1 CMUT = 26.5*MKW
1520 IF MTYP = 3 THEN CCON = 62.5*CKW 1 CMOT = 79*MKW
1530 IF VTYP = 3 THEN GO 2270
1540 REM BATTERY OEM COST ($1983)
1550 IF BATT = "AL-AIR" THEN GOTO 1950
1560 IF BATT = "NI-ZN2.0" THEN CWBT = 130*(54/1000)*WB+(8.7*(120/1000)*WB)+400
1570 IF BATT = "PBAC/AD2.1" THEN CWBT = (43*(43/1000)*WB)+(8.7*(135/1000)*WB)+400
1580 IF BATT = "PBAC/AD2.4" THEN CWBT = (43*(41/1000)*WB)+(8.7*(135/1000)*WB)+400
1590 IF BATT = "PBAC/AI3.3" THEN CWBT = (38*(145/1000)*WB)+(8.7*(145/1000)*WB)+400
1600 IF BATT = "PB-AC/BIPL" THEN CWBT = (60*(50/1000)*WB)
1610 IF BATT = "NI-FE1.0" THEN CWBT = (100*(56/1000)*WB)+12*(120/1000)*WB)+800
1620 IF BATT = "NI-FE2.4" THEN CWBT = (100*(52/1000)*WB)+12*(141/1000)*WB)+800
1630 IF BATT = "NI-FE3.3" THEN CWBT = (100*(49/1000)*WB)+12*(160/1000)*WB)+800
1640 IF BATT = "ZN-BR2/1.0" THEN CWBT = (20*(57/1000)*WB)+(10*(183/1000)*WB)+700
1650 IF BATT = "ZN-BR2/2.1" THEN CWBT = (20*(49/1000)*WB)+(10*(115/1000)*WB)+700
1660 IF BATT = "ZN-BR2/2.4" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1670 IF BATT = "ZN-BR2/2.6" THEN CWBT = (20*(49/1000)*WB)+(10*(155/1000)*WB)+700
1680 IF BATT = "ZN-BR2/2.8" THEN CWBT = (20*(49/1000)*WB)+(10*(175/1000)*WB)+700
1690 IF BATT = "ZN-BR2/2.0" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1700 IF BATT = "ZN-BR2/2.4" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1710 IF BATT = "ZN-BR2/2.6" THEN CWBT = (20*(49/1000)*WB)+(10*(155/1000)*WB)+700
1720 IF BATT = "ZN-BR2/2.8" THEN CWBT = (20*(49/1000)*WB)+(10*(175/1000)*WB)+700
1730 IF BATT = "ZN-BR2/2.0" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1740 IF BATT = "ZN-BR2/2.4" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1750 IF BATT = "ZN-BR2/2.6" THEN CWBT = (20*(49/1000)*WB)+(10*(155/1000)*WB)+700
1760 IF BATT = "ZN-BR2/2.8" THEN CWBT = (20*(49/1000)*WB)+(10*(175/1000)*WB)+700
1770 IF BATT = "ZN-BR2/2.0" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1780 IF BATT = "ZN-BR2/2.4" THEN CWBT = (20*(49/1000)*WB)+(10*(135/1000)*WB)+700
1790 IF BATT = "ZN-BR2/2.6" THEN CWBT = (20*(49/1000)*WB)+(10*(155/1000)*WB)+700
1800 IF BATT = "ZN-BR2/2.8" THEN CWBT = (20*(49/1000)*WB)+(10*(175/1000)*WB)+700
1680 IF BATT$="ZN-CL2/1.0" THEN CWBT=(10*(89/1000)*WB)+(45*(130/1000)*WB)+1150
1690 IF BATT$="ZN-CL2/2.1" THEN CWBT=(10*(54/1000)*WB)+(45*(110/1000)*WB)+1150
1700 IF BATT$="ZN-CL2/2.4" THEN CWBT=(10*(54/1000)*WB)+(45*(127/1000)*WB)+1150
1710 IF BATT$="ZN-CL2/3.3" THEN CWBT=(10*(54/1000)*WB)+(45*(130/1000)*WB)+1150
1720 IF BATT$="FE-AIR1.0" THEN CWBT=(8*(109/1000)*WB)+(25*(15/1000)*WB)+700
1730 IF BATT$="FE-AIR2.1" THEN CWBT=(8*(168/1000)*WB)+(25*(140/1000)*WB)+700
1740 IF BATT$="FE-AIR2.4" THEN CWBT=(8*(168/1000)*WB)+(25*(127/1000)*WB)+700
1750 IF BATT$="FE-AIR3.3" THEN CWBT=(8*(52/1000)*WB)+(25*(175/1000)*WB)+700
1760 IF BATT$="LI-FE-S1.0" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1770 IF BATT$="LI-FE-S2.3" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1780 IF BATT$="LI-FE-S2.1" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1790 IF BATT$="LI-FE-S2.4" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1800 IF BATT$="LI-FE-S3.3" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1810 IF BATT$="LI-FE-S2.1" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1820 IF BATT$="LI-FE-S2.4" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1830 IF BATT$="LI-FE-S3.3" THEN CWBT=(70*(102/1000)*WB)+(10*(175/1000)*WB)+750
1840 GOTO 1870
1850 BW=157*WB/1000
1860 CWBT=42*BW
1870 REM BATTERY COST (*1982)
1880 CWBT=
1890 IF BATT$="PBAC/AO1.0" THEN CWBTH=1.19*CWBT
1900 IF BATT$="PBAC/AO2.1" THEN CWBTH=1.51*CWBT
1910 IF BATT$="PBAC/AO2.4" THEN CWBTH=1.51*CWBT
1920 IF BATT$="PBAC/AO3.3" THEN CWBTH=1.51*CWBT
1930 IF BATT$="PB-AC/BPI" THEN CWBTH=1.51*CWBT
1940 IF BATT$="NI-FE1.0" THEN CWBTH=9099999*WB
1950 IF BATT$="NI-FE2.1" THEN CWBTH=974*WB
1960 IF BATT$="NI-FE2.4" THEN CWBTH=9900001*WB
1970 IF BATT$="NI-FE3.3" THEN CWBTH=1.01*WB
1980 IF BATT$="NI-ZN2.0" THEN CWBTH=1.16*WB
1990 IF BATT$="ZN-BH2/1.0" THEN CWBTH=1.59*WB
2000 IF BATT$="ZN-BR2/2.1" THEN CWBTH=2.02*WB
2010 IF BATT$="ZN-BR2/2.4" THEN CWBTH=2.02*WB
2020 IF BATT$="ZN-BR2/3.3" THEN CWBTH=1.83*WB
2030 IF BATT$="ZN-CL2/1.0" THEN CWBTH=1.24*WB
2040 IF BATT$="ZN-CL2/2.1" THEN CWBTH=1.04*WB
2050 IF BATT$="ZN-CL2/2.4" THEN CWBTH=1.04*WB
2060 IF BATT$="ZN-CL2/3.3" THEN CWBTH=1.01*WB
2070 IF BATT$="FE-AIR1.0" THEN CWBTH=1.83*WB
2080 IF BATT$="FE-AIR2.1" THEN CWBTH=2.57*WB
2090 IF BATT$="FE-AIR2.4" THEN CWBTH=2.57*WB
2100 IF BATT$="FE-AIR3.3" THEN CWBTH=2.03*WB
2110 IF BATT$="NA-S1.0" THEN CWBTH=1.36*WB
2120 IF BATT$="NA-S2.1" THEN CWBTH=1.24*WB
2130 IF BATT$="NA-S2.4" THEN CWBTH=95*WB
2140 IF BATT$="NA-S3.3" THEN CWBTH=9999999*WB
2150 IF BATT$="LI-FE-S1.0" THEN CWBTH=1.20*WB
2160 IF BATT$="LI-FE-S2.1" THEN CWBTH=93*WB
2170 IF BATT$="LI-FE-S2.4" THEN CWBTH=1.19*WB
2180 IF BATT$="LI-FE-S3.3" THEN CWBTH=98*WB
2190 IF BATT$="AL-AIR" THEN CWBTH=1.5*WB
2200 REM LOW AND HIGH BATTERY COST
2210 IF CWBTH>CWBT THEN GOTO 2270
2220 XXX=CWBT
2230 XXX=CWBT
2240 CWBT=WB
2250 CWBT=XXX
2260 REM INITIAL COST
2270 REM INITIAL COST
2280 INIT=CM+BW+CM+CON+ECOSTRAN+ENC+OUSTRAN+OUSTRAN+OUSTRAN
2290 INIT=CM+BW+CM+CON+ECOSTRAN+ENC+OUSTRAN+OUSTRAN
2300 IF VYW=3 THEN GOTO 3040
2310 REM REPLACEMENT BATTERIES
2320 IF BATT$="AL-AIR" THEN GOTO 2440
2330 M-127
REM THIS TAKES FRACTIONAL BATTERIES AND MAKES THEM WHOLE NUMBERS FOR BATTERY REPLACEMENT. THE DIFFERENCE BETWEEN THE WHOLE NUMBER AND THE FRACTION IS CONSIDERED AS BATTERY SALVAGE.

IRBAT=INT(IRBAT+.5)

I%BAT=IRBAT-IRBAT

IF I%BAT.LE.0 THEN I%BAT=0

CW%BAT=IRBAT-CWHBAT+TI*L1

UOTO 2460

REM DETERMINATION OF BATTERY MATERIAL SALVAGE COST PER KW

IF BATTS="PW/AD1.0" OR BATTS="PBAC/AD2.1" THEN MCPKWH=1.65

2470 IF BATTS="PBAC/AD2.2" OR BATTS="PBAC/AD3.3" THEN MCPKWH=1.66

2480 IF BATTS="PB/AC/BIPL" THEN MCPKWH=1.66

2500 IF BATTS="NI-Fe1.0" OR BATTS="NI-Fe2.1" THEN MCPKWH=6.56

2510 IF BATTS="NI-Fe2.4" OR BATTS="NI-Fe3.3" THEN MCPKWH=6.56

2520 IF BATTS="ZN-BR2/1.0" OR BATTS="ZN-BR2/2.1" THEN MCPKWH=6.56

2530 IF BATTS="ZN-BR2/2.4" OR BATTS="ZN-BR2/3.3" THEN MCPKWH=6.56

2540 IF BATTS="ZN-CL2/1.0" OR BATTS="ZN-CL2/2.1" THEN MCPKWH=6.56

2550 IF BATTS="ZN-CL2/2.4" OR BATTS="ZN-CL2/3.3" THEN MCPKWH=6.56

2560 IF BATTS="FE-AIR1.0" OR BATTS="FE-AIR2.1" THEN MCPKWH=6.56

2570 IF BATTS="FE-AIR2.4" OR BATTS="FE-AIR3.3" THEN MCPKWH=6.56

2580 IF BATTS="LI-Fe-S1.0" OR BATTS="LI-Fe-S2.1" THEN MCPKWH=2

2590 IF BATTS="LI-Fe-S2.4" OR BATTS="LI-Fe-S3.3" THEN MCPKWH=2

2600 IF BATTS="NA-S1.0" OR BATTS="NA-S2.1" THEN MCPKWH=0

2610 IF BATTS="NA-S2.4" OR BATTS="NA-S3.3" THEN MCPKWH=0

2620 IF BATTS="Ni-Zn2.0" THEN MCPKWH=10.23

2625 IF BATTS="Al-Air" THEN MCPKWH=0

2630 REM SPECIFIC ENERGY VALUES ARE SUBSTITUTED IN THE FOLLOWING EQUATIONS

2640 IF BATTS="PW/AD1.0" THEN KWHR=(45/1000)*WB

2650 IF BATTS="PW/AD2.1" THEN KWHR=(43/1000)*WB

2660 IF BATTS="PW/AD2.2" THEN KWHR=(41/1000)*WB

2670 IF BATTS="VI-AC/AD3.3" THEN KWHR=(38/1000)*WB

2680 IF BATTS="PB/AC/BIPL" THEN KWHR=(35/1000)*WB

2690 IF BATTS="NI-Fe1.0" THEN KWHR=(56/1000)*WB

2700 IF BATTS="NI-Fe2.1" THEN KWHR=(54/1000)*WB

2710 IF BATTS="NI-Fe2.4" THEN KWHR=(52/1000)*WB

2720 IF BATTS="NI-Fe3.3" THEN KWHR=(48/1000)*WB

2730 IF BATTS="ZN-BR2/1.0" THEN KWHR=(67/1000)*WB

2740 IF BATTS="ZN-BR2/2.1" THEN KWHR=(65/1000)*WB

2750 IF BATTS="ZN-BR2/2.4" THEN KWHR=(63/1000)*WB

2760 IF BATTS="ZN-BR2/3.3" THEN KWHR=(61/1000)*WB

2770 IF BATTS="ZN-CL2/1.0" THEN KWHR=(89/1000)*WB

2780 IF BATTS="ZN-CL2/2.1" THEN KWHR=(87/1000)*WB

2790 IF BATTS="ZN-CL2/2.4" THEN KWHR=(85/1000)*WB

2800 IF BATTS="ZN-CL2/3.3" THEN KWHR=(83/1000)*WB

2810 IF BATTS="FE-AIR1.0" THEN KWHR=(109/1000)*WB

2820 IF BATTS="FE-AIR2.1" THEN KWHR=(107/1000)*WB

2830 IF BATTS="FE-AIR2.4" THEN KWHR=(105/1000)*WB

2840 IF BATTS="FE-AIR3.3" THEN KWHR=(102/1000)*WB

2850 IF BATTS="LI-Fe-S1.0" THEN KWHR=(112/1000)*WB

2860 IF BATTS="LI-Fe-S2.1" THEN KWHR=(110/1000)*WB

2870 IF BATTS="LI-Fe-S2.4" THEN KWHR=(108/1000)*WB

2880 IF BATTS="LI-Fe-S3.3" THEN KWHR=(106/1000)*WB

M-128
REM BATTERY SALVAGE VALUE IS THE SUM OF SALVAGE FROM REPLACEMENT BATTERIES AND BATTERY SALVAGE MATERIAL

2950 SVB1=MCPKWH*TI*KWHRLI
2960 SVBH1=(MCOPKWH*TI*KWHRLI)*1
2970 IF IRBAT=2 THEN TRBATYR=2*RBATYN:GOTO 2990
2980 GOTO 3035
2990 SI=1/(1+RIN1*R)^TRBATYR
3000 ZI=1/((1+RIN1)^TRBATYR)
3010 IF TRBATYR<10 THEN SVB2=(MCPKWH*SI*KWHRLI)*ZI
3020 IF TRBATYR>10 THEN GOTO 3035
3030 SVBH2=(MCOPKWH*SI*KWHRLI)*ZI
3035 SVH=SVB1+SVB2
3036 SVH=SVBH1+SVBH2
3039 REM ALL OPERATING COSTS ARE DISCOUNTED TO PRESENT VALUES
3040 REM REPAIRS AND MAINTENANCE
3050 TKM=YEAR*KMYR
3060 IF VTYP=2 THEN MICE=0:GOTO 3080
3070 MICE=136.22
3080 ME=81.73001
3090 RPM=(ME+(1.14/100*KMYR*EOLY*MFAC))+(MICE+(1.91/100*KMYR*RICE))
3100 RPMN=0
3110 FOR N=1 TO YEAR
3120 TEMPI=RPM*CI
3130 RPMN=RPMN+TEMPI
3140 NEXT N
3150 IF VTYP=2 THEN MICE=0:GOTO 3170
3160 MICE=191.11
3170 ME=78.67
3180 IF NFAS=5 THEN RPM=(ME+(1.23/100*KMYR*EOLY*MFAC))+(MICE+(2.05/100*KMYR*RICE))
3190 RPMN=0
3200 FOR N=1 TO YEAR
3210 TEMPI=RPM*CI
3220 RPMN=RPMN+TEMPI
3230 NEXT N
3240 REM REPLACEMENT TIRES
3250 RTKM=TKM-64374!
3260 RTIR=(RTKM*(368.74+(.18086*CURBWT))/(128748!))/(129748!))
3270 REM INSURANCE
3280 INSR=0
3290 FOR N=1 TO YEAR
3300 TEMPI=RPM*CI
3310 INSR=INSR+TEMPI
3320 NEXT N
3330 INSR=INSR+748
3340 IF NFAS=5 THEN GOTO 3345
3345 INSR=0
3350 FOR N=1 TO YEAR
3360 TEMPI=RPM*CI
3370 INSR=INSR+TEMPI
3380 NEXT N
3390 INSR=INSR+919
3400 REM GARAGING, PARKING AND TOLL
3410 PIE=0
3420 FOR N=1 TO YEAR
3430 TEMPI=RPM*CI
3440 PIE=PIE+TEMPI
3450 NEXT N
REM TITLE, REGISTRATION
3470 TRLE=0
3480 FOR N=1 TO YEAR
3490 TEMP7=20+C1
3500 TRLE=TRLE+TEMP7
3510 NEXT N
3520 TRLE=TRLE+(.05*INIT)
3530 TRLEH=0
3540 FOR N=1 TO YEAR
3550 TEMP9=20+C1
3560 TRLEH=TRLEH+TEMP9
3570 NEXT N
3580 REM FUEL AND OIL COST
3590 CFUL4RUS*PFUEL*1.03
3600 CFUL=0
3610 CFUL=AFUS*PFUEL*1.03
3620 FOR N+1 TO YEAR
3630 TEMP10=CEL+C1
3640 CFUL69CFLIL+TEMP9
3650 NEXT N
3660 REM ELECTRICITY COST
3670 CEL=CEL+PFUELEC
3680 CELE=0
3690 FOR N=1 TO YEAR
3700 TEMP10=CEL+C1
3710 CELE=CELE+TEMP10
3720 IF BATT="AL—AIR" THEN ANOD=.0625*KMYR*C1
3730 IF BATT="AL—AIR" THEN CEL.E=CELE+ANOD
3740 REM ANNUAL PRINCIPAL AND INTEREST PAYMENT
3750 NEXT N
3760 apint=.0*(INIT)*((1+RINTR)^FYEAR)/((1+RINTR)^FYEAR-1))
3770 F1=((1+RDISR)^FYEAR-1))
3780 01=(RDISR*RDISR)^FYEAR)
3790 PAPINT=APINT/F1/O1
3800 PAPINT=APINT/F1/O1
3810 REM OPERATING COSTS
3820 OPERO=CELE+CFUL+TRLE+PTE+INSR+RTIR+RPMN+CMRB+PAPINT
3830 OPERH=CELE+CFUL+TRLEH+PTE+INSR+RTIR+RPMN+CMRB+PAPINTH
3840 DPML=.2*INIT
3850 DPMH=.2*INIT
3860 IF VTYPE=3 THEN QOTO 3932
3870 NBAT=(ADDQ365*BLIF)/(DDO*CYCB)
3880 IF NBAT=C1 THEN QOTO 3932
3890 INBAT=INT(NBAT+.5)
3900 DNBAT=INBAT-NBAT
3910 IF DNBAT=0 THEN QOTO 3932
3920 REM CALCULATIONS COMPLETE
3930 FORMUAT0$=""+SPACE$(24)+"
3940 FORMAT="000.00 00.0000"
3950 REM ** PRINT HEADER INFORMATION.
3960 REM
3970 REM ** PRINT SUMMARY
3980 REM
3990 REM ** PRINT DETAILS
4000 REM
4010 REM
4020 REM
4030 REM ** PRINT SUMMARY
4040 REM

