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1. Introduction

It is widely recognized that parallel computation is essential to overcome
the fundamental physical 1limits due to circuit switching and signal
propagation delays oan the computational speeds of sequential processing.
Recent technological advances in the integration of electronic circuits has
made it possible to conceive of large systems of processing elements working
together in parallel on a single problem. In order to achieve high
performance from such systems, the problem is divided 1into small tasks that
can be solved in parallel. The flow of data between tasks must be matched to
the characteristics of the 1interprocessor communication network so that tasks
running on separate processors can cooperate in an efficient manner during the
computation [HOCK81], [VOIG85].

In recent years most algorithms developed for parallel processing have
been designed for implementation on vector computers or single instruction
multiple data (SIMD) type systems, mainly because of the relatively wide
availability of such machines [ORTE85]. Fewer algorithms have been developed
specifically for implementation on multiple instruction multiple data (MIMD)
type systems [VOIG85). In such systems individual processors independently
execute their own set of instructions and may operate asynchronously. In many
MIMD machines that have been either built or proposed, each processor has a
local memory to which it has relatively rapid access [HWAN85]. 1In this paper
we discuss some algorithms and methodologies for efficient numerical
computations on such systems. The processors may communicate by using a
communication network or by passing messages through a shared memory.

The design of any parallel algorithm involves partitioning of the problem

into individual tasks which can be executed concurrently on the processors of



a parallel processing system, If the probhlem can be subdivided among the
processors 1n such a way that each processor can proceed at 1ts own rate in
solving 1ts portion of the problem, without requiring information from other
processors, the coordination 1s simplified. In the cases where this 1s not
so, algorithms and machines must be matched so that the necessary data are
made available where they are needed when they are required. For numerous
algorithms, the total time vequired to move data to the appropriate processing
element 1s larger than or equal to the time required to perform the
computation [GENT78], [ORTE85], [SAAD85].

Complications may arise when processors require data computed in other
processors to coantinue performing useful work on a problem. A number of
factors can conspire to create a situation 1in which data are not available
where and when the data are needed., Two such factors are: 1) 1interprocessor
communication delays may prevent a processor from receiving a piece of
information available elsewhere, when required; 2) the computational abilities
of the processors performing work on the problem and the portions of work
assigned may not be matched, In this paper we concern ourselves with the
first problem., The question of load balancing 1s addressed i1n [SALT85].

The degree and properties of 1interprocessor communication delays are
dependent on the characteristics of the computer architecture on which the
problem is run, the algorithm used to solve the problem concurrently, and the
mapping of the problem onto the architecture, If the scheme employed for
solving the problem in parallel has the property that results are needed for
use in other processors soon after being computed, the scheme will be
sensitive to delays in the transmission of data bhetween the processors, and

the utilization of the system as a whole is apt to be degraded. Here we



define the utilization of the system as the average amount of time spent by
the processors in performing useful operations divided by the total time
required to solve the problem,

In this paper we will demonstrate that it is possible to reorganize
computations in each processor so as to increase the amount of useful work
that can be performed on the problem while each processor waits for data from
other processors., This study will be based on a model problem of obtaining
the time-accurate solution to a linear parabolic partial differential equation
discretized i1n space and implicitly marched forward in time. The algorithms
investigated are 1iterative wmethods that are extensions of block Jacobir and
SOR.

In the next section we discuss the general principles involved in parallel
implementations of basic 1terative methods such as Jacobi, Gauss-Seidel, and
SOR methods. 1In Section 3 the model problem is introduced. After showing the
difficulties due to the communication delays encountered in applying the
parallel versions of basic 1terative methods, we present two algorithms which
are extensions of Block Jacobi and Block SOR and which allow efficient overlap
of computation with communication, Schemes for implementing these algorithms
on multi-processor systems are discussed i1n Section 4. In Section 5 we derive
bounds on processor utilizations for such 1implementations, These algorithms
are implemented on a simulated shared memory machine and the results are given
in Section 6. Experimental results on convergence and overhead of the
algorithms developed in Section 3 are presented 1in Section 7, and it 1s shown
that for the cases considered, the overliecad 1s moderate compared to the gain
obtained 1in employing these algorithms. Finally, concluding remarks are

presented in Section 8.



2, Parallel Iterative Methods
In this section the parallel implementation of basic 1terative methods
will be outlined. For specificity, we consider the standard uniform five

point difference approximation to Laplace”s equation given by

Uy t+ uyy = 0
in a square domain subject to Dirichlet boundary conditions., The difference
equation obtained when the mesh is n by n 1s
1

u = Z

+ + + .
i,; (ui+1)J ui_lij ui)J+1 ui’J—l)

The subscripts 1 and J range from 1l to n; and U ntlr Y1,00 Un#l, o and
ug, 4 are given constants. Notice that the equation for each mesh point
involves data at that point as well as the point”s north, south, east, and
west neighbors.

The Jacobi method for the solution of this system of difference equations

may be written as

Wl 1, k K K K
uy = (U P,y YU e Y ge1)

where the superscript denotes the iteration number. The Jacobi method often
converges very slowly, but 1is considered to be a prototype parallel method
[ORTE85]. On multiprocessor computers, single mesh-points or groups of mesh
points are assigned to each processor. All points are updated each iteration,
and since only the values from the last iteration are utilized, each step of
the iteration may proceed to completion without any need for communication of

data values during the step.



