NASH 7H-56 78

NASA Technical Memorandum 86781 USAAVSCOM Technical Report TR 85-A-8

NASA-TM-86781

1986000172

Shock Fitting Applied to the
Prediction of High-Speed Rotor
Noise

Major John W. Rutherford

NGEyoT L Lo e

October 1985

LIBRARY n7ny
00T 2 1 165

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

National Aeronautics and Aviation Systems ?’,ﬁ &
Space Administration Command S

NASN e




NASA Technical Memorandum 86781 USAAVSCOM Technical Report TR 85-A-8

Shock Fitting Applied to the
Prediction of High-Speed Rotor
Noise

Major John W. Rutherford, Aeroflightdynamics Directorate, U S Army Aviation and
Technology Activity AVSCOM
Ames Research Center, Moffett Field, California

October 1985

NASA

National Aeronautics and United States Army

Space Administration Aviation Systems

Ames Research Center Command -\
Moffett Field California 94035 St Louis, Missouri 63120 &

Neo—1/88 7




SHOCK FITTING APPLIED TO THE PREDICTION OF HIGH-SPEED ROTOR NOISE

Ma jor John W. Rutherford
U.S. Army Aviation Research and Technology Activity
Aeroflightdynamics Directorate
Ames Research Center
Moffett Field, California 94035, U.S.A.

ABSTRACT

A shock fitting method applied to the transonic small disturbance
(TSD) potential equation is described. This method 1s then applied to a
simple, two-dimensional (2-D) rotating disturbance which is analogous to
a shock radiating from the tip of a rotor blade in high-speed hover. A
comparison 1s made between the results of this method and the more
standard shock-capturing method. This comparison makes it clear that
the effect of the results on the acoustic signature of the 2-D model is
significant, and similar results can be expected when the method is
extended to the three-dimensional (3-D) case.
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NOMENCLATURE

speed of sound, m/sec

bump chord length, m

radius of model cylinder, m

cylindrical radial distance, m

time, sec

ratio of specific heats

angle measured in cylindrical coordinates
velocity potential, m“/sec

angular velocity, sec”

VO DX 3 DO P

Subscripts

Q

property of the chord
property of the shock
free-stream condition

8 W

2. INTRODUCTION

The ability to predict the far-field acoustic signature of a
high-speed rotor blade has met with limited success 1in the transonic
regime. To date, researchers have used the Ffowes-Williams and Hawkings
Equation to predict rotor noise in the far field. This method requires
detailed data for velocity and pressure in the region surrounding the
blade tip. This information was obtained from finite-difference poten-
tial solutions of the flow field around a blade rotating at transonic
tip speeds. This effort produced results which correlated well compared
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Wwith experimental rotor data taken in high-speed hover. These results
were valid up to some limiting tip Mach number beyond which the results
do not correlate well (refs. 1-3).

When viewed from a blade-fixed coordinate system (fig. 1), the
velocity of the free stream increases linearly with radius. At some
radius (defining the "sonic circle"), the free stream becomes sonic.

The region outboard of the sonic circle is supersonic relative to the
blade, while the region inboard 1s subsonic. At high tip Mach numbers,
a region of supersonic flow, terminated by a shock, will form adjacent
to and extend away from the blade surface in three dimensions. As the
tip Mach number 1ncreases, the region of supersonic flow will grow
larger until 1t finally connects with the outer supersonic region. When
this occurs, a hyperbolic region will extend from the blade surface to
the far field. Because of the highly radiative nature of this region,
the shock will also escape to the far field, dramatically increasing the
acoustic signature of the rotor. This phenomenon 1s known as "delocali-
zation" (ref. 4), and 1t occurs at subsonic tip Mach numbers. The Mach
number at which delocalization occurs appears to be the limiting Mach
number at which theoretical prediction of the far-field acoustiec signa-
ture no longer correlates well with experimental data. It 1s believed
that the onset of the characteristic, impulsive "popping" noise of a
rotor in high-speed flight 1s caused by this delocalization.

Delocalization has been investigated using a more basic 2-D model
(ref. 5). A disturbance in the form of a circular-arc bump spanning the
surface of a rotating cylinder is used as a computational model. The
2-D rotational-disturbance model maintains the same mechanism for propa-
gation of the shock to the far field as that of the 3-D case. The
relationship of the model to the 3-D rotor case can be seen 1n figure 2.
The 2-D computational model is less complex to program and requires much
less computer time to run.