M-130
4060 I=IAD{-EN(PHRI)+I/2
4070 LPRINT "LPRINT SPACE(I)1PHNI SPACE(1)1DATE$"
4080 LPRINT "GENERAL --"TAB(4)+"YEARS" "101D"
4090 IF N7RAN-2 THEN GOTO 4350
4100 IF VTYP=2 THEN GOTO 4490
4110 IF NTRAN-1 THEN GOTO 4430
4120 LPRINT "ENGINE --"TAB(4)+"NAME$" "1ENG$"
4130 LPRINT "FUEL COST$" "1FUELI"$/L"
4140 LPRINT "TANK CAPACITY$" "1TANK"L"TAB(4)+"FUEL TYPE: "IFTYP$"
4150 LPRINT TAB(4)+"RATED POWERI	 "IEPOW$"KW"
4160 LPRINT "CONTROLLERI	 "$CTRL$"KW"
4170 LPRINT "COST ITEMS-
4180 LPRINT "BASIC VEHICLE COST$"
4190 LPRINT "ENGINE COST$"
4200 LPRINT "ICE TRANSMISSION COST$"
4210 LPRINT "MOTOR$"
4220 LPRINT "CONTROLLERI	 "$CTRL$"KW"
4230 LPRINT "COST ITEMS-
4240 LPRINT "BASIC VEHICLE COST$"
4690 IF NTRAN=1 THEN GOTO 4730
4700 LPRINT USING FORMAT91 "EV TRANSMISSION COST"
4710 LPRINT USING FORMAT91 ECOSTRANICEOSTRAN+A
4720 GOTO 4750
4730 LPRINT USING FORMAT91 "EV TRANSMISSION COST"
4740 LPRINT USING FORMAT91 COSTRANICEOSTRAN+A
4750 LPRINT USING FORMAT91 "BATTERY LOW"
4760 LPRINT USING FORMAT91 CBTHICBTH+A,
4770 LPRINT "HIGH"
4780 LPRINT USING FORMAT91 CBTHICBTH+A
4790 LPRINT TAB(28)
4800 LPRINT "------- ------
4810 LPRINT 4820 LPRINT "INITIAL COST LOW
4830 LPRINT USING FORMAT91 INITINIT+A,
4840 LPRINT "HIGH"
4850 LPRINT USING FORMAT91 INITINIT+A
4860 LPRINT "DOWNPAYMENT LOW
4870 LPRINT USING FORMAT91 DPMIDPM+A,
4880 LPRINT "HIGH"
4890 LPRINT USING FORMAT91 DPMIDPM+A
4900 LPRINT 1 LPRINT
4910 LPRINT USING FORMAT91 "REPLACEMENT BATTERY LOW
4920 LPRINT USING FORMAT91 CWRBICWRI+A,
4930 LPRINT "HIGH"
4940 LPRINT USING FORMAT91 CWRBICWRI+A
4950 'LPRINT "Number! "1RIBAT
4960 LPRINT USING FORMAT91 "REPAIRS & MAINTENANCE"
4970 LPRINT USING FORMAT91 RPMARPM+A,
4980 LPRINT "REPLACEMENT TIRES"
4990 LPRINT USING FORMAT91 RTIRITR+A,
5000 LPRINT USING FORMAT91 "INSURANCE"
5010 LPRINT USING FORMAT91 "INSURANCE"
5020 LPRINT USING FORMAT91 "GARAGING. PARK, TOLL"
5030 LPRINT USING FORMAT91 PTEIPTE+A
5040 LPRINT USING FORMAT91 "TITLE. REG. LIC. LOW
5050 LPRINT USING FORMAT91 TRELITREL+A,
5060 LPRINT "HIGH"
5070 LPRINT USING FORMAT91 TRELITREL+A
5080 IF VTYPE=2 THEN GOTO 5110
5090 LPRINT USING FORMAT91 "FUEL-OIL
5100 LPRINT USING FORMAT91 CFULICFUL+A,
5110 LPRINT USING FORMAT91 "ELECTRICITY
5120 LPRINT USING FORMAT91 CELEICELE+A
5130 LPRINT USING FORMAT91 "PHIN & INT LOW
5140 LPRINT USING FORMAT91 PAPINTPAPINT+A,
5150 LPRINT "HIGH"
5160 LPRINT USING FORMAT91 PAPINTPAPINT+A
5170 GOTO 5180
5180 LPRINT TAB(28)
5190 LPRINT "------- ------
5200 LPRINT 5210 LPRINT "OPERATING COST LOW
5220 LPRINT USING FORMAT91 OPENIOPEN+A,
5230 LPRINT "HIGH"
5240 LPRINT USING FORMAT91 OPENIOPEN+A
5250 LPRINT 1 LPRINT 1 LPRINT
5260 LPRINT USING FORMAT91 "VEHICLE SALVAGE VALUE LOW
5270 LPRINT USING FORMAT91 SWISVSW+A,
5280 LPRINT "HIGH"
5290 LPRINT USING FORMAT91 SWISVSW+A
5300 LPRINT USING FORMAT91 "BATTERY SALVAGE LOW

M-132
5320 LPRINT "HIGH"
5330 LPRINT USING FORMAT161 SVBN1SVBN#A
5340 LPRINT
5350 LPRINT
5360 LPRINT "TOTAL LIFE CYCLE COST LOW"
5370 LPRINT USING FORMAT161 TTLLTTL#A.
5380 LPRINT "HIGH"
5390 LPRINT USING FORMAT161 TILH1TILH#A
5400 LPRINT CHR$(12) & LPRINT CHR$(27) + "6"
5410 LPRINT CHR$(27) + "4"
5420 ENU
Advanced Vehicle Energy Program (AVENERGY)
CONTENTS

A. **INTRODUCTION** ... M-139

B. **INPUT AND OUTPUT** .. M-139
 1. Input .. M-139
 2. Output ... M-139

C. **ENERGY CALCULATIONS** ... M-140

D. **SAMPLE TEST CASE** ... M-143

GLOSSARY ... M-147

PRECEDING PAGE BLANK NOT FILMED
A. INTRODUCTION

Advanced Vehicle Energy Program (AVENERGY) is a computer program written in the IBM version of Microsoft Basic.

The purpose of the AVENERGY Program is for use in calculating such information as electrical energy expended, fuel consumed, and depths of discharges on various cycles of the 24-hour cycles. Information derived from the results of this program is used as part of the input into the Advanced Vehicle Cost Program (AVCOST). In its present form the program is interactive and it is designed to accept inputs from ELVEC and provide inputs into AVCOST.

B. INPUT AND OUTPUT

The following list is the input required to run the program.

1. Input
 Type of vehicle (electric or hybrid)
 Weight of vehicle
 Weight of battery
 Battery cycle life
 Maximum depth of discharge
 Fuel economy, both federal and highway, when using the internal combustion engine (ICE)
 Energy consumption and range for each cycle
 A representative distance travelled on each of twelve cycles per day and corresponding number of days in the year that cycle is used

The following is a list of the output from the program:

2. Output
 Annual travel in miles
 Annual travel in kilometers
 Electric energy use in kW/h
 Annual cycles expended
 Fuel miles travelled
 Electric miles travelled
Fraction of mileage on electric
Fraction of mileage on engine/ICE
Miles per gallon on federal and highway
Vehicle weight
Battery weight
Battery cycle life
Average daily depth of discharge for hybrid vehicle
Annual gasoline consumption
Liters of methanol
Gallons of methanol

C. ENERGY CALCULATIONS

The following are equations and calculations needed for energy and depth-of-discharge statistics.

1. Total Distance Travelled on any Cycle

 The distance travelled on any cycle is given by

 \[\text{MILES} = M \times \text{DAYS} \]

 where

 \[\text{MILES} = \text{total distance travelled on any cycle} \]
 \[M = \text{miles per day travelled} \]
 \[\text{DAYS} = \text{number of days in the year travelled on a given cycle} \]

2. Electrical Energy Used on any Cycle

 The electrical energy used on each cycle is obtained by multiplying the energy per mile (Wh/mi) by the miles travelled on that cycle, as follows:

 \[\text{EL} = \text{WHPM} \times \text{MILES} \]
where

\[\text{WHPM} = \text{Watt hours per mile} \]
\[\text{MILES} = \text{Total distance travelled on any cycle} \]
\[\text{EL} = \text{Watt hours on that cycle} \]

3. Depth of Discharge

The depth of discharge is calculated by using the relationship

\[\text{DOD} = \frac{\text{M}}{\text{RANGE}} \]

where

\[\text{M} = \text{miles per day} \]
\[\text{RANGE} = \text{distance vehicle travels to zero state of charge} \]
\[\text{DOD} = \text{depth of discharge} \]

Average daily depth of discharge = \(\frac{\text{total annual depth of discharge}}{365} \)

4. Battery Cycles per Year

The number of battery cycles per year on any specific driving cycle is given by:

\[\text{CYCLES} = \text{DOD} \times \text{DAYS} \]

where

\text{CYCLES} is the battery cycles per year; the other variables are as previously defined above.

5. Total Distance Travelled per Year

Total distance travelled in a year is the summation of the cumulative distance travelled on each cycle.

6. Total Electrical Energy

Total electrical energy usage is the summation of the energy used on each cycle.
7. Total Number of Battery Cycles

Total number of battery cycles is the summation of the battery cycles on each driving cycle.

8. Fraction of Mileage on ICE

This is the fraction of miles driven as an ICE vehicle on gas only and is given by

\[\text{FUEL} = \frac{G}{D} \]

where

- \(G \) = the fuel miles driven on gas
- \(D \) = the total distance in miles

9. Fraction of Mileage on Electric

This is the fraction of miles driven as electric car only and is given by

\[\text{ENER} = \frac{P}{D} \]

where

- \(P \) = the mileage driven as electric
- \(D \) = total distance in miles

10. Annual Travel

This is the sum of miles travelled on electric and that on the heat engine.

11. Amount of Fuel Used on Highway and Urban Cycles

Amount of fuel used on highway is given by

\[\text{FC} = \text{DAYS} \times \text{GM/MPGH} \]
where

\[\text{DAYS} = \text{number of days in the year travelled on a given cycle} \]

\[\text{GM} = \text{miles per day on gas} \]

\[\text{MPGH} = \text{miles per gallon on highway} \]

\[\text{FC} = \text{total fuel used for highway driving} \]

Amount of fuel used on urban cycle is given by

\[\text{FC} = \text{DAYS} \times \text{GM/MPGU} \]

where

\[\text{FC} = \text{total fuel used for urban driving} \]

\[\text{MPGU} = \text{miles per gallon on urban} \]

\[\text{DAYS} = \text{number of days in the year travelled on a given cycle} \]

12. Total Fuel Miles

This is the sum of the mileage on each of the cycles covered by the ICE vehicle.

13. Total Electric Miles

This is the sum of the mileage on each of the cycles covered by the vehicle when it runs on electric only. Note that:

\[\text{gallons of methanol} = 1.8 \times \text{gallons of gas} \]

\[\text{liters of methanol} = 3.8 \times \text{gallons of methanol} \]

D. SAMPLE TEST CASE

Three test cases follow: a five-passenger baseline ICE, a five-passenger, 400-km Metal Disulphide (Li-fe-S₂) all-electric, and a five-passenger, 400-km Lead Acid (Pb-Ac) hybrid vehicle. The input and output results are as shown.
ELECTRIC AND HYBRID VEHICLE COST MODEL

100-M1 BIPOLAR 5-P EV 08-29-1984

---INPUTS---

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>YEAR: 1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE SIZE: 5-PASS</td>
<td></td>
</tr>
<tr>
<td>QRBG WEIGHT: 1976 KG</td>
<td></td>
</tr>
<tr>
<td>VEHICLE WEIGHT: MT: 1634</td>
<td></td>
</tr>
<tr>
<td>LIFE: 131434.9 KM</td>
<td></td>
</tr>
<tr>
<td>REAL INTEREST RATE: 10 %</td>
<td></td>
</tr>
<tr>
<td>VEHICLE SALVAGE VALUE: 10 %</td>
<td></td>
</tr>
<tr>
<td>INPUTS:</td>
<td></td>
</tr>
<tr>
<td>ACCESSORY COST: 0.200</td>
<td></td>
</tr>
<tr>
<td>BATTERY:</td>
<td></td>
</tr>
<tr>
<td>BATTERY NAME: PB-AC/11PL</td>
<td></td>
</tr>
<tr>
<td>BATTERY CYCLE LIFE: 750</td>
<td></td>
</tr>
<tr>
<td>ELECTRICITY COST: 0.05 $/KWH</td>
<td></td>
</tr>
<tr>
<td>MAXIMUM SHELF LIFE: 10 YEARS</td>
<td></td>
</tr>
<tr>
<td>AVERAGE DAILY DEPTH OF DISCHARGE: 0.2217449</td>
<td></td>
</tr>
<tr>
<td>DEPTH OF A DEEP DISCHARGE: 0.8</td>
<td></td>
</tr>
<tr>
<td>MAINTENANCE FACTOR: 0.5</td>
<td></td>
</tr>
<tr>
<td>TRANSMISSION TYPE: fixed ratio</td>
<td></td>
</tr>
<tr>
<td>MOTOR:</td>
<td></td>
</tr>
<tr>
<td>RATED POWER: 41.2 KW</td>
<td></td>
</tr>
<tr>
<td>TYPE: AC</td>
<td></td>
</tr>
<tr>
<td>CONTROLLER: 45.7 KW</td>
<td></td>
</tr>
<tr>
<td>DRIVING:</td>
<td></td>
</tr>
<tr>
<td>ANNUAL ELEC USE: 2128.121 KWH</td>
<td></td>
</tr>
<tr>
<td>OUTPUTS:</td>
<td></td>
</tr>
<tr>
<td>AMOUNT: 13143.49 KWH/YEAR</td>
<td></td>
</tr>
</tbody>
</table>

---COST ITEMS---

BASIC VEHICLE COST	$ 6848.21 C/101
MOTOR COST	$ 782.00 0.974
CONTROLLER COST	$ 2056.50 1.565
EV TRANSMISSION COST	$ 212.51 0.162
BATTERY LOW	$ 2203.64 1.677 HIG 13305.45 2.515
INITIAL COST LOW	$ 1212.65 9.224 HIG 133225.47 10.062
DOWNPAYMENT LOW	$ 2424.73 1.845 HIG 134569.09 2.012
REPLACEMENT BATTERIES LOW	$ 2203.64 1.677 HIG 13305.45 2.515
REPAIRS & MAINTENANCE	$ 1544.48 1.172
REPLACEMENT TIRES	$ 333.18 0.253
INSURANCE	$ 3477.90 2.647
OPERATING COST LOW	$ 1933.97 15.146 HIG 120870.51 15.879
VEHICLE SALVAGE VALUE LOW	$ 1817.14 1.363 HIG 2534.48 1.928
BATTERY SALVAGE LOW	$ 33.33 0.026 HIG 33.53 0.026
TOTAL LIFE CYCLE COST	$ 20508.02 15.603 HIG 20947.59 15.938

---M-144---
ELECTRIC AND HYBRID VEHICLE COST MODEL

5 PAI BASELINE ICE 100M 1992	 07-18-1984

INPUTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR</td>
<td>1982</td>
</tr>
<tr>
<td>REAL INTEREST RATE</td>
<td>10%</td>
</tr>
<tr>
<td>VEHICLE SALVAGE VALUE</td>
<td>10%</td>
</tr>
<tr>
<td>ACCESSORY COST</td>
<td>$200</td>
</tr>
<tr>
<td>BATTERY NAME</td>
<td>III</td>
</tr>
<tr>
<td>BATTERY CYCLE LIFE</td>
<td>750</td>
</tr>
<tr>
<td>BATTERY WEIGHT</td>
<td>0 KG</td>
</tr>
<tr>
<td>ELECTRICITY COST</td>
<td>0.05 $/kWh</td>
</tr>
<tr>
<td>MAXIMUM SHELF LIFE</td>
<td>10 YEARS</td>
</tr>
<tr>
<td>AVERAGE DAILY DEPTH OF DISCHARGE</td>
<td>0.11</td>
</tr>
<tr>
<td>DEPTH OF A DEEP DISCHARGE</td>
<td>0.6</td>
</tr>
<tr>
<td>MAINTENANCE FACTOR</td>
<td>1</td>
</tr>
<tr>
<td>ENGINE FUEL TYPE</td>
<td>METHANOL</td>
</tr>
<tr>
<td>ICE TRANSMISSION TYPE</td>
<td>CVT</td>
</tr>
<tr>
<td>MOTOR RATED POWER</td>
<td>0 KW</td>
</tr>
<tr>
<td>MOTOR TYPE</td>
<td>AC</td>
</tr>
<tr>
<td>CONTROLLER</td>
<td>0 KW</td>
</tr>
<tr>
<td>EV TRANSMISSION TYPE</td>
<td>fixed ratio</td>
</tr>
<tr>
<td>ICE FRACTIONAL RANGE</td>
<td>100%</td>
</tr>
<tr>
<td>EV FRACTIONAL RANGE</td>
<td>0%</td>
</tr>
<tr>
<td>ANNUAL FUEL USE</td>
<td>1302 L</td>
</tr>
<tr>
<td>ANNUAL ELECTRIC USE</td>
<td>0 kWh</td>
</tr>
</tbody>
</table>

OUTPUTS

<table>
<thead>
<tr>
<th>Cost Items</th>
<th>Low/Cost/High</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC VEHICLE COST</td>
<td>5745.61/4.341</td>
</tr>
<tr>
<td>ENGINE COST</td>
<td>1118.03/0.845</td>
</tr>
<tr>
<td>ICE TRANSMISSION COST</td>
<td>346.27/0.262</td>
</tr>
<tr>
<td>MOTOR COST</td>
<td>0.00/0.000</td>
</tr>
<tr>
<td>CONTROLLER COST</td>
<td>0.00/0.000</td>
</tr>
<tr>
<td>EV TRANSMISSION COST</td>
<td>0.00/0.000</td>
</tr>
<tr>
<td>BATTERY COST LOW</td>
<td>7209.90/5.447</td>
</tr>
<tr>
<td>BATTERY COST HIGH</td>
<td>7209.90/5.447</td>
</tr>
<tr>
<td>TOTAL LIFE CYCLE COST</td>
<td>21743.98/16.427</td>
</tr>
</tbody>
</table>

M-145
ELECTRIC AND HYBRID VEHICLE COST MODEL

PB/ACID HYBRID 08-29-1984

--- INPUTS ---

GENERAL —
YEAR: 1992
REAL INTEREST RATE: 10%
VEHICLE SALVAGE VALUE: 10%
ACCESSORY COST: $200

BATTERY —
NAME: PBAC/AD3.3
BATTERY CYCLE LIFE: 750
MAXIMUM SHELF LIFE: 10 YEARS
AVERAGE DAILY DEPTH OF DISCHARGE: .3336073
DEPTH OF A DEEP DISCHARGE: .8

MAINTENANCE FACTOR: 1

ENGINE —
FUEL COST: .373 $/L
FUEL TYPE: METHANOL
POWER: 52.7 KW

TANK CAPACITY: 40 L
ICE TRANSMISSION TYPE: CVT

MOTOR —
RATED POWER: 47.5 KW
TYPE: AC
CONTROLLER: 52.7 KW
EV TRANSMISSION TYPE: fixed ratio

DRIVING —
ICE FRACTIONAL RANGE: 22.15056 %
EV FRACTIONAL RANGE: 74.2363 %
ANNUAL FUEL USE: 486.0288 L
ANNUAL ELECT USE: 263.1268 KW-H