The Gauss-Seidel and SOR methods require new values at each point to
replace the old values as soon as the new values are computed. In sequential
computers the points in the domain are generally processed one iteration at a
time, point by point and line by line., Because of the need for the new values
of the variables at the previously computed points, only one mesh point can be
dealt with at a time; hence, the process 1is not suited to multiprocessor
machines, To deal with this problem the mesh points are grouped into two
subsets such that no points in a subset are coupled to other points in the
same subset [ERIC72], [HAYE74], {LAMB75], [ADAM82]. The most common way of
obtaining these sets is to use the classical red/black ordering {YOUN71]. For
the model domain this is obtained by assigning points to the black subset
when 1i+j 1is odd, and to the red subset when i+j is even, Each iteration
can then proceed in two separate phases where each phase has the properties of
a Jacobi sweep in that all mesh-points in a given phase may be adjusted
independently., Other iterative methods such as the chaotic or asynchronous
relaxation involve the updating of mesh points with variable values that need
not come from the previous iteration [CHAZ69], [BAUD78], [DEMI82]. 1In the
simplest form of chaotic relaxation, each processor uses whatever values are
available to compute the next value of the iterate at a given point, without
any restriction on the iteration number of the variable value chosen.

It is possible to implement Jacobi, Gauss Seidel, and SOR iterative
methods so that all new values corresponding to a group of variables are
determined at once. Such schemes are referred to as block iterative methods.
The simultaneous determination of the values of groups of variables involves
the solution of subsystems of equations, generally by direct methods. Under

specific conditions the block iterative methods are known to converge at a



rate faster than the corresponding point iterative methods [YOUN71], [VARG62].
Various solutions are proposed to 1introduce parallelism in the block SOR
methods, including the scheme of partitioning the domain i1nto red and black

blocks [ERIC72], [LAMB75], [PART80], [PART32], [FABES81].

3. Multistep Iterative Methods

In many algorithms for the solution of time dependent problems, 1t 1s
necessary to solve a sequence of linear systems of equations 1nvolving the
same matrix but different right hand sides. 1In these cases, the right hand
sides of the consecutive systems of equations are dependent on the solutions
of the equations earlier in the sequence. The 1mplicit solution of the
parabolic partial differential equation using the Crank-Nicholson method 1n
time gives rise to one such algorithm. Typically when an 1terative method 1s
applied to a time dependent problem, iterations proceed successively over the
systems of equations for each timestep [HAGES81]. Since the consecutive
systems of equations depend on the solutions of the earlier equations, such
implementations limit the extent of possible parallelism. 1In this section we
present algorithms which exploit a new level of parallelism 1n solving time
dependent problems. We achieve this by travemsing more than one timestep
during the course of a single 1teration, Th¥se schemes allow coarse grained
multiprocessor implementations, which are winimally dependent omn machine
characteristics and have favorable, well-defined convergence properties.

In the following, the multistep parallel iterative methods will first be
discussed 1n a relatively synchronous contes®* so that the -nature of the

numerical algorithm and the most straightforward implementations can be



understood. This will be followed by discussions of ways 1n which the
algorithms described can be implemented so as to allow for less synchronized

implementations and high processor utilizations.

3.1 Block Jacobi Iteration

We consider the system

where M is an n by n matrix and y and b are vectors of length n. We
assume for the remainder of the section that the above system is partitioned
in the form

M W) . . M.q [¥y b
" - MZ,]. MZ,Z . . Mz’q ;- y2 b b2
M M . . M v b
q,l q,2 4,9 | 7q q
L L . e L

where the Mlj's are submatrices and y; and b, represeat subvectors.

The Block Jacobi method 1s defined as follows,

M

v+1
i,1 yl

=—2M.yv+b.
1#1 1,] 7] 1

where v represents 1teration number. All of the updated values at the
v+lst iterdation are obtained using values from the vth 1iteration. The
1mportant special case when M are 1 by 1 submatrices gives rise to the

1,]

point Jacobi method.



3.2 Multistep Block Jacobi Algorithm

Now consider the following set of systems of equations.

My(e ) = Py(e __ ) + b(r ), r=1l,ee0,m ()

where M and P are n x n matrices, y(tr) and b(tr) are vectors of n
variables and tr 1s the rth timestep. Shortly we will show how these
equations arise 1in the solution of time dependent partial differential
equations as well as the 1integration of first-order ordinary differential
equations.

The solution of these equations with standard block or point 1terative
methods involves the consecutive solution of each of the m systems of linear
equations corresponding to the m timesteps. After 1iterating over each
timestep until satisfactory convergence 1is obtained, one moves on to 1terate
over the next timestep., On a sequential machine, this 1s, in fact, the usual
way an iterative method 1s applied to a time dependent problem [HAGE8l]. In
Figure 1 this algorithm is depicted schematically and a parallel version is

outlined below in an algorithmic form, Here “q° is the number of partitions

into which the domain is subdivided.



