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INTRODUCTIONV

A resurgence of intense interest, research and applications activity mark the

`

	

	 beginning of what may be conndered t1 • second generation of filamentary composite

materials. such interest and activity --re an well -founded now as they were at th#--

outset of the compontes era more than twenty years ago. The possibility of using

relatively brittle materials with high modulus, high strength, but low density in

competes with good durability and high tolerance to damage and which, when they

do fail, do so in a non-catastrophic manner, has been shown feasible, and the full

potential is only ,lust beginning to be realized.	 The promise of substantially

improved performance and potentially lower costs provides the driving force behind

continued research into fiber reinforced composite materials for application in

aerospace hardware. Much progresH has been achieved since the initial developments;

in the mid 1960's. Applications to primary structure have been rather limited on

c4)eratUonal vehicleR, mainly benig utilized in a mate rial-su bstitution mode on military

aircraft. More exteiEnve experiments, as a part of NASA's influential ACES

program, tore currently underway on large airplanes in commercial passenger

operation and in a few military developments, such as the AV-OR which has seen only

limited service use and the X-29 w'nich is under&oing flight tests.

A W-rong technology base is required to fully exploit composites in sophisticated

aerospace structures. NASA and AFOSR have supported expanding and strengthening

the technology base through programs which advance fundemental knowledge and the

means by which it can be successfully applied in design and manufacture.

Am the technology of composite materials and structures moveu toward fuller

adaptation to aerospace structures, some of the problems of an earlier era are being

solved, others which seemed important are being put into perspective as relatively

muior, and still others unanticipated or put aside are emerging as of high priority.

The purpose of the RP1 program as funded by NASA and AFOSR has been to develop

critical advanced technology in the areas of physical properties, structural concepts

and analysis, maruifactnring , reliability and life prediction.

Our approach to accomplishing these goals is through an interdisciplinary

program, unusual in at least two important aspects for a university. First, the

nature of the research is comprehensive. Specific projects deal with fiber and

matrix constituent properties, the integration of constituents into composite materials

and their characterization, the behavior of composites as they are used in generic

3
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structural compor►ents, their non•derttructive am'. pi.iof testing and, where the state eS

the art will be advanced by doing so, extending Use re i- arch effort into sirmilated

service use so that the %:nmposite structure's long-term integrity under conditions

pertinent to such use can be assessed.

Inherent in the RPI program in the motivation ► which basic research into the

structural aspects provides for research at the materials level, and vice versa.

Second, interactions among faculty contributing co program objectives is on a day

to day basis without regard to organizational lines. The ,3P contributors are a group

wider than that supported under the project. Program management is largely at the

working level, and administrative, scientific and techrucal decisions are made, for

the m(*d part, independent of considerations normally associated with academic

departments. This kind of involvement includes faculty, staff and students from

chemistry, civil engineering, materials engineering, aeronautical engineering,

mechanical engineering, and mechanics depending on the flow of the research.

Both of these charact iRtics of the NASA/AFO3R program of research in

composite materials and --tructures foster the kinds of fundamental advances which are

triggered by tnsights into aspects beyond the narrow confines of an individual

discipline. This is often sought in many fields at a university, but

seldom achieved.

A third aspect is a developing program of increased involvement between NASA's

Research Center scientists and engineers in the program at RPI and vice versa.

This has required, first, identification of individual researchers within NASA centers

whose areas of interest, specialization and active investigation are in some way

related to those of RPI faculty supported under the subject grant. Second, a

program of active interchange hae been encouraged and the means by which such

interaction can be fostered is being sought. Important benefits envisioned from this

increased communication include a clearer window to directions in academia for NASA

researchers; opportunities to profit from NASA experience, expertise and facilities

for the faculty so involved; and an additional channel for cross-fertilization across

NASA Research Center missions throuch the campus program.

Overall program emphasis is on basic, long-term research in the following

categories: (a) constituent materials, (b) composite materials, (c) generic

structural elements, (d) processing science technology and (e) maintaining long-term,

structural integrity. Depending on the status of composite materials and structures

research objectives, emphasis can be expected to shift, from one time period to

another, among these areas. Progress in the program will be reported in the
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following pages under these headings. These com;xrt.er methodology developmerits are

also undertaken which bog . support Rensselaer projects in comlxAnte materials and

structures research in the areas listed above and which also represent research with

the potential of widely useful resultm in their own right.

In short, the NASA/AFOSR Composltes Aircraft Program is a multi-faceted

program plarured and managed so that scientists and engineers in a number of

pertinent disciplines at ft Pi will interact, txpth among themselves and with counterpart

HA' .% Center researchers, to achleve its goals. Research in basic composition,

characteristics and processing science of composite materials and their constituents in

balanced against Uje mechanics, conceptual design, fabrication and testing of Rety-ric 	
t

structural elements typical of aerospace vehicles so as to encourage the discovery of

Lints iial solutions to present and future problems. In the following sections, more

detailed descriptions of the progress acheived in the various comFxxient parts of this 	 !

comprehensive program are presented
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PART II

CONSTITUENT MATERIALS

II-A	 w _*%ANICAL PROPERTIES OF HIrtl PERFORMANCE CARBON FIBERS

I2 . A-. ORDERED POLYMERS AS COMPOSITE MATRICES
II-A-2 CARBON FIBZR EPDXY INTERFACE BOND RELATED TO

COMPOSITE FRACTURE
II-A-3 RESIDUAL STRES. IN HIGH MODULUS AND HIGH STRENGTH

CARBON FIBERS
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II-A-1 Ordered Polymers as_Compostte Matrices

Senior Inventtgator : R. J. Diefendort

1_ l;ntroducUon

This project is concerned with the study of polymer liquid crystals and oriented

sesicrystallbw high - temperature thermoplastics to high modulus carbon fiber
s

reudorced composites. It is eseentially a new activity with the first real effort

}	 expended dAring the current reporting period. Emphasis is Ming placed on the

determination of the effects of polymer orientation at the fiber surfaces on composite

fracture and mechanical properties.

2. Protresc Durant the ReQ_ortirAL Period

Examinat_on in transmitted polarized light of polymer mesophase and melts in the

presence of carbon fibers was conducted usnng a microscope and hot stage. The

polymer mesophase did not show optical evidence of orientation at the fiber

surfaces. Fiber surfaces acted as nucleating sites for spherulites in semicrystalline

thermoplastics.

When an electric current was passed through carbon fibers in a cooling

semicryrrteillim polymer melt, nucleation of crystallites took place first at fiber

surfaces. Large transcrystalline tedions formed along the fibers. The

crystallization temperature was reduced as the voltage drop across the fibers was

increased.

3. Plrne for U ming Period

Plans for the upcoming period include making composites using a polymer liquid

crystal matrix, with polymer molecules perpendicular to direction of fiber

orientation. These composites will be examined to determine the effects of tensile

loads on mechanical properties and on fracture behavior using a microscope tenFnIe

teeter. An attempt will be made to look at the same properties in semicrystalline

thermoplastics, with electro-crystallized regions at the fiber surfaces.

"EC:EDING PACE, BLANK NOT MMED
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II-A-2 Carbon Fiber-Epoxy Interface Bond Related to Cominmte Fracture

Senior Investigator: R. J. Diefendorf

1 . Intr oAucUon

The purpose of this atudy is to investigate whether the performAnce of carbon

fiber - epoxy composites can be improved by modifying the surfaces of high modulus

graphite fibers.

2. s t UM

studies of the natGire of the carbon fiber surface and of resin-wetting of these

surfaces were completed during earlier periods and reported in previous progress

reports.

3. Progress During the Reporting Period

A study was made of fracture surfaces of compointes made from Aradite( R ) 509 epoxy

(Ciba - Geigy) with three kinds of fiber reinforcement; silicon carbide, boron and

graphite. A progressive loading /exam inative technique allowed step by step

examination of failure progression. Composites made with silicon carbide fibers and

tested to failure chowed little fiber - matrix debond, and the fibers broke into short

lengths. Fiber us:_-Akage appears to be the energy absorbing mechanism. In boron

I.

	

	

fiber /509 epoxy composites, extensive fracture of the matrix occurred adjacent to

fibers. Debonding was seen as the mode of composite fracture in this rase.

Composites made using high modulus graphite fibers had a fract, :ire mechanism that

combined fiber breakage and matrix debonding . The fiber pullout length was greater

at the crack entrance than at the crack exit, regardless of the speed of crack

propagation. It was concluded that a 2 -t-butylaminoethanol ( BAE) sizing did not

siLnificantly improve interfacial adhesion. Treatment of the fibers with hydrogen

peroxide prior to applying BAE improved composite strength, and in addition imparted

good lubricity to fiber surfaces.

4. Plans for Upcoming Period

Plans for the upcoming period include examining fracture surfaces of composites made

from high - temperature epoxy resins, using a BAE sizing of the carbon fibers. Also,

an investigation of other aminoethanol - based suing compounds will be conducted.

1
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II-A-3 Residual Stress in Higrt Modulus and High Strength Carbon ribers

Senior Investigator t R. J. Diefendorf

1__ Introduction

This Rt„dy concerns We invesUgat .ion of residual stress in carbon fibers, and its

relation to fiber mechanical properties. Calculations of residual stress from theory

were tarried out and comparisons with experimental measurements were made. The

question of interest was whether retndual stress results from processing conditions

(eg . drawing) , or from cool down of the fiber? An attempt was made to explain why

fiber strength decreases as fiber modulus increases.