--- OUTPUTS ---

COST ITEMS—

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Cost/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC VEHICLE COST</td>
<td>7267.10</td>
<td>.4375</td>
</tr>
<tr>
<td>ENGINE COST</td>
<td>1331.99</td>
<td>.0802</td>
</tr>
<tr>
<td>ICE TRANSMISSION COST</td>
<td>388.66</td>
<td>.0394</td>
</tr>
<tr>
<td>MOTOR COST</td>
<td>902.50</td>
<td>.0493</td>
</tr>
<tr>
<td>CONTROLLER COST</td>
<td>2371.50</td>
<td>.1125</td>
</tr>
<tr>
<td>EV TRANSMISSION COST</td>
<td>245.06</td>
<td>.0146</td>
</tr>
<tr>
<td>BATTERY — LOW</td>
<td>2164.30</td>
<td>1.303</td>
</tr>
<tr>
<td>INITIAL COST — LOW</td>
<td>14071.10</td>
<td>8.953</td>
</tr>
<tr>
<td>DOWNPAYMENT LOW</td>
<td>2974.22</td>
<td>1.791</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Cost/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPLACEMENT BATTERIES</td>
<td>4328.60</td>
<td>2.406</td>
</tr>
<tr>
<td>REPAIRS & MAINTENANCE</td>
<td>4289.90</td>
<td>2.563</td>
</tr>
<tr>
<td>REPLACEMENT TIRES</td>
<td>541.03</td>
<td>.0326</td>
</tr>
<tr>
<td>INSURANCE</td>
<td>3479.00</td>
<td>2.094</td>
</tr>
<tr>
<td>GARAGING-PARK, TOLL</td>
<td>782.56</td>
<td>.0471</td>
</tr>
<tr>
<td>TITLE, REG, LIC, LOW.</td>
<td>943.56</td>
<td>0.568</td>
</tr>
<tr>
<td>FUEL-OIL</td>
<td>1867.27</td>
<td>1.124</td>
</tr>
<tr>
<td>ELECTRICITY</td>
<td>1317.56</td>
<td>.0793</td>
</tr>
<tr>
<td>PRIN & INT LOW</td>
<td>11896.88</td>
<td>7.162</td>
</tr>
<tr>
<td>OPERATING COST LOW</td>
<td>29446.31</td>
<td>17.727</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Cost/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE SALVAGE VALUE</td>
<td>2590.48</td>
<td>1.560</td>
</tr>
<tr>
<td>BATTERY SALVAGE LOW</td>
<td>51.75</td>
<td>0.031</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL LIFE CYCLE COST</td>
<td>29778.33</td>
</tr>
</tbody>
</table>

H-146
GLOSSARY

ABBREVIATIONS AND ACRONYMS

BCL battery-cycle life in cycles
CYCLES cycle based on depth of discharges and days
D total distance in miles
DAYS number of days
DOD depth of discharge
DODMX maximum depth of discharge
EL Watt hours
EM miles per day on electric
ENER fraction of mileage on electric
FC total fuel used for urban or highway driving
FUEL fraction of mileage on fuel
G fuel miles
GALM gallons of methanol
GAS annual gasoline consumption in gallons
GM miles per day on gas
K cut-off range in miles
LITM liters of methanol
M miles per day
MILES total distance travelled in miles on any cycle
MPGH miles per gallon -- highway
MPGU miles per gallon -- urban
P miles on electric
RANGE range in miles
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEH</td>
<td>vehicle type, electric or hybrid</td>
</tr>
<tr>
<td>WB</td>
<td>battery weight in kilograms</td>
</tr>
<tr>
<td>WC</td>
<td>vehicle curb weight in kilograms</td>
</tr>
<tr>
<td>WHPM</td>
<td>watt hour per mile</td>
</tr>
<tr>
<td>WC</td>
<td>vehicle curb weight in kilograms</td>
</tr>
<tr>
<td>X</td>
<td>total annual depth of discharge on all cycles</td>
</tr>
</tbody>
</table>
Advanced Vehicle Cost Program (AVCOST)
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. INTRODUCTION.</td>
<td>M-153</td>
</tr>
<tr>
<td>B. INPUT AND OUTPUT</td>
<td>M-153</td>
</tr>
<tr>
<td>1. Input</td>
<td>M-153</td>
</tr>
<tr>
<td>2. Output</td>
<td>M-156</td>
</tr>
<tr>
<td>C. COST CALCULATIONS</td>
<td>M-156</td>
</tr>
<tr>
<td>1. Initial Cost</td>
<td>M-156</td>
</tr>
<tr>
<td>2. Operating Cost</td>
<td>M-159</td>
</tr>
<tr>
<td>D. SAMPLE TEST CASE</td>
<td>M-162</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>M-167</td>
</tr>
</tbody>
</table>

PRECEIVING PAGE BLANK NOT FILMED
A. INTRODUCTION

The Advanced Vehicle Cost Program (AVCOST) is a computer program written in the IBM version of Microsoft Basic for use in computing initial, operating, and life-cycle costs of advanced vehicles. It is being used for the evaluation of candidate vehicles in the Advanced Vehicle Assessment study as part of the work performed by the Jet Propulsion Laboratory (JPL) for the Electric and Hybrid Vehicle (EHV) Division of the U.S. Department of Energy (DOE). In its present form the program is interactive, and the user is prompted for various inputs. Other inputs into the program are from files that have been previously created after running AVSIZING and AVENERGY programs.

The advanced vehicles that could be used with the program are all-electric two-, four-, and five-passenger vehicles or vans and four- and five-passenger hybrid vehicles and corresponding baseline internal combustion engine (ICE) vehicles. In the following pages, input, output, cost calculations, and an example test case are presented.

B. INPUT AND OUTPUT

The following paragraphs list the input required for the program; a sample output is also included.

1. Input

Input into the program depends on whether the vehicle is all-electric, a hybrid vehicle, or a baseline ICE. Sample input into each type of vehicle is listed below:

a. Input: All-Electric

The page heading
The name of the battery

Enter 1 for hybrid, 2 for electric only, or 3 for ICE vehicle

Type the number of passengers as follows:
1 - Two-passenger
2 - Four-passenger, 250-mi
3 - Five-passenger, 250-mi
4 - Five-passenger, 100-mi
5 - Five-passenger, 150-mi
6 - Van
Cost of electricity in €/kWh

Battery shelf life in years

Depth of a deep discharge (use cut-off DOD)

Vehicle maintenance factor -- default = 1

Vehicle life in years

Motor type: 1 for ac, 2 for dc brushless, and 3 for dc brush

Controller type: 1 for ac, 2 for dc brushless, and 3 for dc brush

Vehicle salvage value as percent of new

Percent real interest rate

Percent real discount rate

Number of years to finance over

b. **Input:** Hybrid

The page heading

The name of the battery

Enter 1 for hybrid, 2 for electric-only or 3 for ICE vehicles

Type the number of passengers as follows:

1 - Two-passenger
2 - Four-passenger, 250-mi
3 - Five-passenger, 250-mi
4 - Five-passenger, 100-mi
5 - Five-passenger, 150-mi
6 - Van

Cost of electricity in €/kWh

Battery shelf life in years

Depth of a deep discharge (use cut-off DOD)

Vehicle maintenance factor -- default = 1
Vehicle life in years

Motor type: 1 for ac, 2 for dc brushless, and 3 for dc brush

Controller type: 1 for ac, 2 for dc brushless, and 3 for dc brush

Vehicle salvage value as percent of new

Type 1 for gasoline fuel, 2 for diesel, 3 for methanol

Cost of fuel for 1992 in 1982$/liter

Percent real interest rate

Percent real discount rate

Number of years to finance over

c. Input: Baseline ICE

The page heading

Enter 1 for hybrid, 2 for electric, or 3 for ICE vehicle.

Type the number of passengers as follows:

1 - Two-passenger
2 - Four-passenger, 250-mi
3 - Five-passenger, 250-mi
4 - Five-passenger, 100-mi
5 - Five-passenger, 150-mi
6 - Van

Vehicle maintenance factor---default=1

Vehicle life in years

Vehicle salvage value as a percent

Type 1 for gasoline, 2 for diesel, 3 for methanol

Cost of fuel in 1992 in 1982$/liter

Percent real interest rate
Percent real discount rate
Number of years to finance over

The input is printed together with the output results as shown in the test case examples in Subsection D.

2. Output

Output results from the program, as well as the inputs into the program, are printed on the same page. This arrangement provides easy check on the input.

The output results from the program are categorized into initial, operating, and life-cycle costs. Initial cost is subdivided into basic vehicle, engine, electric transmission, motor, controller, engine transmission, and battery cost. Operating cost is subdivided into replacement batteries, repairs and maintenance, replacement tires, insurance, garage, park, toll, title, registration, license, fuel oil and electricity, and vehicle interest. Salvage value and life-cycle costs are also printed out. A sample output is as shown in the test-case examples for all-electric, hybrid, and a baseline ICE vehicle in Section D.

C. COST CALCULATIONS

The following paragraphs show the computation for initial, operating, and life-cycle costs.

1. Initial Cost

Initial cost is defined as the cost to the consumer. It is made up of the following costs: basic vehicle, engine, transmission, (one or two transmissions) motor, controller, and battery costs.

a. Basic Vehicle Cost. This cost is computed as the product of the weight of the basic vehicle and a cost per weight of the basic vehicle. The basic-vehicle weight is obtained by removing the battery, motor, engine, controller, and transmission from the vehicle curb weight.

Thus

Basic Vehicle Weight (WBV) = Curb weight (CURBWT)

- Battery weight (WB)
- Motor weight (MOTWT)
- Engine weight (ENGWT)
- Controller weight (CONWT)
- Electric transmission weight (TRANWT EV case)
- Electric transmission weight (ETRANWT HV case)
- Engine transmission weight (GTRANWT).

User inputs are curb weight and battery weight. The other weights are calculated as functions of the rated power as follows:

\[
\text{Motor weight} = \frac{\text{Motor kW}}{0.49}
\]

when a specific weight of 490 W/kg is assumed for ac (Volume II, Subsystems Assessment), 640 W/kg for dc brushless, and 220 W/kg for dc brush.

\[
\text{Engine weight} = \frac{\text{Engine power kW}}{0.45}
\]

when a specific weight of 450 W/kg is assumed for engine (see Volume II)

\[
\text{Controller weight} = \frac{\text{Controller power kW}}{2.5}
\]

when a specific weight of 2500 W/kg is assumed for ac, 875 W/kg for dc brushless, and 1470 W/kg for dc brush.

\[
\text{Transmission weight} = \frac{\text{Power (CVT)}}{1.1}
\]

when a specific weight of 1100 W/kg is assumed for Belt CVT (see Volume II)

\[
\text{Transmission weight} = \frac{\text{Power*(fixed ratio)}}{1.42}
\]

when a specific weight of 1420 W/kg is assumed for fixed-gear reduction (see Volume II)

\[
\text{Transmission weight} = \frac{\text{Power*(4-speed manual)}}{1.06}
\]

*Note that power is peak power.

M-157
when a specific weight of 1060 W/kg is assumed for 4-speed manual (see Volume II)

\[\text{Transmission weight} = \frac{\text{Power}}{0.86} \]

when a specific weight of 860 W/kg is assumed for the 2-speed auto (see Volume II).

\[\text{Basic Vehicle Cost (BVC)} = \text{basic vehicle weight (WBV)} \times \text{cost per kg of basic vehicle (BVCPKG)} + \text{accessory cost (CACC)} \]

\[\text{Basic vehicle cost (BVC)} = \text{WBV} \times \text{BVCPKG} + \text{CACC} \]

where

\[\text{WBV} = \text{the basic vehicle weight calculated as shown above} \]

\[\text{BVCPKG} = \text{the cost per kg of basic vehicle weight. This is representative of the cost per kg of a 1981 Chevrolet Citation (Wayne Carrier, General Research Corporation). The cost of accessories is assumed to be $200.} \]

b. **Engine Cost**. Engine cost is given by the following:

\[\text{Engine cost} = 1.5 \times 240 \times (\text{Engine Power in kW})^{0.33} \]

for gas engine from Volume II

\[1.5 \times 260 \times (\text{Engine Power in kW})^{0.33} \]

for diesel engine from Volume II

Engine maximum-rated power is an input

1.5 represents the mark-up from OEM cost to sale price

c. **Transmission Cost**. Transmission cost is a function of rated power. Transmission cost is related to the rated power by

\[\text{Transmission cost} = 11.17 \times \text{Power (CVT)} \]

\[\text{Transmission cost} = 5.58 \times \text{Power (4-Speed)} \]

Note that power is peak power.
Transmission cost = 4.65 x Power (fixed ratio)
Transmission cost = 5.40 x Power (2-Speed Auto)
Transmission rated power is an input.

d. **Motor Cost.** Motor cost is given by

\[
\text{Motor cost} = 19 \times \text{Motor Power kW (ac)} \\
= 26.5 \times \text{Motor Power kW (dc brushless)} \\
= 79 \times \text{Motor Power kW (dc brush)}
\]

Cost includes the mark-up of 1.5 (see Volume II)
Motor-rated power is an input.

e. **Controller Cost.** Controller cost is related to controller power by:

\[
\text{Controller cost} = 45 \times \text{controller power kW for ac (see Volume II)} \\
= 90 \times \text{controller power kW for dc brushless (see Volume II)} \\
= 62.5 \times \text{controller power, kW dc brushless (see Volume II)}
\]

The cost for the controller includes the mark-up of 1.5.
Controller-rated power is an input.

f. **Battery Cost.** Battery cost is calculated using Symon's Equation of the form:

\[
\text{Cost (1983$)} = A \times \text{kWh} + B \times \text{kW} + C
\]

where A is the specific energy specified, B is the specific power specified, and C is a constant for the battery.

Battery cost for each battery type and design is listed in the program. The high battery cost represents the upper-bound cost of that battery.

As mentioned before, initial cost is the sum of the following cost: basic vehicle, engine, transmission, (one or two transmissions) motor, controller, and battery.
2. Operating Cost

Operating costs include the following: replacement batteries, replacement tires, insurance, repairs and maintenance, insurance, garage, parking, toll, title, registration, license, fuel and oil, electricity, and equivalent road tax. Each one of these is as discussed below. It may be noted that each of these annual values is discounted to present values.

a. Replacement Battery Cost. The cost of replacement batteries is the product of the unit cost of battery and the number of replacement batteries. The number of replacement batteries may be a fraction. In such a case the price of a whole battery is determined and the difference between the whole number and fraction is taken as battery salvage. The appropriate discount factor is applied.

b. Repairs and Maintenance Cost. For all cars except five-passenger cars, repairs and maintenance cost is given by

\[\text{RPM} = \left[81.73 + \left(\frac{1.14}{100} \times \text{KMYR} \times \text{EOLY} \times \text{MFAC} \right) \right] + \left[\text{MICE} + \left(\frac{1.91}{100} \times \text{KMYR} \times \text{RICE} \right) \right] \]

For five-passenger cars

\[\text{RPM} = \left[78.67 + \left(\frac{1.23}{100} \times \text{KMYR} \times \text{EOLY} \times \text{MFAC} \right) \right] + \left[\text{MICE} + \left(\frac{2.05}{100} \times \text{KMYR} \times \text{RICE} \right) \right] \]

where

- \(\text{MFAC} \) = maintenance factor
- \(\text{EOLY} \) = decimal fraction of operation time with electric propulsion operating
- \(\text{RICE} \) = decimal fraction of operation time with ICE propulsion operating

The appropriate discount factor is applied.

c. Replacement Tires.

\[\text{RTIR} = \left[\text{RTKM} \times (368.74 + (0.18086 \times \text{CurbWT})/(128748)) \right] \]

where

- \(\text{RTIR} \) = total cost of replacement tires over the vehicle life
- \(\text{RTKM} = \text{TKM} - 64374 \)
CURBWT = curb weight of the vehicle

TKM = vehicle life in km or total km driven over the vehicle life.

The appropriate discount factors at the times of replacement are applied.

d. Insurance.

\[
\text{INSR} = 748 + 243 \text{ CI for 2-, 4-passenger and vans} \\
= 919 + 256 \text{ CI for 5-passenger}
\]

where

\[
\text{INSR} = \text{total cost of insurance over the vehicle life} \\
\text{CI} = \text{discount factor}
\]

e. Garage, Parking, and Toll.

\[
\text{PTE} = 78.25 \times \text{CI}
\]

where

\[
\text{PTE} = \text{total cost of garaging, parking, toll, etc. over the vehicle life} \\
\text{CI} = \text{discount factor}
\]

f. Title, Registration, and License.

\[
\text{TRLE} = 20 \times \text{CI} + (0.05 \times \text{INIT})
\]

where

\[
\text{TRLE} = \text{total cost of title, registration, license, etc. over the vehicle life} \\
\text{CI} = \text{discount factor} \\
\text{INIT} = \text{initial cost of the vehicle}
\]
g. **Fuel and Oil.**

\[CFUL = AFUS \times PFUEL \times 1.03 \times CI \]

where

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFUL</td>
<td>total cost of fuel and oil over the ICE or hybrid vehicle life</td>
</tr>
<tr>
<td>AFUS</td>
<td>annual fuel use in liters</td>
</tr>
<tr>
<td>PFUEL</td>
<td>cost of fuel in $/liters</td>
</tr>
<tr>
<td>CI</td>
<td>discount factor</td>
</tr>
</tbody>
</table>

The factor of 1.03 is used to allow for the cost of oil rather than just the cost of gas or diesel.

h. **Electricity Cost:**

\[CELE = AELC \times PELEC \times CI \]

where

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELE</td>
<td>total cost of electricity over the vehicle life</td>
</tr>
<tr>
<td>PELEC</td>
<td>electricity price in $ per kWh</td>
</tr>
<tr>
<td>AELC</td>
<td>annual electricity use kWh</td>
</tr>
<tr>
<td>CI</td>
<td>discount factor</td>
</tr>
</tbody>
</table>

i. **Annual Principal and Interest Payment.** After the initial cost of the vehicle has been calculated, a down payment of 20 percent is assumed. The difference is capitalized over the life of the vehicle and added to the annual operating costs. This annual cost is calculated using

\[APINT = 0.8 \times INIT \times \frac{i(1+i)^n}{(1+i)^n-1} \]

where

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APINT</td>
<td>the annual principal and interest payment</td>
</tr>
<tr>
<td>i</td>
<td>interest rate</td>
</tr>
</tbody>
</table>
\[n = \text{vehicle life} \]

\[\text{INIT} = \text{initial cost of the vehicle} \]

Total operating cost is the sum of the costs of replacement batteries, repairs and maintenance, replacement tires, insurance, garage, parking, tolls, title, registration, license, fuel and oil, electricity, and annual principal and interest payment. Salvage value is made up of salvage from vehicle and from battery material.

Total life-cycle cost is the sum of initial cost and operating cost, less salvage value.

