Bibliography of Terrestrial Impact Structures

Maurice J. Grolier
U.S. Geological Survey
Flagstaff, Arizona
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Historical Guide to Literature on Terrestrial Impact Structures</td>
<td>1</td>
</tr>
<tr>
<td>Purpose and Scope</td>
<td>4</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>4</td>
</tr>
<tr>
<td>Locations of Impact Sites</td>
<td>10</td>
</tr>
<tr>
<td>Iron Meteorites, Tektites and Microtektites, and Impact Glass</td>
<td>11</td>
</tr>
<tr>
<td>Earlier Bibliographies</td>
<td>11</td>
</tr>
<tr>
<td>Serials</td>
<td>12</td>
</tr>
<tr>
<td>Conclusion</td>
<td>12</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>13</td>
</tr>
<tr>
<td>References Cited</td>
<td>15</td>
</tr>
<tr>
<td>Bibliography of Catalogues, Tabulated Lists, and Summary</td>
<td>21</td>
</tr>
<tr>
<td>Descriptions of Meteorite Impact Craters and Astroblemes</td>
<td>29</td>
</tr>
<tr>
<td>Selected References Concerning Cryptovolcanic and Cryptoexplosion</td>
<td>31</td>
</tr>
<tr>
<td>Structures</td>
<td>35</td>
</tr>
<tr>
<td>Bibliography of Papers on Astrons</td>
<td>39</td>
</tr>
<tr>
<td>References to Papers on the Origin of Early Archean Impacting Populations</td>
<td>43</td>
</tr>
<tr>
<td>Bibliographies of Terrestrial Impact Structures: Impact Sites</td>
<td>47</td>
</tr>
<tr>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Proven Craters</td>
<td></td>
</tr>
<tr>
<td>Barringer Crater</td>
<td>59</td>
</tr>
<tr>
<td>Haviland Crater</td>
<td>88</td>
</tr>
<tr>
<td>Odessa Craters</td>
<td>91</td>
</tr>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Crooked Creek Structure</td>
<td>99</td>
</tr>
<tr>
<td>Decaturville Disturbance</td>
<td>102</td>
</tr>
<tr>
<td>Flynn Creek Structure</td>
<td>105</td>
</tr>
<tr>
<td>Glover Bluff Structure</td>
<td>109</td>
</tr>
<tr>
<td>Kentland Structure</td>
<td>110</td>
</tr>
<tr>
<td>Manson Structure</td>
<td>113</td>
</tr>
<tr>
<td>Middlesboro Structure</td>
<td>114</td>
</tr>
<tr>
<td>Red Wing Creek</td>
<td>115</td>
</tr>
<tr>
<td>Serpent Mound Structure</td>
<td>116</td>
</tr>
<tr>
<td>Sierra Madera Structure</td>
<td>118</td>
</tr>
<tr>
<td>Upheaval Dome</td>
<td>120</td>
</tr>
<tr>
<td>Wells Creek Structure</td>
<td>122</td>
</tr>
<tr>
<td>Uvalde</td>
<td>124</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
</tr>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Brent Crater</td>
<td>137</td>
</tr>
<tr>
<td>Carswell Lake Structure</td>
<td>144</td>
</tr>
<tr>
<td>Charlevoix Structure</td>
<td>148</td>
</tr>
<tr>
<td>CONTENTS (Continued)</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Clearwater Lakes (East and West)</td>
<td>153</td>
</tr>
<tr>
<td>Deep Bay</td>
<td>161</td>
</tr>
<tr>
<td>Gow Lake</td>
<td>165</td>
</tr>
<tr>
<td>Haughton Dome</td>
<td>166</td>
</tr>
<tr>
<td>Holleford Crater</td>
<td>168</td>
</tr>
<tr>
<td>Ile Rouleau</td>
<td>172</td>
</tr>
<tr>
<td>Lac Couture</td>
<td>173</td>
</tr>
<tr>
<td>Lac La Moineerie</td>
<td>177</td>
</tr>
<tr>
<td>Lake St. Martin</td>
<td>178</td>
</tr>
<tr>
<td>Manicouagan-Mushalagan Lakes Area</td>
<td>180</td>
</tr>
<tr>
<td>Mistastin Lake</td>
<td>190</td>
</tr>
<tr>
<td>New Quebec Crater</td>
<td>193</td>
</tr>
<tr>
<td>Nicholson Lake</td>
<td>200</td>
</tr>
<tr>
<td>Pilot Lake</td>
<td>202</td>
</tr>
<tr>
<td>Slate Islands</td>
<td>204</td>
</tr>
<tr>
<td>Steen River Structure</td>
<td>206</td>
</tr>
<tr>
<td>Sudbury Basin</td>
<td>207</td>
</tr>
<tr>
<td>Wanapitei Lake</td>
<td>218</td>
</tr>
<tr>
<td>West Hawk Lake</td>
<td>220</td>
</tr>
<tr>
<td>South America</td>
<td></td>
</tr>
<tr>
<td>Proven Craters</td>
<td></td>
</tr>
<tr>
<td>Campo del Cielo Craters</td>
<td>231</td>
</tr>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Araguainha Dome</td>
<td>237</td>
</tr>
<tr>
<td>Monturaqui Crater</td>
<td>238</td>
</tr>
<tr>
<td>Riachao Ring</td>
<td>240</td>
</tr>
<tr>
<td>Serra da Cangalha</td>
<td>240</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Proven Craters</td>
<td></td>
</tr>
<tr>
<td>Boxhole Crater</td>
<td>253</td>
</tr>
<tr>
<td>Dalyaranga Crater</td>
<td>255</td>
</tr>
<tr>
<td>Henbury Craters</td>
<td>257</td>
</tr>
<tr>
<td>Wolf Creek Crater</td>
<td>266</td>
</tr>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Goat Paddock</td>
<td>271</td>
</tr>
<tr>
<td>Gosses Bluff</td>
<td>272</td>
</tr>
<tr>
<td>Kelly West</td>
<td>275</td>
</tr>
<tr>
<td>Liverpool</td>
<td>276</td>
</tr>
<tr>
<td>Spider</td>
<td>277</td>
</tr>
<tr>
<td>Strangways</td>
<td>278</td>
</tr>
<tr>
<td>Teague</td>
<td>279</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
</tr>
<tr>
<td>Proven Craters</td>
<td></td>
</tr>
<tr>
<td>Kaalijarv Craters</td>
<td>295</td>
</tr>
<tr>
<td>Morasko Craters</td>
<td>300</td>
</tr>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Boltysh</td>
<td>303</td>
</tr>
<tr>
<td>Chassenon Crater</td>
<td>307</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il'inets</td>
<td>316</td>
</tr>
<tr>
<td>Kaluga</td>
<td>319</td>
</tr>
<tr>
<td>Kamensk-Gusev</td>
<td>321</td>
</tr>
<tr>
<td>Karla</td>
<td>322</td>
</tr>
<tr>
<td>Kjardla</td>
<td>323</td>
</tr>
<tr>
<td>Kursk</td>
<td>324</td>
</tr>
<tr>
<td>Lake Deliën</td>
<td>325</td>
</tr>
<tr>
<td>Lake Janis'yarvi</td>
<td>327</td>
</tr>
<tr>
<td>Lake Lappajarvi</td>
<td>330</td>
</tr>
<tr>
<td>Lake Mien</td>
<td>334</td>
</tr>
<tr>
<td>Lake Sääksjärvi</td>
<td>337</td>
</tr>
<tr>
<td>Lake Siljan</td>
<td>338</td>
</tr>
<tr>
<td>Logoisk</td>
<td>340</td>
</tr>
<tr>
<td>Misarai and Vepriaž</td>
<td>341</td>
</tr>
<tr>
<td>Mishinogorsk</td>
<td>342</td>
</tr>
<tr>
<td>Obolon</td>
<td>344</td>
</tr>
<tr>
<td>Puchezh-Katunki Crater</td>
<td>346</td>
</tr>
<tr>
<td>Rieskessel</td>
<td>348</td>
</tr>
<tr>
<td>Rotmistrovka</td>
<td>403</td>
</tr>
<tr>
<td>Soderfjärden</td>
<td>405</td>
</tr>
<tr>
<td>Steinheim Basin</td>
<td>406</td>
</tr>
<tr>
<td>Ternovka</td>
<td>412</td>
</tr>
<tr>
<td>Zelenyy Gai</td>
<td>413</td>
</tr>
</tbody>
</table>

Asia

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven Craters</td>
<td></td>
</tr>
<tr>
<td>Sikhote-Alin Crater</td>
<td>425</td>
</tr>
<tr>
<td>Wabar (Al Hadidah) Craters</td>
<td>440</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Beyenchime-Salata</td>
<td>446</td>
</tr>
<tr>
<td>Kara and Ust' Kara</td>
<td>448</td>
</tr>
<tr>
<td>Lake El'gytkhyn</td>
<td>451</td>
</tr>
<tr>
<td>Lonar Lake</td>
<td>455</td>
</tr>
<tr>
<td>Patomskii Crater</td>
<td>459</td>
</tr>
<tr>
<td>Popigay</td>
<td>460</td>
</tr>
<tr>
<td>Shunak</td>
<td>466</td>
</tr>
<tr>
<td>Sobolev</td>
<td>468</td>
</tr>
<tr>
<td>Tabun-Khara-Obo</td>
<td>469</td>
</tr>
<tr>
<td>Zhamanshin</td>
<td>470</td>
</tr>
</tbody>
</table>

Africa

<table>
<thead>
<tr>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable Impact Structures</td>
<td></td>
</tr>
<tr>
<td>Amguid Crater</td>
<td>485</td>
</tr>
<tr>
<td>Aouelloul Crater</td>
<td>486</td>
</tr>
<tr>
<td>Lake Bosumtwi</td>
<td>491</td>
</tr>
<tr>
<td>Oasis and BP (British Petroleum)</td>
<td>499</td>
</tr>
<tr>
<td>Ouarkziz</td>
<td>507</td>
</tr>
<tr>
<td>Talemzane Crater</td>
<td>508</td>
</tr>
<tr>
<td>Tenoumer Crater</td>
<td>509</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin Bider</td>
<td>511</td>
</tr>
<tr>
<td>Vredefort Structure</td>
<td>512</td>
</tr>
<tr>
<td>Indexes</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>521</td>
</tr>
<tr>
<td>Index of Alternate Names</td>
<td>539</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

Plates

1. North America (Showing Locations of Impact Structures) 49
2. South America (Showing Locations of Impact Structures) 225
3. Australia (Showing Locations of Impact Structures) 243
4. Europe (Showing Locations of Impact Structures) 281
5. Asia (Showing Locations of Impact Structures) 415
6. Africa (Showing Locations of Impact Structures) 475

TABLES

Tables

1. North America: USA
 1a. Impact Structures (in alphabetical order) 51
 1b. Impact Structures (in order of increasing latitude) 53
 1c. Impact Structures (in order of decreasing diameter) 55
 1d. Impact Structures (in order of increasing geologic age) . 57

2. North America: Canada
 2a. Impact Structures (in alphabetical order) 125
 2b. Impact Structures (in order of increasing latitude) 128
 2c. Impact Structures (in order of decreasing diameter) 131
 2d. Impact Structures (in order of increasing geologic age) . 134

3. South America
 3a. Impact Structures (in alphabetical order) 227
 3b. Impact Structures (in order of increasing latitude) 228
 3c. Impact Structures (in order of decreasing diameter) 229
 3d. Impact Structures (in order of increasing geologic age) . 230

4. Australia
 4a. Impact Structures (in alphabetical order) 245
 4b. Impact Structures (in order of increasing latitude) 247
 4c. Impact Structures (in order of decreasing diameter) 249
 4d. Impact Structures (in order of increasing geologic age) . 251

5. Europe
 5a. Impact Structures (in alphabetical order) 283
 5b. Impact Structures (in order of increasing latitude) 286
 5c. Impact Structures (in order of decreasing diameter) 289
 5d. Impact Structures (in order of increasing geologic age) . 292
<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Asia</td>
<td>417</td>
</tr>
<tr>
<td>6a. Impact Structures (in alphabetical order)</td>
<td>417</td>
</tr>
<tr>
<td>6b. Impact Structures (in order of increasing latitude)</td>
<td>419</td>
</tr>
<tr>
<td>6c. Impact Structures (in order of decreasing diameter)</td>
<td>421</td>
</tr>
<tr>
<td>6d. Impact Structures (in order of increasing geologic age)</td>
<td>423</td>
</tr>
<tr>
<td>7. Africa</td>
<td>477</td>
</tr>
<tr>
<td>7a. Impact Structures (in alphabetical order)</td>
<td>477</td>
</tr>
<tr>
<td>7b. Impact Structures (in order of increasing latitude)</td>
<td>479</td>
</tr>
<tr>
<td>7c. Impact Structures (in order of decreasing diameter)</td>
<td>481</td>
</tr>
<tr>
<td>7d. Impact Structures (in order of increasing geologic age)</td>
<td>483</td>
</tr>
</tbody>
</table>
Introduction

This bibliography encompasses in one report the individual bibliographies of 105 (12 proven and 93 probable) terrestrial impact structures. The bibliography of each impact structure was compiled for inclusion in an "Atlas of terrestrial impact structures" to be published at a later date. The bibliographies are being released in advance of the Atlas in order to make them immediately available to specialists interested in impact and cratering processes.

An attempt was made in this compilation to update the comprehensive bibliography of terrestrial impact structures and its supplement published earlier by the U.S. Geological Survey (Freeberg, 1966, 1969). In the last 15 years, the volume and range of the literature concerning impact structures has increased dramatically, making existing bibliographies incomplete.

Historical Guide to Literature on Terrestrial Impact Structures

Since the late 1950's, the subject of meteorite impact on Earth has attracted hundreds of research workers from many disciplines. Over the years, the emphasis on its different scientific aspects has followed the development of planetology. Most of the major developments in meteorite-impact research were punctuated by a symposium that both highlighted and keynoted the main results of on-going research, and emphasized their significance with respect to developments in allied disciplines. The proceedings of these symposia are referenced below, because each of them is an index to much of the specialized literature that was being published at the time they were held:

Of equal importance to these three symposia in setting the direction of meteorite-impact research has been work on multi-ring basins, asteroids, and comets. The research on multi-ring basins is summarized in:

The leaders in research on asteroids and comets that bears on the origin of bodies impacting on the Earth have been Öpik, Shoemaker, Urey, and Wetherill.

In the 1960's, interest in meteorite impact on Earth centered on 1) the very large energies released and associated effects produced by impact and man-made nuclear explosions (Bolt, 1976); and on 2) the morphological analogy of lunar craters to fresh terrestrial impact structures. Quite appropriately, the Conference on shock Metamorphism of Natural Materials in April 1966 linked the results of shock-wave research that had been derived from investigations.
of meteorite-impact structures, nuclear explosions, and laboratory experiments. As the Inner and Outer parts of the Solar System were explored in the 1970's, largely as a result of the Planetology Program of the National Aeronautics and Space Administration (NASA), interest in cratering mechanics increased—it was realized that cratering by impact had played a major role in the evolution of all terrestrial planets and the satellites of the outer planets. The Symposium on Planetary Cratering Mechanics in September 1976 provided a forum for the most active researchers in impact and explosion cratering to exchange ideas and state-of-the-art techniques, and to discuss areas of common interest. A number of papers in the proceedings of this symposium deal with cratering phenomenology and terrestrial cratering.

Lately, research in terrestrial impact structures has received a new orientation and a tremendous boost, following the formulation by Alvarez and others (1980) of an hypothesis that suggests impact as the cause of the worldwide Cretaceous-Tertiary biological extinctions. This hypothesis, inspired by the discovery of iridium anomalies at the Cretaceous-Tertiary boundary, re-introduced catastrophism as a catalyst and a driving force into contemporary geologic thought. It was the backdrop against which the Conference on Large-Body Impacts was convened in October 1981.

The origin of bodies that formed terrestrial impact structures has been a matter of conjecture and controversy for a very long time. These bodies are now known to have been meteorites, unrelated to planetesimals, like those that collided with other bodies of the Inner Solar System very early in its history to create very large basins. The origin of impacting populations in very early Archean time, the origin and behavior of Earth-crossing asteroids and comets, and impact-cratering rates are three fields of research critical to the understanding of space and time distributions of terrestrial impact
structures. These fields have rapidly expanded during the past decade, yet they have not been the themes of specialized symposia. For that reason, bibliographies—necessarily incomplete—dealing with these topics are also included in this compilation.

The economic importance of some terrestrial impact structures was not recognized until long after they had been developed for mining of ore (Sudbury Basin, Vredefort Structure, Carswell Lake Structure), or petroleum extraction (Red Wing Creek, Steen River Structure). Dietz (1961, 1964) and French (written communication, 1969) drew attention to the economic potential of several of these structures, but so far their economic interest as a group has paled in comparison to their serving as mute testimony to one of the major planetary geologic processes.

Purpose and Scope

This compilation is based on the list of proven and probable impact structures most recently updated by Grieve (1982). It includes the 11 proven craters listed by Shoemaker and Eggleton (1961) in their crater category 1 (craters or clusters of craters with associated meteorites). To it, Grieve added the Morasko Craters in Poland, which he upgraded from category 6 of Shoemaker and Eggleton (1961). It does not include, however, Sobolev, Asian USSR listed in this group by Grieve and Robertson (1979), Macaytis and others (1980) and Shoemaker (1983), nor Monturaqui Crater (Shoemaker, 1983).

The craters listed in categories 2, 3 and 4 of Shoemaker and Eggleton (1961) are now considered probable impact structures, with the following exceptions: Richat Crater, Mauritania; Pretoria Salt Pan, South Africa; Glasford Structure, Illinois; Howell Structure, Tennessee; Jephta Knob Structure, Kentucky; Kilmichael Structure, Mississippi; and the Versailles Structure, Kentucky. Many of the craters in categories 5 and 6 of Shoemaker
and Eggleton (1961) have been upgraded by Grieve (1979, 1982) to "probable impact structure" status; they are as follows: Upheaval Dome, Utah; Amguid Crater, Algeria; Carswell Lake Structure, Saskatchewan; Deep Bay, Saskatchewan; Glover Bluff Structure, Wisconsin; Lac Couture, Quebec; Lake Dellen, Sweden; Lake El'gyykyn, U.S.S.R.; Lake Mien, Sweden; Lake Siljan, Sweden; Patomskii Crater, U.S.S.R.; Pilot Lake, Northwest Territories, Canada; Sudbury Basin, Ontario; Tenoumer Crater, Mauritania; and West Hawk Lake, Manitoba. Upheaval Dome, Utah, and the Glover Bluff Structure, Wisconsin, though not listed by Grieve (1982), are included in this compilation as a result of work since 1982. Many additional impact structures not listed by Shoemaker and Eggleton (1961) are considered by Grieve (1982) to be probable impact craters, and are included in this compilation.

No attempt to evaluate the entries has been made, as had been by Freeberg in her 1966 bibliography and 1969 supplement, because of the vast increase in number of entries. Most of them were read, however, prior to the preparation of the Atlas referred to above. Since 1975 there has been an increasing trend toward in-depth analysis of many terrestrial impact structures, and a greater range of specialized studies in geomorphology, petrography, age dating, crater mechanics, paleomagnetism, geophysics, geochemistry and cosmochemistry, regional field geology, and archeology. Such specialization has coincided in part with investigations sponsored under the NASA Planetology Program. The cutoff date on most entries is mid-1983, but a few 1984 entries are included.

Impact structures are listed alphabetically by continent. No proven nor probable impact structures are listed for Greenland and the Antarctic, and none is known on the ocean floor (Eckhoff and Vogt, 1981). However, the hypothesis that very large impact basins in early Archean time were the
original ocean basins has many supporters. Chenoweth (1958), Dietz (1959), Harrison (1960), and Gromov (1961, 1962) advocated the hypothesis before Mesozoic and Cenozoic ocean-floor spreading became known as the generating mechanism of present ocean-floor crust. Thereafter, its supporters included Frey (1980) and Grieve (1980). Each continent is listed below in decreasing order, according to the amount of research in impact structures that it has generated:

<table>
<thead>
<tr>
<th>Number of proven impact structures</th>
<th>Number of probable impact structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America: Total 39</td>
<td></td>
</tr>
<tr>
<td>USA: 16</td>
<td></td>
</tr>
<tr>
<td>Arizona 1</td>
<td></td>
</tr>
<tr>
<td>Indiana 1</td>
<td></td>
</tr>
<tr>
<td>Iowa 1</td>
<td>1 (Manson Structure: buried)</td>
</tr>
<tr>
<td>Kansas 1</td>
<td></td>
</tr>
<tr>
<td>Kentucky 1</td>
<td></td>
</tr>
<tr>
<td>Missouri 2</td>
<td></td>
</tr>
<tr>
<td>North Dakota 1 (Red Wing Creek: buried)</td>
<td></td>
</tr>
<tr>
<td>Ohio 1</td>
<td></td>
</tr>
<tr>
<td>Tennessee 2</td>
<td></td>
</tr>
<tr>
<td>Texas 1</td>
<td></td>
</tr>
<tr>
<td>Utah 1</td>
<td></td>
</tr>
<tr>
<td>Wisconsin 1</td>
<td></td>
</tr>
<tr>
<td>Canada: 23</td>
<td></td>
</tr>
<tr>
<td>Alberta 1 (Steen River Structure: buried)</td>
<td></td>
</tr>
<tr>
<td>Manitoba 2</td>
<td></td>
</tr>
<tr>
<td>Newfoundland (Labrador) 1</td>
<td></td>
</tr>
</tbody>
</table>

6
<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northwest Territories</td>
<td>3</td>
</tr>
<tr>
<td>Ontario</td>
<td>5</td>
</tr>
<tr>
<td>Quebec</td>
<td>8</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>3</td>
</tr>
<tr>
<td>South America: Total 5</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1</td>
</tr>
<tr>
<td>Brazil</td>
<td>3</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
</tr>
<tr>
<td>Australia: Total 11</td>
<td></td>
</tr>
<tr>
<td>Western Australia</td>
<td>2</td>
</tr>
<tr>
<td>Northern Territory</td>
<td>2</td>
</tr>
<tr>
<td>Europe (exclusive of USSR): Total 10</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>3</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>Germany</td>
<td>2</td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>3</td>
</tr>
<tr>
<td>European USSR: Total 18</td>
<td></td>
</tr>
<tr>
<td>Byelorussian SSR</td>
<td>1</td>
</tr>
<tr>
<td>(Logoisk: buried)</td>
<td></td>
</tr>
<tr>
<td>Estonian SSR</td>
<td>1</td>
</tr>
<tr>
<td>Karelian SSR</td>
<td>1</td>
</tr>
<tr>
<td>(Kjardla: buried)</td>
<td></td>
</tr>
<tr>
<td>Latvian SSR</td>
<td>1</td>
</tr>
<tr>
<td>(Misarai and Vepria: both buried)</td>
<td></td>
</tr>
<tr>
<td>Lithuanian SSR</td>
<td>2</td>
</tr>
<tr>
<td>(of which Kaluga, Kamensk-Gusev, Kursk, and Puchezh-Katunki are buried)</td>
<td></td>
</tr>
<tr>
<td>Russian SFSR</td>
<td>5</td>
</tr>
<tr>
<td>Tatar SSR</td>
<td>1</td>
</tr>
</tbody>
</table>
Ukrainian SSR

6 (of which Boltysk, Il'inets, Obolon, Rotmistrovka, and Zelenyy-Gay are buried)

Asia: Total 12

India 1
-Mongolia 1
Saudi Arabia 1

Asian USSR: Total 9

Kazakh SSR 2
Primoriye Terr. 1
Russian SFSR 4 (of which Kara is partly buried)
Yakotskh SSR 1

Africa: Total 10

Algeria 4
Ghana 1
Libya 2
Mauritania 2
South Africa 1

Most impact structures in the European USSR (13) are buried under sedimentary rocks, and are detectable only by geophysical methods or drilling (Masaytis, 1975; Masaytis and others, 1978; 1980).

Meteoritic components or enrichment in meteoric-signature elements have been identified in the following 18 probable impact structures (Grieve and others, 1981; Grieve, 1982):
North America
 Canada
 Clearwater Lake East, Quebec
 Gow Lake, Saskatchewan
 Nicholson Lake, N.W. Territories
 Wanapitei Lake, Ontario
South America
 Monturaqui Crater, Chile
Australia
 Strangways, Northern Territory
Europe
 Chassenon Crater, France
 Lake Lappajarvi, Finland
 Lake Mien, Sweden
 Lake Saaksjarvi, Finland
 Obolon, Ukrainian SSR, USSR
 Rieskessel, Germany
Asia
 Kara, RSFSR, USSR
 Popigay, USSR
 Sobolev, USSR
 Tabun-Khara-Obo, Mongolia
 Zhamanshin, KSSR, USSR
Africa
 Aouelloul Crater, Mauritania
Nomenclature

At present, the naming of terrestrial impact structures is not standardized. Many impact sites are known only by a local geographic name of unknown designation. Where a qualifier has been added to the geographic name, no orderly system of rules is being followed, such as been devised by the Working Group for Planetary Systems Nomenclature of the International Astronomical Union for the surficial features of other planets. Some qualifiers imply a topographic feature: lake, bay, island, area, mound, or crater. Others have a vague geologic structural connotation: disturbance, dome, basin, or ring. Redundant meanings in adding English names to foreign designations are common: i.e. in the name Lake Janis'yarvi (Karelian SSR), the Baltic name "Jarvi" means "Lake". Further, nothing is more confusing to the nonspecialist than to name as "crater" an impact structure so completely eroded that all morphological and most structural evidence of the original impact depression are lacking. A case in point is Chassenon Crater, France, where "crater" has a genetic connotation, and is not taken in its usual topographic or structural sense. The term "astrobleme", applied by Dietz (1961) to circular features that are "obliterated craters made by a meteorite or the head of a comet", should be reserved for deeply eroded impact structures.

Several terrestrial impact structures have more than one name or spelling. The names adopted in this compilation follow U.S. Geological Survey usage as established by Freeberg (1966, 1969); Grieve's (1982) spelling is used for craters not listed by Freeberg. Alternate names appear in the individual entries and in an index. None of the names in this compilation were checked for official spelling and usage against national gazetteers or those of the U.S. Department of State.
Locations of Impact Sites

Locations of the structures are shown on sketch maps of six continents: North America, South America, Australia, Europe, Asia, and Africa (figs. 1 through 6). The geographic coordinates of each structure are given in the tables that precede the bibliographies of structures for each continent. The locations of a few structures in previous lists, including that of Grieve (1982), have been corrected if they have been plotted on a recently published map, or if a more accurate geographic description has since been supplied.

Iron Meteorites, Tektites and Microtektites, and Impact Glass

Iron meteorites associated with proven impact craters are referenced under pertinent impact structures according to the citations by Buchwald (1975). It is now generally agreed that tektites are of terrestrial origin, and that they originate at impact sites. Tektite literature is immense, and rather than include a bulky, yet incomplete bibliography of tektites in this compilation, selected references on moldavites were added to the Rieskessel bibliography, those on Ivory Coast tektites and microtektites to that of Lake Bosumtwi, Ghana, and those on Libyan Desert Glass (LDG) to that of the two Libyan impact structures: Oasis and BP. Similarly, references to Aouelloul glass and zhamanshinite will be found respectively in the bibliographies of Aouelloul Crater, Mauritania, and Zhamanshin, Kazakh SSR.

Earlier Bibliographies

Grieve's list of 1982, although authoritative, is only the most recently published of many lists, catalogues, and summary bibliographies of terrestrial impact structures. This compilation would be incomplete without guiding users to at least some of the, including the most comprehensive one for the USSR (Masaytis and others, 1980). So, a bibliography of impact-structure bibliographies is also included in the compilation, supplemented by a
bibliography of early articles on cryptovolcanic and cryptoexplosion structures, and one on astrons (Norman and Churwu-Ike, 1977), those enigmatic, very large, circular features reported from time to time on the Earth's surface, but as yet of unknown origin, and unstudied because of their very large dimensions.

Serials

Serials cited in this bibliography are not listed separately. The need for such a list is obviated by complete titles being given in the citations by authors, as against the abbreviated titles in Freeberg's 1966 bibliography and its 1969 supplement. The issuing agency or commercial publisher is indicated. An author index is included at the end of this compilation.

Conclusion

The number of known terrestrial impact structures will undoubtedly expand more dramatically in the next 30 years than in the past 30. Vast areas of all continents still remain inadequately surveyed for impact structures, even where the geologic environment is mapped at an adequate scale. Most of the South American and African continents is blank with respect to the actual density of preserved impact structures, as are the northwestern part of North America, eastern Australia, northeastern Europe, and all of China and northeast Asia (figs.). Moreover, additional impact structures may be discovered from now on at a higher rate than in the past, as future searches become more systematic rather than merely fortuitous or a result of serendipity. At the moment, interested geologists and astronomers make a deliberate attempt to match the predicted crater density on land with changing impact-cratering rates in Precambrian and Phanerozoic times on one hand, and the rates of crater erosion and preservation on the other (Fedynskiy and Khryanina, 1976; Dachille, 1977; Grieve and Dence, 1979; Shoemaker and others,

Acknowledgments

This research was funded by the NASA Geophysics-Geochemistry Program Office from 1974 to 1984 under NASA contract no. W13, 130 under the sponsorships of William Quaide, Chief of Geophysics & Geochemistry program and Joseph M. Boyce, Chief of Planetary Geology. The project title was Atlas of terrestrial impact craters, basins, and astroblemes.

This study was initiated by Robert Bryson of the Lunar Programs Office in 1974 and continued under NASA contract No. W13,130.
References Cited

Alvarez, L. W., Alvarez, Walter, Asaro, Frank, and Michel, H. V., 1980,
Extraterrestrial cause for the Cretaceous-Tertiary extinction: Science,
v. 208, no. 4448, p. 1095-1108.

Bolt, B. A., 1976, Nuclear explosions and earthquakes: The parted veil:

Buchwald, V. F., 1975, Handbook of iron meteorites: Berkeley, CA, University

Chenoweth, Ph. A., 1958, Comparison of features of the earth and the Moon
(abs.): Geological Society of America Bulletin, v. 69, no. 12, pt. 2,
p. 1545.

Dachille, Frank, 1977, Frequency of the formation of large terrestrial impact
craters: Meteoritics, v. 11, no. 4, p. 270-271, 1 fig.

Dietz, R. S., 1959, Point d'impact des asteroides comme origine des bassins
oceaniques: Une hypothese [in French]: Colloque International du Centre
National de la Recherche Scientifique, Nice-Villefranche, 5-12 Mai 1958,

1964, Sudbury structure as an astrobleme: Journal of Geology, v. 72,
no. 4, p. 412-434.

Eckhoff, O., and Vogt, P., 1981, Search for large body impact craters on the
ocean floor (abs.): Papers presented to the Conference on Large-Body
Impacts and Terrestrial Evolution: Geological, Climatological and
Biological Implications, Snowbird, Utah, October 19-22, 1981: Houston,

Masaytis, V. L., 1975 [1976], Astribolmes in the USSR [in Russian]: Sovetskaya Geologiya, 1975, no. 11, p. 52-64; English translation in International Geology Review, v. 18, no. 11, p. 1249-1250, 5 figs.; also in Meteoritics, v. 12, p. 61-78.

Bibliography of Catalogues, Tabulated Lists, and Summary Descriptions of Meteorite Impact Craters and Astroblemes. Includes proven and probable structures in the New World (North and South America and Australia) and Old World (Europe, Asia, Africa).

1963, The measure of the Moon: The University of Chicago Press, Chapters 2, 3 and 4, p. 6-105, 111us.

Boone, J. D., and Albritton, C. C., Jr., 1937, Meteorite scars in ancient rocks: Field and Laboratory, v. 5, no. 2, p. 53-64.

1938, Established and supposed examples of meteoric craters and structures: Field and Laboratory, v. 6, no. 2, p. 44-56, 3 tables.

Dietz, R. S., and McHone, John, 1974a, Impact structures from ERTS imagery: Meteoritics, v. 9, no. 4, p. 329-333, 8 figs.

1974b, Meteorite craters and astroblemes, some new possible examples: EOS, v. 55, no. 4, p. 367.

Engelhardt, W. V., 1974, Meteoritenkrater: Naturwissenschaften, v. 61, p. 413-422, 9 figs., tables.

Masaytis, V. L., 1975 [1976], Astrobloemes in the USSR: International Geology Review, v. 18, no. 11, p. 1249-1258, 5 figs.; also in Meteoritics, v. 12, no. 1, p. 61-78; and in Sovetskaya Geologiya, 1975, no. 11, p. 52-64.

Milton, D. J., 1977, Shatter cones—An outstanding problem in shock mechanics,
in Roddy, D. J., Pepin, R. O., and Merrill, R. B., eds., Impact and

Monod, Theodore, 1965, Contribution à l'établissement d'une liste d'accidents
circulaires d'origine météoritique (reconnue, possible ou supposée),
cryptoexplosive, etc. [Contribution to the establishment of a list of
circular irregularities of meteoritic origin (known, possible or
suspected), cryptoexplosive, etc.]: Institut Français d'Afrique Noire,
(IFAN), Dakar, Sénégal, Catalogue-Document no. 18, 93 p., map.

O'Connell, Edna, 1965, A catalog of meteorite craters and related features
with a guide to the literature: Santa Monica, CA, Rand Corporation Paper
P-3087, 218 p.

Robertson, P. B., and Grieve, R. A. F., 1975, Impact structures in Canada:
Their recognition and characteristics: Journal of the Royal Astronomical
Society of Canada, v. 69, no. 1, p. 1-20, 7 figs., 2 tables.

Sandner, Werner, 1967, Meteoritenkrater in den Polargebieten: Polarforschung,

1972, Meteoritenkrater in den Polargebieten: Polarforschung, 42.
Jahrgang, no. 1, p. 56-67.

Schwarz, E. H. L., 1909, The probability of large meteorites having fallen
upon the earth: Journal of Geology, v. 17, p. 124-135, 2 figs.

Shoemaker, E. M., and Eggleton, R. E., 1961, Terrestrial features of impact
origin, in Proceedings of the Geophysical Laboratory, Lawrence Radiation
Laboratory Cratering Symposium, Washington, D.C., March 28-29, 1961:
University of California, Livermore, Lawrence Radiation Laboratory Report

Selected References Concerning Cryptovolcanic and Cryptoexplosion Structures

Boone, J. D., and Albritton, C. C., Jr., 1936, Meteorite craters and their possible relationship to "cryptovolcanic structures": Field and Laboratory, v. 5, no. 1, p. 3-9.

1963, Cryptexplosion structures caused from without or from within the earth? ("Astroblemes" or "Geoblemes"): American Journal of Science, v. 261, p. 597-659, 16 figs.

Bibliography of Papers on Astrons

Brock, B. B., 1972, A global approach to geology: Cape Town, A. A. Balkema.

Kelly, A. O., and Dachille, Frank, 1953, Target: Earth; the role of large meteors in earth science: Carlsbad, California, Target: Earth, 264 p., illus.

Stepanov, V. P., Bogatov, V. I., and Dokuchayeva, N. A., 1982, Kol’tsevye vulkano-tektonicheskiy e struktury Tatarii—novyy ob’yekt poiskov mestorozhdeniy [Volcano-tectonic ring structures of Tartary: a new target in the search for oil]: Geologiya Nefti i Gaza, 1982, no. 2, p. 36-42; also in International Geology Review, v. 25, no. 1, p. 79-84, 3 figs.
References to Papers on the Origin of
Early Archean Impacting Populations

Arkani-Hamed, Jafar, 1973a, Viscosity of the Moon. I: After mare formation:
The Moon, v. 6, p. 100-111.

—1973b, Viscosity of the Moon. II: During mare formation: The Moon,
v. 6, p. 112-124.

Arnold, J. G., 1965a, The origin of meteorites as small bodies. II. The

—1965b, The origin of meteorites as small bodies. III. General

Baldwin, R. B., 1970, Absolute ages of the lunar maria and large craters.

—1974, Was there a "Terminal lunar cataclysm" 3.9-4.0 x 10^9 years ago?:

—1981, On the origin of the planetesimal that produced the multi-ring
basins, in Schultz, P. H., and Merrill, R. B., eds., Multi-ring Basins:

Cadogan, P. H., 1974, Oldest and largest lunar basins?: Nature, v. 250,
p. 315-316, 2 figs.

Chenoweth, Ph. A., 1958, Comparison of features of the earth and the Moon
(abs.): Geological Society of America Bulletin, v. 69, no. 12, pt. 2,
p. 1545.

Dietz, R. S., 1959, Point d'impact des astéroides comme origine des bassins
oceaniques: Une hypothèse [in French]: Colloque International du Centre
National de la Recherche Scientifique, Nice-Villefranche, 5-12 Mai 1958,

References to Papers on
Earth-Crossing Asteroids and Comets

Anderson, C. M., 1984, Asteroid Project discovers ten new asteroids: The

Balogh, A., 1984, Agora: Asteroid rendezvous: Spaceflight, v. 26, no. 6,
p. 242-245.

Brown, Harrison, 1960, The density and mass distribution of meteoritic bodies
in the neighborhood of the Earth's orbit: Journal of Geophysical
Research, v. 65, no. 6, p. 1679-1683.

Chapman, C. R., 1976, Asteroids as meteorite-parent bodies: The astronomical

Chapman, C. R., Davis, D. R., Greenberg, R. J., and Wacker, John, 1979,
Asteroid collisions and evolution: Reports of Planetary Geology Program,

Press, 1181 p.

no. 5, p. 318-322.

