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Abstract 

Methods are proposed for efficient computation of numerical algorithms on 

a wide var1ety of MIMD machines. These techn1ques reorganize the data 

dependency patterns so that the processor utilization is 1mproved. 

The model problem examined finds the time-accurate solut10n to a parabolic 

partial d1fferential equat10n d1scret1Zed in space and implicitly marched 

forward in t1me. The algorl.thms 1nvest1gated are exten~10ns of Jacobi and 

SORe The extension~ consist of iterating over a window of ~everal timesteps, 

allowing effic1ent overlap of computation with commun1cat10n. 

The methods suggested here 1ncrease the degree to which work can be 

performed while data are commun1cated between processors. The effect of the 

window .,ize and of domain partitioning on the syc;tem performance i., examined 

both analytically and experimentally by implement1ng the algorithm on a 

simulated multiprocessor system. 
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1. Introduction 

It is widely recogn1zed that parallel computation is essential to overcome 

the fundamental phygical lim1ts due to circuit switching and signal 

propagat10n delays on the computational speeds of sequential processing. 

Recent technolog1.cal advances in the integration of electronic circuits has 

made it possible to conceive of large systems of processing elements working 

together in parallel on a single problem. In order to achieve high 

performance from such systems, the problem is d1.vided 1nto small tasks that 

can be solved in parallel. The flow of data between tasks must be matched to 

the characterist1cg of the 1nterprocessor communicat10n network so that tasks 

running on separate processors can cooperate in an efficient manner during the 

computation [HOCK8l], [VOIG85]. 

In recent yearg most algorithms developed for parallel processing have 

been designed for implementation on vector computers or single instruction 

multiple data (SIMD) type systems, mainly because of the relat1vely wide 

availability of guch machines [ORTE85]. Fewer algorithms have been developed 

specihcally for implementation on multiple instruction multiple data (MIMD) 

type sygtems [VOIG85]. In guch sygtems individual processors independently 

execute their own set of l.nstruct1.ons and may operate asynchronously. In many 

MIMD machines that have been either built or proposed, each processor has a 

local memory to which it has relat1vely rapid access [HWAN85]. In this paper 

we discuss some algorithms and methodologies for efficient numerical 

computations on such systems. The processors may communicate by using a 

communication network or by passing messages through a shared memory. 

The des1.gn of any parallel algor1.thm involves part1t10ning of the problem 

into individual tasks which can be executed concurrently on the processors of 
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a parallel processing system. If the problem can be subdivided among the 

processo1:'s 1n such a way that each processor can proceed at 1tS own rate in 

solving 1tS portion of the problem, w1thout requiring 1nformat10n from other 

processors, the coord1nat10n 1S s1mpl1f1ed. In the cases where th1s 1S not 

so, algorithms and machines must be matched so that the necessary data are 

made ava1lable where they are needed when they are requ1red. For numerous 

algorithms, the total time required to move data to the appropr1ate process1ng 

element 1S larger than or equal to the time requ1red to perform the 

computation [GENT78], [ORTE85], [SAAD85]. 

Complicat ions may arise when processors require data computed in other 

processors to cont1nue performing useful work on a problem. A number of 

factors can conspire to create a s1tuation 1n wh1ch data are not ava1lable 

where and when the data are needed. Two such factors are: 1) 1nterprocessor 

commun1cat10n delays may prevent a processor from rece1vLnr, a p1ece of 

information ava1lable elsewhere, when required; 2) the computat10nal ab1l1t1es 

of the processors performing work on the problem and the port1ons of work 

assigned may not be matched. In this paper we concern ourselves w1th the 

first problem. The quest10n of load balanc1ng 1S adrlresbed 1n [SALT85]. 

The degree and properties of 1nterprocessor communicat10n delays are 

dependent on the characterist1cs of the computer arch1tecture on wh1ch the 

problem is run, the algorithm used to solve the problem concurrently, and the 

mapp1ng of the problem onto the arch1tecture. If the scheme employed for 

solv1ng the problem in parallel has the property that results are needed for 

use in other processors soon after be1ng computed, the scheme w1ll be 

sensitive to delays in the transmission of data between the processors, and 

the utilization of the system as a whole is apt to be degraded. Here we 



-3-

define the util1zation of the system as the average amount of time spent by 

the processors in perform1ng useful operat10ns div1ded by the total t1me 

required to solve the problem. 

In this paper we will demonstrate that it is poss1ble to reorganize 

computations in each processor so as to increase the amount of useful work 

that can be performed on the problem while each proce~sor waits for data from 

other processors. This study will be based on a model problem of obtaining 

the time-accurate solution to a linear parabolic part1al differential equation 

discretized 1n space and implic1tly marched forward in time. The algorithms 

investigated are 1terative methods that are extensions of block Jacob1 and 

SORe 

In the next ~ection we diSCUSS the general princ1ples involved 1n parallel 

implementations of basl.c l.terative methods such as Jacobi, Gauss-Seidel, and 

SOR methods. In Section 3 the model problem is lntroduced. After show1ng the 

difficulties due to the communication delays encountered 1n applYl.ng the 

parallel versions of basic l.terative methods, we present two algor1thms Wh1Ch 

are extenSl.ons of Block Jacob1. and Block SOR dnd which allow effic1.ent overlap 

of computation with communication. Schemes for 1.mplement1ng these algorithms 

on multi-processor systems are discussed 1.n Sect10n 4. In Sect10n 5 we derive 

bound~ on processor ut1.lizations for such 1.mplementations. The~e algorithms 

are implemented on a slmulated shared memory mach1.ne and the results are given 

in Sect1.on 6. Exper1mental result~ on convergence and overhead of the 

algorithms developed in Sect1.on 3 are presented 1.n Sect1.on 7, and it 1.S shown 

that for the cases cons1.dered, the overhead 1.S moderate compared to the ga1.n 

obtained 1.n employing these algorithms. 

presented 1n Sect10n 8. 