D. SAMPLE TEST CASE

Three test cases are presented below:

A 5-passenger baseline ICE, a 5-passenger 400-km lithium metal disulphide (Li-Fe-S\textsubscript{2}) all-electric, and a 5-passenger 400-km lead acid (Pb-Ac) hybrid vehicles. The input and output results are as shown.
ELECTRIC AND HYBRID VEHICLE COST MODEL

5 PAX BASELINE ICE 250KM

--- INPUTS ---

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>1982</td>
</tr>
<tr>
<td>Vehicle size</td>
<td>5-PASS</td>
</tr>
<tr>
<td>Current Weight</td>
<td>895 KG</td>
</tr>
<tr>
<td>Vehicle weight</td>
<td>1031</td>
</tr>
<tr>
<td>Life</td>
<td>166,106 KM</td>
</tr>
<tr>
<td>BATTERY</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0 KG</td>
</tr>
<tr>
<td>Name</td>
<td>2</td>
</tr>
<tr>
<td>Cycle life</td>
<td>1</td>
</tr>
<tr>
<td>Electricity cost</td>
<td>0.05 $/KWh</td>
</tr>
<tr>
<td>Maximum shelf life</td>
<td>10 years</td>
</tr>
<tr>
<td>Maintenance factor</td>
<td>1</td>
</tr>
<tr>
<td>ENGINE</td>
<td></td>
</tr>
<tr>
<td>Rated power</td>
<td>31 KW</td>
</tr>
<tr>
<td>Type</td>
<td>AC</td>
</tr>
<tr>
<td>DRIVING</td>
<td></td>
</tr>
<tr>
<td>ICE fraction range</td>
<td>100%</td>
</tr>
<tr>
<td>EV fractional range</td>
<td>0%</td>
</tr>
<tr>
<td>Annual fuel use</td>
<td>1610 L</td>
</tr>
</tbody>
</table>

--- OUTPUTS ---

<table>
<thead>
<tr>
<th>Cost Items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic vehicle cost</td>
<td>$ 5745.61 3.459</td>
</tr>
<tr>
<td>Engine cost</td>
<td>$ 1118.03 0.673</td>
</tr>
<tr>
<td>ICE transmission cost</td>
<td>$ 346.27 0.206</td>
</tr>
<tr>
<td>Motor cost</td>
<td>$ 0.00 0.000</td>
</tr>
<tr>
<td>Controller cost</td>
<td>$ 0.00 0.000</td>
</tr>
<tr>
<td>EV transmission cost</td>
<td>$ 0.00 0.000</td>
</tr>
<tr>
<td>Battery Low</td>
<td>$ 0.00 0.000 high 0.00 0.000</td>
</tr>
<tr>
<td>Initial cost</td>
<td>$ 7209.90 4.341 high 7209.90 4.341</td>
</tr>
<tr>
<td>Downpayment low</td>
<td>$ 1441.98 0.868 high 1441.98 0.868</td>
</tr>
<tr>
<td>Replacement batteries low</td>
<td>$ 0.00 0.000 high 0.00 0.000</td>
</tr>
<tr>
<td>Repairs & Maintenance</td>
<td>$ 352.12 3.222</td>
</tr>
<tr>
<td>Replacement tires</td>
<td>$ 419.27 0.282</td>
</tr>
<tr>
<td>Insurance</td>
<td>$ 397.00 2.094</td>
</tr>
<tr>
<td>Garaging, park, toll</td>
<td>$ 762.50 0.471</td>
</tr>
<tr>
<td>Title, reg, lic, low</td>
<td>$ 560.50 0.337 high 560.50 0.337</td>
</tr>
<tr>
<td>Fuel-oil</td>
<td>$ 605.46 3.734</td>
</tr>
<tr>
<td>Electricity</td>
<td>$ 0.00 0.000</td>
</tr>
<tr>
<td>Prim & int low</td>
<td>$ 576.72 2.472 high 576.72 2.472</td>
</tr>
<tr>
<td>Operating cost low</td>
<td>$ 22546.77 13.574 high 22546.77 13.574</td>
</tr>
<tr>
<td>Vehicle salvage value low</td>
<td>$ 277.97 0.167 high 277.97 0.167</td>
</tr>
<tr>
<td>Battery salvage value low</td>
<td>$ 0.00 0.000 high 0.00 0.000</td>
</tr>
<tr>
<td>Total life cycle cost</td>
<td>$ 23710.78 14.274 high 23710.78 14.274</td>
</tr>
</tbody>
</table>
Electric and Hybrid Vehicle Cost Model

230-MI LI/FE5 5-P EV

<table>
<thead>
<tr>
<th>INPUTS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td>YEAR: 1982</td>
<td>REAL INTEREST RATE: 10%</td>
</tr>
<tr>
<td>VEHICLE SIZE: 5-PASS</td>
<td>Curb Weight: 1804 KG</td>
<td>ACCESSORY COST: $200</td>
</tr>
<tr>
<td>VEHICLE WEIGHT, MT: 1940</td>
<td>BATTERY: LI-Fe-61.0</td>
<td>BATTERY CYCLE LIFE: 750</td>
</tr>
<tr>
<td>LIFE: 166106.7 KM</td>
<td>ELECTRICITY COST: $0.05/KWH</td>
<td>MAXIMUM SHELF LIFE: 10 YEARS</td>
</tr>
<tr>
<td>BATTERY WEIGHT: 615 KG</td>
<td>AVERAGE DAILY DEPTH OF DISCHARGE: 1000/48</td>
<td>DEPTH OF A DEEP DISCHARGE: 0.8</td>
</tr>
<tr>
<td>BATTERY WEIGHT: 615 KG</td>
<td>MAINTENANCE FACTOR: 1.25</td>
<td></td>
</tr>
<tr>
<td>ELECTRICITY COST: $0.05/KWH</td>
<td>TRANSMISSION TYPE: Fixed Ratio</td>
<td></td>
</tr>
<tr>
<td>AVERAGE DAILY DEPTH OF DISCHARGE: 1000/48</td>
<td>MOTOR</td>
<td></td>
</tr>
<tr>
<td>MAINTENANCE FACTOR: 1.25</td>
<td>RATED POWER: 46.9 KW</td>
<td></td>
</tr>
<tr>
<td>TRANSMISSION TYPE: Fixed Ratio</td>
<td>TYPE: AC</td>
<td></td>
</tr>
<tr>
<td>RATED POWER: 46.9 KW</td>
<td>CONTROLLER: 54.3 KW</td>
<td></td>
</tr>
<tr>
<td>CONTROLLER: 54.3 KW</td>
<td>Driving</td>
<td></td>
</tr>
<tr>
<td>DRIVING</td>
<td>AMOUNT: 16610.67 KM/YEAR</td>
<td></td>
</tr>
<tr>
<td>ANNUAL ELEC USE: 4480.493 KWH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUTS

<table>
<thead>
<tr>
<th>COST ITEMS</th>
<th>C/001</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC VEHICLE COST</td>
<td>7353.25</td>
<td>4,827</td>
<td></td>
</tr>
<tr>
<td>MOTOR COST</td>
<td>927.10</td>
<td>0.559</td>
<td></td>
</tr>
<tr>
<td>CONTROLLER COST</td>
<td>2443.50</td>
<td>1.471</td>
<td></td>
</tr>
<tr>
<td>EV TRANSMISSION COST</td>
<td>252.50</td>
<td>0.152</td>
<td></td>
</tr>
<tr>
<td>BATTERY LOW</td>
<td>8360.80</td>
<td>5.033</td>
<td></td>
</tr>
<tr>
<td>INITIAL COST</td>
<td>LOW: 19339.14 11.643 HIGH21680.16 13.052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOWNPAYMENT</td>
<td>LOW: 3867.83 2.329 HIGH4336.03 2.610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPLACED BATTERIES LOW:</td>
<td>HIGH: 0.00 0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPAIRS & MAINTENANCE:</td>
<td>HIGH: 3184.32 1.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPLACEMENT TIRES:</td>
<td>HIGH: 549.18 0.331</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSURANCE:</td>
<td>HIGH: 3479.00 2.094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARRING/PARK, TOLL:</td>
<td>HIGH: 762.50 0.471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE, REG, LIC, LOW:</td>
<td>HIGH: 1164.96 0.703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICITY:</td>
<td>HIGH: 2240.23 1.349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRINT & INT LOW:</td>
<td>HIGH: 15471.31 9.314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING COST LOW:</td>
<td>HIGH: 26873.51 16.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEHICLE SALVAGE VALUE LOW:</td>
<td>HIGH: 422.26 0.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATTERY SALVAGE LOW:</td>
<td>HIGH: 125.46 0.076</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL LIFE CYCLE COST LOW:</td>
<td>HIGH: 30192.62 18.177</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-165
ELECTRIC AND HYBRID VEHICLE COST MODEL

INPUTS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>1982</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE SIZE</td>
<td>5-PASS</td>
</tr>
<tr>
<td>CURB WEIGHT</td>
<td>1747 KG</td>
</tr>
<tr>
<td>VEHICLE WEIGHT</td>
<td>1883 LBS</td>
</tr>
<tr>
<td>LIFE</td>
<td>166106.7 KM</td>
</tr>
<tr>
<td>ACCESSORY COST</td>
<td>$200</td>
</tr>
</tbody>
</table>

BATTERY

<table>
<thead>
<tr>
<th>NAME</th>
<th>PMAC/AD3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATTERY WEIGHT</td>
<td>410 KG</td>
</tr>
<tr>
<td>ELECTRICITY COST</td>
<td>.05 $/KWH</td>
</tr>
<tr>
<td>BATTERY CYCLE LIFE</td>
<td>750</td>
</tr>
<tr>
<td>MAXIMUM SHELF LIFE</td>
<td>10 YEARS</td>
</tr>
<tr>
<td>AVERAGE DAILY DEPTH OF DISCHARGE</td>
<td>23.36073</td>
</tr>
<tr>
<td>DEPTH OF A DEEP DISCHARGE</td>
<td>.8</td>
</tr>
</tbody>
</table>

MAINTENANCE FACTOR

| 1 |

ENGINE

FUEL COST	.373 $/L
TANK CAPACITY	40 L
ICE TRANSMISSION TYPE	CVT
POWER	52.7 KW

MOTOR

RATED POWER	47.5 KW
CONTROLLER	52.7 KW
EV TRANSMISSION TYPE	fixed ratio

DRIVING

AMOUNT	16610.67 KWH/YEAR
ICE FRACTIONAL RANGE	21.15058
EV FRACTIONAL RANGE	74.3363
ANNUAL FUEL USE	486.6268 L
ANNUAL ELECTRIC USE	2633.126 KWH

OUTPUTS

<table>
<thead>
<tr>
<th>$</th>
<th>C/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC VEHICLE COST</td>
<td>7267.10</td>
</tr>
<tr>
<td>ENGINE COST</td>
<td>1331.99</td>
</tr>
<tr>
<td>ICE TRANSMISSION COST</td>
<td>388.66</td>
</tr>
<tr>
<td>MOTOR COST</td>
<td>922.50</td>
</tr>
<tr>
<td>CONTROLLER COST</td>
<td>2371.50</td>
</tr>
<tr>
<td>EV TRANSMISSION COST</td>
<td>2453.06</td>
</tr>
<tr>
<td>BATTERY LOW</td>
<td>2144.30</td>
</tr>
<tr>
<td>INITIAL COST LOW</td>
<td>14651.10</td>
</tr>
<tr>
<td>DOWNPAYMENT LOW</td>
<td>2974.22</td>
</tr>
<tr>
<td>WREPLACE'N BATTs LOW</td>
<td>4328.60</td>
</tr>
<tr>
<td>REPAIRS & MAINTENANCE</td>
<td>4287.90</td>
</tr>
<tr>
<td>REPLACEMENT TIRES</td>
<td>581.10</td>
</tr>
<tr>
<td>INSURANCE</td>
<td>3479.00</td>
</tr>
<tr>
<td>GROSSING-PARK, TOLL</td>
<td>782.50</td>
</tr>
<tr>
<td>TITLE, REG. LIC. LOW.</td>
<td>943.56</td>
</tr>
<tr>
<td>FUEL-OIL</td>
<td>1057.27</td>
</tr>
<tr>
<td>ELECTRICITY</td>
<td>11417.56</td>
</tr>
<tr>
<td>PAINT & INT LOW</td>
<td>11929.90</td>
</tr>
<tr>
<td>LOSS</td>
<td>29444.31</td>
</tr>
<tr>
<td>OPERATING COST LOW</td>
<td>29444.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$</th>
<th>C/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE SALVAGE VALUE LOW</td>
<td>2570.48</td>
</tr>
<tr>
<td>BATTERY SALVAGE LOW</td>
<td>51.73</td>
</tr>
</tbody>
</table>

TOTAL LIFE CYCLE COST

<table>
<thead>
<tr>
<th>$</th>
<th>C/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL LIFE CYCLE COST LOW</td>
<td>29776.33</td>
</tr>
</tbody>
</table>

M-166
GLOSSARY

ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADOD</td>
<td>average daily depth of discharge</td>
</tr>
<tr>
<td>AELC</td>
<td>annual electricity use in kWh</td>
</tr>
<tr>
<td>AFUS</td>
<td>annual fuel use in liters</td>
</tr>
<tr>
<td>APINT</td>
<td>annual principal and interest payment (low)</td>
</tr>
<tr>
<td>APINTH</td>
<td>annual principal and interest payment (high)</td>
</tr>
<tr>
<td>AUP</td>
<td>mark-up OEM to sal. price</td>
</tr>
<tr>
<td>BATT</td>
<td>battery name</td>
</tr>
<tr>
<td>BI</td>
<td>inflation factor</td>
</tr>
<tr>
<td>BLIF</td>
<td>battery shelf life</td>
</tr>
<tr>
<td>BVC</td>
<td>basic vehicle cost</td>
</tr>
<tr>
<td>BVCPRG</td>
<td>basic vehicle cost per kg</td>
</tr>
<tr>
<td>CACC</td>
<td>accessories cost $</td>
</tr>
<tr>
<td>CCON</td>
<td>controller cost</td>
</tr>
<tr>
<td>CEL</td>
<td>total cost of electricity</td>
</tr>
<tr>
<td>CFU</td>
<td>total cost of fuel and oil</td>
</tr>
<tr>
<td>CI</td>
<td>ratio of inflation to discount factor</td>
</tr>
<tr>
<td>CKW</td>
<td>power of controller</td>
</tr>
<tr>
<td>CMOT</td>
<td>motor cost</td>
</tr>
<tr>
<td>CONWT</td>
<td>controller weight</td>
</tr>
<tr>
<td>COSTRAN</td>
<td>cost of EV transmission $</td>
</tr>
<tr>
<td>CURBWT</td>
<td>vehicle curb weight kg</td>
</tr>
<tr>
<td>CWBT</td>
<td>battery cost $ (low)</td>
</tr>
<tr>
<td>CWBTH</td>
<td>battery cost $ (high)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CWRB</td>
<td>cost of replacement batteries (low) $</td>
</tr>
<tr>
<td>CWRBH</td>
<td>cost of replacement batteries (high) $</td>
</tr>
<tr>
<td>CYCB</td>
<td>battery cycle life in cycles</td>
</tr>
<tr>
<td>DDCG</td>
<td>depth of a deep discharge</td>
</tr>
<tr>
<td>DI</td>
<td>discount factor</td>
</tr>
<tr>
<td>DNBAT</td>
<td>difference between integer value of number of batteries and number of batteries</td>
</tr>
<tr>
<td>DPML</td>
<td>downpayment (low)</td>
</tr>
<tr>
<td>DPMH</td>
<td>downpayment (high)</td>
</tr>
<tr>
<td>DRBAT</td>
<td>difference between integer value of number of replacement batteries and number of replacement batteries</td>
</tr>
<tr>
<td>ECOSTRAIN</td>
<td>cost of EV transmission</td>
</tr>
<tr>
<td>ENGC</td>
<td>cost of engine $</td>
</tr>
<tr>
<td>ENGWT</td>
<td>engine weight</td>
</tr>
<tr>
<td>EOLY</td>
<td>EV fractional use of vehicle</td>
</tr>
<tr>
<td>EPOW</td>
<td>engine power</td>
</tr>
<tr>
<td>ETKW</td>
<td>EV transmission power</td>
</tr>
<tr>
<td>ETRAN</td>
<td>EV transmission type</td>
</tr>
<tr>
<td>ETRAN$</td>
<td>EV transmission type</td>
</tr>
<tr>
<td>ETRANWT</td>
<td>EV transmission weight</td>
</tr>
<tr>
<td>FI</td>
<td>inflation factor</td>
</tr>
<tr>
<td>FTYP</td>
<td>fuel type</td>
</tr>
<tr>
<td>FYEAR</td>
<td>number of years to finance over</td>
</tr>
<tr>
<td>GCOSTRAN</td>
<td>ICE transmission cost</td>
</tr>
<tr>
<td>GTRAN</td>
<td>ICE transmission type</td>
</tr>
<tr>
<td>GTRAN$</td>
<td>ICE transmission type</td>
</tr>
<tr>
<td>GTRANWT</td>
<td>ICE transmission weight</td>
</tr>
<tr>
<td>IDOL</td>
<td>1982</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>INBAT</td>
<td>integer value of the number of batteries</td>
</tr>
<tr>
<td>INIT</td>
<td>Initial cost (low $)</td>
</tr>
<tr>
<td>INIT</td>
<td>initial cost (high $)</td>
</tr>
<tr>
<td>INSR</td>
<td>cost of insurance $</td>
</tr>
<tr>
<td>IRBAT</td>
<td>integer value of number of replacement batteries</td>
</tr>
<tr>
<td>KMYR</td>
<td>annual travel in km per year</td>
</tr>
<tr>
<td>KWHR</td>
<td>kilowatt hour</td>
</tr>
<tr>
<td>LI</td>
<td>inflation factor</td>
</tr>
<tr>
<td>MCPKWH</td>
<td>battery material cost per kWh</td>
</tr>
<tr>
<td>ME</td>
<td>maintenance constant</td>
</tr>
<tr>
<td>MFAC</td>
<td>maintenance factor</td>
</tr>
<tr>
<td>MICE</td>
<td>maintenance constant</td>
</tr>
<tr>
<td>MKW</td>
<td>motor power</td>
</tr>
<tr>
<td>MOTWT</td>
<td>motor weight</td>
</tr>
<tr>
<td>MTYP$</td>
<td>Motor type</td>
</tr>
<tr>
<td>NBAT</td>
<td>number of batteries</td>
</tr>
<tr>
<td>NTRAN</td>
<td>number of transmissions</td>
</tr>
<tr>
<td>OPER</td>
<td>operating cost (low $)</td>
</tr>
<tr>
<td>OPERH</td>
<td>operating cost (high $)</td>
</tr>
<tr>
<td>PANDPL</td>
<td>passenger and payload</td>
</tr>
<tr>
<td>PAPINT</td>
<td>present value of principal and interest</td>
</tr>
<tr>
<td>PELEC</td>
<td>price of electricity</td>
</tr>
<tr>
<td>PFUEL</td>
<td>price of fuel</td>
</tr>
<tr>
<td>PTE</td>
<td>parking and toll</td>
</tr>
<tr>
<td>RBAT</td>
<td>number of replacement batteries</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>RBATYR</td>
<td>year of first replacement batteries</td>
</tr>
<tr>
<td>RDISR</td>
<td>real discount rate</td>
</tr>
<tr>
<td>RICE</td>
<td>fraction of ICE mileage</td>
</tr>
<tr>
<td>RINTR</td>
<td>real interest rate</td>
</tr>
<tr>
<td>RPM</td>
<td>repair and maintenance cost</td>
</tr>
<tr>
<td>RTIR</td>
<td>cost of replacement tires</td>
</tr>
<tr>
<td>SI</td>
<td>inflation factor</td>
</tr>
<tr>
<td>SLBV</td>
<td>salvage value of vehicle</td>
</tr>
<tr>
<td>SVB</td>
<td>salvage value of battery</td>
</tr>
<tr>
<td>SVB1</td>
<td>battery material salvage value (low)</td>
</tr>
<tr>
<td>SVB2</td>
<td>battery material salvage value (high)</td>
</tr>
<tr>
<td>SVV</td>
<td>salvage value of vehicle (low)</td>
</tr>
<tr>
<td>SVVH</td>
<td>salvage value of vehicle (high)</td>
</tr>
<tr>
<td>TEMP1</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP2</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP3</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP4</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP5</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP7</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP8</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP9</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TEMP10</td>
<td>temporary addition to a sum</td>
</tr>
<tr>
<td>TI</td>
<td>inflation factor</td>
</tr>
<tr>
<td>TKM</td>
<td>total travel during life of vehicle</td>
</tr>
<tr>
<td>TRAWT</td>
<td>EV transmission weight</td>
</tr>
<tr>
<td>TRBATYR</td>
<td>year of second battery replacement</td>
</tr>
<tr>
<td>TRLE</td>
<td>cost of title and registration (low)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>TRLEH</td>
<td>cost of title and registration (high)</td>
</tr>
<tr>
<td>TTL</td>
<td>total life-cycle cost (low)</td>
</tr>
<tr>
<td>TTLH</td>
<td>total life-cycle cost (high)</td>
</tr>
<tr>
<td>VGAS</td>
<td>tank volume in liters</td>
</tr>
<tr>
<td>VTYP</td>
<td>vehicle type (hybrid, electric, ICE)</td>
</tr>
<tr>
<td>WB</td>
<td>weight of battery</td>
</tr>
<tr>
<td>WBV</td>
<td>weight of basic vehicle</td>
</tr>
<tr>
<td>WT</td>
<td>test weight of vehicle</td>
</tr>
<tr>
<td>YEAR</td>
<td>life of vehicle in years</td>
</tr>
<tr>
<td>ZI</td>
<td>inflation factor</td>
</tr>
</tbody>
</table>
APPENDIX N

BATTERY DISCHARGE MODELS
BASED ON ASSESSMENT OF
AV BATTERY REVIEW BOARD
Battery model coefficient generator:

PB/ACID/1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>47.99</td>
<td>4.799</td>
<td>2.30259</td>
<td>1.56841</td>
</tr>
<tr>
<td>20</td>
<td>45.06</td>
<td>2.253</td>
<td>2.99573</td>
<td>0.812263</td>
</tr>
<tr>
<td>30</td>
<td>41.99</td>
<td>1.39967</td>
<td>3.4012</td>
<td>0.336234</td>
</tr>
<tr>
<td>40</td>
<td>38.75</td>
<td>.96875</td>
<td>3.68888</td>
<td>-.0317485</td>
</tr>
<tr>
<td>50</td>
<td>35.29</td>
<td>.7058</td>
<td>3.91202</td>
<td>-.348423</td>
</tr>
<tr>
<td>60</td>
<td>31.48</td>
<td>.524667</td>
<td>4.09435</td>
<td>-.644972</td>
</tr>
<tr>
<td>70</td>
<td>27.11</td>
<td>.387286</td>
<td>4.2485</td>
<td>-.948593</td>
</tr>
<tr>
<td>80</td>
<td>21.38</td>
<td>.26725</td>
<td>4.38203</td>
<td>-1.31957</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 3.66561 + -.705735 \times \ln(tau) + -.110161 \times [\ln(tau)]^2 \]

CH1 = 3.66561
CH2 = -.705735
CH3 = -.110161

Sum of the squares of the residuals = 2.26633E-03
Standard error estimate = .0194351
Coefficient of determination = .999346
ELVEC battery CH coefficient curve plot.....