Jacobi Method Iterated Until Convergence over Each Timestep

For r=1 to number of timesteps
{

Pardo i = 1 to q

{
)

1 -
yi(tr) - y1(tr—l

}

Beginning with v = 0 increment v until HyV+1(tr) - yv(tr)u < e

Pardo i =1 to q
{

Solve: q
v+l _ v
M1,1 Yy (tr) B 2 Mi,J yJ(tr) * ,E Pi,J yj(tr-l) + bi(tr)
} j#¥1 j=1
}
Pardo i = 1 to g
{
+1
y (e = yz ()
}

In the above algorithm as well as in the subsequent algorithms depicted
below, we assume that the matrix P 1s decomposed into blocks using a
partitioning identical to that already used for M, The submatrix Pij hence
includes the same rows and columns of P as M, does of M. Each vector
b(tr) is decomposed 1nto subvectors bi(tr).

Instead of iterating until convergence over each timestep before moving
on to the next, 1t 1is possible to iterate over a aumber of timesteps at
once, The set of timesteps over which these extended iterations occur is
called a window. After a fixed number of iterations have taken place over the
window, or after convergence has been obtained at the first timestep, the

window moves up one timestep. When the window shifts upwards, the value of
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the solution at the timestep that was at the top of the old window 1s treated
as the 1nitial approximation at the new timestep which 1S now at the top of
the shifted window. At the beginning of the 1terations, the 1initial value
specified for the problem is used as the 1nitial guess at all timesteps 1in the
initial window., This multistep generalization of Block Jacobir 1teration 1is
called Windowed Block Jacobi algorithm (WBJ). This 1s schematically depicted
in Figure 2.

In WBJ an 1iteration takes place when possible over a4 window of W
timesteps. The term microstep describes the relative position of a timestep
with respect to the begianing of a window. A timestep that 1s L timesteps
above the beginning of a window will be designated as the 1th microstep of the
window. The number of microsteps advanced from the beginning of iterations
performed over a window 1s designated as the number of cumulative microsteps
(cms), In Figure 3 the process of measuring cumnulative microsteps 1s
1llustrated by means of an example. The concept of cumulative microstep 1s an
essential tool for the development and evaluation of techniques described 1n
this paper. Note 1n the following algorithm that 1terations are nuever
performed on the timesteps beyond 'number_pf_plmesteps' specified for the
problenm, Consequently, the window size during the solution of the last few
timesteps may correspondingly be reduced. The following 1s an explicit
outline of WBJ., As before q 1s the number of partitions, and w 1s the
maximum number of timesteps in a window. “Window” 1s the actual number of

timesteps used in a window.
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WBJ - Windowed Block Jacobi Method

Pardo 1 =1 to ¢q

{
Pardo s=1 to window
{
y () =y (c))
i'’s 10
}
}
For r=1 to number of timesteps
{
Beginning with v=0 increment v until "yV+l(tr) - yv(tr)n {e
{
Pardo i =1 to q
{
window = min(w, number of timesteps - r + 1)
for s = r tor + window - 1
{
Solve:
v+1 \
M, oy, (e ) =~ Mo t )+
i,i i s JZi 1, yJ( s)
v+l v
+
Pi,l Yy (ts—l) z Pl,J yJ(ts-l) * b1(ts)
} J#1
}
}
Pardo 1 =1 to g
{
1 _ v+l
yi(tr+w1ndow) Yy (tr+w1ndow—1)
= VL .
yi (e =y, (e
}

In both the algorithms discussed above, during iteration v+l each partition
i utilizes variables y;, j#1 from other partitions. This procedure allows
simultaneous computation of all partitions on a multiprocessor system. 1t

should be noted that there may be several blocks assigned to each processor.
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The pardo statements above simply serve to denote the existence of a number of
subtasks that can run 1indepeandently.

In [SALT85} 1t is shown that the spectral radius of the 1teration matrix
of WBJ for any window w 1s identical to that of the corresponding block
Jacob1 method; hence, the asymptotic coanvergence characteristics of the
algorithms are comparable. In the Jacobi method, 1t is necessary to calculate

21 Pl,j yJ(tS—l) only once for each timestep ty, over which the solution is
integrated. In WBJ this matrix vector multiplication must be performed only
once when a timestep is at the bottom of a window, but it must be performed
each time a timestep 15 above the lowest part of the window. Therefore one
expects that the overhead i1nvolved 1n the new methods will be moderate when
large blocks are utilized but quite high when the matrix 1s decomposed 1into
very small blocks or points. In the next section, however, 1t will be shown
that a minor reorganization of the computations can considerably reduce the
overhead.

Note that instead of utilizing solution values at earlier timesteps as
initial approximations at the top of a new window, one may utilize explicit
iantegration methods. In numerical experiments this was shown to aid
convergence but in some cases to adversely affect stability.

We now explicitly show how WBJ may be used to solve the set of ordinary
differential equations obtained from the spatial discretization of a parabolic
partial differential equation. Note, of course, that this method would apply
to a system of differential equations obtained in other ways as well., This

system may be represented as

y = Q + c(t)
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where y, vy and c(t) are vector valued functions and Q is a matrix of
constants. Assume that y(tl) is given as an initial condition.

