
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

-'s

1985 Mid-Year Report
NASA Grant NSG 1471

TFIE EMBEDDED OPERATING SYSTEM PROJECT

1

	

	 Principal Inuestigator
Roy 11. Campbell

Research Assistants
Ra y mond B. Essick

Judith Grass
Dirk Grunwald
l ankaj Jalote
Kevin Denny

David A. McNabb

	

Software Systems Research Croup	 j

University of Illinnis at Urbana-Champaign
Department of Computer Science

130-1 West Springfield .Avenue	 I
Urbana, Illinois 61801-298

(217) 333-0215

(NASit — Ch — 176280)	 THE EMBEDDED OPERATING	 1186— 1 1893

SYSTE:! r'huJECT (111incis Univ. ,
U[bata — C ham Faiyn.)	 3 18 p HC A IS/MF AJ 1

	

C:SCL 09B	 Uncles
G3/b 1	 1583 3

K ` ^\ F pC\11^^

v

NASA Grant NSG 1 . 1; 1

The Embedded Operating System Project

Mid-Year Report, May' 1985

Principal Inreatryator
Roy 11. Campbell

i

1

Research :Assistants
Ra y mond B. Essick

Judith Crass
Dirk Grunwald
Pankaj .lalote
Kevin Kenny

David A. McNabb

Software Systems Research Croup
University of Illinois at Urbana-Champaign

Department of Computer Science
1301 West Springfield Avenue
Urbana, Illinois 131801-2987

(217) 333-0215

J-

F. r

'rti

C
ABSTRACT

This progress report describes research towards the design and construction of
embedded operating systems for real - time advanced aerospace applications. The
applications concerned require reliable operating system support that must accom-
modate networks of computers. The report addresses problems that arise in the
construction of such operating systems, reconfiguration, consistency and recovery
in a distributed system, and the issues of real-time processing. We include a thesis
that provides theoretical foundations for the use of atomic actions to support fault
tolerance and data consistency in real - time object-based systems. In particular,
this report addresses:

• Atomic Actions and Fault-Tolerance Issues
• Operatin g System Structure
• Program Development
• A Reliable Compiler for Patti Pascal

t^	 • Mediators: A Mechanism for Scheduling Distributed System Processes

CThis document reports the status of various experiments designed and con-
ducted to investigate embedded operating system design issues. To support EOS,
our experimental real-time Embedded Operating System design, we are construct-

I_ ing a portable object-based development system called INDEED. INDEED pro-
vides an incremental development environment aimed at the particular needs of
object - based real-time system construction. EOS is representative of a family of
operating system designs based on a General Layered Operating System construc-
tion methodoloo called GLOSS. In addition, we have implemented a portable and
reli:^l,le compiler for Distributed Path Pascal, the real-time programming language
in which we propose to conduct many of the experiments. This compiler is in pro-
duction use at more than ten international sites.

Using the real-time programming techniques developed in co-operation with
NASA in earlier research, the project staff is building a set of modular components
for a family of real-time distributed operating systems as part of an experiment to
evaluate the proposed object - oriented approach.

Ivey components of the design are being programmed in Distributed Path Pas-
cal, a high - level programming language that incorporates strong-typing, allows
object-oriented programming, modularization of code, separate compil a tion, and
fast real-time execution. The real-time performance of these components is being
studied by simulation and by experimental evaluation on stand-alone machines.
The research includes investigation of distributed kernels, scheduling, management
and naming of distributed resources, exception handling, fall It 	 and all

 development environment for distributed software.

^ 1. `
7

EOS Project: Mid-Year Report May 1985 1

1. Project EOS Overview

Since 1970, the Software Systems Research Group at the University of Illinois has

been working with Dr. EdN%-In C. Foudriat of NASA Langley to develop methods and

techniques for the construction of real-time imbedded operating systems for aerospace

applications.	 Nlany	 research	 contributions	 in	 real-time	 scheduling,	 fault-tolerant

f software, operating system structure, object-oriented systems programming, net%%-ork-

ing and distributed comput i ng have been produced by this co-operative effort. 	 The

major practical research contribution produced is an experimental real-time prograni-

nung and simulation language called Distributed Path Pascal [17]. 	 Distributed Path

It
[[''

Pascal incorporates strong-typing and allo%%-s object-oriented programming, modulari-

I

z:1tion of code, separate compilation, and fast real-time execution.

Distributed	 I'ath Pascal has been the development vehicle used	 to study ninny

f
1 prototype systems and research issues. 	 The group has designed several small operating

`
l_

system components [g ,9,14,17,22,27,2(),36,40,41,42,43,44,46] based on an ohjcct-oriented

vie«' of a computer system.	 This	 view accommodates the design	 of autonomous

t^ operating system components networked together as "remote objects" [17,27]. 	 Back-

N%ard error recovery, conversations, the deadline mechanism [15,32,36] and recoverable

objects [31[have been	 prototypcd using Path	 I'ascal.	 The research	 project	 has also

produced major contributions documented in the 20 published papers, 7 1\1.S theses, 5

L Ph.D.	 l i sted in Appendix A.	 Thesetheses and some 29 technical reports 	 contributions

covered many aspects of system design including protection [22,30,40,11,43] fault toler-

ance 132,36,39,45,461, fault, tolerance methodology [1,3,4,6,20,31] fault-tolerance in real-

' ►l

,Q_

l

EOS Project: Mid-Year Report May 1085 	 2

I
time systems [3,18,28,32], atomicity, fault-tolerance, and consistency [1,2,481, and dis-

trihuted data base consistency (21,701.

Our current research concentrates on applying the results of our previous research

to the design and construction of components of a prototype distributed real-time 	 !

embedded operating system (EOS). The major requirements for EOS are listed below.

Real-Time Response. Components and subsystems of the application must have sup- 	

I i
port. to enable them to respond to if/O events in real-time; that is, fast enough to pro- 	 1 1

vide control for the physical system in which the computer is embedded. 	 f I

Reliable Operation and Fault Tolerance. System components may be used to iniple-

ment critical life-support and hardware survival functions, and must have a very low 	 t

likelihood of failure. Fault tolerant techniques should be employed to achieve levels of

reliabilit y beyond those that can be achieved by conventional software engineering

methodologies. 	 : 3

•lutonomous Operation. The system should be a d y namically reconfigurable collection

of distributed, loosely-coupled, highl y autonomous components. Such systems support

failrnre isolation, standby sparing, triple-modular redundancy, and majority voting.J	 ^	 g	 {
The modularization of components improves reliability and facilitates maintenance.

Design and Aaintenance Support. The development of an application will consist of

the design, construction, configuration, testing, and maintenance of highly autonomous

objects and collections of objects. This development process must be supported by
nn

ll
.J

I

4

EOS Project: Mid-Year Report May 1985 	 3

appropriate tools and facilities. In particular, these tools must allow fast prototyping,

system instrumentation and debugging mechanisms, dynamic upgrading of object

	

(implementations, reconfiguration, reusable software components, test-bed validation,

performance evaluation and tuning.

This report describes the results of the EOS project for the six months from

November 15th through the present. During this time we have:

• developed programming and fault-tolerant system concepts based on
atomic actions;

• designed a development environment for object-oriented systems which
aids in the construction of distributed software;

• investigated mediators, a new modular scheduling scheme for real-time
systems, and language primitives to implement that scheme in distri-
buted systems;

• enhanced and distributed a portable Path Pascal code-generating corn-
piler for UNIX' and stand-alone systems which will support production
development of Path Pascal programs;

• continued the design of the overall structure of EOS.

In section 2 of this report «, e describe our work on fault tolerance in distributed

systemsyst	 row.	 th	 h atomic actions.g
f

t Section 3 contains a description of INDEED, an INcremental Development

Environment for Extensible Distributed systems. INDEED provides a means to proto-

type, extend, debug, instrument, test and maintain object-based embedded systems.

The system supports dynamic reconfiguration, remote operations, and distribution on

a network of processors.

' UNL\ is a trademark of Bell Laboratories.

EOS Project: Mid-Year Report May 1085
	

4

Section 4 discusses the issues relating to the structure of operating systems. The

General Layered Operating System Structure, GLOSS, provides a methodology for

building a family of operating systems from reusable components. Depending upon the

choice and manner in which these components are combined, systems with different

properties can be obtained.

Section 5 contains a proposal to solve several language design issues related to the

problem of specifying the scheduling of reliable i cal-time systems. Potentially, the

scheme may be extendible to support fault tolerance and atomic actions. The pro-

posed solutions are described in the form of system and language primitives for sup-

porting such facilities.

In Section G we describe the current status of Distributed Path Pascal. A new

production Distributed Path Pascal compiler has been completed in which the code

generation phase is the same as that used to support the Berkeley version of the UNIX

portable C compiler. The front end of this compiler is implemented using an LALR

parser and components taken from the Berkeley Pascal compiler. In addition to

offering improved performance, the software facilitates porting Path Pascal to many

different machines, allowing a reliable production environment for both stand-alone

and UNIX-based Distributed Path Pascal. Implementations now exist on both the

V.AX and MC68000, and under both Berkeley 4.2 UNIX and XENIX2.

'XENIX is a trademark of Microsoft.

EOS Project: Mid-Year Report May 1985
	

5

2. Fault Tolerance
3

The last six months has seen the completion of a study of the nature of fault-

tolerant provisions in asynchronous systems. Several papers have been completed and

accepted for publication in Transactions of Software Engineering documenting our

research (1,2,3,41. A Ph.D. thesis was completed (Appendix DJ providing a summary of

much of this research. The research has produced:

• a framework for exception handling in asynchronous computer systems;

• a practical implementation of the exception handling scheme in a message
based system of concurrent processes using a CSP-based notation;

• demonstrations of using the exception handling schemes to support
backward and forward error recovery;

• arguments supporting the thesis that atomic actions are fundamental to
the provision of fault tolerance.

Future directions for fault-tolerant software studies in Project EOS will address

practical issues of providing the fault-tolerant schemes proposed within an embedded

real-time operating system.

3. INDEED

The design and construction of embedded real-time operating systems are formid-

able tasks often involving large groups of programmers and expensive resources. While

we have shown that the use of a high-level, strongly-typed, object-based concurrent

programming language greatly facilitates these efforts, many difficulties remain. We

are designing a portable incremental program development environment for object-

based systems which will provide the additional support needed during construction of

I

1
I
3j
1.

I
i^
I

i
EOS Project: Mid-Year Report May 1985

	 6

advanced real-time embedded systems.

Recent research has clarified some of these problems and identified additional re-

quirements for our development environment. Among these are:

• ease of rapid prototyping,

• immediate testing of new system components (objects) within running
systems,

• provision for object stubs,

• mechanisms to replace stubs with actual implementations while
minimizing perturbations of the system,

• flexible and dynamic instrumentation of system objects,

• preservation of the maximum possible portion of consistent system state
durin g incremental development,

• dynamic replacement of system objects by newer versions,

• and dynamic reconfiguration of the overall system structure.

We believe that each of these: requirements can be achieved within the framework of

the existin g Path Pascal language definition through development of a parallel, extend-

ed semantics for identifier sco-es and object namespaces.

During the last six months we have investigated details of the design of INDEED

and studied the relative difficulties of implementing INDEED using one of our existing

Path Pascal compiler systems. We are preparing a document detailing the required

mod ificc•.!ions, comparing existing compilers for feasibility of these modifications, and

suggesting development stages and milestones. Some consideration of the feasibility of

an INDEED-like environment for other modern concurrent programming languages

I
I
I

1

4

EOS Project: Mid-Year Report May 1986
	 7

may also be included in this report.

Work has already begun on an interpreted INDEED prototype based on the tree-

based intermediate code, Tcode3 Two existing Tcode compilers (one for the Series 14

and one for an interpreter (251) and several code generators 5 have been created. Inter-

preted Tcode provides an excellent vehicle to develop INDEED algorithms and con-

cepts further and is likely to be enhanced in the near future.

While some of these development environment requirements might also be useful

capabihties of the systems produced, the overhead of the dynamic reconfiguration

features could be too costly in light of the stringent requirements of the final real-time

systems. However, these expanded capabilities are implemented in INDEED as orthog-

onal and optional constructs. If these features are used for development purposes

only, then the final production system can be generated by a standard Path Pascal

compiler and thus avoid all such overhead.