F1nally, conclud1ng remarks are 
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2. Parallel Iterative Methods 

In this '>ection the pardllel 1mplementat10n of basic 1terative method,> 

will be outlined. For spec1ficity, we cons1der the ,>tandard uniform five 

point difference approX1mat1on to Laplace's equat1.on g1ven by 

o 

in a square dOma1'"l ,>ubject to D1r1chlet boundary cond1t1.ons. The d1fference 

equation obta1ned when the mesh is n by n 1'> 

1 
u i - -4 (u'+1 + u'_1 ' + u i +1 + u, -1)· ,J 1,J 1. ,J ,] 1,] 

The subscripts 1 and J rdnge from 1 to n; and u 1 n+ l' u1 0' un+ 1 J' and , , , 
are given con'>tants. Notice that the equation for each mesh p01.nt 

1.nvolves data at that pcnnt .-1<; well as the p01nt's north, south, east, and 

west neighbor'>. 

The Jacobi method for the solution of this ,>ystem of d1fference equations 

may be written a'> 

k+1 
u 

1,J 
1 ( k + uk + k + k ) 
-r u'+l' i 1 U 1 ,j+l u 1 ,J'-1 '+ 1.,] -,] 

where the super'>cript denote'> the iteration number. The Jacobi method often 

converges very slovlly, but is considered to be a prototype parallel method 

[ORTE85] • On multiproce.,s,)r computer'>, .,ingle mesh-points or group,> of mesh 

points are dssigned to each processor. All p01nt<; dre updated each iteration, 

and since only the values from the last iteration are utilized, each '>tep of 

the iteration may proceed to completion without any need for communicat1on of 

data values dur1ng the step. 
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The Gauss-Sel.del and SOR methods require new values at each point to 

replace the old vaLles as soon as the new values are computed. In sequential 

computers the points in the domain are generally processed one iteration at a 

time, pOl.nt by point and line by line. Eecause of the need for the new values 

of the variables at the previously computed points, only one mesh point can be 

dealt with at a time; hence, the process is not suited to multiprocessor 

machines. To deal with this problem the mesh points are grouped into two 

subsets such that no points in a subset are coupled to other points in the 

same subset [ERIC72], [HAYE74], [LAMB75], [ADAM82]. The most common way of 

obtaining these setg is to use the classical red/black ordering [YOUN71]. For 

the model domal.n this is obtained by assigning points to the black subset 

when i+j is odd, and to the red subset when i+j is even. Each iteration 

can then proceed in two separate phases where each phase has the properties of 

a Jacobi sweep in that all mesh-points in a given phase may be adjusted 

independently. Other iterative methods such as the chaotic or asynchronous 

relaxation involve the updating of mesh points with variable values that need 

not come from the previous iteration [CHAZ69], [BAUD78], [DEMI82]. In the 

simplest form of chaotic relaxation, each processor uses whatever valueg are 

available to compute the next value of the iterate at a given point, without 

any restriction on the iteration number of the variable value chosen. 

It is possible to implement Jacobi, Gauss Seidel, and SOR iterative 

methods so that all new valueg corresponding to a group of variables are 

determined at once. Such schemes are referred to as block iterative methods. 

The simultaneous determination of the values of groups of variables involves 

the solution of subsystems of equations, generally by direct methods. Under 

specif1.c conditions the block iterative methods are known to converge at a 
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rate faster than the correspondlng pOlnt Iteratlve methods [YOUN71j, [VARG62j. 

Various solutions are proposed to 1ntroduce parallellsm 1n the block SOR 

methods, including the scheme of partitlon1ng the domaln Into red and black 

blocks [ERIC721, [LAMB751, [PARTR01, [PART821, [FABE811. 

3. Multistep Iterative Methods 

In many algorithms for the solut10n of t1me dependent problems, 1t 1S 

necessary to solve a sequence of linear systems of equat10ns Involv1ng the 

same matr1x but d1fferent r1ght hand sldes. In these cases, the nght hand 

sIdes of the consecutIve systems of equations are dependent on the solutl0ns 

of the equations earlIer in the sequence. The 1mpl1cl t solutlon of the 

parabolIc partial dlfferential equatlon using the Crank-Nicholson method 1n 

tIme glves rise to one such algorlthm. TYPlcally when an Iterat1ve method IS 

applied to a time dependent problem, iterations proceed successlvely over the 

systems of equations for each timestep [HAGE81j. Slnce the consecutive 

systems of equatIons depend on the solutl0ns of the earl1er equat10ns, such 

implementatIons limit the extent of possible parallel1sm. In thls sectlon we 

present algorithms whIch explolt a new level of parallel1sm In solVIng tIme 

dependent problems. We achleve thlS by trave.l~nng more than one t Imes tep 

during the course of a single IteratIon. Tn@se schemes allow coarse grained 

multIprocessor implementations, WhICh are mlnimalty dependent nn mach1ne 

characterIstIcs and have favorable, well-defIned convergence propert1es. 

In the followIng, the multlstep parallel itecatl.ve methods wl.ll. hrst be 

discussed In a relatively synchronous co"t~ so that the -nature of the 

numerIcal algorIthm and the most stralghtforward Implementatlons can be 
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understood. Tlus w11l be follolNed by d1Scussions of ways 1n which the 

algor1thms described can be implemented so as to allow for le~~ synchronized 

implementations and high proces~or utilizations. 

3.1 Block Jacobi Iterat10n 

We consider the system 

Hy b 

where t-1 is an n by n matrix and y and b are vector~ of length n. We 

a~sume for the remainder of the ~ect10n that the above sy~tem is partitioned 

in the form 

Ml 1 HI 2 M Y1 bl • • 1, q , , 

M2 1 M2 2 • M Y2 b2 
M 

, , 2,q 
y = b = 

• . . . . .. . .. . . . . .. 
• 

M M M 
. 

b q,l q,2 q,q Yq q 

INhere the M1j"~ are submatrice~ dnd Yi and b1 repre~ent ~ubvectors. 

The Block Jacobi method H defined as follows, 

- I M . Y
J

v 
+ b. 

1,] 1 
J*l 

INhere v represent~ 1teration number. All of the updated values at the 

v+lst iterdt10n are obta1ned uS1ng values f rom the vth 1terat10n. The 

1mportant speclal case when M1 ,J are 1 by 1 submdtrices glves rise to the 

point Jacobl method. 
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3.2 Multistep Elock Jacobi Algorithm 

Now conslder the following set of systems of equat10ns. 

where M and 

variables and 

p 

t 
r 

My(t ) 
r 

are n x 

lS the 

Py(t 1) + b(t ), 
r- r 

n matrices, y(t ) 
r 

th r tlmestep. 

r = l, ••• ,m (1) 

and b(t) are vectors of n 
r 

Shortly we wl11 show how these 

equations ar1se 1n the Solut1on of t1me dependent part1al d1fferent1al 

equations as well as the lntegration of f1rst-order ordlnary dlfferent1al 

equat10ns. 