Applying the Crank Nicholson integration method to discretize in time we
obtain,

(y(t ) - y(t

/s = Q/2)(y(e) + y(e D)) + et )/2 + e _)/2,

r— r—=

To advance from typ to t; we solve Eqns. (1) above with the following

definitions of M, P, and b(t,):

M= (L/at - Q/2), P = (I/At + Q/2)

and

b(tr) = c(cr)/z + c(tr_l)/z, T = 1l,ece,m.
Let Qi,j represent the partition of @ that correspoands to the same

rows and columns as does the partition My of M and Pi,j of P. Recall

»J
from the earlier discussion that the equations for yI+1 at each timestep
tg within the window are given by,
v+l A4 v v+l
= - + + + .
Mi,i Yy (ts) y Mi,j yJ(ts) jZiPi’j yj(ts-l) Pi,i i (ts_l) bi(ts)

j#i
(2)

This may be rewritten in the case of this specific problem as follows:



(1/ac - q_/2)yy e ) = (T/ae + o 72)y) e, D)

+ 7 (G,

v v
L /2)(yJ(tS) + yJ(ts_l))) + b (t). 3)

]

To realize the advantages of this rearrangement, consider the case that
would appear to be the most problematical when (2) 1is applied, that is, when
the block size 1s one, which corresponds to a polnt 1terative method.
Consider the computational overhead arising from 1terations over timesteps
ty that are above the lowest point in a window. By applying (2) an extra
m4trix vector multiplication appears to be required per iteration over each of

these timesteps. In applying (3), yj(tb) + y}( ) needs to be computed

ts—l

only once per 1iteration. Hence, assuming that (I/At + Ql 1/2) has been
b

precomputed, only one additional multiplication and two additions need be

performed per variable for each 1iteration over Ly When a number of

processors require the value y;(ts) + y}(ts_l), one would expect 1t to be

computed separately in each processor.

3.3 Windowed—-Block Successive Overrelaxation Algorithm

One may refine WBJ with the aim of improving convergence by employing a
multistep version of Block Successive Overrelaxation (BSOR). Partitioning is
performed as described in the previous sections and, as before, each partition
is advanced w timesteps during each iteration of the algorithm. 1In this case,
however, the blocks are solved consecutively and estimated values of variables
calculated from other partitions are used as soon as they become available.

The other refinement involves the use of overrelaxation. A weighted average
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of the old and the new variable values for each partition is employed; the old
variable values are assigned a negative weight. This multistep generalization
of BSOR is called Windowed-Block Successive Overrelaxation (WBSOR). Following
is a formal presentation of WBSOR. Meanings of q, w, and window are as

before.

WBSOR - Windowed—Block Successive Overrelaxation

Pardo i = 1 to q

{
Pardo s=1 to window
{
yl(t)=y(t) -
i‘’s it 0
}
}
for r=1 to number of timesteps
{ v+l \
Beginning with v=0 increment v until |y (tr) -y (tr)" <e
{
for 1 =1 to q do 1n parallel when possible
{
window = min(w, number of timesteps — r + 1)
for s = r to 1t + window - 1
{
Solve:
~v+l v+l vtl
M y, (€)== Y M y., (e)+ J P y. (e )
1,1 71 s 141 1,3 7] s J<1 1,1 7] s-1
v v
-y M y.(e)+ ) P y.(t ) + b (t)
351 1,] "j s 151 1,3 7§ s-1 1 s
v+l _ ~ytl Ny
v () =ayy () + (1 w)y,; (€ )
}
}
}
Pardo 1 =1 to q
{
1 _ v+l
yi(tr+windoel BRA! (tr+window—l)
_vtl
v (e ) =y, (&)
}
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If the blocks or partitions are chosen properly, it is possible to order
them so that one obtains two sets of blocks such that all blocks 1in a given
set are uncoupled from one another, By convention the blocks 1in one set are
designated as black blocks, and those in the other are designated as red
blocks. For example, i1n the case of a two~dimensional spatial domain the grid
of points on which the problem is to be solved may be partitioned 1nto strips.
The partitioning should be done in such a way that each strip is coupled at
most to the two adjacent strips. The strips are assigned to two sets such
that adjacent strips d4dre 1n separate sets,

In [SALT85] the spectral radius of the 1teration matrix of WBSOR 1s shown
to be independent of the window size used. 1t should be noted that WBSOR with
window size one 1s simply BSOR. The use of WBSOR with any window size yields

convergence that is asymptotically identical to that obtained with BSOR.

4, The Implementation of WBJ and WBSOR on Multiprocessor Systems

In this section we consider the implementation of WBJ and WBSOR on multi-
processor machines, Here we assume that each processor of the system has a
substantial local memory. Information in this local memory may be accessed
more easlly and inexpensively than information in the local memory of another
processor or in any global memory that might exist, The submatrices required
to carry out the computations of WBJ and WBSOR on particular portions of the
domain of the partial differential equation being solved should be quickly
obtainable from memory. Responsibility for work involving particular blocks
or portions of the domain is consequently assigned to a specific processor,
To reduce interprocessor communication requirements, blocks which share

coupling variables should be assigned to the same processor when possible.
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We first consider a straightforward multiprocessor implementation of
WBJ., A collection of blocks is assigned to each processor, Each processor is
programmed so that it may advance all blocks when the variable values required
have been obtained from other processors. Upon computing new approximations
to the partial differential equations at a given timestep, the processor sends
values of the computed variables to other processors that require the
information, The operations performed by the processors and the patterns of
interprocessor communication when the blocks are of size one by one (1.e.,
points), are similar to those described in [REED84].