For battery: PB/ACID/1.0

\[CH-1 = 3.66561 \quad P_{d_{\text{max}}} = 120 \]
\[CH-2 = -0.705735 \]
\[CH-3 = -0.11061 \]
Battery model coefficient generator:

PB/ACID2.1

DATA ------

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>45.74</td>
<td>4.574</td>
<td>2.30259</td>
<td>1.52039</td>
</tr>
<tr>
<td>20</td>
<td>43.01</td>
<td>2.1505</td>
<td>2.99573</td>
<td>.7657</td>
</tr>
<tr>
<td>30</td>
<td>40.2</td>
<td>1.34</td>
<td>3.4012</td>
<td>.29267</td>
</tr>
<tr>
<td>40</td>
<td>37.29</td>
<td>.93225</td>
<td>3.68888</td>
<td>-.070154</td>
</tr>
<tr>
<td>50</td>
<td>34.25</td>
<td>.685</td>
<td>3.91202</td>
<td>-.376337</td>
</tr>
<tr>
<td>60</td>
<td>31.03</td>
<td>.51767</td>
<td>4.09435</td>
<td>-.65939</td>
</tr>
<tr>
<td>70</td>
<td>27.6</td>
<td>.394286</td>
<td>4.2485</td>
<td>-.930679</td>
</tr>
<tr>
<td>80</td>
<td>23.8</td>
<td>.2975</td>
<td>4.38203</td>
<td>-1.21234</td>
</tr>
<tr>
<td>90</td>
<td>19.32</td>
<td>.214667</td>
<td>4.49981</td>
<td>-1.53867</td>
</tr>
<tr>
<td>100</td>
<td>12.36</td>
<td>.1236</td>
<td>4.60517</td>
<td>-2.0907</td>
</tr>
<tr>
<td>135</td>
<td>1.13</td>
<td>8.37037E-03</td>
<td>4.90528</td>
<td>-4.78306</td>
</tr>
</tbody>
</table>

RESULTS ------

\[
\ln(P_d) = 3.62626 + -.717755 \ln(tau) + -.094989 (\ln(tau))^2
\]

\[
CH_1 = 3.62626
\]

\[
CH_2 = -.717755
\]

\[
CH_3 = -.094989
\]

Sum of the squares of the residuals = .0167992
Standard error estimate = .043204
Coefficient of determination = .997163
ELVEC battery CH coefficient curve plot.....

For battery: PB/ACID2.1

CH-1 = 3.62626 \(P_{d_{\text{max}}} = 135 \)
CH-2 = -0.717755
CH-3 = -0.094989
Battery model coefficient generator: PB/ACID/2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>42.59</td>
<td>4.259</td>
<td>2.30259</td>
<td>1.44903</td>
</tr>
<tr>
<td>20</td>
<td>40.61</td>
<td>2.0305</td>
<td>2.99573</td>
<td>.700282</td>
</tr>
<tr>
<td>30</td>
<td>38.56</td>
<td>1.28533</td>
<td>3.4012</td>
<td>.251018</td>
</tr>
<tr>
<td>40</td>
<td>36.44</td>
<td>.911</td>
<td>3.68888</td>
<td>-.0937123</td>
</tr>
<tr>
<td>50</td>
<td>34.22</td>
<td>.6844</td>
<td>3.91202</td>
<td>-.379213</td>
</tr>
<tr>
<td>60</td>
<td>31.87</td>
<td>.531167</td>
<td>4.09435</td>
<td>-.632679</td>
</tr>
<tr>
<td>70</td>
<td>29.37</td>
<td>.419572</td>
<td>4.2485</td>
<td>-.863522</td>
</tr>
<tr>
<td>80</td>
<td>26.63</td>
<td>.332875</td>
<td>4.38203</td>
<td>-1.09999</td>
</tr>
<tr>
<td>90</td>
<td>23.52</td>
<td>.261333</td>
<td>4.49981</td>
<td>-1.34196</td>
</tr>
<tr>
<td>100</td>
<td>19.65</td>
<td>.1965</td>
<td>4.60517</td>
<td>-1.62709</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 3.62408 + -0.782033 \times \ln(tau) + -0.0989376 \times \ln(tau)^2 \]

\(CH_1 = 3.62408 \)
\(CH_2 = -0.782033 \)
\(CH_3 = -0.0989376 \)

Sum of the squares of the residuals = 3.30163E-03
Standard error estimate = .0203151
Coefficient of determination = .999317
ELVEC battery CH coefficient curve plot.....

For battery: Pb/ACID/2.4

CH-1 = 3.62408 \quad Pdmax = 135
CH-2 = -0.782033
CH-3 = -0.0989376

\[
\begin{align*}
1000 & \\
\hline
& \\
\end{align*}
\]

Specific Power, Pd (W/kg)

\[
\begin{align*}
1 & \quad 10 \quad 100 \quad 1000 \\
\hline
& \\
\end{align*}
\]

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:

PB/ACID/3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>39.43</td>
<td>3.943</td>
<td>2.30259</td>
<td>1.37194</td>
</tr>
<tr>
<td>20</td>
<td>37.86</td>
<td>1.893</td>
<td>2.99573</td>
<td>.638163</td>
</tr>
<tr>
<td>30</td>
<td>36.25</td>
<td>1.20833</td>
<td>3.4012</td>
<td>.189242</td>
</tr>
<tr>
<td>40</td>
<td>34.57</td>
<td>.86425</td>
<td>3.68888</td>
<td>-.145893</td>
</tr>
<tr>
<td>50</td>
<td>32.83</td>
<td>.6566</td>
<td>3.91202</td>
<td>-.42068</td>
</tr>
<tr>
<td>60</td>
<td>31</td>
<td>.516667</td>
<td>4.09435</td>
<td>-.660358</td>
</tr>
<tr>
<td>70</td>
<td>29.06</td>
<td>.415143</td>
<td>4.2485</td>
<td>-.879133</td>
</tr>
<tr>
<td>80</td>
<td>26.97</td>
<td>.337125</td>
<td>4.38203</td>
<td>-1.0873</td>
</tr>
<tr>
<td>90</td>
<td>24.66</td>
<td>.274</td>
<td>4.49981</td>
<td>-1.29463</td>
</tr>
<tr>
<td>100</td>
<td>22</td>
<td>.22</td>
<td>4.60517</td>
<td>-1.51413</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.57472 + -.82252 \ln(tau) + -.0838422 \ln(tau)^2
\]

CH1 = 3.57472
CH2 = -.822526
CH3 = -.0838422

Sum of the squares of the residuals = 1.94499E-03
Standard error estimate = .0155924
Coefficient of determination = .999598
ELVEC battery CH coefficient curve plot....

For battery: PB/ACID/3.3

CH-1 = 3.57472 \hspace{1cm} Pdmax = 145
CH-2 = -0.22528
CH-3 = -0.0838422
Battery model coefficient generator:

BIP PB/ACID/10.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50.96</td>
<td>5.096</td>
<td>2.30259</td>
<td>1.67846</td>
</tr>
<tr>
<td>20</td>
<td>49.93</td>
<td>2.4965</td>
<td>2.99573</td>
<td>.91489</td>
</tr>
<tr>
<td>30</td>
<td>48.88</td>
<td>1.62933</td>
<td>3.4012</td>
<td>.408171</td>
</tr>
<tr>
<td>40</td>
<td>47.82</td>
<td>1.1955</td>
<td>3.68888</td>
<td>.178565</td>
</tr>
<tr>
<td>50</td>
<td>46.74</td>
<td>.9348</td>
<td>3.91202</td>
<td>-.0674225</td>
</tr>
<tr>
<td>60</td>
<td>45.64</td>
<td>.760667</td>
<td>4.09435</td>
<td>-.27356</td>
</tr>
<tr>
<td>70</td>
<td>44.52</td>
<td>.636</td>
<td>4.2485</td>
<td>-.452557</td>
</tr>
<tr>
<td>80</td>
<td>43.38</td>
<td>.54225</td>
<td>4.38203</td>
<td>-.642020</td>
</tr>
<tr>
<td>90</td>
<td>42.22</td>
<td>.469111</td>
<td>4.49981</td>
<td>-.756916</td>
</tr>
<tr>
<td>100</td>
<td>41.02</td>
<td>.4102</td>
<td>4.60517</td>
<td>-.89111</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.84895 + -0.890158 \times \ln(\tau) + -0.0380122 \times (\ln(\tau))^2
\]

CH1 = 3.84895

CH2 = -0.890158

CH3 = -0.0380122

Sum of the squares of the residuals = 1.8947E-04

Standard error estimate = 4.8666E-03

Coefficient of determination = 0.999961
ELVEC battery CH coefficient curve plot.

For battery: BIP PB/ACID/10.0

CH-1 = 3.04895 \quad Pd_{\text{max}} = 400
CH-2 = -.890158
CH-3 = -.0380122

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=0.8\textwidth,
 xlabel={Specific Energy, \(E_d\) (Wh/kg)},
 ylabel={Specific Power, \(P_d\) (W/kg)},
 grid=both,
 grid style={line width=.1pt, draw=gray!10},
 major grid style={line width=.2pt,draw=gray!50},
 xmin=1, xmax=10000,
 ymin=1, ymax=1000,
 xmajorgrids=true,
 ymajorgrids=true,
 \]

\end{axis}
\end{tikzpicture}
\end{center}
Battery model coefficient generator:

NI/FE/1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>57.37</td>
<td>5.737</td>
<td>2.30259</td>
<td>1.74694</td>
</tr>
<tr>
<td>20</td>
<td>55.67</td>
<td>2.7835</td>
<td>2.99573</td>
<td>1.02371</td>
</tr>
<tr>
<td>30</td>
<td>53.35</td>
<td>1.77833</td>
<td>3.4012</td>
<td>0.575677</td>
</tr>
<tr>
<td>40</td>
<td>50.65</td>
<td>1.26625</td>
<td>3.68888</td>
<td>0.33606</td>
</tr>
<tr>
<td>50</td>
<td>47.47</td>
<td>0.9494</td>
<td>3.91202</td>
<td>-0.0519249</td>
</tr>
<tr>
<td>60</td>
<td>43.53</td>
<td>0.7255</td>
<td>4.09435</td>
<td>-0.320894</td>
</tr>
<tr>
<td>70</td>
<td>37.78</td>
<td>0.539714</td>
<td>4.2485</td>
<td>-0.616716</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.85854 + \cdot 0.723694 \cdot \ln(\tau) + \cdot 0.0985473 \cdot (\ln(\tau))^2
\]

CH1 = 3.85854
CH2 = -0.723694
CH3 = -0.0985473

Sum of the squares of the residuals = 1.34634E-03
Standard error estimate = 0.0164094
Coefficient of determination = 0.999522
ELVEC battery CH coefficient curve plot.....

For battery: ni/FE/1.0

\[
\begin{align*}
CH-1 & = 3.05854 & P_{\text{max}} & = 120 \\
CH-2 & = -0.723094 \\
CH-3 & = -0.0965473
\end{align*}
\]
Battery model coefficient generator:

NI/FE/2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Fd</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>55.28</td>
<td>5.528</td>
<td>2.30259</td>
<td>1.70983</td>
</tr>
<tr>
<td>20</td>
<td>54.35</td>
<td>2.7175</td>
<td>2.99573</td>
<td>.999712</td>
</tr>
<tr>
<td>30</td>
<td>52.97</td>
<td>1.76567</td>
<td>3.4012</td>
<td>.568529</td>
</tr>
<tr>
<td>40</td>
<td>51.4</td>
<td>1.285</td>
<td>3.68888</td>
<td>.250759</td>
</tr>
<tr>
<td>50</td>
<td>49.67</td>
<td>9.934</td>
<td>3.91202</td>
<td>-6.6217E-03</td>
</tr>
<tr>
<td>60</td>
<td>47.76</td>
<td>9.76</td>
<td>4.09435</td>
<td>-2.28156</td>
</tr>
<tr>
<td>70</td>
<td>45.61</td>
<td>651572</td>
<td>4.2485</td>
<td>-4.28038</td>
</tr>
<tr>
<td>80</td>
<td>43.15</td>
<td>539375</td>
<td>4.38203</td>
<td>-6.17344</td>
</tr>
<tr>
<td>90</td>
<td>40.16</td>
<td>446222</td>
<td>4.49981</td>
<td>-8.04938</td>
</tr>
<tr>
<td>100</td>
<td>36.05</td>
<td>3605</td>
<td>4.60517</td>
<td>-1.07026</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 3.9014 + (-0.802984 \times \ln(tau)) + (-0.0824347 \times (\ln(tau))^2) \]

CH1 = 3.9014
CH2 = -0.802984
CH3 = -0.0824347

Sum of the squares of the residuals = 2.69918E-03
Standard error estimate = .0183684
Coefficient of determination = .999442
ELVEC battery CH coefficient curve plot...

For battery: NI/FE/2.1

CH-1 = 3.9014 Pdmax = 141
CH-2 = -0.802984
CH-3 = -0.0824347

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:

NI/FE/2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>53.4</td>
<td>5.34</td>
<td>2.30259</td>
<td>1.67523</td>
</tr>
<tr>
<td>20</td>
<td>52.5</td>
<td>2.625</td>
<td>2.99573</td>
<td>.965081</td>
</tr>
<tr>
<td>30</td>
<td>51.19</td>
<td>1.70633</td>
<td>3.4012</td>
<td>.534347</td>
</tr>
<tr>
<td>40</td>
<td>49.71</td>
<td>1.24275</td>
<td>3.68888</td>
<td>.217327</td>
</tr>
<tr>
<td>50</td>
<td>48.08</td>
<td>.9616</td>
<td>3.91202</td>
<td>-.0391565</td>
</tr>
<tr>
<td>60</td>
<td>46.31</td>
<td>.771833</td>
<td>4.09435</td>
<td>-.258986</td>
</tr>
<tr>
<td>70</td>
<td>44.36</td>
<td>.633714</td>
<td>4.2485</td>
<td>-.456157</td>
</tr>
<tr>
<td>80</td>
<td>42.15</td>
<td>.526875</td>
<td>4.38203</td>
<td>-.640792</td>
</tr>
<tr>
<td>90</td>
<td>39.58</td>
<td>.439778</td>
<td>4.49981</td>
<td>-.821486</td>
</tr>
<tr>
<td>100</td>
<td>36.35</td>
<td>.3635</td>
<td>4.63517</td>
<td>-1.01198</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.87467 + \cdot020591 \cdot\ln(tau) + \cdot0747063 \cdot[\ln(tau)]^2
\]

\[
CH1 = 3.87467
\]

\[
CH2 = \cdot020591
\]

\[
CH3 = \cdot0747063
\]

Sum of the squares of the residuals = 1.75763E-03
Standard error estimate = 0.0148224
Coefficient of determination = .999637
ELVEC battery CH coefficient curve plot

For battery: NI/FE/2.4

CH-1 = 3.87467 \quad Pdmax = 141
CH-2 = -0.820591
CH-3 = -0.0747063
Battery model coefficient generator:

NI/FE/3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>48.55</td>
<td>4.855</td>
<td>2.30259</td>
<td>1.58001</td>
</tr>
<tr>
<td>20</td>
<td>47.99</td>
<td>2.3995</td>
<td>2.99573</td>
<td>.875761</td>
</tr>
<tr>
<td>30</td>
<td>47.11</td>
<td>1.57033</td>
<td>3.4012</td>
<td>.451288</td>
</tr>
<tr>
<td>40</td>
<td>46.13</td>
<td>1.15325</td>
<td>3.68886</td>
<td>.142584</td>
</tr>
<tr>
<td>50</td>
<td>45.06</td>
<td>.9012</td>
<td>3.91202</td>
<td>-.104028</td>
</tr>
<tr>
<td>60</td>
<td>43.91</td>
<td>.731833</td>
<td>4.09435</td>
<td>-.312202</td>
</tr>
<tr>
<td>70</td>
<td>42.68</td>
<td>.609714</td>
<td>4.2485</td>
<td>-.494765</td>
</tr>
<tr>
<td>80</td>
<td>41.36</td>
<td>.517</td>
<td>4.38203</td>
<td>-.659712</td>
</tr>
<tr>
<td>90</td>
<td>39.91</td>
<td>.443445</td>
<td>4.49981</td>
<td>-.813183</td>
</tr>
<tr>
<td>100</td>
<td>38.32</td>
<td>.3832</td>
<td>4.60517</td>
<td>-.959198</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.81662 + -.882478 \times \ln(tau) + -.0504292 \times (\ln(tau))^2
\]

CH1 = 3.81662
CH2 = -.882478
CH3 = -.0504292

Sum of the squares of the residuals = 4.70245E-04
Standard error estimate = 7.66686E-03
Coefficient of determination = .999903
ELVEC battery CH coefficient curve plot.

For battery: NI/FE/3.3

\[CH-1 = 3.81662 \quad P_{\text{max}} = 160 \]
\[CH-2 = -0.882478 \]
\[CH-3 = -0.0504292 \]
Battery model coefficient generator:
NI/ZN2.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>60</td>
<td>6</td>
<td>2.30259</td>
<td>1.79176</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>3</td>
<td>2.99573</td>
<td>1.09861</td>
</tr>
<tr>
<td>60</td>
<td>58</td>
<td>566667</td>
<td>4.99435</td>
<td>-0.039015</td>
</tr>
<tr>
<td>100</td>
<td>53</td>
<td>5.3</td>
<td>4.60517</td>
<td>-0.634678</td>
</tr>
<tr>
<td>150</td>
<td>40</td>
<td>286667</td>
<td>5.01064</td>
<td>-1.32176</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.06488 - 0.844001 \ln(tau) - 0.0847194 \ln(tau)^2 \]

\[CH1 = 4.06488 \]
\[CH2 = -0.844001 \]
\[CH3 = -0.0847194 \]

Sum of the squares of the residuals = 4.02063E-03
Standard error estimate = 0.0366089
Coefficient of determination = 0.79921
ELVEC battery CH coefficient curve plot......