The INDEED system can also be used to configure systems of objects into arbi-

trary graph structures, permitting hybrid arrangements which have no corresponding

valid Path Pascal equivalent. Experiments on such systems are not currently planned.

Similarly, objects can be a ►ranged into strict hierarchies of layers, with each layer ex-

tending, refining, restricting, or simply transmitting operations of the parent layers.

Such app*oaches are described later in this report under the section on GLOSS. We

^y

a Beshers, G. M., D. A. McNabb, and R. 11. Campbell, "TCODE: An Intermediate Code for the Path Pascal
Compiler," Technical Report UIUCDCS-R-81-1060, Department of Computer Science, University of Illinois, 1981.

G. Beshers, "Tcode Compiler for the Series-I," Final Report: IBM Series 1 Project, 1983.

6 D. McNabb, Internal Report.

EOS Project: Mid-Year Report May 1985
	

8

expect that INDEED will provide an excellent test-bed for experiments with GLOSS

designs, and will facilitate testing of families of GLOSS systems.

4. GLOSS

Operating systems can provide many useful support facilities for programming in

high-level abstract languages. The implementation of such facilities may be complex.

However, real-time critical processes require fast, economical support from an operat-

ing system. One traditional approach is to provide support for real-time and high-level

functionality within an integrated operating system. These operating systems can be-

come large and complex, are often not modular in design, and require specialized prim-

itives which differ for real-time and high-level processes. Using customized operating

systems on independent but communicating systems is one method for providing both

types of support.

A desirable goal is to reduce the complexity of real-time operating systems- that

provide high-level functionality. Less complex operating systems are more easily

developed and maint-ained. Another goal is to provide a consistent interface between

the proc:-ss and the operating system regardless of whether real-time or high-revel

behavior is desired. Consistent interfaces between the process and the operating sys-

tern in both environments enable the programmer to rapidly and easily change en-

vironments as desired. Distributed applications should be run in a high level environ-

ment offering, for example, distributed filesystems, while real-time processes are run in

an environment offering minimal operating system overhead.

EOS Project: Mid-Year Report May 1985
	

9

The GLOSS concept is intended to facilitate the design of a single family of

operating systems to support both real-time and high-level environments. However,

unlike other operating system designs, the approach allows a separation of real-time

concerns from functionality and permits the exploitation of multiprocessors in the sup-

port of real-time performance. Real-time functions can suffer in environments with

complex operating systems and the accompanying overhead. However, high-level pro-

gramming language functions can benefit greatly from the higher degree of support

provided by an operating system. If software developers are to provide environments

for real-time and high-level functions, it is convenient to have a similar, if not identi-

cal, set of system services in both environments. GLOSS permits the development of

such tailored, but generic, environments.

The GLOSS methodology provides a structuring mechanism for operating systems

allowing real-time functions to run with minimal operating system overhead. High-

level functions can support features such as triple-modular redundancy, atomic ac-

tions, stable storage and distributed filesystem access.

4.1. Layering

Layering an operating system provides one mechanism for offering both real-time

and high-level performance within a single operating system. The high-level functions

such as distributed filesystems are implemented in separate layers. Processes are given

access to a particular set of layers. Iligh performance processes have direct access to

the inner layers of the kernel while processes desiring the more complex functions ac-

cess the outer layers of the kernel.

. 1

4

r

EOS Project: Mid-Year Report May 1986 	 10

4.2. Consistent Layer Interfaces

By choosing to have identical interfaces between each layer of the operating sys-

tem, we gain the ability to easily stack layers to achieve a desired level of functionality.

Each process is given a set of layers most appropriate to its task. This appropriate set

of layers is determined at execution time and can change with each invocation of the

program. It is possible for concurrent instances of a program to use different layers of

the operating system. Programs need not be recompiled to use specific layers; they are

merely started with an appropriate set of underlying layers.

4.3. Related Concepts

The concept of consistent in.^erfaces is not novel. The idea of device independence

is similar to the GLOSS concept in many ways. Device independence is usually associ-

ated with I/O operations. The set of operL `,ns on a GLOSS layer would include the

entire set of "system calls", or "service traps".

Another related scheme is the UNIX "STREAM" or "stackahle line discipline".g

Streams consist of a series of processing modules whose only interface is a set of read

and write routines. These modules can be assembled in any order to provide a variety

of functions that were previously implemented by adding special cases to a single large

body of code.

The Ritchie paper in the 1984 UNIX issue of the Bell Technical Journal.

rte-, ;^.

EOS Project: Mid-Year Report May 1985
	

11

4.3.1. Device Independence

Device independence is one example of a consistent interface. Prior to its intro-

duction, programs contained specialized and separate code to output to disks, printers,

terminals, and other programs. In an operating system designed with device indepen-

ti
dence, a program need not concern itself with whether the output is going to a printer,

C
	

disk file, or another program. It continues to use the same set of I/O primitives to

h
	 generate output.

4.3.2. UNIX Streams

The UNIX teletype driver has been continually modified until it is now a impor-
S=

tant and complex piece of code. The reason for this is that the teletype driver has

born the brunt of additions to support such features as differing "line disciplines",

erase and kill handling, and other somewhat related tasks. In an effort to reduce the

complexity of the teletype driver and simplify the structure of related objects in the

UNIX kernel, Dennis Ritchie developed the STREAMS concept.

The STREAN't concept includes a set of processing modules, each acting as a filter,

sitting between a user process and a device (or another user process). These modules

have consistent interfaces and hide the type of module with which communication oc-

curs. The processing modules implement the functions that include erase and kill pro-

C
	

cessing, front-end communications protocols for networked or virtual terminals, and

more complex tasks. Additional processing modules can be dynamically pushed onto a

L	 given set of modules; thus the name "stackable line discipline".

f

EOS Project: Mid-Year Report May 1985 	 12

4.4. Current Status

In this section, we detail progress made in the construction of GLOSS-based sys-

tems. There are currently two primary efforts in the prototyping and development of

GLOSS systems. The UNLX United effort is concerned with prototyping the GLOSS -
,I	 r

concept in the UNIX kernel. The Path Pascal effort is concerned with developing an

implementation of GLOSS.

The Path Pascal GLOSS effort is concerned with modifying the language and

language run-time systems to support interchangeability and stackability of service

routines. We are examining mechanisms for replacing the set of Pascal "standard pro-

cedures" with references to an object. 	 We will then permit such objects to be replaced

by another of our own choosing on a per-process basis.	 These objects could be linked -

in chains; each object in the chain representing a GLOSS layer and presenting the
4	 ^

same interface to its clients. -
s
a	 -

4.4.1. UNIX System V

The 3b2 UNIX United implementation is using a prototype of GLOSS to imple-

ment a distributed UNIX system. 	 The System V UNIX kernel is augmented with a

deice driver that. traps user process service requests to a UNIX United layer also im-

plemented within the kernel as a device driver.	 The UNIX United layer determines

the appropriate interface to use to service a given system request and contains the

linkages to allow the execution of the service to occur.

1

k

t
k

EOS Project: Mid-Year Report May 1985
	

13
l

Vince Russo is in the process of moving the functions of the UNIX United "layer"

into a kernel layer using AT&T financial support. 7 The objectives of this port include

producing a distributed UNIX and implementing it in such a fashion that a minimal

number of modifications have to be made to the original UNIX kernel.

To minimize t he changes required to the UNIX kernel, UNIX United is being im-

plemented as a layer contained in a pseudo device driver. This driver can be optional-

ly loaded; the determination coming at boot time. When the driver is loaded, the

UNIX kernel calls a driver specific routine to initialize the device. In UNIX United, we

overlay the normal system call ent ry point table with a new table of services. When

user processes trap into the UNIX kernel, they are redirected through this table to the

routines specific to the layer instead of the normal UNIX system call routines. The

routines in this laver may then invoke the true UNIX system call routines via a saved

copy of the original system call table.

This implementation is not strictly a GLOSS implementation since it redirects all

processes through the same additional layer. Future work includes carrying per-

process pointers around which describe the particular system call entry table to use

when handling requests from the user process. This adds an extra level of indirection

to the dereferencing of the system call b^ 1 allows us to use a per-process value to

determine the actual set of layers instead of a system wide progression of layers.

t The actual layered GLOSS model is difficult to implement with the current UNIX

tbase. In the original PDP-11 versions of UNIX, the kernel ran in an address space

+	 ' See also, Mark Tuomenoska, "Loadable Illinois Newcastle Connection," M.S. Thesis, 1985.

EOS Project: Mid-Year Report May 1985
	

14

separate from the user's address space. Special routines had to be invoked to move

data between the two address spaces. As UNIX has been ported to machines with	 _!

larger address spaces and virtual memory, versions where the user and kernel share
s

the same address space are becoming more common. However, the model for copying

data between user and kernel address space continues to use special routines. In UNIX

United, the GLOSS layers actually reside in the kernel's address space. On UNIX sys-

tems where the kernel and user share a single address space there is no problem other l

than circumventing the protection mechanism to prevent an inner layer of the kernel

an address	 when	 refers	 within a	 of userfrom declaring	 invalid	 it	 to data	 layer instead

space. On UNIX systems where the kernel and user are in separate address spaces, the

internal layers must place data to be transfered to inner layers in the user address

space.	 The 3b2 system is one example of this case. The UNIX kernel on the 3b2 runs

using physical addresses and the user process uses virtual addresses.

This summer, the UNIX United kernel layer is functioning but is incomplete.

Calls referencing remote systems are detected and diverted to the correct service rou-

tines on the local hosts.	 These service routines are able to communicate with the re- •

mote host, making requests for actions to be performed on the remote host. 	 The

resulting syst.ern is smaller, more portable, and faster than the original Newcastle Con-

nection which implemented UNIX United.

4.4.2. Path Pascal

The effort of making a Path Pascal based GLOSS system will be based on the new r

Grunwald compiler generating native code for the VAX and 68000 processor families.
E^

7

EOS Project: Mid-Year Report May 1985 	 15

We are currently looking at the minimal number of necessary language extensions to

implement GLOSS layering. We are also investigating the generic set of primitives

which should be supported by a given layer. Related work on INDEED should help
1.

with determining the linkages between layers.

Our currentP lans are to treat calls to the set of "Standard Procedures" or CSP's

as calls to a standard object. This object will be passed invisibly to each process.

Ways to define a "generic" object are being investigated. Generic objects will be

used to parameterize the actual object a process will use when requesting services from

the operating system.

Our current plans include adaptation of the "execute" and "service" statements

1221 to support GLOSS as an extension of the Grunwald compiler. These statements

would be used to operate on Path Pascal objects which encapsulate user programs. To

a user program, a GLOSS layer will be represented as a "standard service object" and

a number of these would be linked to form a chain to the most fundamental set of

runtime support routines.

Further work will concentrate on the selection of appropriate set of interfaces to

define layers that have the appropriate degree of encapsulation. An inappropriate set

of routines in the interface can cause problems in the isolation of specific data.. Anoth-

er topic for investigation is the analysis of the actual flow of communication. Some ac-

tivities will always require action at the innermost layer of the operating system. An

approach where such actions can be sent directly to the innermost layer without any

intervention by the intervening layers could provide improved performance for

4

i^

a

EOS Project: Mid-Year Report May 1985
	

16

prccesses operating in environments with multiple-layers between themselves and 0

innermost kernel. An implementation scheme based on the device driver t1NIX United

approach may provide an efficient mechanism for supporting multiple layers and will

be investigated.

5. Mediators

Since programming a real-time Embedded Operating System requires a good deal

of programming of synchronization and scheduling, a portion of our research has been

devoted to language design and programming methods for concurrent programming.

Our interest in the topic is prompted by the observation that many existing tools for

concurrent programming overly constrain concurrency, complicate scheduling and do

not allow a modular approach to the specification of timing constraints.

The mediator construct is proposed as an answer to these problems. Appendix E

describes the design of the mediator construct. During the past year we have been ex-

perimenting with this design and applying it to a number of familiar and unfamiliar

synchronization and scheduling problems. We believe that the design is flexible enough

to adapt to a wide range of problems and to facilitate good modular programming

design.