In WBJ, as presented above, synchronization between all processors must
occur whenever the window shifts upwards. This requiremeant exists in order to
ensure that convergence has occurred at the lowest timestep in the window
before work on that time timestep comes to a halt, In order to advance to the
nth iteration mth microstep where n > 1, each processor requires coupling
variable values from the n-1lst iteration, mth microstep., It is clear that all
processors need not be performing work on the same 1iteration and the same
microstep simultaneously. Thus, as long as the advancement of individual
processes 1is based on the availability of appropriate coupling variable
values, no global synchronization is necessary. Furthermore, as the window
size of WBJ 1increases, the degree to which the processors are constrained by
this implicit synchronization requirement decreases. The flow of data in a
two processor system with a window of three is 1llustrated in Figure 4,

We now consider a multiprocessor implementation of WBSOR, Henceforth, it
will be assumed that the points or blocks involved in this algorithm are
ordered using the red-black ordering. As explained before in WBSOR, as in

WBJ, synchronization 1is performed among all processors whenever the window
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shifts upwards. Blocks may be assigned to processors 1in one of a number of
ways. The nature of the syncironization that must occur 1s depeadent on the
way in which blocks of differeat colors are assigned .o processors., Consider
first the case 1n which proc-:ssors contain either c¢unly red blocks or only
black blocks. In order to adrance to the nth 1terat on, mth microstep where
n > 1, each processor conta ning black blocks req.ires coupling variable
values from processors contaiilng red blocks from tie n-lst 1teration, mth
microstep. Each processor containing red blocks reqiires coupling variable
values from processors containing black blocks from the same 1teration and the
same microstep,

With a window of size one, 1.e,, the standard red-black BSOR scheme,
processors can only be active half of the time given an assignment of only one
color block in each processor. This difficulty disappears when a window size
of two or more 1s utilized, and with larger windows the tightness of the
coupling between processors continues to decrease, The assignment of multiple
red blocks to some processors and of multiple black blocks to others has a
potentially serious side effect. Since black blocks are coupled only to red
blocks and vice-versa, values of all of the coupling variables 1in every block
must be obtained from other processors. In the poiit 1terative version of
WBSOR, this arrangement would require the communicatisan of the value of every
variable for each microstep computed at each iteratior over every window.

One may assign both red and black blocks to eac1 processor and may thus
be able to substantially redu‘:e the interprocessor c¢o munication requlrements.
Consider the case in which one wishes to solve a2 time dependent partial
differenti1al equation differinced with a five point =-emplate. The domain of

the partial differential equz:ion 1s divided into reg ons and the variables in
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each region are assigned to blocks, All blocks in each region are assigned to
a particular processor, With this arrangement only the values of the
variables corresponding to the mesh points at the boundaries of the regions

need to be communicated regardless of the size of the blocks.

5. Analysis of Communication Delay Effects
This section demonstrates the usefulness of windowing techaiques 1n
ameliorating the effects of communication delays., The delay in sending a
message from one processor to another may be written in the form a + B8 *
size, where o and B are some parameters, and “size” 1s equal to the number
of bytes in the message. The nature of communication delays depends both on
the multiprocessor architecture and the demands on the communication network
made by the algorithm being run on the multiprocessor. In this paper,
interprocessor communication delays will be modelled 1n the following two
ways:
(1) Uniform interprocessor communication delays that vary only with the size
of each message, i.e., o« and B are constants, and
(2) detailed simulation of a specific family of multiprocessor architectures.
The detailed simulations directly model any queuing effects that occur;
hence, communication delay 1increases as a function of the number of
messages sent.
An upper bound of utilization for WBJ and WBSOR 1s derived below. The
upper bound calculations assume uniform interprocessor delays as described
above. It will be shown that this upper bound decreases with interprocessor

communication delay but increases with window size.
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First a simple lower bound on the time required for each PE to advance all
of its blocks m cumulative microsteps will be derived. This bound 1s a linear
function of the interprocessor communication lag and is inversely proportional
to the window size, From this lower bound, an upper bound on processor
utilization 1is obtained. It is assumed that communication lags are coanstant
and unrelated to the amount of 1information sent,

Fix attention on a given PE P, in a multiprocessor system. We consider
the execution of WBJ and WBSOR with window size w, on a multiprocessor system,
Assume that to advance all the blocks in a given processor P one cumulative
microstep, a total time T would be required. Assume further that communica-
tion with other processors requires time c¢T. The variable ¢ will be called
the communication delay., Consider a boundary block B 1in P which requires

coupling variable data from some other processor or processors.