Kellner, H. A., and Yabashita, S., 1972, Are microtektites the result of

Knacke, Roger, 1984, Cosmic dust and comet connection: Sky and Telescope,

Kresak, Lubor, 1984, The observational data base on the motion and evolution

Roddy, D. J., 1971, Large scale cratering and cometary impacts: Meteoritics, v. 6, no. 4, p. 305-306.

Wood, J. A., 1979, The Oort cloud as a source of Apollo/Amor asteroids:
Memorandum 80339, p. 13-14.
References to Papers on Impact-Cratering Rates

Dachille, Frank, 1976, Frequency of the formation of large terrestrial impact craters: Meteoritics, v. 11, no. 4, p. 270-271, 1 fig.

BIBLIOGRAPHIES OF TERRESTRIAL IMPACT STRUCTURES: IMPACT SITES

PRECEDED PAGE BLANK NOT FILMED
Table 1a. North America: Impact Structures (in alphabetical order)

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>DMC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barringer Crater, Alternate names: Canyon Diablo, Ninninger Crater, Meteor Crater Coconino County, Arizona</td>
<td>35°02'N 111°01'W</td>
<td>G-19</td>
<td>039/035</td>
<td>1103-17313 Nov. 3, 1972</td>
<td>1.2</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haviland Crater, Kiowa County, Kansas</td>
<td>37°35'N 99°10'W</td>
<td>G-20</td>
<td>031/034</td>
<td>1257-16404 April 6, 1973</td>
<td>0.168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odessa Craters, Ector County, Texas</td>
<td>31°48'N 102°30'W</td>
<td>G-19</td>
<td>032/038</td>
<td>1348-16532 July 6, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proven impact craters

Probable impact craters and astroblomes

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>DMC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bee Bluff, Alternate name: Uvalde Zavala County, Texas</td>
<td>29°02'N 99°51'W</td>
<td>H-23</td>
<td>030/040</td>
<td>1130-16431 Nov. 30, 1972</td>
<td>2.4</td>
<td><40</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Crooked Creek structure, Crawford County, Missouri</td>
<td>37°30'N 91°23'W</td>
<td>G-20</td>
<td>026/034</td>
<td>1036-16165 Aug. 8, 1972</td>
<td>5.6</td>
<td>320±80</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Necaturville Disturbance Camden County, Missouri</td>
<td>37°54'N 92°43'W</td>
<td>G-20</td>
<td>027/034</td>
<td>1073-16224 Oct. 4, 1972</td>
<td>6</td>
<td><300</td>
<td>Sed (Cry)</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Flynn Creek structure, Jackson County, Tennessee</td>
<td>36°16'N 85°37'W</td>
<td>G-21</td>
<td>022/035</td>
<td>1086-15544 Oct. 17, 1972</td>
<td>3.8</td>
<td>360±20</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Glover Bluff structure, Marquette County, Wisconsin</td>
<td>43°58'N 89°32'W</td>
<td>F-18</td>
<td>026/029</td>
<td>1378-16144 Aug. 5, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentland structure, Newton County, Indiana</td>
<td>40°45'N 87°25'W</td>
<td>F-18</td>
<td>024/032</td>
<td>1089-16050 Oct. 19, 1972</td>
<td>13</td>
<td>300</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Code</td>
<td>Date</td>
<td>Ejecta</td>
<td>Sedimentary Type</td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manson structure, Calhoun County, Iowa</td>
<td>42°35'N</td>
<td>94°31'W</td>
<td>F-17</td>
<td>029/031</td>
<td>1291-16335 May 10, 1973</td>
<td>32</td>
<td><70</td>
<td>Sed&Cry</td>
<td>4</td>
</tr>
<tr>
<td>Middlebort Basin, Bell County, Kentucky</td>
<td>36°37'N</td>
<td>83°44'W</td>
<td>G-21</td>
<td>020/035</td>
<td>1084-15431 Oct. 15, 1972</td>
<td>6</td>
<td>300</td>
<td>Sed</td>
<td>7</td>
</tr>
<tr>
<td>Red Wing Creek, McKenzie County, North Dakota</td>
<td>47°40'N</td>
<td>102°30'W</td>
<td>F-17</td>
<td>036/027</td>
<td>2618-16504 Oct. 1, 1976</td>
<td>9</td>
<td>200</td>
<td>Sed</td>
<td>4</td>
</tr>
<tr>
<td>Serpent Mound structure, Adams County, Ohio</td>
<td>39°02'N</td>
<td>83°25'W</td>
<td>G-21</td>
<td>021/033</td>
<td>1103-15482 Nov. 3, 1972</td>
<td>6.4</td>
<td>300</td>
<td>Sed</td>
<td>7</td>
</tr>
<tr>
<td>Sierra Madre structure, Pecos County, Texas</td>
<td>30°36'N</td>
<td>102°55'W</td>
<td>H-23</td>
<td>032/039</td>
<td>1276-16543 April 25, 1973</td>
<td>13</td>
<td>100</td>
<td>Sed</td>
<td>6</td>
</tr>
<tr>
<td>Upheaval Dome, San Juan County, Utah</td>
<td>38°27'N</td>
<td>109°56'W</td>
<td>G-19</td>
<td>039/033</td>
<td>1769-17213 Aug. 31, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells Creek area, Stewart County, Tennessee</td>
<td>36°23'N</td>
<td>87°40'W</td>
<td>G-20</td>
<td>023/035</td>
<td>1105-16004 Nov. 6, 1972</td>
<td>14</td>
<td>200±100</td>
<td>Sed</td>
<td>7</td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in a field of 3 craters.
Table 1b. North America: Impact Structures (in order of increasing latitude)

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odessa Craters, Ector County, Texas</td>
<td>31°48'N 102°30'W</td>
<td>G-19</td>
<td>032/038</td>
<td>1348-16532 July 6, 1973</td>
<td>0.168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barringer Crater, Alternate names: Canyon</td>
<td>35°02'N 111°01'W</td>
<td>G-19</td>
<td>039/035</td>
<td>1103-17330 Nov. 3, 1972</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diablo, Ninninger Crater, Meteor Crater</td>
<td></td>
<td></td>
<td>039/036</td>
<td>1103-17330 Nov. 3, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coconino County, Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haviland Crater, Kiowa County, Kansas</td>
<td>37°35'N 99°10'W</td>
<td>G-20</td>
<td>031/034</td>
<td>1257-16404 April 6, 1973</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bee Bluff, Alternate name: Uvalde</td>
<td>29°02'N 99°51'W</td>
<td>H-23</td>
<td>030/040</td>
<td>1130-16431 Nov. 30, 1972</td>
<td>2.4</td>
<td><40</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Zavala County, Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Madre structure, Pecos County, Texas</td>
<td>30°36'N 102°55'W</td>
<td>H-23</td>
<td>032/039</td>
<td>1276-16543 April 25, 1973</td>
<td>13</td>
<td>100</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Flynn Creek structure, Jackson County, Tennessee</td>
<td>36°16'N 85°37'W</td>
<td>G-20</td>
<td>022/035</td>
<td>1086-15544 Oct. 17, 1972</td>
<td>3.8</td>
<td>360±20</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Weils Creek area, Stewart County, Tennessee</td>
<td>36°23'N 87°40'W</td>
<td>G-20</td>
<td>023/035</td>
<td>1105-16004 Nov. 6, 1972</td>
<td>14</td>
<td>200±100</td>
<td>Sed</td>
<td>7</td>
<td>Cr</td>
</tr>
<tr>
<td>Middlesboro Basin, Bell County, Kentucky</td>
<td>36°37'N 83°44'W</td>
<td>G-21</td>
<td>020/035</td>
<td>1084-15431 Oct. 15, 1972</td>
<td>6</td>
<td>300</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Crooked Creek structure, Crawford County, Missouri</td>
<td>37°50'N 91°23'W</td>
<td>G-20</td>
<td>026/034</td>
<td>1036-16165 Aug. 28, 1972</td>
<td>5.6</td>
<td>320±80</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
</tbody>
</table>

Proven impact craters

Probable impact craters and astroblemes

(Grieve, R. A. F., 1982, Tables 1 and 2)
Table 1b (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Diameter</th>
<th>Crater Type</th>
<th>Count</th>
<th>Ref 1</th>
<th>Ref 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decaturville Disturbance</td>
<td>37°54'N</td>
<td>G-20</td>
<td>027/034</td>
<td>1073-16224</td>
<td>6</td>
<td><300</td>
<td>C</td>
</tr>
<tr>
<td>Camden County, Missouri</td>
<td>92°43'W</td>
<td></td>
<td></td>
<td>Oct. 4, 1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upheaval Dome,</td>
<td>38°27'N</td>
<td>G-19</td>
<td>039/033</td>
<td>1789-17213</td>
<td>6.4</td>
<td>300</td>
<td>C</td>
</tr>
<tr>
<td>San Juan County, Utah</td>
<td>109°56'W</td>
<td></td>
<td></td>
<td>Aug. 31, 1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serpent Mound structure</td>
<td>39°02'N</td>
<td>G-21</td>
<td>021/033</td>
<td>1103-15482</td>
<td>6.4</td>
<td>300</td>
<td>C</td>
</tr>
<tr>
<td>Adams County, Ohio</td>
<td>83°27'W</td>
<td></td>
<td></td>
<td>Nov. 3, 1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentland structure,</td>
<td>40°45'N</td>
<td>F-18</td>
<td>024/032</td>
<td>1088-16050</td>
<td>13</td>
<td>300</td>
<td>C</td>
</tr>
<tr>
<td>Newton County, Indiana</td>
<td>87°25'W</td>
<td>G-20</td>
<td></td>
<td>Oct. 19, 1972</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manson structure,</td>
<td>42°35'N</td>
<td>F-17</td>
<td>029/031</td>
<td>1291-16335</td>
<td>32</td>
<td><70</td>
<td>C</td>
</tr>
<tr>
<td>Calhoun County, Iowa</td>
<td>94°31'W</td>
<td></td>
<td></td>
<td>May 10, 1973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glover Bluff structure</td>
<td>43°58'N</td>
<td>F-18</td>
<td>026/029</td>
<td>1378-16144</td>
<td>32</td>
<td><70</td>
<td>C</td>
</tr>
<tr>
<td>Marquette County, Wisconsin</td>
<td>89°32'W</td>
<td></td>
<td></td>
<td>Aug. 5, 1973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Wing Creek</td>
<td>47°40'N</td>
<td>F-17</td>
<td>036/027</td>
<td>2618-16504</td>
<td>9</td>
<td>200</td>
<td>C</td>
</tr>
<tr>
<td>McKenzie County,</td>
<td>102°30'W</td>
<td></td>
<td></td>
<td>Oct. 1, 1976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
Largest crater in a field of 3 craters.
Table 1c. North America: Impact Structures (in order of decreasing diameter) USA

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven impact craters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barringer Crater,</td>
<td>36°02'N 111°01'W</td>
<td>G-19</td>
<td>039/035</td>
<td>1103-17313 Nov. 3, 1972</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate names: Canyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diablo, Ninninger Crater,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteor Crater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coconino County, Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odessa Craters,</td>
<td>31°48'N 102°30'W</td>
<td>G-19</td>
<td>032/038</td>
<td>1348-16532 July 6, 1973</td>
<td>0.168</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ector County, Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haviland Crater,</td>
<td>37°35'N 99°10'W</td>
<td>G-20</td>
<td>031/034</td>
<td>1257-16404 April 6, 1973</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiowa County, Kansas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable impact craters and astroblemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manson structure,</td>
<td>42°35'N 94°31'W</td>
<td>F-17</td>
<td>029/031</td>
<td>1291-16335 May 10, 1973</td>
<td>32</td>
<td><70</td>
<td>Sed&Cryst</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Calhoun County, Iowa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells Creek area,</td>
<td>36°23'N 87°40'W</td>
<td>G-20</td>
<td>023/035</td>
<td>1105-16004 Nov. 6, 1972</td>
<td>14</td>
<td>200±100</td>
<td>Sed</td>
<td>7</td>
<td>Cr</td>
</tr>
<tr>
<td>Stewart County, Tennessee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kentland structure,</td>
<td>40°45'N 87°25'W</td>
<td>F-18</td>
<td>024/032</td>
<td>1088-16050 Oct. 19, 1972</td>
<td>13</td>
<td>300</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Newton County, Indiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sierra Madera structure,</td>
<td>30°36'N 102°55'W</td>
<td>H-23</td>
<td>032/039</td>
<td>1276-16543 April 25, 1973</td>
<td>13</td>
<td>100</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Pecos County, Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Wing Creek,</td>
<td>47°40'N 102°30'W</td>
<td>F-17</td>
<td>036/027</td>
<td>2618-16504 Oct. 1, 1976</td>
<td>9</td>
<td>200</td>
<td>Sed</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>McKenzie County, North Dakota</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serpent Mound structure,</td>
<td>39°02'N 83°25'W</td>
<td>G-21</td>
<td>021/033</td>
<td>1103-15482 Nov. 3, 1972</td>
<td>6.4</td>
<td>300</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Adams County, Ohio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Code</td>
<td>Code2</td>
<td>Date</td>
<td>No</td>
<td>Type</td>
<td>No. of Crater Definitions</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>---------------</td>
<td>----</td>
<td>------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Decaturville Disturbance, Camden County, Missouri</td>
<td>37°54'N</td>
<td>92°43'W</td>
<td>G-20</td>
<td>027/034</td>
<td>1073-16224 Oct. 4, 1972</td>
<td>6</td>
<td><300</td>
<td>Sed (Cry) 6</td>
<td></td>
</tr>
<tr>
<td>Middlesboro Basin, Bell County, Kentucky</td>
<td>36°37'N</td>
<td>83°44'W</td>
<td>G-21</td>
<td>020/035</td>
<td>1084-15431 Oct. 15, 1972</td>
<td>6</td>
<td>300</td>
<td>Sed 7</td>
<td></td>
</tr>
<tr>
<td>Crooked Creek structure, Crawford County, Missouri</td>
<td>37°50'N</td>
<td>91°23'W</td>
<td>G-20</td>
<td>026/034</td>
<td>1036-16165 Aug. 28, 1972</td>
<td>5.6</td>
<td>320±80</td>
<td>Sed 6</td>
<td></td>
</tr>
<tr>
<td>Flynn Creek structure, Jackson County, Tennessee</td>
<td>36°16'N</td>
<td>85°37'W</td>
<td>G-20</td>
<td>022/035</td>
<td>1086-15544 Oct. 17, 1972</td>
<td>3.8</td>
<td>360±20</td>
<td>Sed 3</td>
<td></td>
</tr>
<tr>
<td>Bee Bluff, Alternate name: Uvalde, Zavala County, Texas</td>
<td>29°02'N</td>
<td>99°51'W</td>
<td>H-23</td>
<td>030/040</td>
<td>1130-16431 Nov. 30, 1972</td>
<td>2.4</td>
<td><40</td>
<td>Sed 2</td>
<td></td>
</tr>
<tr>
<td>Glover Bluff structure, Marquette County, Wisconsin</td>
<td>43°58'N</td>
<td>89°32'W</td>
<td>F-18</td>
<td>026/029</td>
<td>1378-16144 Aug. 5, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upheaval Dome, San Juan County, Utah</td>
<td>38°27'N</td>
<td>109°56'W</td>
<td>G-19</td>
<td>039/033</td>
<td>1769-17213 Aug. 31, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*OFC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, 7-crater floor exposed, 8-crater floor removed, substructure exposed.
No.: 1: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
Largest crater in a field of 3 craters.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No, and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres. Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barringer Crater,</td>
<td>35°02'N 111°01'W</td>
<td>G-19</td>
<td>039/035</td>
<td>Nov. 3, 1972</td>
<td>1103-17313</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate names: Canyon Diablo, Ninninger Crater, Meteor Crater, Coconino County, Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proven impact crater detectable on Landsat MSS images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upheaval Dome, San Juan County, Utah</td>
<td>38°27'N 109°56'W</td>
<td>G-19</td>
<td>039/033</td>
<td>Aug. 31, 1974</td>
<td>1769-17213</td>
<td></td>
<td>Sed</td>
<td>6</td>
</tr>
<tr>
<td>Sierra Madera structure, Pecos County, Texas</td>
<td>30°36'N 102°55'W</td>
<td>H-23</td>
<td>032/039</td>
<td>April 25, 1973</td>
<td>1276-16543</td>
<td>13</td>
<td>Sed</td>
<td>6</td>
</tr>
<tr>
<td>Hiddlesboro Basin, Bell County, Kentucky</td>
<td>36°37'N 83°44'W</td>
<td>G-21</td>
<td>020/035</td>
<td>Oct. 15, 1972</td>
<td>1084-15431</td>
<td>6</td>
<td>Sed</td>
<td>7</td>
</tr>
<tr>
<td>Probable impact craters and astroblemes detectable on Landsat MSS images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Wing Creek, McKenzie County, North Dakota</td>
<td>47°40'N 102°30'W</td>
<td>F-17</td>
<td>036/027</td>
<td>Oct. 1, 1976</td>
<td>2618-16504</td>
<td>9</td>
<td>Sed</td>
<td>4</td>
</tr>
<tr>
<td>Wells Creek area, Stewart County, Tennessee</td>
<td>36°23'N 87°40'W</td>
<td>G-20</td>
<td>023/035</td>
<td>Nov. 6, 1972</td>
<td>1105-16004</td>
<td>14</td>
<td>Sed</td>
<td>7</td>
</tr>
<tr>
<td>Serpent Mound structure, Adams County, Ohio</td>
<td>39°02'N 83°25'W</td>
<td>G-21</td>
<td>021/033</td>
<td>Nov. 3, 1972</td>
<td>1103-15482</td>
<td>6.4</td>
<td>Sed</td>
<td>7</td>
</tr>
<tr>
<td>Crooked Creek structure, Crawford County, Missouri</td>
<td>37°50'N 91°23'W</td>
<td>G-20</td>
<td>026/034</td>
<td>Aug. 28, 1972</td>
<td>1036-16165</td>
<td>5.5</td>
<td>Sed</td>
<td>6</td>
</tr>
</tbody>
</table>

(Grieve, R. A. F., 1982, Tables 1 and 2)
Table 1d (Continued)
Proven impact craters not detectable on Landsat MSS images

| Odessa Craters, Ector County, Texas | 31°48'N 102°30'W | G-19 H-23 | 032/038 1348-16532 | 0.168 July 6, 1973 |
| Harland Crater, Kiowa County, Kansas | 37°35'N 99°10'W | G-20 H-16 | 031/034 1257-16404 | 0.011 April 6, 1973 |

Probable impact craters and astroblemes not detectable on Landsat MSS images

Bee Bluff, Alternate name: Uvalde Zavala County, Texas	29°02'N 99°51'W	H-23 G-19	030/040 1130-16431	2.4 <40 Sed 2 S
Calhoun County, Iowa	42°35'N 94°31'W	F-17 G-19	029/031 1291-16335	32 <70 Sed&Cry 4 C
Marquette County, Wisconsin	43°58'N 89°32'W	F-18 G-19	026/029 1378-16144	May 10, 1973
Newton County, Indiana	40°45'N 87°25'W	F-18 G-19	024/032 1088-16050	Oct. 5, 1972
Camden County, Missouri	37°54'N 92°43'W	G-20 G-19	027/034 1073-16224	Oct. 4, 1972
Jackson County, Tennessee	36°16'N 85°37'W	G-20 G-19	022/035 1086-15544	3.8 360±20 Sed 3 C

OMC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, (?)-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form. Largest crater in a field of 3 craters.
U.S.A.
Barringer Crater
(Alternate names: Canyon Diablo, Winninger Crater, Meteor Crater, Coon Mtn., Coon Butte)
Coconino County, Arizona

Bibliography

1909, Meteor Crater (formerly called Coon Mountain or Coon Butte) in northern central Arizona: published privately, 24 p., 18 pls.

1927, The most fascinating spot on earth (Meteor Crater, Arizona): Scientific American, v. 137, no. 1, p. 52-54; no. 2, p. 144-146; no. 3, p. 244-246.

Weltall, v. 29, p. 54-56.
Beals, C. S., and Millman, P. M., 1959, A comparison of subsurface materials
324.
112-117.
Bennett, M. A., 1967, Exploring Meteor Crater: Pacific Discovery, v. 20,
no. 3, p. 11-15.
Bingham, W. F., 1937, Summary of findings from exploration, geophysical
survey, and test-drilling at Meteor Crater, Arizona: Pan-American
Geologist, v. 68, no. 3, p. 196-198. Abs. in Pan-American Geologist,
1938, Geological Society America, no. 4, p. 196-198. Abs. in Pan-American Geologist,
Proceedings, 1937, p. 305.
Bjork, R. L., 1961, Analysis of the formation of Meteor Crater, Arizona, a
3379-3387; also in Proceedings of the Geophysical Laboratory/Lawrence
Radiation Laboratory Cratering Symposium, Washington, D.C., March 28-29,
1961, Univ. California, Livermore, Lawrence Radiation Lab. Rept. UCRL-
Commission).
76, p. 557-560; Abs. in 1933 Pan-American Geologist, v. 58, no. 1,
p. 69-70; also in 1933 Geological Society America, Bulletin, v. 44, no.
1, p. 156.

Bollman, W., and Maringer, R. J., 1964, Cosmic irradiation damage in meteoritic graphite: Geochimica et Cosmochimica Acta, v. 28, p. 1359-1360, 1 fig.

1937, Meteorite scars in ancient rocks: Field and Laboratory, v. 5, no. 53-64.

62

Brett, Robin, 1967, Metallic spherules in impactite and tektite glasses:
American Mineralogist, v. 52, no. 3, p. 721-733.

Bryan, J. B., and Burton, D. E., 1978, Meteorite impact cratering modeled on a digital computer; some preliminary results from Barringer Crater (abs.): EOS (American Geophysical Union Transactions), v. 59, no. 4, p. 313.

____ 1957, The oxidation and weathering of meteorites: Albuquerque, University of New Mexico, 11 p., 8 pls.

Dublin, J., 1932, A la recherche du dieu de feu des Navajoes [In search of the Navajo god of fire]: Astronomie, v. 46, p. 94-96.

Farrington, O. C., 1906, Analysis of iron shale from Coon Mountain (Meteor Crater), Arizona; American Journal of Science, v. 22, p. 303-309.

Fisher, Clyde, 1934, Where a comet struck the earth: Natural History, v. 34, no. 8, p. 754-762.

Hager, Dorsey, 1926, Meteor Crater [Arizona]: Engineering and Mining Journal--Press, v. 12, no. 9, p. 374.

Hager, Dorsey, 1954, Notes on Crater Mound in answer to some points raised by
Hall, R. A., 1965, Secondary meteorites from the Arizona crater: Meteoritics,
v. 2, no. 4, p. 337-348.
Harding, Norman, and Miller, Roswell, 3d, 1953, A gravity survey of Meteor
Hardy, C. T., 1953, Structural dissimilarity of Meteor Crater and Odessa
meteorite crater: American Association of Petroleum Geologists,
Bulletin, v. 37, no. 11, p. 2580.
523-525.
Henderson, E. P., and Furcron, A. S., 1957, Meteorites in Georgia, Part 2:
Georgia Mineral Newsletter, v. 10, p. 113-142, map and 36 figs.
Heymann, D., 1964, Origin of the Canyon Diablo Number 2 and Number 3
Heymann, Dieter, Lipschutz, M. E., Nielsen, Betty, and Anders, Edward, 1966,
Canyon Diablo meteorite--Metallographic and mass spectrometric study of
(abs.) in American Geophysical Union Transactions, v. 46, no. 1, p. 123.
Hodge, P. W., and Wright, F. W., 1970, Meteoritic spherules in the soil
figs.
5, p. 6.

1911, Volcanic phenomena of Coon Butte region, Arizona (abs.): Iowa Academy of Science, Proceedings, v. 18, p. 99-100; also in Science, new ser., v. 34, no. 802, p. 29.

Knox, Reed, Jr., 1954, Alternative of the Widmanstätten structure of meteorites by heating: Meteoritics, v. 1, p. 204-206.

LaPaz, Lincoln, 1948a, A comet strikes the earth--review: Meteoritical Society Contributions, v. 4, no. 2, p. 103-104.

72

Longwell, C. R., 1931, Meteor Crater is not a limestone sink: Science, new ser., v. 73, no. 1887, p. 234-235.

Lovering, J. F., Nichiporuk, W., Chodos, A., and Brown, Harrison, 1957, The
distribution of gallium, germanium, cobalt, chromium, and copper in iron
and stony iron meteorites in relation to nickel content and structure:
Geochimica et Cosmochimica Acta, v. 11, p. 263-278.
Lundberg, Hans, 1938, Some geophysical data on the Meteor Crater in Arizona
1953.
Magie, W. F., 1910, Physical notes on Meteor Crater, Arizona: American
Philosophical Society Proceedings, v. 49, p. 48-48; abs. in Science, new
ser., v. 31, no. 805, p. 872-873.
Mallard, E., and Daubree, G. A., 1892, Sur le fer natif de Canon Diablo:
Mallet, J. W., 1908, A stony meteorite from Coon Butte, Arizona: American
Margerie, Emmanuel de, 1913, Deux accidents cratériformes--Crater Lake (Oreg.)
et Meteor Crater (Ariz.) [Two crateriform irregularities--Crater Lake
(Oreg.) and Meteor Crater (Ariz.)]: Annales Géographie, v. 22, p. 172-
184.
Mariner, R. E., and Manning, G. K., 1962, Some observations on deformation
and thermal alterations in meteoritic iron: in C. B. Moore, ed.,
Researches on Meteorites, p. 123-144, 9 figs.
McCauley, J. F., and Masursky, Harold, 1969, The bedded white sands at Meteor

____ 1909, Coon Butte or Meteor Crater (abs.): Science, new ser., v. 29, no. 736, p. 239-240.

1951b, A résumé of researches at the Arizona meteorite crater: Scientific Monthly, v. 72, no. 2, p. 75-86.

1953, Symmetries and asymmetries in Barringer Crater: Earth Science, v. 7, no. 1, p. 17-19; also in Harvey Harlow Nininger, Published Papers, Biology and Meteoritics, 1971: Arizona State University, Center for Meteoritical Studies, Publication no. 9, p. 642-644, illus., Tempe, AZ.

Nininger, H. H., 1954b, Impactite slag at Barringer Crater: American Journal of Science, v. 252, no. 5, p. 277-290; discussion by D. Hager and reply by author in no. 11, p. 695-700; also in Harvey Harlow Nininger, Published Papers, Biology and Meteoritics, 1971: Arizona State University, Center for Meteoritical Studies, Publication no. 9, p. 647-660, illus., Tempe, AZ.

Palache, C., 1926, Notes on new or incompletely described meteorites in the Mineralogical Museum of Harvard University (Ollague, Sierra Sandon, Britstown, Cumpas, Mount Ouray, Gun Creek, Ehrenberg, Anderson): American Journal of Science, v. 12, p. 136-150, 6 figs.

_____1975a, Meteor Crater, Arizona rim drilling. Volume, thickness, depth, and energy calculations (abs.): in Lunar Science VI, Part II, Abstracts, p. 680-682, illus., Lunar Science Institute, Houston, TX.

Shoemaker, E. M., and Kieffer, S. W., 1974, Guidebook to the geology of Meteor Crater, Arizona: 37th Annual Meeting, Meteoritical Society, 66 p., incl. geol. map; also in Center for Meteorite Studies, Arizona State University, Publication 17, 66 p., incl. geological map, Tempe, AZ.

84

Thomas, Kirby, 1924, Exploring in Arizona for a super meteorite: Arizona Mining Journal, v. 8, no. 4, p. 16.

1968, Concentrations of Ni, Ga, Ge and Ir in Canyon Diablo and other Arizona octahedrites: Journal of Geophysical Research, v. 73, p. 3207-3211.

Watson, Fletcher, Jr., 1936, Meteor Crater: Popular Astronomy, v. 44, p. 8-17.

Wegener, Alfred, 1921, Die Entstehung der Mondkrater [The origin of lunar craters]: Sammlung Vieweg, no. 55, Braunschweig, Germany, Vieweg and Sons, 48 p., 9 figs., 3 tables; also in English translation in The Moon, v. 14, p. 211-236.

Young, J., 1926, The crystal structure of meteoric iron as determined by X-ray analysis: Proceedings, Royal Society of London, v. 112A, p. 600-611, 1 pl., 2 figs.

Bibliography

Anonymous, 1949, The meteorite farm (Kimberly Ranch, Haviland, Kansas):
Mineralogist, v. 17, nos. 7-8, p. 347.

(Abakan-Mejillones): Hopewell Mounds, Ohio, U.S.A.: Berkeley,
University of California Press, p. 656-660, figs. 884-885.

Cobb, J. C., 1967, A trace-element study of iron meteorites: Journal of

Hay, Robert, 1893, Additional note on the Brenham meteorite:
Kansas Academy of Science Transactions, v. 13, p. 75.

Heybrock, W., 1950, Der Haviland-Meteor-Krater in USA [The Haviland meteor

Hodge, P. W., 1979, The location of the site of the Haviland meteorite

Huntington, O. W., 1891, The Prehistoric and Kiowa County pallasites:

Middlehurst and G. P. Kuiper, eds., The Moon, meteorites, and comets:

Kunz, G. F., 1890a, On the group of meteorites recently discovered in Brenham
Township, Kiowa County, Kansas: New York Academy of Sciences
Transactions, v. 9, p. 186-194.

1890b, On five new American meteorites (Brenham, Forest City, Ferguson,
Bridgewater and Summit): American Journal of Science, v. 40, p. 312-323,
6 figs.

Bibliography

Boone, J. D., and Albritton, C. C., Jr., 1939 Possibility of an additional meteorite crater near Odessa, Texas: Field and Laboratory, v. 8, no. 1, p. 11-17.

Evans, G. L., 1941, Ector County unit: in Final report covering the period
from March 4, 1939, to Sept. 30, 1941, for the state-wide paleontologic-
mineralogic survey, Texas: Austin, University of Texas, Bureau of
Economic Geology, p. 30-34.

Goel, P. S., 1962, Cosmogenic carbon-14 and chlorine-36 in meteorites: Ph. D.
Dissertation, Carnegie Institute of Technology, Department of Chemistry,

Goel, P. S., and Kohman, T. P., 1962, Cosmogenic carbon-14 in meteorites and

Goldberg, E., Uchiyama, A., and Brown, Harrison, 1951, The distribution of
cobalt, gallium, palladium and gold in iron meteorites: Geochimica et

Goldstein, J. I., 1967, The distribution of Ge in the metallic phases of some
iron meteorites: Journal of Geophysical Research, v. 72, p. 2689-4696.

Meteorite Research, p. 721-737.

Hintenberger, H., and Wänke, H., 1964, Helium--und Neoisotope in

1964, Cohenite as a pressure indicator in iron meteorites?: Geochimica et Cosmochimica Acta, v. 28, p. 699-711, 7 figs.

95

1939, Odessa meteorite crater: The Sky, v. 3, no. 4, p. 6-7; also in Harvey Harlow Nininger, Published Papers, Biology and Meteoritics, 1971: Arizona State University, Center for Meteoritical Studies, Publication no. 9, p. 430-432, illus.

Bibliography

Bridge, Josiah, 1926, Geologic map and cross section of the Crooked Creek area, Crawford County, Missouri: unpublished map, Missouri Bureau of Geology and Mines.

Fox, J. H., 1954, "Cryptovolcanic" force field: Unpublished Ph.D. dissertation, St. Louis University, St. Louis, Missouri.

Bibliography

Swallow, G. C., 1859, Geological report of the country along the line of the southwestern branch of the Pacific railroad: State of Missouri, St. Louis, 93 p., map.

Winslow, Arthur, 1894, Lead and zinc deposits: Missouri Bureau of Geology and Mines, 1st ser., v. 6 and 7, 763 p., maps.

104
U.S.A.
Flynn Creek Structure,
Jackson County, Tennessee

Bibliography

Boone, J. D., and Albritton, C. C., Jr., 1937, Meteorite scars in ancient rocks: Field and Laboratory, v. 5, no. 2, p. 53-64.

1966a, Carbonate deformation at a probable impact crater at Flynn Creek, Tennessee (abs.): American Geophysical Union Transactions, v. 47, no. 3, p. 493-494.

1966c, Minimum energy of formation for a probable impact crater at Flynn Creek, Tennessee (abs): American Geophysical Union Transactions, v. 47, no. 3, p. 482.

1966e, An unusual dolomitic basal facies of the Chattanooga Shale in the Flynn Creek structure (abs.): American Mineralogist, v. 51, nos. 1-2, p. 270.

1968a, Comet impact and formation of Flynn Creek and other craters with central peaks (abs.): American Geophysical Union Transactions, v. 49, no. 1, p. 272.

Wilson, C. W., Jr., and Born, K. E., 1936, The Flynn Creek disturbance, Jackson County, Tennessee: Journal of Geology, v. 44, no. 7, p. 815-835.
Glover Bluff Structure
(Alternate name: lime Bluff)
Marquette County, Wisconsin

Bibliography

Kentland Structure
Newton County, Indiana

Bibliography

Collett, John, 1883, Geological survey of Newton County: Indiana Department of Geology and Natural History Annual Report 12, p. 48-64.

1982, Geology of the Kentland structural anomaly, northwestern Indiana--update: Purdue University, Department of Geosciences, and Geological Society of America North-central Section Guidebook 4, 38 p.

Votaw, R. R., 1980, Middle Ordovician conodonts from the Kentland structure, Indiana (abs.): Geological Society of America, Abstracts with Programs, v. 12, p. 259.

Winkler, Erhard, and Gutschick, R. C., 1983, Ultraviolet luminescence, a simple important tool illustrated by study of breccias in the Kentland, Indiana, disturbed area (abs.): Geological Society of America, Abstracts with Programs, v. 15, no. 6, p. 720.
U.S.A.
Manson Structure,
Calhoun County, Iowa

Bibliography

Bibliography

Dietz, R. S., 1966, Shatter cones at Middlesboro structure, Kentucky:
Meteoritics, v. 3, no. 1, p. 27-29.

Englund, K. J., 1964, Geology of the Middlesboro South quadrangle, Tennessee-
Kentucky-Virginia: U.S. Geological Survey Geologic Quadrangle Map GQ-301,
scale 1:24,000.

Englund, K. J., and Roen, J. B., 1963, Origin of the Middlesboro Basin,
Kentucky, in Short papers in geology, hydrology, and topography: U.S.

Englund, K. J., Roen, J. B., and DeLaney, A. O., 1964, Geology of the
Middlesboro North quadrangle, Kentucky: U.S. Geological Survey Geologic
Quadrangle Map GQ-300, scale 1:24,000.

Seeger, C. R., 1970, Geophysical investigations of the Versailles
cryptoexplosion structure, and the Middlesboro Basin cryptoexplosion
structure, Kentucky (abs.): EOS (American Geophysical Union
Transactions), v. 51, no. 4, p. 342.
Bibliography

McCaslin, J. C., 1976, Red Wing Creek - The meteor-made field: Oil and Gas Journal, v. 74, no. 3, p. 79.

Bibliography

Schmidt, R. G., McFarlan, A. C., Noscow, E., Bowman, R. S., and Alberts, R.,
1961, Examination of Ordovician through Devonian stratigraphy and the
Serpent Mount chaotic structure area: Geologic Society of America,
Cincinnati meeting, Guidebook for field trips, Field Trip 8, p. 259-293.
Zahn, J. C., 1965, A gravity survey of the Serpent Mound area in southern
Ohio: unpublished Master's Thesis, The Ohio State University, Columbus.
U.S.A.
Sierra Madera Structure,
Pecos County, Texas

Bibliography

Adkins, W. S., 1927, The geology and mineral resources of the Fort Stockton quadrangle: Texas University Bulletin, 2738, 166 p., 5 pls.

Anonymous, Sierra Madera: National Science Foundation course, 2 p., 3 figs.

Boone, J. D., and Albritton, C. C., Jr., 1937, Meteorite scars in ancient rocks: Field and Laboratory, v. 5, no. 2, p. 53-64.

Masaytis, V. L., 1980, Osnovnyye cherty geologii nekotorykh astroblem zarubezhnykh stran; Mezozoyskiye astroblemy; Astroblema S'yerra-Madra [The principal features of the geology of some astroblemes in foreign countries; Mesozoic astroblemes; the Sierra Madera astrobleme]: in V. L. Masaytis and others, eds., Geologiya Astroblem, Izd. Nedra, Leningrad, USSR, p. 173-176, geologic section.

Bibliography

Boone, J. D., and Albritton, C. C., Jr., 1938, Established and supposed examples of meteoritic craters and structures: Field and Laboratory, v. 6, p. 44-56.

Bibliography

Bucher, W. H., 1936a, Cryptoexplosion structures caused from without or from within the Earth? ("astroblemes" or "geoblemes"): American Journal of Science, v. 261, no. 7, p. 597-649.

Wilson, C. W., Jr., 1953, Wilcox deposits in explosion craters, Stewart County, Tennessee, and their relations to origin and age of Wells Creek Basin structure: Geological Society of America Bulletin, v. 64, no. 7, p. 753-768.