Within the next year we plan to develop a more formal specification of the seman-

tics of the mediator construct. We hope that this may serve as a check on the design,

and as a useful tool for implementation. Ultimately, this will serve as the basis for a

proof system.

I
EOS Project: Mid-Year Report May 1985 	 171

Implementation of mediators is a long term goal. Although many of the basic al-

gorithms required are well known, implementation can not proceed before the design is

complete. The challenge in implementation is less one of discovering suitable algo-

rithms as in combining familiar ones into a new configuration.

1	 6. Native Path Pascal Compiler

I A native code producing portable Path Pascal compiler for the UNIX environment

has been completed and tested (Grunwald,85]. An M.S. thesis documents the design of

the compiler and is included as Appendix C. Various manuals document the run-time

system, the compiler and the intermediate code used. A new Path Pascal manual is in-

t	
eluded as Appendix F. The new Path Pascal compiler supports:

• separate compilation of procedures, processes, and objects;

• interrupt processing via "DOIO" which is mapped, in UNIX
implementations , to the UNIX signal mechanism;

• dynamic storage allocation for processes;

• invocation of Fortran 77, C, Prolog and assembler routines from Path
Pascal;

• a finally statement which is executed automatically, in a manner similar
to that of the initially statement, just before an object's storage is
released by a dispose statement or by exit from a block;

• code generation for VAX and MC68000 computers;

• a run-time support system for 4.2 Berkeley UNIX;

• a run-time support system for XENIX.

EOS Project: Mid-Year Report May 1985
	

18

The initial version of the Path Pascal compiler was created for the VAX ep viron-

ment running Berkeley 4.2, and then ported to the SUN 68000 Berkeley 4.2 system.

Under the SUN 4.2 System, with 2 megabytes of main memory, Path Pascal can sup-

port the concurrent execution of ovtr four thousand processes. Symbolic debugging is

supported through the use of standard UNIX utilities. Recently, the compiler was

ported to the IBM S9000, a 68000-based system running XENIX. The rapid develop-

ment of Path Pascal compilers for these three systems clearly demonstrates the porta-

bility of the new compiler. A partial list of sites to which we have distributed Path

Pascal is included in Appendix G. An example of a Path Pascal program showing the

syntax for separate compilation is shown in Appendix II.

7. Conclusion

Project. EOS has made progress towards the goal of producing a design for a reli-

able real-time operating system for embedded systems. Several of the goals that we

proposed to accomplish we were unable to pursue because of limited funds. However,

the project has continued to produce contributions towards an understanding of

fault-tolerant software, distributed systems, layered operating systems, and scheduling

provisions within a real-time system. The new Path Pascal compiler is reliable and

produces efficient code that can be used to build operating system prototypes. The

compiler is already in widespread international use. This Fal!, we hope to make pro-

gress in developin g EOS operating system components including a distributed kernel.

i

APPENDIX A

Project EOS Papers, Theses, and Technical Reports

T i' J

A
	 1

EOS)Project: Mid-Year Report May 1985 	 Appendix A-1

Papers and Theses Produced November 1984 to June 1985

Papers

1. Jalote P. and R. H. Campbell, "Atomic Actions in Concurrent Systems," Proceed-
ings of the 5th International Conference on Distributed Computing Systems,
Denver, May 1985.

r	 2. Jalote P. and R. H. Campbell, "Fault Tolerance using Communicating Sequential
[rt 	 Processes," 14th International Conference on Fault-Tolerant Computing (FTCS-

14), Orlando, Florida, June 1984, pp. 347-352. Also accepted for publication in

Ell	 IEEE Transactions on Software Engineering, Special Issue, Software reliability,
November 1985.

3. Liestman, A. and R. H. Campbell, "A Fault Tolerant Scheduling Problem," (Ac-
cepted for publication in IEEE Transactions on Software Engineering.) 1985.

4. Campbell R. H. and B. Randell, "Error Recovery in Asynchronous Systems,"
UIUCDCS-R-83-1148, Dept. Computer Sci., Univ. Illinois, 1983.
Accepted for publication in IEEE Transactions on Software Engineering, De-
cember 1985.

Theses

5. Grunwald, D. C., "An Implementation of Path Pascal," MS Thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1985.

6. Jalote P., "Atomic Actions in Concurrent Systems," Ph.D. Thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois,
1985.

Papers and Theses Produced Before October 1984

Papers

7. Balocca, R. and R. H. Campbell, "PP-11, A Path Pascal Language System for the
PDP-11," Proceedings of the Eighth Texas Conference on Operating Systems, Dal-
las, November, 1979.

8. Campbell, R. H. and R. B. Kolstad, "Path Expressions in Pascal," Proceedings of
the Fourth International Conference on Software Engineering, Munich, September
17-19, 1979, 212-219.

9. Campbell, R. H. and R. B. Kolstad, "Practical Applications of Path Expressions to
Systems Programming," ACM79, Detroit, 1979, 81-87.

'

	

	 10. Campbell, R. H., K. Horton, and G. G. Belford, "Simulations of a Fault-Tolerant
Deadline Mechanism," Digest of Papers FTCS-9: Ninth Annual International Sym-

S 	 posium on Fault-Tolerant Computing, Madison WI, June, 1979, 95-102.
1.j

11. Horton, K. H., R. H. Campbell, and G. G. Belford, "Meeting Real-time Deadlines,"
(Proceedings of Computers, Electronics and Control, 1978, ACTA Press, Calgary,

L 1

EOS Project: Mid-Year Report May 1985 	 Appendix A-2

1979.

12. Campbell, R. H. and R. B. Kolstad, "An Overview of Path Pascal's Design," Sig-
plan Notices, Vol. 15, No. 9, pp. 13-14, September, 1980..

13. Kolstad, R. B. and R. H. Campbell, "Path Pascal User Manual," Sigplart Notices,
Vol. 15, No. 9, pp. 15-24, September, 1980.

14. Kolstad, R. B. and R. H. Campbell, "Direction.. for User Defined Communication
for Distributed Software," Proceedings of The International Conference on Paral-
lel Processing, IEEE o0CH1569-3, pp. 188-189, Boyne, MI, August 26-29, 1980.

15. Wei, A. Y., K. Hiraishi, R. Cheng, R. H. Campbell, "Application of the Fault-
Tolerant Deadline Mechanism to a Satellite On-Board Computer System," Digest
of Papers FTCS-10: Tenth International Symposium on Fault-Tolerant Computing,
Kyoto, Japan, October 1980.

16. Cheng, W. Y., S. Ray, R. Kolstad, J. Luhukay, R. Campbell, and J. W-S. Lui,
"ILLINET-A 32 Mbits/sec. local-area network," Proceedings of the 1981 National
Computer Conference, Chicago IL, May 1981, pp209-214.

17. Campbell, R. H., "Distributed Path Pascal," In Distributed Computing Systems,
(Editor Y. Paker and J.-P. Verjus), Academic Press, 1983, pp191-224.

18. Liestman, A. and R. H. Campbell, "A Fault Tolerant Scheduling Problem," Digest
of Papers FTCS-13: Thirteenth Annual International Symposium on Fault-
Tolerant Computing, Milano Italy, June 1983.

19. Jalote P., "Specification and Testing of Abstract Data Types,".Proc. of CON-
COR1, 1983.

20. Campbell, R. H. and T. Anderson, "Practical Fault Tolerant Software for Asyn-
chronous Systems," SAFECOIP 83, Third International IFAC Workshov on
Achieving Safe Real-time Computer Systems, Pergamon Press, Oxford, England,
1983.

21. Mickunas, M. D., P. Jalote and R. H. Campbell "The Delay/Re-read Protocol for
Concurrency Control in Databases," Proceedings of the First International Confer-
ence on Computer Data Engineering (COMPDEC), Los Angeles, Ap*il 1984, pp.
307-314.

22. McKendry, M. S., and R. h1. Campbell, "A Mechanism for Implementing Language
Support in High-Level Languages," Transactions on Software Engineering, Vol
SE-10, No. 3, May 1984, pp.227-236.

Theses

23. Balocca, Richard Joseph. "PP-11, A Path Pascal Compiler System," M.S. Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, 1980.

24. Donnelly, Jeffrey M. "Porting the Newcastle Connection to 4.2 Berkeley UNIX,"
M.S. Thesis, Department of Computer Science Technical Report #1199, Universi-

I	 ,

Vi
EOS Project: Mid-Year Report May 1986 Appendix A-3

C

ty of Illinois at Urbana-Champaign, Urbana, Illinois, 1985, p. 37.

25. Grass, Judith Ellen. "On Tcode Generation in a Pascal Compiler," M.S. Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, 1982, p. 171.

26. Horton, Kurt H. "A Fault-Tolerant Deadline Mechanism," M.S. Thesis, Depart-
ment of Computer Science Technical Report #998, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 1979, p. 52.

27. Kolstad, R. B.. "DistriLated Path Pascal: A Language for Programming Coupled
Systems," Ph.D. Thesis, Department of Computer Science Technical Report
#1136, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1983, p. 70.

28. Liestman, Arthur L. "Fault-Tolerant Scheduling and Broadcast Problems," Ph.D.
Thesis, Department of Computer Science Technical Report #1063, University of
Illinois at Urbana-Champaign, Urbana, Illinois, 1981, p. 98.

29. McKendry, M. S.. "Pathos: An Experiment to Evaluate Path Pascal," M.S. Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, 1980, pp. -.

30. McKendry, M. S.. "Language Mechanisms for Context Switching and Protection
in Level Structured Operating Systems," Ph.D Thesis, Department of Computer
Science Technical Report #1078, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, 1981, p. 143.

31. Schmidt, George Joseph. "The Recoverable Object as a Means of Software Fault
Tolerance," NIS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 1983.

32. Wei, Anthony Yu-Wu. "Real-Time Programming with Fault-Tolerance," Ph.D.
Thesis, Department of Computer Science Technical Report #1011, University of
Illinois at Urbana-Champaign, Urbana, Illinois, 1981, p. 125.

Technical Reports

33. Campbell, R. Ii. and T. J. ?.filler, "A Path Pascal Language," UIUCDCS-11-78-919,
Dept. Computer Sci., Univ. Illinois, Champaign-Urbana, 1978.

34. Campbell, R. 11. and R. B. Kolstad, "A Practical Implementation of Path Pascal,"
UIUCDCS -11-80-1008, Dept.. Computer Sci., Univ, of Illinois at Urbana, 1980.

35. Cheng, W. Y., S. Ray, R. Kolstad, J. Luhuk: R. Campbell, J.W.-S. Liu,
"ILLINET-- A 32 Mbits/sec. Local Area Network," UIUCDCS-11-80-1035, Tech.
Report, Dept. Computer Science, Univ. Illinois, 1980.

_ 36. Iliraishi, K., A. Y. Wei, R. Cheng, R. 11. Campbell, "Simulation of a Satellite On-
Board Computer System Using Extended Path Pascal," UIUCDCS-R-80-1041,
Dept. Computer Sci., Univ. Illinois at Urbana, 1980.

37. Kolstad, R. B. and R. H. Campbell, "Path Pascal user Manual," UIUCDCS-R-80-
893, Dept. Computer Sci., Univ. Illinois at Urbana, February, 1980.

1&^; -*;-'

EOS Project: Mid-Year Report May 1985	 Appendix A-4

38. Kolstad, R. B. & R. H. Campbell, "User Defined Communication For Distributed
Software," UIUCDCS-R-80-1015, Dept. Computer Sci., Univ. Illinois at Urbana,
March, 1980.

39. Liestman, A. and R. H. Campbell, "A Fault Tolerant Scheduling Problem,"
UIUCDCS-11-80-1010, Dept. Computer Sci., Univ. Illinois at Urbana, 1980.

40. McKendry, M. S. and R. H. Campbell. "The Execute Statement: Design, Exam-
ples, and Implementation Algorithms," UIUCDCS-R-80-1044, Dept. Computer
Sci., Univ. Illinois, 1980, p. 22.

41. McKendry, M. S. and R. H. Campbell. "Mechanisms for Protection and Process
Control in Operating System Languages," Department of Computer Science
Technical Report #1038, University of Illinois at Urbana-Champaign, Urbana, Illi-
nois, 1980, p. 15.

