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Carbon, hydrogen, oxygen and nitrogen are the four principal

elements that contribute to living matter. In catalysis and

energy exchange reactions iron and phosphorous are of critical

importance. Each of these elements is a common const ituent of

the earth and presumably formed during the formation of the

solar system. Carbon monoxide, car-Loon dioxide, water, methane,

amornia and hydrogen and oxygen in molecular form (H2 and 02)

are comre:^n molecules formed by the important elements. All of

these, except for oxygen have been considered to be the

constituents of the primitive atmosphere. Oxygen is not only

one of the most abundant elements on the earth, but it is also

one of the most important elements for life. Such being the

case, it has been the subject of intensive investigation among

a number of physiologists and biochemists since the study of

biological oxidation processes was initiated by Lavoister- about

200 years ago. In terms of composition, the feature of the

atmosphere that most distinguishes earth from ether planets is

the presence of abudant amounts of oxygen. If one understands

what determined the oxygen content of the atmosphere today, then

that will most likely unravel the history of the abundance of

atmospheric oxygen.

The upper- atmosphere of the earth is as dry as the Martian

atmosphere, and it has been proposed by Urey that the oxygen

on earth was produced by the photo dissociation of water.

Further studies by Urey have revealed that there would be

shielding of the main body of water vapor in the troposhere,

thus resulting in an auto-regulated level of oxygen produced in

a primitive atmosphere, a condition that is remarkable stable.



G

Berkner and Marshall calculated this level to be about 1/1080th

or less of the oxygen of the present day atmosphere_

It is usually thought that the earth was once completely

anaerobic, containing w ­. ane and, possibly, More complicated

organic compounds. The first forms of life may have been similar

to present day anaerobic bacteria such as clostridium.

Evolution of the photosynthetic cleavage of water to oxygen

was doubtless a major event with far-reaching consequences.

Biologists generally believe that as oxygen accumulated in the

earth's atmosphere, the obligate anaerobes became limited to

strictly anaerobic environments. In the meantime, new classes

of bacteria appeared with microorganisms for detoxifying oxygen

and for using oxygen to obtain energy.

The relationship between prokaryotes and eukaryotes, if any,

has been a topic of much speculation. Eukaryotic cells contain

a variety of membraneous organelles, at least some of which are

probably the descendants of prokaryotic ancestors. The question

of the time of origin of the eukaryotes is of interest in

relation to NASA's program on the origin and early evolution of

life- With only a few exceptions eukaryotes are oxygen-utilizing

organisms. One question we would like to examine is whether

eukaryotes or eukaryotic biochemical processes requiring oxygen,

could have arisen quite early in evolution and utilized the small
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quantities of photocatalytically produced oxygen which are

thought to have beer, present on the earth prior to the evolution

of massive amounts of photosynthetically-produced oxygen. An

insight into the time of origin of the first eukaryotes may be
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obtained by studying the cellular processes affected by oxygen.

One candidate for such a study would be the acetyl -coenzyme A

(ACS) synthetase of Saccharomyces cerevisiae.

The existence in the microbial world of organisms capable of

both fermentation and respiration, dependent on the oxygen level

of their environments, is of importance for the understanding of

the early evolution of life. Oxygen has a pronounced effect on

the growth, general metabolism and lipid composition of the

Eucaryote, yeast. The genus Saccharomyces has been used to

study the effects of oxygen on various physiological parameters

of yeast. These organisms provide several systems for study of

the role of oxygen in Eukaryotes. There is, however, a great

deal of uncertainty as to the precise role of oxygen in

determining the morphoiogical and biochemical changes that are

seen in aerobically metabolizing yeast cells. It is well known

that the synthesis of unsaturated fatty acids, sterols,

ubiquinone and a number of hemoproteins is inhibited by exluding

oxygen from the culture medium. , This is a consequence of the 	 ',,
It

direct involvement of molecular oxygen in the biosynthesis of

the substances. However, other changes are known to occur in

these yeast cells as a consequence of non-aerobic environment,

for example, degradation of mitochondria, arid, in turn, enzymes

of tricarboxylic acid cycle.

Oxygen tension and glucose repression, regulate the formation

of mitochondria in yeast. One of the enzymes associated with

this organelle is acetyl-Coenzyme A synthetase (ACS), which is

the key enzyme concerned with lipid synthesis in S. cerev-isiae.

Earlier studies on this enyzme have revealed the presence of two
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distinct acetyl-CoA synthetases dependent on the availability of

oxygen during growth of this organism. Under aerobic or oxygenic

conditions, the enzyme is associated with the mitochrondrial

fraction. Under non-aerobic conditions, it is associated with

the microsomal fractions of the cell homogenate. Further

studies, using isolated fractions revealed that the enzyme formed

during the two conditions of growth differed in a number of ways.