As previously stated, velocity and pressure data in the region
surrounding the blade must be obtained to determine the far-field signa-
ture. This means that the accuracy of the far-field solution depends
directly on the accuracy of near-field data. The highly nonlinear
nature of the flow field at the tip region of the blade requires the use
of finite-difference methods to obtain the required data. This flow
field contains weak shocks and the accurate representation of these
shocks presents a significant problem. Finite-difference formulations
tend to smear the shock over several grid points. This effect is more
pronounced with increasing distance from the disturbance. If the shock
is oblique to the grid, it can become smeared over many points. These
problems make obtaining an accurate representation of the strongest
source of far-field noise extremely difficult, and hence the prospects
of accurate noise prediction are dismal.



3. MATHEMATICAL MODEL

The 2-D computational model is formulated using potential theory.
This model minimizes computational requirements, while maintaining the
essential propagation properties. Strictly speaking, the potential
model does not conserve momentum in transonic problems. However, the
shocks 1nvolved in this problem are typically so weak that the errors so
caused are negligible--especially in the far field. Furthermore, the
computational efficiency of a potential model is far greater than that
of an Euler equation model. The small-disturbance approximation may be
used to further simplify the model, even though it may be limited at
some radial distance from the surface because it assumed small shock
angles.

The governing equation used as the computational model is
obtained by casting the potential equation in a reference frame that
rotates with the circular-arc bump (fig. 3). When the classical small-
disturbance approximation i1s invoked, only the lowest-order, nonlinear
term 1s retained and the final equation may be written as follows
(ref. 5)

2 2
R 2 2 R 1.
[(y_) - Mg - (v s Mg 2 ¢x]¢xx+d’yy+y¢Y'o (ra)
where
. 8R . r . R .8 .
MR‘am’ y =3 ‘R'c’ x_ec_eﬂi

The nonlinear sonic circle will be defined at the value of y where the
coefficient of ¢,, changes sign.

An 1interesting feature of this rotational transonic small-
disturbance equation 1is the 1/y2 dependence of the nonlinear term. As
the equation is used at points further away from the surface, this term
approaches zero and the equation becomes linear. The next higher-order
term which could be retained results in a modified version, equa-
tion (1b). This modified equation remains nonlinear in the far field.
However, tests of this equation show no significant difference from the
results of equation (1a).

2 2
R 2 2 R 1 2 _
[;5— - MR - (y + 1)MR ;5— ¢%]¢Xx + ¢yy + 3 ¢y - 2MR¢y¢xy =0 (1b)

4. SHOCK FITTING VS. SHOCK CAPTURING

The usual method of solving equation (1a) 1s a method known as
shock "capturing." This method is very desirable because there is no
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explicit allowance made for the existence of a shock in the flow field.
Rather, local-differencing schemes are employed to ensure stability in
both elliptic and hyperbolie regions. During this process, shocks
appear as high gradients, but not necessarily discontinuous parts of the
solution. The result is that the shock is smeared over several grid
points. The smearing occurs because the finite-difference schemes are
based on Taylor-series expansions and can be valid only for continuous
flow regions. Differencing across a shock will result in a locally
incorrect approximation of the differential equation. For supersonic/
subsonic shocks, the smearing will occur over three grid points, while
for supersonic/supersonic shocks, the smearing may occur over as many as
ten grid points. The shocks on a typical transonic fixed-wing surface
are sufficiently strong so that the resolution over three grid points
exceeds what can be experimentally measured. Therefore, smearing in
this solution is not objectionable. However, for the problem of high-
speed rotor noise, the radiative region of interest 1includes weak
supersonic/supersonic shocks. This problem is further aggravated by the
widening of the ecylindrical grid as radius increases. The only way to
improve the resolution of the shock 1s to add more points to the grid.
This considerably increases the computation time and the computer
storage requirements.

The transonic, small-disturbance equation can be cast in either
conservative or nonconservative form. Equation (1) 1s the nonconserva-
tive form. This form 1s easier to i1mplement, but mass 15 not conserved
across the shock. The reason for this is the overlapping of differenc-
ing schemes when the shock forms the boundary between a supersonic
region and a subsonic region. Stability of the numerical method
requires that a backward- or upwind-differencing scheme be used in a
hyperbolic flow region, while a central-differencing scheme is used in
an elliptic region. To conserve mass across the shock, care must be
taken to write and solve equation (1a) in the conservative form as
follows

n

ay(y¢y) =0 (2)

=
~< |-

R R 2 y+ 1R 2

Sr_ax['y_-MR%‘bx- 2 y_MRct’:]+

An alternative to the shock capturing method 1s to explicitly

1mpose the shock-jump relation allowed by the transonic small-
disturbance equation in the solution process. This procedure is known
as shock "fitting." Such a method, formulated for the potential equa-
tion by Hafez and Murman (ref. T) 1s used 1in this study. This method
relies on the a priori knowledge of the presence of a shock in the flow
field, as well as its approximate location. The implementation of this
method is outlined in the following steps:

1. The presence of a shock, as well as its approximate location,
1s determined from a captured solution, either conservative or noncon-
servative. The location of the shock is determined based on the loca-
tion of the maximum positive gradient of the pressure coefficient on
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each grid line of constant y. With the location known, the slope of
the shock is also determined. From this i1nitial solution, it is also
possible to determine whether or not the shock has delocalized.