2. Status

In previously reported studies, modulus distribution and residual stress meaaurementl

were etudiPd for several types of PAN-based carbon fibers. Residual stress was

measured by electrochemically etching off successive fiber layers, and measuring

fiber contraction as a function of diam-ter. It was concluded Uat residual stream

results from the skin - core morphology of high modulus PAN-based carbcn fiber and
I

results primarily from cool-down. That is, the difference in the coefficient of

thermal expansion (CTE) between skin and core creates residual stress on cooling

down from processing temperatures. other factors were negligible. Residual stress

appears to occur only in high modulus fibers, where the fiber core is in tension and

'	 the core tension and larger interior flaws of the high modulus fibers are seen as
E

probably responsible for the lower fiber strength.

3. Progress During the Repo!:gnPeriod

In this reporting period, theoretical calculations of residual stress were made by

assuming that all stress resulted from differences in thermal contraction. The results

cf theoretical calculations of stress agreed very well with the results of earlier

measurement.

x

'^ it

4. Plans for Upcoming Period

This project is now considered complete.
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9. Ourrent Publications or Presentations by P rofessor Diefendorf on this Subject

"The Physical chemlett y oi the Carbon Fiber/Epoxy Resin Interface", with C. F. Uzoh

'"Itw chemical Vapor Deposit ion in Open - Ended Capillary Tub q w° , with Y. Sohda

k .	 "A Theoretical Calculation of Residual Stresses in Carbon Fi'*rs" , with K. J. Chen

"The Effect of Heat Treatment on the Structure and Properties of Me3ophase
Precut saor Carbon Fibers", with G. V. D'Abare

"The Strength Distribution of Etched Carbon Fibers", with K. J. Chen

To tx, presented at the 17th Carbon Conference and published in the
Proceedings of the 17th Carbon Conference, Lexington, KY,
June 1985.
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PART III

COMPOSITE MATERIALS

III-A FATIGUE IN COMPOSITE MATERIALS
III-B MECHANICAL PFOPERTIES OF HIGH PERFORMANCE POLYMERIC

MATRIX COMPOSITE LAMINATES
In-C NUMERICAL INVESTIGATION OF THE MICROMECHANICS OF COMPOSITE

FRACTURE
III-D DELAMINATION IN GRAPHI'T'E/EPDXY LAMINATES
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III-A LAMILue in Composite Materials

Senior Investigator: E. Krempl

1. Introduction

The deformation and failure behavior of graphite /epoxy tubes under biaxial ( axial

tension and torsion) loading is being investigated . The aim of this research is to

increase basic understanding of and provide design information for the biaxial

response (-Yf graptute/epoxy composites.

2. 3tat.is

In Reference E A* various phenomenoluZical damage accumulationi lawn were

introduced. Residual strength measurements after prior cycling at R =O were made in

tension and in combined loading. DecreaBes in the residual tensile and combined

strength were reported as a functir.n of prior number of cycles. In this report

period the dependence of damage evolution on the degree of prior combined loadings

was investigated.

3. Progress During Repurt Period

Combined experimental and analytical activitieti aimed at further development of the

damage accumulation law were carried out. The multiaxial aspects and the

incorporation of a fatigue limit into the equations were of special interest.

The damage evolution law previously considered is of the form

C- = g ( D ) f(V)dK

where D and N denote damage and cycles, respectively, and m* is an effective

stress amplitude which is based on the anisotropy of the material.

The static strength in the first quadrant is well represented by

1 
s 

1^^ + 233 ,z

	
( 2 )

where a and r are the axial and shear stress, respectively. Accordingly, the

* References in this section are given on page 17.
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effective streaw amplitude 0* is proposed as

m*t + ^t
(s)`	 ias	 J ` tss

wtwre a. and T 	 are the axial and shear stress amplitudes, respectively.	 The

subscript a indicates values applied in a fatigue test.	 fatigue tests with R =O and a

frequ ,ncy of 5 Hz were then run with 0* = 0. 32 and various ratios of a s /T M .	 The

results are listed in Table III -A -1.

Table III-A-1

•
aa/Ta

(degrees)*

O

Fatigue Life

 (no.	 of cycles)

0.322 11,000

0.322 30 12,000

0.322 60 12,410

0.322 75 101,410,	 14,000,	 39,910,	 63,910

0.322 90 > 106

* polar,angle on the graph of Ta vs. as .

Contrary to the prediction of Equation (i) the fatigue life is not constant; thk ►s, the

anisotropy of fatigue strength is not derivable from that of the static strength.

Based on these results, Equation (i) is tentatively modified to

-
dD
C& = g ( 0 ) f(m*,a)

where a is a stiffness - dependent parameter, given by

_ Al 
a -	 *

where:	
Ail

r
( U1 + u. cos 2e + u. cos 40) dz

3QXX + 3Qyy + 2Qxy + 4Qss )

Qxx - Qyy )

^ tit

( • )

(s)



4 'a	 ,

us - 1 QXX 4 Qyy - 2Qxy 40@s)

The term A1 1 is used here as a reference stiffness and A is the angle between

principal fiber direction and principal stress direction during fatigue testing. The

step function

1	 x I L

H(x) :	 (a)

O x S L

represents the fatigue limit in Equation (5) , where

f(s • , a)

and s • is the value of m • at the fatigue limit. With this definition, Equation (4)

becomes:

dD
dN _ 

_ H(x) C( D ) f(m', a )

In principle, Equation (a) incorporates anisotropic dsmago accumulation properly and

the fatigue limit. Specific functions valid for the (=4s) scr/E tubes are being

evaluated.

4. Plans for the Upcoming Period

Experiments exploring the relations between residual strength and fatigue limit are

contemplated. A critique of the specimen design made by Dr. W. Elber ( NASA

Langley) noted a Fx-esibly deleterious influence of interlaminar normal stresses on the

strength values determined with a tubular specimen. Experiments are bei-ag planned

to investigate the influence of these stresses.

5. References

[.L 1 46 t h Semi -Annual Composite Materials and Structures Report; R. P. 1. August
1904

[ t J 47 t h Semi -Annual Composite Materials and Structures Report; R. P. I. , December
1964
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G. Current Publications or Presentations by Processor Krempl on this 9uhiect

"Time -Dependent Deformation and ratigue Behavior of (1551 Graphite/E, ►axy
Tubes under Combined Loading"

Presented at the symposium on Compoeitess ratigue and
rracture, Dallas/rt. Worth, TX, Oct 24-25, 1964.
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M - s_ Mechanical Pr2LmrUM d High Perforwa.-ice Polymeric Matrix Composite
- —	 laminates	 --	 —

Senior Investigator t S. S. Sternstein

1. Int.roducticxn

This project focuses on the mechanical properties of high performance polymeric

matrix composite laminates. of specific concern are those properties of the laminate

which are strongly dependent on the polymeric matrix. Previous studies in this

program dealt with the viscoelastic characterization of bout neat resins and

composites, using dynamic mechanical spectroscopy techniques. Included in these

studies were the reversible and irreversible effects of prolonged moisture interactions

with epoxy based systems.

Current project goals relate to 'he damage tolerance of composite laminates and

related phenomena, ouch as delamination crack propagation. Understanding is Nought

regarding the basic mechanisms by which laminates dim— ate energy, especially when

subjected to planar impact. Currently, nonlinear dissiAtive phenomena are being

investigated in thermoplastic matrix compcentes . A closely related study involves the

microscopic observation of failure processes in composites subjected to four point

bending.

2. Statue

In the previous report, cyclic hysteresis data were presented in the form of energy

dimwit tion versus peak load or deformation for 145 laminates subjected to uniaxial

tension. In view of the highly nonlinear dependence of energy dissipation on lord

level, it was deemed necessary to corroborate the datr_ by additional studies. For

example, if the cyclic hysteresis energy (area inside the load -deformation loop) is

truly representative of the energy loss due to multiple loading and unloading of the

sample, then tests on different size samples (e.g. , width and length) should give the

sane energy dissipation per unit volume of the sample. This has proved not to be

the case, and therefore end effects, haw slippage, etc are suspected.

3. Progress During Repo rt Period

A variety of sample mounting techniques ( for example, end tabs) and sample

geometries have been investigated. In the course of these tests, mounting of the

ezternsometer ( used to measure sample strains independently of crosshead motion) was

.ke.
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found to be a critical factor. It appears that the rotation of 'he outer plies (at

45 0 to the tionatle axis) produces a scissor effect which can strongly alter the

measured strain. This effect can llt .erally double the measured hysteresis.

In a closely related study. the edge surface of a bean, sub3octed to four - point

bendiily has been observed in a silniature )ig on the reflected-light microscope

stage. Numerous thermoplastic matrix composites have been investigated, incl.dinK

polysul fone , polycar borate , polyphenylene sulphide. P r E K and P E S . All of the

samples studied to date fall in the same mode, namely, the outer ply on the

compression side of the beam undergoes buckling or kink - band formation. This is

rapidly followed by interply and intraply delamination. virtually no damage is

observed on the tension side of the beam. It would appear that thermoplastic

matrices do not offer sufficient support of the carbon fibers when the ply is in

compression and has one free surface. The final result is finer splitting and

fragmentatl( . n. It seems poesible that so much attention has been paid to improving
r

damage tolerance by using tougher matricea, that the brittle character of fibers in

compression has been overlooked. what is clear is that the use of more ductile

matrices places new demands on the fibers, especially in compression. Clearly. it

will be necessary to investigate the synergisms between mat rix and fiber behavior for

highly deformable matrix materials such as thermoplastics.