42. McKendry, M. S., R. H. Campbell and R. B. Kolstad, "PATHOS: A Path Pascal
Operating System," UIUCDCS-R-80-1016, Dept. Computer Sci., Univ. Illinois at
Urbana, 1980.

43. McKendry, M. S. and R. H. Campbell, "Mechanisms for Protection and Process
Control in O p erating System Languages," UIUCDCS-R-80-1038, Dept. Computer
Sci., 1980.

44. McKendry, M. S. and R. H. Campbell, "Capabilities for high Level Languages,"
UIUCDCS-R-80-1039, Univ. Illinois, Dept. Computer Sci., December, 1980.

45. Wei, A. Y. and R. H. Campbell "Construction of a Fault-Tolerant Real-Time
Software S}stem," UIUCDCS-R-80-1042, Dept. Computer Sci., Univ. Illinois at
Urbana, 1980, p. 24.

46. Wei, Anthony Y., K. Hiraishi, R. Cheng, R. H. Campbell, "Application of the
Fault-Tolerant Deadline Mechanism to a Satellite On-Board Computer System,",
UIUCDCS-R-80-1012, Dept. Computer Sci., Univ. Illinois at Urbana, 1980.

47. Mcnabb, D. A., G. M. Beshers, R. H. Campbell, "TCODE: An Intermediate Code
for the Path Pascal Compiler," UIUCDCS-R-82-1060, Dept. Computer Sci., Univ.
Illinois, 1982.

48. Jalote P. and R. H. Campbell, "Fault Tolerance using Communicating Sequential
Processes" UIUCDCS-R-83-1149, Dept. Computer Sci., Univ. Illinois, 1983.

40. Mickunas, M. D. and Jalote P., "The Delay/Re-Read Protocol for Concurrency
Control in Databases," Department of Computer Science Technical Report #11.15,
University of Illinois at Urbana-Champaign, Urbana, Illinois, 1983, p. 13.

50. Mickunas M. D., P. Jalote and R. 11. Campbell, "A New Protocol for Concurrency
Control Using Both Preventive and Corrective Techniques," Technical Report,
UIUCDCS-R-84-1163, 1984, p. 23, (Submitted to IEEE Transactions on Software
Engineering.)

^ ti

b

a

r
	

APPENDIX B

1.

l:

l:
	

Atomic Actions in Concurrent Systems

P. Jalote and R. H. Campbell,

r'
Proceedings of the

5th International Conference on Distributed Computing Systems,
Denver, May 1985.

wft ll

t
Atomic Actions For Fault Tolerance Using CSP1

Pankaj Jalote
Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract:

Two complementary techniques have evolved for providing fault tolerance in software: for-
ward error recovery and backward error recovery. Few implementations permit both ap-
proaches to be combined within a particular application. Fewer techniques are L.vailable
for the construction of fault-tolerant software for systems involving concurrent processes
and multiple processors. Many schemes for supporting forward or backward recovery are
based on some concept of an atomic action. In this paper, we propose a mechanism for
supporting an atomic action in a system of Communicating Sequential Processes (CSP).

C. The atomic action is used as the basic unit for providing fault tolerance. The atomic ac-
tion is called an FT-Action, and both forward and backward error recovery are performed
in the context of an FT-Action. An implementation for the FT-Action is proposed, which
employs a distributed control, uses CSP primitives, and supports local compile and run-
time checking of the ,o and and backward error recovery schemes.

I

LE
This work was supported in part by a grant from NASA, NSG1471.

1. Introduction

Several practical techniques for the construction of fault-tolerant software have evolved

[23[. The aim of these techniques is to ensure that the system provides the intended service

despite possible software or hardware faults. The techniques depend upon two complementary

approaches to fault-tolerance known as forward error recovery and backward error recovery and

it has been suggested that both be used to provide more reliable software [2, 7, 81.

Forward error recovery aims to identify the error and, based on this knowledge, correct the

system state containing the error [4[. The approach requires accurate damage assessment and	 -^
s

identification of the cause of the error. Exceptions, signal and raise operations, and exception

handlers are common mechanisms used to provide forward recovery 12, 17]. In contrast, back-

ward error recovery corrects the system state by restoring the system to a state which occurred

prior to the manifestation of the fault. The recovery block scheme [22) provides a system struc-

ture that supports backward recovery. The scheme involves acceptance tests, recovery points and

alternate algorithms.

Proposed extensions of the recovery block scheme to an environment involving communicat-

ing concurrent processes must solve the problem that any exchange of information may pro- 	 R

pagate an error from one process to another. If communications are not coordinated with 	
a R 4 yt'

recovery points, backward error recovery may create an uncontrolled rollback of many processes

called the domino effect [221. A language construct called a conversation [22] has been proposed	 4

to provide a static backward error recovery scheme for concurrent processes which prevents the

domino effect. This is in contrast to the approach of determining the amount of rollback needed

dynamically [15, 21, 281. Each process that joins a conversation has a recovery point, an accep-

tance test, and alternate algorithms. While a process is in a conversation, it may only communi-

cate with other processes in the same conversation. If any process fails an acceptance test or oth-
-e

A.
p.:

'*

hl•L`

r _ r	 _. , tom_.,, ^-.^-^ , m m p t	 __ ..	 r

f ^

i

erwise detects an exception, ever process in the conversation performs a rollback to its recoverP	 ,	 YP	 P	 Y

point, established on entry to the conversation, and uses an alternate algorithm. This restriction

on communication limits the propagation of errors and eliminates the possibility of the domino

effect. Several implementations of conversations have been described [6, 25, 261.

Forward error recovery in systems of communicating processes is discussed by Campbell

and Randell in [7;. A framework for exception handling is proposed that is based on the use of

atomic actions. Using their definition of an atomic action, a process participating in an atomic

action may only exchange information with other processes in that atomic action. If any process
f_

	raises an exception, every process in the atomic action invokes an exception handler for the ex- 	 t_

ception. If several exceptions are raised concurrently, an exception resolution scheme selects a
4

single exception to represent the combination of the exception conditions.

t` Exceptions are organized into a tree or, for generality, a lattice structure in which the upper

bound is the universal exception. The resolution algorithm selects the exception which is the

least upper bound in the tree of all of the exceptions that have been raised.

If all the processes can recover, the processes return from the exception handlers and com-

plete the atomic action normally. However, if any of the processes cannot recover, all of the

	

processes complete the atomic action abnormally and signal an exception. If the processes do	 V

not agree upon the exceptions they signal, a failure exception is signaled. Backward error

recovery, recovery blocks, and conversations can be implemented as particular applications of the

forward error recovery scheme.

Many existing programming languages such as Ada, CLU, PL/l and Mesa include forward

error recovery facilities based on some form of an exception handling approach [2]. However, few

lA raised exception within an atomic action is used to invoke local exception handlers. An atomic action returns
a signaled exception in order to raise that exception at the point of invocation of the action.

t"

1.

of these mechanisms are proposed as general solutions to the programming of forward error

recovery in concurrent processing systems. Several programming languages such as Argus [18]

and many language extensions [1, 16, 17, 20, 261 have been proposed to permit backward error

recovery in concurrent processing systems. The provision of both forward and backward error

recovery facilities within the same concurrent programming language remains a problem. New

techniques to allow the use of complementary forward and backward error recovery schemes

within the same concurrent programming language are needed [6].

In this paper, we propose a scheme to support backward and forward error recovery in a

system of Communicating Sequential Processes (CSP) [12], based on the framework of atomic ac-

tions. We have chosen to use CSP because its processes do not share memory, all communication

between its processes must be programmed explicitly, many problems caused by side-effects in

concurrent programming languages are avoided, program verification is simplified, and it is well-

known. We present a notation for specifying a planned atomic action, called an FT-Action. The

FT-Action includes support for both backward and forward error recovery so that they may be

used in a complementary way. The basic FT-Action scheme can be implemented using only CSP

primitives. The recovery control is distributed over the processes taking part in the communica-

tion.

This paper is organized as follows. First, we briefly describe CSP and the concept of atomic

actions and then we introduce the FT-Action and discuss how it may be used to support error

recovery. Next, we explain how the FT-Action can be implemented in CSP. We discuss the ad-

vantages and disadvantages of the proposed scheme and its implementation. Finally, we review

our decision to use CSP.

6"4

i

w

'M .

I I	 6- 5
^ I

1

i

8. Communicating Sequential Processes

CSP was proposed by Hoare as the basis for a concurrent programming language. CSP uses

Dijkstra's guarded commands [9] as sequential control structures, and as the sole .neans of intro-

ducing and controlling nondeterminism. A parallel command specifies concurrent execution of its

constituent sequential commands (processes). All the processes start simultaneously, and the

r

parallel command terminates successfully only if and when they all have successfully terminated.

!= Simple forms of input and output commands are introduced which are used for communication

between the concurrent processes. CSP processes may only communicate with each other using

the input and output message commands. Messages are passed to named processes through syn-

chronous static channels. An output command is of the form:

destination ! expression

Fwhere destination is the process name and expression is a simple or structured value. An input

command has the form:

source F target

where source is a process name and target is a simple or structured variable.

Communication occurs between two processes of a parallel command whenever (1) an input

command in one process specifies as its source the process name of the other process; (2) an out-

put command in the other process specifies as its source the process name of the first process; and

(3) the target variable of the input command matches the value denoted by the expression of the

output command. On these conditions, the input and output commands are said to correspond.

An input command fails if its source is terminated. An output command fails if its destination is

terminated or if its expression is undefined.

Commands which correspond are executed simultaneously, and their combined effect is to

assign the value of the expression of the output command to the target variable of the input com-

mand. There is no automatic buffering, and an input or output command is delayed until the

other process is ready with the corresponding output or input command. A communicating pro-

cess may wait forever if another process does not match its command. This inherent limitation

of a synchronous message passing scheme makes detection of a so called "deserter" [16] or dead

process difficult. After the communication, both processes proceed independently and concurrent-

ly.

Dijkstra's Guarded Commands [9] are used in CSP in the form:

G —► C

where G is a guard consisting of a list of boolean expressions followed by an optional input com-

mand list, and C is a command list. Output commands may not appear in the guards. If an in- 	 s	 i

put command appears in a guard, it is called an input guard. A guarded command may be exe-

cuted if and when the execution of its guard does not fail. First, the guard is evaluated by deter-

mining the value of its Boolean expressions. If any expression is false, the guard fails; but a guard

that evaluates to true has no effect. An input guard may be evaluated only if and when there is a 	 ± ';

corresponding appropriate output.

The alternative command may be executed by a sequential process. It has the form:

[Gi —+Cl q G2 —• CZ q ... q G.--+C.]

and selects the execution of exactly one of the constituent guarded commands. If all the guards

fail, the alternative command fails. Otherwise a command is selected non-deterministically from

those commands with successful guards. In the case when more than one command list can be

LP

selected, the choice is nondeterministic. If several of the input guards in an alternate command

correspond with output commands elsewhere, only one is selected and the others have no effect.

The notation (i:l..n)G--+C represents the alternative command

[Gl —+Cl q G2 — + C2 q ... q GS —+C,J

where each GJ —+C is formed from G—+C by replacing every occurrence of the bound variable i

by the numeral j.

A repetitive command specifies as many iterations as possible of its constituent alternative

command. It has the form:

* [alternative command J

When all the guards fail, the repetitive command terminates. Otherwise, the alternative com-

mand is executed once and the whole repetitive command is executed again. A repetitive com-

mand may have input guards. If all the sources named by the input guards have terminated,

then tho •epetitive command also terminates.

It is possible to program coroutines using the CSP notation, and consequently subroutines

can also be programmed. The provision of output commands within the guards has been advo-

cated in [3, 271. We will assume a version of CSP with both this facility and a basic exception

mechanism for a single process.

3. Atomic Actions and Fault Tolerance

Most of the techniques for structuring systems deal with the organization and sub-division

of the static (or spatial) structure of the system. However, the pattern of interaction between the

components of a system is also of interest, particularly for providing fault tolerance. Interactions

p-

ti

between components reflect the dynamic (or temporal) structure of the system. The concept of

atomic actions can be used to structure the temporal activity of the system.

An atomic action is an activity, possibly consisting of many steps performed by many

different processors, that appears primitive and indivisible to any activity outside the atomic ac-

tion. To other activities, an atomic action is like a primitive operation which transforms the

state of the system without having any intermediate states. Operations which are strictly se-

quenced, non-interfering, and non-overlapping with respect to other operations are often said to

be executed as atomic actions.