The solution of these equatlons with standard block or p01nt 1teratlve 

methods involves the consecutive Solut10n of each of the m systems of linear 

equations correspond1ng to the m timesteps. After 1teratlng over each 

timestep until sat1sfactory convergence 1S obta1ned, one moves on to lterate 

over the next tlmestep. On a sequential machlne, this 1S, 1n fact, the usual 

wayan iterative method 1S applied to a time dependent problem [HAGE81]. In 

Figure 1 this algorithm is deplcted schematically and a parallel verSl0n is 

outlined below in an algorithmlc form. Here 'q' is the number of partitions 

1nto which the domaln is subdiv1ded. 
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Jacobi Method Iterated Until Convergence over Each Timestep 

For r=1 to number_of_t~mestepo; 
{ 

Pardo i = 1 to q 
{ 

} 
Beginning w1th v = 0 increment v until 
{ 

Pardo i = 1 to q 
{ 

Solve: 

M v+1 (t ) 
1,1 Y1 r 

} 

q 
- \ M. yV(t) + \ Pi y.(t 1) + bi(t ) 

L ~,J J r L ,J J r- r 
J*~ j=1 

} 
Pardo i 
{ 

} 

In the above algor1thm as well ao; in the subsequent algor1thms depicted 

below, we ao;sume that the mdtrix P 1S decomposed into blocks using a 

part1tlon1ng ident1cal to that already used Ear M. The submatrix Pij hence 

includes the same rows and columns of P as M1J 

b(t r ) is decompoo;ed 1nto o;ubvectors bi(t r ). 

does of M. Each vector 

Instead oE iterating untll convergence over each timestep before moving 

on to the next, 1.t io; possible to iterate over a [lUmber of timesteps at 

once. The o;el of t1mesteps over which these extended iterations occur is 

called a w1ndow. After a fixed number of iterat10ns have taken place over the 

window, or after convergence has been obtained dt the first timestep, the 

w1ndow moves up one t1mestep. When the window sh1fts upward." the value of 
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the solut1on at the t1mestep that was at the top of the old w~ndow u, treated 

a., the 1n1t1al approx1mat10n at the new t~lllestep wh1ch ~., now at the top of 

the shifted w1ndow. At the beg~nn1ng of the lter.:lt~ons, the ~nlt1al value 

spec1f1ed for the problem is used as the 1n1t1al guess at all tlme'>teps in the 

1.n1.t1.al w1.ndow. Th1s mult1step general1.zat1.on of Block Jacob~ lterat~on 1.S 

called W1ndowed Block Jacob1 algor1thm (WBJ). Th1S 15 schematically deplcted 

1n Figure 2. 

In WBJ an 1terat10n takes place when poss1.ble over a w1.ndow of w 

t1mesteps. The term m1.crostep describes the relat~ve POS1.t10n of a t~mestep 

W1.th re.,pect to the begl:1I11ng of a w1ndow. A tlmestep that lS 1 t1.mesteps 

above the beg1.nn1ng of a w1ndow w1l1 be designated as the lth m~crostep of the 

w1ndow. The number of IR1crosteps advanced from the beg~nnlng of lterat~ons 

performed over a w~ndow lS de'Hgnated as the number ()f cumulat1ve mlcrosteps 

(cms). In F1.gure 3 the process of measur1.ng cumulative m~cro'>tep., 1.S 

1l1ustrrlted by means of an example. The concept of cumulatlve m~crostep ~~ an 

essent1al tool for the development and evaluat1.on of techn1.ques descr~bed ln 

this paper. Note 1.n the following algor1.thm that 1.terat~on., are never 

performed on the tvnesteps beyond "number_of_t1me'>teps" spec~fled for the 

problem. Consequently, the w1.ndow S1ze durlng the solut10n of the la'>t few 

t1mesteps may correspond~ngly be reduced. The followlng ~s an expllclt 

out 11 ne of WBJ. As before q lS the number of part1.t10ns, and W ~s the 

maX1mum number of timesteps 1.n a w1ndow. 

timesteps used In a window. 

"W1ndow" 18 the actual number of 
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WBJ - Windowed Block Jacobi Method 

Pardo 1 = 1 to q 
{ 

Pardo s=1 to window 
{ 

1 
yi(ts ) = Y1 (to) 

} 
} 

For r=1 to number_of_timesteps 
{ 

Beginning wtth v=O increaaent v until lIy v+ 1 (t ) - y v (t ) II < e: 
{ r r 

} 

Pardo i = 1 to q 
{ 

window = lnin(w, number of t1me<;teps - r + 1) 
for Ii = r to r + w1ndow --1 
{ 

Solve: 
v+1 ( ) M •• y. t 1.,1. 1. c; 

} 

v 
M . Y (t ) + 

1,J J s 

Pardo 1 = 1 to q 
{ 

} 

In both the algor1thms discusc;ed above, dur1.ng iterat1.on v+l each part1.t1on 

i utilizes variables yV, jtl from other partitions. This procedure allowc; 
J 

S1.multaneouc; computat1on of all part1.t1ons on a mult1.processor system. It 

should be noted that there may be several blocks asc;igned to each processor. 
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The pardo statements above simply qerve to denote the existence of a number of 

subtasks that can run lndependently. 

In [SALT85] lt is shown that the spectral r,dlus of the lteratlon matr1x 

of WBJ for dny wlndow w lS identical to that of the corresponding block 

Jacobl method; hence, the asymptotlc convergence characterist1cs of the 

algorlthms are comparable. In the Jacobi method, lt is necessary to calculate 
q 
I Pl j YJ(t s - 1) only once for each timestep ts over WhlCh the Solut1on lS 

J =1 ' 
lntegrated. In WBJ thls matrlx vector mult1plicat1on must be performed only 

once when a t1mestep 1q at the bottom of a wlndow, but it must be performed 

each tlme a t11nestep lS above the lowest part of the wlndow. Therefore one 

expects that the overhead 1nvolved 1n the new methods wl11 be moderate when 

large blocks are utlllzed but quite h1gh when the matrlx lS decomposed lnto 

very small blocks or pOlnts. In the next sectl0n, however, lt wlll be shown 

that a minor reorganlzat lon of the computatlons can conslderably reduce the 

overhead. 