Bending load vs. deflection curves have also been obtained using samples with the

i;ame geometry as were used in the microscopy study. This has provided quantitative

values to be compared with the buckling instability observations. These data are

currently being analyzed.

4. P lans for Upcosun^ Yeriod

Plans for the next reporting period include further refinements in the cyclic

hysteresis measurements, particularly hi relation to sample geometry, gripping and

extensometer mounting. Development of a fully - reversed, cyclic bending jig is also

plarined . This should enable accurate measurement of hysteresis energy losses, which

are strongly matrix dependent. Special emphasis will be given high load behavior

and the onset of nonlinear behavior (e.g.  due to yielding processes) . Attempts will

be made to relate these mechanical measurements to the microscopy observations of

deformation phenomena at the structural level.
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Current_Pubhcattom ur Presentatiom by ProtesOOC 3ternstein on thir Su_ b t

"Mechanical Characterization of Composites"

]Prevented at and published in the Proceedings of the Asiltewar
Conference on Polyswrs, Asilomar, CA, Feti 11-12, 1985.

-Deforati+Lion and Failure of Therwoplastic Matrix Cosposites"

Presented at and published in the Proceedings of the 6th
conference on Delo ration Yield a Fracture of Polymers,
Cambridge, England, Apr 1-4, 1985.

"Mechanical and optical Characterization of Thermoplastic Matrix Cospositew,

Presented at and published in the Proceedinf,s of the ACS 189th
National Meeting, Miami leach, FL, Apr 28-Ma,y 3, 1989.
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-S; _Nunwrical Invertitation of the _Nicromechanics of Gompoe ► l.e Fracture

Senior Invest! gator : M. S. Sheppard

1.	 Status,

Ilia phase of thin project completed and reported at the close of the prev!ws

period marks an appropriate holding point. The project has been put on suspended

status wail suitable addWonal rcew)nnel are added. Three areas of research

require additional' effort to wake he method at interest a practical tool for

ricromect.anicai composite fracture analymn. They are:

1) adding itsrative steps after each incremental solution to control drift from
the trje solution,

2) devesopirg appropriate criteria to more completely represent the
finer-matrix interfaces and

31 carrying out laboratory experiments and making the needed correlations to
verify analytical solutiorw. .

23
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111 - D Delamination in Graphit*/ Epoxy Laminatew

Senior Investigator: T. L. Sham

1 Uftoduction

The purpose d this project is to attempt to understand and quantify the delaminat.ion

processes in graphite/epoxy laminates using a continuum mechanics approach.

2. Statar

Finite elemHnt tectituques 'or calculating energy release rates for a crack ui d

homogeneous body under mixed mode loading have been implemente.i . The Mode I

at-.d Mode II energy release rates can be computed directly from numerical data

obtained in one finite element computation using a line integral approach. The

wethod is being extended to intertacial cracks in layered media. The line integral

approach enables dw erwrgy release rate for each fracture mode to be calculated

using numerical Mta away from the mark tip, hence iinproving numerical accuracy.

3. Plane for_U^comu +g Per tod

Plana for the upcoming period are to conclude the energy release rate calculations

aM to initiate fracture tnvestigatione n't "on/Aluminum compeeites.

25
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PART IV

GENERIC STRUCTURAL ELEMENTS

IV-A IMPROVED BEAM THEORY FOR ANISOTROPIC MATERIALS

.d

pp ,rCr.DI NC; PACE Bt ANT, NOT MMM,

poor ,r► ,?



IV _A Droved Beam Theory for Miaotro 	 Materials

Senior Investigator ► 0. Bauchou

1 . Introduction

This research has concept-aced on improving beam theories as applicable to composite

structures. In previous progress reports analytical predictions have been presented

Lining a new beam theory based on the assumption that cross sections of the beam are

infinitely rigid in their own plane. but free to warp out-of-plane. Experimental

confirmation of these analytical predictions were sought during the current reporting

period.

2. Status

The initial test specimen consisted of a low aspect ratio box beam in a cantilevered

configuration. The beam specimen was fabricated by joining two graphite/epoxy

panels to two aluminum C -channel webs with stainless steel fasteners. Testing of this

initial team configur ­ on was vary difficult to control, making currelation with

analytical predictions: early impossible. Furthermore, prebiainary measurements

revealed a local buckling phenomenon near the root attachment, which resulted in a

considerable load redistribution from the lower panel to the upper one. Since the

fundemental assumption in the aevelopment of the improved beam theory is that the

cross-se^-tion does not deform in its own plane, large discrepancies between

;%natytical predictions and measurements were to be expected, and were actually

observed.

After identifying these deficiencies in the initial test design, a new design was

implemented. First an aluminum honeycomb core was placed inside the beam so as to

inhibit local buckling of the graphite/epoxy panels. The test fixture was also

modified; instead of the cantilevered configuration, the beam was simply supported at

bath ends and loading was to be applied at midspan .

3. Pro r_ Tess During Report Period

Two types of specimens were manufactured that will be referred to as the "balanced"

I
and "unbalanced" beams. In the balanced beam, both upper and lower skins of the

specimen are midplane-symmetric, graphite/epoxy laminates having their axis of

orthotropy aligned with the axis of the beam ( the lay -up is 1 Q 2, 345 1 S ) . For the

unbalanced beam, the laminates still possess mid-plane symmetry, but their axis of

PRECEDING PAGE BLANK NOT FILMED
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orthotropy iA no longer parallel to the axis of the beam ( the layup is

( 15 z, 30,0 1 s ) . This reuttWts in laminate shear /extensional couplings, which in

turn generate a bending/twisting coupling for the beam

Each beam spAcrmen was instrumented with strain gage rosettes on the upper panel

near center span and at q*iarter span. Dial indicators located at center span

allowed beam rotations and transverse displacements to be meabured . Two loading

conditions were considered; (1) a concentrated transverse shear loading at center

span, and (2) a concentrated torque at center span.

The experimental results are compared with analytical predictions using various

theories in Tables IV - A -1 and IV-A-2 for the balanced and unbalanced beams,

respectively. Warping effect appears to be most important when modeling the

torsional behavior of composite beams. The predictions of the Improved Bernoulli

Solution, which accounts for warping of the cross-sections correlate well with

experimental measurements in all cases.

Figure IV-A-1 shows strain distribution in the upper panel of the balanced h.eam and

Figure IV-A-2 the corresponding strain dietributio-a for the unbalanced beam under

center torque. The Improved Bernoulli Solution is found to be in close agreement

with experimental results. Warping of the cross section of the beam results in a

drastic strain redistribution, as demonstrated in Figure IV-A-1 by the large

discrepancy between the Saint-Venant and Improved Bernoulli solutions. Figures

IV-A-3 and IV-A-4 show the variation of the upper panel mid-width shear strain

along the span of the beam. The steep shear strain variation near mid span is

predicted by the Improved Bernoulli Solution and contrasts with the uniform

distribution predicted by the Saint-Venant Solution.

Figure IV-A-5 shows the predicted and measured strain distributions in the upper

panel of the beam under transverse loading. The measured axial and _,ear strains

did not exhibit the shear lag effect shown in this figure to be predicted by the

theory. A possible explanation for this discrepancy is the fact that the analytical

model assumes a perfect shear transfer between the graphite/epoxy panels and the

aluminum C-channel webs. However, testing of a beam specimen without wechanical

fasteners revealed that, for the magnitude of lcad used in testing, shear loads were

transfered through the epoxy bond at the panel/web interface rather than through the



Table rV-A-1

Comparison of Analytical and Experimental
Dieplacement.s for the Balanced Beam

31

Bernoulli Solution
( no warping)

Improved Bernoulli
Solution

Saint-Venant.
solution

Experimental
Results

Center Ioad Case
Transverse Displacement

1 10 -3 m 1

0.3072 (-15%)

0.3472 (-4%)

0.3705 (2%)

0.3620

Center Torque Cam
Rotation

[ 10 -3 rad l

0.7064 ( -66%)

4.511 (-12x)

6.500 (26x)

5.144

Ta:;le IV-A-2

Comparison of Analytical and Experimental
Displa --ements for the Unbalanced Beam

Center Load Case	 Center Torque Case
Transverse Displacement 	 Rotation

110 -3 m 1	 [ 10 -3 rad 1

Bernoulli solution
	

0.3472 (-10%)
	

0.7236 (-85%)
(no warping)

Improved Bernoulli
	

0.3851  (-0.6%)
	

4.551 (-5%)
Solution

Saint-Venant
	

0.3950 (2%)
	

5.110  (7x )
Solution

Experimental
	

0.3874
	

4.795
Results
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Figure IV-A-1. Strain Distributions Across the Beam Width, Near Center
Span (z/L = 0.45), in the Upper Panel of the
Balanced Beam Under 54.5 Newton-Meter Center Torque.
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Figuie IV-A-2. Strain Distributions Across the Beam Width, Near Center
Span (z/L = 0.45), in the Upper Panel of the Unbalanced
Beam Under 54.5 Newton-Meter Center Torque.
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fasteners. This iuiperfer Khear transfer probably acccwrds for the observed

discrepancy.