U.S.A.
Uvalde
(Alternate name: Bee Bluff)
Zavala County, Texas

Bibliography

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brent Crater, Hipissing County, Ontario</td>
<td>46°05'N 78°29'W</td>
<td>F-18</td>
<td>019/028</td>
<td>1443-15325 Oct. 9, 1973</td>
<td>3.8</td>
<td>450±30</td>
<td>Cry</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Carswell Lake structure, Saskatchewan</td>
<td>56°27'N 109°30'W</td>
<td>D-13</td>
<td>044/019</td>
<td>1684-17472 June 7, 1974</td>
<td>37</td>
<td>485±70</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Clearwater Lakes, Quebec</td>
<td>56°10'N 74°20'W</td>
<td>D-15</td>
<td>020/021</td>
<td>1156-15374 Dec. 26, 1972</td>
<td>22</td>
<td>290±20</td>
<td>(Sed)Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Deep Bay, Reindeer Lake, Saskatchewan</td>
<td>56°24'N 102°59'W</td>
<td>D-13</td>
<td>039/021</td>
<td>1859-17133 Nov. 29, 1974</td>
<td>12</td>
<td>100±50</td>
<td>(Sed)Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Gow Lake, Saskatchewan</td>
<td>56°27'N 104°29'W</td>
<td>D-13</td>
<td>041/021</td>
<td>1825-17262 Oct. 26, 1974</td>
<td>5</td>
<td><200</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Haughton Dome, Devon Island, District of Franklin Northwest Territories</td>
<td>75°22'N 89°40'W</td>
<td>B-7</td>
<td>045/007</td>
<td>1253-17555 April 2, 1973</td>
<td>20</td>
<td>15</td>
<td>Sed(Cry)</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Holleford Crater, Lanark County, Ontario</td>
<td>44°28'N 76°38'W</td>
<td>F-19</td>
<td>017/029</td>
<td>1027-15231 Aug. 19, 1972</td>
<td>2</td>
<td>550±100</td>
<td>Sed(Cry)</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Ile Rouleau, Quebec</td>
<td>50°41'N 73°53'W</td>
<td>E-18</td>
<td>017/025</td>
<td>2095-15102 April 27, 1975</td>
<td>4</td>
<td><300</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lac Couture, Quebec</td>
<td>60°08'N 75°18'W</td>
<td>D-14</td>
<td>023/018</td>
<td>1717-15452 July 10, 1974</td>
<td>8</td>
<td>420</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lac La Moine, Quebec</td>
<td>57°26'N 66°36'W</td>
<td>D-15</td>
<td>014/020</td>
<td>1384-15020 Aug. 11, 1973</td>
<td>8</td>
<td>400</td>
<td>Cry</td>
<td>7</td>
<td>C</td>
</tr>
</tbody>
</table>

*ONC: Orbiter Note Card

(Grieve, R. A. F., 1982, Tables 1 and 2)
<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Age (Ma)</th>
<th>(Sed)Cry</th>
<th>Cr</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manicouagan-Mushalagan, Lakes area, Quebec</td>
<td>51°23'N</td>
<td>68°42'W</td>
<td>1438-15024</td>
<td>70</td>
<td>210±4</td>
<td>(Sed)Cry</td>
<td>5</td>
</tr>
<tr>
<td>Mistastin Lake, Labrador, Newfoundland</td>
<td>55°53'N</td>
<td>63°18'W</td>
<td>1183-14455</td>
<td>28</td>
<td>38±4</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>New Quebec Crater, Alternate names: Chubb Crater, Ungava Crater, Ungava, Quebec</td>
<td>61°17'N</td>
<td>73°40'W</td>
<td>2081-15300</td>
<td>3.2</td>
<td>5</td>
<td>Cry</td>
<td>3</td>
</tr>
<tr>
<td>Charlevoix Structure, Alternate names: La Malbaie, Quebec</td>
<td>47°32'N</td>
<td>70°18'W</td>
<td>1060-15051</td>
<td>46</td>
<td>360±25</td>
<td>(Sed)Cry</td>
<td>6</td>
</tr>
<tr>
<td>Nicholson Lake, District of Keewatin, Northwest Territories</td>
<td>62°40'N</td>
<td>102°41'W</td>
<td>1359-17471</td>
<td>12.5</td>
<td><450</td>
<td>(Sed)Cry</td>
<td>6</td>
</tr>
<tr>
<td>Pilot Lake, District of Mackenzie, Northwest Territories</td>
<td>60°17'N</td>
<td>111°01'W</td>
<td>1345-18110</td>
<td>6</td>
<td><300</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>St. Martin, Manitoba</td>
<td>51°47'N</td>
<td>98°33'W</td>
<td>1728-16503</td>
<td>23</td>
<td>225±40</td>
<td>Sed&Cry</td>
<td>4</td>
</tr>
<tr>
<td>Slate Islands, Ontario</td>
<td>48°40'N</td>
<td>87°00'W</td>
<td>2572-15541</td>
<td>30</td>
<td>350</td>
<td>(Sed)Cry</td>
<td>6</td>
</tr>
<tr>
<td>Steen River structure, Alberta</td>
<td>59°31'N</td>
<td>117°38'W</td>
<td>1265-15465</td>
<td>140</td>
<td>1,840±150</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>Sudbury Basin, Ontario</td>
<td>46°36'N</td>
<td>81°11'W</td>
<td>1265-15465</td>
<td>140</td>
<td>1,840±150</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>Manapitei Lake, Ontario</td>
<td>46°44'N</td>
<td>80°44'W</td>
<td>1265-15465</td>
<td>140</td>
<td>1,840±150</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>West Hawk Lake, Manitoba</td>
<td>49°46'N</td>
<td>95°11'W</td>
<td>1438-16462</td>
<td>2.7</td>
<td>100±50</td>
<td>Cry</td>
<td>4</td>
</tr>
</tbody>
</table>
Table 2a (Continued)

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
Table 2b. North America: Impact Structures (in order of increasing latitude)
Canada

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC*</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holleford Crater, Lanark County, Ontario</td>
<td>44°28'N 76°38'W</td>
<td>F-19</td>
<td>017/029</td>
<td>1027-15231, Aug. 19, 1972</td>
<td>2</td>
<td>550±100</td>
<td>Sed(Cry)</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Brent Crater, Nipissing County, Ontario</td>
<td>46°05'N 78°29'W</td>
<td>F-18</td>
<td>019/028</td>
<td>1443-15325, Oct. 9, 1973</td>
<td>3.8</td>
<td>450±30</td>
<td>Cry</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Sudbury Basin, Ontario</td>
<td>46°36'N 81°11'W</td>
<td>F-18</td>
<td>021/028</td>
<td>1265-15465, April 14, 1973</td>
<td>140</td>
<td>1,840±150</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Wanapitei Lake, Ontario</td>
<td>46°44'N 80°44'W</td>
<td>F-18</td>
<td>021/028</td>
<td>1265-15465, April 14, 1973</td>
<td>8.5</td>
<td>37±2</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Charlevoix Structure, Alternate names:</td>
<td>47°32'N 70°18'W</td>
<td>F-19</td>
<td>014/027</td>
<td>1060-15051, Sept. 21, 1972</td>
<td>46</td>
<td>360±25</td>
<td>(Sed)Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>La Malbaie, Quebec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slate Islands, Ontario</td>
<td>48°40'N 87°00'W</td>
<td>E-17</td>
<td>026/026</td>
<td>2572-15541, Aug. 16, 1976</td>
<td>30</td>
<td>350</td>
<td>(Sed)Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>West Hawk Lake, Manitoba</td>
<td>49°46'N 95°11'W</td>
<td>E-17</td>
<td>032/025</td>
<td>1438-16462, Oct. 4, 1973</td>
<td>2.7</td>
<td>100±50</td>
<td>Cry</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Ile Rouleau, Quebec</td>
<td>50°41'N 73°53'W</td>
<td>E-18</td>
<td>017/025</td>
<td>2095-15102, April 27, 1975</td>
<td>4</td>
<td><300</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Manicouagan-Mushalagan, Lakes area,</td>
<td>51°23'N 68°42'W</td>
<td>E-18</td>
<td>014/024</td>
<td>1438-15024, Oct. 4, 1973</td>
<td>70</td>
<td>210±4</td>
<td>(Sed)Cry</td>
<td>5</td>
<td>Cr</td>
</tr>
<tr>
<td>Quebec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Martin, Manitoba</td>
<td>51°47'N 98°33'W</td>
<td>E-17</td>
<td>034/024</td>
<td>1728-16503, July 21, 1974</td>
<td>23</td>
<td>225±40</td>
<td>Sed&Cry</td>
<td>4</td>
<td>C</td>
</tr>
</tbody>
</table>

Probable impact craters and asteroids.
<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>Age</th>
<th>Type</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mistastin Lake, Labrador, Newfoundland</td>
<td>55°53'N</td>
<td>E-19</td>
<td>011/021</td>
<td>1183-14455</td>
<td>Cry</td>
<td>38±4</td>
<td>28</td>
</tr>
<tr>
<td>Clearwater Lakes, Quebec</td>
<td>56°10'N</td>
<td>D-15</td>
<td>020/021</td>
<td>1156-15374</td>
<td>(Sed)Cry</td>
<td>290±20</td>
<td>22</td>
</tr>
<tr>
<td>Deep Bay, Reindeer Lake, Saskatchewan</td>
<td>56°24'N</td>
<td>D-13</td>
<td>039/021</td>
<td>1859-17133</td>
<td>Cry</td>
<td>100±50</td>
<td>12</td>
</tr>
<tr>
<td>Gow Lake, Saskatchewan</td>
<td>56°27'N</td>
<td>D-13</td>
<td>041/021</td>
<td>1825-17262</td>
<td>Cry</td>
<td><200</td>
<td>5</td>
</tr>
<tr>
<td>Lac La Moine, Quebec</td>
<td>57°26'N</td>
<td>D-15</td>
<td>014/020</td>
<td>1384-15020</td>
<td>Cry</td>
<td>400</td>
<td>8</td>
</tr>
<tr>
<td>Carswell Lake structure, Saskatchewan</td>
<td>58°27'N</td>
<td>D-13</td>
<td>044/019</td>
<td>1684-17472</td>
<td>Sed&Cry</td>
<td>485±50</td>
<td>37</td>
</tr>
<tr>
<td>Steen River structure, Alberta</td>
<td>59°31'N</td>
<td>11°36'W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lac Couture, Québec</td>
<td>60°08'N</td>
<td>D-14</td>
<td>023/018</td>
<td>1717-15452</td>
<td>Cry</td>
<td>420</td>
<td>8</td>
</tr>
<tr>
<td>Pilot Lake, District of Mackenzie, Northwest Territories</td>
<td>60°17'N</td>
<td>D-13</td>
<td>047/018</td>
<td>1345-18110</td>
<td>Cry</td>
<td><300</td>
<td>6</td>
</tr>
<tr>
<td>New Quebec Crater, Alternate names: Chubb Crater, Ungava Crater, Ungava, Quebec</td>
<td>61°17'N</td>
<td>D-15</td>
<td>021/017</td>
<td>2081-15300</td>
<td>Cry</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Haughton Dome, Devon Island, District of Franklin, Northwest Territories</td>
<td>75°22'N</td>
<td>B-7</td>
<td>045/007</td>
<td>1253-17555</td>
<td>Sed(Cry)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Table 2b (Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey. |

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OGC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudbury Basin, Ontario</td>
<td>46°36'N 81°11'W</td>
<td>F-18</td>
<td>021/028</td>
<td>1265-15465 Apr 14, 1973</td>
<td>140</td>
<td>1,840±150</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Manicouagan-Mushalagan, Lakes area, Quebec</td>
<td>51°23'N 68°42'W</td>
<td>E-18</td>
<td>014/024</td>
<td>1438-15024 Oct. 4, 1973</td>
<td>70</td>
<td>210±4</td>
<td>(Sed)Cry</td>
<td>5</td>
<td>Cr</td>
</tr>
<tr>
<td>Charlevoix Structure</td>
<td>47°32'N 70°18'W</td>
<td>F-19</td>
<td>014/027</td>
<td>1060-15051 Sept. 21, 1972</td>
<td>46</td>
<td>360±25</td>
<td>(Sed)Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Carswell Lake structure, Saskatchewan</td>
<td>58°27'N 109°30'W</td>
<td>O-13</td>
<td>044/019</td>
<td>1684-17472 June 7, 1974</td>
<td>37</td>
<td>485±50</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Slate Islands, Ontario</td>
<td>48°40'N 87°00'W</td>
<td>E-17</td>
<td>026/026</td>
<td>2572-15541 Aug. 16, 1976</td>
<td>30</td>
<td>350</td>
<td>(Sed)Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Mistassin Lake, Labrador, Newfoundland</td>
<td>55°53'N 63°18'W</td>
<td>E-19</td>
<td>011/021</td>
<td>1183-14455 Jan. 22, 1973</td>
<td>28</td>
<td>38±4</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>St. Martin, Manitoba</td>
<td>51°47'N 98°33'W</td>
<td>E-17</td>
<td>034/024</td>
<td>1728-16503 July 21, 1974</td>
<td>23</td>
<td>225±40</td>
<td>Sed&Cry</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Clearwater Lakes, Quebec</td>
<td>56°10'N 74°20'W</td>
<td>D-15</td>
<td>020/021</td>
<td>1156-15374 Dec. 26, 1972</td>
<td>22</td>
<td>290±20</td>
<td>(Sed)Cry</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Haughton Dome, Devon Island, District of Franklin, Northwest Territories</td>
<td>75°22'N 89°40'W</td>
<td>B-7</td>
<td>045/007</td>
<td>1253-17555 April 2, 1973</td>
<td>20</td>
<td>15</td>
<td>Sed(Cry)</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Date</td>
<td>Age (Ma)</td>
<td>Error</td>
<td>Type</td>
<td>Category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicholson Lake, District of Keewatin,</td>
<td>62°40'N</td>
<td>102°41'W</td>
<td>1359-17471</td>
<td>12.5</td>
<td><450</td>
<td>(Sed)Cry</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwest Territories</td>
<td></td>
<td></td>
<td>July 17, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Bay, Reindeer Lake, Saskatchewan</td>
<td>56°24'N</td>
<td>102°59'W</td>
<td>1859-17133</td>
<td>12</td>
<td>100±50</td>
<td>Cry</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nov. 29, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wanapitei Lake, Ontario</td>
<td>46°44'N</td>
<td>80°44'W</td>
<td>1265-15465</td>
<td>8.5</td>
<td>37±2</td>
<td>Cry</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>April 14, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lac Couture, Quebec</td>
<td>60°08'N</td>
<td>75°18'W</td>
<td>1717-15452</td>
<td>8</td>
<td>420</td>
<td>Cry</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>July 10, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lac La Moine, Quebec</td>
<td>57°26'N</td>
<td>66°36'W</td>
<td>1384-15020</td>
<td>8</td>
<td>400</td>
<td>Cry</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aug. 11, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Lake, District of Mackenzie,</td>
<td>60°17'N</td>
<td>111°01'W</td>
<td>1345-18110</td>
<td>6</td>
<td><300</td>
<td>Cry</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwest Territories</td>
<td></td>
<td></td>
<td>July 3, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gow Lake, Saskatchewan</td>
<td>56°27'N</td>
<td>104°29'W</td>
<td>1825-17262</td>
<td>5</td>
<td><200</td>
<td>Cry</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oct. 26, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Île Roueau, Quebec</td>
<td>50°41'N</td>
<td>73°53'W</td>
<td>2095-15102</td>
<td>4</td>
<td><300</td>
<td>Sed</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>April 27, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brent Crater, Nipissing County, Ontario</td>
<td>46°05'N</td>
<td>78°29'W</td>
<td>1443-15325</td>
<td>3.8</td>
<td>450±30</td>
<td>Cry</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oct. 9, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Quebec Crater, Alternate names: Chubb</td>
<td>61°17'N</td>
<td>73°40'W</td>
<td>2081-15300</td>
<td>3.2</td>
<td>5</td>
<td>Cry</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crater, Ungava Crater, Ungava, Quebec</td>
<td></td>
<td></td>
<td>April 13, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Hawk Lake, Manitoba</td>
<td>49°46'N</td>
<td>95°11'W</td>
<td>1438-16462</td>
<td>2.7</td>
<td>100±50</td>
<td>Cry</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oct. 4, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holleford Crater, Lanark County, Ontario</td>
<td>44°28'N</td>
<td>76°38'W</td>
<td>1027-15231</td>
<td>2</td>
<td>550±100</td>
<td>Sed(Cry)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aug. 19, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2c (Continued)

Steen River structure, Alberta
59°31'N 117°38'W

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OLC</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Quebec Crater, Alternate names: Chubb Crater, Ungava Crater, Ungava, Quebec</td>
<td>61°17'N 73°40'W</td>
<td>D-15</td>
<td>021/017</td>
<td>2081-15300 April 13, 1975</td>
<td>3.2</td>
<td>5</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Haughton Dome, Devon Island, District of Franklin, Northwest Territories</td>
<td>75°22'N 89°40'W</td>
<td>B-7</td>
<td>045/007</td>
<td>1253-17555 April 2, 1973</td>
<td>20</td>
<td>15</td>
<td>Sed(Cry)</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Wanapitei Lake, Ontario</td>
<td>46°44'N 80°44'W</td>
<td>F-18</td>
<td>021/028</td>
<td>1265-15465 April 14, 1973</td>
<td>8.5</td>
<td>37±2</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Mistassin Lake, Labrador, Newfoundland</td>
<td>55°53'N 63°18'W</td>
<td>E-19</td>
<td>011/021</td>
<td>1183-14455 Jan. 22, 1973</td>
<td>28</td>
<td>38±4</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>West Hawk Lake, Manitoba</td>
<td>49°46'N 95°11'W</td>
<td>E-17</td>
<td>032/025</td>
<td>1438-16462 Oct. 4, 1973</td>
<td>2.7</td>
<td>100±50</td>
<td>Cry</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Deep Bay, Reindeer Lake, Saskatchewan</td>
<td>56°24'N 102°59'W</td>
<td>D-13</td>
<td>039/021</td>
<td>1859-17133 Nov. 29, 1974</td>
<td>12</td>
<td>100±50</td>
<td>Cry</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Gow Lake, Saskatchewan</td>
<td>56°27'N 104°29'W</td>
<td>D-13</td>
<td>041/021</td>
<td>1825-17262 Oct. 26, 1974</td>
<td>5</td>
<td><200</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Manicouagan-Mushalagan Lakes area, Quebec</td>
<td>51°23'N 68°42'W</td>
<td>E-18</td>
<td>014/024</td>
<td>1438-15024 Oct. 4, 1973</td>
<td>70</td>
<td>210±4</td>
<td>(Sed)Cry</td>
<td>5</td>
<td>Cr</td>
</tr>
<tr>
<td>Clearwater Lakes, Quebec</td>
<td>56°10'N 74°20'W</td>
<td>D-15</td>
<td>020/021</td>
<td>1156-15374 Dec. 26, 1972</td>
<td>22</td>
<td>290±20</td>
<td>(Sed)Cry</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Ile Rouleau, Quebec</td>
<td>50°41'N 73°53'W</td>
<td>E-18</td>
<td>017/025</td>
<td>2095-15102 April 27, 1975</td>
<td>4</td>
<td><300</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 2d (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date/Time</th>
<th>Age</th>
<th>Diameter</th>
<th>Type</th>
<th>Color</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Lake, District of Mackenzie, Northwest Territories</td>
<td>60°17'N 111°01'W</td>
<td>D-13 047/018</td>
<td>July 3, 1973</td>
<td>1345-18110</td>
<td>6 <300</td>
<td>Cry</td>
<td>6 C?</td>
<td></td>
</tr>
<tr>
<td>Slate Islands, Ontario</td>
<td>48°40'N 87°00'W</td>
<td>E-17 026/026</td>
<td>Aug. 16, 1976</td>
<td>2572-15541</td>
<td>30 350</td>
<td>(Sed)Cry</td>
<td>6 C</td>
<td></td>
</tr>
<tr>
<td>Lac La Moine, Quebec</td>
<td>57°26'N 66°36'W</td>
<td>D-15 014/020</td>
<td>Aug. 11, 1973</td>
<td>1384-15020</td>
<td>8 400</td>
<td>Cry</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td>Lac Couture, Quebec</td>
<td>60°08'N 75°18'W</td>
<td>D-14 023/018</td>
<td>July 10, 1974</td>
<td>1717-15452</td>
<td>8 420</td>
<td>Cry</td>
<td>6 C</td>
<td></td>
</tr>
<tr>
<td>Sudbury Basin, Ontario</td>
<td>46°36'N 81°11'W</td>
<td>F-18 021/028</td>
<td>April 14, 1973</td>
<td>1265-15465</td>
<td>140 1,840±150</td>
<td>Cry</td>
<td>6 C</td>
<td></td>
</tr>
<tr>
<td>St. Martin, Manitoba</td>
<td>51°47'N 98°33'W</td>
<td>E-17 034/024</td>
<td>July 21, 1974</td>
<td>1728-16503</td>
<td>23 225±40</td>
<td>Sed&Cry</td>
<td>4 C</td>
<td></td>
</tr>
<tr>
<td>Charlevoix Structure, Alternate names: La Malbaie, Quebec</td>
<td>47°32'N 70°18'W</td>
<td>F-19 014/027</td>
<td>Sept. 21, 1972</td>
<td>1060-15051</td>
<td>46 360±25</td>
<td>(Sed)Cry</td>
<td>6 C</td>
<td></td>
</tr>
<tr>
<td>Brent Crater, Nipissing County, Ontario</td>
<td>46°05'N 78°29'W</td>
<td>F-18 019/028</td>
<td>Oct. 9, 1973</td>
<td>1443-15325</td>
<td>3.8 450±30</td>
<td>Cry</td>
<td>4 S</td>
<td></td>
</tr>
</tbody>
</table>

Probable impact craters and astroblemes not detectable on Landsat MSS images:

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date/Time</th>
<th>Age</th>
<th>Diameter</th>
<th>Type</th>
<th>Color</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carswell Lake structure, Saskatchewan</td>
<td>56°27'N 109°30'W</td>
<td>D-13 044/015</td>
<td>June 7, 1974</td>
<td>1684-17472</td>
<td>37 485±50</td>
<td>Sed&Cry</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td>Holleford Crater, Lanark County, Ontario</td>
<td>44°28'N 76°38'W</td>
<td>F-19 017/029</td>
<td>Aug. 19, 1972</td>
<td>1027-15231</td>
<td>2 550±100</td>
<td>Sed(Cry)</td>
<td>4 S</td>
<td></td>
</tr>
<tr>
<td>Steen River structure, Alberta</td>
<td>59°31'N 117°38'W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

135
Table 2d (Continued)

*OFC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

<table>
<thead>
<tr>
<th>Sedimentary</th>
<th>Crystalline</th>
<th>()-minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pres: State of Preservation:</td>
<td>1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.</td>
<td></td>
</tr>
<tr>
<td>Morph: Morphology:</td>
<td>5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

1972, The nature and significance of terrestrial impact structures:
 International Geological Congress, 24th, Montreal, sec. 15, p. 77-89;
also in Canada Department Energy, Mines and Resources, Earth Physics
Branch Contributions, no. 393.
structures: Principal characteristics and energy considerations, in
D. J. Roddy, R. O. Pepin, and R. B. Merrill, eds., Impact and explosion
Dence, M. R., and Guy-Bray, J. V., 1972, Some astroblemes, craters and
cryptovolcanic structures in Ontario and Quebec: International
from the Grenville Province, Ontario: Canadian Journal of Earth
Sciences, v. 8, p. 1495-1498.
Dence, M. R., Innes, M. J. S., and Robertson, P. B., 1968, Recent geological
studies of Canadian craters, in B. M. French and N. M. Short, eds., Shock
metamorphism of natural materials: Baltimore, MD, Mono Book Corporation,
1969, Terrestrial impact structures - A bibliography, 1965-68; U.S.
Fryer, R. J., and Titulaer, C., eds., 1973, Catalogue of terrestrial cratering
form structures: Pt. I, Canada: European Space Research Organization on
behalf of International Astronomical Union, Paris.
Garvin, J. B., and Grieve, R. A. F., 1982, An analytical model for terrestrial
simple craters: Brent and Meteor: Lunar and Planetary Science
Conference, 13th, Lunar and Planetary Institute, Houston, TX, p. 251-252.

Hamza, V. M., 1975, Distribution of uranium, thorium and potassium in shock metamorphic rocks from the Brent Crater: EOS (American Geophysical Union Transactions), v. 56, no. 12, p. 1018.

1964, Recent advances in meteorite crater research at the Dominion Observatory, Ottawa, Canada: Meteoritics, v. 2, p. 219-241.

Pennsylvania State University, Department of Geochemistry and Mineralogy, 1963-67, Study of structural and mineralogical significance of meteorite impact sites, including mineralogic paragenesis, high pressure polymorphs, microfractures and quartz lamellae--semiannual reports to National Aeronautics and Space Administration on grant no. NSG-473: University Park, Pennsylvania State University, v. 1-7.

Bibliography

1967, Shock metamorphism in the Carswell circular structure,

1972, The nature and significance of terrestrial impact structures: International Geological Congress, 24th, Montreal, sec. 15, p. 82, table 3a, p. 85, fig. 1; also in Canada Department of Energy, Mines and Resources, Earth Physics Branch Contribution, no. 393.

Engelhardt, W. V., 1974, Meteoritenkräter [Meteorite craters]: Die Naturwissenschaften, v. 61, p. 413-422, 9 figs., 2 tables.

Lambert, Philippe, and Pagel, Maurice, 1977, Sur les éléments planaires des quartz provenant des structures de Carswell et Charlevoix (Canada) et Rochechouart (France) [The planar elements of quartz from the structures of Carswell and Charlevoix (Canada) and Rochechouart (France)]: Académie Sciences (Paris), Comptes Rendus, ser. D, v. 284, no. 17, p. 1623-1626.

Pagel, M., 1975, Cadre géologique des gisements d'uranium dans la structure Carswell (Saskatchewan, Canada). "Etude des phases fluides" [Geologic setting of uranium deposits in the Carswell structure (Saskatchewan, Canada). "Study of fluid phases"]: Thèse de doctorat, 3rd cycle; specialty, Geochemistry, University of Nancy, France.

Canada
Charlevoix Structure,
Alternate name: La Malbaie
Charlevoix East County,
Quebec

Bibliography

Engelhardt, W. V., 1974, Meteoritenkrater [Meteor Crater]: Naturwissenschaften, v. 61, p. 413-422.

Lambert, Philippe, and Pagel, Maurice, 1977a, Sur les éléments planaires des quartz provenant des structures de Carswell et Charlevoix (Canada) et Rochechouart (France) [The planar elements of quartz from the structures of Carswell and Charlevoix (Canada) and Rochechouart (France)]: Academie Sciences (Paris), Comptes Rendus, ser. D., v. 284, no. 17, p. 1623-1626.

Robertson, P. B., 1967, The Malbaie structure, Quebec--an ancient meteorite impact site (abs.): Meteorite Society, 30th Annual Meeting, Moffett Field, California, Program.

____1968, La Malbaie structure, Quebec--A Paleozoic meteorite impact site: Meteoritics, v. 4, no. 2, p. 89-112; also in Ottawa Dominion Observatory Contributions, no. 249.

____1974, Zones of shock metamorphism of the Charlevoix impact structure, Quebec (abs.): Eos (American Geophysical Union Transactions), v. 55, no. 4, p. 336.

Robertson, P. B., and Roy, J. L., 1979, Shock-diminished paleomagnetic
manence at the Charlevoix impact structure, Quebec: Canadian Journal
of Earth Sciences, v. 16, no. 9, p. 1842-1853, 9 figs., 2 tables.

Rondot, Jehan, 1966, Rapport préliminaire sur la région de la Malbaie
[Preliminary report on the Malbaie region]: Ministère des Richesses
Naturelles, Québec, Preliminary Report no. 544, 19 p.

____1968a, Excursion géologique sur la structure de Charlevoix [Geologic
field trip to the Charlevoix structure]: Congrès de "The Meteoritical

____1968b, Nouvel impact météorique fossile? La structure semi-circulaire
de Charlevoix [A new fossil meteor impact? The Charlevoix semi-circular

____1969a, Significance of the breccia dikes of the Charlevoix structure
(abs.): Meteoritics, v. 4, no. 4, p. 291-292.

____1969b, Rapport préliminaire sur la région de la Rivière Malbaie
[Preliminary report on the Malbaie River region]: Ministère des
Richesses Naturelles, Quebec, Preliminary Report no. 576, 35 p.

____1970, La structure de Charlevoix comparée à d'autres impacts
meteoritiques [The Charlevoix compared with other meteor impacts]:

____1971a, Les brèches d'impact de Charlevoix [The impact breccias of
Charlevoix]: Meteoritics, v. 6, no. 4, p. 307-308.

____1971b, Impactite of the Charlevoix structure, Quebec, Canada: Journal of
Geophysical Research, v. 76, p. 5414-5423.

____1972a, Géologie de la région de la Rivière du Gouffre, Comté de
Charlevoix: Rapport préliminaire [Geology of the Gouffre River region,
Charlevoix County: preliminary report]: Quebec Department of Natural

1972c, La transgression Ordovicienne dans le Comté de Charlevoix, Quebec [The Ordovician transgression in Charlevoix County, Quebec]: Canadian Journal of Earth Sciences, v. 9, no. 9, p. 1187-1203.

1975b, Comparaison entre les astroblèmes de Siljan, Suède, et de Charlevoix, Québec [Comparison of the astroblèmes of Siljan, Sweden, and Charlevoix, Quebec]: Bulletin of the Geological Institute of the University of Uppsala, v. 6, p. 95-92.

Roy, D. W., 1974, Origin and evolution of the Charlevoix cryptoexplosion structure (CCS), Quebec, Canada (abs.): Eos (American Geophysical Union Transactions), v. 55, no. 4, p. 336.

Roy, D. W., and Rondot, Jehan, 1970, Shatter cones of Charlevoix (abs.): Meteorite Society Annual Meeting, 33rd, National Aeronautics and Space Administration, Greenbelt, Md, also in Meteoritics, v. 5, no. 4, p. 219-220.

Bibliography

**1965.** The extraterrestrial origin of Canadian craters, in Geological problems in lunar research: New York Academy of Sciences, Annals, v. 123, art. 2, p. 941-969; also in Ottawa Dominion Observatory Contributions, v. 6, no. 11, p. 941-969.

**M. R., 1972.** The nature and significance of terrestrial impact structures: International Geological Congress, 24th, Montreal, sec. 15, p. 77-89, 4 tables; also in Canada Department of Energy, Mines and Resources, Earth Physics Branch Contributions, no. 393.

**1963b.** On the probable origin of the Clearwater Lakes, Quebec (abs.): The Astronomical Journal, v. 68, no. 8, p. 534-535.

Palme, Herbert, and Grieve, R. A. F., 1978, The chemical composition of the impact melt at the Clearwater East impact structure, Quebec, Canada (abs.): Meteoritics, v. 13, no. 4, p. 595-596.

Bibliography

Churchill River Study (Missinipe Probe), 1976, Churchill River Study, synthesis: Saskatoon, Saskatchewan, p. 72-87, figs.

Dent, B. E., 1972, Three dimensional gravity model of the Deep Bay, Saskatchewan, impact crater; (abs.): EOS (American Geophysical Union Transactions), v. 53, no. 11, p. 1036.

1961. The use of gravity methods to study the underground structure and impact energy of meteorite craters: Journal of Geophysical Research 66, no. 7; also in Ottawa Dominion Observatory Contributions, v. 5, no. 6.

1964. Recent advances in meteorite crater research at the Dominion Observatory, Ottawa, Canada: Meteoritics 2, p. 224-230, figs. 4-8.

Bibliography

McMurchy, R. C., 1938, Foster Lake Sheet (east half), northern Saskatchewan: Geological Survey of Canada, Map 433-A.

Canada
Haughton Dome,
Devon Island, District of Franklin
Northwest Territories

Bibliography

Bibliography

Bibliography

Quebec Department of Natural Resources and Geological Survey of Canada, 1965, Lac Deleuze, Quebec, Map 1989G, 32 1/12, aeromagnetic series.
Bibliography

---1972, The nature and significance of terrestrial impact structures: International Geological Congress, 24th, Montreal, sec. 15, p. 82, table 3a, p. 85, fig. 1; also in Canada Department of Energy, Mines and Resources, Earth Physics Branch Contribution no. 393.

Halliday, Ian, 1968, Theories of the origin of Hudson Bay. Part II: Supporting astronomical evidence from three members of the solar system: Ottawa Dominion Observatory Contributions, v. 4, no. 29; also in Science, History and Hudson Bay, Department of Energy, Mines and Resources, Ottawa.

Pennsylvania State University, Department of Geochemistry and Mineralogy, 1963-1967, Study of structural and mineralogical significance of meteorite impact sites, including mineral paragenesis, high pressure polymorphs, microfractures and quartz lamellae: Semiannual reports to National Aeronautics and Space Administration on grant no. NSG-473, v. 1-7, University Park, PA.

1966 (1965), Deformation lamellae from the Lac Coutre Crater, Quebec (abs.): Geological Society of America Special Paper 87, p. 138.

Bibliography

Bottomley, R. J., York, D., and Grieve, R. A. F., 1978, 40Ar-39Ar dating of Canadian impact structures: Lac Couture and Lac La Moine:

Bibliography

Ogilvie, B. Y., Robertson, P. B., and Grieve, R. A. F., 1984, Meteorite features in Canada: An inventory and an evaluation, in press.

Bibliography

1978, The Manicouagan impact structure observed from Skylab, in National Aeronautics and Space Administration, Special Paper 380, p. 175-189, figs. 7.1-6.6; also as Earth Physics Branch Contribution no. 544.

Dworak, V., 1969, Stosswellentamentamorphose des Anorthosites vom Manicouagan Krater, Quebec, Canada [Shock-wave metamorphism of anorthosites of Manicouagan Crater, Quebec, Canada]: Contributions to Minerology and Petrology, v. 24, p. 306-347.

Floran, R. J., and Jahn, Bor-ming, 1976, Petrology and Rb/Sr systematics of the Manicouagan impact melt, Quebec (abs.): American Geophysical Union Transactions, v. 57, no. 4, p. 275.

1983, The Manicouagan impact structure: An analysis of its original
dimensions and form: Journal of Geophysical Research, v. 88, Supplement,
Hammond, W. P., 1945, Geological reconnaissance of the Manicouagan and
Mushalagan rivers: Master's of Science thesis, University of Toronto.
Hofflet, Dorrit, 1955, Quebec geological feature explored: Sky and
Telescope, v. 14, no. 9, p. 374.
Jahn, Bor-ming, and Floran, R. J., and Simonds, C. H., 1978, Rb-Sr isochron
age of the Manicouagan melt sheet, Quebec, Canada: Journal of
Janssens, M. J., Hertogen, Jan, Takahashi, H., and Palme, Herbert, 1977,
Meteoritic material at four large impact craters: EOS (American
Geophysical Union Transactions), v. 58, no. 6, p. 424-425.
Kish, Leslie, 1962, Preliminary report on the Lower Hart-Jaune River area,
Saguenay County: Quebec Department of National Resources, Preliminary
Report, no. 486, 9 p.
Larochelle, Andre, and Currie, K. L., 1967, Paleomagnetic study of igneous
rocks from the Manicouagan structure, Quebec: Journal Geophysical
Research, v. 72, no. 16, p. 4163-4169.
Masaytis, V. L., 1980, Osnovnyye cherty geologii nekotorykh astroblem
zarubezhnykh stran; Mezosoyskiye astroblemy; Astroblema Manikuagan [The
principal features of the geology of some astroblemes in foreign
countries; Mesozoic astroblemes; the Manicouagan Astrobleme]: in
Masaytis, V. L., and others 1980, Geologiya astroblem [The geology of

Canada
Mistastin Lake,
Newfoundland, Labrador

Bibliography

Currie, K. L., 1968, Mistastin Lake, Labrador: A new Canadian crater:

Engelhardt, Wolf von, 1974, Meteoritenkräfte: [Meteorite craters]: Die Naturwissenschaften, v. 61, p. 413-422, 9 figs., 1 table.

Mak, E. K., York, Derek, Grieve, R. A. F., and Dence, M. R., 1975, 40Ar/39Ar dating of the Lake Mistassin meteorite crater (abs): EOS (American Geophysical Union Transactions), v. 56, no. 11, p. 912.

Canada
New Quebec Crater,
Alternate names: Chubb Crater,
Ungava Crater
Ungava Peninsula, Quebec

Bibliography

194
1965, the extraterrestrial origin of Canadian craters, in Geological problems in lunar research: New York Academy Sciences, Annals, v. 123, art. 2, p. 941-969; also in Ottawa Dominion Observatory Contributions, v. 6, no. 11, p. 941-969.

Halliday, Ian, and Griffin, A. A., 1964, Application of the scientific method to problems of crater recognition: Meteoritics, v. 2, no. 2, p. 81, table 1; also in Ottawa Dominion Observatory Contributions, v. 4, no. 10.

Innes, M. J. S., 1964, Recent advances in meteoritic research at Dominion Observatory, Ottawa, Canada: Meteoritics, v. 2, no. 3, p. 230-234, figs. 9-12.

Krausel, Richard, 1952, Vulkan- oder Meteor-Krater? (Volcanic or meteor crater?): Natur und Volk, v. 82, no. 3, p. 73-76.

—— 1951c, Chubb Krateret, Ungava, Quebec [Chubb Crater, Ungava, Quebec]: Urania Kobenhavn, v. 8, p. 49-58.
1952a, Chubb Crater, Toronto, Canada: Earth Science Digest, v. 6, no. 1, p. 15-19.

Pennsylvania State University, Department of Geochemistry and Mineralogy,

198
Polar Times, 1962, Meteoritic origin is seen for craters: Polar Times, no. 55, p. 22.

Vega, 1954, Ungava crater and glaciation: Vega, no. 16/17, p. 70.
Bibliography

Engelhardt, W. V., 1974, Meteoritenkrater [Meteorite craters]: Naturwissenschaften, v. 61, p. 413-422.