Proposition 1: The boundary block B requires at least 2cT  time to

advance from the end of c¢cms i to cms 1+kw, where k = 2 for WBJ and

k= 1 for WBSOR,

Proof: The boundary block B at cms 1 1is, by definition, coupled to at least
one block B” in another processor. Consider first the case of algorithm
WBJ. 1In order for B” to advance to cms 1+w it requires variable values from
B at cms 1., Time <¢T 1s required for this information to get to B”, After
B” has computed 1ts results for «cms i+w 1t must send those results to B,
This takes time <¢T. B cannot advance to cms i+2w until the results from B~
corresponding to cms 1+w arrive, Thus a lower bound on the time required for B

to advance from cms i to cms i+2w is 2¢cT. A similar proof in the case of
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WBSOR demonstrates that block B requires at least 2¢T to advance from cms i to
cms itw,

The above proposition provides a lower bound on the time T.ot that
processor P takes to complete its work, Since P must advance all of its
blocks m cumulative microsteps, 1t cannot complete its work in less than time

ZCTl_E;:J. Now mT is the computation time required to advance all blocks of

P, m cumulative microsteps. The total time to complete the problem is hence

T > max(mT, ZCTLm—J>.
tot kw

The utilization Up of the processor P defined as

bounded below as follows

computation time is

T ’
tot

accordingly subject to the following upper bound

1

S EE])

A very simple asymptotic form will be derived which bounds the utilization

U <

achievable, by a function dependent only on the window size w and the

communication delay c. Note that,

max[mT, ZCTLE—WJ} > max[mT, 2¢T (% - )] .

Hence
1
Up < 1 2c _ 2c\ °
“‘a"(’m m
In the limit of large m,
U < 1
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k
and 1f ¢ < 73 then Up < 1, Thus, the communication delay that can be
tolerated before a bound on utilization occurs increases linearly with w.

If ¢ > ;Z, then Up < EE . This means that as the window size increases, the

2¢

sensitivity of the processor to communication delays is reduced. VNote that
for WBJ, k = 2 and for WBSOR, k = 1 and hence for any window size, WBSOR 1s
more sensitlive to communication delays than WBJ,

The upper bounds derived above do not depend on the amount of time
required to advance any of the blocks 1n the system. A refinement of these
upper bounds may be obtained by taking into account the time required to
advance boundary blocks. Refined upper bounds will be computed for WBSOR
below; the same principles could be utilized to refine the upper bounds for
WBJ.

Assume that all boundary blocks in all PEs require computation time TComp

for advancement.

Proposition 2: The boundary block B requires at least 2¢T + ZTCO

mp

time to advance from the end of cms i to cms 1+w,

The above proposition is proved exactly as was proposition (1) above,
except that: (1) block B” must now compute for time Tcomp before sending
variable values to B and (2) after receiving data from B”, B must compute
for time Tcomp before it can make variable values available at cms 1+w.

Reasoning exactly as before and substituting k =1,

T ?» max |mT, (2cT + 2T ) \'EJ
tot comp W
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and hence the utilization bound is

For large m, the asymptotic utilization bound 1is

U < L . (4

P T
max[l, 2/w (c + comp)]

6. Simulation Results

Detailed simulations of a particular architecture were performed, and the
algorithms developed here were 1implemented on this simulated machine to
examine the effects of windowing on the system performance. Results obtained
from these simulations for the algorithm WBSOR pertaining to the effect of
communication delay and window size on processor utillization are outlined in
this section., In all sets of the simulations we assume that blocks consist of
strips of the domain (Figure 5) and that only the neighboring strips have
coupled variables. All processors have the same number of blocks assigned to
them, and the blocks assigned to a given processor are physically adjacent to

one another,

6.1 A Simulated Shared Memory Machine

A low level simulator called SIMON was employed to simulate a shared
memory architecture, SIMON {s an event-driven multi-processor simulator

consisting of time-sorted queues [FUJI83], [HELL84]. It 1is capable of
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providing nano-second precision and allows the user to control the timing at
the instruction level, Utility functions are provided to define multi-
processor architecture, send and receive messages, etc, When a message is
sent between processes, 1ts arrival time 1s determined from the send time and
a delay representing travel through the interprocessor connections and
switches, It allows the wuser to control the computation costs at each
processor as well as the costs involved in interprocessor communication,

The multi-processor system simulated here consists of a number of
processing elements and a global shared memory. Each processing element (PE)
contains a central processing unit and a substantial local memory. The
instructions and data corresponding to the tasks assigned to a processor
reside in 1ts local memory and the processor alone has direct access to this
memory. The global shared memory is made up of a number of modules and these
are accessible to all the processors with equal priorities, The processors
are counnected to the modules through a crossbar switch. The processors
communicate with each other by reading and writing data 1in the shared memory
modules. The access to these modules 1is brought about by means of
input/output handlers (1/o-handler) and an 1input/output processor (i/o-
processor). Attached to each PE is an 1/o-handler which takes care of the
read/write operations associrated with the shared memory and allows its host PE
to continue performing computations. The shared memory and the crossbar of
the system are controlled by the i/o-processor. Only one i/o-handler is
allowed to read or write to a particular memory module at a given time,
although a number of i/o-handlers can read or write to distinct memory
modules. The i/o-processor arbitrates the access to the shared memory modules

by different i/o-handlers through the crossbar switch.
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The communication that occurs in this model machine involves either: 1)
messages concerning requests and permissions to read or write, or 2) messages
that include variable values that must be transmitted and received. The
requests and permission messages are small, consisting of only a few bytes.
The transmission of variable values requires messages that are generally much
longer, and their size depends on the number of variables that are shared.