Note that instead of util1zing Solutlon values at earller timeqteps as 

initial approximations at the top of a new window, one may utilize exphcit 

integration methods. In numerlcal experiments this was shown to a1d 

convergence but in some cases to ddversely affect stabtlity. 

We now explicitly show how WBJ may be used to solve the set of ordinary 

differential equations obtained from the spatial discretization of a parabolic 

partial differentlal equation. Note, of course, that thlS method would apply 

to a system of differenttal equatlons obtained in other ways as well. This 

system may be represented as 

. 
y Qy + c( t) 
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where • y, y and c(t) are vector valued functions and Q is a matrix of 

constants. Assume that y(tl) is given as an initial condition. 

Applying the Crank Nicholson integration method to discretize in time we 

obtain, 

(Q/2)(y(t ) + yet 1») + c(t )/2 + c(t 1)/2. r r- r r-

To advance from to to tm we solve Eqns. (1) above with the following 

definitions of M, P, and b(t r ): 

M = (I/~t - Q/2), p = (I/~t + Q/2) 

and 

r = l, ••• ,m. 

Let represent the partition of Q that corresponds to the same 

rows and columns as doeg the partition of M and of P. Recall 

from the earl1er discussion that the equat10ns for at each times tep 

ts within the w1ndow are given by, 

(2) 

This may be rewritten in the case of th1s specific problem as follows: 
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( 
v+l 

I/~t - Q /2)y (t) 
1,1 1 s 

To real1ze the advantage~ of thlS rearrangement, cons1der the case that 

would appear to be the most p~oblematlcal when (2) lS applled, that is, when 

the block size 1S one, Wh1Ch cor~~sponds to a pOlnt 1te~atlv~ method. 

Cons1der the computational overhead 'lri~ing f~om lte~ations ove~ tlmesteps 

that a~e above the lowest pOlnt in a wlndow. By applY1ng (2) an extrd 

ffi.-ttr1x vector multipl1cation appe:i~s to be ~equl~ed pe~ lterat10n ove~ each of 

these t1mes teps. needs to be computed 

only once per 1teratlon. Hence, assumlng that (I/Llt + Q /2) 
1,1 

has been 

p~ecomputed, only one add1.t1on.'l1 multlpllcatlon and two add1.tlone; need be 

perfu~med per variable fo~ each lte~atlon ove~ When a numbe~ of 

processors requi re the value YV(t ) + yV(t ) one would expect it to be 
J S J s-1' 

computed separately in each p~ocessor. 

3.3 W1ndowed-Hlock Succec;slv~ Overrelaxatlon Algorlthm 

One may refine WBJ with the a1m of improvlng convergence by emploYlng a 

multistep version of Block Successive Overrelaxat10n (BSOR). Part1tioning ie; 

performed as described in the prevlous sectlons and, d5 before, each partlt10n 

is advanced w timesteps during each iteration of the algorithm. In thls case, 

however, the blocks are solved consecutively and estlmated values of variables 

calculated from other part1tlons are used as soon a" they become available. 

The other refinement involve<; the use of overrelaxat lone A weighted average 
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of the old and the new variable values for each partition is employed; the old 

variable values are assigned a negative weight. ThiS multi~tep generalization 

of BSOR is called Windowed-Block Successive Overrelaxation (WBSOR). Following 

is a formal presentation of WBSOR. Meanings of q, w, and window are as 

before. 

WBSOR - Windowed-Block Successive Overrelaxation 

Pardo i = 1 to q 
{ 

Pardo s=1 to window 
{ 

1 
yi(ts ) = Yi(tO) 

} 
} 
for r=l to number __ of __ timesteps 
{ 

Beginning with v=O incre.ent v until 
{ 

for 1 = 1 to q do in parallel when po~slble 
{ 

{ 

} 
} 

} 

window 
for s = 

Solve: 

mln(w, number of timeqteps - r + 1) 
r to t + windo~ ---1 

M YV+
1 

l(t
s

) 
1,1 

v+1 
P y. (t 1) 

1, J J s-

- L 
j>i 

M Y~(t) + 
1,] J S 

\ P Y~(t 1) + b (t ) 
L 1,J J s- 1 s 

J>1 

Pardo i = 1 to q 
{ 

1 v+1 
Yi(tr+windo~ = Yi (tr+window-1) 

yi(t r ) = y~+l(tr) 

} 
} 
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If the blocks or partitions are chosen properly, 1t is possible to order 

them so that one obta1ns two sets of blocks such that all blocks 1n a given 

set are uncoupled from one another. By convent10n the blocks 1n one set are 

designated as black blocks, and those in the other are des1gnated as red 

blocks. For example, 1n the case of a two-dimensional spatial doma1n the gr1d 

of p01nts on wh1ch the problem is to be solved may be part1t10ned 1nto str1ps. 

The partition1ng should be done in such a way that each strip 1S coupled at 

most to the two adjacent str1ps. The stnps are ass1gned to two sets such 

that adjacent str1ps dre 1n separate sets. 

In [SALT85] the spectral nd1us of the Herat10n matnx of WBSOR 1S shown 

to be independent o( the w1udow S1ze used. It should be noted that WBSOR with 

window S1ze one 1S s1mply BSOR. The use of WBSOR w1th any w1ndow S1ze yields 

convergence that is dsymptot1cally 1dentical to that obta1ned with BSOR. 

4. The Laplementation of WBJ and WBSOR on Multiprocessor Systems 

In this section we consider the implementation of WBJ and WBSOR on multi-

proces&or machines. Here we assume that each processor of the system has a 

substantial local memory. Information in this local memory may be accessed 

more easily and inexpensively than information in the local memory of another 

processor or in any global memory that might exist. The submatrices required 

to carry out the computations of WBJ and WBSOR on part1cular port10ns of the 

domain of the partial ddferential equation being solved should be quickly 

obtainable from memory. Responsibility for work involving particular blocks 

or portions of the domain is consequently assigned to a specific processor. 

To reduce interprocessor communication requirements, blocks which share 

coupling variables should be assigned to the same processor when possible. 
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We first consider a st raightforward multiprocessor implementation of 

WBJ. A collection of blocks is assigned to each processor. Each processor is 

programmed so that it may advance all blocks when the variable values required 

have been obtained from other processors. Upon computing new approx1mations 

to the partial differential equat10ns at a given timestep, the processor ~ends 

values of the computed variables to other processors that require the 

information. The operations performed by the processors and the patterns of 

interproce'3sor communicat10n when the blocks are of size one by one (1.e., 

points), are similar to those described in [REED84]. 