Atomic actions may be planned atomic actions. Such atomic actions are identified during

the design of the system and are supported by some run-time mechanism. Atomic actions may

also be dynamically identified atomic actions [5). These may only be discovered by examining the

system's history of execution. There are two different views of planned atomic actions 1141 and

we refer to these as recoverable atomic actions 11, 18, 241, and basic atomic actions 12, 201.

Recoverable atomic actions conform to the "all or nothing" view, which requires that either

all the objects modified by the action change to their final state, or all of the objects remain in

their initial state. Recoverable atomic actions specify that both indivisibility and recoverability

1181 are fundamental requirements for atomicity.

Haerder and Reuter's paper on database transactions [111 distinguishes the properties of

transaction consistency and atomicity. Together, consistency and atomicity imply recoverable

atomic actions. The imposition of recoverable atomic actions as an obligatory fault tolerance

mechanism may be useful in some contexts, but may result in inflexibility when different recovery

techniques are desired. For example, forward error recovery using exception handling may be re-

quired.

I

i

ru+

1

In basic atomic actions, indivisibility is the only requirement of atomicity, and recoverabili-

ty is not considered a necessary part. Where recovery is desired, it is constructed using basic

atomic actions. This approach allows the flexibility to use different recovery techniques. For the

rest of this paper we will use the term atomic actions to mean basic atomic actions.

Many techniques for supporting fault tolerance have used the property of atomicity. The

conversation block [22] has the restriction that there may be no interaction across the boundaries

of the conversation. This restriction guarantees the atomicity of the computation performed in-

side the conversation. Similarly, the recovery block [22] in sequential systems forms an atomic

action with recovery primitives. Dynamic techniques for backward recovery (15, 21, 281 aim to

identify that part of the computation which had no interaction with the rest of the computation,

thereby employing dynamically identified atomic actions. The use of atomic actions for forward

error recovery is proposed by Campbell and Randall (7].

The different proposals in the literature have made it clear that atomic actions are useful

for recovery. We believe that atomic actions are not merely desirable, but are necessary for

recovery (13]. Hence, we have extended CSP with an atomic action called an FT-Action within

which forward and backward error recovery can be programmed for concurrent processes.

4. Design of an FT-Action

An FT-Action should be designed so that its atomicity is guaranteed. The atomicity

guarantee permits the programming of recovery for the construct. The scheme should be able to

support both the programming of backward error recovery and forward error recovery. For

backward recovery we employ a conversation-like scheme, which can be easily implemented in a

planned atomic action framework. For forward recovery, we use the scheme proposed by Camp-

bell and Randell (7] which is based on planned atomic actions.

$—I

We define a Fault Tolerant Atomic Action (FT-Action) as a distributed control structure

that a group of processes may join or leave together in synchrony. Inside an FT-Action the

processes may communicate with one another, but not with processes outside of the control

structure. The FT-Action will be used as a framework within which error recovery can be pro-

vided. It has the following properties:

Atomicity: To guarantee atomicity and prevent information smuggling (161, the communications

of processes in the control structure must be isolated from other processes. Hence, in an FT-

Action, no communication may take place across the boundaries of the FT-Action. The

corresponding command for an input or output command inside an FT-Action must also be in-

side that FT-Action.

A recovery line for backward error recovery: In the event of an error, the processes may be

rolled back to the recovery points that were established at the recovery line. An FT-Action pro-

vides a recovery line which is defined by the synchronized entry of all the participating processes.

A test line for the processes: The test line is a set of diagnostic tests, one for each process,

which is used to determine whether any errors have occurred. In an FT-Action the exit state-

ments (see next section) in the constituent processes together form a test line. The processes syn-

chronize at the test line.

Recovery measures: An FT-Action should include facilities and primitives for recovery. If any

process inside an FT-Action detects an error which cannot be corrected locally, it is an error for

the entire FT-Action and all the processes taking part in the FT-Action must cooperatively in-

voke appropriate recovery measures.

Nesting of FT-Actions: FT-Actions may be nested, but only strict nesting is permitted.

Awl

Strict nesting allows hierarchical recovery techniques so that if recovery is unsuccessful in an

FT-Action, it may be att'.empted in an enclosing FT-Action.

As a practical point, an implementation ought to detect and allow recovery from a deserter

process [16]. In CSP, this can occur if an input or output command is never matched or a pro-

cess dies. This may also occur if a process which is expected to participate in an FT-Action does

not. Whereas the detection of such an exception is simplified by a shared data system, it is espe-

cially difficult in a message passing system since a process cannot unilaterally observe the state of

another process.

b. Error Recovery with the FT-Action

In this section, we give the notation for a basic FT-Action and describe the primitives need-

ed. We outline how backward, forward and combined recovery may be implemented using FT-

Action primitives. The primitives have CSP implementations which are described in the follow-

ing section.

5.1. FT-Action Primitives

A FT-Action is identified by a declaration which includes a list of all the processes which

will participate in the FT-Action. Each process taking part in an FT-Action must declare a

corresponding FT-Action entry statement. The name and lists supplied by each of the processes

taking part in the FT-Action are compared at run-time to ensure consistency. A possible syntax

c x..

for an FT-Action is shown in Figure 5.1.

A : FT-Action with (P1,P2,...,PJ

P1 :[...
FT-Action A

< code >
exit unless <e>
< code >
exit unless <e>

end	 •.•

Figure 5.1: The FT-Action.

The FT-Action synchronizes recovery schemes involving the processes P 1 ,P21 • • • ,P^. Each

process should contain a statement similar to that declared in P 1 . The body of the FT-Action in-

eludes "exit" statements, each of which corresponds to a test point within a test line. When a

process reaches an exit, it waits for the other processes in the FT-Action to reach their

corresponding exits. The exception "e" of a test line is evaluated by an interprocess voting

scheme (described in the next section). This scheme combines exceptions detected by the

processes in the FT-Action using exception resolution [7] and distributes the resulting exception

value to each process. Thus, the test line returns the same exception to each process. In the cage

that no process detects an exception, the scheme produces a null value. If the exception is null,

then the FT-Action is successful and the exit statement terminates the structure. Otherwise, the

processes continue in the FT-Action and invoke recovery measures. An FT-Action can terminate

abnormally by signaling an exception.

To ensure the atomicity of the FT-Actions, for the duration of the FT-Acticn, the process

P 1 only communicates with the processes mentioned in the declaration of the FT-Action. That

is, within the body of the FT-Action, an input or output command in P 1 may only have a pro-

cess P 2,F 3 , P. as the source or destination process, respectively.

W.
In general, implementation of either the forward or backward error recovery scheme will re-

quire the use of several exit primitives. In the rest of the figures in this section, we will omit the

body of the process P 1 enclosing the FT-Action.

5.2. Backward Recovery

Informally, an FT-Action may be used to specify backward error recovery as shown in Fig-

ure 5.2.

FT-Action A
ensure <acceptance test>
by	 < primary >
else by <alternate>

else by <alternate>
else signal error

end

Figure 5.2: Backward error recovery structure.

Backward error recovery constitutes a Conversation (221 involving the processes

P1,P27 ... ,Pn . Each process executes its primary and may communicate with other processes exe-

cuting their primaries in the FT-Action. Each process then evaluates its acceptance test. An ex-

ception is raised if an acceptance test fails or a run-time error is detected. If no exception is

raised, the FT-Action terminates. If an exception is raised by any of the processes, then every

process invokes backward error recovery. Every process in an FT-Action is required to have the

same number of alternates. The FT-Action synchronizes execution of the alternates so that each

process keeps in step. The processes may communicate with one another during the execution of

an alternate.

The backward error recovery structure shown in Figure 5.2 can be transformed into the

FT-Action primitives shown in Figure 5.3.

L

*	 1

FT-Action A
<save state>
<primary; acceptance test>
exit unless <e>

restore state>
<alternate; acceptance test>

exit unless <e>
<restore state>
sig -ial error

end

Figure 5.3: FT-Action backward error recovery.

t

The state (values of the variables) of each process is saved l after it enters the FT-Action.

The saved states of all the processes correspond to the recovery points that form the recovery

line. Before the first test line (first set of exit statements), each process evaluates its acceptance

test to detect exceptions. If one or more processes detect exceptions, the exception "e" returned

by the test line will not be null and the exit statements will not terminate the construct. Instead,

the processes roll back and execute their next alternates. After reevaluating their acceptance

tests, the processes reach another test line. This sequence is repeated until either the exception

returned by a test line is null or the last alternates are attempted. The last alternates are used

to "signal' an exception to indicate chat the FT-Action has failed.

5.3. Forward Recovery

To specify forward error recovery using an FT-Action, the notation presented in j8, 191 is

used with some modification. Informally, the FT-Action may be used to specify forward error

recovery as shown in Figure 5.4.

I A "discard state" operation 171 is unnecessary in CSP, but might be required in other languages. It could be
added to the scheme by extending the FT-Action with a finalization clause that is executed after the exit is taken.

i")' H

I

i

E
E

t

c

t
t

r
r
i

F

Figure 5.4: Forward error recovery structure.

This FT-Action coordinates forward error recovery for the processes P1,Pz, ... ,Pn . It ter-

minates if no exceptions are raised during the execution of the algorithms. If an exception is

raised by any process, then all the processes in C are notified of the exception. Every process will

then execute its exception handler ("handler (e)") for that exception. Forward error recovery

completes when every process either "signals" an exception or successfully completes its handler.

If an exception is signaled in an FT-Action, the action terminates abnormally with an exception.

If the FT-Action is nested within another, the exception is raised in the containing FT-Action.

In general, fault-tolerance provisions should be localized as much as possible to prevent cost-

iy error propagation and repair [2]. The ability to be able to nest FT-Actions permits the pro-

grammer to devise forward error recovery schemes that minimize the number of processes that

need to be involved in responding to the detection of an exception. Forward error recovery for a

single process can be considered as a special case of an FT-Action.

The forward error recovery can be translated into the primitives shown in Figure 5.5.

FT-Action A
< algorithm >

[excep a — handler (e)]
end

FT-Action A
< primary >
exit unless e

e = my_signa!	 -. signal e
q e ?6 my-signal	 handler(e)

1

exit unless e

e = my-signal	 -+ signal e
q e 0 my-signal	 -+ signal error

end

Figure 5.5: FT-Action error forward recovery.

The first test line after the primaries resolves any raised or signaled exceptions) during the

execution of the primaries To prevent ambiguity, we require that no exception may be both

raised and signaled in the same FT-Action. If the resolution scheme is applied to a raised and a

signaled exception, the exception tree should guarantee that the scheme will raise a failure excep-

tion.

If the exception "e" returned by the test line is null, the exit statement terminates the FT-

Action. If each process locally signaled "e", the FT-Action terminates by signaling "e". Other-

wise, each process attempts recovery by executing it.. L aridler for "e"

The handlers may, in turn, raise or signal exceptions. When the processes complete their

handlers, the exception "e" for the second test line is determined. If "e" is a null exception, the

exit statement terminates the FT-Action. If each process locally signaled "e" within its handler,

the FT-Action terminates by signaling "e". Otherwise, the FT-Action signals error.

1A raised exception indicates that an exception was detected within a primary and requires handling within the
FT-Action, whereas a signaled exception indicates that a primary intends to return an exception to an enclosing FT-
Action (19].

fb' 1LF

WW

5.4. Combined Recovery

Forward and backward error recovery schemes may be combined. One method of using the

two techniques in a complimentary manner is shown in Figure 5.6.

FT-Action A
ensure <acceptance test>
by <primary>

[excep a —► handler (e) j
else by <alternate>

else by <alternate>
else signal error

end

Figure 5.6: Forward and backward error recovery structure.

In Figure 5.6, a forward recovery scheme is associated with the primary algorithm and

would be invoked for the specified exceptions. The backward error recovery scheme would be in-

voked for other exceptions and any exceptions that might occur in the handler. There are many

ways to combine forward and backward error recovery schemes. Such combinations may be

transformed into pri iitives as before.

The forward error recovery structure shown in Figure 5.6 can be transformed into the FT-

Action primitives shown in Figure 5.7.