Canada
Pilot Lake,
Northwest Territories, Mackenzie District

Bibliography

Canada
Slate Islands,
Lake Superior, Ontario

Bibliography

Classen, J., 1977, Catalogue of 230 certain, probable, possible and doubtful impact structures: Meteoritics, v. 12, no. 1, p. 31-78.

Bibliography

206
Bibliography

1968, Sudbury mining area, Sudbury District, Map 2170, scale 1:63,360: Ontario Department of Mines and Northern Affairs.

209
1972b, The nature and significance of terrestrial impact structures:
International Geological Congress, 24th, Montreal, sec. 15, p. 77-89, 4
tables; also in Canada Department of Energy, Mines and Resources, Earth
Physics Branch Contribution no. 393.
Dence, M. R., Boudette, E. L., and Lucchitta, I., 1972, Guide to the geology
of Sudbury Basin, Ontario, Canada: U.S. Geological Survey Interagency
Rept. 43, 41 p.
Dence, M. R., and Guy-Bray, J. V., 1972, Some astroblemes, craters and
cryptovolcanic structures in Ontario and Quebec: International
Geological Congress, 24th, Montreal, Quebec, Excursion A-65, 61 p., figs.
Dietz, R. S., 1962, Sudbury structure as an astrobleme (abs.): American
Geophysica: Union Transactions, v. 43, no. 4, p. 445-446.
1964, Sudbury Structure as an astrobleme: Journal of Geology, v. 72, no.
4, p. 412-434.
108.
1968, Shatter cones in cryptoexplosion structures, in B. M. French and N.
M. Short, eds., Shock metamorphism of natural materials: Baltimore, MD,
Mono Book Corporation, p. 267-284.
1969, Possible relations between meteorite impact and igneous
petrogenesis as indicated by the Sudbury structure, Ontario, Canada:
National Aeronautics and Space Administration, Goddard Space Flight
Center, Greenbelt, Maryland, Report X-644-69-371, 50 p.; also in Bulletin
1971, Sudbury Astrobleme, a review (abs.): Meteoritics, v. 6, no. 4, p.
259-260; also in U.S. Department Commerce, National Oceanic Atmospheric
Administration, Atlantic Oceanographic and Meteorological Laboratories,

Rb-Sr whole-rock ages at Sudbury, Ontario: Geological Association of

rock Rb-Sr age of norite and micropegmatite at Sudbury, Ontario: Journal
of Geology, v. 72, p. 848-854.

Fleet, M. E., 1979, Tectonic origin for Sudbury, Ontario, shatter cones:

Floran, R. J., Grieve, R. A. F., Pinney, W. C., Warner, J. L., Simonds, C.
H., Blanchard, D. P., and Dence, M. R., 1978, Manicouagan impact melt,
Quebec, 1, Stratigraphy, petrology, and chemical: Journal of

French, B. M., 1967, Sudbury Structure, Ontario--some petrographic evidence
for origin by meteorite impact: Science, v. 156, no. 3778, p. 1094-1098;
abs. in Meteoritics, v. 3, p. 110.

____ 1968, Sudbury Structure, Ontario: Some petrographic evidence for an
origin by meteorite impact, in B. M. French, and N. M. Short, eds., Shock
metamorphism of natural materials: Baltimore, MD, Monno Book Corporation;
also in National Aeronautics and Space Administration, Publication X-614-

____ 1969, Distribution of shock-metamorphism features in the Sudbury basin,
1972a, Production of deep melting by large meteorite impacts: The Sudbury Structure, Canada: International Geological Congress, 24th, Sec. 15, Planetology, p. 125-132; abs. in no. 24, p. 444.

Hamilton, W., 1960, Form of Sudbury lopolith: Canadian Mineralogist, v. 6, p. 437-447.

Bibliography

Ontario Department of Mines, 1969, Sudbury Mining Area, Map 2170.

_____1971, Sudbury-Cobalt sheet: Geologic Compilation Series, Map 2188.

Canada
West Hawk Lake,
Whiteshell Forest Reserve and
Provincial Park
Manitoba - Ontario

Bibliography

Beals, C. S., and Halliday, Ian, 1965, Impact craters of the Earth and Moon:
figs.

1967a, Impact craters of the Earth and Moon: Royal Astronomical Society
of Canada Journal, v. 61, no. 5, p. 295-313, 7 figs.

1967b, Terrestrial meteorite craters and their lunar counterparts:
Ottawa Dominion Observatory Contributions, v. 7, no. 4, p. 1-10, 10 figs;
also in International Dictionary of Geophysics, v. 2, p. 1520-1530, New
York, Pergamon.

fossil meteorite craters: Ottawa Dominion Observatory Contributions, v.
4, no. 4; also in Current Science (Bangalore, India), v. 29, p. 205-218,
and 249-262.

1963, Fossil meteorite craters, in B. M. Middlehurst and G. P. Kuiper,
eds., The Moon, meteorites and comets - The solar system, v. 4, Chicago,
University of Chicago Press, p. 277; also in Ottawa Dominion Observatory
Contributions, v. 5, no. 30.

Clark, J. F., 1969, Magnetic surveys at West Hawk Lake, Manitoba, Canada,
(abs.): Meteoritics, v. 4, no. 4, p. 268.

1980, Geomagnetic surveys at West Hawk Lake, Manitoba, Canada: Canada
Department of Energy, Mines and Resources, Earth Physics Branch,
Geomagnetic Series, v. 20.

Classen, J., 1977, Catalogue of 230 certain, probable, possible, and doubtful
impact structures: Meteoritics, v. 12, no. 1, p. 61-78.

220

Davies, J. F., 1954, Geology of the West Hawk Lake - Falcon Lake area: Manitoba Department of Mines and National Resources Publication 53-5, 47 p.

Halliday, Ian, and Griffin, A. A., 1963a, Evidence in support of a meteoritic origin for West Hawk Lake, Manitoba, Canada: Journal Geophysical Research, v. 68, no. 18, p. 5297-5306, 7 figs.
1963b. West Hawk Lake--Manitoba's ancient crater and modern resort:

1964, Application of the scientific method to problems of crater
recognition: Meteoritics, v. 2, no. 2, p. 79-84, 2 figs., 1 table; also
in Ottawa Dominion Observatory Contributions, v. 4, no. 10, p. 79-84.

1966, Preliminary results from drilling at the West Hawk Lake Crater:
figs.; also in Ottawa Dominion Observatory Contributions, v. 4, no. 22, p.
1-10.

1967, Summary of drilling at the West Hawk Lake Crater: Ottawa Dominion
Observatory Contributions, v. 4, no. 25; also in Royal Astronomical

Innes, J. S., 1967, Crater studies, in Canadian Upper Mantle Report 1967:

Robertson, P. B., Dence, M. R., and Vos, M. A., 1968, Deformation in rock-
forming minerals from Canadian craters, in B. M. French and N. M. Short,
eds., Shock metamorphism of natural materials: Baltimore, MD, Mono Book
Corporation, p. 437, fig. 4.

Robertson, P. B., and Grieve, R. A. F., 1975, Impact structures in Canada:
Their recognition and characteristics: Royal Astronomical Society of
Canada Journal, v. 69, no. 1, p. 1-20; also in Canada Department of
Energy, Mines and Resources, Earth Physics Branch Contribution no. 430.

Short, N. M., 1967, The anatomy of an impact crater--West Hawk Lake, Manitoba,
Canada (abs.): Meteoritical Society, 30th Annual Meeting, Moffett Field,
California.

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
<th>Grieve, R. A. F., 1982, Tables 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven impact craters</td>
<td></td>
</tr>
<tr>
<td>Campo del Cielo Craters,</td>
<td>27°38'S 61°42'W</td>
<td>Q-27</td>
<td>244/079</td>
<td>1687-13194</td>
<td>0.09*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaco, Argentina</td>
<td></td>
<td></td>
<td></td>
<td>June 10, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>245/079</td>
<td>1040-13320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sept. 1, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable impact craters and astroblemes</td>
<td></td>
</tr>
<tr>
<td>Araguaiha Dome,</td>
<td>16°46'S 52°59'W</td>
<td>M-27</td>
<td>241/072</td>
<td>1099-13005</td>
<td>40</td>
<td><250</td>
<td>Sed&Cry</td>
<td>6</td>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td>Matto Grosso-Goias, Brazil</td>
<td></td>
<td></td>
<td></td>
<td>Oct. 20, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monturaqui Crater,</td>
<td>23°56'S 68°17'W</td>
<td>P-26</td>
<td>250/077</td>
<td>1099-14003</td>
<td>0.46</td>
<td>1</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Antofagasta, Chile</td>
<td></td>
<td></td>
<td></td>
<td>Oct. 30, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riachao Ring, Maranhao, Brazil</td>
<td>07°43'S 46°39'W</td>
<td>M-27</td>
<td>237/066</td>
<td>1374-12404</td>
<td>4</td>
<td>?</td>
<td>Sed</td>
<td>4</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aug. 1, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serra da Canghala, Goias, Brazil</td>
<td>08°05'S 46°52'W</td>
<td>M-27</td>
<td>237/066</td>
<td>1374-12404</td>
<td>12</td>
<td><300</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aug. 1, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in a field of 20 craters.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
<th>(Grieve, R. A. F., 1982, Tables 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven impact craters</td>
<td></td>
</tr>
<tr>
<td>Campo del Cielo Craters, Chaco, Argentina</td>
<td>27°38'S 61°42'W</td>
<td>Q-27</td>
<td>244/079</td>
<td>1587-13194</td>
<td>0.09°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>June 10, 1974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>245/079</td>
<td>1040-13320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sept. 1, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Probable impact craters and astroblemes</td>
<td></td>
</tr>
<tr>
<td>Riachao Ring, Maranhao, Brazil</td>
<td>07°43'N 46°39'W</td>
<td>M-27</td>
<td>237/066</td>
<td>1374-12404</td>
<td>4</td>
<td><300</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aug. 1, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serra da Canghala, Goias, Brazil</td>
<td>08°05'S 46°52'W</td>
<td>M-27</td>
<td>237/066</td>
<td>1374-12404</td>
<td>12</td>
<td><250</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aug. 1, 1973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araguainha Dome, Matto Grosso-Goias, Brazil</td>
<td>16°46'S 52°59'W</td>
<td>M-27</td>
<td>241/072</td>
<td>1089-12905</td>
<td>40</td>
<td>>250</td>
<td>Sed&Cryst</td>
<td>6</td>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oct. 20, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monturaqui Crater, Antofagasta, Chile</td>
<td>23°56'S 68°17'W</td>
<td>P-26</td>
<td>250/077</td>
<td>1099-14003</td>
<td>0.46</td>
<td>1</td>
<td>Cryst</td>
<td>2</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oct. 30, 1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*OMC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in a field of 20 craters.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven impact craters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campo del Cielo Craters,</td>
<td>27°38'S 61°42'W</td>
<td>Q-27</td>
<td>244/079</td>
<td>1687-13194 June 10, 1974</td>
<td>0.09*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaco, Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable impact craters and astroblèmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matto Grosso-Goias,</td>
<td></td>
<td>P-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serra da Canghala,</td>
<td>08°05'S 45°52'W</td>
<td>M-27</td>
<td>237/066</td>
<td>1374-12404 Aug. 1, 1973</td>
<td>12</td>
<td><300</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Goias, Brazil</td>
<td></td>
<td>N-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maranhao, Brazil</td>
<td></td>
<td>N-27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monturaqui Crater,</td>
<td>23°56'S 68°17'W</td>
<td>P-26</td>
<td>250/077</td>
<td>1099-14003 Oct. 30, 1972</td>
<td>0.46</td>
<td>1</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Antofagasta, Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres.: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph.: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in a field of 20 craters.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serra da Cangalha, Gofas, Brazil</td>
<td>08°05'S, 46°52'W</td>
<td>M-27</td>
<td>237/066</td>
<td>Aug. 1, 1973</td>
<td>1374-12404</td>
<td>12</td>
<td><300 Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Monturaquí Crater, Antofagasta, Chile</td>
<td>23°56'S, 68°17'W</td>
<td>P-26</td>
<td>250/077</td>
<td>Oct. 30, 1972</td>
<td>1099-14003</td>
<td>0.46</td>
<td>1 Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Campo del Cielo Craters, Chaco, Argentina</td>
<td>27°38'S, 61°42'W</td>
<td>Q-27</td>
<td>244/079</td>
<td>June 10, 1974</td>
<td>1687-13194</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1040-13320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3d. South America: Impact Structures (in order of increasing geologic age)

Probable impact craters and astroblèmes detectable on Landsat MSS images

Probable impact crater barely detectable on Landsat MSS images

Proven impact craters not detectable on Landsat MSS images

ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, 6-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in a field of 20 craters.
South America
Argentina, Gran Chaco Gualamba
Campo del Cielo Craters

Bibliography

Cassidy, W. A., 1969, A small meteorite crater; structural details (Campo del Cielo, Argentina) (abs.): EOS (American Geophysical Union Transactions), v. 50, no. 4, p. 220.

_____1970, Discovery of a new multiton meteorite at Campo del Cielo (abs.): Meteoritics, v. 5, no. 4, p. 187; also in Abstracts, Meteoritical Society, Annual Meeting, 33rd, p. 11.

_____1819, Über Feuermeteore und über die mit senselben herabgefallenen Massen: Vienna, Austria, 434 p.

Clarke, R. S., Jr., and Jarosewich, Eugene, 1969, Classification and bulk chemical composition of the Campo del Cielo, Argentina, meteorite (abs.): Meteoritics, v. 4, no. 3, p. 162.

232

Howard, E., 1802, Experiments and observations on certain stony and metallic substances, which at different times are said to have fallen on the earth: Also on various kinds of native iron: Philosophical Transactions of the Royal Society of London, v. 92, p. 168-212.

Parish, Woodbine, 1833, Notice as to the supposed identity of the large mass of meteoric iron now in the British Museum, with the celebrated Otumpa iron described by Rubin de Celis in the Philosophical Transactions for 1786: Royal Society of London, Philosophical Transactions, v. 128, p. 53-54.

Wlotzka, F., and Jarosewich, E., 1969, The mineralogical and chemical composition of silicate inclusions in the El Taco (Campo del Cielo) iron meteorite (abs.): Meteoritics, v. 4, no. 4, p. 298-299.
South America
Brazil, Matto Grosso
Araguainha Dome

Bibliography

Dietz, R. S., and French, B. M., 1973a, Two probable astroblemes in Brazil:
 1973b, Araguainha Dome and Serra de Cangalha, Brazil: Probable
 astroblemes (abs.): Meteoritics, v. 8, no. 4, p. 345-347.
 1973c, Two new astroblemes (one definite, one probable) in Brazil
Dietz, R. S., French, B. M., and Oliveira, Marco A. M. de, 1973, Araguainha
Dome (Goias) and Serra de Cangalha (Matto Grosso): Probable astroblemes
(abs.): Resumo das Communicaacoes, Sessoes Tecnicas, no. 27, Geologia
regional, Congresso Brasileiro de Geologia, Bol. 1, p. 102-103.
Dietz, R. S., and McHone, John, 1974, Meteorite craters and astroblemes, some
new possible examples (abs.): EOS (American Geophysical Union
Transactions), v. 55, no. 4, p. 336.
McHone, J. F., Jr., and Dietz, R. S., 1978, Astroblemes in Brazil (abs.):
 Geological Society of America, Abstracts with Programs, v. 10, p. 116,
 137.
Bibliography

1973b, Araguainha Dome and Serra da Cangalha, Brazil: Probable astroblemes (abs.): Meteoritics, v. 8, no. 4, p. 345-347.

1973c, Two new astroblemes (one definite, one probable) in Brazil (abs.): Geological Society America, Abstracts, v. 5, no. 7, p. 598.

Dietz, R. S., French, B. M., and Oliveira, Marco A. M. de, 1973, Araguainha Dome (Goias) and Serra da Cangalha (Matto Grosso): Probable astroblemes (abs.): Resumo das Comunicacoes, Sessoes Technicas, no. 27, Geologia regional, Congresso Brasileiro de Geologia, Bol. 1, p. 102-103.

Dietz, R. S., and McNown, John, 1974, Meteorite craters and astroblemes, some new possible examples (abs.): EOS (American Geophysical Union Transactions), v. 55, no. 4, p. 336.

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONS</th>
<th>Landsat Path/Row</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Diameter</th>
<th>Age</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxhole Crater, Northern Territory</td>
<td>22°37'S 135°12'E</td>
<td>P-13</td>
<td>108/076</td>
<td>1011-00244 Aug. 3, 1972</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalgaranga Crater, Western Australia</td>
<td>27°43'S 117°05'E</td>
<td>O-12</td>
<td>120/079</td>
<td>31572-01270 June 24, 1982</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henbury Craters, Northern Territory</td>
<td>24°34'S 133°10'E</td>
<td>Q-13</td>
<td>109/077</td>
<td>1408-00303 Sept. 4, 1973</td>
<td>0.150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolf Creek Crater, Western Australia</td>
<td>19°10'S 127°48'E</td>
<td>P-13</td>
<td>114/073</td>
<td>1125-00585 Nov. 25, 1972</td>
<td>0.850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat Paddock, Western Australia</td>
<td>18°20'S 126°40'E</td>
<td>P-13</td>
<td>115/073</td>
<td>1414-01030 Sept. 10, 1973</td>
<td><50</td>
<td>3</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Gosses Bluff, Northern Territory</td>
<td>23°50'S 132°18'E</td>
<td>P-13</td>
<td>110/077</td>
<td>1247-00375 Mar. 27, 1973</td>
<td>22</td>
<td>6</td>
<td>Sed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kelly West 1, Northern Territory</td>
<td>19°57'S 133°56'E</td>
<td>P-13</td>
<td>110/074</td>
<td>1085-00354 Oct. 16, 1972</td>
<td>2.5</td>
<td>7</td>
<td>?</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Liverpool, Northern Territory</td>
<td>12°24'S 134°03'E</td>
<td>N-13</td>
<td>111/069</td>
<td>30003-30027 Apr. 7, 1978</td>
<td>1.6</td>
<td>3</td>
<td>S</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Spider, Western Australia</td>
<td>16°30'S 126°00'E</td>
<td>P-13</td>
<td>115/072</td>
<td>1378-01031 Aug. 15, 1973</td>
<td>5</td>
<td>7</td>
<td>Sed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strangways, Northern Territory</td>
<td>15°12'S 133°35'E</td>
<td>N-13,N-14</td>
<td>111/070</td>
<td>2370-00255 Jan. 27, 1976</td>
<td><600</td>
<td>5</td>
<td>Sed(Cry)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proven meteorite impact craters

Probable impact craters and astroblemes
<table>
<thead>
<tr>
<th>League</th>
<th>25°30'S</th>
<th>0-12</th>
<th>118°W7E</th>
<th>1561-01191</th>
<th>25</th>
<th><1,585±5</th>
<th>Sed&Cry</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
</table>

GEO: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

1. **Sed:** Sedimentary, **Cry:** Crystalline, ()-minor.
2. **Pres:** State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
3. **Morph:** Morphology: 5-simple crater, C-complex structure with central uplift, C-complex structure with ring form.
4. **Diameter of largest crater in a field of 14 craters:**
5. **Location of Kelly West matches published geographic description (Tonkin, 1973).**
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
<th>(Grieve, R. A. F., 1982, Tables 1 and 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolf Creek Crater, Western Australia</td>
<td>19°10'S 127°48'E</td>
<td>P-13</td>
<td>114/073</td>
<td>1125-00585 Nov. 25, 1972</td>
<td>0.850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxhole Crater, Northern Territory</td>
<td>22°37'S 135°12'E</td>
<td>P-13</td>
<td>108/076</td>
<td>1011-00244 Aug. 3, 1972</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henbury Craters, Northern Territory</td>
<td>24°34'S 133°10'E</td>
<td>Q-13</td>
<td>109/077</td>
<td>1408-00303 Sept. 4, 1973</td>
<td>0.150*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daigaranga Crater, Western Australia</td>
<td>27°43'S 117°05'E</td>
<td>O-12</td>
<td>120/079</td>
<td>31572-01270 June 24, 1982</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proven meteorite impact craters

Liverpool, Northern Territory	12°24'S 134°03'E	M-13	111/069	30003-30027 Apr. 7, 1978	1.6	150±70	Sed	3	S	
Strangways, Northern Territory	15°12'S 123°35'E	M-13, M-14	111/070	2370-00255 Jan. 27, 1976	24	<600	Sed(Cry)	5	C	
Spider, Western Australia	16°30'S 126°00'E	P-13	115/072	1378-01031 Aug. 15, 1973	5	?	Sed	7	C	
Goat Paddock, Western Australia	18°20'S 126°40'E	P-13	115/073	1414-01030 Sept. 10, 1973	5	<50	Sed	3	C	
Kelly West1, Northern Territory	19°57'S 133°56'E	P-13	110/074	1085-00354 Oct. 16, 1972	2.5	<550	Sed	7	?	
Gosses Bluff, Northern Territory	23°50'S 132°18'E	Q-13	110/077	1247-00375 Mar. 27, 1973	22	130±6	Sed	6	C	
Table 4b (Continued)

<table>
<thead>
<tr>
<th>Teague Western Australia</th>
<th>25°50'S 120°55'E</th>
<th>0-12</th>
<th>118/078</th>
<th>1561-01191</th>
<th>28</th>
<th><1,685±5</th>
<th>Sed&Cry</th>
<th>7</th>
<th>C</th>
</tr>
</thead>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

*Diameter of largest crater in a field of 14 craters.

*Location of Kelly West matches published geographic description (Tonkin, 1973).
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and Date of Acquisition</th>
<th>Diameter</th>
<th>Age</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven meteorite impact craters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolf Creek Crater, Western Australia</td>
<td>19°10'S 127°48'E</td>
<td>P-13</td>
<td>114/073</td>
<td>Nov. 25, 1972</td>
<td>1125-00585</td>
<td>0.850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxhole Crater, Northern Territory</td>
<td>22°37'S 135°12'E</td>
<td>P-13</td>
<td>108/076</td>
<td>Aug. 3, 1972</td>
<td>1011-00244</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henbury Craters, Northern Territory</td>
<td>24°34'S 133°10'E</td>
<td>Q-13</td>
<td>109/077</td>
<td>Sept. 4, 1973</td>
<td>1408-00303</td>
<td>0.150*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalgaranga Crater, Western Australia</td>
<td>27°43'S 117°05'E</td>
<td>O-12</td>
<td>120/079</td>
<td>June 24, 1982</td>
<td>31572-01270</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable impact craters and astroblemes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teague, Western Australia</td>
<td>25°50'S 120°55'E</td>
<td>O-12</td>
<td>118/078</td>
<td>Feb. 4, 1974</td>
<td>1561-01191</td>
<td>28</td>
<td><1,685±5</td>
<td>Sed&Cry</td>
<td>7</td>
</tr>
<tr>
<td>Strangways, Northern Territory</td>
<td>15°12'S 133°35'E</td>
<td>N-13,M-14</td>
<td>111/070</td>
<td>Jan. 27, 1976</td>
<td>2370-00255</td>
<td>24</td>
<td><600</td>
<td>Sed(Cry)</td>
<td>5</td>
</tr>
<tr>
<td>Gosses Bluff, Northern Territory</td>
<td>23°50'S 132°18'E</td>
<td>P-13</td>
<td>110/077</td>
<td>Mar. 27, 1973</td>
<td>1247-00375</td>
<td>22</td>
<td>130±6</td>
<td>Sed</td>
<td>6</td>
</tr>
<tr>
<td>Spider, Western Australia</td>
<td>16°30'S 126°00'E</td>
<td>P-13</td>
<td>115/072</td>
<td>Aug. 15, 1973</td>
<td>1378-01031</td>
<td>5</td>
<td>?</td>
<td>Sed</td>
<td>7</td>
</tr>
<tr>
<td>Goat Paddock, Western Australia</td>
<td>18°20'S 126°40'E</td>
<td>P-13</td>
<td>115/073</td>
<td>Sept. 10, 1973</td>
<td>1414-01030</td>
<td>5</td>
<td><50</td>
<td>Sed</td>
<td>3</td>
</tr>
<tr>
<td>Kelly West¹, Northern Territory</td>
<td>19°57'S 133°56'E</td>
<td>P-13</td>
<td>110/074</td>
<td>Oct. 16, 1972</td>
<td>1085-00354</td>
<td>2.5</td>
<td><550</td>
<td>Sed</td>
<td>7</td>
</tr>
</tbody>
</table>

¹ This site is a suspected impact structure based on geological evidence.
Table 4c (Continued)

<table>
<thead>
<tr>
<th>Liverpool, Northern Territory</th>
<th>12°24'S 111/069 30003-30027</th>
<th>1.6</th>
<th>150±70</th>
<th>Sed</th>
<th>3</th>
<th>S</th>
</tr>
</thead>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed—Sedimentary, Cry—Crystalline, ()—minor.

Pres: State of Preservation: 1—ejecta largely preserved, 2—ejecta partly preserved, 3—ejecta removed, rim partly preserved, 4—rim largely eroded, crater-fill products preserved, 5—crater-fill products partly preserved, 6—only remnants of crater-fill preserved, crater floor exposed, 7—crater floor removed, substructure exposed.

Morph: Morphology: 1—simple crater, 2—complex structure with central uplift, 3—Complex structure with rim, 4—complex structure with ring, 5—complex structure with rim and central uplift.

*Diameter of largest crater in a field of 14 craters.

1Location of Kelly West matches published geographic description (Tonkin, 1973).
Table 4d. Australia: Impact Structures (in order of increasing geologic age)

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolf Creek Crater, Western Australia</td>
<td>19°10'S 12°48'E</td>
<td>P-13</td>
<td>114/073</td>
<td>Nov. 25, 1972</td>
<td>0.850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proven impact craters detectable on Landsat MSS images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spider, Western Australia</td>
<td>16°30'S 12°00'E</td>
<td>P-13</td>
<td>115/072</td>
<td>Aug. 15, 1973</td>
<td>5</td>
<td>?</td>
<td>Sed</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Goat Paddock, Western Australia</td>
<td>18°20'S 12°40'E</td>
<td>P-13</td>
<td>115/073</td>
<td>Sept. 10, 1973</td>
<td>5</td>
<td><50</td>
<td>Seu</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Gosses Bluff, Northern Territory</td>
<td>23°50'S 12°18'E</td>
<td>P-13</td>
<td>110/077</td>
<td>Mar. 27, 1973</td>
<td>22</td>
<td>130±6</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Teague, Western Australia</td>
<td>25°50'S 12°05'E</td>
<td>O-12</td>
<td>118/078</td>
<td>Feb. 4, 1974</td>
<td>28</td>
<td><1,685±5</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Probable impact craters and astroblemes detectable on Landsat MSS images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boxhole Crater, Northern Territory</td>
<td>22°37'S 13°12'E</td>
<td>P-13</td>
<td>108/076</td>
<td>Aug. 3, 1972</td>
<td>0.185</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable impact crater barely detectable on Landsat MSS images</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liverpool, Northern Territory</td>
<td>12°24'S 13°03'E</td>
<td>N-13</td>
<td>111/069</td>
<td>Apr. 7, 1978</td>
<td>1.6</td>
<td>150±70</td>
<td>Sed</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Kelly West¹, Northern Territory</td>
<td>19°57'S 13°56'E</td>
<td>P-13</td>
<td>110/074</td>
<td>Oct. 16, 1972</td>
<td>2.5</td>
<td><550</td>
<td>Sed</td>
<td>7</td>
<td>?</td>
</tr>
<tr>
<td>Strangways, Northern Territory</td>
<td>15°12'S 13°35'E</td>
<td>N-13,N-14</td>
<td>111/070</td>
<td>Jan. 27, 1976</td>
<td>24</td>
<td><600</td>
<td>Sed&Cry</td>
<td>5</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 4d (Continued)

Proven impact craters not detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Date</th>
<th>MSS Number</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henbury Craters,</td>
<td>24°34'S</td>
<td>133°10'E</td>
<td>109/077</td>
<td>1408-00303</td>
<td>0.150</td>
</tr>
<tr>
<td>Northern Territory</td>
<td></td>
<td></td>
<td></td>
<td>Sept. 4, 1973</td>
<td></td>
</tr>
<tr>
<td>Dalgaranga Crater,</td>
<td>27°43'S</td>
<td>117°05'E</td>
<td>120/079</td>
<td>31572-01270</td>
<td>0.021</td>
</tr>
<tr>
<td>Western Australia</td>
<td></td>
<td></td>
<td></td>
<td>June 24, 1982</td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
1Diameter of largest crater in a field of 14 craters.
2Location of Kelly West matches published geographic description (Tonkin, 1973).
Bibliography

Lovering, J. F., Nickporuk, W., Chodos, A., and Brown, Harrison, 1957, The
distribution of gallium, germanium, cobalt, chromium, and copper in iron
and stony-iron meteorites in relation to nickel content and structure:
Geochimica et Cosmochimica Acta, v. 11, p. 263-278.

Madigan, C. T., 1937, The Boxhole Crater and the Hucksita meteorite (central
Australia): Royal Society South Australia Transactions and Proceedings,
v. 61, p. 187-190; also in McCull, G. J. H., ed., 1977, Meteorite
craters: Benchmark papers in Geology/36: Stroudsburg, PA, Dowden,
Hutchison and Ross, Inc., p. 47-51.

1940, The Boxhole meteoritic iron, central Australia: Mineralogical

Reed, S. J. B., 1969, Phosphorus in meteoritic nickel-iron: in P. M. Millman,

meteorites. II. Irons and pallasites with germanium concentrations
between 8 and 100 ppm: Geochimica et Cosmochimica Acta, v. 31, p. 2065-
2093, 7 figs.
Australia
Western Australia
Dalgaranga Crater

Bibliography

Huss, G. I., 1962, Australia's Dalgaranga crater: Mineralogist, v. 30, no. 9/10, p. 4-7; no. 11/12, p. 12-14, 16.

Nininger, H. H., 1959, Another meteorite crater studied: Science, v. 130, no. 3384, p. 1251-1252; also in H. H. Nininger, Published Papers, Biology and Meteoritics, 1971, Arizona State University, Center for Meteoritic Studies, Publication no. 9, p. 666.

Simpson, E. S., 1938, Some new and little-known meteorites found in Western Australia: Mineralogy Magazine [London], v. 25, no. 163, p. 157-171.
Bibliography

———1939a, Examination of the Henbury meteorite craters by the methods of applied geophysics: Australian and New Zealand Association Advancement of Science Report, v. 24, p. 72-78.

Störzer, Dieter, 1971, Fission track dating of some impact craters in the age range between 6,000 y. and 200 m.y. (abs.): Meteoritics, v. 6, p. 319.

———. 1967b, Geochemistry of Australian meteoritic impact glasses and tektites (australites) (abs.): American Geophysical Union Transactions, v. 48, no. 1, p. 158.

Australia
Western Australia, Kimberley District
Wolf Creek Crater

Bibliography

Beasley, A. W., 1970, Wolf Creek, Australia's largest meteorite crater:

Brookfield, Muriel, 1970a, Dune trends and wind regime in Central Australia:
Zeitschrift fürGeomorphologie, Supplement 10, p. 121-153, 11 figs.,
12 tables.

1970b, Winds of arid Australia: Division of Land Research Technical
Paper no. 30, 58 p., 20 figs., 18 tables: Commonwealth Scientific and
Industrial Research Organization (CSIRO), Canberra.

(Mer-Z): Wolf Creek, Western Australia: Berkeley, University of

Buddhue, J. D., 1957, The oxidation and weathering of meteorites:
Albuquerque, University of New Mexico, 161p., 8 pls.

Cassidy, W. A., 1954, The Wolf Creek, Western Australia, meteorite crater:

1968, Descriptions and topographic maps of the Wolf Creek and Boxhole
Craters, Australia (abs.): in 1st Conference on Shock Metamorphism of
Natural Materials, April 14-16, 1966, Goddard Space Flight Center,
Greenbelt, Md., Proceedings, p. 100; also in French, Bevan, and Short,
N. H., eds., 1968, Shock metamorphism of natural materials: Baltimore,
MD, Mono Book Corp., p. 623.

Classen, J., 1977, Catalogue of 230 certain, probable, possible and doubtful
impact structures: Meteoritics, v. 12, no. 1, p. 61-78.

Engelhardt, W. V., 1974, Meteoritenkrater [Meteor craters]: Naturwissenschaften, v. 61, p. 413-422, 9 figs.

Faust, G. T., Fahey, J. J., Mason, Brian, and Dwornik, E. J., 1969, Pecoraite, Ni. 6, Si. 4.0.10 (OH), 8; nickel analog of clinochrysotile, formed in the Wolfe Creek meteorite: Science, v. 165, no. 3888, p. 59-60, illus.

267

Knox, Reed, Jr., 1967, Surviving metal in meteoritic iron oxides from the Wolf Creek, Western Australia, meteorite crater: Meteoritics, v. 3, no. 4, p. 235-238.

LaPaz, Lincoln, 1954, Meteoritic material from the Wolf Creek, Western Australia, crater (CN-1278,192) (abs.): Meteoritics, v. 1, no. 2, p. 200-203.

1949b, Is the crater of Wolf Creek, Western Australia (-1278,193) meteoritic?: Popular Astronomy, v. 57, p. 138-140; also in Meteoritics Society Contributions, v. 4, no. 3, p. 188-190.

1949c, More about the Wolf Creek, Western Australia, crater: Popular Astronomy, v. 57, p. 345-346; also in Meteoritics Society Contributions, v. 4, no. 3, p. 205-206.

Preuss, Ekkehard, 1951, Der Wolf Creek Meteoritenkrater in Westaustralien [The Wolf Creek meteorite crater in Western Australia]: Sternwelt, v. 3, p. 113.

Bibliography

Bibliography

Baker, V. R., 1981, Australian analogs to geomorphic features on Mars:
Reports of Planetary Geology Program - 1981, National Aeronautics and
Space Administration (NASA) Technical Memorandum 84211, p. 329-333.

Brown, A. R., 1973, A detailed seismic study of Gosses Bluff, Northern
Territory: Australia Bureau Mineral Resources Geology and Geophysics
Record, no. 163, 42 p., illus., includes sketch maps.

Brunnschweiler, R. O., 1959, Geology of Gosses Bluff, N.T., and vicinity:

Cook, P. J., 1966, The Gosses Bluff crypto-explosion structure: Australia

76, no. 2, p. 123-139.

Crook, K. A. W., 1967, Cosmic ice residuum associated with an astrobleme?:

Crook, K. A. W., and Cook, P. J., 1966, Gosses Bluff - Diapir, crypto-volcanic
structure or astrobleme?: Geological Society of Australia Journal, v.

no. 23, p. 5552-5565, 4 figs., 1 table.

Dietz, R. S., 1967a, Shatter cone orientation at Gosses Bluff astrobleme:
Nature, v. 216, no. 5120, p. 1082-1084; abstract in Meteoritical Society

1967b, Two new shatter cones sites (abs.): Meteoritics, v. 3, no. 3, p.
108.

Masaytis, V. L., 1980, Osnovnyye cherty geologii nekotorykh astroblem zarubezhnykh stran: Mesozoyskiye astroblemy: Astroblema Gosses Bluff

Milton, D. J., 1969, Gosses Bluff astrobleme, Australia: Shatter cones (abs.): American Geophysical Union Transactions, v. 50, no. 4, p. 220.

Milton, D. J., and Brett, Robin, 1968, Gosses Bluff astrobleme, Australia - the central uplift (abs.): Geological Society of America, Cordilleran Section, 64th Annual Meeting, Tucson, AZ, 1968, Program, p. 82.