For battery: NI/ZN2.0

\[
\begin{align*}
CH-1 &= 4.06488 & Pdmax &= 204 \\
CH-2 &= -0.844001 \\
CH-3 &= -0.0847194
\end{align*}
\]
Battery model coefficient generator:

ZN/BR/1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>65.99</td>
<td>6.599</td>
<td>2.30259</td>
<td>1.88692</td>
</tr>
<tr>
<td>20</td>
<td>66.88</td>
<td>3.344</td>
<td>2.99573</td>
<td>1.20717</td>
</tr>
<tr>
<td>30</td>
<td>65.04</td>
<td>2.168</td>
<td>3.4012</td>
<td>.773805</td>
</tr>
<tr>
<td>40</td>
<td>62.2</td>
<td>1.555</td>
<td>3.6888</td>
<td>.441476</td>
</tr>
<tr>
<td>50</td>
<td>58.66</td>
<td>1.1732</td>
<td>3.91202</td>
<td>.159735</td>
</tr>
<tr>
<td>60</td>
<td>54.31</td>
<td>.905167</td>
<td>4.09435</td>
<td>-.0996361</td>
</tr>
<tr>
<td>70</td>
<td>48.58</td>
<td>.694</td>
<td>4.2485</td>
<td>-.365203</td>
</tr>
<tr>
<td>80</td>
<td>35</td>
<td>.4375</td>
<td>4.38203</td>
<td>-.826679</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.00357 + -0.627864 \ln(tau) + -0.151306 \ln(tau)^2 \]

CH1 = 4.00357
CH2 = -0.627864
CH3 = -0.151306

Sum of the squares of the residuals = 5.80993E-03
Standard error estimate = .0311179
Coefficient of determination = .998322
ELVEC battery CH coefficient curve plot...

For battery: ZN/BR/1.0

- CH-1 = 4.00357 Pdmax = 83
- CH-2 = -.627864
- CH-3 = -.151306

Specific Energy, E_d (Wh/kg) vs. Specific Power, P_d (W/kg)
Battery model coefficient generator:

ZN/BE/2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>47.87</td>
<td>4.787</td>
<td>2.30259</td>
<td>1.5659</td>
</tr>
<tr>
<td>30</td>
<td>47.47</td>
<td>2.435</td>
<td>2.99573</td>
<td>.885213</td>
</tr>
<tr>
<td>40</td>
<td>45.97</td>
<td>1.5823</td>
<td>3.68888</td>
<td>.13911</td>
</tr>
<tr>
<td>50</td>
<td>44.21</td>
<td>.8842</td>
<td>3.91202</td>
<td>-.123072</td>
</tr>
<tr>
<td>60</td>
<td>42.25</td>
<td>.704167</td>
<td>4.09435</td>
<td>-.35074</td>
</tr>
<tr>
<td>70</td>
<td>40.08</td>
<td>.572571</td>
<td>4.2485</td>
<td>-.557618</td>
</tr>
<tr>
<td>80</td>
<td>37.68</td>
<td>.471</td>
<td>4.38203</td>
<td>-.752897</td>
</tr>
<tr>
<td>90</td>
<td>34.97</td>
<td>.38556</td>
<td>4.49981</td>
<td>-.945319</td>
</tr>
<tr>
<td>100</td>
<td>31.76</td>
<td>.3176</td>
<td>4.60517</td>
<td>-1.14696</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.80889 + -.019456 \ln(tau) + -.0951689 \ln(tau)^2
\]

\[
CH1 = 3.80889
\]

\[
CH2 = -.019456
\]

\[
CH3 = -.0951689
\]

Sum of the squares of the residuals = 1.13292E-03
Standard error estimate = .0119002
Coefficient of determination = .999766
ELVEG battery CH coefficient curve plot.....

For battery: ZN/BE/2.1

CH-1 = 3.80889 \(P_{\text{dmax}} = 115 \)
CH-2 = -0.819456
CH-3 = -0.0951689
Battery model coefficient generator:

ZN/BR/2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>49.75</td>
<td>4.875</td>
<td>2.30259</td>
<td>1.58412</td>
</tr>
<tr>
<td>20</td>
<td>49.54</td>
<td>2.477</td>
<td>2.99573</td>
<td>.907048</td>
</tr>
<tr>
<td>30</td>
<td>48.69</td>
<td>1.623</td>
<td>3.4012</td>
<td>.484276</td>
</tr>
<tr>
<td>40</td>
<td>47.35</td>
<td>1.18375</td>
<td>3.68888</td>
<td>.168567</td>
</tr>
<tr>
<td>50</td>
<td>45.76</td>
<td>.9552</td>
<td>3.91202</td>
<td>-.0886125</td>
</tr>
<tr>
<td>60</td>
<td>43.99</td>
<td>.733167</td>
<td>4.09435</td>
<td>-.310382</td>
</tr>
<tr>
<td>70</td>
<td>42.07</td>
<td>.601</td>
<td>4.2485</td>
<td>-.50916</td>
</tr>
<tr>
<td>80</td>
<td>39.97</td>
<td>.496625</td>
<td>4.38203</td>
<td>-.693097</td>
</tr>
<tr>
<td>90</td>
<td>37.66</td>
<td>.418445</td>
<td>4.49981</td>
<td>-.871211</td>
</tr>
<tr>
<td>100</td>
<td>35.08</td>
<td>.3508</td>
<td>4.60517</td>
<td>-.104754</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.83512 + -.337169 \times \ln(tau) + -.0851764 \times (\ln(tau))^2
\]

CH1 = 3.83512
CH2 = -.337169
CH3 = -.0851764

Sum of the squares of the residuals = 6.16919E-04
Standard error estimate = 8.78151E-03
Coefficient of determination = .999873
ELVEC battery CH coefficient curve plot.....

For battery: ZN/BR/2.4

CH-1 = 3.83512 \quad \text{Pdmax} = 135
CH-2 = -0.837169
CH-3 = -0.0851764
Battery model coefficient generator:
ZN/BR/3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
<td>4</td>
<td>2.30259</td>
<td>1.38629</td>
</tr>
<tr>
<td>20</td>
<td>40.5</td>
<td>2.025</td>
<td>2.99573</td>
<td>.70557</td>
</tr>
<tr>
<td>30</td>
<td>39.73</td>
<td>1.32433</td>
<td>3.4012</td>
<td>.280909</td>
</tr>
<tr>
<td>40</td>
<td>38.59</td>
<td>.96475</td>
<td>3.68888</td>
<td>-.035886</td>
</tr>
<tr>
<td>50</td>
<td>37.29</td>
<td>.7458</td>
<td>3.91202</td>
<td>-.293298</td>
</tr>
<tr>
<td>60</td>
<td>35.87</td>
<td>.597833</td>
<td>4.09435</td>
<td>-.514443</td>
</tr>
<tr>
<td>70</td>
<td>34.36</td>
<td>.490857</td>
<td>4.2485</td>
<td>-.711602</td>
</tr>
<tr>
<td>80</td>
<td>32.78</td>
<td>.40975</td>
<td>4.38203</td>
<td>-.892208</td>
</tr>
<tr>
<td>90</td>
<td>31.1</td>
<td>.345556</td>
<td>4.49981</td>
<td>-1.0626</td>
</tr>
<tr>
<td>100</td>
<td>29.33</td>
<td>.2933</td>
<td>4.60517</td>
<td>-1.22656</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.65918 + -.874489 \times \ln(tau) + -.0779032 \times (\ln(tau))^2
\]

CH1 = 3.65918
CH2 = -.874489
CH3 = -.0779032

Sum of the squares of the residuals = 3.25496E-04
Standard error estimate = 6.37863E-03
Coefficient of determination = .999933
ELVEC battery CH coefficient curve plot.....

For battery: ZN/BR/3.3

CH-1 = 3.65918 Pdmax = 150
CH-2 = -0.874489
CH-3 = -0.0779032
Battery model coefficient generator:

ZN/CL/1.0

DATA ------

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>86.63</td>
<td>8.663</td>
<td>2.30259</td>
<td>2.15906</td>
</tr>
<tr>
<td>20</td>
<td>88.94</td>
<td>4.447</td>
<td>2.99573</td>
<td>1.49223</td>
</tr>
<tr>
<td>30</td>
<td>87.59</td>
<td>2.91967</td>
<td>3.4012</td>
<td>1.07147</td>
</tr>
<tr>
<td>40</td>
<td>85.04</td>
<td>2.126</td>
<td>3.68888</td>
<td>.754242</td>
</tr>
<tr>
<td>50</td>
<td>81.76</td>
<td>1.6352</td>
<td>3.91202</td>
<td>.491765</td>
</tr>
<tr>
<td>60</td>
<td>77.83</td>
<td>1.29717</td>
<td>4.09435</td>
<td>.260182</td>
</tr>
<tr>
<td>70</td>
<td>73.09</td>
<td>1.04414</td>
<td>4.2485</td>
<td>.0431964</td>
</tr>
<tr>
<td>80</td>
<td>67.06</td>
<td>.83825</td>
<td>4.38203</td>
<td>-.176439</td>
</tr>
<tr>
<td>90</td>
<td>57.65</td>
<td>.640556</td>
<td>4.49981</td>
<td>-.44542</td>
</tr>
</tbody>
</table>

RESULTS ------

\[
\ln(Pd) = 4.2577 + -.658475 \times \ln(tau) - .117385 \times (\ln(tau))^2
\]

\[
\begin{align*}
CH1 &= 4.2577 \\
CH2 &= -.658475 \\
CH3 &= -.117385
\end{align*}
\]

Sum of the squares of the residuals = 2.3967E-03
Standard error estimate = .0185037
Coefficient of determination = .999421
ELVFC battery CH coefficient curve plot......

For battery: ZN/CL/1.0

CH-1 = 4.2577 Pdmax = 86
CH-2 = -0.658475
CH-3 = -0.117385

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:
ZN/CL/2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Fd</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>53.15</td>
<td>5.315</td>
<td>2.30259</td>
<td>1.67053</td>
</tr>
<tr>
<td>20</td>
<td>53.95</td>
<td>2.6975</td>
<td>2.99573</td>
<td>0.99326</td>
</tr>
<tr>
<td>30</td>
<td>53.09</td>
<td>1.76967</td>
<td>3.4012</td>
<td>0.570791</td>
</tr>
<tr>
<td>40</td>
<td>51.71</td>
<td>1.29275</td>
<td>3.68888</td>
<td>0.256772</td>
</tr>
<tr>
<td>50</td>
<td>50.06</td>
<td>1.0012</td>
<td>3.91202</td>
<td>1.19916E-03</td>
</tr>
<tr>
<td>60</td>
<td>48.19</td>
<td>0.803167</td>
<td>4.09435</td>
<td>-0.219193</td>
</tr>
<tr>
<td>70</td>
<td>46.1</td>
<td>5.650572</td>
<td>4.2485</td>
<td>-0.417682</td>
</tr>
<tr>
<td>80</td>
<td>43.76</td>
<td>0.547</td>
<td>4.38203</td>
<td>-0.603306</td>
</tr>
<tr>
<td>90</td>
<td>41.06</td>
<td>0.456222</td>
<td>4.49981</td>
<td>-0.784775</td>
</tr>
<tr>
<td>100</td>
<td>37.8</td>
<td>0.378</td>
<td>4.60517</td>
<td>-0.972861</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.90924 + -0.820198 \times \ln(tau) + -0.0882068 \times [\ln(tau)]^2
\]

CH1 = 3.90924
CH2 = -0.820198
CH3 = -0.0882068

Sum of the squares of the residuals = 1.09263E-03
Standard error estimate = .0116867
Coefficient of determination = .999774

N-33
ELVEC battery CH coefficient curve plot.....

For battery: ZN/CL/2.1

CH-1 = 3.90924 \(P_d\text{Max} = 110 \)
CH-2 = -0.820198
CH-3 = -0.0882068

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:

ZN/CL/2.4

DATA ------

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>53.28</td>
<td>5.328</td>
<td>2.30259</td>
<td>1.67298</td>
</tr>
<tr>
<td>20</td>
<td>54.25</td>
<td>2.7125</td>
<td>2.99573</td>
<td>.997871</td>
</tr>
<tr>
<td>30</td>
<td>53.58</td>
<td>1.786</td>
<td>3.4012</td>
<td>.579979</td>
</tr>
<tr>
<td>40</td>
<td>52.42</td>
<td>1.3105</td>
<td>3.68888</td>
<td>.270409</td>
</tr>
<tr>
<td>50</td>
<td>51.01</td>
<td>1.0202</td>
<td>3.91202</td>
<td>.0199988</td>
</tr>
<tr>
<td>60</td>
<td>49.42</td>
<td>.823667</td>
<td>4.09435</td>
<td>-.193989</td>
</tr>
<tr>
<td>70</td>
<td>47.68</td>
<td>.681143</td>
<td>4.2485</td>
<td>-.383983</td>
</tr>
<tr>
<td>80</td>
<td>45.77</td>
<td>.572125</td>
<td>4.38203</td>
<td>-.558399</td>
</tr>
<tr>
<td>90</td>
<td>43.66</td>
<td>.485111</td>
<td>4.49981</td>
<td>-.723377</td>
</tr>
<tr>
<td>100</td>
<td>41.28</td>
<td>.4128</td>
<td>4.60517</td>
<td>-.884792</td>
</tr>
</tbody>
</table>

RESULTS ------

\[
\ln(Pd) = 3.9258 + -.848145 \ln(tau) + -.0752426 [\ln(tau)]^2
\]

CH1 = 3.9258
CH2 = -.848145
CH3 = -.0752426

Sum of the squares of the residuals = 4.84082E-04
Standard error estimate = 7.77883E-03
Coefficient of determination = .9999
ELVEG battery CH coefficient curve plot.....

For battery: ZN/CL/2.4

CH-1 = 3.9250 \quad P_{d_{max}} = 127
CH-2 = -0.848145
CH-3 = -0.0752426
Battery model coefficient generator:

ZN/Cl./3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>41.43</td>
<td>4.143</td>
<td>2.30259</td>
<td>1.41142</td>
</tr>
<tr>
<td>20</td>
<td>41.94</td>
<td>2.097</td>
<td>2.99573</td>
<td>.740508</td>
</tr>
<tr>
<td>30</td>
<td>41.26</td>
<td>1.37533</td>
<td>3.4012</td>
<td>.318696</td>
</tr>
<tr>
<td>40</td>
<td>40.24</td>
<td>1.006</td>
<td>3.68888</td>
<td>5.9819E-03</td>
</tr>
<tr>
<td>50</td>
<td>39.04</td>
<td>.7808</td>
<td>3.91202</td>
<td>-.247434</td>
</tr>
<tr>
<td>60</td>
<td>37.71</td>
<td>.6285</td>
<td>4.09435</td>
<td>-.464419</td>
</tr>
<tr>
<td>70</td>
<td>36.28</td>
<td>.518286</td>
<td>4.2485</td>
<td>-.657229</td>
</tr>
<tr>
<td>80</td>
<td>34.73</td>
<td>.434125</td>
<td>4.38203</td>
<td>-.834423</td>
</tr>
<tr>
<td>90</td>
<td>33.05</td>
<td>.367222</td>
<td>4.49981</td>
<td>-1.00179</td>
</tr>
<tr>
<td>100</td>
<td>31.2</td>
<td>.312</td>
<td>4.60517</td>
<td>-1.16475</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 3.69598 - 0.878004 \ln(tau) + 0.0750732 \ln(tau)^2
\]

CH1 = 3.69598
CH2 = -0.878004
CH3 = 0.0750732

Sum of the squares of the residuals = 4.63915E-04
Standard error estimate = 7.61508E-03
Coefficient of determination = .999904
ELVEC battery CH coefficient curve plot.....

For battery: ZN/CL/3.3

CH-1 = 3.69598 Pdmax = 130
CH-2 = -0.878004
CH-3 = -0.0750732
Battery model coefficient generator:

FE/AIR/1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>106.28</td>
<td>10.628</td>
<td>2.30259</td>
<td>2.36349</td>
</tr>
<tr>
<td>20</td>
<td>109.38</td>
<td>5.469</td>
<td>2.99573</td>
<td>1.6991</td>
</tr>
<tr>
<td>30</td>
<td>108.46</td>
<td>3.61533</td>
<td>3.4012</td>
<td>1.28510</td>
</tr>
<tr>
<td>40</td>
<td>106.33</td>
<td>2.65825</td>
<td>3.68888</td>
<td>.977660</td>
</tr>
<tr>
<td>50</td>
<td>103.56</td>
<td>2.0712</td>
<td>3.91202</td>
<td>.728128</td>
</tr>
<tr>
<td>60</td>
<td>100.34</td>
<td>1.67733</td>
<td>4.09435</td>
<td>.51422</td>
</tr>
<tr>
<td>70</td>
<td>96.69</td>
<td>1.38129</td>
<td>4.2485</td>
<td>.323015</td>
</tr>
<tr>
<td>80</td>
<td>92.55</td>
<td>1.15688</td>
<td>4.38203</td>
<td>.145722</td>
</tr>
<tr>
<td>90</td>
<td>87.8</td>
<td>.975556</td>
<td>4.49981</td>
<td>-.024749</td>
</tr>
<tr>
<td>100</td>
<td>82.11</td>
<td>.8211</td>
<td>4.60517</td>
<td>-.19711</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.48115 + -0.723875 \times \ln(tau) + -0.0850794 \times (\ln(tau))^2
\]

CH1 = 4.48115
CH2 = -.723875
CH3 = -.0850794

Sum of the squares of the residuals = 7.24412E-04
Standard error estimate = 9.51585E-03
Coefficient of determination = .99985
ELVEC battery CH coefficient curve plot

For battery: FE/AIR/1.0

CH-1 = 4.48115 \quad Pdmax = 110
CH-2 = -0.723875
CH-3 = -0.0850794

Specific Energy, Ed (Wh/kg)

Specific Power, Pd (W/kg)
Battery model coefficient generator:

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>66.39</td>
<td>6.639</td>
<td>2.30259</td>
<td>1.89296</td>
</tr>
<tr>
<td>20</td>
<td>67.83</td>
<td>3.3915</td>
<td>2.99573</td>
<td>1.22127</td>
</tr>
<tr>
<td>30</td>
<td>67.21</td>
<td>2.24033</td>
<td>3.4012</td>
<td>.806625</td>
</tr>
<tr>
<td>40</td>
<td>65.99</td>
<td>1.64975</td>
<td>3.68088</td>
<td>.500624</td>
</tr>
<tr>
<td>50</td>
<td>64.46</td>
<td>1.2892</td>
<td>3.91202</td>
<td>.254022</td>
</tr>
<tr>
<td>60</td>
<td>62.73</td>
<td>1.0455</td>
<td>4.09435</td>
<td>.0444953</td>
</tr>
<tr>
<td>70</td>
<td>60.81</td>
<td>.868714</td>
<td>4.2485</td>
<td>-.140741</td>
</tr>
<tr>
<td>80</td>
<td>58.7</td>
<td>.73375</td>
<td>4.38203</td>
<td>-.309587</td>
</tr>
<tr>
<td>90</td>
<td>56.37</td>
<td>.626333</td>
<td>4.49981</td>
<td>-.467872</td>
</tr>
<tr>
<td>100</td>
<td>53.77</td>
<td>.5377</td>
<td>4.60517</td>
<td>-.620455</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.12545 + -.833583 \ln(tau) + -.0698404 \ln(tau)^2
\]

CH1 = 4.12545
CH2 = -.833583
CH3 = -.0698404

Sum of the squares of the residuals = 3.6462E-04
Standard error estimate = 6.75297E-03
Coefficient of determination = .999925
ELVEC battery CH coefficient curve plot.....