6. Plans 	 UpcowiM  Period

As mentioned above, specimrn without a honeycomb core were tested in early stages

of the e3Worinents . Detailed strain measurements showed that one of the panels of

the beam weei undergoing out -of-plane bending deformations, typical of buckling

behavior. This behavior results in deformations of crow -sections in their own plarw

and cannot be m,xieled within the frame of a wArptng theory that specifically awt.Lmea

sections which are infinitely rigid in - plane. Accordingly, in the upcoming period,

research will concentrate on the developsient of a genera: beam theory for

thin - walled structures, that includes crow-section deformations. Both numerical and

experimental aspects will be addressed. This research will focus l (1) on a better

understanding of the mechanics of thin-walled struc:turee, and (2) on applications to

ttypical aeronautical structures ouch as stiffened wins or fuselage components.

S. Current Publications or Presentstions by Professor Bauchau on thiri_Sub _

'A Beam Theory for Aninotrople Materials"

To be publlslfxl in the Journal of Applied Mechanics, Vol. 52, No. 2,
pp. 416 422, June 1985.
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PART V

PROCESSING SCIENCE AND TECHNOLOGY

V-A THERMAL ANALYSIS OF COMPOSITE MATERIALS
V-8 NUMERICAL ANALYSIS OF CCI MPOSTTE PROCESSING
V-C HEAT TREATMENT OF METAL MATRIX COMPOSITES
V-D INITIAL SAILPLANE PROJECT: THE RP-1
V-E SECOND SAILPLANE PROJECT: THE RP-2
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P..	 V -A Thermal Mal +y im of Coal oointe Materials

Senior Inv-stitator i H. Wunderlich

1 . Intr oduc'tiufl

This iv the fourth report in an effort to analyze •he thermal properties of

Com[xwitea. All glawy materials commonly used in the aerospace irx]ustry wert

considered initially. To achieve sufficient precision, the calorimetric measuring

method ( i)* was improved. Preliminary results on glass transition changes,

broadening and changes in mag , utude were presented to Reference 1 z 1. A

comprehensive summary of these data will be available in a graduate thesis and

excerpts will be available as R-fererce 131,  in Fall 1985. The present report

shown a change toward more fundamental work in this area of thermal analysis of

composites. It was observed that only more precise analysis of the solid sate can

provide the detailed information desired . Farther, better understanding seemed more

likely if a wider range of materia) properties ( e . g . , other than graft epoxies) are

analyzed. This broadening of approach will become clear in this report. A fuller

summary of the last two yeer ' s progress is given in Reference 141, which covers all

research carried out under the direction of the senior investigator.

2— 3tatLre

At the begi ,viing of the previous report period it was established that the well-known

increase in glass transition temperature, Tg , also contains information on the

uniformity of pure through the broadness analysis of the transition.	 This led to

including compounds with chemical structures of importance in cross - linked,

high - temperature polymers in our heat capacity analysis ( - C,H,-) using approximate

vibrational spectra.

3. Progress During Report Period

a. The Heat Capacity of Solid Poly - p-xylylene and Polystyrene

The heat capacity at constant pressure, Cp, of poly - p-xylylene ( PPX) has been

measured from 220 to 625 °K using differential scanning calorimetry. The heat

capacities at constant volume, Cv, of both PPX and its isomer polystyrene (P5) have

* References in this section are given on page 42.

^I
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beer interpreted using literature data on full normal mode calca.lations for Ps and

estimates from low molecular weight analogues for PPX for the 39 group vibrations.

'	 Nine skeletal vibrations were used with 0. and A, temperatures of 534.5 °K and 43.1

• K for PS. It was also poesible to calculate a he&t capacity contribution of a 	
t

phenylene group withi,: s polymer chain. Single 48-vibration 6 1 temperate es of 3230

°K for PS and 2960 • K for PPX are sufficient to describe Cv above 220 °K. Below

140 O K, PS heat capacity shows deviations from the Tarasov treatment.

b. Quantitative Thermal Analysis of Macromolecular Glasses and Crystals

Quantitative thermal analysis meant scarvung calorimetry. Today a precision of !it

or better can be achieved over the enormous temperature range from 100 °K to 1LVO

°K. Sins scanning calorimetry is fast, it is also possible to s'.udy metastable

systems as are encountered in macromolecules. Most macromolecular systems are only

partially or not at all crystallized, i.e. , they are partially or fully glassy. By

establishing the fully-crystalline and fully-glassy, limiting thermal properties, a

derailed determination of the common intermediate states was pnsszble. A series of

10 polyoxides and polyolefins were considered for which all thermal properties are

known from 0 °K to beginning decomposition in the melt. The glass transitions of

semrcrystalline polymers were given special attention eincc they are indicative of a

widc variety of structure -sensitive effects.

4. Plans for Upcoming Period

In the upcoming period our work will be an effort to identify the glass transition and

the melting transition more precisely for polymers which are also tinder investigation

Tapchanically. . Polycarbonates, polyoxides , polysulfides and peek ( poly ether ether

ketone) will be analyzed relative to their thermodynamic properties by measurement of

heat capacity and vibrations) attalysis of the solid state. as outlined for polystyrene

and PPX, above. Analysis of liquid and condis crystals will also be continued.

5._ References

[ t1 46 t h Semi -Annual Composite Materials and Structures Report; R. P. I. , August
1994

L 2 47 1  Semi-Annual Composite Materials and Structures Report; R.P.I., December
1984

[ s l 49 t h Semi - Annual Composite Materials and Structures Report; R. P. I. , tc be
published.

141  3 rd ATHAS Report - i985; R. P. 1. , February 1985



6. Current Publicatio-w or Presentations by Professor Munderlich on this Sub ect

"Precision Heat Capacity Measurements for the Characterization of
Two-Phase Polymsrs"

Presented as the Plenary Lecture at the Italian Association for
Thermal Analysis and Calorimetry Meeting, Naples Italy,
Dec 4-7, 1984.

'The Kinetics of Molecular Nucleation", with Dr. S. Chen& and

"Thermal Analysis of the Condi.s Crystals of Poly -p-xylylene"

Presented at the American Physical Society Meeting, Baltimore,
MD, Mar 25 - 29, 1985.

"Thermal Analysis of Liquid and Condis Crystals"

Presented as the Invited Plenary Lecture at the ACS 189th National
Meeting, Miami Beach, rL, Apr 28-03 MLy, 1985.

"Quantitative Thermal Analysis of Macro - Molecular Glauses"

To be published in The_ rmochemica Acta , Vol. 92, pp. 15-26,
Sept. 1985.

"Heat Capacity of Solid Poly-p-xylylene and Poly - styrene", with D. Kirkpatric
and L. Judovits

To be published in the Journal of Polymer Science and Polymer Physics_
Edition, 1985.
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VV=B _Numerical Anal W of Comosite Materials

Seraor Investigator: M. S. Shephard

1. Introduction

The complexities associated with composite materials as regards both design and

manufacture demand the use of electronic computation to efficiently utilize these

materials. Presently, Uie analyses performed in connection with a new part are

related primarily to proper design for their use in service. The goal of this new

project is to develop the appropriate analysisr tools needed to describe the

processing of continuous fiber resin matrix composites.

Composite properties are directly related to the quality of the laminate that results

from the fabrication process. This manufacturing process is a very complex

operation that depends on many variables. Better understanding of such processes

will improve control of the manufacturing variables and result in more desirable

qualities in the finished product. The differential equations that describe composite

processing are, as might be expected, very difficult.. Numerical aaalysia provides a

means for their solution. The approach taken in this project combines numerical

solution of the governing equations with incorporation of proper input data and

comparison with experimental results.

2. Status

The matrix systems that are of interest for this work include both thermosetting and

thermoplastic resins. Processing steps take on sligt.tly different general forms for

each of these types of matrices. There is a considerable overlap in the types of

numerical analyses, however, that are required to understand Lie curing of thermoset

and U-ie processing of thermoplastic composites. The primary processes that must be

considered in the analysis of both classes of composites were outlined in the previous

progress report. Initial investigations are concentrated on qualifying the governing

partial differential eqkiation ( and/or variational principles) in a form to which

numerical analysis, via finite element techniques, can be applied. A second, equally

important, criterion is that appropriate coefficients required for the analysis can be

obtained from experimental results. Efforts to date indicate that there will be some

difficulties; obtaining the needed material parameters in the desired form, particularly

for flow related parameters of thermoplastic resin. This situation will require special

consideration and may necessitate modification of the governing equations used.
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The procedures developed to date have concentrated on problems described in one

spatial dimenFnon , wtuch is then discretized into f rite elements. Since the finite

element procedures used are general, moving to two- and three-dimensional domains

wtll not require the restructuring of the analysis software developed. It Will,

however, require the inclusion of additional behavioral phenomenon wtuch are

introduced with the increase in dimensionality.