In WBJ, as presented above, synchronization between all processors must 

occur whenever the window shifts upwards. This requirement exists in order to 

ensure that convergence has occurred at the lowest timestep in the window 

before work on that t1me timestep comes to a halt. In order to advance to the 

nth iteration mth microstep where n > 1, each processor requ1res coupling 

variable values from the n-1st iteration, mth microstep. It is clear that all 

processors need not be performing work on the same 1terat10n and the same 

microstep simultaneously. Thus, as long as the advancement of individual 

processes is based on the availability of appropriate coupling variable 

values, no global synchronization is necessary. Furthermore, as the window 

size of WBJ 1nCrea'3es, the degree to which the proce'3sors are constrained by 

this implicit synchronization requirement decreases. The flow of data in a 

two processor system with a window of three is 1llustrated in Figure 4. 

We now consider a multiprocessor implementation of WBSOR. Henceforth, it 

will be assumed that the points or blocks involved in this algorithm are 

ordered using the red-black ordering. A'3 explained before in WBSOR, as in 

WBJ, synchronization is performed among all processors whenever the window 
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shifts upwards. Blocks may b~ assIgned to processor~ In one of a number of 

ways. The nature of the syncltrOluzat lon that must oc eur IS dependent on the 

way in which blocks of dlffertlt colors are assIgned _0 processors. ConsIder 

fIrst the case In which proc'ssors contaln elther C Illy red block::. or only 

black blocks. In order to ad fance to the nth lterat )n, mth mlcrostep where 

n > 1, each processor contd nlng black blocks req .lres couplIng vdrlable 

values from processors conta] ung red blocks from t Ie n-ist Iteratlon, mth 

mlcrostep. Each processor c lOtaInlng red blocks req nre':> couplIng vanahle 

values from processors containlng black blocks from the' same IteratIon and the 

same microstep. 

With a wIndow of SIze one, I.e., the standard red-black BSOR scheme, 

processors can only be active half of the tIme given an aSSIgnment of only one 

color block in each processor. ThIS dlfflculty dlsappears when a WIndow SIze 

of two or more IS utilIzed, and wlth larger wlndo ..... s the tlghtness of the 

couplIng between processors contInues to decrease. The asslgnment of multIple 

red blocks to some processors and of multIple black blocks to others has a 

potentlally serlOUS sIde eff~ct. SInce black block!:> are coupled only to red 

blocks and vice-versa, values of all of the couplIng v~rldbles In every block 

must be obtaIned from other processors. In the PO] lt lterdtive ver'>lon of 

WBSOR, this arrangement would reqUIre the communicatl)n of the value of every 

variable for each microstep c'lmputed at each iteratlO'> over every WIndow. 

One may assign both red and black blocks to ea( 1 processor and may thus 

be able to substantIally redu'e the Interprocessor co munlcatlon reqUIrements. 

Consider the case in which one wishes to solve a tIme dependent partial 

differentlal equatIon dlfferl need WIth a fIve pOInt ~emplate. The domain of 

the partial differential equc:ion IS diVIded into reg ons and the varIables in 
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each region are as~igned to blocks. All blocks in each reg10n are assigned to 

a particular processor. With this arrangement only the value~ of the 

variables corresponding to the mesh points at the boundaries of the regions 

need to be commun1cated regardless of the size of the blocks. 

5. Analysis of Communication Delay Effects 

This section demonstrates the usefulness of windowing techniques 1n 

ameliorating the effects of communication delays. The delay 1n send1ng a 

message from one processor to another may be written in the form Cl + B * 

size, where ex and B are some parameter~, and 's1ze' 1S equal to the number 

of bytes in the message. The nature of communcatlon delay& depend., both on 

the multiprocessor architecture and the demands on the communication network 

made by the algor1thm being run on the mult1processor. In this paper, 

interprocessor communicat10n delays will be modelled 1n the follow1ng two 

ways: 

(1) Un1form interprocessor commun1cat10n delays that vary only with the size 

of each me~sage, i.e., ex and B are constants, and 

(2) detailed simulat10n of a specif1c fam1ly of multiprocessor arch1tectures. 

The detailed simulat10ns d1rectly model any queuing effects that occur; 

hence, commun1cat10n delay 1ncreases as a funct10n of the number of 

messages ,>ent. 

An upper bound of ut1lizat10n for WBJ and WBSOR 1S derived below. The 

upper bound calculations assume uniform interprocessor delays as described 

above. It will be shown that this upper bound decreases with interprocessor 

communication delay but increases with window size. 
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First a simple lower bound on the t1me required for each PE to advance all 

of its blocks m cumulateve m1crosteps w1ll he der1ved. Th18 bound 1S a linear 

funct10n of the interprocessor communication lag and is inversely proportional 

to the w1ndow S1ze. From th1s lower bound, an upper bound on processor 

utl11zat10n 1S obta1ned. It is assumed that commun1cation lags are constant 

and unrelated to the amount of lnformatlon sent. 

Fix attention on a given PE P, in a multiprocessor system. We consider 

the executlon of WBJ and WBSOR with window S1ze w, on a mult1processor system. 

Assume that to advance all the blocks in a glven processor P one cumulative 

microstep, a total teme T 'Nould be required. 

tion with other processor:, requires time cT. 

Assume further that commnnlca-

The variable c will be called 

the communicat lon delay. Cons1.der a boundary block B ln P wh1.ch requ1.res 

coupling variable data [rom some other processor or processors. 

Proposi t ion 1 : The boundary block B requ1res at least 2cT tlme to 

advance from the end of cms i to cms 1+kw, where k = 2 for WBJ and 

k= 1 for WBSOR. 

Proof: The boundary block B at cms 1. is, by deflnltlon, coupled to at least 

one block S' in another processor. Consider first the case of algorithm 

WBJ. In order for 8' to advance to cms l+W it requlres varlable values from 

B at cms 1. Time cT 1.S required for this lnformation to get to B'. After 

B' has computed 1 ts result., for cms i+w lt must send those results to B. 