1b, ^)

1

FT-Action A
<save state>
<primary; acceptance test>
exit unless e

I

e = my—signal --+ signal e
• e ^6 e —+ handler(e)
• e ?6 my—signal; e ^6 e --+ skip

<acceptance test>
exit unless e
<restore state>
<alternate; acceptance test>

exit unless e
<restore state>
signal error

end

Figure 5.7: FT-Action forward and backward error recovery.

Each process completes its primary and evaluates its acceptance test. If the exception "e"

	

returned by the first test line is the null exception, the exit statement terminates the FT-Action. 	 if

" "	 i	 "e". In this case we	 !If each process locally signaled a ,the FT-Action terminates by signaling

assume that the signal is a valid result of the primary and passes the acceptance test. Otherwise,

each process attempts recovery by executing the handler for "e".

The exception for the second test line is determined after the reevaluation of the acceptance

tests. This time, if the exception is not null, backward error recovery is applied and the

processes execute their next alternates. Although the FT-Action does not impose any implemen-

tation restriction, we choose to simplify recovery strategies by transforming any exceptions

which are signaled from a handler into an error.

5.5. An Example

To illustrate the use of FT-Actions, we present a simple example. There are two processes,

P and Q. P computes n different values, and sends the computed data to Q. Q constructs

iA

l
I

1
t

i 11

o4l

.	 tz

records using the data sent by P, sorts the records, and then stores them in a file. Two nested

FT-Actions provide fault tolerance. FT-Action A encompas3es the whole activity and provides

fault tolerance based on backward error recovery. The FT-Action B is nested within A, and

supports forward error recovery for the construction of each record.

The backward error recovery scheme for Q employs two methods to produce a sorted file of

records. The primary method inputs data, constructs a record, and inserts it in its proper place

in a sorted file. The alternate method inputs data, constructs a record, and appends it to an un-

sorted file. After all the data has been received, the file is sorted. The backward recovery

scheme for P uses the same algorithm for both the primary method and the alternate method.

The process Q may raise an exception in constructing the record from the data that it re-

ceived. We refer to this exception as a transmission exception. The FT-Action B provides for-

ward error recovery for this exception. This example is shown in Figure 5.8.

!V'

A : FT-Action with (P, Q)
B : FT-Action with (P, Q)

P.. [...	 Q.[...
FT-Action A	 FT-Action A

ensure (true) by	 ensure (file sorted) by
[i:= 0;	 (i:= 0;

i:= i+1;	 i:= i+1;
FT-Action B	 FT-Action B

(Compute (data);	 [P ? data;
Q ! data;	 Compute rec using data;

1]
[excep transmission —+	 [excep transmission —+

Q ! data;	 P ? data;
]	 Compute rec using data;	 [

end]	 ;
]	 end	 1

]	 Insert rec in the file;
else by]
[i:= 0;]	 €

*(i < n —+	 else by
i:=
Compute (data)	 i:= 0;	 i
Q!data;	 *[i <n —► 	 1

]	 i := i+1;
]	 P?data;
else signal error	 Compute rec using data;

end	 Store rec in file;

]	 Sort the file;

else signal error
end	 !

v

Figure 5.8: An example using nested FT-Actions.

The example illustrates several important aspects of forward error recovery. In FT-Action

B, although Q deteccs the exception, P must also take part in the recovery. Consequently, the

exception applies to the entire FT-Action B, and it is irrelevant which process within B detects

the error. Accordingly, it is not possible to determine by examining the program which process

detected the error. Similarly, even though process P passes its `acceptance test' in FT-Action A,

P must perform recovery if process Q fails the acceptance test in FT-Action B.

d0 i

Y3'a

The primaries and alternates do not need a similar structure. In this example, the pri-

maries of FT-Action A contain a nested FT-Action B, while there are no nested actions for the

alternates of action A. If a transmission exception is raised in these alternates, the FT-Action A

will fail.

Fault tolerance provisions may lead to a loss of concurrency. In this example, the alternates

for FT-Action A allow P and Q to compute the data and the record concurrently. However,

there is less concurrency possible in the primaries of A because of the action B nested within A.

The exit of FT-action B imposes an additional synchronization constraint on the processes P and

Q•

6. Implementation

This section describes an implementation of the FT-Action primitives. The implementation

uses only CSP primitives for communication and synchronization between processes. The relia-

bility of the recovery schemes is enhanced by compile and run-time checking.

A combination of compile and run-time checking is used to prevent information smuggling.

The C-Set of a process for an FT-Action is the set containing the name of the conversation and

the names of the processes specified in the FT-Action declaration. A syntactic check ensures

that, while inside an FT-Action, a process only communicates to the other processes identified in

the C-Set of that action. A further run-time check must be used to ensure that the C-Sets of the

processes involved in a particular FT-Action are the same.

i '	 The correct nesting of FT-Actions can be checked at compile-time by examining each pro-

s	 Bess. Each process identifier that occurs in the statement of a nested FT-Actio ►i must also occur
f

r	 _	 in the statement of any enclosing FT-Action.

An FT-Action can be transformed into CSP primitives by a preprocessor. For the purposes

of implementation, we require that the processes within an FT-Action have a static ordering (for

example, we use the lexicographic ordering defined by their identifiers).

6.1. FT-Action Entry

The entry of a process into an FT-Action requires synchronization and a C-Set consistency

check. The consistency check uses a voting technique based on the Two Phase Commit protocol

(10]. Voting is implemented by passing a message up and down a chain of the processes attempt-

ing to enter the FT-Action.

The processes whose identifiers are included in the C-Set of an FT-Action are organized into

a chain using their static ordering. Starting from the head of the chain, each process in a vote

passes C-Set information to its successor. If the C-Set of any process does not agree with the in-

formation that the process receives, a C-Set exception is passed on. This ensures that the tail

process will receive a C-Set exception if the C-Sets are not consistent. Next, the tail process re-

turns the result of the vote back down the chain to the head. In this way, every process receives

an exception if the C-Sets are inconsistent and the FT-Action is aborted.

The voting algorithm is shown in Figure 6.1. Different algorithms are used for the head,

middle and the tail of the chain. Since the chain is constructed using the static ordering of the

processes, a compile-time algorithm can construct the voting scheme. We assume that process P;

is the predecessor of process Pi +1.

` k R

L	 c_i

For the head of the chain (process P1):

Pa ! C_Set;

[Pz ? success () —. skip
q P ? failure ()	 ABORT

1

For the middle of the chain (process Pj):

Pj _1 ? C_Set ;

[(C—Set = My—C_Set) 	 Pi
+1 !

C_Set

q (C—Set # My_C_Set) —. Pi+1 ! C_Set—Exception

[Pi+1 ? success ()	 Pi _1 ! success ();

q Pi+1 ? failure () --+ Pj _1 ! failure ();
ABORT

I

For the tail (process P.):

Pn-1 ? C_Set;

[(C—Set = My_C_Set) -- ► P. 1 ! success () ;

q (C—Set i,6 My_C_Set) --► Pn _ 1 ! failure () ;

ABORT

1

Figure 6.1: Transformation of the entry statement.

6.2. The Exit Statement

The exit primitive is used to terminate an FT-Action if it is successful. The implementa-

tion of the exit primitive also uses a chain-based voting scheme to decide whether an exception

has been detected by any of the processes in the FT-Action. If an exception is detected, all the

processes in the FT-Action must participate in recovery. Each process resolves any exception it

may have received from a predecessor process with any exception it has raised and sends the

result to its successor process. The final result is sent to each process in the FT-Action by

transmitting it back down the chain. The "value" of an exception is null if no exception oc-

v^)- a-3

1.

4

curred. The implementation scheme is shown in Figure 6.2.

For the head of the chain (process P1):

P 2 1 my—exception;
P 2 ? final—exception —•

(
	

final—exception = null --* exit
O final—exception # null —+ skip;

For the middle of the chain (process Pj):

Pj -1 ? exception ;

Pi+1 I resolve(exception, my—exception)

Pi+1 ? final—exception --+
Pi -1

 ? final—exception;
[
	

final—exception = null --. exit
O final—exception # null --+ skip

For the tail (process PR):

Pn-1 ? exception
final—exception := resolve(exception, my—exception);
Pa-1 I final—exception;
[
	

final—exception = null 	 ex.t
exception # null --+ rkip

Figure 6.2 : Transformation of the exit statement

8.3. The Exception Mechanism

So far, the scheme that we have described only detects exceptions at the end of the primary

or the alternates. However, a more desirable scheme would allow a process to raise an exception

at a point other than at the end of a computation. Once an exception is raised, the processes ir.

an FT-Action should not continue with the normal computation. Instead, all the processes

should execute the exit statement and start the voting process. This could also happen if any

process signals an exception to terminate the FT-Action.

6- 9A

- .0=4

Because of the synchronous message passing scheme of CSP, it is not possible simply to dis-

continue the normal computation of a process. Other processes which communicate in a normal

manner with this process will wait indefinitely since corresponding input or output commands

will not be executed.

A mechanism is required to notify all processes that an exception has occurred. On being

notified of the exception, a process should start voting. The mechanism should also be capable of

handling concurrent exceptions.

There are several ways to implement such a mechanism. For the purposes of this paper, we

propose a simple scheme which only uses CSP primitives and requires a broadcaster process (BP)

for each FT-Action. However, our scheme does require output commands in guards. A process

that detects an exception communicates with the broadcaster process. The broadcaster process

informs other processes taking part in the FT-Action that an exception has occurred.

The broadcaster process has two phases. In the first phase, it waits for input from any of

the processes in the FT-Action. Any process which detects an exception, outputs an appropriate

message to the broadcaster process. In the second phase, the broadcaster process tries to inform

the other processes taking part in the FT-Action that an exception has been detected. The

broadcaster process informs the processes only that an exception has occurred. The identity of

the exception is still transmitted to the processes by the voting scheme. If more than one process

detects an exception concurrently, then it will wait for the broadcaster process to input its mes-

sage. Thus, during this second phase, the broadcaster process must also accept further exception

messages. The broadcaster process is described in Figure 6.3.

(i:l..n) Pj ? excep() —+ skip

1

(i:l..n) Pi ? excep() --► skip

q (i:l..n) Pi 1 excep() —+ skip

1

Figure 6 . 3: The broadcaster process (BP).

The processes taking part in the FT-Action must be able to input an exception from the

i
broadcaster process as well as input and output to other processes. Thus, each input or output

command of a process is transformed into an alternative command which may also input an ex-

ception message from the broadcaster process. If it receives an exception message, the process

discontinues normal processing and starts the voting process. Otherwise it continues with the

normal processing. A simplified transformation of an input or output command C in a process is

shown in Figure 6.4. A detailed CSP implementation of this scheme would require the reorgani-

zation of statements and the addition of variables in order to reach an exit statement to start

voting.

BP ? excep() —+ start voting;
q C--+ skip;

Figure 6.4: Transformation of a command C.

A simple argument reveals the correctness of this scheme. If no exception occurs in the

FT-Action, the command C will always be executed by all the processes as the broadcaster pro-

cess will not be trying to output any exception message. Hence, t::: FT-Action will execute nor-

mally. If an exception occurs, a process which has not yet encountered the e^tception may reach

the exit of the FT-Action, start voting, and detect an exception. Alternatively, it may try to

IL

Y^' g

communicate with another process which has already encountered the exception and block. In

this case, either the other process detected the exception and informed the broadcaster process or

the other process received an exception message from the broadcaster process. As a consequence,

the broadcaster process will either enter its second phase or will already be in its second phase.

Thus, the process, if blocked, will receive an exception message from the broadcaster process

which will allow it to proceed to vote. So, the processes always reach the voting phase, and the

voting phase will then ensure that they are notified of the exception.

Note that the solution is complicated by non-deterministic communication. A process has a

non-deterministic choice of executing C or receiving a message from the broadcaster process.

Thus, it cannot be predicted exactly when or if an individual process will receive an exception

message from the broadcaster process. However, it can be guaranteed that all the processes even-

tually reach the voting phase and the voting phase ensures that all the processes are informed of

the exception.