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

Horwitz, R. C., 1975, Provisional geological map at 1:2,500,000 of the north-east margin of the Yilgarn Block, Western Australia: Australia CSIRO Mineral Research Laboratory Report F, p. 10.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC</th>
<th>Landsat Path/Row</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Diameter</th>
<th>Age</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaalijav Craters, Estonian SSR, U.S.S.R.</td>
<td>58°24'N 22°40'E</td>
<td>D-3</td>
<td>204/019</td>
<td>2103-09064 May 5, 1975</td>
<td>0.11*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morasko Craters, Poland</td>
<td>52°29'N 16°54'E</td>
<td>E-3</td>
<td>205/023</td>
<td>2104-09080 May 6, 1975</td>
<td>0.1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boltysh, Ukrainian SSR, U.S.S.R.</td>
<td>48°45'N 32°10'E</td>
<td>E-3</td>
<td>191/027</td>
<td>2108-07491 May 10, 1975</td>
<td>25</td>
<td>100±5</td>
<td>Cry</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Chussemon Crater, (Alternate name: Rochechouart), France</td>
<td>45°49'N 0°46'E</td>
<td>F-1</td>
<td>214/028</td>
<td>1243-10141 Mar. 23, 1973</td>
<td>23</td>
<td>160±5</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Ill'inets, Ukrainian SSR, U.S.S.R.</td>
<td>48°55'N 28°54'E</td>
<td>E-3</td>
<td>196/026</td>
<td>2959-07523 Sept. 7, 1977</td>
<td>4.5</td>
<td>495±5</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Kerla, Tatar SSR, U.S.S.R.</td>
<td>55°00'N 48°20'E</td>
<td>E-4</td>
<td>185/021</td>
<td>2138-07123 June 9, 1975</td>
<td>10</td>
<td>10</td>
<td>Sed</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Kursk, Russian SFSR, U.S.S.R.</td>
<td>51°40'N 36°00'E</td>
<td>E-4</td>
<td>192/024</td>
<td>2793-07373 Mar. 25, 1977</td>
<td>5</td>
<td>250±30</td>
<td>Sed©Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Lake Dellen, Sweden</td>
<td>61°54'N 16°40'E</td>
<td>D-2</td>
<td>209/017</td>
<td>1202-09403</td>
<td>Feb. 10, 1973</td>
<td>5</td>
<td>230</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>Lake Janis'yarvi, Karelian SSR, U.S.S.R.</td>
<td>61°58'N 30°57'E</td>
<td>D-3</td>
<td>201/016</td>
<td>1662-08473</td>
<td>May 6, 1974</td>
<td>14</td>
<td>700</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>Lake Lappajarvi, Finland</td>
<td>63°09'N 23°42'E</td>
<td>D-3</td>
<td>205/016</td>
<td>1216-09172</td>
<td>Feb. 24, 1973</td>
<td>14</td>
<td>77±4</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>Lake Mien, Sweden</td>
<td>56°25'N 14°55'E</td>
<td>D-2</td>
<td>209/021</td>
<td>2036-09303</td>
<td>Feb. 27, 1975</td>
<td>5</td>
<td>118±2</td>
<td>Cry</td>
<td>6</td>
</tr>
<tr>
<td>Lake Sääksjärvi, Finland</td>
<td>61°24'N 22°22'E</td>
<td>D-3</td>
<td>205/017</td>
<td>2104-09053</td>
<td>May 6, 1975</td>
<td>5</td>
<td>490</td>
<td>Cry</td>
<td>7</td>
</tr>
<tr>
<td>Lake Siljan, Sweden</td>
<td>61°02'N 14°52'E</td>
<td>D-2</td>
<td>211/017</td>
<td>1330-09514</td>
<td>June 18, 1973</td>
<td>52</td>
<td>365±7</td>
<td>Sed&Cry</td>
<td>7</td>
</tr>
<tr>
<td>Puchezh-Katunki Crater, RSFSR, U.S.S.R.</td>
<td>56°56'N 43°42'E</td>
<td>D-3</td>
<td>188/020</td>
<td>2105-07291</td>
<td>May 7, 1975</td>
<td>80</td>
<td>183±3</td>
<td>Sed&Cry</td>
<td>4</td>
</tr>
<tr>
<td>Rieskessel, Germany</td>
<td>48°53'N 10°37'E</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09383</td>
<td>May 28, 1973</td>
<td>24</td>
<td>14.8±0.7</td>
<td>Sed&Cry</td>
<td>2</td>
</tr>
<tr>
<td>Rotmistrovka, Ukranian SSR, U.S.S.R.</td>
<td>45°00'N 32°00'E</td>
<td>E-3</td>
<td>193/026</td>
<td>2074-08003</td>
<td>April 6, 1975</td>
<td>5</td>
<td>70</td>
<td>Cry</td>
<td>4</td>
</tr>
<tr>
<td>Soderfjarden, Finland</td>
<td>63°02'N 21°35'E</td>
<td>D-3</td>
<td>207/016</td>
<td>1038-09775</td>
<td>Aug. 30, 1972</td>
<td>5.5</td>
<td>600</td>
<td>Cry</td>
<td>5</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Code</td>
<td>Date</td>
<td>Depth</td>
<td>Age (yr)</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinhein Basin, Germany</td>
<td>48°41'N</td>
<td>10°04'E</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09393</td>
<td>3.4</td>
<td>14.8±0.7</td>
<td>Sed 3</td>
<td></td>
</tr>
<tr>
<td>Ternovka, U.S.S.R.</td>
<td>51°19'N</td>
<td>42°58'E</td>
<td>F-4</td>
<td>187/024</td>
<td>2608-07160</td>
<td>6</td>
<td>?</td>
<td>Sed ?</td>
<td></td>
</tr>
<tr>
<td>Zeleny Gai, Ukrainian SSR, U.S.S.R.</td>
<td>48°07'N</td>
<td>32°09'E</td>
<td>E-3</td>
<td>191/027</td>
<td>2108-07491</td>
<td>1.4</td>
<td>120±20</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 1-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in field of 7 craters

1Geographic coordinates of USSR impact structures, adjusted to match the approximate centers of large structures (Puchezh-Katunki, Mishinogorsk), or to conform to scant geographic descriptions in the Russian literature (Karla). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (My.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morasko Craters, Poland</td>
<td>52° 29' N, 16° 54' E</td>
<td>E-3</td>
<td>205/023</td>
<td>2104-09008 May 6, 1975</td>
<td>0.1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaalijärvi Craters, Estonian SSR, U.S.S.R.</td>
<td>58° 24' N, 22° 40' E</td>
<td>D-3</td>
<td>204/019</td>
<td>2103-09004 May 5, 1975</td>
<td>0.11*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chasseron Crater, (Alternate name: Rochechouart), France</td>
<td>45° 49' N, 0° 46' E</td>
<td>F-1</td>
<td>214/028</td>
<td>1243-10141 Mar. 23, 1973</td>
<td>23</td>
<td>160±5</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Steinheim Basin, Germany</td>
<td>48° 41' N, 10° 04' E</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09383 May 28, 1973</td>
<td>3.4</td>
<td>14.8±0.7</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Boltysh, Ukrainian SSR, U.S.S.R.</td>
<td>48° 45' N, 32° 10' E</td>
<td>E-3</td>
<td>191/027</td>
<td>2108-07491 May 10, 1975</td>
<td>25</td>
<td>100±5</td>
<td>Cry</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>Rieskessel, Germany</td>
<td>48° 53' N, 10° 37' E</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09383 May 28, 1973</td>
<td>24</td>
<td>14.8±0.7</td>
<td>Sed&Cry</td>
<td>2</td>
<td>Cr</td>
</tr>
<tr>
<td>Illi'nets, Ukrainian SSR, U.S.S.R.</td>
<td>48° 55' N, 28° 54' E</td>
<td>E-3</td>
<td>196/026</td>
<td>2959-07523 Sept. 7, 1977</td>
<td>4.5</td>
<td>495±5</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Rotnistrovka, Ukrainian SSR, U.S.S.R.</td>
<td>49° 00' N, 32° 00' E</td>
<td>E-3</td>
<td>193/026</td>
<td>2074-08003 April 6, 1975</td>
<td>5</td>
<td>70</td>
<td>Cry</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude/Longitude</td>
<td>Code</td>
<td>Event Date</td>
<td>Event Code</td>
<td>Magnitude</td>
<td>Type</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kursk, Russian SFSR, U.S.S.R.</td>
<td>51°40'N 36°00'E</td>
<td>E-4</td>
<td>2793-07337</td>
<td>Mar. 25, 1977</td>
<td>5</td>
<td>250±80</td>
<td>Sed&Cry</td>
<td>5 C</td>
<td></td>
</tr>
<tr>
<td>Karla, Tatar SSR, U.S.S.R.</td>
<td>55°00'N 46°20'E</td>
<td>E-4</td>
<td>2138-07123</td>
<td>June 9, 1975</td>
<td>10</td>
<td>10</td>
<td>Sed</td>
<td>4 C</td>
<td></td>
</tr>
<tr>
<td>Lake Mien, Sweden</td>
<td>56°25'N 14°55'E</td>
<td>D-2</td>
<td>2036-09303</td>
<td>Feb. 27, 1975</td>
<td>5</td>
<td>118±2</td>
<td>Cry</td>
<td>6 C</td>
<td></td>
</tr>
<tr>
<td>Puchezh-Katunki Crater, RSFSR, U.S.S.R.</td>
<td>56°55'N 43°42'E</td>
<td>D-3</td>
<td>2105-07291</td>
<td>May 7, 1975</td>
<td>80</td>
<td>183±3</td>
<td>Sed&Cry</td>
<td>4 Cr</td>
<td></td>
</tr>
<tr>
<td>Lake Siljan, Sweden</td>
<td>61°02'N 14°52'E</td>
<td>D-2</td>
<td>1330-09514</td>
<td>June 18, 1973</td>
<td>52</td>
<td>365±7</td>
<td>Sed&Cry</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td>Lake Sääksjärvi, Finland</td>
<td>61°24'N 22°22'E</td>
<td>D-3</td>
<td>2104-09053</td>
<td>May 6, 1975</td>
<td>5</td>
<td>490</td>
<td>Cry</td>
<td>7 ?</td>
<td></td>
</tr>
<tr>
<td>Lake Dellen, Sweden</td>
<td>61°54'N 16°40'E</td>
<td>D-2</td>
<td>209/017</td>
<td>1202-09403</td>
<td>15</td>
<td>230</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lake Janis'yarvi, Karelian SSR, U.S.S.R.</td>
<td>61°58'N 30°57'E</td>
<td>D-3</td>
<td>201/016</td>
<td>1662-08473</td>
<td>14</td>
<td>700</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Soderfjarden, Finland</td>
<td>63°02'N 21°35'E</td>
<td>D-3</td>
<td>207/016</td>
<td>1038-09275</td>
<td>5.5</td>
<td>600</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Lake Lappajarvi, Finland</td>
<td>63°09'N 23°42'E</td>
<td>D-3</td>
<td>205/016</td>
<td>1216-09172</td>
<td>14</td>
<td>77±4</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
</tbody>
</table>

ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in field of 7 craters.
Geographic coordinates of USGS impact structures, adjusted to match the approximate centers of large structures (Puchezh-Katunki, Nishinogorsk), or to conform to scant geographic descriptions in the Russian literature (Karla). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morasko Craters, Poland</td>
<td>52°29'N 16°54'E</td>
<td>E-3</td>
<td>205/023</td>
<td>2104-09080 May 6, 1975</td>
<td>0.1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaalijarv Craters, Estonian SSR, U.S.S.R.</td>
<td>58°24'N 22°40'E</td>
<td>D-3</td>
<td>204/019</td>
<td>2103-09004 May 5, 1975</td>
<td>0.11*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puchezh-Katunki Crater, RSFSR, U.S.S.R.</td>
<td>56°56'N 43°42'E</td>
<td>D-3</td>
<td>188/020</td>
<td>2105-07291 May 7, 1975</td>
<td>80</td>
<td>183±3</td>
<td>Sed&Cry</td>
<td>4</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Siljan, Sweden</td>
<td>61°02'N 14°52'E</td>
<td>D-2</td>
<td>211/017</td>
<td>1330-09514 June 18, 1973</td>
<td>52</td>
<td>365±7</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Boltysh, Ukrainian SSR, U.S.S.R.</td>
<td>48°45'N 32°10'E</td>
<td>E-3</td>
<td>191/027</td>
<td>2108-07491 May 10, 1975</td>
<td>25</td>
<td>100±5</td>
<td>Cry</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-4</td>
<td>188/026</td>
<td>2573-02234 Aug. 17, 1976</td>
<td>25.</td>
<td>65</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rieskessel, Germany</td>
<td>48°53'N 10°37'E</td>
<td>F-1</td>
<td>214/028</td>
<td>1243-10141 Mar. 23, 1973</td>
<td>23</td>
<td>160±5</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Chassenon Crater, (Alternate name: Rochechouart),</td>
<td>45°40'N 0°46'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Code</td>
<td>Date</td>
<td>Value Type</td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>------</td>
<td>------------</td>
<td>------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Dellen, Sweden</td>
<td>61°54'N</td>
<td>16°40'E</td>
<td>D-2</td>
<td>209/017</td>
<td>1202-09403</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feb 10, 1973</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obolon, Ukrainan SSR, U.S.S.R.</td>
<td>49°30'N</td>
<td>32°55'E</td>
<td>E-3</td>
<td>191/027</td>
<td>2108-07491</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May 10, 1975</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Janis'yarvi, Karelian SSR, U.S.S.R.</td>
<td>61°58'N</td>
<td>30°57'E</td>
<td>D-3</td>
<td>201/016</td>
<td>1662-08473</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May 6, 1974</td>
<td>700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Lappajarvi, Finland</td>
<td>63°09'N</td>
<td>23°42'E</td>
<td>D-3</td>
<td>205/016</td>
<td>1216-09172</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feb 24, 1973</td>
<td>77±4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karla, Tatar SSR, U.S.S.R.</td>
<td>55°00'N</td>
<td>48°20'E</td>
<td>E-4</td>
<td>185/021</td>
<td>2138-07123</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>June 9, 1975</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mishinogorsk, RSFSR, U.S.S.R.</td>
<td>58°35'N</td>
<td>28°07'E</td>
<td>D-3</td>
<td>201/019</td>
<td>2460-08352</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apr. 26, 1976</td>
<td><360</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vepriaj, Lithuanian SSR, U.S.S.R.</td>
<td>55°06'N</td>
<td>24°36'E</td>
<td>E-3</td>
<td>202/021</td>
<td>2199-08254</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May 5, 1978</td>
<td>160±30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ternovka, U.S.S.R.</td>
<td>51°19'N</td>
<td>42°58'E</td>
<td>F-4</td>
<td>187/024</td>
<td>2608-07160</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sept. 21, 1976</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kursk, Russian FSFSR, U.S.S.R.</td>
<td>51°49'N</td>
<td>36°00'E</td>
<td>E-4</td>
<td>192/024</td>
<td>2793-07373</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mar. 25, 1977</td>
<td>250±80</td>
<td>Sed&Cry</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lake Mien, Sweden</td>
<td>56°25'N</td>
<td>14°55'E</td>
<td>D-2</td>
<td>209/021</td>
<td>2036-09303</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Feb. 27, 1975</td>
<td>118±2</td>
<td>Cry</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Lake Sääksjärvi, Finland</td>
<td>61°24'N</td>
<td>22°22'E</td>
<td>D-3</td>
<td>205/017</td>
<td>2104-09053</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>May 6, 1975</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misarai, Lithuanian SSR, U.S.S.R.</td>
<td>54°00'N</td>
<td>23°54'E</td>
<td>E-3</td>
<td>202/022</td>
<td>2155-08503</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>June 26, 1975</td>
<td>500±80</td>
<td>Sed?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Rotnistrovka, Ukrainan SSR, U.S.S.R.</td>
<td>49°00'N</td>
<td>32°00'E</td>
<td>E-3</td>
<td>193/026</td>
<td>2074-08003</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>April 6, 1975</td>
<td>70</td>
<td>Cry</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soderfjorden, Finland</td>
<td>63°02'N</td>
<td>21°35'E</td>
<td>D-3</td>
<td>207/016</td>
<td>1038-09275</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aug. 30, 1972</td>
<td>600</td>
<td>Cry</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Table 5c (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Ejecta</th>
<th>Date</th>
<th>Size</th>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il'Inets, Ukrainian SSR, U.S.S.R.</td>
<td>48°55'N</td>
<td>E-3</td>
<td>196/026</td>
<td>2959-07523</td>
<td>4.5</td>
<td>495±5</td>
</tr>
<tr>
<td></td>
<td>28°54'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kjardia, Latvian SSR, U.S.S.R.</td>
<td>57°00'N</td>
<td>D-3</td>
<td>203/020</td>
<td>2606-08461</td>
<td>4</td>
<td>500±50</td>
</tr>
<tr>
<td></td>
<td>22°42'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinheim Basin, Germany</td>
<td>48°41'N</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09383</td>
<td>3.4</td>
<td>14.8±0.7</td>
</tr>
<tr>
<td></td>
<td>10°04'E</td>
<td>F-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32°09'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OMC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

- Sed-Sedimentary, Cry-Crystalline, ()-minor.
- Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
- Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
- Largest crater in field of 7 craters.
- Geographic coordinates of USSR impact structures, adjusted to match the approximate centers of large structures (Pochah-Katunki, Mishinogorsk), or to conform to scant geographic descriptions in the Russian literature (Karla). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OIC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter</th>
<th>Age</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Lappajarvi, Finland</td>
<td>63°09'N 23°42'E</td>
<td>D-3</td>
<td>205/016</td>
<td>1216-09172 Feb. 24, 1973</td>
<td>14</td>
<td>77±4</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lake Mien, Sweden</td>
<td>56°25'N 16°55'E</td>
<td>D-2</td>
<td>209/021</td>
<td>2036-09303 Feb. 27, 1975</td>
<td>5</td>
<td>118±2</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lake Dellen, Sweden</td>
<td>61°54'N 16°40'E</td>
<td>D-2</td>
<td>209/017</td>
<td>1202-09403 Feb. 10, 1973</td>
<td>15</td>
<td>230</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lake Siljan, Sweden</td>
<td>61°02'N 14°52'E</td>
<td>D-2</td>
<td>211/017</td>
<td>1330-09514 June 18, 1973</td>
<td>52</td>
<td>365±7</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td>Lake Sääksjärvi, Finland</td>
<td>61°24'N 22°22'E</td>
<td>D-3</td>
<td>205/017</td>
<td>2104-09053 May 6, 1975</td>
<td>5</td>
<td>490</td>
<td>Cry</td>
<td>7</td>
<td>?</td>
</tr>
<tr>
<td>Il'inets, Ukrainian SSR, U.S.S.R.</td>
<td>48°55'N 28°54'E</td>
<td>E-3</td>
<td>196/026</td>
<td>2959-07523 Sept. 7, 1977</td>
<td>4.5</td>
<td>495±5</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Soderfjärden, Finland</td>
<td>63°02'N 21°35'E</td>
<td>D-3</td>
<td>207/016</td>
<td>1038-09275 Aug. 30, 1972</td>
<td>5.5</td>
<td>600</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Lake Janis'yervi, Karelian SSR, U.S.S.R.</td>
<td>61°58'N 30°57'E</td>
<td>D-3</td>
<td>201/016</td>
<td>1662-08473 May 6, 1974</td>
<td>14</td>
<td>700</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
</tbody>
</table>

Probable impact craters and astroblemes barely detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OIC*</th>
<th>Landsat Path/Row</th>
<th>Landsat image ID No. and date of Acquisition</th>
<th>Diameter</th>
<th>Age</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rieskessel, Germany</td>
<td>48°53'N 10°37'E</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09383 May 28, 1973</td>
<td>24</td>
<td>14.8±0.7</td>
<td>Sed&Cry</td>
<td>2</td>
<td>Cr</td>
</tr>
<tr>
<td>Steinheim Basin, Germany</td>
<td>48°41'N 10°04'E</td>
<td>E-2</td>
<td>208/026</td>
<td>1309-09383 May 28, 1973</td>
<td>3.4</td>
<td>14.8±0.7</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>
Table 5d (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Lat/Long</th>
<th>Size</th>
<th>Depth</th>
<th>Occurrence</th>
<th>Impact Crater</th>
<th>Type</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chasseron Crater, (Alternate name:</td>
<td>45°49'N</td>
<td>F-1</td>
<td>214/028</td>
<td>1243-10141</td>
<td>Cry</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Rochechouart), France</td>
<td>0°46'E</td>
<td></td>
<td></td>
<td>Mar. 23, 1973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24°36'E</td>
<td></td>
<td></td>
<td>May 5, 1978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puchezh-Katunki Crater, RSFSR, U.S.S.R.</td>
<td>56°56'N</td>
<td>D-3</td>
<td>188/020</td>
<td>2105-07291</td>
<td>Sed&Cry</td>
<td>4</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td>43°42'E</td>
<td></td>
<td></td>
<td>May 7, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mishinogorsk, RSFSR, U.S.S.R.</td>
<td>58°35'N</td>
<td>D-3</td>
<td>201/019</td>
<td>2460-08382</td>
<td>Sed(Cry)</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>28°07'E</td>
<td></td>
<td></td>
<td>Apr. 26, 1976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misarai, Lithuanian SSR, U.S.S.R.</td>
<td>54°00'N</td>
<td>E-3</td>
<td>202/022</td>
<td>2155-08503</td>
<td>Sed?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>23°54'E</td>
<td></td>
<td></td>
<td>June 26, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proven impact craters not detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Name</th>
<th>Lat/Long</th>
<th>Size</th>
<th>Depth</th>
<th>Occurrence</th>
<th>Impact Crater</th>
<th>Type</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaalijarv Craters, Estonian SSR, U.S.S.R.</td>
<td>58°24'N</td>
<td>D-3</td>
<td>204/019</td>
<td>2103-09004</td>
<td>0.11*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22°40'E</td>
<td></td>
<td></td>
<td>May 5, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morasko Craters, Poland</td>
<td>59°29'N</td>
<td>E-3</td>
<td>205/023</td>
<td>2104-09080</td>
<td>0.1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16°54'E</td>
<td></td>
<td></td>
<td>May 6, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probable impact craters and astroblemes not detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Name</th>
<th>Lat/Long</th>
<th>Size</th>
<th>Depth</th>
<th>Occurrence</th>
<th>Impact Crater</th>
<th>Type</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ternovka, U.S.S.R.</td>
<td>51°19'N</td>
<td>F-4</td>
<td>187/024</td>
<td>2608-07160</td>
<td>6</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>42°58'E</td>
<td></td>
<td></td>
<td>Sept. 21, 1976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karla, Tatar SSR, U.S.S.R.</td>
<td>55°00'N</td>
<td>E-4</td>
<td>185/021</td>
<td>2138-07123</td>
<td>10</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>48°20'E</td>
<td></td>
<td></td>
<td>June 9, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40°18'E</td>
<td></td>
<td></td>
<td>Aug. 17, 1976</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotmistrovka, Ukrainian SSR, U.S.S.R.</td>
<td>49°00'N</td>
<td>E-3</td>
<td>193/026</td>
<td>2074-08003</td>
<td>5</td>
<td>70</td>
<td>Cry</td>
</tr>
<tr>
<td></td>
<td>32°00'E</td>
<td></td>
<td></td>
<td>April 6, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boltyshe, Ukrainian SSR, U.S.S.R.</td>
<td>48°45'N</td>
<td>E-3</td>
<td>191/027</td>
<td>2108-07491</td>
<td>25</td>
<td>100±5</td>
<td>Cry</td>
</tr>
<tr>
<td></td>
<td>32°10'E</td>
<td></td>
<td></td>
<td>May 10, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logosk, Byelorussian SSR, U.S.S.R.</td>
<td>54°12'N</td>
<td>E-3</td>
<td>198/022</td>
<td>2475-08220</td>
<td>17</td>
<td>100±20</td>
<td>Sed?</td>
</tr>
<tr>
<td></td>
<td>27°48'E</td>
<td></td>
<td></td>
<td>May 11, 1976</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5d (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Event Code</th>
<th>Event Date</th>
<th>Event Time</th>
<th>Diameter (km)</th>
<th>Max. Depth (m)</th>
<th>Recurrence</th>
<th>Type</th>
<th>Height?</th>
<th>Hazard?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeleny Gai</td>
<td>48°07'N</td>
<td>32°09'E</td>
<td>E-3</td>
<td>191/02/03</td>
<td>May 10, 1975</td>
<td>1.4</td>
<td>120±20</td>
<td></td>
<td>?</td>
<td>?</td>
<td>S</td>
</tr>
<tr>
<td>Ukrainian SSR, U.S.R.</td>
<td>49°30'N</td>
<td>32°55'E</td>
<td>E-3</td>
<td>191/02/27</td>
<td>May 10, 1975</td>
<td>15</td>
<td>160</td>
<td>Cry</td>
<td>5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Obolcn,</td>
<td>51°40'N</td>
<td>36°00'E</td>
<td>E-4</td>
<td>192/02/24</td>
<td>Mar. 25, 1977</td>
<td>5</td>
<td>250±80</td>
<td>Sed & Cry</td>
<td>5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Kjerdla</td>
<td>57°00'N</td>
<td>22°42'E</td>
<td>D-3</td>
<td>203/02/01</td>
<td>Sept. 19, 1976</td>
<td>4</td>
<td>500±50</td>
<td>Sed?</td>
<td></td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

Largest crater in field of 7 craters

Geographic coordinates of USSR impact structures, adjusted to match the approximate centers of large structures (Puchezh-Katunki, Mishinogorsk), or to conform to scant geographic descriptions in the Russian literature (Karla). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
Europe
USSR
Estonskoy SSR, Saaremaa Island
Kaalijarv Craters

Bibliography

1963a, Novyye dannyye o stroyenii Ilumetsaskikh kraterov [New data on the structure of the Ilumetsa craters]: Akademiya Nauk Estonskoy SSR, Institut Geologii Trudy, no. 11, p. 35-43 (with Estonian and English summaries).

1963b, Ob istorii izucheniya Kaaliskikh meteoritnykh kraterov [On the history of the study of the Kaali meteorite craters]: Akademiya Nauk Estonskoy SSR, Institut Geologii Trudy, no. 11, p. 25-34 (with Estonian and English summaries).

295
meteoritakh [On crater-forming meteorites]: Akademiya Nauk Estonskoy
SSR, Institut Geologii Trudy, no. 11, p. 73-83 (with Estonian and English
summaries).

Buchwald, Vagn F., 1975, Handbook of iron meteorites, v. 2, Iron meteorites,
(A-Moj), Kaalijarv, Saaremaa (Osel), Estonian S.S.R.: Berkeley,

Dietz, R. S., 1967, Two new shatter cone sites [abs.]: Meteoritics, v. 3,
no. 3, p. 108.

1968, Shatter cones in cryptoexplosion structures: in Devan French, and
N. M. Short, eds., Shock metamorphism of natural materials: Baltimore,
MD, Mono Book Corp., p. 267-285, 6 pls.

Fisher, Clyde, 1936, The meteor craters in Estonia: Natural History, v. 38,
no. 4, p. 292-299.

Publications, v. 9, p. 120-121.

Giere, Werner, 1934, Der Meteoritenkrater von Sall auf Oesel [The Sall
meteorite crater on Oesel]: Petermanns Mitteilungen, v. 80, no. 12,
p. 372.

Kranz, Walter, 1937, "Krater von Sall" auf Oesel, wahrscbeinlich
"Meteorkrater" [Sall Crater on Oesel, a probable "meteor crater"]:
Beiträge zur Geophysik, v. 51, no. 1, p. 50-55.

Kraus, E., Meyer, R., and Wegener, Alfred, 1928, Untersuchungen über den
Krater von Sall auf Oesel [Investigations of the Sall crater on Oesel]:
Krinov, E. L., 1945, Meteoritnye krateri na ostrove Saareme (Ezel')
[Meteorite craters on the island of Oesel]: Akademiya Nauk SSSR
Izvestiya, Seriya Geograficheskaya i Geofizicheskaya, v. 9, no. 4, p.
409-414 (in Russian, with English summary).

1960b, Die meteoritischen Krater Kaalijarv auf der Insel Saaremaa,
Estnische SSR [The Kaalijarv meteorite crater on the island of Saaremaa,
Estonia]: Chemie der Erde, v. 20, no. 4, p. 199-216.

1961, The Kaalijarv meteorite craters on Saaremaa Island, Estonian SSi.:

1962, Meteoritnye krateri na poverkhvesti zemli [Meteorite craters on
the Earth's surface]: Meteoritika, v. 22, p. 3-30; also available in
System, v. 4, The Moon, meteorites, and comets: Chicago, University of

1966a, Kaalijarv chapter, p. 33-41: in Krinov, Ye. L., 1966, Giant

1966b, News about meteorite craters: Zemlya i vseleennaja (Moskva,
Akademija Nauk S.S.S.R.), v. 5, p. 59-67, 10 figs.

Kulik, L. A., 1940, Meteoritnyi krater Kaliyarv [The meteorite crater
Kaalijarv]: Priroda, 1940, no. 12, p. 63-65.

Linstow, O., von, 1919, Der Krater von Sall auf Oesel [The Sall crater on
Oesel]: Zent-alblatt für Mineralogie, Geologie, und Paläontologie, no.
21/22, p. 326-339.

Pobjul, E., 1958, Kaalijarve meteoriidkraatri, nr. 3 [The Kaalijarv meteorite
crater, no. 3]: Akadamiya Nauk Estonskoy S.S.R., Institut Geologii
Trudy, no. 2, p. 119-132.

297

1938, Der Krater von Sall (Kaalijärv), ein Meteorkrater-Feld in Estland [The Sall crater (Kaalijärv), a meteor crater field in Estonia]: Natur und Volk, v. 68, no. 1, p. 16-24.

1946, On the question concerning erection of a museum in the area of the Kaalijärve meteoritic craters: Meteoritika, v. 3, p. 46-51.
Wangenheim von Qualen, F., 1850, Noch einige Worte über den Krater von Sall
Meteoritika, v. 28, p. 44-50, 4 figs.
Yudin, I. A., and Smyshlajev, S., 1963, Mineralogic and chemical Studies of the
Kaalijarv iron meteorite (in Russian): Eesti NSV Teaduste Akademia Geoloogia
Instituudi Uurimused, v. 11, p. 53-59, 10 figs.
Europe
Poland
Morasko Craters

Bibliography

Karaszewski, Władysław, 1974, O badaniach geologicznych w kraterach "meteorytowych" Noerdlinger Ries (RFN) i w Morasku (Polska) [Geological studies of "meteorite" craters in Noerdlingen Ries (West Germany) and at Morasko (Poland)]: Przegląd Geologiczny, v. 22, no. 12, p. 626-627 (with English and Russian summaries).

1964, Meteority Polski, 6--Meteoryt Morasko: [Meteorites of Poland, 6--
The Morasko meteorite]: Studia-Geologica Polonica, v. 15, p. 49-70;
English summary, p. 139-140.

Slavik, Frautisek, 1928, Place-names of mineral localities in central
Europe: The Mineralogical Magazine, v. 21, no. 121, p. 78.

Vogt, H., 1979, Neue Meteoritenkrater in Polen [New meteor craters in
Poland]: Kosmos, v. 75, no. 5, p. 391.
Bibliography

Gurov, Ye. P., and others, 1977, Ejecta from Boltysh meteorite crater on the Ukrainian shield: Geologichniy Zhurnal, v. 37, vyp. 6, p. 79-84.

Menacov, A. N., and Raikhlin, A. I., 1976, Srazvitel'noye izucheniye vozrasta
impaktitov metodom trakovi Kaliy a gonovym. [Comparison of fission-track
and potassium argon dating of impactites]: Doklady Akademii Nauk SSSR,
v. 228, no. 3, p. 673-676; English translation in Academy Sciences USSR,
Earth Sciences Section, v. 228, nos. 1-5, p. 35-38, illus. (incl. tables, 1976) [1977].

Kozlovs'kaya, A. M., Raspopova, M. G., Gladskiy, V. N., Gurevich, D. L., and
Chirvenskaya, N. V., 1971, Problem of structure of the pre-Riphean
basement of Ukraine and Moldavia: Sovetskaya Geologiya, no. 6, p. 3-14.

Masaytis, V. L., 1973, Geologicheskiye posledstviya podemny kratera
obrazovushchikh meteoritov [Geologic consequences of crater-forming
meteorite impacts]: Nedra Press, Leningrad.

1974, Some ancient meteorite craters in the USSR (in Russian):
Meteoritika, no. 33, p. 64-68.

1975, Astroblemy na territorii SSSR [Astroblemes in the USSR]:
Sovetskaya Geologiya, no. 11, p. 52-64; English translation in

Masaytis, V. L., and Danilin, A. N., 1980, Geologiya astroblema SSSR;
Mesozoyskiye astroblema: Bol'tyshskaya astroblema [The geology of
astroblemes in the USSR; Mesoozoic astroblemes; the Boltyshskaya
Astrobleme, in Masaytis, V. L., and others, 1980, Geologiya astroblema,
Izd. Nedra, Leningrad, p. 79-88, illus. (incl. 1 analysis, sections, and
sketch map).

Masaytis, V. L., Danilin, A. N., Bogomolnaya, L. S., 1978, Crystallization of
impact melt in Boltysh crater (abs.): Lunar and Planetary Science

Europe
France, Limousin (Haute-Vienne, Charente)
Chasseron Crater
(Alternate name: Rochechouart Crater)

Bibliography

David, E., 1972, Rochechouart, ein streifender Impakt [Rochechouart, a grazing
impact] [abs.]: Fortschrifte der Mineralogie, Kristallographic und
Petrologie v. 50, no. 1, p. 24.

23, p. 5552-5565, 4 figs., 1 table.

Horn, W., and El Goresy, A., 1979, Fe-Cr-Ni-metals in rocks from the floor of
the Rochechouart crater; material of the impacting body?: Meteoritics,
v. 14, no. 4, p. 424.

1980, The Rochechouart crater in France: Stony, not an iron meteorite?
[abs.]: Lunar and Planetary Science Conference, 11th, Abstracts for

Horn, W., Schmetzer, K., and El Goresy, A., 1981, Optische und
roetgenographische Untersuchungen von Quarzen aus geschockten Gesteinen
der Meteoriten-Krater Ries und Rochechouart [Optical and crystallographic
investigations on quartz from shocked rocks from the meteorite craters
Ries and Rochechouart]: Neues Jahrbuch für Mineralogie, Abhandlungen,
v. 143, no. 1, p. 61-90.

Janssens, M. J., Hertogen, J., Takahashi, H., Anders, E., and Lambert, P.,
1976a, Meteoritic material in the Rochechouart crater and prevalence of
iron among crater-forming meteorites [abs.]: Symposium on Planetary
Cratering Mechanics, September 13-17, 1976, Flagstaff, Arizona: Lunar
Science Institute, Houston, Texas, p. 62-63.

1969c, Über ein neues Impaktit-Vorkommen im Gebiete von Rochechouart-Chassenon (Departements Haute-Vienne und Charente), Frankreich [On a newly discovered occurrence of impactite in the region of Rochechouart-Chassenon (Departments of Haute-Vienne and Charente, France): Geologica Bavarica, no. 61, p. 428-450.]

1972a, Etat actuel des recherches relatives aux impactites de la region de Rochechouart, France [Present status of research relative to the impactites in the region of Rochechouart, France] [abs.]: International Geological Congress, 24th, Montreal, 1972, Proceedings, section 15, p. 157.

1972b, Les impactites de Rochechouart-Chassenon (France) [The impactites of Rochechouart-Chassenon (France) [abs.]: International Geological Congress, 24th, Montreal, 1972, Abstracts, p. 446-447.

309

1974c, La structure impactique de Rochechouart (Limousin) : son contexte structural régional, par l'interprétation de "photo-satellite" image ERTS [The Rochechouart impact structure (Limousin) and its regional structural context, as interpreted from an ERTS photosatellite image]: with a foreword by J. Y. Scanvic: Bureau de Recherches Géologiques et Minières (B. R. G. M.), Bulletin, 1974, ser. 2, sec. 4, no. 1, p. 177-188.

1975a, Dommages dans le quartz soumis au metamorphisme de choc par observation en microscopie électronique à balayage [Damage in quartz that has undergone shock metamorphism as observed by the scanning electron microscope]: Bureau de Recherches Géologiques et Minières (B. R. G. M.), Bulletin, 1975, ser. 2, sec. 4, no. 1, p. 31-51.

1975b, Nickel enrichment of impact melt rocks from Rochechouart, Preliminary results and possibility of meteoritic contamination: Meteoritics, v. 10, no. 4, p. 433-436.
1975c, La structure impactique de Rochechouart (Haute-Vienne) et la structure de la partie nord-ouest du Massif Central français:
Interpretation de "photographies obtenues par satellite" Images ERTS [The Rochechouart impact structure (Haute-Vienne) and the structure of the northwest part of the French Central Massif: Interpretation of ERTS "photographs obtained by satellite"]: Bureau Recherches Geologiques et Minieres (B. R. G. M.), Bulletin, 1975, ser. 2, sec. 1, no. 1, p. 21.

1978a, Une meteorite d'un milliard de tonnes dans le Limousin [A billion-ton meteorite in Limousin]: Recherche, v. 9, no. 94, p. 1014-1017.

1978b, Results and implications of research on coesite and stishovite in Rochechouart Crater: Meteoritics, v. 13, no. 4, p. 530-531, 1 table.

314

Bibliography

Val'ter, A. A., and Ryabenko, V. A., 1973, Petrografichni oznaki udarno-meteoritnogo pokhodzhennya Il'inets' koi struktury (Vinnits'ka oblast') [Petrographic indications of a meteoritic impact origin for the Il'inets structure (Vinnitsa region]): Geologichnyi Zhurnal, Moscow, v. 33, no. 6, p. 139-141; and also p. 142-144.

Bibliography

Garris, M. A., 1962, Attempt to use the potassium-argon method to determine the age of the pyrite mineralization of the Southern Urals (in Russian): Trudy, 10th Session, Commission on the determination of the absolute age of geological formations, p. 184-185.

Peirov, V. G., 1969, Particulars of the constitution of the Kaluga structure (in Russian): Moskovskoye Obschestvo Ispyateley Prirody, Byulleteyn, Moscow, v. 54, no. 6, p. 36-42.

Bibliography

1980a, Geologiia astroblem SSSR; Kaynozoyskiye astroblemy; Kamenskaya astroblema [The geology of astroblemes in the USSR; Cenozoic astroblemes; the Gusevskaya Astrobleme], in Masaytis, V. L., and others, 1980, Geologiia astroblem: Izd. Nedra, Leningrad, p. 90-95, illus. (incl. section, sketch map).

1980b, Geologiia astroblem SSSR; Kaynozoyskiye astroblemy; Gusevskaya astroblema [The geology of astroblemes in the USSR; Cenzoic and astroblemes; the Gusevskaya Astrobleme], in Masaytis, V. L., and others, 1980, Geologiia astroblem: Izd. Nedra, Leningrad, p. 95.

Bibliography

Bibliography

Bibliography

Bibliography

Bottomley, R. J., York, Derek, and Grieve, R. A. F., 1977, 40Ar-39Ar dating of
Scandinavian impact craters (abs.): Meteoritics, v. 12, no. 3, p. 982-183.

Carstens, Harald, 1975, Thermal history of impact melt rocks in the
Fennoscandian shield: Contributions to Mineralogy and Petrology; v. 50,
no. 2, p. 145-155, 9 figs.

no. 23, p. 5552-5565, 4 figs.

Eskola, Pnetti, 1921, On volcanic rocks in Lake Janisjarvi, in eastern
Finland: Finland Geologiska Kommissionen Bulletin 55, p. 3-13, 1 fig.