3. Progress Durlrg Report Period

The analysis capabilities developed in the current period are concerned with a

eclution to a form of the general macroscopic energy equation which neglects kinetic

energy and is applicable to both thermosets and thermoplastics. This equation is :

pcp^T) = MY lVT + Q(T, t )
where:

Pc-

t.

i
T

c

Gc

Q

1Rcl

mass density of the composite

time

temperature

heat capacity of the composite

rate of heat energy release due to all internal sources or sinks

thermal conductivity matrix

and, for a cartesian coordinate syatem,

D( ) _ a( ) +	 a( )_ + v a( ) + w d( )
Dt - — at	 ax	 ay	 az

_a a
V 

_ I ft aly► 8z— J

so that, for example,

( aT aT aT lVT = -L ax ay az J

The wrrent analysis is concerned with a thermoset, where the assumptions applied to

the energy equation are that resui flow has been completed before the reaction

ti
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M.
begins and that heat is transfered only in the z-direction. Unuer these restrictions,

the energy equation can be written as

aT	 a	 OT	 so

PC Cc DL - az ( KC az ) + PO HR -
 

OT-

where

pc, Pin	 mass densities of the composite and matrix, respectively
1

HR = total heat of reaction

as	
= 6 = the rate of reaction

at

Numerical solution of this equation was obtained using finite elements in the spatial

domain and finite differences in the temporal domain. 	 The application of the finite

element spatial discretization reduces the P . D.E. 	 in space and time to a first order,

matrix O.D.E.  which can be written as

[ M	 ) =	 BE LT	 )_ +
	 [	 K	 1	 ( T	 )	 [	 F	 )	 = O	 (1)

where

NI- 1 	Ni-I	 NI)

rZi
[ M 1= i	

J	
pccc	 dz

elem	 z i-i	 2
N I-i	 N ,	 )	 Ni

2
N i - i,z	 Ni-i,z	 Ni,z)

rzi
[ K	 l =	 1	

ICS	 dz
elem	 z,-1	 2

Ni-s,z	 Ni,z	 )	 Ni,z

2
N i-1	 Ni-i Ni)

rz i
[ P	 ] _	 JPin	 dz

elem	 Z,-1	 2
( N i-.1	 M I	 )	 Ni	 ai

( T ) = a set of nodal temperatures which represent the unknown to
be solved for.

I	 ^

W^
^^	 _ _1114 -R



(4)
51r

1%, 	 —9- 7-- MT , --W, a --	
-

48

k .	 .4-

Ln these studies, piecewiae linear finite element shape functions, N I , were used.

The matrix 0. D.E.  was solved using a backward difference scheme, which was

selected for stability reasons. Assuming the use of equal time steps, at, the

backward difference relationship un-d w approximate the time derivative was

O(T)	 (T)n	 (T)n-i
d --  - ^{ — _ ( T' )n

In

Substituting this expremmon into Equation (1) and solving for (T) n yielded

r	 (T)n 
=	 [aM] + x 

-1	

aM] 
In

(T) n -1 + ( P ) n 	 (2)

Since the terms on the RHS of Equation ( 2) are a function of T and a, an iterative

method must be used to solve each time step. A simple secant method was used.

To demonstrate the capabilities developed to date and indicate the importance of

boundary condition specification, two example problems were considered. Both use

the same material, consisting of graphite fibers in a polyester matrix. The chemical

properties of the polyester (1. 1* were taken as

HQ - 73 cal/g

da s
 (1-a) Ae -C/RT

dt

A = 2.39 x 3010 l
f 1

•in 1
C = 16700 cal/mol

The material properties used for the fibers [ z ] and matrix are

1s

graphite fibers	 polyester matrix

pf = 1.79 x 10 3	Kg/m2 pm = 1.26 x 10 3 Kg/m2

Cf = 0.712 KJ/( kg *K) Cm = 1.26 KJ/( kg °K)

K f = 26 W/(m °K) Km = 0.167 W/(m 'K)

The material properties for the composite were obtained by applying the rule of

mixtures 1 3,41 to the constituents.	 Ansuming a 60% volume fraction for the fibers

* References in this section are given on page 56. 	 '4
,.r
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1.0

yielded

PC = 1.56 x 103 Kg/M2

Cc = 0.9312 KJ/(kg •K)

K  = 0.413  W/ (m OK)

In the first example, a Dirichlet boundary condition was applied to both the top and

bottom surface. These are also the form of boundary conditions applied in

previously published work (:1. Assuming a value of T = 354 • K on both top and

bottom of a 0.764 cm composite layup , the results shown in Figure V - B - i and V - B - 2

were obtained. Figure V-8-1  shows the temperature distribution through the

composite at four Lime intervals in the process, while Figure V - B-2 shows the degree

of cure completion through the thicknere; at two of the later time intervals. The

application of the Dirichlet boundary conditions implies large heat sinks at the two

surfaces which extract the heat generated by the chemical reaction as quicYly as it

can be conducted to the surfaces. The results preecnted do not appear realistic

since the heat is being extracted so rapidly as to retard the rate of reaction ( which

increa,3es with temperature) .

In the second example, a Neumann type free convection boundary condition is used.

In pa.ticular, a free convection coefficient, h, of 2 W/(m 2 °K) was used with the

ramped air temperature profile shown in Figure V - B - 3 . Figure V - B - 4 shows the

temperature profile thirty minutes into the cure. At this point the chemical reaction

has not been activated and the dip in the curve is caused by the lag time due to

conduction through the composite. Figure V -B -5 shows the temperature distribution

just one minute later. At this point the reaction has taken off and the composite

temperature has risen from a level more than 30° below the air temperature to a

level about e° above the air temperature. Figure V-B-6 shows the temperature just

30 seconds later, at which time the composite temperature has risen to over 580 °K

which is neary 200° above the air temperature.

The above examples demonstrate the difference in results that will be obtained for a

particular material depending on the boundary conditions used. The boundary

conditions used in the examples represent two extreme cases. The modeling of more

appropriate boundary conditions is one of the major problem areas that must be

addressed.

It 
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Figure V-B-2.	 Degree of Cure Through the Thickness of the
Composite at Two Times when Subjected to Dirichlet
Boundary Conditions.
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Figure V - B-3.	 Air Temperature as a Function of Time for the
Composite Subjected to Von Neumann Type Boundary
Corditiors.
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Figure V-B-4.	 Temperature Distributions 'Through the Composite
at 30 Minutes Into the Cycle at which Time Air
Temperature is 384 •K (Neumann Boundary Conditions).
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Figure V-B-5. Temperature Distribution Through the Comixislte
at 31 Minutes Into the Cycle at which Time Air
Temperature is 386.8 °K (Neumann Boundary conditionR)
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Figure V-B-6.	 Temperature Distribution Through the Composite
at 31.5 Minutes Into the Cycle at which Time Air
Tempezature is 308.2 °K (Neumann Boundary Conditions).
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4 .. Plans for Upcc mtNL Period

Emphasis will by shifted somewhat because of the opportunity to more closely tie the

development of our numerical analysis tools with Professor Sternstein's experimental

investigations of +he vincoelastic response of thermoplastics. Experimental results

will provide the material properties of lx-Ah neat resin and fibers which are to be
•

lied to carry out micro-mechanical analyses of small stele systems. These results,

along with other experiments, will allow construction o: metro-mechanical properties
i

which will, in turn, he used to model the composite as a homogeneous material. TWO

model can then be used to analyze the upecift,; configurations tested by Professor

Sternstein. Numerical results will be compared with experimental results, and once

good comparisons are obtained. the detailed stress diRtribution provided by the finite

element results will be combined with the results from experiments to develope failure 	
Icriteria.	 i

S. References

(i l "Differential Scanning Calor imetry of Epoxy Cure: Isoihermal Cure Kinetics";
Sourour, , S. and K.amal , M. R. , Thermochemica Acta , Vol. 14, 1976

(=) "Curing of Epoxy Matrix Composites"; Journal of Composite Materialb_, Vol. 17,
1983

(al Mechanics of Composite Mawrials; Jones, R. M. , Mr-Hill, 1980 	 1

(a) "Thermal Conductivities of Unidirectional Materials"; Journal of Composite_
Materials, Vol. 1, 1967

6. Current Publications or Presentations by 	 : hephard on this Subject

"Automatic Crick Prooagation Tucking"

Presented at the Symposium on Advances a Trends in
structures and Dynamics, Washington, DC, Oct 22-24, 1984.
Publ+.shod in Computers and Structures, Vol. 20, pp. 211-223, 1985. 
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V -C Heat Treatment of Metal Matrix Composites 	 i
t

	

!	 Senior Investigator: N. Stoloff

Introduction

	

a ..	 Directionally solidified eutectics continue to promise superior high tempzrabne
I tetigth properties, potentially lower costs and reduced reliance on scarce or
imported alloying elements for many aerospace applications. This new project was
undertaken to attempt to achei.-e advances in this field and also to encourage
interchange between metal matrix research, on the one hand, and anisotropic resin
matrix research, as reviewed in Section II-A-1 of this report, on the other hand.

2— Pro Kegs Duri^_Repo_rt Period

During this reporting period, work was performed on post-solidification heat
treatments designed to improve the tensile strength and fatigue resistance of
metal - matrix eutectic composites. The alloy s ystem chosen for study is Fe - Mn-Cr-C,
which in among the strongest and easiest to grow as a composite of all such alloys
identified to date. A variable in this study is the Mn content; with Mn present the
matrix is austenitic, with Mn absent, it is ferritic.

Directionally solidified ingots of Fe - 30%Cr - 3 %C were subjected to several
solution treatments and aging cycles during this period, as follows:

a. solution treated at 1210 I C, aged at 850 °C
b. solution treated at 1170 °C, aged at 850 °C
c. solution treated at 1210 °C, aged at 925 °C
d. solution treated at 1170 °C, aged at 925 °C

This material was found to be much less responsive to aging than the previously
tested Fe - 20%Cr - IOMn - 3 .4C alloy. Aging at 950 °C provided peak hardnesses near
800 VHN for both solution treatment temperatures ; while aging at 925 °C provided
reak hardnesses between 550 ar.d 575 VHN .