The affinity constant for acetate, was 10-fold higher and for-

ATP, 3-4 fold higher for the non-aerobic enzyme compared to the

aerobic variety of the enzyme. Long chain acyl-Coenzyme A

compounds (palmityl, stearyl and oleolyl) were found to be potent

inhibitors of ACS from aerobic, but not from non-aerobic cells.

The inhibitory pat!iern by these long chain acyl-CaA compounds

had characteristics of regulatory enzymes, with an interaction

co-efficient of 3.25. This suggested that the aerobic enzyme

is trimeric in structure. Short chain aryl-CaA compounds

(propionyl, butyryl and valeryl) had no effect on ACS from either

aerobic or non-aerobic source.

The "aerobic" ACS was purified to homogeneity. By various

criteria, the molecular weight has been deduced to be around

250,000. This study confirms the enzyme to be a trimer with a

subunit size around 83,000, this concurring with acyl-CoA

inhibition studies.

In further experiments, some of the immunologic properties of

the two ACS'S were studied in detail. The antibody produced by

each enzyme is immunologically specific. Antibodies prepared

from homologous enzyme inhibited only the homologous enzyme
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actifity but not the heterologous enzyme activity.

During these immunological studies, a partially purified non-

aerobic preparation of the enzyme has been used. This was

necessitated because attempts to purify this enzyme further were

hindered because of the labile nature of the enzyme during

purification procedures carried out at 4 aC. Indeed both the

enzymes were found to be unstable upon storage conditions at

4C C. However, addition of boiled extracts of aerobic, non-

aerobic or "petite" strains of the parent strain, prevented

such losses -f activity for both the aerobic and non-aerobic

RCS's. The instability of both the enzymes was shown not to

be due to the interference r=:f intracellular- proteinases since

specific inhibitors of these proteinases had no effect in

.i	 preventing ACS from inactivation. The stabilizing factor
r

(S.F.) present in the boiled extracts showed differential

effects during further characterization. The S.F. was non-

dialysable in the case of non-aerobic ACS stability while

it was partially dialysable with regards to aerobic ACS.

Charcoal treatment of the boiled extracts abolished the

stabilizing capacity toward bath the enzymes. Pronase

treatment destroyed the S.F. when tested against the non-

aerobic ACS but had no effect on the aerobic ACS. The S.F.

was partially purified on 0-100 Sephadex columns, and during

such studies the S.F. cochromatographed with cytochrome C.

indicating the molecular weight to be around 13,000. Further,
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	 the S.F. showed a single absorption maximum at 260 nm. These

studies indicated the S.F. composition may be nucleopeptidic



While several nucleotides afforded protection to aerobic ACS,

only adenine derivatives, ATP and ADP afforded complete

protection at physiological concentrations. However, none of

these nucleotides showed any capacity to protect non-aerobic ACS.

Digestion of S.F. with either ribonuclease T, or

deoxyribonuclease did not eliminate the protective capacity

against either ACS. The ratio of the absorbance at 280 to

260 nm of S.F. coincided only with Poly G absorption

characteristics. However, synthetic Poly G afforded

protection only to aerobic ACS but inactivated non-aerobic ACS.

This property of Poly G could be abolished by digestion w4.th

ribonuclease T. Since the digestion studies with the

ribonuclease T, showed differential effects compared to S.F.,

the nucleotide portion of the S.F. may not be guanine

nucleotide derivative. This is in complete accord since only

adenine nucleotides were effective as indicated above.

Further prolification of the nucleopeptide on ion-exchange 	 a
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columns completely dissociated the =60 rim absorbing material from

the peptide moiety. The nucleotide was identified as ATP both

by ATPase digestion studies and its substitution in the in vitro

assays replacing ATP. The peptide moiety was purified to

homogeneity as revealed by several physical studies. Its

apparent molecular weight was estimated to be around 13,000

500 by gel permeation chromatography. The stabilizing property

of the peptide was abolished completely by digestion, with

chymotoypsin only but not by any other proteolytic enzyme.

Using the purified peptide during the purification of

0?



the non-aerobic Acs, a 1300 fold purification was achieved.

On disc gel electrophoresis, the material revealed only two

bands. whether these two bands corresponded to the subunits

of the sxime enzyme could not be ascertained due to lack .)f

sufficient material.

Finally the existence of two isozymes was confirmed by

mixing experiments. Both the purified enzymes, when mixed,

could be separated as Bio gel - eolumns as well as dizc gel

electrophoresis. While [two project has contributed immersely

towards the understanding of the regulation and structure

aspects of the isozymes], the exact role of oxygen and the

evolutionary relationships to categorize the enzymes into

convergent or, divergent evolutionary pattern cannot be

ascertained at this stage of the project due to the

difficulty in obtaining sufficient amounts of proteins to do

the detailed structural analysis.
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