For battery: FE/AIR/2.1

CH-1 = 4.12545 PdMax = 140
CH-2 = -.833583
CH-3 = -.0698404
Battery model coefficient generator:

FE/ATR/2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>66.14</td>
<td>6.614</td>
<td>2.30259</td>
<td>1.88919</td>
</tr>
<tr>
<td>20</td>
<td>67.72</td>
<td>3.386</td>
<td>2.99573</td>
<td>1.21965</td>
</tr>
<tr>
<td>30</td>
<td>67.29</td>
<td>2.243</td>
<td>3.4012</td>
<td>0.807814</td>
</tr>
<tr>
<td>40</td>
<td>66.29</td>
<td>1.65725</td>
<td>3.68808</td>
<td>0.50516</td>
</tr>
<tr>
<td>50</td>
<td>65.01</td>
<td>1.3002</td>
<td>3.91202</td>
<td>0.262518</td>
</tr>
<tr>
<td>60</td>
<td>63.55</td>
<td>1.05917</td>
<td>4.09435</td>
<td>0.0574824</td>
</tr>
<tr>
<td>70</td>
<td>61.94</td>
<td>.88457</td>
<td>4.2485</td>
<td>-.122329</td>
</tr>
<tr>
<td>80</td>
<td>60.2</td>
<td>.7525</td>
<td>4.38203</td>
<td>-.204354</td>
</tr>
<tr>
<td>90</td>
<td>58.31</td>
<td>.64789</td>
<td>4.49981</td>
<td>-.434036</td>
</tr>
<tr>
<td>100</td>
<td>56.27</td>
<td>.5627</td>
<td>4.60517</td>
<td>-.575009</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.13931 + 0.858481 \times \ln(tau) + 0.0612641 \times (\ln(tau))^2
\]

\[
\begin{align*}
CH_1 &= 4.13931 \\
CH_2 &= 0.858481 \\
CH_3 &= 0.0612641
\end{align*}
\]

Sum of the squares of the residuals = 1.87778E-04
Standard error estimate = 4.04481E-03
Coefficient of determination = .999961
ELVEC battery CH coefficient curve plot....

For battery: FE/ATR/2.4

CH-1 = 4.13931 Pdmax = 157
CH-2 = -.856481
CH-3 = -.0612641
Battery model coefficient generator:

FE/AIR/3.3

DATA ------

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>51.66</td>
<td>5.166</td>
<td>2.30259</td>
<td>1.6421</td>
</tr>
<tr>
<td>20</td>
<td>52.34</td>
<td>2.617</td>
<td>7.99573</td>
<td>.962029</td>
</tr>
<tr>
<td>30</td>
<td>51.79</td>
<td>1.72633</td>
<td>3.4012</td>
<td>.546</td>
</tr>
<tr>
<td>40</td>
<td>50.9</td>
<td>1.2725</td>
<td>3.68888</td>
<td>.240984</td>
</tr>
<tr>
<td>50</td>
<td>49.84</td>
<td>.9968</td>
<td>3.91202</td>
<td>-3.205E-03</td>
</tr>
<tr>
<td>60</td>
<td>48.67</td>
<td>.81167</td>
<td>4.09435</td>
<td>-.209282</td>
</tr>
<tr>
<td>70</td>
<td>47.41</td>
<td>.677286</td>
<td>4.2485</td>
<td>-.309662</td>
</tr>
<tr>
<td>80</td>
<td>46.07</td>
<td>.575875</td>
<td>4.38203</td>
<td>-.551865</td>
</tr>
<tr>
<td>90</td>
<td>44.64</td>
<td>.496</td>
<td>4.49981</td>
<td>-.701179</td>
</tr>
<tr>
<td>100</td>
<td>43.12</td>
<td>.4312</td>
<td>4.60517</td>
<td>-.841183</td>
</tr>
</tbody>
</table>

RESULTS ------

\[
\ln(Pd) = 3.90664 \times \ln(tau) - 0.0563951 \times (\ln(tau))^2
\]

\[
CH1 = 3.90664 \\
CH2 = -0.0563951
\]

Sum of the squares of the residuals = 1.87741E-04
Standard error estimate = 4.84434E-03
Coefficient of determination = .999961
ELVEC battery CH coefficient curve plot....

For battery: FE/AJR/3.3

CH-1 = 3.90664 Pdmax = 165
CH-2 = -0.886569
CH-3 = -0.0563951

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:
LI/MS1.0

DATA -----
<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>102</td>
<td>5.1</td>
<td>2.99573</td>
<td>1.62924</td>
</tr>
<tr>
<td>60</td>
<td>88</td>
<td>1.46667</td>
<td>4.09435</td>
<td>.387972</td>
</tr>
<tr>
<td>100</td>
<td>72</td>
<td>.72</td>
<td>4.60517</td>
<td>-.328504</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(P_d) = 4.37983 + 0.713407 \ln(tau) + 0.0835533 (\ln(tau))^2 \]

\[
\begin{align*}
CH_1 &= 4.37983 \\
CH_2 &= 0.713407 \\
CH_3 &= 0.0835533
\end{align*}
\]

Sum of the squares of the residuals = 4.54747E-13
Standard error estimate = 6.74349E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: Li/MS1.0

\[CH-1 = 4.37983 \]
\[CH-2 = -0.713407 \]
\[CH-3 = -0.0835533 \]
Battery model coefficient generator:

LI/MS2.1 - 2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>81</td>
<td>4.05</td>
<td>2.99573</td>
<td>1.39872</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>1.1667</td>
<td>4.09435</td>
<td>1.54751</td>
</tr>
<tr>
<td>100</td>
<td>57</td>
<td>57</td>
<td>4.60517</td>
<td>-0.562119</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.21177 + 0.748451 \ln(tau) + 0.0864695 \ln(tau)^2 \]

\[CH1 = 4.21177 \]
\[CH2 = -0.748451 \]
\[CH3 = -0.0864695 \]

Sum of the squares of the residuals = 7.38965E-13
Standard error estimate = 8.59631E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot......

For battery: LI/MS2.1

\[CH-1 = 4.21177 \quad P_d\text{max} = 165 \]
\[CH-2 = -0.748451 \]
\[CH-3 = -0.0864695 \]

Specific Energy, \(E_d \) (Wh/kg)

Specific Power, \(P_d \) (W/kg)
Battery model coefficient generator:
LI/MS3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>71</td>
<td>3.35</td>
<td>2.99573</td>
<td>1.26695</td>
</tr>
<tr>
<td>60</td>
<td>63</td>
<td>1.85</td>
<td>4.09435</td>
<td>0.487982</td>
</tr>
<tr>
<td>100</td>
<td>53</td>
<td>0.85</td>
<td>4.60517</td>
<td>-0.634878</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.13332 + -0.79485 \ln(\tau) + -0.081334 (\ln(\tau))^2
\]

CH1 = 4.13332
CH2 = -0.79485
CH3 = -0.081334

Sum of the squares of the residuals = 1.81899E-12
Standard error estimate = 1.3487E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.

For battery: LI/MS3.3

\[\begin{align*}
 CH-1 &= 4.13332 \\
 CH-2 &= -0.79495 \\
 CH-3 &= -0.081334
\end{align*} \]

Specific Power, \(P_d \) (W/kg) vs. Specific Energy, \(E_d \) (Wh/kg)
Battery model coefficient generator:

NA/S/1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>123.3</td>
<td>12.33</td>
<td>2.30259</td>
<td>2.51204</td>
</tr>
<tr>
<td>20</td>
<td>120.53</td>
<td>6.0265</td>
<td>2.99573</td>
<td>1.79417</td>
</tr>
<tr>
<td>30</td>
<td>117.69</td>
<td>3.923</td>
<td>3.4012</td>
<td>1.36686</td>
</tr>
<tr>
<td>40</td>
<td>114.78</td>
<td>2.6955</td>
<td>3.68898</td>
<td>1.05414</td>
</tr>
<tr>
<td>50</td>
<td>111.78</td>
<td>2.356</td>
<td>3.91202</td>
<td>0.80451</td>
</tr>
<tr>
<td>60</td>
<td>108.67</td>
<td>1.8117</td>
<td>4.09435</td>
<td>0.593971</td>
</tr>
<tr>
<td>70</td>
<td>105.46</td>
<td>1.50457</td>
<td>4.2405</td>
<td>0.409837</td>
</tr>
<tr>
<td>80</td>
<td>102.11</td>
<td>1.27638</td>
<td>4.38203</td>
<td>0.244024</td>
</tr>
<tr>
<td>90</td>
<td>98.61</td>
<td>1.09567</td>
<td>4.49981</td>
<td>0.091363</td>
</tr>
<tr>
<td>100</td>
<td>94.92</td>
<td>.9492</td>
<td>4.60517</td>
<td>-.0521356</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.57375 + -0.790541 \times \ln(tau) + -0.0460973 \times (\ln(tau))^2 \]

CH1 = 4.57375
CH2 = -0.790541
CH3 = -0.0460973

Sum of the squares of the residuals = 3.64 \times 10^{-04}
Standard error estimate = 6.74657 \times 10^{-3}
Coefficient of determination = .999925
ELVEC battery CH coefficient curve plot.....

For battery: NA/S/1.0

CH-1 = 4.57375 \(P_{d_{\text{max}}} = 148 \)
CH-2 = -0.790541
CH-3 = -0.0460973
Battery model coefficient generator:
NA/S/2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>88.16</td>
<td>.816</td>
<td>2.30259</td>
<td>2.17657</td>
</tr>
<tr>
<td>20</td>
<td>86.93</td>
<td>.3465</td>
<td>2.99573</td>
<td>1.46937</td>
</tr>
<tr>
<td>30</td>
<td>85.67</td>
<td>2.8567</td>
<td>3.4012</td>
<td>1.04931</td>
</tr>
<tr>
<td>40</td>
<td>84.30</td>
<td>2.1095</td>
<td>3.68888</td>
<td>.746451</td>
</tr>
<tr>
<td>50</td>
<td>83.04</td>
<td>1.6608</td>
<td>3.91202</td>
<td>.5073</td>
</tr>
<tr>
<td>60</td>
<td>81.65</td>
<td>1.36083</td>
<td>4.09435</td>
<td>.308097</td>
</tr>
<tr>
<td>70</td>
<td>80.21</td>
<td>1.14586</td>
<td>4.2485</td>
<td>.134153</td>
</tr>
<tr>
<td>80</td>
<td>78.72</td>
<td>.984</td>
<td>4.2803</td>
<td>-.0161292</td>
</tr>
<tr>
<td>90</td>
<td>77.16</td>
<td>.857333</td>
<td>4.49981</td>
<td>-.153928</td>
</tr>
<tr>
<td>100</td>
<td>75.53</td>
<td>.7553</td>
<td>4.60517</td>
<td>-.28864</td>
</tr>
</tbody>
</table>

RESULTS -----

ln(Pd) = 4.36547 + -.834152 *ln(tau) + -.0299432 *[ln(tau)]^2

CH1 = 4.36547
CH2 = -.834152
CH3 = -.0299432

Sum of the squares of the residuals = 1.43137E-04
Standard error estimate = 4.22991E-03
Coefficient of determination = .99997
ELVEC battery CH coefficient curve plot.....

For battery: NA/S/2.1

CH-1 = 4.36547 Pdmax = 199
CH-2 = -0.884152
CH-3 = -0.0299432

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:

NA/S/2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>84.17</td>
<td>8.417</td>
<td>2.30259</td>
<td>2.13025</td>
</tr>
<tr>
<td>20</td>
<td>83.06</td>
<td>4.153</td>
<td>2.99573</td>
<td>1.47383</td>
</tr>
<tr>
<td>30</td>
<td>81.92</td>
<td>2.73067</td>
<td>3.4012</td>
<td>1.00455</td>
</tr>
<tr>
<td>40</td>
<td>80.75</td>
<td>2.01875</td>
<td>3.68888</td>
<td>0.702479</td>
</tr>
<tr>
<td>50</td>
<td>79.54</td>
<td>1.5908</td>
<td>3.91202</td>
<td>0.464237</td>
</tr>
<tr>
<td>60</td>
<td>78.3</td>
<td>1.305</td>
<td>4.09435</td>
<td>0.266203</td>
</tr>
<tr>
<td>70</td>
<td>77.03</td>
<td>1.10043</td>
<td>4.2485</td>
<td>0.6956998</td>
</tr>
<tr>
<td>80</td>
<td>75.71</td>
<td>.946375</td>
<td>4.38203</td>
<td>-0.055162</td>
</tr>
<tr>
<td>90</td>
<td>74.34</td>
<td>.826</td>
<td>4.49981</td>
<td>-1.19116</td>
</tr>
<tr>
<td>100</td>
<td>72.92</td>
<td>.7292</td>
<td>4.60517</td>
<td>-3.15807</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.3308 + -0.894503 \times \ln(tau) + -0.0276968 \times (\ln(tau))^2 \]

CH1 = 4.3308
CH2 = -0.894503
CH3 = -0.0276968

Sum of the squares of the residuals = 1.12011E-04
Standard error estimate = 3.74184E-03
Coefficient of determination = .999977
ELVEC battery CH coefficient curve plot.....

For battery: NA/S/2.4

CH-1 = 4.3308 Pdmax = 224
CH-2 = -.094503
CH-3 = -.0276968

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator: NA/5/3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>74.02</td>
<td>7.402</td>
<td>2.3025</td>
<td>2.00175</td>
</tr>
<tr>
<td>20</td>
<td>73.04</td>
<td>3.652</td>
<td>2.99573</td>
<td>1.79528</td>
</tr>
<tr>
<td>30</td>
<td>72.04</td>
<td>2.40133</td>
<td>3.4012</td>
<td>1.876024</td>
</tr>
<tr>
<td>40</td>
<td>71.02</td>
<td>1.7755</td>
<td>3.68888</td>
<td>574082</td>
</tr>
<tr>
<td>50</td>
<td>69.97</td>
<td>1.3994</td>
<td>3.91202</td>
<td>336044</td>
</tr>
<tr>
<td>60</td>
<td>68.89</td>
<td>1.14817</td>
<td>4.09435</td>
<td>138167</td>
</tr>
<tr>
<td>70</td>
<td>67.78</td>
<td>0.968286</td>
<td>4.2485</td>
<td>-0.032278</td>
</tr>
<tr>
<td>80</td>
<td>66.64</td>
<td>0.833</td>
<td>4.30203</td>
<td>-1.02722</td>
</tr>
<tr>
<td>90</td>
<td>65.45</td>
<td>0.727222</td>
<td>4.49981</td>
<td>-318523</td>
</tr>
<tr>
<td>100</td>
<td>64.22</td>
<td>0.6422</td>
<td>4.60517</td>
<td>-442855</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.21601 + -0.902732 \times \ln(tau) + -0.0272804 \times (\ln(tau))^2 \]

- CH1 = 4.21601
- CH2 = -0.902732
- CH3 = -0.0272804

Sum of the squares of the residuals = 1.08422E-04
Standard error estimate = 3.68141E-03
Coefficient of determination = .999978
ELVEC battery CH coefficient curve plot.....

For battery: NA/S/3.3

CH-1 = 4.21601 Pdmax = 244
CH-2 = -0.902732
CH-3 = -0.0272804

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:
A/AIR/PRES W/IMPR SELF-DISCH

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>158</td>
<td>7.9</td>
<td>2.99573</td>
<td>2.06686</td>
</tr>
<tr>
<td>80</td>
<td>158</td>
<td>2.63333</td>
<td>4.09435</td>
<td>.968251</td>
</tr>
<tr>
<td>100</td>
<td>151</td>
<td>1.975</td>
<td>4.38203</td>
<td>.680569</td>
</tr>
<tr>
<td>157</td>
<td>126</td>
<td>1.51</td>
<td>4.60517</td>
<td>.41211</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.9078 + -.723055 \ln(tau) + -.0984402 \ln(tau)^2 \]

\[\begin{align*} \text{CH1} & = 4.9078 \\ \text{CH2} & = -.723055 \\ \text{CH3} & = -.0984402 \end{align*} \]

Sum of the squares of the residuals = 7.73907E-04
Standard error estimate = .0160614
Coefficient of determination = .999676
ELVEC battery CH coefficient curve plot.....

For battery: Al/AIR/PRES W/IMPR SELF-DISCH

\[CH-1 = 4.9078 \quad \text{Pdmax} = 157 \]
\[CH-2 = -0.723055 \]
\[CH-3 = -0.0984402 \]

Specific Energy, Ed (Wh/kg)

Specific Power, Pd (W/kg)
Table N-1. Battery Projections by Review Board

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Energy (Wh/kg @20W/kg)</th>
<th>Power (30-s W/kg @10% SOC)</th>
<th>Annual Efficiency (%)</th>
<th>Cycle</th>
<th>Life</th>
<th>OEM Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb/Acid</td>
<td>38-45</td>
<td>80-100</td>
<td>75</td>
<td>750</td>
<td>43</td>
<td>9 400</td>
</tr>
<tr>
<td>Bip.Pb/Acid</td>
<td>50</td>
<td>275</td>
<td>85</td>
<td>750</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Ni/Fe</td>
<td>48-56</td>
<td>75-110</td>
<td>58</td>
<td>1500</td>
<td>100</td>
<td>12 800</td>
</tr>
<tr>
<td>Ni/Zn</td>
<td>60</td>
<td>155</td>
<td>70</td>
<td>600</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Zn/Br2</td>
<td>40-67</td>
<td>52-94</td>
<td>46</td>
<td>750</td>
<td>20</td>
<td>10 700</td>
</tr>
<tr>
<td>Zn/C12</td>
<td>42-89</td>
<td>80-115</td>
<td>48</td>
<td>1500</td>
<td>10</td>
<td>45 1150</td>
</tr>
<tr>
<td>Fe/Air</td>
<td>52-109</td>
<td>102-146</td>
<td>50</td>
<td>500</td>
<td>8</td>
<td>25 700</td>
</tr>
<tr>
<td>Li/FeS</td>
<td>72-102</td>
<td>90-107</td>
<td>60</td>
<td>750</td>
<td>70</td>
<td>10 750</td>
</tr>
<tr>
<td>Na/S</td>
<td>73-121</td>
<td>129-220</td>
<td>66</td>
<td>750</td>
<td>25</td>
<td>45 1000</td>
</tr>
<tr>
<td>Al/Air</td>
<td>158</td>
<td>157</td>
<td>18**</td>
<td>3000***</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

* OEM Costs in 1982* = a*kWh + b*kW + c (Symons equation), numbers listed are the review board’s low estimates

** Source energy

*** Life of air cathode—3000 cold starts, equivalent to 4 years

Table N-2. Battery Projections by Developers

<table>
<thead>
<tr>
<th>Battery Type</th>
<th>Energy (Wh/kg @20W/kg)</th>
<th>Power (30-s W/kg @10% SOC)</th>
<th>Annual Efficiency (%)</th>
<th>Cycle</th>
<th>Life</th>
<th>OEM Cost*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb/Acid</td>
<td>38-45</td>
<td>80-100</td>
<td>75</td>
<td>600</td>
<td></td>
<td>$ 53/kWh</td>
</tr>
<tr>
<td>Ni/Fe</td>
<td>50-56</td>
<td>100-130</td>
<td>72</td>
<td>1500</td>
<td>130</td>
<td>130/kWh</td>
</tr>
<tr>
<td>Ni/Zn</td>
<td>60</td>
<td>155</td>
<td>70</td>
<td>600</td>
<td>130</td>
<td>130/kWh</td>
</tr>
<tr>
<td>Zn/Br2</td>
<td>40-67</td>
<td>52-94</td>
<td>56</td>
<td>750</td>
<td>40</td>
<td>40/kWh</td>
</tr>
<tr>
<td>Zn/C12</td>
<td>50-110</td>
<td>103-154</td>
<td>53</td>
<td>1500</td>
<td>61-81</td>
<td>61-81/kW</td>
</tr>
<tr>
<td>Fe/Air</td>
<td>98-195</td>
<td>181-309</td>
<td>68</td>
<td>500</td>
<td>21-25</td>
<td>21-25/kW</td>
</tr>
<tr>
<td>Li/FeS</td>
<td>87-136</td>
<td>90-131</td>
<td>65</td>
<td>1000</td>
<td>99-115</td>
<td>99-115/kW</td>
</tr>
<tr>
<td>Na/S</td>
<td>73-132</td>
<td>143-220</td>
<td>75</td>
<td>800**</td>
<td>63-97</td>
<td>63-97/kW</td>
</tr>
<tr>
<td>Al/Air</td>
<td>218</td>
<td>218</td>
<td>32</td>
<td>3000***</td>
<td>32</td>
<td>32/kW</td>
</tr>
</tbody>
</table>

* Equivalent values calculated from cost estimates of complete battery systems in some instances

** Surrogate for replacement of 25% of the cells in 1000 cycles

*** Life of air cathode—3000 cold starts, equivalent to 4 years
APPENDIX O

BATTERY DISCHARGE MODELS
BASED ON BATTERY DESIGN REPORTS
Battery model coefficient generator:

NI/FE 1.0, 2.1, 2.4

DATA ------

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>58</td>
<td>5.8</td>
<td>2.30259</td>
<td>1.75786</td>
</tr>
<tr>
<td>20</td>
<td>56</td>
<td>2.8</td>
<td>2.95573</td>
<td>1.02962</td>
</tr>
<tr>
<td>60</td>
<td>46</td>
<td>.766667</td>
<td>4.09435</td>
<td>-.255703</td>
</tr>
<tr>
<td>100</td>
<td>31</td>
<td>.31</td>
<td>4.60517</td>
<td>-1.17118</td>
</tr>
</tbody>
</table>

RESULTS ------

\[\ln(Pd) = 3.8825 + -.73727 \times \ln(\tau) + -.0959177 \times (\ln(\tau))^2 \]

CH1 = 3.8825
CH2 = -.73727
CH3 = -.0959177

Sum of the squares of the residuals = 1.43249E-03
Standard error estimate = 0.0267628
Coefficient of determination = .999561
ELVEC battery CH coefficient curve plot.....