Compression testinp, was begun on samples of the two t.Pet alloys. The

Fe - 30Cr - 3C alloy, tested t room temperature in the as-solidified condition. yielded

at 320,000 psi ( 2208 M Pa) ; Fe - 20Cr -1OMn - 3 . 4(: , solutionized at 1170 °C for 6

hours and aged at 850 °C for 24 hours exhibited a yield stress of 353,500 psi

( 2436 M Pa) . Both alloys failed in a brittle manner at somewhat higher stresses.

The measured yield stresses are unusually high, even among high strength composites,

i•
'` v
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and may reflect a tension-compression anlaotropy, as has previously been reported

for other eutectics.

3. Current Publications or Presentatlons by Professor Stoloff on this Subjeect

"Current status and Prospects of Eutectic Composite Superalloys"

Presented at the Superalloy Seminar, Chung Shan Institute
of Science a Technology, Lung-Tan, China, Dec 14-17, 1984.

W.
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V -D Initial Sailplane Project: The RP-1

Senior Investigators: F. P. Bundy,
R. J. Diefendorf,
H. Hagerup

During this reporting period the RP-1 glider has been disassembled and stored

on the balcony of the Composite Materials Shop Area in the Jonsson Engineering

Center under ambient conditions of temperature and humidity. The instruments and

radio have been removed from the aircraft for use in the RP-2 sailplane. During the

next reporting period it will be assembled and subjected to its annual load deflection

testing to over 4 G's to check on the degree of its stiffness and str-ngtl, variability

with time.

1
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V - E Second Sailplane Project: The RP-2

Senior Investigators: F. P. Bundy,
R. J. Diefendorf,

f	 H. Hager-up

1. status

During the previous reporting period the aft w.ng tension linkage sytoem was

built into the torque box of the fuselage and the inboard, aft sections of the wings,

1	 and the entire fuselage wing system was static - teRted for all loading conditions

successfully. These tests included wing bending, wing torsion, towhook pulls and

release under load, landing gear strength, tail boom and empennage strength and

stiffness .

2_. Progress During Report Period

During the current reporting period effort has been focused on completing the

aircraft in preparation for flight testa. These activities, organized as sub-projects,

included mounting and attaching the left and right fuselage skins to the fuselage

mainframe; fabricating the canopy and its rimframe so as to match the cockpit

rimframe; fabricating the instrument panel with its mountings for instruments, radio,

tow--cable release, and vent air fixture; completing and streamlining the

skid/t.owhook/landing wheel fairing; fabricating and installing the ventilation air

opening, ducting, and control fitting ( including the pitot tube at the nose opening) ;

fabrication of a radio battery compartment in the seat back; installation of the seat

belt and shoulder harness; etc. At the close of this reporting period the aircraft

!	
was approaching the point of final contouring and primer painting, testing for weight

and center of gravity adjustment, and readiness for flight testing.

As part of the readiness procedure, an independent calculation of the pitch

controllability of the aircraft over the flight envelope range of speeds for a range of

center of gravity positions was performed using the measured angle of tailplane chord

to wing chord and the lift and moment coefficients for the airfoils involved. It

appears that the aircraft should be quite controllable in pitch at a gross weight of

340 pounds if the CG lies within a position range from 0.15 to 0.45 chord aft of the

leading edge. The first test flights will be made with the CG at about 0.25 chord

aft of the leading edge.

x , 41%(;EDJNG PAGE BLANK NOT FILMED
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3. Plan for Upcoming Period

During the upcoming period it is expected that the aircraft will be completed,

including painting, checked out for critical parameters, then test flown at Saratoga

County Airport, first by winch launch, and then by airplane tow. After the ground

running and flight handling characteristics are checked out, a series of flights in

bUble air conditions will be devoted to establishing quantitatively the "polar diagram

of the aircraft.

As reported two periods ago, the RP-2 has a secure covered trailer which will

be used to transport it to the airport and to house it safely between tests.

ffwl ^ + ^
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TECHNICAL INTERCHANGE



65

TECHNICAL INTERCHANGE

Technical meetings, both on and off -camlxis , enhance opportunities for the

Interchange of technical information. In order to assure that a Rensselaer

i	
faculty/staff memb!r can participate in such meetings off camlxis , a central listing of

I	 upcoming meetings is compiled, maintained and distributed on a quarterly basis. The

(I 	 calender for this reporting period is shown in Table VI -I. Table VI-2 shows the

meetutgo attended by RPI composites program faculty/staff/students durirt the

reporting period. Some on-campus mretinge , with special speakers particularly

relevant to composites, are listed in Table VI-3. A list of composites-related visits

W relevant organizations, attended by RPT faculty/staff/students, along with the

purlxxse of each visit is presented in Table VI-4.

The diversity of the research conducted within this program has continued to be
I

wide; indeed, it is seen as one of the strengths of the program. To insure

information transfer among groups on campus, a once -a -week luncheon program is 	 j

conducted. Faculty and graduate students involved (lifted in Part V11 - Personnel

of this report) attend. These meetings are held during the academic year and are

known as "Brown Bag Lunches" (BBL'S) , since attendees bring their own. Each BBL

allows an opportunity for graduate students and faculty to briefly present plans for,

problems encountered in and recent results from their individual projects. These

seminars also are occasions for brief reports on the content of off -c tmpus meetings

attended by any of the faculty/staff participants; (as l o-d in Tables VI-2 and VI-4

of this report) and for brief administrative reports, usually on the part of one of 	 j

the Co-Principal Investigators. Off-campus visitors, at RPI during a BBL day, are

often invited to "eit in". Table VI-5 lists a calender of internal, oral progress

reports as they were given at BBL's during this reporting period.

As indicated in the Introductiun of this report, an initiative is being

implemented which haa, over this and the previous reporting period, brought about
I

increased communication between NASA researchers and their RPI counterparts. One

step in that dire-tion has been taken by the holding of a series of Research

Coordination Meetings. The first of such meetings was held at RPI during the last

reporting period and 14 members of RPI's Composite Materials and Structures

Program along with 7 members of NASA Langley Research Center's Materials Division

were present. A second meeting took place on Februaiy 25, 1985 at R.P.I. with 12

members of R . P . I . 's Composite Materials and Structures Program and 11 members

rlRFrrT)TM PAS _NM NOT "EM 1)
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.r
from NASA Lewis Research Center	 n list of this ar well as other interactions which

took place during the reporting period is given in Table VI-6.

Lt

T
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MEETING _ SPr 'VSOR _ _	 PLACE
Fourth Annual Metallic AFWAL/FI81► Thousand oaks, CA
Structures MW Review WPAFH2OH

ASNT Fall Conf.	 a Display ASNT Cincinnati, OH

16th National SAMPE SAMPE Albuquerque, NM
Technical Conference

10th Ann. Mech. of Comp. USAF/U. DAYTON Dayton, OH
Structures a Dynamics

AHS Specialists' Mtg can AHS St. Louis, NO
Pat l&Lle Methodology

7th DOD/NASA Conf. on DOD/NASA Dayton, OH
Fiber Composites in
Structural Design

Symp. on Adv. a Trends in AIAA/NA.SA Washington, DC
Structures a Dynamics

Sympos l u►: . n Composites: ASTM Dallas/Ft.
Fatigue and Fracture Worth, TX

Conf. on Processing of MCIC/MMCIAC Columbus, OH
Metal a Ceramic Matrix
Composites

Weapon Sys. Readiness - USAF Macon, GA
Airframe Mngment Pole

Italian Assoc. for Thermal IATAC Naples,	 Italy

7

Table VIA

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Calendar of Compoeites-related Events

September 30, 1984 through April 30, IV854

DA'Z'ES
02-04 Oct 94

02-05 Oct 94

09-11 Oct R4

15-17 Oct 84

L..	 16-18 Uct 84

17-19 Oct 84

22-25 Oct 84

24-25 Oct 94

13-15 Nov 84

27-29 Nov 84

04-07 Dec 84

67

Analysis and Calorimetry Mtg

	

09-14 Dec 84
	

ASME Winter Annual Mtg 	 ASME	 New Orleans, LA

	

17-18 Dec 84
	

Superalloy Seminar 	 Chung Shan	 Lung -Tan, China
Inst of Sci 8
Technology

	

07-10 Jan 85	 Congress on Composites 	 SME	 Anaheim, CA
in Manufacturing	 i

	20-24 Jan 85	 9th Annual Conf. on	 ACS	 Cocoa Beach, FL
Composites a Adv. Ceramics

i,

Lis	 - ► _^`^
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Table VI-1 (continued)

COMPOSITE MATERIALS AND STRUCTURES PROGRAM

Calendar of Composites related Events

September 30, 1964 through April 30, 1965

sa•

W.