The operatioa of the modeled shared memory machine is carried out as
follows. When a processor needs to read or write data to the shared memory,
it sends a message to 1ts 1/o-handler, This message designates whether a read
or a write 1s requested and also designates the memory module required. When
the 1/o-handler receilves this message, it forwards the request to the 1/o-
processor. The 1/o-processor collects and queues requests to read and write
sent by all of the 1i/o-handlers. When a request to read or write is serviced
by the i/o-processor, an 1fo-handler is givea exclusive permission to 1lnteract
with a specific memory module. Depending on the request involved, the 1/o-
handler can either write from the PEs” local memory to a particular memory
module, or read from a particular memory module and write to its PEs local

memory.

6.2 Effect of Windowing

The simulated shared memory system, described above, was employed to
examine the performance of WBSOR as the window size was varied. The
simulations were carried out for a system consisting of eight processors aad
eight memory modules and also for a system with eight processors and one
memory module. Henceforth the former system is referred to as Machine A and

the latter as Machine B.
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In the simulation runs described below, it 1s assumed that a model domain
decomposition 1s applied where a uniform grid is divided 1into strips. Each
strip has 1000 mesh points on the boundary. The time required to send each
message, sent over a given link in the shared system, 1s assumed to be 1
microsecond plus 0.025 times the number of bytes 1in the message. This
corresponds to a bandwidth of 40 Mbytes per second per 32 bit wide
communication channel, As mentioned earlier, the simulations explicitly take
into account the communication requlrements of the problem, 1ncluding the
queulng effects on the communication delays and the changes 1n the data
requirements that occur when a window shifts upwards at the beginning of a new
timestep., Thus, although the bandwidth of the channels 1s fixed, the problem
parameters affect the communication delays in the system as a whole, and they
are accounted for in these simulations, In these experiments 1t 1s assumed
that the block advancement times for all blocks are 1dentical 1n all the
processors. A block advancement time is defined as the time 1t takes to
perform computations for a single timestep during an 1iteration over the
window, once the data for that timestep are avallable, Results are presented
here for the block advancement times of 0.5 millisecond, | millisecond, and 5
milliseconds. Finally, in these simulation experiments, it 1s assumed that an
equal number of iterations are required over each timestep.

The variation of processor utilization as a function of window size when
one and two blocks are assigned to each processor of Machine A 1s depicted in
Figure 6 and Figure 7, respectively., Figure 8 and Figure 9 show the same for
Machine B. 1In the case of Machine A, the utilization 1increases as the window
size is 1ncreased, when either one or two blocks are assigned to a PE. This

is true for all the block advancement times considered., These improvements in
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processor utilization with window size taper off for larger window sizes, As
the block advancement time is 1ncreased, the relative effect of communication
delays decreases, and the processor utilization improves.

In Figure 6, where only one block is assigned to a PE, the utilization for
window size one does not increase above 0.5, regardless of the time needed to
advance a block. This 1is so because here each PE has either a black or a red
block. Ignoring the predictions that occur at the beginning of each timestep,
black blocks require variable values from red blocks from the last cumulative
microstep, and red blocks require variable values from black blocks from the
same cumulative microstep., Therefore, a black block and 1ts neighboring red
blocks cannot advance simultaneously whea the window size 1s one; thus, the
processor must rtremain 1dle approximately half of the time even if the 1inter-
processor communication were 1nstantaneous. This restriction disappears when
the window size 1s greater than one or when more than one block 1s assigned to
a PE. When each PE is assigned one block and when the block advancement time
is relatively small, a window size greater than one helps to some extent, and
the utilization goes up, but the queuing effects soon catch up with the gain
from higher window size, From Figure 7 1t can be seen that, 1f the number of
blocks assigned to each PE is increased from one to two, the effect of queuing
delays is decreased and much higher utilizations are observed,

The effect of the underlying hardware, specifically that of the number of
memory modules in the shared memory, on the performance of WBSOR 1s observed
when the number of modules is reduced to one (Figure 8 and Figure 9). As
before the utilizations increase with block advancement time, but much more
gradually., The effect of change in the window size is not felt until the

block advancement time is large enough to include all the queuing delays at
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the module which acts as a bottleneck, The block advancement times, above
this threshold, show trends similar to those observed 1an the case of Machine
A, Altering the window size affects the patterns of 1nterprocessor
communication, but does not change the amount of 1information that must
eventually be communicated before the problem is completed and hence, under
some circumstances, with a smaller number of memory modules, one may expect
lower performance improvements through the use of increasing window s1ze.*

The average communication delay between each pair of processors was
measured from the simulations for machines A and B when two blocks were
assigned to each PE. The maximum of the average 1interprocessor communication
delays for Machines A and B 1is shown in Figure 10, The block advaacement time
1s assumed to be 1 millisecond. Note that the 1interprocessor communication
time 1ncreases quite gradually with window size, when eight modules are
assigned, but 1increases almost linearly with the window size when the machine
consists of only one module. An approximate value for the upper bound of
processor utilization can be obtained by substituting in (4) the maximum
average time needed for the 1nterprocessor communication that must take place
between pairs of processors. These upper bounds for utilization, given by
(4), are compared with those observed in the simulation experiments for
Machines A and B in Figure 1l. The upper bound calculated using the maximum
average interprocessor communication delay in (4) approximates rather closely
the results obtained from the simulations. Thus, the usefulness of windows 1in
mitigating the effects of communication delays 1s demonstrated in a realistic

simulated machine.