The proposed scheme is simple and demonstrates that the exception mechanism can be im-

plemented in the framework of CSP and FT-Acticns. Other schemes can be designed with and

without a broadcasting process. Similarly, other schemes can also be devised for implementing

the entry and exit statements.
s^

6.4. The Timeout Mechanism

The transformation scheme for the entry and exit statements has no mechanism to cope

^r. with the problem of a deserter process or certain design faults that could occur in an FT-Action.

If a process is included in the C-Set of an FT-Action, but it does not. enter the action (a deserter

process), then it will block other processes from entering that action. This happens because its

neighbors in the FT-Action voting chain will never be able to satisfy their I/O requests during

IM..

the first phase of the voting. There appears to be no satisfactory solution to this problem unless

a timeout mechanism is provided in CSP. We describe a simple timeout mechanism which can

be employed to solve the problem.

Each process starts a preset timer when it tries to communicate to its successor or predeces-

sor process during the first phase of the voting process. This can be easily implemented using the

CSP notation, by a simple transformation. If the I/O command C is an input or the output to

process Pz, its simplified transformation is:

I

C --+ skip
q timer = timeout —+ ABORT

I

otherwise its transformation is:

I

C —+ skip
q timer = timeout —+ Pj _ r ! failure (); ABORT

I

If a corresponding input/output for C is riot executed within the set time, the process locally

aborts the FT-Action. The timeout scheme assumes that output commands are allowed in the

guards.

If there is a deserter process, then the first phase of voting cannot complete, and sorne pro-

cess will timeout. A simple argument shows that if one process taking part in an FT-Action A

times out, then all the processes for A will abort the FT-Action.

Suppose P, is the first process to timeout. All the processes below P, in the chain will re-

ceive a failure in the second phase of voting. The processes above P, in the chain will timeout in

V .

° 1

the first phase, since P, will not send any vote to Pi+,. Hence, all the processes will eventually

abort.

Using the simple scheme described here, a deserter process can be detected. However, the

use of a timeout mechanism presents timing issues that might complicate the design of a reliable

system. In any practical implementation of an FT-Action, a time-independent deserter detection

mechanism would be more desirable.

7. Conclusion and Discussion

The paper proposes a notation to specify an atomic action for supporting fault tolerance in

((a system of Communicating Sequential Processes. CSP allows such a scheme to be described
t

without concern for the implicit interprocess interactions that can occur in other, shared

memory, concurrent programming languages. The atomic action is called an FT-Action and sup-

ports both forward and backward error recovery in an uniform manner. The control structure of

an FT-Action is distributed over the processes taking part in it and is implemented using CSP

primitives. The number of communication messages needed to coordinate the FT-Action is O(n),

where n is the number of processes taking part in the FT-Action. The minimum number of com-

munications needed is also O(n) since all processes must receive at least one message.

(- Although we have considered practical support for error recovery in concurrent systems,

rn , rch further research and development is still required. Existing programming language sup-

port for error recovery either facilitates backward error recovery and concurrent processes as in

Argus [18] or forward error recovery for a single process as in CLU [191. Our proposal allows

both forward and backward error recovery to be used as complementary mechanisms in systems

of concurrent processes.

4'

fb-30

However CSP does impose difficulties in devising a comprehensive implementation of our

scheme because of its symmetric communications, lack of timeouts, and restrictions on output

commands in guards. Because of the message scheme of CSP, we ha ve not been able to devise a

simple strategy to detect a deserter process. System designers could make mistakes in designing

communications that are difficult to detect at either compile-time or run-time. For example,

input/output commands in an FT-Action must only match output/input commands in that FT-

Action; failure to comply with this structure cannot b,^ detected at compile time and can only be

detected at run-time by a communication protocol time-out.

We believe that a structure like an FT-Action should be used in concurrent languages to

provide both backward and forward error recovery support and to encourage the development of

reliable concurrent applications. We have demonstrated the practicality of such an approach by

devising a structure for CSP which can be transformed into CSP language primitives. CSP was

not designed to support fault-tolerant software development. However, it does allow an exposi-

tion of many of the complex issues involved in constructing fault tolerance provisions for con-

current systems.

Acknowledgments

The authors wish to thank members of the Software Research Group at the University of Il-

linois and the anonymous referees for their constructive comments which greatly improved this

paper.

References

[I] J. E. Allchin and M. S. McKendry, "Synchronization and Recovery of Actions," In:
Proceedings of Symposium on Principles of Distributed Computing, ACM SIGACT-

t^
ti

E.
c

r

SIGOPS, pp. 17-19, Montreal, 1983.

[2] T. Anderson and P. A. Lee, "Fault Tolerance, Principles and Practice." Prentice-Hall
International, Englewood Cliffs, NJ, 1981.

[3] A. J. Bernstein, "Output Guards and Nondeterminism in Communicating Sequential
Processes." ACM TOPLAS, vol. 2, no. 2, pp. 234-238, April 1980.

[4] E. Best and F. Cristian, "Systematic Detection of Exception Occurrences," Science of Com-
puter Programming, vol. 1, no. 1, pp. 115-144, 1981.

[5] E. Best and B. Randell, "A Formal Model of Atomicity in Asynchronous Systems," Acta In-
formatica, vol. 16, pp. 93-124, 1981.

[6] R. H. Campbell, T. Anderson and B. Randell, "Practical Fault Tolerant Software for Asyn-
chronous Systems," In: SAFECOM 83, Cambridge, 1983.

171 R. H. Campbell and B. Randell, "Error Recovery in Asynchronous Systems," UIUCDCS-R-
83-1148, Department of Computer Science, University of Illinois at Urbana-Champaign,
1983.

181 F. Christian, "Exception Handling and Software Fault Tolerance," IEEE Transactions on
Computers, vol. C-31, no. 6, pp. 531-540, June 1982.

[9] E. W. Dijkstra, "Guarded Commands, Nondeterminancy and Formal Derivation of Pro-
grams," Communications of the ACM, vol. 18, no. 8, pp. 453-457, August 1975.

[10] J. N. Gray, "Notes on Database Operating Systems," In: Operating Systems: An Ad-
vanced Course, Lecture Notes in Computer Science, vol. 60, pp. 393-481, Springer-Verlag,
New York, 1978.

[111 T. Haerder and A. Reuter, "Principles of Transaction-Oriented Database Recovery," Com-
puter Surveys, vol. 15, no. 4, pp. 287-317, December 1983.

[12] C. A. R. Hoare, "Communicating Sequential Processes," Communications of the ACM, vol.
21, no. 8, pp. 666-677, August 1978.

[13] P. Jalote, "Atomic Actions in Concurrent Systems," Ph. D. thesis, in preparation, Depart-
ment of Computer Science, University of Illinois, Urbana, 1985.

[14] P. Jalote and R. H. Campbell, "Atomic Actions in Concurrent Systems," In: Proceedings
5th International Conference on Distributed Computing Systems., Denver, Colorado, 1985.

[151 K. H. Kim, "An Implementation of a Programmer-Transparent Scheme for Coordinating
Concurrent Processes in Recovery," In: Proceedings COMSAC80, pp. 615-621, 1980.

1161 ----. "Approaches to Mechanization of the Conversation Scheme based on Monitors," IEEE,
Transactions on Software Engineering, vol. SE-8, no. 3, pp. 189-197, May 1982.

[17] B. H. Liskov, "On Linguistic Support for Distributed Programs," IEEE Transactions on
Software Engineering, vol. SE-8, no. 3, pp. 203-210, May 1982.

[18] B. H. Lisk- , and R. Scheirer, "Guardians and actions: Linguistic Support for Robust, Dis-
tributed Programs." ACM T OPLAS, vol. 5, no. 3, pp. 381-404, July 1983.

1191 B. H. Liskov and A. Snyder "Exception Handling in CLU," IEEE Transactions on Software
Engineering, vol. SE-5, no. 6, pp. 546-558, November 1979.

[20] D. B. Lomet, "Process Structuring, Synchronization, and Recovery using Atomic Actions,"
SIGPLAN notices (ACM), vol. 12, no. 2, pp. 128-137, March 1977.

t
r
M

V17- 3)

4 ,

LAS fl

ii

(21] P. M. Merlin and B. Randell, "State Restoration in Distributed Systems," In: Digest of Pa-
pers FTCS-8: Eighth Annual International Symposium on Fault-Tolerant Computing.,
Toulouse, pp. 129-134, 1978.

[22] B. Randell, "System Structure for Software Fault Tolerance," IEEE Transactions on
Software Engineering, vol. SE-1, no. 2, pp. 220-232, June 1975.

[23] B. Randell, P. A. Lee and P. C. Treleaven, "Reliability Issues iu Computing System
Design," ACM Computing Surveys, vol. 10, no. 2, pp. 123-165, June 1978.

[24) D. P. Reed, "Implementing Atomic Actions on Decentralized Data," ACM Transactions on
Computer Systems, vol. 1, no. 1, pp. 3-23, February 1983.

[25] D. L. Russell and M. J. Tiedeman, "Multiprocess Recovery using Conversations." In: Dig-
est of Papers FTCS-9: Ninth Annual International Symposium on Fault-Tolerant Comput-
ing, Madison, WI, pp. 106-109, 1979.

[26] S. K. Shrivastava, "Concurrent Pascal with Backward Error Recovery: Implementation,"
Software-Practice and Experience, vol. 9, pp. 1021-1033, 1979.

(27] A. Silberschatz, "Communicating and Synchronization in Distributed Systems," IEEE
Transactions on Software Engineering, vol. SE-5, no. 6, pp. 542-546, November 1979.

(281 W. G. Wood, "A Decentralized Recovery Control Protocol," In: Digest of Papers FTCS-11:
Eleventh Annual International Symposium on Fault-Tolerant Computing., Portland, pp.
159-164, 1981.

i

v

L.

_1 ^,, _

0

APPENDIX C

mentation of Path Pascal

Dirk C. Grunwald

-partment of Computer Science,
Illinois at Urbana-Champaign,
rbana, Illinois, 1985.

•

AN IMPLEMENTATION OF PATH PASCAL

BY

DIRK CLAUS GRUNWALD

B.S., University of Illinois, 1983

TIM, SIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1985

Urbana, Illinois

^1/

M	 ,

t	 N	 1<

Hi

Acknowledgements

This work was done while the author was supported by research contract NASA

NSC 1471 provided by the National Aeronautics and Space Administration.

My thanks go to my thesis advisor, Dr. Roy Campbell for his time and advice, Ray

Essick for his tolerance of annoying questions and to Song Moon and Malcolm Railey for

their willingness to aid in debugging the compiler.

I	 k,	 r

tip J
Noor

iv

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION	 ... 1

2. Background Information 3...
2.1.	 The Original Path	 Pascal Compiler	 .. 3
2.2. The Berkeley Pascal Compiler 4..
2.3.	 Synthesis	 .. 5...............................

3. Language Differences 	 ... 6...............................
3.1.	 Differences	 Related	 to	 Objects	 .. 6
3.2.	 Other Syntactic	 Differences	 ... 10
3.3.	 Differences in Run-Time Semantics 	 .. 13
3.4.	 Extensions	 to	 the	 Language	 .. 21

4. Modifications	 to	 the	 Compiler	 .. 23
4.1.	 Extant Data Structures 23...
4.2.	 Processes	 26
4.3.	 Objects	 .. 27...............................
4.4.	 Size	 of the	 Additions	 ... 37...............................

5. The Run-time Environment 38..
5.1.	 Context	 Switching	 .. 39...............................
5.2.	 Kernel	 Overview	 .. 40
5.3.	 Kernel	 Operations	 .. 41
5.4.	 Kernel	 Size	 and	 Performance	 .. 45

6. Compatibility and	 Performance	 .. 47...............................
6.1. Comparison to the Old Compiler 47..
6.2.	 Comparison to Berkeley Pascal

7. Conclusion	 ... 52

APPENDIX A.	 Path Pascal Language Grammar 	 .. 53

REFERENCES ... 63

1 ^ _

f -	 r

1

CHAPTER 1.

INTRODUCTION

The computer language Path Pascal was designed to provide a facility for expressing

concurrent programs while demonstrating the combined used of data encapsulation and

process synchronization by the method of path expressions. The language, and a previous

implementation, have been described in detail elsewhere [Campbellll.