DATES _ _	 MEET 1NG SPONSOR PLACE

21-23 Jan 85 Seminar: Exper Mech of SF3t(SESA) Detriot, MI
Fiber Reinforced Comp Matls

05-06 Feb 85 Topical Review on DOD Washington, DC
W,chanics, Aeronautics, a
Propulsion

11-14 Feb 65 (:onf. on Characterization IUPAC Melbourne, Aura.
a Analysis of Polymers

12-14 Feb 85 AIAA Aerospace Engr. Show AIAA Los Angeles, CA

19-21 Feb 85 Inter. Conf. on Rotor- ARO/AHS Research Triangle
craft Basic Research Park, NC

xx-xx Feb 85 Asilomar Conference on Asilomar, CA
Polymers

11-14 Mar 85 Design Engineering Conf. ASME Chicago, IL

13-15 Mar 85 Symp. on Toughened Comp.	 ASTM/NASA-LRC Hoo:ston, TX

18-19 Mar 85 Symp. on Fatigue in Hech. ASTM Charleston, SC
Fastened Comp. a Mtl. Joints

19-21 Mar 85 30th National SAMPE SAMPE Anaheim, CA
Symposium/Exposition

25-29 Mar 85 American Physical Society Mtg APS Baltimore, MD

25-29 Mar 85 International Conf. on IEEE(C) St. Louis, NO
Robotics a Automation

01-02 Apr 85 IEFE(IA) Tech. Conf. on IEEE Akron, OH
Rubber and Plastics

01-04 Apr 85 6th Conf. on Deformation PRI Cambridge, Englnd
Yield a Fracture of
Polymere

09-11 Apr 85 AIAA Annual Mtg AIAA Washington, DC

09-12 Apr 85 C.omuter Integrated Manu- USAF Dallas, TX
facturing industry Conf.
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Table VI -1 (continued)

COMPOZ51TE MATERIALS AND STRUCTURES PROGRAM
C&Iendar at C(xmposrftes- related Events

September 30,	 1984 through April 30, 1985

Dd1T S _	 MEETING SPUNSOR PLACE

16-18 Apr 95 Infer. Conf. on Bear AIMS/ASME/A3TW/ Vancouver, bC,
of Materials ASM/Ac;erS/ASLE Canada

15-17 Apr 85 26th Structures, Struct. ATAA/A..9MY/ASCE/ Orlando, TL
Dyn.	 a Matls.	 Conf. AHS

16-17 Apr 65 Defects in Comp.: Detect. Imperial Coll/ London, England
a Significance RAE

16-18 Apr 85 40th Symp. on Mechanical NITS Gaithersburg, MD
Tallures Prevention

21-26 Apr 05 60th Struct. a Matl. Pnl AGARD SanAntonio, TX
Mt&.: Damage Tolerance Con-
cepts for Cr+t.	 Eng. comp.

28 Apr ACS 189th National Mtg AC3 Miami beach, PL
03 May 85

%. 
V I



DATES
22-24 Oct 84

24-25 Oct 94

04-07 Dec 84

09-14 Dec 84

17-18 Dec 84

XX-XX Feb 85

7 1 29 Mar 85

ti
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:able VI-2

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Pertinent Protenslonal Meeting" Attended

sejAember 30, 1984 through April 30, 1995

KUTING
Symp. on Adv. & 'Trends in Structures a Dynamics (Prof. Shephard),
Washington, DC

Professor Shepherd presented the paper:
"Automatic Crack Propagation Tracking"

Symposium on Composites: Fatigue and Fracture (Prof. Krempl),
Dallas/Ft. Worth, TX

Professor Krempl presented the paper:
"Time-Dependent Deformation and Fatigue Behavior of 1!551
Graphite/Epoxy Tubes under Cc,mbined Loading"

Italian Assoc. for Thermal Analysis and Calorimetry Mtg
(Prof. Wunderlich). Naples, Italy

Professor Wunderlich gave the Plenary Lecture: 	 t
"Precision Heat Capacity Measurements for the Char-
acterization of Two-Phase Polymers"

ASME Winter Annual Mtg: Advances In Aerospace Sciences
and Engineering Symposium (Prof. Sham), New Or.eans, LA

Superalloy Seminar, Chung Shan Inst of Sci A Technology (Prof.
Stoloff), Lung-Tan, China

Professor Stoloff presented the paper:
"Current Status and Prospects of Eutectic Composite Superalloys"

Asilomar Conference on Polymers (Prof. Sternstein),
Asilomar, CA

Professor Sternstein presented the paper:
"Mechanical Characterization of Composites"

American Physical Society Mtg (Prof. Wunderlich),
Baltimore, MD

Professor Wunderlich presented the papers:
"The Kinetics of Molecular Nucleation', with
Dr. S. Cheng
"Thermal Analysis of the Condis Crystals of
Poly-p-xylylene"

f
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Table V1-2 (conflnued)

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Pertinent Prufesrional Meetingei Attended

September 30, 1984 through April 30, 1985

DATES MEETING

01-04 Apr 85 6th Conf. on Deformation Yield a Fracture of
Polymers (Prof. Sternstein), Cambridge, England

Professoi Sternetein presented the paper:
"Defcrmation and Failure of Thermoplastic Matrix
C'Amposltes"

21-26 Apr 85 60th ArARD Structures a Materials Panel Mtg.:
Damage Tolerance Concepts for Critical Engine
Components (Prof.  Loewy ), San Antonio, TX

28-Apr- ACS 189th National Mtg (Prof. Sternst.ein/Prof. Wunderlic:h),
03 May 85 Miami Beach, FT.

Professor Sternstein ,	 esented the paper:
"Mechanical and Opticat Characterisation of Thermoplastic
Matrix Composites"

Pro-.:ssor Wunderlich presented the Invited Plenary Lecture:
"Thermal Analysis of Liquid and Condis Crystals"

71
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Table VI-3

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Compoeites -Related Meetings/ Talks Eeld at RPI

SepUmber 30, 1984 through April 30, 19115

72

SUBJECT SPEAKER DATE

Phase Transformations Prof. R. D. James 10/29/84
in Solids Brown University

Providence, k1

Finite Element Prof. M. Borri 10/31/84
Approach in Dynamics Politecnico D1 Milano

Milan,	 Italy

Advanced Composite Howard Siegel 2/12/85
Applications at Director, Product Engrg
McDonnell Aircraft McDonnell Aircraft Company

Design of Cxviposlte Daniel S. Adams 2/18/85
Structures Hercules Aerospace

R A D Activities at R. Prouty & J. Schibler 2/25-26/85
Hughes Helicopters Hughes Helicopters

Culver City, CA a
Mesa, AZ

Interlaminar Fracture Prof. L. Rehfield 3/26/85
ToughnQ63 of Composite Georgia Institute of
Structures Technology

Review of Structures, Dr. Gary Anderson 3/27/85
Dynamics 8 Materials ARD
Aspects of RTC Prgm Durham, NC

Damage Zone Modeling Prof. J. Bgcklund 4/17/85
of Notched Composites Royal Inst of Technology
Under Tension Stoc;:holm, Sweden

1



Table VI-4

COMPOSITE MATFRIALS AND STRUCTURES PROGRAM
Composites Related Visits to Relevant Organizations

September 30, 1984 through April 30,

Faculty Member Pulse of Visit Location Date(s)

O. Bauchau Discussion of Thin- Langley Visit, 11/26/84
Walled Structures with M. Nemeth

B. Wunderlich Presented Inv Lecture: Polymer Forum 1/10/85
"TrAnsitions in Meso- DuPont Co.,
phases of Macromule- Wilmington, DE
cules"

J. Diefendorf Discussion a Seminar Langley Visit, 2/7/85
Carbon/Carbon Comp- with R. Mans
osites

B. Wunderlich Presented Inv Lecturer Mobil Chemical Co, 2/20/85
"The Physical Chemistry Edison, NJ
of Polyethylene"

S. Shan Discussion of NASA Langley Visit, 3/22/85
Facilities a Fracture with W. Elber
of MMC a Gr/E W. Johns

J. Newman
K. O'Brien
C. Poe

S. Sham Discussion of Gr/E a Lewis Visit, 3/28/85
MMC Models a Ceramic with C. Chamis
Systems J. DiCarlo

M. Shephard Presented seminar: Purdue U. 3/28/85
"Toward the Automation Lafayette, IN
of Finite Element
Modeling"

R. Loewy ')iscussion of NDE Southwest Research 4/23/85
Techniques Institute, San

Antonio, TX, with
H. N. Abramson
M. Goland

M. Shephard Presented seminar: Cntr for Comp. 4/24/95
"Discrete Crack Propa- Matls, U. of
gation Tracking with Delaware, Newark,
Automated Finite DE
Element Modeling
Techniques"

E
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DATE TOPIC RESP. FACULTY
OS-Oct Administrative Report Wiberley

Resin Matrix Characterization Sternstein
Stress Concentration Failure Criteria Goetschel

12-Oct Administrative Report Diefendorf
Curing Uniformity wunderlich
Numerical Analysis of Comp. Processing Shephard

19-Oct Administrative Report Wiberley
Composites Fatigue Krempl
Ordered Polymers Diefendorf

26-Oct Administrative Report Diefendorf
Edge FailurPR Sham
Fabrication Technology Bundy/Hagerup/Paedelt

02-Nov Administrative Report Loewy
Eutectics N.	 Stoloff
Beams with Warping Bauchau

09-Nov Administrative Report Wiberley
Resin Matrix Charactization Sternst.ein
Numerical Analysis of Comp. Processing Shephard

16-Nov Administrative Report Loewy
Curing Uniformity Wunderlich
Stress Concentration Failure Criteria Goetschel

23-Nov Thanksgiving Recess

30-Nov Administrative Report Diefendorf
Composites Fatigue Krc.mpl
Omc!red Polymers J. Diefendorf