*
A detailed analysis of the influence of hardware parameters on the algorithm
performance will be published separately.
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7. Experimental Results on Convergence and Computational Overhead

Even though the spectral radii of the 1teration matrices do not vary with
window size, the computation time required to complete a problem may increase
with window size for the following two reasons: 1) The number of iterations
required to bring two successive approximations to within tolerance in a
specific norm, in this case the maximum norm, may have a dependence on window
size; 2) the computational work required per iteration 1s expected to 1lncrease
with window size to a minor degree., Here the experimental results on the
effect of window size on the number of 1terations required and on the total
computation time taken are presented, It will be seen that the cost increase
is quite modest and 1s often outweighed by the 1ncrease in the processor
utilization attributable to the application of windows.

The results on overhead attributable to the use of windows were found to
be similar for both WBJ and WBSOR, and hence the results pertaining to WBSOR
are presented., The heat equation was solved using a 50 by 50 point mesh and a
timestep of 0.001. The 1nitial condition consisted of the first two modes of
the equation, The equation was solved subject to Dirichlet boundary
conditions, Iterations were continued until the maximum of the difference
between two succeeding approximations at the first microstep 1in the current
window was less than the given tolerance of 1lE-5,

The domain was decomposed into blocks of difterent sizes in different
experiments. The domain was divided into 5 strips that were each 50 by 10
points, 10 strips that were each 50 by 5 points, and 25 strips that were each
50 by 2 points. Square blocks that were each 10 points by 10 points were also
considered. The equation was advanced 50 timesteps and the average number of
iterations required to achieve the prescribed tolerance of 1E-5 was calculated

for each of the types of blocks.
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For window sizes 1, 2, 3, and 4 the average number of 1terations required
to reach tolerance 1E-5 is displayed in Figure 12 and Figure 13, when 50 x 2
and 10 x 10 blocks are used respectively. It is clear that the average number
of 1terations required increases rather gently with window size. The number
of 1terations required by the first few timesteps of the problems investigated
here grows relatively quickly with window size (Figure 12 and Figure 13).
This effect is due to the cost involved 1in getting the multistep algorithm
started.

Once a multistep algorithm is underway, the quality of the approximation
at a timestep is successively improved as the window creeps upward. The first
1terations over a timestep that occur when the timestep 1s at the top of a
window may be thought of as establishing a rough approximation. As the window
moves upward, the relative position of the timestep 1n the window goes down
and the approximation to the solution at that timestep 1is refined. 1In the
first iteration over the first window, the initial condition of the parabolic
equation is used as the initial value at the beginning of each timestep 1in the
window. The gradient of rough to fine approximation as a function of the
position of the timestep in the window develops as the solution 1s carried
out,

Figure 14 depicts the computational overhead 1nvolved in using windows of
size greater than one 1n the solution of the above described heat equation.
The solution time iacreases with the size of the window. Here the overhead
was computed by timing the computer runs for a given block domain decomposi-
tion when windows of size one through four were examined. The ratio of the
time required to advance the problem 50 timesteps with window 1, to the time

required to complete the problem with window greater than one, 1s plotted for
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each domain decomposition. For windows of size 2 the overhead observed ranged
from 0.02 to 0,07, for windows of size 3 the overhead ranged from 0.07 to
0.13, and for windows of size 4 the overhead ranged from 0.09 to 0.21, The
smallest overheads for each window size are seen when the domain 1s divided
into 50 x 10 point blocks.

It is clear that while the use of windows does not affect asymptotic
convergence, there is some computational overhead involved in their use that
increases with window size, The experimental results described here show that

the overhead is quite modest for small windows.

8. Conclusions

This paper explores methods for efficient solution of partial differential
equations on MIMD machines. The general objective of this work 1s to maximize
multiprocessor performance by rearranging the ovder of computations of
standard algorithms so that the effects of communication delays are
ameliorated, but at the same time the resulting algorithms have favorable,
well defined convergence properties.

Using Jacobi and SOR point and block iterdtive methods as a basis, a new
concept of windowing over several time-steps 1s developed. Both analytical
and simulation results demonstrate the usefulness of windowing 1in decreasing
the effects of communication delays on algorithm performance. The spectral
radii of the iteration matrices of both of these new algorithms are equivalent
to the spectral radii of the analogous standard methods [SALT85]. The use of
windows entails a small computational overhead which increases gradually with

window size. It was observed that the computational overhead associated with
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a window size of two was negligible and the benefits 1n iuncreased utilization
were substantial,

Further 1nvestigations are being pursued 1n a number of ways. The concept
of windowing can be extended to other iterative methods. The generalization
of WBSOR to multicolor SOR, [ADAM82] or the orderings introduced by O“Leary
[OLEA84] would appear to be particularly straightforward. The concept of
windowing may also be extended to apply to iterative methods 1in the solution
of the equations arising from Newton-like schemes for the solution of systems
of nonlinear algebraic equations. It also may be possible to extend the
windowing concept to the solution by functional iteration of nonlinear
equations that might be obtained 1n a method of lines solution to nonlinear

parabolic equations.
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Iteration until convergence over consecutive timesteps
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Multistep iterative methods
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Counting of cumulative microsteps
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