2. Solve the governing equation using the same capturing method
up to the shock location. At the first grid point after the shock
(shock point), solve for the velocity potential explicitly by forcing
the potential to be continuous across the shock. Also assume a linear
potential distribution from the shock location to the first computed
point after the shock point. The value at this grid point will act as
an 1internal boundary condition for solution of the equation downstream
of the shock, which is computed using the capture method.

3. Once the flow-field solution 1s obtained, adjust the shock
location using an unsteady geometriec version of the shock-jump relation.
This will ensure, before the next iteration, that the shock location
agrees With the latest flow-field solution., Eventually, the shock will
no longer have to be adjusted and a converged solution will be reached.

4., Impose continuity of the velocity potential across the shock.
The movement of the shock during step 3 may result in a downstream grid
point becoming an upstream grid point or vice versa. If this is the
case, the value must be corrected by extrapolation to ensure a continu-
ous potential distribution.

5. Solve the governing equation by iteration until a steady-
state shock location is determined.

Shock fitting conserves mass across the shock because the shock
1s moved so that the flow solution satisfies the shock jump relation.
As will be seen, this relation is derived from the conservation form of
the equation. An 1mportant rule 1n implementing the shock-fitting
method is not to difference across the shock from either side.

4.1 Shock-Jump Relation

The shock-jump relation allowed by the transonic small-
disturbance equation is the key element in the application of the shock-
fitting algorithm. Equation (2), which 1s written in conservative form,

1s of the form
6-§=O

where

B-8 +8
X y
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and

(3)
B

]
—
©

>

y © oyl
Making use of the shock-tangency condition, and applying the divergence
theorem, the resultant jump condition 1is

2 2

2
R 2 2 R dx
- (yT W) o 7o = (), S

where < > represents the average across the shock.

When implementing the shock-jump relation, 1t 1s necessary to
give special treatment to certain points in the vicinity of the shock
location (ref. 6). Moving 1n the streamwise direction, the last point
prior to the shock location could look like that shown 1in figure 4. As
can be seen, the computational molecule for this point contains the
point A, which lies downstream of the shock. So as not to violate the
"rule of forbidden signals,”" 1t 1s necessary to use a value for the
potential at point A which is extrapolated from the upstream side of
the shock. Then, the point ahead of the shock may be computed in the
usual upwind manner. If the shock 1s supersonic/supersonic, then the
point after the shock point, B, must be differenced downstream as shown
in figure 5. Once again, care must be taken not to difference across
the shock. Since the shock location is known, and ¢ must be continu-
ous across the shock, the value of ¢ at the shock 1s extrapolated from
upstream data. Just downstream of the shock, ¢, has already been
computed and serves as a Neuman boundary condition. No special treat-
ment need be paid to this point 1f the shoek 1s supersonic/subsonic.

4,2 Shock Movement

The requirement to update the shock location requires a form
of the jump relation 1n which the shock motion is a function of the
upstream and downstream flow conditions (ref. 7). Such a relation can
be obtained from the unsteady small-disturbance equation.

-3 R L Y+ 1R 220 1
3 Ao, = 7 3 [(y Mg R)¢x -y MchX] *y ayycby (5)
The divergence theorem 1s applied and using the relation
dx
Lo = - gt [o,00 (6)
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the time dependency of ¢ can be replaced by a spacial differencing,
where [[ ] represents the difference across the shock. This time
factoring out by ultimately results in the following geometric
relation

2 2
2 ax  fdx \" ax R 2 2 R
2Mp ot * (a;—) . - -( 5 - MR) + (v + 1)MR < <4 (7)
s s y y
This is of the form
X X\
A (at)s + B (ay)s =C (8)

It can be solved using a variety of methods, but in this instance, an
implicit trapezoidal scheme is used to avoid any restriction on the size
of the time step.