Fredriksson, Kurt, and Wickman, F. E., 1963, Meteoriter [Meteorites]: Sweden

Fregerslev, Sidsel, and Carstens, Harald, 1976, Fe-Mn metal in impact melt
rocks of Lake Lappajarvi, Finland: Contributions to Mineralogy and
Petrology, v. 55, no. 3, p. 255-263, 4 figs.

Hogbom, A. G., 1910, [Note]: Geologiska Foreningen i Stockholm Forhandlingar,
v. 32, no. 1, p. 482-483.

Lundegardh, P. H., 1967, Yngsta Vulkaniska Bergarter, in Berggrunden i
Gavleborgs lan. [The basement in Gavleborg County]: Sweden Geologiska
Undersökning, serien Ba; no. 22, p. 125-134.

Lundqvist, G., 1963, Beskrivning till jordartskarta over Gavleborgs lan.
[Description of the soil map of Gavleborg County]: Sveriges Geologiska
Undersökning, Ärbsok, Stockholm, serien Ca., no. 42, 181.

325

Bibliography

Eskola, Pentti, 1921, On volcanic necks in Lake Janis'yarvi in eastern Finland: Finland Geologiska Kommissionen Bulletin 55, p. 3-13, 1 fig.

Fregerslev, Sidse], and Carstens, Harald, 1976, Fe-Ni metal in impact melt rocks of Lake Lappajarvi, Finland: Contributions to Mineralogy and Petrology, v. 55, no. 3, p. 255-263, 4 figs.

Europe
Finland, South Pohjanmaa (Osterbotten)
Lake Lappajarvi

Bibliography

Dietz, R. S., and McHone, John, 1974, Impact structures from ERTS imagery: Meteoritics, v. 9, no. 4, p. 329-333, 9 figs.

Eskola, Pentti, 1921, On volcanic necks in Lake Janis'yarvi in eastern Finland: Finland Geologiska Kommissionen Bulletin 55, p. 3-13, 1 fig.

330
Holmberg, H. J. 1858, Materialer till Finlands geognosy [Data on the geognosy of Finland]: Bidrag till Finlands naturkammadom, etnografi och statistik [Contribution to the natural history, ethnography and statistics of Finland]: Finska Vetenskapst Societeten Helsingfors 4 Haftet, p. 118.

Kaiikko, J., 1921, Mikroskopinen tutkimus Lappajarven Karnaasaarest a loydettysta pintayuirilajista: Helsinki University, Mineralogical and Geological Institution Archives, unpublished manuscript.

Kulonpalo, Max, 1969, Karnaitittiloikareita Keski- ja Etela-Suomessa eli Suomen pisin lohkareviuhka (with English abs.): Geologi (Helsinki), v. 21, no. 6, p. 80-81, (incl. English summary), sketch map.

_____1976b, Lappajarven Shokkimetamorfisista Kivista: Geologi (Helsinki) v. 28, no. 7, p. 81-84, 86, 2 figs.

Molder, Karl, 1948, Die Verbreitung der Dacitblocke in der Morane der Umgebung des Sees Lappajarvi [Distribution of blocks of dacite in moraine in the vicinity of Lake Lappajarvi]: Finland Geologinen Tutkimuslaitos [Geological Survey of Finland], v. 25, n. 142, p. 45-52.

Molder, Karl and Salmi, Martti, 1955, The general geological map of Finland, Sheet B-3, Vaasa: Finland Geologinen Tutkimuslaitos, [Geological Survey of Finland], scale 1:4,000,000.

Odenwall, E., 1934, Lake Lappajarvi. Bathymetric chart, notes on thermal conditions, etc.: Hydrografischen toimistoon tiedonantoja VI, Helsinki, 24 p.

Bibliography

Bottomley, R. J., York, Derek, and Grieve, R. A. F., 1977, $^{40}\text{Ar} - ^{39}\text{Ar}$ dating of Scandinavian impact craters [abs.]: Meteoritics, v. 12, 3, p. 182-183.

Bottomley, R. J., York, Derek, and Grieve, R. A. F., 1978, $^{40}\text{Ar} - ^{39}\text{Ar}$ ages of Scandinavian impact structures: L. Mien and Sijjan: Contributions to Mineralogy and Petrology, v. 68, no. 1, p. 79-84, 6 figs.

Holst, N. P., 1890, Ryolit vid sjön Mien [The rhyolite at Lake Mien]: Afhandlingar och uppsatser, Sweden Geologiska Undersökningen, Serien C: no. 110, 50 p.

Kjellen, R., 1902, Bidrag till Sveriges endogena geografi [Contribution to the indigenous geography of Sweden]: Geologiska Foreningen i Stockholm Forhandlingar, v. 24, no. 4,, p. 193-220.

Stanfors, Roy, 1969, Lake Mien; an astrobleme or a volcano-tectonic structure: Geologiska Foreningen i Stockholm Forhandlingar, v. 91, Part 1, no. 536, p. 73-86.

Störzer, D., 1971, Fissiontrack dating of some impact craters in the age range between 6,000 y. and 300 m.y. [abs.]: Meteoritics, v. 6, 4, p. 319.

1969b, Meteorite impact craters on the Scandinavian Precambrian basement
[abs.]: Meteoritics, v. 4, no. 3, p. 208.
Svensson, N.-B., and Wickman, F. E., 1965, Coesite from Lake Mien, southern
Lake Mien structure: University of Uppsala, Department of solid Earth
Physics, Preliminary Report no. 4, p.
Welin, Eric, 1975, K-Ar dating and Sr-isotope composition of rhyolitic rocks
from Lake Mien in southern Sweden: Geologiska Foringen i Stockholm
Bibliography

Fregerslev, Sidsel, and Carstens, Harald, 1976, Fe-Ni metal in impact melt rocks of Lake Lappajarvi, Finland: Contributions to Mineralogy and Petrology; v. 55, p. 255-263, figs.

Mutanen, T., 1979, Lake saaksjarvi: an astrobleme after all: Geologi (Helsinki), v. 31, p. 9-10, 125-130.

Bibliography

1978, 40Ar-39Ar ages of Scandinavian impact structures: L. Mien and Siljan: Contributions to Mineralogy and Petrology, v. 68, no. 1, p. 79-84, 6 figs.

Hjelmquist, Sven, 1966, Beskrivning till bergrundskarta over Kopparbergs lan. [Description of the bedrock map of Kopparberg County]: Sweden Geologiska Undersokningen, Serien Ca., no. 40, 217 p., (with English summary).
Huttner, Rudolph, 1969, Bunte Trümmermassen and Suevit [Bunte rubble masses and suevite]: Geologica Bavaria, no. 61, p. 142-200, illus.

Rondot, Jehan, 1975, Comparaison entre les astroblèmes de Siljan, Suède, et de Charlevoix, Québec [Comparison between the astroblemes of Siljan, Sweden, and Charlevoix, Quebec]: Geological Institutions of the University of Uppsala Bulletin, new series, v. 6, p. 85-92, 10 figs.

1973, Shatter cones from the siljan structure, central Sweden:
Geologista Foereningensi Stockholm, Forhandlingar, v. 95, pt. 1, no. 552, p. 139-143, illustrations include geologic sketch map.

Thorslund, Per, 1960, Notes on the geology and stratigraphy of Dalarna:

Thorslund, Per, and Auton, Clive, 1974, Evidence of meteorite impact in the Siljan structure, central Sweden: Geological Institutions of the University of Uppsala Bulletin, new series, v. 6, p. 69-72, 5 figs.

Thorslund, Per, and Jaanusson, V., 1960, The siljan district, road-log:
Europe
USSR, Byelorussian SSR
Logolisk

Bibliography

Grieve, R. A. F., 1982, The record of impact on earth. Implications for a
major Cretaceous/Tertiary impact event, in Silver, L. T., and Schultz,
P. H., eds., 1982, Geological implications of impact of large asteroids
and comets on the earth: Geological Society of America Special Paper
190, p. 25-37.

Grieve, R. A. F., and Robertson, P. B., 1979, The terrestrial cratering

Masaytis, V. L., Danilin, A. N., Mashchak, M. S., Raikhlin, A. I.,
Selivanovskaja, T. V., and Shadenkov, E. M., 1980, Geologija astroblen:
Leningrad, Nedra, 231 p.

basin—an ancient meteorite crater (in Russian): Doklady AN BSSR, v. 23,
no. 2, p. 156-160.
Europe
USSR, Lithuanian SSR
Misarai and Vepriaj

Bibliography

Grieve, R. A. F., and Robertson, P. B., 1979, The terrestrial cratering

Masaytis, V. L., 1980a, Geologiya astroblemy SSSR; Pozdne-proterozoyskie i
paleozoyskie astroblemy; Mizayskaya astroblema [The geology of
astroblemes in the USSR; upper Proterozoic and Paleozoic astroblemes; the
Mizayskaya astrobleme], in Masaytis, V. L., and others, 1980, Geologiya
astroblem: Izd. Nedra, Leningrad, p. 32-34, section.

1980, Geologiya astroblem SSSR: Mesozoyskiye astroblemy: Vyapryaskaya
astroblema [The geology of astroblemes in the USSR: Mesozoic
astroblemes; the Vyapryaskaya Astrobleme], in Masaytis, V. L., and
others, Geologiya astroblem: Izd. Nedra, Leningrad, p. 69-72, section,
sketch map.

Motuza, G. B., and Gaylyus, R. P., 1978, On presumed astroblemes of Latvia:
in Local structures of Byelorussia and the Baltic area (Abstracts of the
7th Annual Conference of the Committee on tectonics of Byelorussia and
the Baltic area, May, 1978: Vilnius, p. 91-94.
Europe
USSR, RSFSR
Mishinogorsk

Bibliography

———1975, Astroblemy na territorii SSSR [Astroblemes in the USSR]:

Bibliography

Koziolovskaya, A. N., Raspopova, M. G., Gladskiy, V. N., and others, 1971, K voprosu o stroyenii dorifeyskogo fundamenta territorii Ukrainy i Moldavii [Structure of the pre-Riphean basement in the Ukraine and Moldavia]: Sovetskaya Geologiya, no. 6, p. 3-14, sketch maps.

Europe
USSR, RSSR, Gorkii Province
Puchezh-Katunki Crater

Bibliography

Classen, J., 1977, Catalog of 230 certain, probable, possible and doubtful impact structures: Meteoritics, v. 12, no. 1, p. 61-78.

Bibliography

1929b, Die Tüffe des Nördlinger Rieses und ihre Bedeutung für das Gesamtproblem [The tuffs of the Nordlingen Ries and their bearing on the whole problem]: Deutsche Geologische Gesellschaft Zeitschrift, v. 81, nos. 3-4, p. 94-99.

Ahrens, Wilhelm, and Bentz, A., 1929, Der "Trass" des Nördlinger Rieses im Vergleich mit den übrigen deutschen Trassvorkommen [The "trass" of the Nordlingen Ries compared to the other German trass occurrences]: Zeitschrift für Praktische Geologie, v. 37, p. 185-189.

_____ 1963, Zur Kenntnis der postjurassischen Deckschichten in der Umgebung des Nördlinger Rieses [Information on the post-Jurassic cover strata in the vicinity of the Nordlingen Ries]: Mitteilungen Bayerische Staatsammlung: no. 3, p. 73-82, 3 figs.

1966, Vermessung der Totalintensität des erdmagnetischen Feldes im Ries und seiner Umgebung [Survey of the total intensity of the geomagnetic field in the Ries and vicinity]: München Universität, Geophysikalisches Observatorium Fürstenfeldbruch, Serie B, Veröffentlichungen, no. 4, p. 1.

Bauberg, W., Mielke, H., Scheer, D., and Stettner, G., 1974, Petrografische Profildarstellung der Forschungsbefahrung Nördlingen 1973 (von Meter 263 an bis zur Endteufe in Masstab 1:200) [Petrographic profile of the Nördlingen 1973 research borehole (from meter 263 to the bottom on a 1:200 scale)]: Geologica Bavarica, v. 73, p. 33-34.

Becke, F., 1882, Petrographische Studien am Tonalit der Riesenferner [Petrographic studies on the tonalite of the Riesenferner]: Tschermak's mineralogische und petrographische Mitteilungen v. 13, p. 379-482.

1928b, Das Nördlinger Riesproblem und seine Deutungen [The problem of the Nördlingen Ries and its interpretation]: Preussische Geologische Landesanstalt und Bergakademie, Sitzungsberichte, no. 3, p. 72-86.

____1967a, Ries and the progressive stages of impact metamorphism (abs.): Fortschrifte der Mineralogie Kristallographie und Petrographie, v. 44, no. 1, p. 139-140.

357

Dressler, Burkhard, and Graup, G., 1967b, Petrographische Untersuchungen des kristallinen Grundgebirges im östlichen Ries und Vorries [Petrographic investigations of the crystalline basement in the eastern Ries and Vorries]: München Universität, Institut für Gesteinskunde, Diplom-Arbeit.

Dressler, Burkhard, Graup, Gunther, and Matzke, Klaus, 1969, Die Gesteine des kristallinen Grundgebirges im Nördlinger Ries [The rocks of the crystalline basement in the Nördlingen Ries]: Geologica Bavaria, v. 61, p. 201-228.

Engelhardt, Wolf von, and Graup, G., 1977, Stosswellenmetamorphose im
Kristall in der Forschungsbohrung Nördlingen 1973 [Shock-wave metamorphism
in the crystalline rocks of the Nordlinger 1973 Research borehole]:

1980, Origin and transport of suevite, Ries Crater, Germany [abs.]:
Meteoritics, v. 15, no. 4, p. 287.

1981, Ries Crater, Germany: Petrography of the suevite and conclusions on
crater formation: Meteoritics, v. 16, no 4, p. 311.

Engelhardt, Wolf von, and Hansel, J. 1976, Ein Beitrag zur Erkundung der
Struktur des Nördlinger Rieses auf Grund geoelektrischer Schlumberger-
Sondierungen [A contribution to knowledge of the structure of the
Nördling Ries on the basis of geoelectrical Schlumberger sounding]:
23-41, Braunschweig.

Engelhardt, Wolf von, and Hörz, Friedrich, 1964, Hochdrückgläser im Nördlinger
Ries [High-pressure glasses in the Nördling Ries]: Die Naturwissenschaften,
v. 51, no. 11, p. 254.

1965, Riesgläser und Moldavite [Ries glasses and moldavite]: Geochimica
et Cosmochemica Acta, v. 29, no. 6, p. 609-620 (with English abs.).

Engelhardt, Wolf von, Hörz, Friedrich, Stöffler, Dieter, and Hertsch, W.,
1968, Observations on quartz deformation in breccias of West Clearwater
Lake, Canada, and the Ries Basin, Germany, in French, B. M., and Short,
N. M., eds., Shock metamorphism of natural materials: Baltimore, MD,
Mono Book Corporation, p. 475-482.

Engelhardt, Wolf von, and Stöffler, Dieter, 1965, Spaltflächen im Quarz als
Anzeichen für Einschläge grosser Meteoriten [Cleavage planes in quartz as
evidence of impacts of large meteorites]: Die Naturwissenschaften,
v. 52, no. 17, p. 489-490.

1974, Ries meteorite crater, Germany, III. Description of outcrops and quarries in the Ries area: Fortschritte der Mineralogie, Kristallogephraphie und Petrographie, v. 52, no.1, p. 117-122.

Forstner, Ulrich, 1967, Petrographische Untersuchungen des Suevitaus den Bohrungen Deiningen und Wornitzostheim im Ries von Nördlingen [Petrographic investigation of the suevite from the Deiningen and Wornitzostheim boreholes in the Nördlingen Ries]: Contributions to Mineralogy and Petrology, v. 15, no. 4, p. 281-308 (with English abs.).

Frickhinger, H., 1884, Die Brünnenwasser von Nördlingen im Ries, betrachtet vom geologischen, mikrobiologischen, chemischen und hygienischen Standpunkt [The spring water from Nördlingen in the Ries, considered from the geologic, microscopic, chemical, and hygienic standpoint]: Arztliches Intelligenz-blatt (Munchener medicinische Wochenschrift), München, v. 34-35, 34 p.
Frickhinger, H., 1904, Riessee, sein Entstehen, Bestehen und Verschwinden
[Ries Lake, its origin, existence, and disappearance]:
Naturwissenschaftliche Verein für Schwaben und Neuberg, Augsburg, Bericht

Gall, Horst von., 1969, Geologische Untersuchungen im südwestlichen Vorries.
Das Gebiet des Blattes Wittislingen [Geologic investigations in the
southwestern Vorries. The area of the Wittislingen sheet]: München
Universität, Dissertation, 166 p.

1971, Obere Süßwassermolasse (Hangendserie) über Riestrummermassen bei
Graisbach (südöstliches Vorries) und ihre Bedeutung für die
Landschaftsgeschichte der Schwäbisch-Frankischen Alb [Upper freshwater
molasse (overlying series) above Ries rubble masses at Graisbach
(southeastern Vorries) and its significance for the geomorphic history of
the Swabian-Franconian Alb]: Bayerische Staatsammlung für Paläontologie
und historische Geologie Mitteilungen, München, no.11, p. 295-327.

1974a, Geologische Bau- und Landschaftsgeschichte des südöstlichen
Vorrieses zwischen Hochstadt a. d. Donau und Donauworth: [Geologic
structure and geomorphic history of the southeastern Vorries between
Hochstadt on the Danube and Donauworth]: Neues Jahrbuch für Geologie und

1974b, Neue Daten zum Verlauf der Kliffflinie der oberen Meeresmolasse
(Helvet) im südlichen Vorries [New data on the trend of the cliff line of
the upper marine molasse (Helvetic) in the southern Vorries]:
Bayerische Staatsammlung für Paläontologie und historische Geologie,

Gall, Horst von, Muller, Dieter, and Stöffler, Dieter, 1975, Verteilung, Eigenschaften und Entstehung der Auswurfsmassen des Impaktkraters Nördlinger Ries [Distribution, properties, and origin of the ejecta of the Nordlingen Ries impact crater]: Geologische Rundschau, v. 64, no. 3, p. 915-947.

1971, Cogenesys of the Ries Crater and moldavites and the origin of tektites (abs.): Meteoritics, v. 6, no. 4, p. 274-275.

Grigor'ev, D., 1974, S'yed Mezhdunarodnoy mineralogicheskoy assotsiatsii v Zapadnom Berliini i Regensburge (FRG) i ekskursii na pegmatity i meteoritnyy krater Ris v Bavarii.[The meeting of the International Mineralogical Association in West Berlin and Regensburg (West Germany) and the excursion to pegmatites at the Ries meteorite crater in Bavaria]: Vsesoyuznoye Mineralogicheskoye Obshchnestvo, Zapiski, Leningrad, v. 103, no. 6, p. 763-767.

Hahn, Albrecht, 1969, Deutung der magnetischen Anomalie in der Umgebung der Bohrung Wornitzostheim [Interpretation of the magnetic anomalies in the vicinity of the Wornitzostheim borehole]: Geologica Bavaria, v. 61, p. 343-347.

370
Haunschild, H., 1968, Die Bohrungen 1 und 3 der Rastberg-Gruppe und ihre Bedeutung für die Geologie des nördlichen Vorrieses [Boreholes 1 and 3 of the Rastberg group and their significance for the geology of the northern Vorries]: Erlangen Universität, Geologisches Institut, Geologische Blätter Nordost-Bayern und angrenzende Gebiete, v. 18, p. 139-162.

1969b, Kurze Uebersicht der bisherigen Kenntnisse des Pleistozäns im Nördlinger Ries [Brief review of previous knowledge of the Pleistocene in the Nördlingen Ries]: Geologica Bavaria, v. 61, p. 131-141.

Horn, Peter, 1972, The Ries Kessel, Germany: An example of meteorite impact as a terrestrial geological process: Geoforum, no. 12, p. 91-95.

1969 Bunte Trümmermassen und Suevit [Bunte rubble masses and suevite]: Geologica Bavaria, no. 61, p. 142-200, illus.

Hüttner, Rudolph, Schmidt-Kaler, Hermann, and Treibs, Walter, 1969, Anmerkungen zur Geologischen Übersichtskarte (Beilage 1) [Note on the geological map (supplement 1): Geologica Bavaria, no. 61, p. 451-454.

1970, Exkursionsführer zur geologischen Übersichtskarte des Rieses 1:100,000 [Excursion guide to the 1:100,000-scale general geologic map of the Ries]: Bayerisches Geologisches Landesamt, München, 68 p., 1 geologic map.

Jahnel, Chr., 1966, Geologisch-palaeontologische Untersuchungen im Gebiet des Nördlinger Rieses, SW-Teil des Pestionsblattes Nr. 489 Ebermergen [Geological and paleontological investigations in the area of the Nordlingen Ries, SW part of the Pestion sheet, no. 489 Ebermergen]: Universität München, Diplom-Arbeit, (typewritten).

Karaszewski, Władysław, 1974, O badaniach geologicznych w kraterach "meteorytowych" Noerdlinger Ries (RFN) i w Morasku (Polska) [Geological studies of "meteorite" craters at Noerdlinger Ries (West Germany), and at Morasko (Poland): Przegląd Geologiczny, v. 22, no. 12, p. 626-627 (with English and Russian summaries).

1969b, Reliefmodel des Ries [Relief model of the Ries]: Geologica Bavarica, no. 61, p. 4-5.

1903b, Weitere geologische Beobachtungen am vulkanischen Ries bei Nördlingen [Further geologic investigations on the volcanic Ries at Nördlingen]: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 55, no. 1, p. 23-44.

1922, Der geologische Aufbau und Werdegang des Nördlinger Rieses [The geologic structure and development of the Nordlingen Ries]: Rieser Heimatbuch, p. 25-68, München.

1923, Weitere Beiträge zum Nördlinger Ries-Problem [Further contributions to the Nordlinger Ries problem]: Zentralblatt für Mineralogie, Geologie und Paläontologie, 1923, nos. 9 and 10, p. 278-285, 301-309.

1949a, Achte Fortsetzung der Beiträge zum Nördlinger Ries-Problem [Contributions to the Nordlingen Ries problem, part 8]: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Monatshefte, Abt. B, 1949, no. 4-6, p. 154-173.

1924, Das Ries, eine geologische Studie [The Ries, a geological study]: Aus der Heimat, v. 37; p. 84-89, Stuttgart.

1926a, Beiträge zur Riesentstehungshypothese [Contributions to the hypothesis of the origin of the Ries]: Oberrheinischer Geologischer Verein, Jahresberichte und Mitteilungen, new ser., [1923], v. 14, p. 26-83.

Müller, Dieter, 1969, Ein neues Profil vom Mittelkeuper bis zum Unterdogger bei Harburg nahe dem Nördlinger Ries [A new profile from the Middle Keuper to the Lower Dogger at Harburg near the Nordlingen Ries]: Bayerische Staatssammlung für Paläontologie und historische Geologie, Mitteilungen, no.9, p. 73-92.

385

1971a, Magnetisierung der Gesteine und Interpretation der Anomalien des Erdmagnetfelds im Ries-Krater [Magnetization of the rocks and interpretation of the anomalies of the Earth's magnetic field in the Ries Crater]: Universität München, Dissertation.

1975, Results of geophysical measurements in the 1206 m deep drill hole Noerdlingen 1973 in the Ries meteorite crater: EOS (American and Geophysical Union Transactions), v. 56, no. 3, p. 162.

1978, Evidence for the coincidence of a geomagnetic reversal with the Ries impact event: Meteoritics, v. 13, no. 4, p. 600.

1969a, Einführung in die Riesforschung [Introduction to Ries research]: Geologica Bavarica, München, no. 61, p. 12-24.

1969b, Kennzeichen von Meteoritenkratern mit Bezug auf das Ries [Characteristics of meteorite craters with reference to the Ries]: Geologica Bavarica, no. 61, p. 389-399.

Rauser, P., Steinbrunn, F., and Storzer, ., 1971, Evidence for a triplet cratering event in the Ries area formed by fission of a single meteoroid under the earth's tidal forces [abs.]: Meteoritics, v. 6, no. 4, p. 304.

Schmidt-Kaler, Hermann, 1962, Stratigraphische und tektonische Untersuchungen im Malm des nordöstlichen Ries-Rahmens; Nebst Paralleliesierung des Malm Alpha bis Delta der Südlichen Franken Alb über das Riesgebiet mit der schwabischen Ostalb [Stratigraphic and tectonic investigations in the Malm of the northeastern Ries surroundings; including correlation across the Ries area of the Malm Alpha to Delta of the southern Franconian Alb with the Swabian east Alb]: Erlanger Geologische Abhandlungen, v. 44, 51 p., 4 pl., Erlangen.

1969a, Der Jura im Ries und in seiner Umgebung [The Jurassic in the Ries and its vicinity]: Geologica Bavarica, v. 61, p. 59-86.

1969b, Versuch einer Profildarstellung für das Rieszentrum vor der Kräterbildung [Attempt at a geological section through the center of the Ries for a time immediately preceding the Ries event (supplement 5)]: Geologica Bavarica, v. 61, p. 38-40.

Schmidt-Kaler, Hermann, Treibs, Walter, and Huttner, Rudolph, 1970, Exhursionführer zur geologischen Uebersichtskarte des Rieses, 1:100,000 [Excursion guide accompanying the geologic map of the Ries crater region, scale 1:100,000]: Bayerische Geologische Landesamt, 68 p. (including colored geologic map at 1:100,000 scale).

Schnell, Th., 1926, Der bayerische Trass und seine Entstehung, [The Bavarian trass and its origin]: in Oberrheinischer Geologischer Verein, 1924, ed., 1926, Das Problem des Rieses, zugleich Führer zu geologischen Ausflügen in der Umgebung von Nördlingen, [The problem of the Ries, together with guides to geologic excursions in the vicinity of Nördlingen].

Schule, F., 1972, Petrographische Untersuchungen am Sueviten von Otting, Ries [Petrographic investigations on the suevite from Otting, Ries]: Fachbereich Erdwissenschaften der Universität Tübingen, Diplom-Arbeit.

1943, Das ratselhafte Ries [The enigmatic Ries]: Schwaben, no. 251, 16 p.

Seidl, Erich, 1932, Nördlinger Ries, eine typische Zerreiss-Zone, entstanden durch tektonische Spannungen der Erdrinde [Nordlingen Ries, a typical crush zone, caused by tectonic strain of the Earth's crust]: Deutsche Geologische Gesellschaft, Zeitschrift, v. 84, no. 1, p. 18-23.

393

Simon, W., 1974a, Gesteinsumwandlung und Landschaftsgestaltung durch Einschlag kosmischer Körper; ein Heft über Forschungen im Nördlinger Ries und Steinheimer Becken, mit Beiträgen über die oestliche Alb, Frankreich und Tirol [Rock transformation and shaping of the landscape by impact of cosmic bodies; a bulletin on researches in the Nördlingen Ries and Steinheim Basin, with contributions on the eastern Alb, France and Tyrol]: Aufschluss, v. 25, nos. 7-8, (foreword), p. 361.

1974b, Suevit und Verwandte, die seltensten Bausteine [Suevite and the like, the rarest building stones]: Aufschluss, v. 25, nos. 7-8, p. 434-442, illus.

Stähle, Volkler, and Muller, W., 1980, Natural shock behavior of amphibolites and garnet-cordierite-gneisses from the Ries Crater, Germany: Meteoritics, v. 15, no. 4, p. 371.

Steinert, Harald, 1974, 1,200 meter tief in den Krater bei Nördlingen [1,200 meters deep in the crater at Nordlingen]: Kosmos, v. 70, no. 9, p. 353-356.

_____ 1966, Zones of impact metamorphism in the crystalline rocks of the Nordlingen Ries crater: Beiträge zur Mineralogie und Petrographie, v. 12, no. 1, p. 15-24 (in English).

_____ 1967, Deformation und Umwandlung von Plagioklas durch Stosswellen in den Gesteinen des Nördlinger Ries [Deformation and transformation of plagioclase by shock-waves in the rocks of the Nordlingen Ries]: Beiträge zur Mineralogie und Petrologie, v. 16, no. 1, p. 51-83 (with English abs.).

1977a, Structure of the Ries Crater and distribution of target rocks within different types of impact breccias (abs.): Lunar Science Conference, 8th, Abstracts of Papers, Houston, Texas, p. 908-910.

1970b, Fission track ages of Bavarian bentonite glasses (micromoldavites?): moldavites and Ries glasses (abs.): Meteoritical Society, Annual Meeting, 33rd, p. 69, NASA, Greenbelt, MD.

1965a, Beitrag zur Kenntnis der Geologie des Rieses und östlichen Vorrieses nach Beobachtungen in Rohrgraben der Rhein-Donau Oelleitung [Contribution to the knowledge of the geology of the Ries and eastern Vorries from observations in trenches of the Rhine-Danube oil pipeline]: Geologica Bavarica, no. 55, p. 310-316.

1969, Überblick über die geographische und geologische situation des Nördlingen Rieses [Geographic and geologic setting of the Ries]: Geologica Bavarica, no. 61, p. 36-37 (with English summary).

Wagner, G. A., 1964, Kleintecktonische Untersuchungen im Gebiet des Nördlinger Rieses [Microtectonic investigations in the region of the Nördlingen Ries]: Geologisches Jahrbuch, v. 81, no. 6, p. 519-600 (with English abs.).

1953, Zur Frage der Machtigkeitsentwicklung des Keupers im Nördlinger Riesstörungsgebiet [On the question of the development of the thickness of the Keuper in the Nördlingen Ries disturbed area]: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abhandlungen, v. 96, no. 2, p. 201-266.

Westhoff, C. J. W., 1972, Een bezoek aan een van de grootste meteor-kraters op aarde, het Nördlinger Ries, in W. Duitsland [A visit to one of the largest meteor craters on earth, the Nordlingen Ries, in West Germany]: Grondboor en Hamer, 1972, no. 3, p. 79-88.

Wirth, E., 1969, Ein Profil vom Malm bis ins Rotliegende südöstlich des Rieses (Kurzprofil der Erdolaufschlussbohrung Daiting 1) [A profile from the Malm to the Rotliegende southeast of the Ries (Short profile of the Daiting 1 petroleum wildcat well]): Geologica Bavaria, v. 61, p. 41-42.

Zähringer, Joseph, and Gentner, Wolfgang, 1966, Stravitei'noye opredeleniyi kali-argonovogo vozrasta tektitov, stekol Nordlinger Ris (FRG), Bosumtwi (Gana) i drugikh prirodnykh stekol [Comparative determination of the potassium-argon age of tektites, glasses of the Nordlingen Ries (West Germany), Bosumtwi (Ghana), and other natural glasses]: Meteoritika, no. 27, p. 151-152.

Bibliography

Nikol'sky, A. P., 1974a, Vulkanitopodobnye porody fanerozoya Ukrainskogo shchita i problema ikh genezisa [Phanerozoic volcanic-like rocks of the Okzainian shield; the problem of their genesis]: Geologicheskiy Zhurnal (Russian edition), v. 34, no. 3, p. 111-122 (incl. English summary), illus. (incl. geologic sketch maps).

Bibliography

Laitakari, Aarnes, 1942, Kivilajikartan Selitys, B. 3, Vaasa: General geological map of Finland, 1:400,000 scale, 66 p.

Bibliography

Englehardt, Wolf von, 1974, Meteoritenkrater [Meteorite craters]: Naturwissenschaften, v. 61, no. 10, p. 413-422, 9 figs.

1966b, Neue Untersuchungen im Steinheimer Becken [Recent investigations in the Steinhein basin (abs.)]: Fortschritte für Mineralogie, v. 47, no. 1, p. 141-142.

1969, Das Steinheimer Becken - ein Vergleich mit dem Ries [the Steinheim Basin - A comparison with the Ries]: in Das Ries, Geologie, Geophysik und Genese eines Kraters: Geologica Bavirca, no. 61, p. 400-412 (with English summary), illus. (incl. sketch map).

1971a, Es war ein Meteoreinschlag: Ergebnis der Bohrungen im Steinheimer Becken [It was meteor impact: Results of drilling in the Steinheim Basin]: Kosmos, v. 67, no. 12, p. 520-525.

Silbiger, A., and Weiser, F., 1951, Das Steinheimer Becken [The Steinheim Basin]: Meteorbeobachter, no. 8, p. 3.

Simon, W., ed., 1974a, Gesteinsumwandlung und Landschaftsgestaltung durch Einschlag kosmischer Körper; ein Heft über Forschungen im Nordlinger Ries und Steinheimer Becken, mit Beiträgen über die ostliche Alb, Frankreich und Tirol [Rock transformation and landscape shaping by impact of cosmic bodies; a research paper on the Nordlingen Ries and Steinheim Basin, with contributions on the eastern Alb, France and Tyro]: Aufschluss, v. 25, nos. 7-8, 83 p.

1974b, Suevit und Verwandte, die seltesten Bausteine [Suevite and the like, the rarest building stones]: Aufschluss, v. 25, nos. 7-8, p. 343-442.

Bibliography

Nasaytis, V. L., Mashchak, M. S., and Sokolova, I. Yu., 1980,

Tikhonov, V. A., Karpenko, V. S., Kudlayev, A. R., and others, 1968,
Bibliography

<table>
<thead>
<tr>
<th>Name</th>
<th>Lon/lat (E/N)</th>
<th>ONC</th>
<th>LandSat Path/Row</th>
<th>Landsat Image ID No. and Date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres. Morph.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siktobe Alin Craters, Primorye Territory, U.S.S.R.</td>
<td>46°07'N 134°40'E</td>
<td>F-10</td>
<td>121/028</td>
<td>2524-01013</td>
<td>0.026²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wabar Craters, Saudi Arabia</td>
<td>21°28'N 50°29'E</td>
<td>J-7</td>
<td>175/045</td>
<td>1438-06350</td>
<td>0.097¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beyenchime-Salata, Yakotsk SSR, U.S.S.R.</td>
<td>71°03'N 121°40'E</td>
<td>C-6</td>
<td>146/009</td>
<td>1247-03360</td>
<td>8</td>
<td><65</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Kara, Krasnoyarsk Krai, Russian SFSR, U.S.S.R.</td>
<td>69°07'N 64°24'E</td>
<td>C-4</td>
<td>182/011</td>
<td>1337-07024</td>
<td>50</td>
<td>57</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Lake El'gyykyn, Hagan Oblast, Russian SFSR, U.S.S.R.</td>
<td>67°29'N 172°05'E</td>
<td>C-7</td>
<td>106/012</td>
<td>1350-23470</td>
<td>19</td>
<td>3.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Lonar Lake, India</td>
<td>19°58'N 76°31'E</td>
<td>J-8</td>
<td>156/046</td>
<td>1167-04481</td>
<td>1.83</td>
<td>0.05</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Patomskii Crater, Irkutskoblast, Russian SFSR, U.S.S.R.</td>
<td>59°00'N 116°25'E</td>
<td>D-7</td>
<td>128/019</td>
<td>1419-02522</td>
<td>0.09</td>
<td>0.003</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Popigay, Krasnoyarsk Krai, Russian SFSR, U.S.S.R.</td>
<td>71°37'N 110°10'E</td>
<td>C-5</td>
<td>153/009</td>
<td>1398-04144</td>
<td>100</td>
<td>39±9</td>
<td>Sed & Cry</td>
<td>3</td>
<td>Cr</td>
</tr>
<tr>
<td>Location</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Age</td>
<td>Size (km)</td>
<td>State of Preservation</td>
<td>Morphology</td>
<td>Code</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>------------</td>
<td>------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Shunak, Kazakh SSR, U.S.S.R.</td>
<td>47°12'N</td>
<td>72°58'E</td>
<td>1050-05312</td>
<td>2.5</td>
<td>12</td>
<td>Cry</td>
<td>3</td>
<td>Sept. 11, 1972</td>
<td></td>
</tr>
<tr>
<td>Sobolev, Primorye Territorie, U.S.S.R.</td>
<td>46°18'N</td>
<td>137°52'E</td>
<td>2307-01004</td>
<td>0.05</td>
<td>0.002</td>
<td>Cry</td>
<td>2</td>
<td>Nov. 25, 1975</td>
<td></td>
</tr>
<tr>
<td>Tabun Khara Obo, Mongolia</td>
<td>44°06'N</td>
<td>109°35'E</td>
<td>1527-02544</td>
<td>1.3</td>
<td><30</td>
<td>Cry</td>
<td>2</td>
<td>Jan. 1, 1974</td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale National Ocean Survey

Grieve, R. A. F., 1982, Table 2

- Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved. 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
- Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
- 1-Larger of two craters.
- 2-Largest crater in a field of 122 craters.
- The geographic coordinates of large USSR impact structures are adjusted to match the approximate structure centers (Zhamaishin, Kara, Beyenchine-Salata, and Popigay), or to conform to the geographic description published in the Russian literature (Shunak). Sobolev is located at 137°52'E, not at 138°52'E as shown on Table 2, p. 28 (Grieve, 1982). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC*</th>
<th>Landsat ID No. and date</th>
<th>Diameter</th>
<th>Age</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>证明的撞击结构</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wabar Craters</td>
<td>21°28'N</td>
<td>J-7</td>
<td>175/045 1438-06350</td>
<td>0.097*1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>50°29'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sikhote Alin Craters,</td>
<td>46°07'N 134°40'E</td>
<td>F-10</td>
<td>121/028 2524-01013</td>
<td>0.026*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primorye Territorie,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.S.R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>可能的撞击坑和小行星残骸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonar Lake, India</td>
<td>19°58'N 76°31'E</td>
<td>J-8</td>
<td>156/046 1167-04481</td>
<td>1.83</td>
<td>0.05</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Tabun Khara Obo, Mongolia</td>
<td>44°06'N 109°35'E</td>
<td>F-8</td>
<td>138/029 1527-02544</td>
<td>1.3</td>
<td><30</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Shunak, Kazakh SSR, U.S.S.R.</td>
<td>47°12'N 72°58'E</td>
<td>F-6</td>
<td>165/027 1050-05312</td>
<td>2.5</td>
<td>12</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Sobolev, Primorye Territorie, U.S.S.R.</td>
<td>46°18'N 137°52'E</td>
<td>E-10</td>
<td>120/028 2307-01004</td>
<td>0.05</td>
<td>0.002</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Zhamanshin, Kazakh SSR, U.S.S.R.</td>
<td>48°25'N 61°00'E</td>
<td>E-5</td>
<td>173/026 1418-06161</td>
<td>10</td>
<td>4.5±.5</td>
<td>(Sed)Cry</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Lake El'gyt'khn, Megadan Oblast, Russian SFSR, U.S.S.R.</td>
<td>67°29'N 172°05'E</td>
<td>C-7</td>
<td>106/012 1350-23470</td>
<td>19</td>
<td>3.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

(Grieve, R. A. F., 1982, Table 2)
Table 6b (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Lat/Lon</th>
<th>Morph.</th>
<th>Pres.</th>
<th>Observation</th>
<th>Age (Ma)</th>
<th>Shape</th>
<th>Size (m)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kara, Krasnoyarsk Krai,</td>
<td>69°07'N</td>
<td>C-4</td>
<td>182/011</td>
<td>June 25, 1973</td>
<td>50</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Russian SFSR, U.S.S.R.</td>
<td>64°24'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beyenchime-Salata,</td>
<td>71°03'N</td>
<td>C-6</td>
<td>146/009</td>
<td>Mar. 27, 1973</td>
<td>8</td>
<td><65</td>
<td>Sed</td>
<td>C</td>
</tr>
<tr>
<td>Yakotsk SSR, U.S.S.R.</td>
<td>121°40'E</td>
<td></td>
<td></td>
<td></td>
<td>1247-03350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popigay, Krasnoyarsk Krai</td>
<td>71°37'N</td>
<td>C-5</td>
<td>153/009</td>
<td>Aug. 25, 1973</td>
<td>100</td>
<td>39±9</td>
<td>Sed &Cry</td>
<td>3 Cr</td>
</tr>
<tr>
<td>Russian SFSR, U.S.S.R.</td>
<td>111°10'E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*OHC: Operation Chart, 1:1,000,000 scale National Ocean Survey

Grieve, R. A. F. 2, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.