This takes time cT. B cannot advance to cms i+2w until the results from B' 

corresponding to ems l+W arrlve. Thus a lower bound on the time required for B 

to advance from cms i to cms i+2w is 2cT. A similar proof in the case of 
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WBSOR demonstrates that block B requires at least 2cT to advance from cms i to 

cms i+w. 

The above proposit~on provides a lower bound on the time that 

processor P takes to complete its work. Since P must advance all of its 

blocks m cumulat~ve microsteps, ~t cannot complete its work in less than time 

2CTL ~w J. Now mT is the computation time required to advance all blocks of 

P, m cumulative microstep~. The total time to complete the problem is hence 

bounded below as follow~ 

The ut llization of the processor P deflned as 

accord~ngly subject to the following upper bound 

u 
p 

.. 1 

( 

2c 
max 1, 

m 

computation t~me is 
T ' tot 

A very simple asymptotic form will be der~ved which bounds the utilization 

ach~evable, by a funct~on dependent only on the window size 

commun~cation delay c. Note that, 

Hence 

1 u .. 
p 

max 1, k~ -( 
2 m2C)· 

In the limit of large m, 

u 
p " 

1 

( 
2C)' max 1, kw 

w and the 
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and 1f < kw then c 2 u ( l. 
p 

Thus, the commun1cat10n delay that can be 

tolerated before a bound on ut1l1zat10n occurs increases lInearly with w. 

kw 
If c > 2' then u (kw 

p 2c· 
This means that as the wIndow S1ze increases, the 

sensitivity of the processor to communicatIon delays is reduced. Note that 

for WEJ, k = 2 and for WBSOR, k = 1 and hence for any window S1ze, WBSOR 1S 

more sens1t1ve to communIcatIon delays than WEJ. 

The upper bounds derIved above do not depend on the amount of t1me 

requIred to advance any of the blocks In the system. A refInement of these 

upper bounds may be obtained by takIng into account the tIme requl red to 

ad vance bound a ry blocks. Refined upper bounds will be computed for WBSOR 

below; the same principles could be utIlized to rehne the upper bounds for 

WBJ. 

Assume that all boundary blocks in all PEs require computatLon time Tcomp 

for advancement. 

Proposition 2: The bounda ry block B requIres at least 

time to advance from the end of cms i to cms l+W. 

2cT + 2T 
comp 

The above propOSitIon is proved exaetly as was proposltlon (1) above, 

except that: (1) block B' must now compute for t1me Tcomp before c;end1ng 

variable values to Band (2) after receiVIng data from B', B must compute 

for time Tcomp before it can make var1able values avallable at 

ReasonIng exactly as before and substltut1ng k = 1, 

cms l+W. 
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1 

2Tcomp) 

mT 

For ldrge m, the asymptotic utilizat10n bound 1S 

6. Simulation Results 

U 
P 

1 

(0 + TO~MP)l . 
(4) 

Deta1led s1mulat10ns of a part1cular arch1tecture were performed, and the 

algor1thms developed here were 1mplemented on th1~ s1mulated mach1ne to 

exam1ne the effectb of w1ndow1ng on the system performance. Result~ obta1ned 

from these s1mulat10ns for the algonlhm WBSOR perta1n1ng to the effect of 

commun1cation delay and w1ndow S1ze on proce~sor ut1l1zat1on are out11ned in 

this ~ection. In all sets of the s1mulat1ons we a~sume that blocks cons1st of 

stnp" of the doma1n (Figure 5) and that only the ne1ghbor1ng stnps have 

coupled variables. All processors have the same number of blocks assigned to 

them, and the block& assigned to a g1ven processor are phys1cally adjacent to 

one another. 

6.1 A Simulated Shared Memory Mach1ne 

A low level simulator called SIMON was employed to simulate a ~hared 

memory architecture. SIMON is an event-driven multi-processor simulator 

consist1ng of time-sorted queues [FUJI83] , [HELL84] • It is capable of 
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providing nano-second preC1S10n and allows the user to control the tim1ng at 

the instruct10n level. Ut111ty funct10ns are prov1ded to define multi-

processor architecture, send and rece1ve messages, etc. When a message is 

sent between processes, 1tS arr1val time 1S determined from the send t1me and 

a delay representing travel through the interprocessor connections and 

switches. It allows the user to control the computat10n costs at each 

processor as well as the costs involved 1n interprocessor commun1cat1on. 

The mult1-processor system simulated here cons1sts of a number of 

processing elements and a global shared memory. Each process1ng element (PE) 

conta1ns a centrdl process1ng unit and a substant1al local memory. The 

instructions and data corresponding to the tasks assigned to a processor 

reside in 1.ts local memory and the processor alone has d1rect access to th1s 

memory. The global shared memory is made up of a number of modules and these 

are accessible to all the processors with equal pr10r1t1es. 

are connected to the modules through d crossbar switch. 

The processors 

The processors 

communicate w1.th each other by read1ng and wr1t1ng data 1n the shared memory 

modules. The access to these modules is brought about by means of 

input/output handlers (1/0-handler) and an input/output processor (i/o-

processor). Attached to each PE is an 1/o-handler which takes care of the 

read/wr1te operations assoc1ated with the shared memory and allows its host PE 

to continue performing computations. The shared memory and the crossbar of 

the system are cont rolled by the i/o-processor. Only one i/o-handler is 

allowed to read or write to a particular memory module at a given time, 

although a number of i/o-handlers can read or write to distinct memory 

modules. The i/o-processor arbitrates the access to the shared memory modules 

by different i/o-handlers through the crossbar switch. 
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The communication that occurs in this model machine involves either: 1) 

messages concerning requests and permisg~ons to read or write, or 2) messages 

that include variable values that must be transmitted and received. The 

requests and permiss~on me.,sages are small, consist~ng of only a few bytes. 

The transmiss~on of v~r~able values requires messages that are generally much 

longer, and the~r s~ze depends on the number of variables that are shared. 

The operation of the modeled shared memory machine is carried out as 

follows. When a processor needs to read or write datd to the shared memory, 

it sends a mes~age to ~ts ~/o-handler. This message designates whether a read 

or a wr~te ~s requested and also designdtes the memory module requ~red. When 

the l/o-handler recelves this message, it forwards the request to the ~/o

processor. The ~/ o-processor collects and queues requests to read and Wrl.te 

sent by all of the ~/o-handlers. When a request to read or wr~te is serviced 

by the i/o-processor, an ~/o-handler is given exclus1ve per~~sslon to lnteract 

w~th a spec~fic memory module. Depending on the request involved, the 1/0-

handler can e1ther wr~te from the PEs' local memory to a particular memory 

module, or read from a part~cular memory module and write to its PEs local 

memory. 