-1
n+1 n C At B At n+1 B At
B = ["k *TR iy Xk-1] U Ay) (9)

Even so, there 1s an upper limit set not by the stability of the equa-
tion, but by the amount of shock movement allowed by each iteration. A
large movement of the shock causes 1nstability in the next iteration of
the solution. Since the time step 1s not real, At can be set to any
value desired by the user. Here, At = 0.5 15 used. Once the new shock
location 1s found, 1t 1s necessary to use a data smoothing technique,
such as a least-squares fitting, to ensure a continuous shock slope. A
key feature of equation (8) is that the shock moves based on the right-
hand side of the equation, which 1s dependent on the solution to the
flow field upstream and downstream of the shock. From equation (4), the
right-hand side of equation (8) defines the inverse of the shock slope
squared. As the iterations are continued, the slope defined by the
right-hand side of equation (8) should become equal to the slope on the
left-hand side. When this has occurred, the solution 1s said to be
converged.

The movement of the shock is the most difficult portion of the
shock-fitting method to implement. The slope of the shock must be kept
continuous in some manner. The oblique portion of the shock beyond the
sonic circle exhibits extreme sensitivity to shock angle. In one case,
the difference 1in shock angle of 0.4 of a degree was enough to totally
destroy the solution. This was a result of the shock-jump relation
yielding a shock slope approaching the slope of the linear characteris-
tic as y 1increases. When this happens, the coefficient of <¢,> 1in
equation (4) becomes very small and any small deviation in the shock
slope from the characteristic value results 1in large values for <é.>.



5. RESULTS

To ensure that the shock-fitting method was implemented cor-
rectly, a step-by-step progression of test cases was accomplished. The
first case consisted of a wedge in supersonic rectilinear flow with a
free-stream Mach number of 1.15. This case confirmed the logic neces-
sary to fit a supersonic/supersonic shock. The result, shown 1in fig-
ure 6, was an attached shock at the leading edge. A glance at the
pressure distribution shows a remarkable clarity of the shock as com-
pared to the captured case. In the second case, the result is a
detached bow shock for a circular-arc bump translating at a Mach number
of 1.15. Figure 7 shows the shock location displacement from the cap-
tured solution, while figure 8, again, demonstrates the resolution of
the shock. Note that the solution also shows a shock at the trailing
edge. The fitting method was not used on this shock. This case 1is
important because 1t demonstrated the shock structure present for the
rotating, delocalized case which has a supersonic/subsonic portion and a
supersonic/supersonic portion.

Once confidence 1n the implementation of the shock fitting method
was gained from the preceding test cases, the method was applied to the
model rotational problem. The rotating circular-arc bump is depicted by
the following conditions: 1) thickness is 6%, 2) radius/chord ratio is
10, and 3) rotational Mach number is 0.9. Both Alternating Direction
Implicit (ADI) and Successive Line Over Relaxation (SLOR) schemes were
tried and worked successfully, with ADI having the expected convergence
rate advantage. Figure 9 shows the comparison of the captured shock
location with that of the fitted solution. Since the captured solution
is formulated using the nonconservative form, the shock 1is slightly
forward of the fitted solution which conserves mass across the shock.
This is to be expected within the sonic circle. Beyond the sonic
circle, there is no conservation question since there is no need to use
a switched-differencing scheme. The shock moves forward in the course
of correcting the extreme smearing which 1s exhibited by the captured
solution. Figures 10-12 show the comparison of captured and fitted
pressure data at different radii from the surface of the cylinder. In
figure 10, the results show very little difference 1in amplitude or 1in
the discontinuous nature of the shock. As the distance from the distur-
bance increases (figs. 11 and 12), the solutions become much different.
The captured solution shows marked smearing, while the fitted solution
not only shows a sharp discontinuity, but also marked increase 1in the
amplitude of the pressure.

Figure 13 gives an overview of the flow field and compares the
captured and fitted solutions by using 1somach lines. Here, 1t 1s clear
that the shock maintains a sharp discontinuity throughout the flow
field.
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6. CONCLUSIONS

The 2-D computational model using the TSD equation models the
delocalization phenomenon well. It 1s simple in all computational
aspects, yet still provides the mechanism which allows shocks to propa-
gate to the far field from a subsonically rotating disturbance. Apply-
ing the shock-fitting algorithm to the solution process changes the
nature of the resulting flow field significantly. The discontinuous
nature of the shock is maintained throughout the field and well beyond
the sonic circle. In the process of sharpening this discontinuity, the
amplitude of the shock increases. Both of these factors are important
in predicting the acoustic signature in the far field, since the shock
is the primary near-field noise source.

The implementation of the shock-fitting scheme for the 3-D rotor
case 1S being pursued. Recently measured, experimental rotor data will
be used to verify the computed near-field acoustic signature. This will
validate the accuracy of the computed, near-field data necessary to
predict the far-field signature.