2Larger of two craters.

The geographic coordinates of large USSR impact structures are adjusted to match the approximate structures centers (Zhamanshin, Kara, Beyenchime-Salata, and Popigay), or to conform to the geographic description published in the Russian literature (Shurenk). Sobolev is located at 137°52'E, not at 138°52'E as shown on Table 2, p. 20 (Grieve, 1982). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
Table 6c. Asia: Impact Structures (in order of decreasing diameter)

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wabar Craters, Saudi Arabia</td>
<td>21°28'N 50°29'E</td>
<td>J-7</td>
<td>175;045</td>
<td>1438-06350</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sikhote Alin Craters, Primorye Territorie, U.S.S.R.</td>
<td>46°07'N 134°40'E</td>
<td>F-10</td>
<td>121/028</td>
<td>2526-01013</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Popigay, Krasnoyarsk Krai, Russian SFSR, U.S.S.R.</td>
<td>71°37'N 111°10'E</td>
<td>C-5</td>
<td>155/009</td>
<td>1398-04144</td>
<td>100</td>
<td>39±9</td>
<td>Sed&Cry</td>
<td>3</td>
<td>Cr</td>
</tr>
<tr>
<td>Kara, Krasnoyarsk Krai, Russian SFSR, U.S.S.R.</td>
<td>69°07'N 64°24'E</td>
<td>C-4</td>
<td>182/011</td>
<td>1337-07024</td>
<td>50</td>
<td>57</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Lake El'gydkhyn, Magadan Oblast, Russian SFSR, U.S.S.R.</td>
<td>67°29'N 172°05'E</td>
<td>C-7</td>
<td>106/012</td>
<td>1350-23470</td>
<td>19</td>
<td>3.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Zhamanshin, Kazakh SSR, U.S.S.R.</td>
<td>48°25'N 61°00'E</td>
<td>E-5</td>
<td>173/026</td>
<td>1418-06161</td>
<td>10</td>
<td>4.5±5</td>
<td>(Sed)Cry</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Beyenchime-Salata, Yakotsk SSR, U.S.S.R.</td>
<td>71°03'N 121°40'E</td>
<td>C-6</td>
<td>146/009</td>
<td>1247-03360</td>
<td>8</td>
<td><65</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Shunak, Kazakh SSR, U.S.S.R.</td>
<td>47°12'N 72°58'E</td>
<td>F-6</td>
<td>165/027</td>
<td>1050-05312</td>
<td>2.5</td>
<td>12</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Lonar Lake, India</td>
<td>19°58'N 76°31'E</td>
<td>J-8</td>
<td>156/046</td>
<td>1167-04481</td>
<td>1.83</td>
<td>0.05</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
</tbody>
</table>
Table 6c (Continued)

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Type</th>
<th>Diameter</th>
<th>Age</th>
<th>Impact Type</th>
<th>Impact Rate</th>
<th>Ejecta Type</th>
<th>Impact Rate</th>
<th>Ejecta Type</th>
<th>Age</th>
<th>Ejecta Type</th>
<th>Impact Rate</th>
<th>Ejecta Type</th>
<th>Age</th>
<th>Ejecta Type</th>
<th>Impact Rate</th>
<th>Ejecta Type</th>
<th>Age</th>
<th>Ejecta Type</th>
<th>Impact Rate</th>
<th>Ejecta Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabun Khara Obo, Mongolia</td>
<td>44°06'N</td>
<td>105°35'E</td>
<td>F-8</td>
<td>138/029</td>
<td>1527-02544</td>
<td>1.3</td>
<td><30</td>
<td>Cry</td>
<td>2</td>
<td><5</td>
<td>1.00</td>
<td><0.00001</td>
<td>0.009</td>
<td>0.0003</td>
<td>0.05</td>
<td>0.002</td>
<td>2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patmoskii Crater, Irkutsk Oblast, Russian-SFSR, U.S.S.R.</td>
<td>59°00'N</td>
<td>118°25'E</td>
<td>D-7</td>
<td>138/019</td>
<td>1419-02522</td>
<td>0.09</td>
<td>.0003</td>
<td>Sed</td>
<td>2</td>
<td><5</td>
<td>1.00</td>
<td><0.00001</td>
<td>0.009</td>
<td>0.0003</td>
<td>0.05</td>
<td>0.002</td>
<td>2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socolev, Primorye Territorie, U.S.S.R.</td>
<td>46°18'N</td>
<td>137°52'E</td>
<td>E-10</td>
<td>120/028</td>
<td>2307-01004</td>
<td>0.05</td>
<td>0.002</td>
<td>Cry</td>
<td>2</td>
<td><5</td>
<td>1.00</td>
<td><0.00001</td>
<td>0.009</td>
<td>0.0003</td>
<td>0.05</td>
<td>0.002</td>
<td>2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ONC: Operational Navigation Chart, 1:1,000,000 scale National Ocean Survey

Grieve, R. A. F., 1982, Table 2

- Sed-Sedimentary, Cry-Crystalline, ()-minor.
- Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
- Morph: Morphology: 5-simple crater, 6-complex structure with central uplift, 7-complex structure with ring form.
- *Larger of two craters.
- **Largest crater in a field of 122 craters.

The geographic coordinates of large USSR impact structures are adjusted to match the approximate structures centers (Zharmashin, Kara, Beyenchine-Salat, and Popigay), or to conform to the geographic description published in the Russian literature (Shunak). Socolev is located at 137°52'E, not at 138°52'E as shown on Table 2, p. 28 (Grieve, 1982). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographical coordinates</th>
<th>OMC* Path/Row</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Landsat image ID</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lunar Lake, India</td>
<td>19°58'N 76°31'E</td>
<td>J-8 156/046</td>
<td>Jan. 6, 1973</td>
<td>1167-04481</td>
<td>1.83</td>
<td>0.05</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Lake El'gygyshyn, Magadan Oblast, Russian SFSR, U.S.S.R.</td>
<td>67°29'N 172°05'E</td>
<td>C-7 106/012</td>
<td>July 6, 1973</td>
<td>1350-23470</td>
<td>19</td>
<td>3.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>Shunak, Kazakh SSR, U.S.S.R.</td>
<td>47°12'N 72°58'E</td>
<td>F-6 165/027</td>
<td>Sept. 11, 1972</td>
<td>1050-05312</td>
<td>2.5</td>
<td>12</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Tabun Khara Oso, Mongolia</td>
<td>44°06'N 109°35'E</td>
<td>F-8 138/029</td>
<td>Jan. 1, 1974</td>
<td>1527-02544</td>
<td>1.3</td>
<td><30</td>
<td>Cry</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Bayanobi-Salata, Yakotsk SSR, U.S.S.R.</td>
<td>71°03'N 121°40'E</td>
<td>C-6 146/009</td>
<td>Mar. 27, 1973</td>
<td>1247-03360</td>
<td>8</td>
<td><65</td>
<td>Sed</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

Proven impact craters not detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographical coordinates</th>
<th>OMC* Path/Row</th>
<th>Landsat image ID</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weber Craters, Saudi Arabia</td>
<td>21°28'N 50°29'E</td>
<td>J-7 175/045</td>
<td>May 4, 1978</td>
<td>1438-06350</td>
<td>3.097*1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sikhola Alia Craters, Prinzipa Territorie, U.S.S.R.</td>
<td>46°07'N 134°40'E</td>
<td>F-10 121/028</td>
<td>Jun. 29, 1975</td>
<td>2524-01013</td>
<td>0.026*2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6d (Continued)

| Probable impact craters and astromblems not detectable on Landsat MSS images |
|---|----------------|-----------|----------------|-----------------|------|---|
| Sobolev, | 46°18'N | E-10 | 120/028 | 2307-01004 | 0.05 | 0.002 | Cry | 2 | S |
| Primorye Territorie, U.S.S.R. | 137°52'E | | | Nov. 25, 1975 | | | | | |
| Patomskii Crater | 59°00'N | D-7 | 138/019 | 1419-02522 | 0.09 | .0003 | Sed | 2 | S |
| Kara, | 69°07'N | C-4 | 182/011 | 1337-07024 | 50 | 57 | Sed | 5 | C |

*OMC: Operational Navigation Chart, 1:1,000,000 scale National Ocean Survey

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
2Larger of two craters.
2Largest crater in a field of 122 craters.
2The geographic coordinates of large USSR impact structures are adjusted to match the approximate structures centers (Zhamanshin, Kara, Beyenchime-Salata, and Popigay), or to conform to the geographic description published in the Russian literature (Shunak). Sobolev is located at 137°52'E, not at 138°52'E as shown on Table 2, p. 28 (Grieve, 1982). The geographic coordinates of impact structures occupied by lakes are those of the lake centers.
Bibliography

Aaloe, A. O., 1972, Udarnye meteoritnye kratery [Impacts of meteorite craters]: Meteoritika, no. 31, p. 68-73, illus.

---1962, Otsenka skorosti padeniya nekotorykh ekzemyarov Sikhote-Alinskogo meteoritnogo dozhdya [Estimate of the impact velocities of some specimens of the Sikhote-Alin multiple fall]: Meteoritika, no. 22, p. 31-41, 5 figs.

1951a, [On the movement of the Sikhote-Alin meteorite through the atmosphere]: Meteoritika, v. 9, p. 3-26, tables (in Russian).

Krivi, E. L., 1947, [An iron meteorite]: Priroda, v. 36, no. 12, p. 3-13 (in Russian):

1950a, [Form and surface structure of the fusion crust of individual specimens of the Sikhote-Alin iron meteoritic shower]: Meteoritika, no. 8, p. 78-99 (in Russian).

1952. [Results of four years of field work and study of specimens of the Sikhote-Alin iron meteoritic shower]: Meteoritka, no. 10, p. 83-99 (in Russian).

1972, Chetyre goda novykh issledovaniy radeniyai sbora chastey Sikhote-Alinskogo meteoritnogo dozhdya [Four years of new investigations of the fall and accumulation of fragments of the Sikhote-Alin meteorite shower]: Meteoritika, no. 31, p. 62-67, ill.

1975, [The fragmentation of the Sikhote-Alin meteorite shower]: Meteoritika, v. 34, p. 3-14.

1947b, [Some additional data concerning the Far East meteorite of 12
Levskiy, L. K., 1971, Kosmogennyye izotopy v 42 fragmentakh Sikhte-Alinskogo
meteorita [Cosmic-source isotopes in 42 fragments of the Sikhote-Alin
meteorite]: Geokhimiya (Akademiya Nauk SSSR), no. 8, p. 932-937 (with
English summary); English translation in Geochemistry International, v.
8, no. 4, p. 629.
Levskiy, L. K., and Komarov, A. N., 1974, Isotapy geliya, neona i argona v
troilitovykh shreyberzitovykh vkhochanyakh Sikhe-Alinskogo meteorita
[Isotopes of helium, neon, and argon in troilite and schreibersite
inclusions of the Sikhote-Alin meteorite], in Gerling, E. K., and
Shukolyukov, Yu. A., eds., 1974, Geokhimiya radiogennykh i radioaktivnykh
Lipschutz, M. E., Signer, P., and Anders, E., 1965, Cosmic ray exposure ages
of iron meteorites by the Ne21/Al26 method: Journal of Geophysical
Research, v. 70, p. 1473-1489.
Lovering, J. F., and Parry, L. G., 1962, Thermomagnetic analysis of coexisting
nickel-iron metal phases in iron meteorites and the thermal histories of
Marvin, U. B., 1963, Mineralogy of the oxidation products of the Sputnik-4
fragment and in iron meteorites: Journal of Geophysical Research, v. 68,
p. 5059-5068, 4 figs.
McCorkell, R. H., Fireman, E. L., D'Amico, J., and Thompson, S. O., 1968,
Radioactive isotopes in the Hoba West and other iron meteorites:
Meteoritics, v. 4, p. 113-122.
Millman, P. M., 1970, Current research at Sikhote-Alin: Journal of the Royal

435
Miserov, A. V. 1947, [Additional notes on the Sikhote-Alin meteorite fall]:
Nekrasov, V. I., and Tsvetkov, V. I., 1970, Sovremennoye sostoyaniye
kraterov: Voronek Sikhote-Alinskogo meteoritnogo dozhdya [Present state
of the craterlets and craters and the Sikhote-Alin meteor shower]:
Meteoritika, no. 30, p. 28-52.
Nichiporuk, W., and Brown, H., 1965, The distribution of platinum and
palladium metals in iron meteorites and in the metal phase of ordinary
Nichiporuk, W., and Chodos, A. A., 1959, The concentration of vanadium,
chromium, iron, cobalt, nickel, copper, zinc and arsenic in the
meteoritic iron sulfide nodules: Journal of Geophysical Research,
v. 64, p. 2451-2463.
Observatory, 1947, A large Russian meteorite: Observatory, v. 67, p. 76.
Popular Astronomy, 1947, New meteorite craters in eastern Siberia reported:
Popular Astronomy, v. 55, p. 329; reprinted in Meteoritic Society
Contributions, v. 4, no. 1, p. 56-57.
Popular Astronomy, v. 58, p. 40; reprinted in Meteoritic Society
Contributions, v. 4, no. 4, p. 244.
Rosman, K. J. R., 1972, A survey of the isotopic and elemental abundance of
Schaeffer, O. A., and Heymann, D., 1965, Comparison of Cl36/Ar36 and Ar39/Ar38
cosmic ray exposure ages of dated fall iron meteorites: Journal of

Shkerin, L. M., 1973, Rezultaty petrotektonicheskogo izucheniya porod iz Sikhote-Alinskogo meteoritnogo kratera no. 1 [Results of the petrotectonic analysis of rocks from the Sikhote-Alin meteor crater no. 1]: Geotectonika, no. 4, p. 109-115; also in Geotectonics, no. 4, p. 244-247.

437

Yaslavskaya, N. I., 1968, Rentgenometricheskiye issledovanye meteorony pyli smestapadeniya Tungunskogo i Sikhote-Alinskogo meteoritov [X-ray investigation of meteor dust from the site of the Tungunska and Sikhote-Alin meteorite falls]: Meteoritika, no. 28, p. 142-151.

1956, 0 primesyakh v nekotorykh Sichote-Alinskogo zheleznogo meteorita [Impurities in some minerals of the Sikhote-Alin iron meteorite]: Meteoritka, no. 14, p. 87-91 (in Russian).

Zotkin, I. T., and Chigorin, A. N., 1975, [Obtaining a more accurate radiant for the Sikhote-Alin meteorite by directly calculating the squared errors]: Meteoritka, no. 34, p. 33-41.
Asia
Saudi Arabia
Wabar (Al Hadidah) Craters

Bibliography

Fletcher, L., 1887, On a meteoritic iron seen to fall in the district of Nejed, Central Arabia, in the year 1863: Mineralogical Magazine, v. 7, p. 179-182.

Harris, T. F., Hoag, Walton, Jr., and Barger, T. C., 1938, Geology of the Rub al Khali and adjacent portion of Saudi Arabia: Aramco, unpublished report.

---1975, Meteoritic material in four terrestrial meteorite craters: Geochimica et Cosmochimica Acta, Suppl. 6, Lunar Science Conference, 6th, Proceedings, p. 1609-1623, 4 figs, 2 tables.

Sickels, Ivin, 1917, Meteorite Collection of the College of the City of New York: 16 p., 14 figs.

444

Störzer, D., 1971, Fission track dating of some impact craters in the age range between 6,000 y. and 300 m.y.: Meteoritics, v. 6, p. 319.

Bibliography

Astronomicheski Vestnik, v. 11, no. 4, p. 198-208; English translation in
Solar System Research, v. 11, no. 4, p. 161-170, 6 figs., 1 table.
Bibliography

Fishman, M. V., 1974, Late Mesozoic volcanism on the south Kara coast, Geology and mineral deposits of the northeastern European part of the USSR (in Russian): Syktyvkar, p. 70-79.

1977, On the origin of the Kara depression (abs.): Meteoritics, v. 12, p. 473; also in Meteoritika, 1977, v. 36, 123-130, 3 figs., 2 tables.

Rysykov, I. L., 1939, [Young volcanogenic formations of Pay-Khoye]: Problemi Arktiki, no. 9.

449
Sazonova, L. V., and others, 1980, Connection between internal structure and the conditions of occurrence of melt glasses in the Kara meteorite crater, in Cosmochemistry of meteorites, the Moon and the Planets (in Russian): Kiev, p. 45-55.

Bibliography

1977b, El'gygytgyn crater: Source of Australasian tektites (and bediasites from Popigai (abs.)): Meteoritics, v. 12, p. 205-206 (abs.).

Dietz, R. S., and McHone, John, 1974a, Meteorite craters and astroblemes, some new possible examples (abs.): EOS, v. 55, no. 4, p. 336.

1974b, Impact structures from ERTS imagery: Meteorites, v. 9, no. 4, p. 329-333.

1984, Some peculiarities of geochemistry of Elgygytgyn impactites - Chukotka, USSR (abs.): Meteoritics, v. 19, no. 1, p. 64.

Shock metamorphosed rocks of the Elgygytgyn meteorite crater in Chukotka (abs.): Meteoritics, v. 19, no. 1, p. 63.

Bibliography

Kieffer, S. W., Schaal, R. B., Gibbons, R. V., and Hoerz, F., 1975, Shocked basalts from Lonar crater (India) and experimental analogues: EOS (American Geophysical Union Transactions), v. 56, no. 12, p. 1317.

As1 a
U.S.S.R., RSFSR, Irkutsk Oblast
Patomskii Crater

Bibliography

Grieve, R. A. F., 1982, The record of impact on Earth: Implications for a
major Cretaceous/Tertiary impact event, in Silver, L. T., and Schultz, P.
H., eds., 1982, Geological implications of impacts of large asteroids and
comets on the earth: Geological Society of America Special Paper 190, p.
25-37.

Kolpakov, V. V., 1951, Zhagadochnia Krater na Patomskom Nagorye: Priroda, no.
2, p. 58-59.

[Investigation of the Patomsk crater]: Meteoritka, no. 27, p. 134-138.

Obruchev, C. V., 1951, K statie V. V. Kolpakova "Zhagadochnia Krater na

Portnov, A. M., 1962, Krater na Patomskom Nagorye [A crater on the Patomskii
Plateau]: Priroda, 1962, no. 11, p. 102-103; abs. in Magnolia, L. R.,
1963, Interplanetary matter, a bibliography - 1962 supplement, Redondo
Beach, Calif., Space Technology Labs., Inc., Research Bibliog. no. 46, p.
157.

Portnov, A. M., 1964, O kratere na Patomskii Nagorye [On the crater on the Patomskii
Plateau]: Meteoritka, no. 25, p. 194-197.
Bibliography

Masaytis, V. I., 1976, Astroblemy na teritorii SSSR [Astroblemes in the USSR]: Sovetskaya Geologiia (1975) no. 11, p. 52-64; English translation in International Geology Review, v. 18, no. 11, p. 1249-1257, 5 figs., 1 table.

461
1971b (1972), Popighayskiy meteoritnyy krater [The Popigay meteorite crater]: Sovetskaya Geologiya, no. 6, p. 143-147; English translation in International Geology Review, 1972, v. 14, no. 4, p. 327-331, 2 figs.

1972a, Popighayskiy meteoritnyy krater na severe Sibiri [The Popigay meteorite crater in northern Siberia]: Meteoritika, no. 31, p. 74-78, geologic sketch map.

204-208, illus. (incl. table, plates).

Orlov, L. N., 1976, O svyazi meteoritnogo udara s vyrazhennym vulkanizmом (ob odnom istochnike lokal'nogo magmatizma) [The association between meteoritic impact and induced volcanism]: Akademiya Nauk SSSR Izvestiya, seriya geologicheskaya, 1976, no. 9, p. 154-157; English translation in International Geology Review, v. 19, no. 9, p. 1101-1104.

1975b. Graphite in the rocks of the Popigay structure: Its destruction and transformation into other phases of the carbon system (in Russian):
Geologiya i Geofizika, v. 16, no. 1, p. 67-74; English translation in
Soviet Geology and Geophysics, v. 16, no. 1, p. 55-61, 2 figs., 3 tables.

Voronov, P. S., 1958, On the relationship of some regularities of the relief of northern Central Siberia to neotectonic processes (in Russian):
Trudy, Nauchno-Issledovatel'skiy Institut Geologii Arktiki, Leningrad, v.
67, no. 7, p. 94-103.

Yakupov, V. S., 1972, The problem of the origin of the Popigay crater:
Bibliography

.66
Masaytis, V. I., Danilin, A. N., Mashchak, M. S., Raikhlin, T. V.,
Selivanovskaya, T. V., and Shadenkov, E. M., 1980, Geologiia astroblam:
Leningrad, Neda, 231 p.

Zotkin, I. T., and Tsvetkov, V. I., 1970, On the search for meteorite craters
on the earth: "Balkhash" (in Russian): Astronomicheskiy Vestnik, v. 4,
1, p. 44-52.

Zeylik, B. S., and Sushkov, V. A., 1976, Secrets of dormant volcanoes:
Bibliography

1951b, Sobolevskiy krater [The Sobolev crater]: Priroda, no. 6, p. 40-42.

Bibliography

Bibliography

470

471

472

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Landsat image Path/Row</th>
<th>Diameter km</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amguid Crater, Algeria</td>
<td>26°05'N 04°23'E</td>
<td>H-2</td>
<td>208/042</td>
<td>1435-09431</td>
<td>0.45</td>
<td><0.1</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Aquelloul Crater, Mauritania</td>
<td>20°15'W 12°41'E</td>
<td>J-1</td>
<td>218/046</td>
<td>1229-10443</td>
<td>0.37</td>
<td>3.1±0.3</td>
<td>Sed</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>BP, (British Petroleum) Libya</td>
<td>25°19'N 24°20'E</td>
<td>H-4</td>
<td>193/042</td>
<td>2362-08044</td>
<td>2.8</td>
<td><120</td>
<td>Sed</td>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>Lake Bosumtwi, Alternate name: Ashanti, Ghana</td>
<td>6°29'N 1°24'W</td>
<td>L-2</td>
<td>208/056</td>
<td>1579-0946C</td>
<td>10.5</td>
<td>1.3±0.2</td>
<td>Cry</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Oasis, Libya</td>
<td>24°35'N 24°24'E</td>
<td>H-4</td>
<td>193/043</td>
<td>2488-08014</td>
<td>11.5</td>
<td><120</td>
<td>Sed</td>
<td>6</td>
<td>Cr</td>
</tr>
<tr>
<td>Quarqiziz, Algeria-Morocco border</td>
<td>29°00'N 07°33'W</td>
<td>H-1</td>
<td>216/040</td>
<td>2385-10152</td>
<td>3.5</td>
<td><70</td>
<td>Sed</td>
<td>3</td>
<td>C?</td>
</tr>
<tr>
<td>Talemzane Crater, Algeria</td>
<td>33°19'N 04°02'E</td>
<td>G-1</td>
<td>209/037</td>
<td>2396-09334</td>
<td>1.75</td>
<td><3</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Tenoumer Crater, Mauritania</td>
<td>22°55'N 10°24'W</td>
<td>J-2</td>
<td>218/044</td>
<td>1103-10431</td>
<td>1.9</td>
<td>2.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Tin Bider, Algeria</td>
<td>27°36'N 05°07'E</td>
<td>H-2</td>
<td>208/041</td>
<td>1435-09425</td>
<td>6</td>
<td><70</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Vredefort structure, South Africa</td>
<td>27°00'S 27°27'E</td>
<td>Q-5</td>
<td>183/079</td>
<td>1158-0737U</td>
<td>140</td>
<td>1,970+100</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
</tbody>
</table>

(Grieve, R. A. F., 1982, Table 2)
Table 7a (Continued)

*ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.
Morph: Morphology: 5-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
Table 7b. Africa: Impact Structures (in order of increasing latitude)

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>ONC* Path/Row</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Diameter (km)</th>
<th>Age (m.y.)</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Bosumtwi, Ghana</td>
<td>6°29'N, 1°24'W</td>
<td>L-2 208/056</td>
<td>1579-09460 Feb. 22, 1974</td>
<td>10.5</td>
<td>1.3±0.2</td>
<td>Cry</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Agoultou Crater, Mauritania</td>
<td>20°15'W, 12°41'W</td>
<td>J-1 218/046</td>
<td>1229-10443 Mar. 9, 1973</td>
<td>0.37</td>
<td>3.1±0.3</td>
<td>Sed</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Tanoumer Crater, Mauritania</td>
<td>22°55'N, 10°24'W</td>
<td>J-2 218/044</td>
<td>1103-10431 Nov. 3, 1972</td>
<td>1.9</td>
<td>2.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Oasis, Libya</td>
<td>24°35'N, 24°24'E</td>
<td>H-4 193/043</td>
<td>2488-08014 May 24, 1976</td>
<td>11.5</td>
<td><120</td>
<td>Sed</td>
<td>5</td>
<td>Cr</td>
</tr>
<tr>
<td>BP, (British Petroleum)</td>
<td>25°19'N, 24°20'E</td>
<td>H-4 193/042</td>
<td>2362-08044 Jan. 19, 1976</td>
<td>2.8</td>
<td><120</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Amguid Crater, Algeria</td>
<td>25°05'N, 04°23'E</td>
<td>H-2 208/042</td>
<td>1435-09431 Oct. 1, 1973</td>
<td>0.45</td>
<td><0.1</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Tin Bider, Algeria</td>
<td>27°36'N, 05°07'E</td>
<td>H-2 208/041</td>
<td>1435-09425 Oct. 1, 1973</td>
<td>6</td>
<td><70</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>Quarkiz, Algeria-Morocco border</td>
<td>29°00'N, 07°33'E</td>
<td>H-1 216/040</td>
<td>2385-10152 Feb. 11, 1976</td>
<td>3.5</td>
<td><70</td>
<td>Sed</td>
<td>3</td>
<td>C?</td>
</tr>
<tr>
<td>Talemzane Crater, Algeria</td>
<td>33°19'N, 04°02'E</td>
<td>G-1 209/037</td>
<td>2396-09334 Feb. 22, 1976</td>
<td>1.75</td>
<td><3</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
</tbody>
</table>

(Grieve, R. A. F., 1982, Table 2)

Probable impact craters and astroblemes.
Table 7b (Continued)

<table>
<thead>
<tr>
<th>Wredefort structure, South Africa</th>
<th>27°00'S</th>
<th>Q-5</th>
<th>183/079</th>
<th>1158-07370</th>
<th>140</th>
<th>1,970±100</th>
<th>Sed&cry</th>
<th>7</th>
<th>5</th>
</tr>
</thead>
</table>

*OMC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.

Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, 6-complex structure with central uplift, Cr-Complex structure with r.ng form.
<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OHd</th>
<th>Landsat Path/Row</th>
<th>Landsat Image ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vredefort structure, South Africa</td>
<td>27°00'S 27°27'E</td>
<td>Q-5</td>
<td>183/079</td>
<td>1158-07370 Dec. 28, 1972</td>
<td>140</td>
<td>1,970±100</td>
<td>Sed&Cry</td>
<td>7</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>27°27'E</td>
<td>182/079</td>
<td></td>
<td>315-07173 Dec. 3, 1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oasis, Libya</td>
<td>24°35'N 24°24'E</td>
<td>H-4</td>
<td>193/043</td>
<td>2488-08014 May 24, 1976</td>
<td>11.5</td>
<td><120</td>
<td>Sed</td>
<td>6</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lake Bosumtwi, Alternate name: Ashtani, Ghana</td>
<td>6°29'N 1°24'W</td>
<td>L-2</td>
<td>208/056</td>
<td>1579-09460 Feb. 22, 1974</td>
<td>10.5</td>
<td>1.3±0.2</td>
<td>Cry</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>Tin Bider, Algeria</td>
<td>27°36'N 05°07'E</td>
<td>H-2</td>
<td>208/041</td>
<td>1435-09425 Oct. 1, 1973</td>
<td>6</td>
<td><70</td>
<td>Sed</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Quarktiz, Algeria-Morocco border</td>
<td>29°00'N 07°33'W</td>
<td>H-1</td>
<td>216/040</td>
<td>2385-10152 Feb. 11, 1976</td>
<td>3.5</td>
<td><70</td>
<td>Sed</td>
<td>3</td>
<td>C?</td>
</tr>
<tr>
<td>Tenoumer Crater, Mauritania</td>
<td>22°55'N 10°24'E</td>
<td>J-2</td>
<td>218/044</td>
<td>1103-10431 Nov. 3, 1972</td>
<td>1.9</td>
<td>2.5±0.5</td>
<td>Cry</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Talezmzane Crater, Algeria</td>
<td>33°19'N 04°02'E</td>
<td>G-1</td>
<td>209/037</td>
<td>2336-09334 Feb. 22, 1976</td>
<td>1.75</td>
<td><3</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Amguid Crater, Algeria</td>
<td>26°05'N 04°23'E</td>
<td>H-2</td>
<td>208/042</td>
<td>1435-09433 Oct. 1, 1973</td>
<td>0.45</td>
<td><0.1</td>
<td>Sed</td>
<td>2</td>
<td>S</td>
</tr>
</tbody>
</table>
Table 7c (Continued)

<table>
<thead>
<tr>
<th>Aquellou Crater, Mauritanian</th>
<th>20°15'W</th>
<th>J-1</th>
<th>218/046</th>
<th>1229-10443</th>
<th>0.37</th>
<th>3.1±0.3 Sed</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

"ONC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minor.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-only remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: 5-simple crater, 6-complex structure with central uplift, Cr-complex structure with ring form."
Probable impact craters and astroblemes detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC Path/Row</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Bosumtwi, Ashanti, Ghana</td>
<td>6°29'N</td>
<td>L-2</td>
<td>208/056</td>
<td>1579-09460</td>
<td>Feb. 22, 1974</td>
<td>10.5</td>
<td>1.3±0.2</td>
<td>Cry</td>
</tr>
<tr>
<td>Tenoumer Crater, Mauritania</td>
<td>22°5.5'N, 10°24'E</td>
<td>J-2</td>
<td>218/044</td>
<td>1103-10431</td>
<td>Nov. 3, 1972</td>
<td>1.9</td>
<td>2.5±0.5</td>
<td>Cry</td>
</tr>
<tr>
<td>Talemzane Crater, Algeria</td>
<td>33°19'N, 04°02'E</td>
<td>G-1</td>
<td>209/037</td>
<td>2396-09334</td>
<td>Feb. 22, 1976</td>
<td>1.75</td>
<td><3</td>
<td>Sed</td>
</tr>
<tr>
<td>Tin Bider, Algeria</td>
<td>27°36'N, 05°07'E</td>
<td>H-2</td>
<td>208/041</td>
<td>1435-09425</td>
<td>Oct. 1, 1973</td>
<td>6</td>
<td><70</td>
<td>Sed</td>
</tr>
<tr>
<td>Ouarkziz, Algeria-Morocco border</td>
<td>29°00'N, 07°33'W</td>
<td>H-1</td>
<td>216/040</td>
<td>2385-10152</td>
<td>Feb. 11, 1976</td>
<td>3.5</td>
<td><70</td>
<td>Sed</td>
</tr>
<tr>
<td>Qasr, Libya</td>
<td>24°35'N, 24°24'E</td>
<td>H-4</td>
<td>193/043</td>
<td>2488-08014</td>
<td>May 24, 1976</td>
<td>11.5</td>
<td><120</td>
<td>Sed</td>
</tr>
<tr>
<td>BP, (British Petroleum), Libya</td>
<td>25°19'N, 24°20'E</td>
<td>H-4</td>
<td>193/042</td>
<td>2362-08044</td>
<td>Jan. 19, 1976</td>
<td>2.8</td>
<td><120</td>
<td>Sed</td>
</tr>
<tr>
<td>138°00'S, 27°27'E, South Africa</td>
<td></td>
<td>Q-5</td>
<td>183/079</td>
<td>1158-07370</td>
<td>Dec. 28, 1972</td>
<td>140</td>
<td>1,970±100</td>
<td>Sed&Cry</td>
</tr>
</tbody>
</table>

Probable impact craters and astroblemes barely detectable on Landsat MSS images

<table>
<thead>
<tr>
<th>Name</th>
<th>Geographic coordinates</th>
<th>OMC Path/Row</th>
<th>Landsat ID No. and date of Acquisition</th>
<th>Diameter km</th>
<th>Age m.y.</th>
<th>Target Rock</th>
<th>Pres.</th>
<th>Morph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amgoud Crater, Algeria</td>
<td>26°05'N, 04°23'E</td>
<td>H-2</td>
<td>208/042</td>
<td>1435-09431</td>
<td>Oct. 1, 1973</td>
<td>0.45</td>
<td><0.1</td>
<td>Sed</td>
</tr>
<tr>
<td>Auchlouvr Crater, Mauritania</td>
<td>20°15'N, 12°41'E</td>
<td>J-1</td>
<td>218/046</td>
<td>1229-10443</td>
<td>Mar. 9, 1973</td>
<td>0.37</td>
<td>3.1±0.3</td>
<td>Sed</td>
</tr>
</tbody>
</table>
Table 7d (Continued)

*GNC: Operational Navigation Chart, 1:1,000,000 scale, National Ocean Survey.

Grieve, R. A. F., 1982, Table 2

Sed-Sedimentary, Cry-Crystalline, ()-minnr.
Pres: State of Preservation: 1-ejecta largely preserved, 2-ejecta partly preserved, 3-ejecta removed, rim partly preserved, 4-rim largely eroded, crater-fill products preserved, 5-crater-fill products partly preserved, 6-ly remnants of crater-fill preserved, crater floor exposed, 7-crater floor removed, substructure exposed.

Morph: Morphology: S-simple crater, C-complex structure with central uplift, Cr-Complex structure with ring form.
Bibliography

Africa
Mauritania
Aouelloul Crater

Bibliography

Engelhardt, W. V., 1974, Meteoritenkrater [Meteor craters]: Naturwissenschaften, v. 61, p. 413-422, 9 figs.

Heybrock, Werner von, 1961, Der Ursprung des Aouelloul-Kraters [The origin of the Aouelloul crater]: Naturwissen-schaftliche Rundschau, p. 188-190, 4 figs.

488

1971, Physical chemistry of the Aquelloul glass: Journal Geophysical
Research, v. 76, p. 6428-6439.

Scientific Publishing Co., p. 34.

Robertson, P. B., and Grieve, R. A. F., 1975, Impact structures in Canada:
Their recognition and characteristics: Royal Astronomical Society Canada
Journal, v. 69, no. 1, p. 1-20, 7 figs.; also in Canada Department
Energy, Mines and Resources, Earth Physics Branch Contribution no. 430.

Senftle, F. E., and Thorpe, A., 1959, Magnetic susceptibility of tektites and
some other glasses: Geochimica et Cosmochimica Acta, v. 17, p. 234-247,
3 figs., 4 tables.

Störzer, Dieter, 1971, Fission track dating of some impact craters in the age
range between 6,000 y. and 200 m.y. (abs.): Meteoritics, v. 6, p. 319.

impacts: Meteoritics, v. 12, no. 3, p. 368-369.
Bibliography

Baltimore, MD, Mono Book Corp., p. 531-554.

origin of tektites and other natural glasses: Geochimica et Cosmochimica

Gentner, W., 1966, Auf der Suche nach Kratergläsern, Tektiten und und
Meteoriten in Africa [The search for crater glasses, tektites and

Gentner, W., Kleinmann, B., and Wagner, G. A., 1967, [New K-Ar and fission
track ages of impact glasses and tektites, glasses of the Nordingen Ries
(West Germany), Bosumtwi (Ghana), and other natural glasses] (in
Russian): Meteoritika, no. 27, p. 151-152.