6.2 Effect of Window~ng 

The simulated shared memory system, described above, was employed to 

examine the performance of WBSOR as the window size was varied. The 

simulations were carried out for a system consisting of eight processors and 

eight memory modules and also for a system with eight processors and one 

memory module. Henceforth the former system is referred to as Machine A and 

the latter as Machine B. 
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In the simulat10n runs described below, it 1S assumed that a model doma1n 

decompos1t10n 1S appl1ed where a un1form grld is d1v1ded 1nto strlps. Each 

strip has 1000 mesh p01nts on the boundary. The t1me requ1red to send each 

message, sent over a glven l1nk in the shared system, 1S assumed to be 

microsecond plus 0.025 times the number of bytes 1n the message. Th1s 

corresponds to a bandw1dth of 40 Mbytes per second per 12 b1t w1de 

communication channel. As ment10ned earl1er, the s1mulat10ns expl1cnly take 

1nto account the commun1cat10n requ1rements of the problem, 1nclud1ng the 

queu1ng effects on the commun1cation delays and the chdnges 1n the data 

requ1rements that occur when a w1ndow sh1fts upwards at the beg1nn1ng of a new 

t1mestep. Thus, although the bandw1dth of the channels 1S f1xed, the problem 

parameters affect the commun1cat1on delays 1n the system as a whole, and they 

are accounted for in these s1mulat10nc;. In these exper1ments 1t 1S asc;umed 

that the block advancement times for all blocks are 1dent1cal 1n all the 

processors. A block advancement time is defined as the time 1t takes to 

perform computatlons for a slngle t1mec;tep durlog an IteratIon over the 

window, once the data for that t1mestep are avallabl~. Results are presented 

here for the block advancement t1mec; of 0.5 millisecllnd, 1 m1lltsecond, and 5 

milll.seconds. Flnally, in these s1m1l1at1011 experiments, It 1S assumed that an 

equal number of iterat1011s are requ1red over edch timestep. 

The variation of processor ut1l1zation as a function of window size when 

one and two blocks are dssigned to each processor of Machine A 1S dep1cted 1n 

Figure 6 and Figure 7, respect1vely. F1gure 8 and F1gure 9 show the same for 

Machine B. In the case of Mach1ne A, the ut1lIzat10n 111creases as the window 

size is 1ncreased, when either one or two blocks are ass1gned to aPE. Th1s 

is true for all the block advancement tlmes cons1dered. These lmprovements in 
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processor utilization with window size taper off for larger window SIzes. As 

the block advancement time is lncreased, the relative effect of communlcatlon 

delays decreases, and the processor utIlization improves. 

In FIgure 6, where only one block is dssigned to a PE, the utlllzation for 

window size one does not increase above 0.5, regardless of the tIme needed to 

advance a block. ThIS is so because here each PE has eIther a black or a red 

block. Ignoring the predictions that occur at the begInnIng of each timestep, 

black blocks require varlable values from red blocks frOITl the last cumulatlve 

microstep, and red blocks requlre variable values from black blocks from the 

same cumulatIve microstep. Therefore, a black block and 1tS nelghborlng red 

blocks cannot advance simultaneously when the wlndow slze 1'0 one; thus, the 

processor must remain ldle approxlmately half of the tlme even if the lnter

processor communlcatlon were Instantaneous. ThlS restrIctIon dlsappears when 

the window SIze lS greater than one or when more than one block lS asslgned to 

a PEe When each PE is asslgned one block and when the block ddvancement time 

is relatively small, a wlndow Slze greater than one helps to some extent, and 

the utl1izatl0n goes up, but the queuing effects soon catch up wlth the galn 

from higher window size. From Flgure 7 lt can be seen that, 1f the number of 

blocks assigned to each PE is Increased from one to two, the effect of queUIng 

delays is decreased and much hIgher utlllzatl0ns are observed. 

The effect of the underlying hardware, speclflcally that of the number of 

memory modules in the shared memory, on the performance of WBSOR IS observed 

when the number of modules is reduced to one (Figure 8 and Figure 9). As 

before the utli1.zations increase with block advancement time, but much more 

gradually. The effect of change in the window size is not felt until the 

block advancement time is large enough to include all the queuing delays at 
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the module WhlCh acts as a bottleneck. The block advancement tlmes, above 

this threshold, show trendb SllTIllar to those observed ln the case of Mach1ne 

A. Altering the wlndow size affects the patterns of lnterprocessor 

communlcation, but does not change the amount of lnformatl0n that must 

eventually be communicated before the problem is completed and hence, under 

some clrcumstance'3, wlth a smaller number of memory modules, one may expect 

* lower performance ltnprOvements through the use of increaslng w1ndow '>lze. 

The average communlcatlon delay between each palr of processors was 

lneasured from the slmuiat10ns for machines A and B when two blocks were 

asslgned to each PEe The maXlmum of the average lnterprocessor communlcatlon 

delays for Machlnes A dnd B lS shown In Flgure 10. The block advancement tlme 

1S assumed to be m11li,>econd. Note that the lnterprocessor communlcation 

time lncreases qUlte gradually with wlndow slze, when elght modules are 

assigned, but lncreases almost llnearly with the wlndow Slze when the mach1ne 

cons is ts of only one module. An approximate value for the upper bound of 

processor utlllzatlon can be obtalned by substitutlng in (4) the maximuM. 

average time needed for the lnterprocessor communicatlon that must take place 

between pairs of processors. These upper bounds for utll1.zatlon, glven by 

(4), are compared with those observed in the simulation experiments for 

Machines A and B in Flgure 11. The upper bound calculated uSlng the maximum 

average interprocessor communication delay in (4) approximates rather closely 

the results obtained from the simulations. Thus, the usefulness of windows ln 

mitigating the effects of communlcatlon delays lS demonstrated In a realistic 

simulated machine. 