07-Dec Administrative Report Loewy
Edge Failures "ham
Beams with Warping 0. Bauchau

14-Dec Administrative Report Diefendorf
Numerical Analysis of Comp. Processing Shephard
Fabrication Technology Bundy/Hagerup/Paedelt

18-Jan Administrative Report Loewy
Eutectics Stoloff
Ordered Polymers Diefendorf

_	 w
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Table VI -S

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Brown Bag '.unch SchedulF

September 30, 1984 through April 30, 1985
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Table V1-5	 (ooac 1rx&od )

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Brown Bag Lunch Schedule

September 30, 1984 through April 30, 1195

DATE 7WI RESP. FACULTY
25-Jan Administrative Report Loewy

Beams with Warping Bauchau

Composites Fatigue Krewpl

01-Feb Administrative Report IAXIWY
Rosin Matrix Charactisation Sternstein

Curing Uniformity Wunderlich

•	 08-Feb Administrative Report Wunderlich

Edge Failures Sham

Numerical Analysis of Coop. Processing Shephard

15-Feb Administrative Report Diefendorf
Fabrication Technology Bundy

Hagerup

Paedelt
Eutectics atoloff

22-Feb Administrative Report Loewy
Ordered Polymers Diefendorf

' Beams with Warping Bauchau

VISITORS: A. Bakke, Hercules Aerospace
Dr.	 S. Wagner,	 U.	 of A.F.,

Dr.	 U.	 Leiss	 P.R.G.
Dr. J. Yin, Bell Helicopters

01-Mar Administrative Report Loewy
cosg)osites Fatigue Krempl
Resin Matrix Charactisation Sternstein

08-Mar Administrative Report Diefendorf
Coring Uniformity Wunderlich
Edge Failures Sham

15-Mar Spring Recess

22-Mar Administrative Report 1A)ewy
Numerical Analysis of Comp. Processing Shephard
Fabrication Technology Bundy

Hagerup	 i
Paedelt

29-Har Administrative Report 	 Diefend<
Discussion Session -

-Where do we want the program to be in 5 years?,
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Table VI-5 (continued)

COMPOSITE MATERIALS AND STRUCTURES PROGRAM
Brown Bag bunch Schedule

September 30, 1984 through April 30, 1985

I•
DATE TOPIC RESP. FACULTY
OS-Apr Administrative Report Diefemorf

Beams with warping Bauchau
cuvnpusites Fatigue Krempl

12-Apr Administrative Report Diefendorf
Curing Uniformity Wunderlich
Edge Failures Sham

19-Apr Administrative Report Loewy
Resin Matrix Charactization Sternstein
Numerical Analysis of Corep. Processing Shephard

26-Apr Administrative Report Diefendorf
Fabrication Technology Bundy

Hage rup
Paedelt

Eutectics Stoloff

T	 I



E. Krempl	 Consideration of
Tubular Fatig,ie
Specimen  TeGting

E. Krempl	 Consideration of
Tubular Fatigue
Specimen Testing

E. Krempl
	

Consideration of
Tubular Fatigue
Specimen Testing

J. Diefendorf
	

Discussion & Seminar
Carbon/Carbon Comp
osites

O. Bauchau
J. Diefendorf
G. Dvorak
E. K Temp 1
R. Loewy
V. Paedelt
S. Sham
M. Shephard
S. Sternstein
S. Stoloff
B. Wunderlich

Research Coordination
Meeting, Lew.s RC

9
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Table VI-6

COMPOS^PE MATERIALS AND STRUCTURES PROGRAM
Review of Research Center Interactions

September 30, 1984 through April 30, 1985

Nature of
Interchange Da te(i^j

Correspondence, 11/16/84
with Dr. M. Shuart,
Langley RC

Langley Visit, 11/26/84
with M. Nemeth,
Langley RC

Correspondence, 12/26/84
with Dr. Wolf EK to WF.
Flber, Langley RC

Correspondence, 1/7/85
with Dr. Wolf WE to EK
Elber, Langley RC

Correspondence, 3/4/85
with Dr. Wolf YK to WE
Elber, Langley RC

Langley Visit 2/7/85
with R. Maas

Campus Visit, 2/25/85
by K. Bowles

C. Chamis
J. DiCarlo
B. Johns
S. Levine
B. Probst
G. Roberts
T. Serafini
R. VanucCi

Faculty Member(s) Pur Be

1
	

D. Gloetschel	 Test Program on
(Gi lbert Hu)	 St rength of Notched

Composite Laminates

O. Bauchau	 Discussion of Thin-
Walled Structures

S. Sham Discussion of NASA	 Langley Visit,	 3/22/85
Facilities a Fracture	 with W. Elber
of MMC 8 Gr/E	 W. Johns

J. Newman
K. O'Brien
C. Poe
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Table VT-6 (continued)

COMPOSrTE MATERIALS AND STRUCTURES PROGRAM
Review of Research Center Interactiorw

September 30, 1984 through April 30, 1985

^•	 Mature of
r

Faculty Member(eI Purse	 Interchange	 Date sl

S. Sham	 Discussion of Gr/E a	 Lewis ViRit,	 3/28/85
MMC Models a Ceramic	 with C. Chamis
System"	 J. DiCarlo
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PART VII

PERSONNEL, AUTHOR INDEX

I

=	 J:•	 `



1

W.

Co-Principal Investigators

Loewy, Robert G., Ph.D.

Wiberley, Stephen E., Ph.D.

Senior Investigatore

Bauchau, O., Ph.D.
(Structural dynamics, advanced
composites)*

Bundy, F. P., Ph.D.
(Physical chemistry, structures
test.ing)*

Diefendorf t , R. J., Ph.D.
(Fabrication, resin matrix, fiber
behavior, interfaces)*

Feeser t , L. J., Ph.D.
(Computer applications a graphics,
caag)uter -aided -der ign, optimization)*

Goetschel, D. B., Ph.D.
(Structural analysis, design
and testing)*

81

Institute Professor

Professor of Chemistry

Assistant Professor of

Aeronautical Engineering

Research Professor of
Materials Engineering

Professor of Materials
Engineering

Professor of Civil Engineering
Associate Dean, School of Engineering

Assistant Professor of Mechanical
Engineering

PERSONNEL

Hagerup, H. J., Ph.D.
(Aerodynamics, configuration,
pilot accomodation, flight testing)*

Krempl, E., Dr.Ing.
(Fatigue studies, failure criteria)*

Sham, T.-L., Ph.D.
(Fracture mechanics, composites)*

Shephard, M. S., Ph.D.
(Computer graphics, finite element
methods)*

Sternstein t , S. S., Ph.D.
(Failure analysis, matrix behavior,
moisture effects)*

Associate Professor of

Aeronautical Engineering

Professor of mechanics and Director
of Cyclic Strain Laboratory

Assistant Professor of Mechanical
Engineering

Associate Professor of Civil
Engineering and Associate Director,
Center for Interactive Computer
Graphics

William Weightman Walker Professor of
Polymer Engineering

i

► 'RECED.ING PAGE BLANK NOT MMED
* Fields of Specialty

t Member of Budget Committee together with Co-Principal Investigators



Kirker, Philip
Krupp, Alan
Mao, Marlon
Payne, Thomas
Sohn, Kyu
Williams, Thomas

82

IL

Stoloff, N. S., Ph.D.
(Mechanical behavior of cryutals.
order - disorder reactions, fracture,
stress corrosion)*

Wurderlich, B., Ph.D.
(Processing science, constituent
material characteristics)*

Research Staff

Professor of Materials Engineering

Professor of Chemistry

Man_ alter a Master Technician, C mpoeites Laboratory
Paedelt, Volker

Research Associates_
Grebowicz, Janusz, Ph.D.

Research Administrator
Trainer, Asa, M.S.

Graduate Assistants
An, Duek, M.S.
Burd, Gary, M.S.
Chen, Kuong-jung, M.S.
Coffenberry, Brian, B.S.
Falcone, Anthony, M.S.
Hu, Tsay hein, M.E.
Judovits, Lawrence, M.S.

Under1raduate Assistants _ Seniors
Basel, Roger —
Cimino, Paul
DiLello, Frank
Father, Richard
Galbiati, Phil
Hubner, Angela
Kim, S. Kwcng

Undergradudte Assistants - Juniors_
Bell, Joseph
Burdick, Mark
Donskay, Eugene
Egbert, Mark
Hill, Stephen
Kashynski, Stephen
Kim, Sam
McHugh, Lisa

Liu, Shiann-heing, M.S.
Srinivasan, Krishna, B.Tech.
Szewczyk, Christine, B.S.
Uzoh, Cyprian, B.S.
Weidner, Theodore, B.S.
Yehia, Nabil, M.S.
Yurgartis, Steven, M.S.

Nieboer, Chris
O'Connell, James
Ragczewski, David
Rog&, Christian
Spyropoulos, Constantine
Van Roggen, Edgar
Young, Richard

* Fields of Specialty

t Member of Budget Couenittee together with Co-Principal Investigators

I
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Undertraduate Assistant * - Senores
Baldwin, Reid	 Karkow, Jon
Cannon, John	 Meyer. John

Dawkins, Wilbert	 Park, Brian

Femrno, John	 Pusateri, Robert

Jacob, Daniel	 Rosario, Estrella

we
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Hagerup , H. J.	 ..............................................	 59,61
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