Gentner, W., Lippolt, H. J., and Muller, O., 1964, Das Kalium-Argon-Alter das
Bosumtwi-Kraters in Ghana und die chemische Beschaffenheit seiner Gläser
(The potassium-argon age of the Bosumtwi crater in Ghana and the chemical
1, p. 150-153; also in Max-Planck Institut für Kernphysik, Heidelberg, 7
p., 2 tables.

Glass, B. P., 1968, Glassy objects (microtektites) from deep-sea sediments
near the Ivory Coast: Science, v. 161; p. 891-893.

1972, Bottle-green microtektites: Journal Geophysical Research, v. 77;
p. 7057-7064.

York State College of Ceramics, Alfred University, Alfred, N. Y., 2 p.

Lacroix, A., 1934, Sur la découverte de tectites à la Côte d'Ivoire [The discovery of tectites in the Ivory Coast]: Académie des Sciences (Paris), Comptes Rendus, 199; p. 1539-1542.

1935, Découverte de tectites à la Côte d'Ivoire [Discovery of tektites in the Ivory Coast] (abs.): Archives Museum National d' Histoire Naturelle, Ser. 6, 12; p. 166-169.

Saul, J. M., 1964, Field investigations at Lake Bosumtwi (Ghana) and in the Ivory Coast strewn field: National Geographic Society Research Reports, 1964; p. 201-212.

1969, Field investigations at Lake Bosumtwi (Ghana) and in the Ivory Coast tektite strewnfield, in Oehser, P. H., ed., National Geographic Society Research Reports, 1964, p. 201-212.

1967b, Trace element data on Ivory Coast tektites and rocks from the Bosumtwi crater, Ghana (abs.): Meteoritics, v. 3, no. 3, p. 123.
1968, Rare-earths and barium in Ivory Coast tektites and rocks from the Bosumtwi crater, Ghana (abs.): Geological Society of America, Special Paper no. 101, p. 192-193.

Störzer, D., 1971, Fission-track dating of some impact craters in the age range between 6,000 y. and 300 m.y.: Meteoritics, v. 6, p. 319.

Zähringer, Joseph, and Gentner, W., 1966, [Comparative determination of the potassium-argon age of tektites, glasses of the Nordlingen Ries (West Germany), Bosumtwi (Ghana), and other natural glasses] (in Russian): Meteoritika, no. 27, p. 151-152.
Africa
Libya, Cyrenaica
Oasis and BP (British Petroleum)

Bibliography

Conant, L., and Goudarzi, G. H., 1964, Geologic map of the Kingdom of Libya, scale 1:2,000,000: U.S. Geological Survey Miscellaneous Geologic Investigations, Map I-350A.

Fresnel, Fulgence, 1850, Memoire sur le Wadai; suite: Societe de Geographie (Paris), Bulletin, 3rd series, v. 13, nos. 74-75, p. 82-83.

Gentner, Wolfgang, Störzer, Dieter, and Wagner, G. A., 1969, New fission track
tages of tektites and related glasses: Geochimica et Cosmochimica Acta,
v. 33, p. 1075-1081.

Galigner, 1970, Spaltspuren Datierung Nordamerikanischer Tektite und Libyscher
Wüstengläser [Fission-track dating of North American tektite and Libyan
Desert glasses]: Max-Planck Institut für Kernphysik, Heidelberg,

Giegengack, Robert, and Alfar, Darwish, 1974, Remanent clastic textures in
Libyan Desert silica glass: Geological Society America, Abstracts with
Programs, v. 6, no. 7, p. 753.

Giegengack, Robert, and Issawi, Bahay, 1975, Libyan Desert silica glass, a
summary of the problem of its origin: Annals Geological Survey of Egypt,
v. 5, p. 105-118, map.

Giegengack, Robert, and Underwood, J. R., Jr., 1980, Field observations within
a little-known dune complex in the Great Sand Sea, Western Desert, Egypt:
Geology Program - 1980: National Aeronautics and Space Administration
Technical Memorandum 82385, p. 314-316.

Haynes, C. V., Jr., 1982, Great Sand Sea and Selima sand sheet, Eastern

Jessberger, E., and Gentner, Wolfgang, 1972, Mass spectrometric analysis of
gas inclusions in Muong Nong glass and Libyan Desert glass: Earth and

Kleinmann, B., 1969, The breakdown of zircon observed in the Libyan Desert
glass as evidence of its impact origin: Earth and Planetary Science

503

Störzer, Dieter, 1971, Fission-track dating of some impact craters in the age range between 6,000 y. and 300 m.y.: Meteoritics, v. 6, p. 319.

1980, Discovery of the Quarat Al Hanish, Egypt, iron meteorite: Meteoritics, v. 15, p. 100.

305

Africa
Near undefined Algeria - Morocco border
Quarkziz

Bibliography

Fabre, Jean, and Greber, Ch., 1956, Le Carbonifère continental au nord de
Tindouf (Sahara): [The continental Carboniferous north of Tindouf
(Sahara)] Algeria, Service de la Carte Geologique, B, new series, no. 8,
p. 7-23, illustrations (including geologic map, 1:200,000 scale).

Fabre, Jean, Kazi-Tani, Nacereddine, and Megartsi, M'Hamed, 1980, Le rond de
l'Ouarkziz (Sahara nord-occidental), un astrobleme [The ring of Ouarkziz
(northwestern Sahara), an astrobleme]: Comptes Rendus, Paris, Académie
des Sciences, sec. D., v. 270, no. 9, p. 1212-1215.

Guillemot, J., 1962, Fiches descriptives de trois accidents circulaires
sahariens [Descriptive notes on three circular structures in the
Sahara]: Photo-Interpretation, no. 4, fascicule 1.

Lambert, Philippe, McHone, J. F., Jr., Dietz, R. S., Briedj, M., and Djender,
M., 1981, Impact and impact-like structures in Algeria, Part II, Multi-

Monod, Theodore, 1965, Contribution à l'établissement d'une liste d'accidents
circulaires d'origine meteoritique (reconnus, possibles ou supposis)
cryptoexplosive [Contribution to a list of circular structures of
cryptoexplosive meteoric origin (known, possible, or supposed)]:
Institut Français d' Afrique Noire (I.F.A.N.), Dakar, Catalogues et
documents, no. 18, 96 p.
Africa
Algeria
Talemzane Crater

Bibliography

Africa
Mauritania
Tenoumer Crater

Bibliography

Allix, A., 1951, Note et correspondance à propos des crateres meteoritiques
[Note and correspondence on meteoric craters]: Revue de Geographie de
Lyon, v. 26, no. 3, p. 357.

23, p. 5552-5566, 4 figs., 1 table.

French, B. M., Hartung, J. B., Short, N. M., and Dietz, R. S., 1970, Tenoumer
crater, Mauritania: Age and petrologic evidence for origin by meteorite
impact: Journal Geophysical Research, v. 75, no. 23, p. 4396-4406, 4
figs., 2 tables.; also in U. S. Department of Commerce, National Oceanic
and Atmospheric Administration (NOAA), Atlantic Oceanographic and
Meteorologic Laboratories, Collection Reprints, 1970, v. 1, 10 p., illus.

French, B. M., Short, N. M., and Dietz, R. S., 1969, Shock-metamorphic
features at the Tenoumer crater, Mauritania (abs.): American Geophysical
Union Transactions (EOS), v. 50, no. 4, p. 221.

Fudali, R. F., 1974, Genesis of the melt rocks at Tenoumer crater,
Mauritania: Journal Geophysical Research, v. 79, no. 14, p. 2115-2121, 2
figs., 6 tables.

Fudali, R. F., and Cassidy, W. A., 1972, Gravity reconnaissance at three

Monod, Theodore, 1954, Sur quelques accidents circulaires ou crateriformes du
Sahara occidental [On some circular or crateriform structures of the
western Sahara]: International Geological Congress, 19th, Algiers, 1952,

Bibliography

Guillemot, J. 1962, Fiches descriptive de trois accidents circulaires sahariens [Description notes on three circular structures in the Sahara]: Photo-Interpretation, no. 4, fascicule 1.

Monod, Th., 1965, Contribution à l'établissement d'une liste d'accidents circulaires d'origine météoritique (reconnus, possibles, ou supposes). cryptoexplosive [Contribution to a list of circular structures of cryptoexplosive meteoric origin (known, possible, or supposed): Institut Français d'Affrique Noire (I.F.A.N.), Dakar, Catalogues et documents, no. 18, 96 p.
Bibliography

Boone, J. D., and Albritton, C. C., Jr., 1937, Meteorite scars in ancient rocks: Field and Laboratory, v. 5, no. 2, p. 53-64.

1938, Established and supposed examples of meteoritic craters: Field and Laboratory, v. 6, p. 44-56.

Bucher, W. H., 1963, Cryptoexplosion structures caused from without or from within the Earth ("astroblemes" or "geoblemes")?: American Journal of Science, v. 261, no. 7, p. 597-649.

Schreyer, W., and Abraham, K., 1978, Symplectic cordierite-orthopyroxene-garnet assemblages as products of contact metamorphism of pre-existing basement granulites in the Vredefort structure, South Africa, and their relations to pseudotachylite: Contributions to Mineralogy and Petrology, v. 68, p. 53-62, 8 figs., 1 table.

Emter, D., 406, 408

England, A., 508
Englund, K. J., 114
Epstein, S., 498
Eromenko, G. K., 306
Erdog, M., 434
Erdogh, M., 433
Ernston, K., 313, 364, 365, 387
Eskola, P., 325, 327, 330, 334
Evans, D. L., 508
Evans, G. L., 93, 98
Ewald, U., 397
Ezersky, V. A., 449
Fabre, J., 507
Fahey, O. J., 65, 67, 267, 441, 494
Fahrig, W. F., 146
Fairbairn, H. W., 211, 212
Fairbchld, H. L., 67, 68
Farrington, O. C., 68
Faul, H., 354, 365, 492
Faure, G., 211, 212
Faust, G. T., 267
Fechtig, H., 44, 258, 361, 426, 487
Fedynskiy, V. V., 12, 16, 23, 43, 327
Feldman, V. I., 327, 328, 347, 448, 451, 452, 466
Feller-Kneipmeier, M., 6, 68
Ferguson, G. M., 153, 168
Ferguson, J., 271, 277, 278, 512
Fesefeldt, K., 365
Fesenko, V. G., 427
Festag, J. G., 426
Figgins, J. D., 89
Filatova, L. A., 430
Fireman, E. L., 68, 428, 435
Firsov, L. V., 346, 460
Fischer, D. E., 428
Fischer, G., 406
Fisenko, A. V., 429, 430
Fisher, C., 68, 296
Fisher, D. E., 68, 91, 97, 425
Fisher, G., 406
Fisher, R. M., 428
Fishman, M. V., 448
Fisk, E. P., 501, 505
Fleet, M. E., 212
Fleischer, R. I., 487, 492, 500
Fleischer, R. L., 156, 183
Fleischer, R. T., 441
Fletcher, L., 441
Floran, R. J., 183, 184, 185, 188, 212, 213, 214
Florenskiy, P. V., 470, 471, 472
Fomenko, V. Y., 303
Fonton, S. S., 428, 432, 439
Foote, A. E., 68
Ford, J. P., 508
Forenskij, K. P., 438
Forstner, U., 365
Foster, G. E., 68
Fouche, K. F., 84, 236, 263
Fox, J. H., 99, 100
Fraas, E., 29, 355, 365, 406
Frechette, V. D., 489, 503
Fredericksson, B. J., 315
Fredericksson, K., 315, 441, 455, 456
Frederiksson, K., 334, 471, 472
Fredriksson, K., 309, 325, 338
Freeberg, J. H., 1, 10, 12, 16, 23, 116, 139, 146, 156, 162, 170, 174, 184, 195, 200, 202, 212, 221, 267, 300, 407, 459, 488
Fregerslev, S., 325, 328, 330, 334, 337
French, B. M., 1, 16, 212, 213, 237, 238, 240, 309, 310, 487, 501, 509
Fresnel, F., 501
Frey, H., 6, 16, 36
Frickhinger, H., 365, 366
Friedman, I., 501
Friedrich, H. S., 533
Frisch, T., 166
Frishchat, G. H., 501
Frolova, L. M., 413
Fryer, R. J., 23, 139, 146, 156, 162, 170, 175, 178, 184, 190, 203, 213, 218, 221
Fuchs, L., 79
Fudali, R. F., 267, 271, 456, 488, 501, 509
Fullagar, P. D., 213
Fuller, A., 31
Fullerton, D. S., 107
Funk, H., 235
Furcron, A. S., 70
Futtergnder, S. I., 461
Galaka, A. I., 303, 403
Gale, N. H., 515, 517
Gumbel, C. W., 370
Guppy, D. J., 268, 276, 278
Gurevich, G. L., 304
Gurov, Y. P., 303, 316, 344, 345, 452, 453
Gurova, D., 452, 453
Gutschick, R. C., 110, 111, 112
Guy-Bray, J. V., 139, 210, 213, 218
Haalick, H., 409
Hack, J. T., 69
Hackmann, R. J., 40
Hager, D., 69, 70
Hahn, A., 370
Halbfass, W., 442
Hale, W. E., 113
Hall, A. L., 514, 516
Hall, R. A., 70
Halliday, D. W., 177
Halliday, I., 21, 43, 137, 144, 153, 157, 161, 168, 173, 175, 180, 193, 196, 200, 202, 207, 220, 221
Halligan, R., 271
Hallis, H. C., 204, 205
Hamblin, C., 190
Hamilton, W., 214
Hammond, W. P., 185
Hamza, V. M., 138, 140
Haney, R., 370
Hansel, J., 363
Hardeman, W. D., 107
Harding, N., 70
Hardy, C. T., 70
Hargraves, R. B., 31, 148, 515
Hargreaves, J., 196
Harms, J. E., 271, 277
Harris, T. F., 442
Harris, W. K., 271, 277
Harrison, E. R., 6, 17, 36
Harrison, J. M., 196
Harrison, T. S., 120
Hart, R. J., 515, 517
Hartmann, W. K., 44
Hartung, J. B., 31, 139, 140, 141, 509
Hashimi, M. M., 336
Hassan, F., 499
Hastings, D. A., 493
Hastings, J. B., 70
Haughton, S. H., 515
Haunschild, H., 371
Haussmann, K., 371, 407
Hawkes, H. E., 456
Hawkins, G. S., 39, 44, 141
Hawley, J. E., 214
Hay, R., 88
Haynes, C. V., Jr., 502
Head, J. W., Jr., 185
Head, J. W., III, 17, 184
Heald, W. F., 70
Hedstrom, H., 338
Heide, F., 196, 259, 429, 442
Heinrich, R., 100
Helin, E. F., 19, 39, 41
Hellyer, B., 429
Henderson, E. P., 70, 72, 270
Hendricks, H. E., 100
Herkenhoff, K. E., 121
Herold, R., 371
Herr, W., 94, 259
Hertogen, J., 158, 185, 187, 192, 307, 308, 375, 384, 495
Hertzog, G. F., 94
Hey, M. H., 24, 70, 233, 259, 268, 296, 301, 429, 442, 445, 486
Heybrock, W. V., 88, 488
Heyl, A. V., 100
Heymann, D., 70, 436
Heywood, W. W., 157
Higuchi, H., 76, 191, 443, 489
Hintenberger, H., 93, 94, 223, 429
Hinze, W. J., 80
Hirt, B., 94, 259
His, G., 124
Hitch, A., 168
Hjelmquist, S., 338
Hoag, W., Jr., 442
Hodge, P. W., 70, 88, 253, 259, 429
Hodges, C. A., 36
Hoerz, F., 305, 456
Hoffleit, D., 70, 71, 185, 196
Hoffling, R., 359
Hoffmeister, W., 94, 259
Hofmann, F., 371
Hogbom, A. G., 325, 335
Holder, H., 371
Holdsworth, F., 71
Holland, L. F. S., 71
Hollaus, E., 367, 371, 372
Holm, D. A., 442
Holmberg, H. J., 331
Holmes, C. H., 268
Holst, N. P., 335
Homilius, J., 353
Kilsgaard, T. H., 100
Kimberlin, J., 254, 264
King, E. A., 24, 95, 433, 442, 472
King, P. B., 118
Kinsler, D. C., 22
K. -juchin, L. G., 472
Kirsten, T., 376
Kiryushina, M. T., 460
Kish, L., 185
Kitson, A. E., 493
Kitty, W. G., 279
Kitez, E., 175
Kjellen, R., 335
Klein, J., 378, 493, 506
Kleinmann, B., 368, 488, 492, 502
Kloosterman, J. B., 32
Klopf er, C., 501
Knacke, R., 39
Knebel, W. von, 378
Knight, C. W., 214
Knox, R., Jr., 72, 94, 268
Koeberl, C., 472, 488
Koenen, K. H., 109
Kohman, T. P., 93, 232, 253, 259, 260, 429, 500, 503
Koken, E., 379
Kolbe, P., 264, 493
Kolesnikov, Y. M., 429, 430
Kolesov, G. M., 434
Koljonen, T., 328
Kolomenskij, V. D., 430
Kolpakov, V. V., 459
Komarov, A. N., 304, 435, 461
König, G., 44
Corchemagin, V. A., 425
Korpikiewicz, H., 301
Kostki, G. A., 472
Kotlovskoy, F. I., 453
Kovaleva, L. T., 464
Kowalski, M., 433
Kozlov, V. S., 454, 463, 473
Kozlovskaya, A. N., 304, 344
Kozmanov, Y. D., 430
Kramar, O. A., 303
Kranck, S. H., 157
Kranz, W., 296, 379, 380, 381, 408, 409
Kraus, E., 296
Krausel, R., 197
Kraut, F., 308, 309, 310, 315, 381
Kreins, E. R., 72
Kresak, L., 39
Kretz, R., 197
Kreyenhagen, K. N., 82, 83
Krishnaswamy, D. S., 102
Krogh, T. W., 214
Krotova, A. Z., 459
Kryanina, L. P., 468
Ksanda, C. J., 72
Kudlayev, A. R., 412
Kulik, L. A., 297
Kullerud, G., 95, 215, 442
Kulonpalo, M., 331
Kuncir, J., 354
Kunz, G. F., 72, 88
Kutscher, M., 72
Kuzminski, H., 301
Kvasha, L. G., 299, 433, 439
LaPaz, L., 72, 73, 91, 95, 197, 268, 433
LaSalle, P., 148
LaTouche, T. H. D., 457
Lachance, G. R., 160, 189
Lacroix, A., 494
Lafleur, L. D., 95, 433, 442
Lafond, E. C., 456, 457
Laitakari, A., 331, 405
Lambolex, B., 313
Lämmerzahl, P., 260
Landau, A., 153, 168
Lane, R. T., 111
Lang, B., 433
La Rochelle, A., 185
Lasiter, S. P., 97
Lassovszky, K., 73
Lauren, L., 405
Lavrukhina, A. K., 428, 429, 430, 433, 434
Lazarenko, Y. Y., 305, 317, 345, 413
Leblanc, G., 149
Lefranc, J.-P., 485
Lehtinen, M., 331
Lehtovaara, J., 405
Lemcke, K., 382
Leonard, F. C., 73, 197, 268, 269, 434
Lettis, L. A., Jr., 63, 64
Levi-Donati, G. R., 59
McGee, P. E., 143, 158, 159, 179, 188
McGrath, J. G., 81, 97
McHugh, W. P., 503
McIntyre, D. B., 157
McKnight, E. T., 120
McLennon, S. M., 262, 264, 474
McMurphy, R. C., 165
McNutt, R. H., 213
McNutt, R. R., 214
McPherson, D. M., 489, 503
Mead, C. W., 75
Medenbach, O., 517
Medinger, H., 383
Medlicott, H. B., 457
Mednikov, V. I., 434
Mednikova, N. G., 434
Meen, V. B., 197, 198
Megartsi, M., 507
Meinecke, F. J., 75
Menzel, H., 376
Merrill, C. W., 486
Merrill, G. P., 75, 76, 96
Merrill, R. B., 2, 18, 40
Merritt, V. M., 97
Mesner, J. C., 241
Metz, R., 383, 399
Meyer, C. E., 518
Meyer, R., 296
Meyerhoff, M., 510
Meyn, H. D., 208
Michel, F. C., 261
Michel, H. V., 15
Middleton, R., 378, 493, 506
Mielke, H., 352
Mikhaylov, M. V., 305, 446, 461, 462, 463
Miklayev, V. I., 471
Milingimbi, N. T., 276
Millard, H. T., Jr., 44
Miller, A. H., 214
Miller, D. S., 400
Miller, D. W., 383
Miller, E. W., 493
Miller, G. A., 198
Miller, R. A., 107
Miller, R., 3rd, 70
Millman, P. M., 25, 61, 141, 147, 157, 163, 169, 170, 175, 179, 185, 191, 198, 201, 203, 215, 218, 222, 269, 408, 435, 489
Milyavsky, A. Y., 321
Minkin, J. A., 358
Miserov, A. V., 436
Moissan, H., 76
Molder, K., 332
Molengraaff, G. A. F., 514, 516
Monnig, O. E., 76, 89, 96
Monod, T., 26, 489, 507, 510, 511
Moore, C. B., 63, 65, 71, 76, 95, 260, 443
Moore, H. C., 36
Mooring, C., 455
Moos, A., 384
Morgan, J. W., 76, 11, 278, 384, 443, 457, 489
Morris, R. V., 238, 259, 441
Morrison, D. A., 69
Morrison, G. G., 215
Morrison, R. H., 373
Morty, B. G. K., 456
Mosebach, R., 384
Moss, F. J., 273
Motuza, G. B., 341
Moulton, F. R., 76
Mount, P. E., 491
Movschovich, Y. V., 321
Moyer, P. T. 172
Mulder, M. E., 76
Müller, D., 353, 367, 368, 384
Müller, O., 492
Müller, S., 408, 409
Müller, W. F., 362, 395, 518
Munck, S., 231
Munzing, K., 385
Murina, G. A., 463
Murrell, M. T., 44
Murtaugh, J. C., 181, 186
Mutagen, T., 337
Myada, E. F., 336
Myagkova, E. A., 449
Nabatnokova, T. B., 474
Nacereddine, 507
Naeser, C. W., 103, 354
Nafziger, R. H., 44
Nagata, T., 428
Nagata, T., 428
Nagera, J. J., 234
Naldrett, A. J., 234
Namba, M., 77
Nandy, N. C., 457
Nasrallah, M., 503
Robertson, P. B., 17, 22, 24, 26, 139, 140, 142, 145, 147, 148, 149, 150, 155, 157, 159, 162, 163, 164, 165, 166, 167, 170, 171, 174, 175, 176, 177, 179, 182, 184, 187, 190, 192, 195, 198, 199, 200, 201, 202, 203, 204, 205, 206, 216, 218, 219, 221, 222, 267, 269, 319, 321, 323, 324, 340, 341, 342, 403, 409, 490
Robertson, W. A., 187
Robie, E. H., 81
Roddy, D. J., 2, 18, 40, 81, 82, 83, 105, 106, 107, 409
Rodionov, V. N., 444
Rodman, R. E., 94
Roe, D. E., 504
Roedde, A., 370
Roen, J. B., 114
Rogers, A. F., 83
Rohleder, H. P. T., 83, 410, 496
Roll, A., 390
Ronca, L. B., 159, 188, 216, 270, 390
Rondot, J., 148, 150, 151, 339
Rose, G., 235
Rose, R. R., 188
Rosenbach, O., 376
Rosenberg, R. J., 328
Rosman, K. J. R., 83, 97, 262, 436
Rost, R., 354
Rostoker, N., 83
Rottenberg, J. A., 21, 99, 137, 144, 153, 161, 169, 173, 180, 194, 220, 455
Roy, D. W., 148, 151, 172, 188
Roy, J. L., 150
Russell, H. N., 83
Rutte, E., 390
Rutten, M. G., 339
Ryabinin, V. N., 444
Rybach, L., 496
Rysyukov, I. L., 449
Sabins, F., 508
Sable, V. H., 121
Sabo, E., 433, 434
Sage, R. P., 205
Saksela, M., 333
Salmi, M., 332
Sanchez, J., 235, 239
Sander, G. W., 164
Sandner, W., 26
Sappenhelf, L. W., 116
Sarma, D. G., 456
Sassenscheidt, A., 388
Sauer, A., 390
Sauer, H. D., 390
Saul, J. M., 33, 493, 496
Saunders, R. S., 508
Savage, W. S., 208
Sawatzky, B., 115
Sazhina, N. K., 434
Sazonova, L. V., 327, 328, 447, 448, 450, 451
Schaaf, H., 377
Schaal, R. B., 456, 458
Schabek, G., 508
Schaerfer, O. A., 37, 68, 97, 368, 436, 437
Schafer, H., 314
Schrager, G., 390
Schantz, K., 390
Scheer, D., 352
Schelting, K., 391
Schick, R., 409
Schilling, J. H., 437
Schmetzer, K., 307, 372
Schmidt, A., 314
Schmidt, R. G., 117
Schmidt, R. M., 83
Schmidt-Kaler, H., 350, 351, 357, 374, 388, 391
Schneider, W., 348, 364, 391
Scholl, T., 392
Schnetzler, C. C., 392, 487, 496, 497
Schowalter, E., 392
Schreyer, W., 516, 517, 518
Schroder, B., 392
Schroder, J., 392
Schuhmann, S., 219, 473, 510
Schule, F., 392
Schultes, H., 426
Schultz, K. J., 37
Schultz, L., 94, 233, 235, 429
Schultz, P. H., 2, 18, 19, 186
Schuster, M. E., 392
Schuster, S. H., 82, 83
Schutte, K., 393
Schwarz, E. H. L., 26
Schwarzman, E. C., 518
Schwimmer, R., 410
Sclar, C. B., 83, 444
Scott, D. H., 36
Stam, J. C., 339
Standacher, T., 376
Stanfor, R., 339
Stanyukovich, K. P., 296
Staritskly, Y. G., 328
Starke, B., 395
Starunov, V. A., 303, 316, 460, 472
Stearns, R. G., 122, 123
Steele-Perkins, E. M., 257
Steinbrunn, F., 388, 397, 411
Steinert, H., 396
Stepanov, V. P., 33
Stepto, D., 518
Sterrett, T. S., 81, 97
Stesky, R. M., 205
Stettner, G., 352, 396
Stevens, A. E., 149
Stevens, R. D., 160, 189
Stevenson, J. S., 216, 217
Stevenson, L. S., 217
Stokowski, Jr., 510
Strait, M. M., 98
Strauss, A. M., 504
Strel'nikov, S. I., 449
Strom, R., 37
Stroube, W. B., Jr., 458, 470
Strunz, H., 98
Struve, O., 85
Stuart-Alexander, D. E., 37
Stutzer, O., 85, 398
Suettenko, O., 469
Sukheswala, R. N., 458
Sumner, J. S., 87
Sushkov, V. A., 467
Sutter, J. F., 139
Suuroya, 323
Svenonius, F., 326
Svensson, N.-B., 326, 333, 335, 336, 339
Swallow, G. C., 104
Swanson, V. E., 105
Sweeney, J. F., 167, 189
Swingle, G. D., 107
Sykes, C. R., 107
Sysoyev, A. G., 462
Szirmae, A., 428
Takahashi, H., 158, 186, 187, 192, 307, 308, 384, 495
Talbot, M. R., 497
Talyvitie, J., 405
Tandberg-Hanssen, E., 199
Tanner, J. G., 177
Tarasyuk, V. K., 305, 317
Tarr, W. A., 104
Tassin, W., 76
Taylor, E. C., 192
Taylor, H. P., Jr., 498
Taylor, S. R., 258, 262, 263, 264, 278, 474
Taylor, W. R., 270
Tera, F., 37, 378, 493
Thomas, H. H., 496, 497
Thomas, K., 85
Thomas, M. D., 165
Thompson, S. O., 435
Thompson, T. D., 238, 259, 441
Thomson, E., 85
Thomson, J. E., 208, 217
Thomson, R., 208
Thorman, M. D., 22
Thorpe, A. N., 488, 490
Thorslund, P., 339
Thorsteinsson, T. R., 166
Thurmond, F. L., 85
Yhwaites, F., 109
Tiedemann, H. A., 122, 123
Tikhomirov, S. V., 319, 343
Tikhonov, V. A., 412
Tilghman, B. C., 60, 85
Tilley, C. E., 519
Tilton, G. R., 504
Titulaer, C., 23, 139, 146, 156, 162, 170, 175, 178, 184, 190, 203, 213, 218, 221
Todd, B. J., 167
Tong, S., 489, 503
Tonkin, P. E., 275
Treibs, W., 374, 391, 398
Trischler, J., 367
Trofimov, A. V., 437
Trukhalev, A. S., 463
Truter, F. C., 519
Tsvetkov, V. I., 27, 347, 425, 433, 436, 437, 454, 467, 469
Tudor, D. S., 112
Tulenkova, I. N., 427
Tumanov, R. R., 347
Tupper, W. M., 143
Tyl, I., 32
Tynni, R., 405
Uchiyama, A., 69, 93
Ueno, H., 214
Uhden, R., 498
Uhlig, H. H., 68, 85
Uhlmann, D. R., 186, 215
Ulrych, J., 354
Underwood, J. R., Jr., 499, 501, 502, 503, 504, 505, 506
Urey, H. C., 37, 41, 505, 506
Ustritskiy, V. I., 450
Utech, K., 45
Val'eyev, R. N., 322
Vand, V., 376, 399, 411
Van den Bosch, A., 506
Van Flanderan, T. C., 41
Van Lopik, J. R., 118, 119
Van Niekerk, C. B., 517
Van Schmus, W. R., 111
Van Son, J., 273
Vansummeren, J., 506
Vasil'yev, I. V., 306
Vassamilet, L. F., 231
Vdovkin, G. P., 85
Vedrintsev, A. B., 320
Venkatesh, V., 458
Veselovskaya, M. M., 347
Vevetennikov, N. V., 340
Vidal, H., 399
Viertl, J. R. M., 156, 183
Vilcsek, E., 264
Villar, L. M., 232
Vinogradov, A. P., 438
Vinogradov, G. G., 316
Vishnevs'kii, S. A., 450, 460, 464, 465, 474
Vodolazskii, V. N., 450
Vogel, K. A., 336
Vogt, H., 302
Vogt, P., 5, 15
Vorob'yev, G. G., 399
Voronov, P. S., 465
Vos, M. A., 163, 171, 199, 201, 205, 222
Voshage, H., 86, 98, 264, 438
Votaw, R. B., 112
Wacker, J., 39
Walawender, M. J., 152
Walker, R. G., 208
Walker, R. M., 441, 487, 492, 500
Walter, L. S., 155
Walton, M., 86
Wampler, J. M., 498
Wandless, G. A., 278
Wang, D., 506
Wangenheim, V. F., 299
Wänke, H., 92, 93, 94, 258, 264, 426, 429
Wanless, R. K., 160, 189
Warner, J. L., 159, 179, 183, 184, 188, 212
Wasserburg, G. J., 37, 92, 494
Wasson, J. T., 86, 89, 98, 236, 254, 263, 264, 270, 438, 444, 506
Watson, F., Jr., 86
Weber, E., 400
Weber, H., 94, 233, 429
Weber, R., 86
Wedepohl, K. H., 401
Weeks, R. A., 501, 503, 506
Wegener, A., 86, 296
Weiblen, P. W., 37
Weinke, H. H., 94
Weiser, F., 410
Weiser, T., 401
Weiskirchner, W., 401
Weiss, O., 519
Weissman, P. R., 13, 19
Welch, E., 336
Welke, H. J., 515, 519
Weltraumfahrt, 401
Werner, E., 401
Westhoff, C. J. W., 401
Wetherill, G. W., 13, 19, 37, 41
Wetmiller, R. J., 149
Whipple, F. L., 270
Whitaker, E. A., 37
White, J. S., Jr., 270
Whitford-Stark, J. L., 27
Whiting, J. W., 86
Wickman, F. E., 325, 334, 336, 338
Wiik, H. B., 86
Wilcox, J. T., 122
Wilkins, J., Jr., 87
Will, M., 387
Willemse, J., 519
Williams, G. H., 217
Williams, H., 217
Williams, J. G., 19, 41
Williams, J. H., 101, 103
Willmore, P. L., 141, 189
Wilshire, H. G., 105, 118, 119, 518, 519
Wilson, C. H., 71, 87
Wilson, C. W., Jr., 108, 122, 123
Wilson, D. H., 124
Wilson, W. F., 124
Winchell, N. H., 90
Winkler, E., 112
Winslow, A., 104
Winzer, S. R., 206, 219, 471, 473, 510
Wirth, E., 401
Wirthlin, R. L., 218
Wlotzka, F., 236
Wolf, R., 142, 165, 187, 192, 201, 219, 473, 495
Wolfe, R. F., 19, 41, 158, 473
Wolfe, S. H., 189
Wolff, H., 402
Wood, A. C., 38
Wood, C. A., 265
Wood, J. A., 42, 98
Woodrow, A. B., 165, 192, 201, 219
Woolridge, L. C. P., 241
Woronow, A., 37, 38, 45
Wright, A. C., 506
Wright, F. W., 70, 253, 259, 429
Wulffing, E. A., 87
Wylie, C. C., 87
Xavier, A., 402
Yabashtia, S., 39
Yakonova, M. I., 438
Yakupov, V. S., 465
Yasinskaya, A. A., 438, 474

Yaslavskaya, N. I., 438
Yatsuk, V. I., 450
Yavanel, A. A., 270, 438, 439
Yeliseyeva, L. V., 429
Yenokyan, V. S., 450
Yeremenko, G. K., 345, 404
Yiou, F., 506
York, D., 174, 177, 191, 325, 334, 337, 338
Young, G. A., 273
Young, J., 87
Youngblood, E., 315
Yudin, I. A., 299, 430
Yukina, L. V., 428, 434
Yurk, U. U., 404
Yurk, Y. V., 306, 345
Zabello, G. D., 344
Zadorozhnyi, I. K., 438
Zahin, J. C., 116, 117
Zähringer, J., 94, 259, 260, 402, 437, 498
Zaslavskaja, N. I., 439
Zaslow, B., 87
Zavaritskij, A. N., 299, 439
Zaytseva, A. P., 434
Zebra, K., 402
Zemskov, G. A., 316
Zenchenko, M. S., 450
Zeylik, B. S., 33, 466, 467
Ziehr, H., 402
Zimmerman, W. W., 87
Zimmermann, G., 370
Zimmermann, R. A., 102, 104
Zinchenko, V. A., 303
Zollner, W., 402
Zotkin, I. T., 23, 27, 347, 439, 454, 467, 469
Zukas, E. G., 87
Index of Alternate Names

<table>
<thead>
<tr>
<th>Principal Name</th>
<th>Alternate Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaalijary Craters</td>
<td>Ösel Craters</td>
<td></td>
</tr>
<tr>
<td>Chassanon Crater</td>
<td>Rochechouart Crater</td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wabar Craters</td>
<td>Al Hadidah Craters</td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Bosumtwi</td>
<td>Ashanti</td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campo del Cielo Craters</td>
<td>Names of individual craters or meteorites associated with them: Chaco, El Taco, El Mocovi, El Toba, Otumpa</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S.A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barringer Crater</td>
<td>Meteor Crater, Canyon Diablo, Ninninger Crater, Coon Mtn., Coon Butte</td>
<td></td>
</tr>
<tr>
<td>Haviland Crater</td>
<td>Name of meteorite associated with it: Brenham, the township's name</td>
<td></td>
</tr>
<tr>
<td>Uvalde</td>
<td>Bee Bluff</td>
<td></td>
</tr>
<tr>
<td>Glover Bluff Structure</td>
<td>Lime Bluff</td>
<td></td>
</tr>
<tr>
<td>Wells Creek area</td>
<td>Cave Spring Hollow, Indian Mound</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlevoix Structure</td>
<td>La Malbaie</td>
<td></td>
</tr>
<tr>
<td>New Quebec Crater</td>
<td>Chubb Crater, Ungava Crater</td>
<td></td>
</tr>
</tbody>
</table>
This bibliography lists 105 terrestrial impact structures, of which 12 are proven structures, that is, structures associated with meteorites, and 93 are probable. Of the 93 probable structures, 18 are known to contain rocks with meteoritic components or to be enriched in meteoritic signature-elements, both of which enhance their probability of having originated by impact. Many of the structures investigated in the USSR to date are subsurface features that are completely or partly buried by sedimentary rocks. At least 16 buried impact structures have already been identified in North America and Europe. No proven nor probable submarine impact structure rising above the ocean floor is presently known; none has been found in Antarctica or Greenland.

An attempt has been made to cite for each impact structure all literature published prior to mid-1983. The structures are presented in alphabetical order by continent, and their geographic distribution is indicated on a sketch map of each continent in which they occur. They are also listed in tables in (1) alphabetical order, (2) order of increasing latitude, (3) order of decreasing diameter, and (4) order of increasing geologic age.

<table>
<thead>
<tr>
<th>Key Words (Suggested by Author(s))</th>
<th>Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>terrestrial craters</td>
<td>Unclassified - Unlimited</td>
</tr>
<tr>
<td>terrestrial impact structures</td>
<td></td>
</tr>
<tr>
<td>bibliography</td>
<td></td>
</tr>
</tbody>
</table>