* A detalled analysls of the influence of hardware parameters on the algorithm 
performance will be published separately. 
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7. Experiaental Results on Convergence and Computational Overhead 

Even though the spectral rad~i of the ~teration matrices do not vary with 

window size, the computat~on t~me requ~red to complete a problem may increase 

with window size for the follow~ng two reasons: i) The number of iterations 

requ~red to br~ng two success~ve c1pprox:~mations to w~tll1n tolerance in a 

spec1.fic norm, in th~'5 cage the maximum norm, may have a dependence on w~ndow 

size; 2) the computdt~onal work requ~red per ~teration ~s expected to ~ncrease 

with window size to a ITllnor degree. Here the experimental reF;ults on the 

effect of w~ndow S~.le on the number of 1terations requ1red and on the total 

computation t~me taken are presented. It will be seen that the COgt increage 

is qU1te modest and 1.S often outwe1.ghed by the ~ncrease in the processor 

utilization attributable to the application of windows. 

The resultg on overhead attr1butable to the use of windows were found to 

be similar for both WBJ and WBSOR, and hence the results pertain1ng to WBSOR 

are presented. The heat equat1.on was solved uS1ng a 50 by 50 p01nt mesh and a 

timestep of 0.001. The 1nitial condition consisted of the first two modes of 

the equation. The equation was solved subject to D1r1chlet boundary 

conditions. Iterations were continued until the maximum of the difference 

between two succeeding approx1mat10ns at the f~rst m1crostep 1n the current 

window was less than the g1ven tolerance of IE-So 

The doma1n was decomposed into blocks of difterent sizes in different 

experiments. The domain was divided into 5 strips that were each SO by iO 

points, 10 strips that were each 50 by 5 points, and 25 strips that were each 

SO by 2 points. Square blocks that were each 10 points by 10 points were also 

considered. The equation was advanced SO timestpps and the average number of 

iterations required to achieve the prescribed tolerance of 1E-S was calculated 

for each of the types of blocks. 
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For window sizes 1, 2, 3, and 4 the average number of lteratl0ns requ1red 

to reach tolerance 1E-5 is dlsplayed in F1gure 12 and F1gure 13, when 50 x 2 

and 10 x 10 blocks are used respectively. It is clear that the average number 

of 1teratlons requ1red lncreases rather gently wlth wlndow S1ze. The number 

of lterations required by the first few timesteps of the problems investigated 

here grows relat1vely qU1ckly with w1ndow size (F1gure 12 and F1gure 13). 

This effect is due to the cost lnvolved ln getting the l'lult1step algonthl'l 

started. 

Once a mult1step algor1thm is underway, the qual1ty of the apprOX1'llat1on 

at a timestep is successively improved as the w1ndow creeps upward. The f1rst 

1teratlons over a timestep that occur when the tlmestep 1S dt the top of a 

wlndow may be thought of as establishing a rough approximat1on. A~ the w1ndow 

moves upward, the relat1ve posit10n of the t1mestep 1n the w1ndow goes down 

and the approximation to the solution at that t1mestep 1<., reflned. In tIll:' 

f1rst iteratlon over the f1rst window, the in1tial cond1tion of the parabu11c 

equation is used as the initial value at the beg1nn1ng of each t1mestep 1n the 

window. The grad1ent of rough to flne approX1mat lon as a function of the 

position of the timestep in the wlndow develops as the solutlon lS C,HrleO 

out. 

Figure 14 dep1cts the computat10nal overhead 1nvolved in uS1ng w1nrlows of 

size greater than one 1n the solution of the above descr1bed heat equat10n. 

The solut1.on time increases \nth the size of the window. Here the overhead 

was computed by t1ming the computer runs for a g1ven block doma1.n decompos1-

tlon when windows of S1ze one through four were exam1ned. The rat10 of the 

time requ1red to advance the prohlem 50 timesteps wlth window 1, to the tlme 

required to complete the problem wlth window greater than one, lS plotted for 
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each domain decompos1tion. For windows of size 2 the overhead observed ranged 

from 0.02 to 0.07, for windows of size 3 the overhead ranged from 0.07 to 

0.13, and for windows of size 4 the overhead ranged from 0.09 to 0.21. The 

smallest overheads for each window Slze are seen when the doma1n 1S divlded 

into 50 x 10 point blocks. 

It is clear that while the uc:;e of w1ndows does not .qffect asymptotlc 

convergence, there is some computational overhead involved in the1r use that 

increases with window Slze. The experimental results descr1bed here show that 

the overhead is quite modest for small windows. 

8. Conclusions 

Th1S paper explores methods for eff1c1ent ~olutl0n of partlal d1fferent1al 

equationc:; on MIMD machines. The general obJect1ve of this 1I1Ork 1S to maXlm1ze 

multiprocessor performance by rearrang1ng the order of computations of 

standard algorlthms so that the effects of communicat1on delay~ are 

amell0rated, but at the '>ame tlme the rec:;ultln~ algonthm'> have favorable, 

well defined convergence properties. 

USlng Jacobl and SOR pOlnt and block 1teratlve methods as a bas1s, a new 

concept of windowing over several time-c:;teps 1S developed. Both analytical 

and simulation resultc:; demonstrate the usefulne,>s of windowlng 1n decreas1ng 

the effects of communication delay,> on algorlthm performance. The spectral 

rad1i of the iteration matrices of both of these new algorlthms are equlvalent 

to the spectral radii of the analogous standard methods [SALT85]. The use of 

windows entails a small computat1onal overhead WhlCh increase'> gradually with 

window size. It was observed that the computat1onal overhead as'>ociated with 
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a window S1ze of two was neglLgLble and the benef1ts Ln increased utilLzat10n 

were substant1al. 

Further 1nvest1gdt1ons are be1ng pursued 1n a number of ways. The concept 

of w1ndow1ng can be extended to other iterative methods. The generalizat10n 

of WBSUR to multLcolor SORt [ADAM82] or the ordenngs Lntroduced by O'Leary 

lULEA84] would appear to be part1cularly .,tra1ghtforward. The concept of 

w1ndOlo11ng may also be extended to apply to iterat1ve methods Ln the solut10n 

of the equation., ar1s1ng from Newton-like schemes for the solut10n of sy~tem., 

of non11near algebra1c equat1ons. It also may be poss1ble to extend the 

w1ndowing concept to the solut10n by funct10nal iterat10n of nonl1near 

equat10ns that m1ght he ohta1ned 1n a method of ll.nes solut1on to non11near 

parabolic equat10ns. 
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Iteration unti1 convergence over consecutive ti mesteps 
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