The shock-fitting method has some minor drawbacks. The complex-
1ty of programming 1s increased because of the logic necessary to accom-
modate the shock points. A stretched grid may still limit the resolu-
tion of a shock far away from the disturbance; however, the solution
Ww1ll always show a considerably sharper shock than the captured method.
The TSD equation may also be of limited use in the far field, but 1t may
be adequate for determining the desired flow properties in the near
field.

When applied to the 3-D case, the solution should provide 1insight
into the theoretical prediction of the far-field acoustic signature for
a rotor operating at tip Mach numbers beyond the delocalization Mach
number.
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Fig. 1. Blade-fixed coordinate system from reference 4.



CJ"

Q

ACTUAL ROTOR BLADE (TOP VIEW, 3 D)

SONIC CIRCLE

A \

MODEL CYLINDER WITH BUMP (2 D)

Fig. 2. Comparison of computational model to actual rotor.



0(r,0,0)

PHYSICAL
8’

Qt

ol=

s

o
c
SPACE FIXED (x'y’) » ROTATIONAL (x.y} COMPUTATIONAL

Fig. 3. Coordinate transformation of computational model.

® SHOCK POINT

Fig. 4. Differencing upstream of a shock.

® SHOCK POINT

Fig. 5. Differencing downstream of a supersonic/supersonic shock.



-02r
- 01+

= 1/2°

[17)

c 0 -

e 1 TRANSLATING WEDGE

w \ VERTICAL LOC =147

g ot \| MACHNO =115

w \| webge=-o5°

5 \ FITTED DATA

4 o0zr \ ——— CAPTURED DATA

T N
03
04 i 1 1 1 1 1 1 —

1 1
-12 -8 -4 O 4 8 12 16 20 24 28 32
CHORDS FROM CENTER

Fig. 6. Comparison of fitted and captured solutions for a wedge at Mach
number = 1,15,

/
8_
7k
w6l
3]
<
w
2 d
3s|
=
o
2o
:;4- //
2 /
@] 4'
53_ / MACH NO =1 1500

THICKNESS = 6%
FITTED DATA
——— CAPTURED DATA

CHORDS FROM CENTER

Fig. 7. Comparison of shock locations for a 6% circular arc translating
at Mach number = 1.15.

8-13



TRANSLATING CIRCULAR ARC
VERTICAL LOC =303 CHORDS
MACHNO =115
THICKNESS = 6%

2r FITTED DATA

E — —= == CAPTURED DATA
w 1F
Q P it
& 0 \ 7id
g '
o- 1T ‘|
<
-2 -
a
w-3r
&

-4 1 1 L 1 L L

-10 -5 0 5 10 15 20 25 30 35
CHORDS FROM CENTER

Fig. 8. Comparison of fitted and captured solutions for a 6% circular
arc translating at Mach number = 1.15. Solution is 3.03 chords above
the surface. (Rear shock is not fitted.)

14
ROTATIONAL MACH NO =09
RADIUS/CHORD = 10
12t THICKNESS = 6%
FITTED DATA
——— CAPTURED DATA d
W0
(=8
[P
o
2 8f
s
O
£ L
o 6
a
o
o
5 af
2 L
SONIC CIRCLE
0 _44[ 1 1 1 1 1 1 ]

-1 0 1 2 3 4 5 6 7 8
CHORDS FROM CENTER

Fig. 9. Comparison of shock locations for a 6% circular arc rotating at
Mach number = 0.9.



-6l VERTICAL LOC =0 0000 CHORDS
ROTATIONAL MACH NO =09
-5F RADIUS/CHORD = 10
THICKNESS = 6%
-4r FITTED DATA
s — —— CAPTURED DATA
-2}

PRESSURE COEFFICIENT

e TTTm—

7 1 1 1 1 1 L 1

-2 1 0 1 2 3 4 5 6 7 8
CHORDS FROM CENTER

Fig. 10. Comparison of fitted and captured solutions for a 6% circular
arc rotating at Mach number = 0.9; y = 0.

-10r
VERTICAL LOC = 324 CHORDS
ROTATIONAL MACH NO =09
- 08} RADIUS/CHORD = 10
THICKNESS = 6%
_o06 b FITTED DATA
- \| ——- CAPTURED DATA
& \
o-04}
T
w
w
g-o02r \
& \
2 © e
[72]
w
1]
& 02
04}
1 1 1 1 1 1 1 1 ]
%1 0o 1 2 3 4 5 6 7 s
CHORDS FROM CENTER

Fig. 11. Comparison of fitted and captured solutions for a 6% circular
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