For battery: NI/FE 1.0, 2.1, 2.4

CH-1 = 3.8825 Pdmax = 160
CH-2 = -0.73727
CH-3 = -0.0959177

Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:
NI/FE 3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>52</td>
<td>5.2</td>
<td>2.30259</td>
<td>1.64866</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>2.5</td>
<td>2.99573</td>
<td>0.91221</td>
</tr>
<tr>
<td>60</td>
<td>44</td>
<td>.73333</td>
<td>4.09435</td>
<td>-.31045</td>
</tr>
<tr>
<td>100</td>
<td>37</td>
<td>.37</td>
<td>4.60517</td>
<td>-.99425</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 3.8239 + \cdot 0.842842 \cdot \ln(tau) + \cdot 0.050693 \cdot (\ln(tau))^2 \]

CH1 = 3.8239
CH2 = 0.842842
CH3 = 0.050693

Sum of the squares of the residuals = 4.50989E-04
Standard error estimate = .0150165
Coefficient of determination = .999862
ELVEC battery CH coefficient curve plot.....

For battery: NI/FE 3.3

CH-1 = 3.8239 Pdmax = 190
CH-2 = -0.842842
CH-3 = -0.050693

Specific Energy, Ed (Wh/kg)

Specific Power, Pd (W/kg)
Battery model coefficient generator:
ZN/CL 1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>110</td>
<td>5.5</td>
<td>2.79573</td>
<td>1.70475</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
<td>1.66667</td>
<td>4.09435</td>
<td>0.510826</td>
</tr>
<tr>
<td>100</td>
<td>85</td>
<td>.85</td>
<td>4.60517</td>
<td>-1.160519</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.48906 - 0.728524 \cdot \ln(tau) - 0.0864971 \cdot (\ln(tau))^2
\]

CH1 = 4.48906
CH2 = -0.728524
CH3 = -0.0864971

Sum of the squares of the residuals = 3.66072E-11
Standard error estimate = 6.05039E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot......

For battery: ZN/CL 1.0

CH-1 = 4.48906 Pdmax = 105
CH-2 = -.728524
CH-3 = -.0864971
Battery model coefficient generator:
ZN/CL 2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>66</td>
<td>3.3</td>
<td>2.99573</td>
<td>1.19392</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>1</td>
<td>4.09435</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>55</td>
<td>.55</td>
<td>4.60517</td>
<td>-.597437</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.09435 + -.876383 \ln(tau) + -.0366745 (\ln(tau))^2 \]

\[CH1 = 4.09435 \]
\[CH2 = -.876383 \]
\[CH3 = -.0366745 \]

Sum of the squares of the residuals = 9.66338E-13
Standard error estimate = 9.83026E-07
Coefficient of determination = 1.
ELVEC battery GH coefficient curve plot.....

For battery: ZN/CL 2.1

\[CH-1 = 4.09435 \quad P_d^{\text{max}} = 130 \]
\[CH-2 = -0.876383 \]
\[CH-3 = -0.0366745 \]
Battery model coefficient generator:

ZN/CL 2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>65</td>
<td>3.25</td>
<td>2.99573</td>
<td>1.01667</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>1.01667</td>
<td>4.09435</td>
<td>.016593</td>
</tr>
<tr>
<td>100</td>
<td>56</td>
<td>.56</td>
<td>4.60517</td>
<td>-.57919</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.10899 + -.885019 \times \ln(tau) + -.0504766 \times [\ln(tau)]^2
\]

CH1 = 4.10899
CH2 = -.885019
CH3 = -.0504766

Sum of the squares of the residuals = 1.81899E-12
Standard error estimate = 1.3487E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: ZN/CL 2.4

CH-1 = 4.10899 Pdmax = 147
CH-2 = -0.885019
CH-3 = -0.0504766
Battery model coefficient generator:

ZN/CL 3.3

DATA -----

\[
\begin{array}{cccc}
P_d & E_d & \tau & \ln(P_d) & \ln(\tau) \\
20 & 50 & 2.5 & 2.99573 & 0.916291 \\
60 & 47 & 0.78333 & 4.09435 & -0.24497 \\
100 & 44 & 0.44 & 4.60517 & -0.820981 \\
\end{array}
\]

RESULTS -----

\[
\ln(P_d) = 3.87103 + -0.923069 \times \ln(\tau) + -0.035132 \times [\ln(\tau)]^2
\]

CH1 = 3.87103
CH2 = -0.923069
CH3 = -0.035132

Sum of the squares of the residuals = 9.66339E-13
Standard error estimate = 9.83026E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot....

For battery: ZN/CL 3.3

CH-1 = 3.87103 \quad Pdmax = 158
CH-2 = -0.923069
CH-3 = -0.035132
Battery model coefficient generator:

FE/AIR 1.0

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>195</td>
<td>9.75</td>
<td>2.99573</td>
<td>2.27727</td>
</tr>
<tr>
<td>60</td>
<td>182</td>
<td>3.03333</td>
<td>4.09435</td>
<td>1.10966</td>
</tr>
<tr>
<td>100</td>
<td>167</td>
<td>1.67</td>
<td>4.60517</td>
<td>0.512824</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 5.01672 + (-0.777791 \times \ln(tau)) + (-0.0481574 \times [\ln(tau)])^2
\]

CH1 = 5.01672
CH2 = -0.777791
CH3 = -0.0481574

Sum of the squares of the residuals = 2.97917E-10
Standard error estimate = 1.22603E-05
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: FE/AIR 1.0

CH-1 = 5.01672 \quad \text{Pdmax} = 181
CH-2 = -0.77791
CH-3 = -0.0481574

Specific Energy, \(E_d \) (Wh/kg)

Specific Power, \(P_d \) (W/kg)
Battery model coefficient generator:

FE/AIR 2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.134</td>
<td>134</td>
<td>6.65541</td>
<td>3.00241</td>
<td>1.89543</td>
</tr>
<tr>
<td>60</td>
<td>128</td>
<td>2.13333</td>
<td>4.09435</td>
<td>.757686</td>
</tr>
<tr>
<td>100</td>
<td>122</td>
<td>1.22</td>
<td>4.60517</td>
<td>.198851</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.78288 + 0.888354 \ln(tau) - 0.0269051 \ln(tau)^2 \]

CH1 = 4.78288
CH2 = 0.888354
CH3 = -0.0269051

Sum of the squares of the residuals = 2.84217E-13
Standard error estimate = 5.3312E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot...

For battery: FE/AIR 2.1

CH-1 = 4.78208 Pdmax = 262
CH-2 = -.888354
CH-3 = -.0269051
Battery model coefficient generator:

FE/AIR 2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>\ln(Pd)</th>
<th>\ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>123</td>
<td>6.15</td>
<td>2.99573</td>
<td>1.31645</td>
</tr>
<tr>
<td>60</td>
<td>118</td>
<td>1.96667</td>
<td>4.09435</td>
<td>1.67634</td>
</tr>
<tr>
<td>100</td>
<td>113</td>
<td>1.13</td>
<td>4.60517</td>
<td>1.22217</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.7158 + -.902187 \ln(\tau) + -.0246366 [(\ln(\tau))^2]
\]

CH1 = 4.7158
CH2 = -.902187
CH3 = -.0246366

Sum of the squares of the residuals = 1.19371E-12
Standard error estimate = 1.09257E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot......

For battery: FE/AIR 2.4

CH-1 = 4.7158 \quad Pd_{max} = 277
CH-2 = -0.902187
CH-3 = -0.0246366
Battery model coefficient generator:

FE/AIR 3.3

DATA

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>98</td>
<td>4.9</td>
<td>2.99573</td>
<td>1.58924</td>
</tr>
<tr>
<td>60</td>
<td>94</td>
<td>1.56667</td>
<td>4.09435</td>
<td>.44895</td>
</tr>
<tr>
<td>100</td>
<td>91</td>
<td>.91</td>
<td>4.60517</td>
<td>-.0943106</td>
</tr>
</tbody>
</table>

RESULTS

\[
\ln(Pd) = 4.51707 + -.935427 \ln(tau) + -.0137498 \ln(tau)^2
\]

CH1 = 4.51707
CH2 = -.935427
CH3 = -.0137498

Sum of the squares of the residuals = 1.18803E-11
Standard error estimate = 3.44678E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot......

For battery: FE/AIR.3.3

CH-1 = 4.51707 Pdmax = 309
CH-2 = -0.935427
CH-3 = -0.0137498
Battery model coefficient generator:

LI/FES 1.0 AND 3.3 - BIPOLAR

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>136</td>
<td>6.8</td>
<td>2.99573</td>
<td>1.91692</td>
</tr>
<tr>
<td>60</td>
<td>115</td>
<td>1.91667</td>
<td>4.09435</td>
<td>.650588</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>.9</td>
<td>4.60517</td>
<td>-.10536</td>
</tr>
</tbody>
</table>

RESULTS -----

ln(Pd) = 4.54047 + -.624021 *ln(tau) + -.0948519 *[ln(tau)]^2

CH1 = 4.54047
CH2 = -.624021
CH3 = -.0948519

Sum of the squares of the residuals = 7.95808E-12
Standard error estimate = 2.82101E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: LI/FES 1.0 AND 3.3 - BIPOLAR

CH-1 = 4.54047 Pdmax = 187
CH-2 = -.624021
CH-3 = -.0948519

1000

Specific Energy, Ed (Wh/kg)

Specific Power, Pd (W/kg) 1 10 100 1000
Battery model coefficient generator:

LI/FES 2.1 AND 2.4 - PRISMATIC

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>87</td>
<td>4.35</td>
<td>2.99573</td>
<td>1.47018</td>
</tr>
<tr>
<td>60</td>
<td>75</td>
<td>1.25</td>
<td>4.09435</td>
<td>.223144</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>.6</td>
<td>4.60517</td>
<td>-.510826</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(P_d) = 4.26029 + -.722844 \times \ln(tau) + -.093389 \times (\ln(tau))^2 \]

\begin{align*}
\text{CH1} &= 4.26029 \\
\text{CH2} &= -.722844 \\
\text{CH3} &= -.093389
\end{align*}

Sum of the squares of the residuals = 2.27374E-13
Standard error estimate = 4.76837E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: LI/FES 2.1 AND 2.4 - PRISMATIC

CH-1 = 4.26029 \quad \text{Pdmax} = 170
CH-2 = -0.722844
CH-3 = -0.093389
Battery model coefficient generator.

NA/S 1.0

DATA ------

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>132</td>
<td>6.6</td>
<td>2.99573</td>
<td>1.88707</td>
</tr>
<tr>
<td>60</td>
<td>121</td>
<td>2.01667</td>
<td>4.09435</td>
<td>0.701446</td>
</tr>
<tr>
<td>100</td>
<td>107</td>
<td>1.07</td>
<td>4.60517</td>
<td>0.0676587</td>
</tr>
</tbody>
</table>

RESULTS ------

\[\ln(Pd) = 4.65656 + -0.755 \ln(tau) + -0.0662971 \ln(tau)^2 \]

CH1 = 4.65656
CH2 = -0.755
CH3 = -0.0662971

Sum of the squares of the residuals = 0
Standard error estimate = 0
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: NA/S 1.0

\[\begin{align*}
\text{CH-1} &= 4.65656 \\
\text{Pdmax} &= 165 \\
\text{CH-2} &= -0.755 \\
\text{CH-3} &= -0.0662971
\end{align*} \]
Battery model coefficient generator:

NA/S 2.1

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>92</td>
<td>4.6</td>
<td>2.99573</td>
<td>1.52606</td>
</tr>
<tr>
<td>60</td>
<td>86</td>
<td>1.43333</td>
<td>4.09435</td>
<td>.360003</td>
</tr>
<tr>
<td>100</td>
<td>80</td>
<td>.8</td>
<td>4.60517</td>
<td>-.223143</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.41274 + -.870809 \ln(tau) + -.0378316 \left[\ln(tau)\right]^2
\]

CH1 = 4.41274
CH2 = -.870809
CH3 = -.0378316

Sum of the squares of the residuals = 1.87583E-12
Standard error estimate = 1.36961E-06
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.

For battery: NA/S 2.1

CH-1 = 4.41274 Pdmax = 209
CH-2 = -0.870809
CH-3 = -0.0378316

Specific Energy, Ed (Wh/kg)

Specific Power, Pd (W/kg)
Battery model coefficient generator:
NA/S 2.4

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>83</td>
<td>4.15</td>
<td>2.99573</td>
<td>1.42311</td>
</tr>
<tr>
<td>60</td>
<td>79</td>
<td>1.31667</td>
<td>4.09435</td>
<td>.275103</td>
</tr>
<tr>
<td>100</td>
<td>74</td>
<td>.74</td>
<td>4.60517</td>
<td>-.301105</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 4.34162 - .887594 \ln(tau) - .040855 \left(\ln(tau)^2\right) \]

\[CH1 = 4.34162 \]
\[CH2 = -.887594 \]
\[CH3 = -.040855 \]

Sum of the squares of the residuals = 6.82121E-13
Standard error estimate = 8.25906E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.....

For battery: NA/S 2.4

\[
\begin{align*}
\text{CH-1} & = 4.34162 \\
\text{CH-2} & = -0.887594 \\
\text{CH-3} & = -0.040855
\end{align*}
\]

Specific Power, \(P_d \) (W/kg) vs. Specific Energy, \(E_d \) (Wh/kg)
Battery model coefficient generator:

NA/S 3.3

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>73</td>
<td>3.65</td>
<td>2.99573</td>
<td>1.29473</td>
</tr>
<tr>
<td>60</td>
<td>69</td>
<td>1.15</td>
<td>4.09435</td>
<td>1.39762</td>
</tr>
<tr>
<td>100</td>
<td>65</td>
<td>.65</td>
<td>4.60517</td>
<td>-.430783</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.22143 + -0.904752 \ln(tau) + -0.0323847 \ln(tau)^2
\]

CH1 = 4.22143
CH2 = -0.904752
CH3 = -0.0323847

Sum of the squares of the residuals = 4.54747E-13
Standard error estimate = 6.74349E-07
Coefficient of determination = 1
ELVEC battery CH coefficient curve plot.

For battery: Na/S 3.3

\begin{align*}
CH-1 &= 4.22143 \\
CH-2 &= -.904752 \\
CH-3 &= -.0323847
\end{align*}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{specific_power_plot.png}
\caption{Specific Power, Pd (W/kg) vs. Specific Energy, Ed (Wh/kg)}
\end{figure}
Battery model coefficient generator:

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>218</td>
<td>10.9</td>
<td>2.99573</td>
<td>2.38876</td>
</tr>
<tr>
<td>60</td>
<td>204</td>
<td>3.4</td>
<td>4.09435</td>
<td>1.22370</td>
</tr>
<tr>
<td>100</td>
<td>192</td>
<td>1.92</td>
<td>4.60517</td>
<td>.652325</td>
</tr>
<tr>
<td>200</td>
<td>164</td>
<td>.82</td>
<td>5.29832</td>
<td>-.198451</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 5.14165 + -.803725 \cdot \ln(tau) + -.0397415 \cdot (\ln(tau))^2
\]

\[
\begin{align*}
CH1 &= 5.14165 \\
CH2 &= -.803725 \\
CH3 &= -.0397415
\end{align*}
\]

Sum of the squares of the residuals = 4.21929E-05
Standard error estimate = 4.59309E-03
Coefficient of determination = .999985
ELVEC battery CH coefficient curve plot....

For battery: AL/AIR

\[CH-1 = 5.14165 \quad P_{\text{max}} = 218 \]
\[CH-2 = -0.803725 \]
\[CH-3 = -0.0397415 \]
Battery model coefficient generator: AL/AIR/PRES

DATA -----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>147</td>
<td>7.35</td>
<td>2.99573</td>
<td>1.9947</td>
</tr>
<tr>
<td>60</td>
<td>158</td>
<td>2.63333</td>
<td>4.09435</td>
<td>.968251</td>
</tr>
<tr>
<td>80</td>
<td>158</td>
<td>1.975</td>
<td>4.38203</td>
<td>.680569</td>
</tr>
<tr>
<td>100</td>
<td>151</td>
<td>1.51</td>
<td>4.60517</td>
<td>.41211</td>
</tr>
<tr>
<td>157</td>
<td>126</td>
<td>.802549</td>
<td>5.05625</td>
<td>-.219964</td>
</tr>
</tbody>
</table>

RESULTS -----

\[
\ln(Pd) = 4.91109 - .703742 \ln(tau) - .129094 [\ln(tau)]^2
\]

CH1 = 4.91109
CH2 = - .703742
CH3 = - .129094

Sum of the squares of the residuals = 3.50653E-04
Standard error estimate = .0108113
Coefficient of determination = .999853
ELVEC battery CH coefficient curve plot.

For battery: AL/AIR/PRES

CH-1 = 4.91109 Pdmax = 157
CH-2 = -.703742
CH-3 = -.129094

Specific Power, Pd (W/kg) vs.
Specific Energy, Ed (Wh/kg)
Battery model coefficient generator:

AL/AIR/ADV

DATA ----

<table>
<thead>
<tr>
<th>Pd</th>
<th>Ed</th>
<th>tau</th>
<th>ln(Pd)</th>
<th>ln(tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>218</td>
<td>10.9</td>
<td>2.99573</td>
<td>2.30876</td>
</tr>
<tr>
<td>60</td>
<td>204</td>
<td>3.4</td>
<td>4.09435</td>
<td>1.22378</td>
</tr>
<tr>
<td>80</td>
<td>196</td>
<td>2.45</td>
<td>4.38203</td>
<td>.89688</td>
</tr>
<tr>
<td>100</td>
<td>192</td>
<td>1.92</td>
<td>4.60517</td>
<td>.652325</td>
</tr>
<tr>
<td>200</td>
<td>164</td>
<td>.82</td>
<td>5.29832</td>
<td>-.198451</td>
</tr>
<tr>
<td>218</td>
<td>145</td>
<td>.665138</td>
<td>5.3845</td>
<td>-.407761</td>
</tr>
</tbody>
</table>

RESULTS -----

\[\ln(Pd) = 5.11411 - 0.758579 \ln(tau) - 0.0543494 \left[\ln(tau) \right]^2 \]

CH1 = 5.11411
CH2 = -0.758579
CH3 = -0.0543494

Sum of the squares of the residuals = 2.44835E-03
Standard error estimate = .0247404
Coefficient of determination = .999366
ELVEC battery CH coefficient curve plot.....

For battery: AL/AIR/ADV

CH-1 = 5.11411 Pdmax = 218
CH-2 = -.758579
CH-3 = -.0543494

Specific Energy, Ed (Wh/kg)