The thrust of this thesis is to describe an implementation of the language based on a

portable compiler system running under the UNIX t operating sy: •em and the process of

implementing that compiler. The resultant compiler is rather large and a detailed explana-

tion of the changes would prove to be rather tedious. Thus, an over-view of the algorithms

and and data structures entailed in the modifications is presented rather than a compen-

dium of module-specific modifications. This allows one to understaud the methods behind

the implementation as well as the reasons that guided the selection of those methods.

The second chapter provides an overview of the previous implementation as well as an

overview of the Berkeley Pascal compiler on which the new implementation is based. It

seeks to justify the need for a re-implementation of the language and the choice of the

Berkeley Pascal compiler as the vehicle for that implementation. The third chapter covers

the differences in the language implemented when compared to the original Path Pascal

compiler. It also c;,vers some issues concerning the setnantics of Path Pascal iu more detail

than is available elsewhere. The fourth chapter documents the compiler modifications

t LWDIX is a trademark of Bell Laboratories.

N

N.

r+T
r

2

required to expand the Berkeley Pascal compiler to recognize the language extensions in

Path Pascal. The fifth chapter covers the additional run-time system required for con-

current programming language extensions. The sixth chapter addresses the performance

relative to the previous implementation based on experiences of the Path Pascal user com-

munity. Following this is a conclusion and a list of references.

1

r	 I

3

CHAPTER 2.

Background Information

In order to provide the needed perspective for the remainder of the thesis, a review of

the original implementation of Path Pascal, the Berkeley Pascal compiler and the

justifications for transforming the Berkeley Pascal compiler into a Path Pascal compiler is

required.

2.1. The Original Path Pascal Compiler

The first implementation of the Path Pascal !anouage was based on the P-code Pascal

compiler (Ammann), which is a recursive-descent, single pass compiler generating a sym-

bolic assembly language targeted for a stack machine, called the Stack Computer. designed 	 i

to be particularly suitable for executing Pascal programs.	 i

The extensions to the compiler are documented in appendix E of (Kolstad), as are the

extensions to the P-code produced by that compiler. Since the output of the compiler was

designed for a hypothetical stack machine, the generated code was either interpreted or

translated into assembly language for a specific machine. This compiler provided no facil-

ity for separate compilation of programs, nor did it provide an easy mechanism for inter-

facing the programs with code written in other languages. Another shortcoming was an

inability to map abstract Pascal data types to machine specific representations, a feature

which is very important for systems-programming lauguages.

"^ i

it

I L

I i

4

In addition to this, writing a machine-specific translator is a difficult and time-

consuming task. While implementations were provided for the VAX family of processors as

well as the Motorola 68000 family, these implementations were never proven to be

sufficiently robust for general use. A robust implementation for the PDP-1.1 family was pro-

duced and was used to implement an experimental operating system.

The language was most often used for simulating concurrent systems, particularly in

class room situations. This required a stable execution environment which was provided by

an Extended P-code interpreter written in Pascal. While this solution was acceptable for

small simulations, it limited the possibilities for the language.

2.2. The Berkeley Pascal Compiler

As part of their efforts to expand the usefulness of the UNIX operating system, a Paa-

cal compiler was written for the Berkeley 4.1 BSD operatiug system at the University of

California, Berkeley. The compiler is a multi-pass compiler based on a LALR(1) grammar

generated using the YACC compiler-compiler [Johnsonl].

Rather than re-write the compiler for specific machine architectures, the compiler was

written to produce Portable C Compiler Intermediate Representation, or PCCIR (Kesscler]-.

The output from the compiler is directed to a niachine-specific pass of the compiler which

generates native assembly code. The code-generation phase is shared between a variety of

compilers running under the UNIX system, reducing the amount. of work needed to port

the system as a whale [Johnson2j, (Joylj, [Joy2j.

This compiler provided a reasonable separate compilation facility and appeared to be

portable across a variety of machine architectures. In addition, it provided a richer

P	 I

b

mapping of software-to-hardware data representations than that provided by the old com-

piler. It also defined a common procedure calling mechanism across a variety of languages.

This allows routines to be written in other languages when appropriate.

2.3. Synthesis	 \

In an effort to provide a better environment for the Path Pascal language, it was

decided to expand the Berkeley Pascal compiler to provide the features of the P-code Path

Pascal compiler. This involved changes to the compiler itself as well as the supporting run-

time system. The effort was designed to provide as much compatibility with the previous

implementation as possible while exploiting the features of the Berkeley Pascal environ-

ment. Although the original target for the compiler was the VAX-11 family of macL.nes, it

was intended that sufficient generality should be maintained within the compiler to allow it

to be ported to a variety of machines.

Since a major use of the Path Pascal language is simulation of discrete event systems,

fvithfulness to the original implementation was to be stressed; however, since one of the

goals of a new compiler for Path Pascal was to provide a basis for constructing operating

systems and promoting future research in distributed systems implementation, the imple-

mentation was designed to keep in mind future extensions and additions to the language.

I
V
1

6

CHAPTER 3.

Language Differences

While an effort was made to maintain compatibility with the previous implementation

of Path Pascal, slight differences have been introduced due to the nature of the Berkeley

Pascal compiler and through experience with the previous compiler. Most differences are

related to the fact that a different, more robust base compiler is used. Details concerning

the basic Pascal implementation such as the size of sets, storage allocated for variables,

additional pre-deGeed procedures and functions are detailed in the Berkeley Pascal Users

:Manual (Joyl]. This section of the thesis concerns itself with differences between the old

compiler and the new compiler which would be evident when porting a Path Pascal pro-

gram written using the old compiler. In addition, extensions to the basic Path Pascal

language which have been implemented in the new compiler are also noted.

Details concerning the exact syntax of the language implemented is illustrated in the

grsunmar given in Appendix A and will not be discussed in this section

3.1. Differences Related to Objects

A central feature of the Path Pascal language is the object notation for data encapsu-

lation. This facility provides a means of abstracting and hiding transforms ou data while

maintaining an `arena' for concurrent activity, similar to the monitor construct of other

languages (Iloare], (l.ampsonl.

l

7

Some changes have been made to the syntax and semantics of the object data encap-

sulation notation. Most of these changes are syntactic in nature and introduce little incom-

patibility with the previous implementation. While the changes are to be relatively minor,

it can be spen from the language grammar in Appendix A that they introduce subtle

differences in the language which cause require some consideration when using the new

compiler for programs developed using the previous implementation.

3.1.1. Path Expression Notation

The first compiler provided Open Path Expressions [Can,pbe]121 as the concurrency

control method within objects, allowing the programmer to specify constraints on con-

current execution. Open Path Expressions provide three constraints on entry points to

objects: resource restriction, sequencing and resource derestriction. In addition, a list

building comma allows several entry names to be grouped together. Thus, a path expres-

SIOn Ju:ll 3S:

path 1:(a,b.c) end:

caul ^s the restriction operation `l:' to be applied to all elements of the list '(a,b,c)'.

The original implementation allowed multiple references to a single entry routine

within the same path-list,. with the execution constraints imposed by the synchronization

operations enforced in a lefi.-t-rrigbt fashion.

This means that the comma was no longer a non-associative operation designed to dis-

tribute operations over several entries. Typically, path expressions were written using the

comma in two different senses. The first use was as a list building constructor, and the

;k'

i.1 ^,

8

second use was to connect separate path expressions.

As an example of this, consider the Open Path Expression used to specify the syn-

chronization for a shared-pointer bounded-buffer queue. In essence, two restrictions need

to be imposed by the path expression. The first restriction states that no more items

should be removed from the queue than were originally placed on the queue, or in the

notation of (Campbell3j

0 s S(enqueue) - S(dequeue) s bound

This can simply be expressed by the path expression:

path bound:(enqueue;dequeue) end;

The second restriction states that no instances of dequeue and enqueve should be active at

the same time, or restated:

0 s S(enqueue) + S(dequeue) < 1

Let us assume that this must be imposed because a shred pointer is used to point to the

head of the queue. Yiis restriction is simply:

path 1:(enqueuc,dequeue) end;

6
Using the notation of the original compiler, these two restrictions would be written using a

single path expression, as in:
I

Illi 	

path bound:(cn(jueue;dcqueue), 1:(enqueue,dequeue) end

The comma operation now has two semantic meanings from the programmers viewpoint.

t
t
r
r
r
r
c
i

AL

sue.

9

In one sense, it connects the two separate path expressions together, and in the other sense,

it provides a list constructor. It was felt that this was potentially confusing, and the syntax

was changed to allow multiple path expressions while enforcing a single reference to a

entry routine within a given path expression. This separates the two functions of the

comma, reducing it to a simple list constructor. Thus, the preceding example would be

restated as

path bound:(enqueue;dequeue) end;
path 1:(enqueue,dequeue) end;

using the new path expression syntax. The multiple path expressions are enforced sequen-

tially.

3.1.2. Initially Procedure

Each object may specify an optional initialization block that is to be executed each

time an instance of that object is created.

The new compiler treats the initialization procedure as a standard procedure with a

different syntax for the procedure declaration. All standard Pascal constructs are available

within the initialization procedure, and sub-procedures, variables and objects may all be

declared within the initialization procedure.

Before the code in the initialization block is executed, all the semaphores within the

object are initialized and the initialization procedures of all enclosed objects are called.

The initialization procedure has been restricted to appear after all the other code bodies in

the object declaration but before the optional `finally' declaration, and it may not be

declared to be either forward or extern. The name of the initialization procedure has

been changed from init to initially to highlight these differences.

i

—lb"

4.	 i

10

3.1.3. Export types

One facility which is not provided in the current compiler is the notion of being able

to export a type or constant from within an object declaration. The structure of the com-

piler does not forbid its introduction; however, since the feature is little used it was omitted

in favor of simplifying the implementation.

3.2. Other Syntactic Differences

While most differences in the compiler are related to the object notation. some addi-

tional differences are present. Most of these are relatively minor, with a few notable excep-

tions.

3.2.1. Time vs. Wallclock

In the original Path Pascal compiler, a pre-defined function named `time' was pro-

vided to return the current time. The exact semantics of the function change when a pro-

gram is run in simulated time or non-simulated (real time) mode.

In the Berkeley Pascal compiler, the name 'time' was already used as a pre-defined

procedure which returns the alpha-nuineric representation of the current tine of day. A

function with similar semantics to the Path Pascal 'time', called 'wallclock', is available.

The semantics of the 'wallclock' function now correspond to the function provided by the

previous 'time' function. The 'time' function of Berkeley Pascal remains unchanged.

This introduces two-way incompatibility. Previous Path Pascal programs must change

the function 'time' to 'wallclock'. This can be done rather easily by defining the function

shown in figure 1.

^t

^^ 11

k .,

function time : integer;
begin

time := wallclock;
end (* time *);

Figure I

The other incompatibility introduced by this change has to do with the semantics of

the `wallclock' function for programs written in Berkeley Pascal. The semantics are defined

by the run-time system, which currently only supports a notion of `simulated time'. Thus, a

program written in Berkeley Pascal using the `wallclock' function will not function

correctly when compiled using the new Path Pascal compiler. The Berkeley `wallclock' pro-

cedure reads the current time using the `gettimeofday' UNIX call. Since programs written

in Berkeley Pascal may call subroutines written in the C programming language, it is possi-

ble to directly use the UNIX system call.

3.2.2. Type Equivalence

The original Path Pascal compiler used a notion of structure equivalence for deter-

mining compatible type declarations. The Berkeley Pascal compiler uses the notion of

name equivalent types. This means that the assignment in figure 2 raises a compile-time

error in the new compiler but would be accepted by the original compiler. The problems

raised in this example can be fixed by rewriting the procedure as shown in fi gure 3.

This represents a difference between the two implementatious which can require

significant modification of an existing program when compiling it using the new compiler

^i

i^

i^

J

I!

12	 I

procedure typeproblem;
var

a : " something;
b : " something;

begin
a.=b;

end;

i Figure 2

procedure typeproblem;
type

somethingptr = " something;
var

a : somet,hingptr;
b : somethingptr;

begin
a := b;

end:
Figure 3

The use of `anonymous types' is most often seen in declarations of pointer variables such as

shown in figure 2. This difference exists due to the rather vague manner in which the ori-

ginal Pascal language definition [.Jensen] defined type-compatibility and the choices made

by the implementers of the Pascal compilers used to implement Path Pascal. In the

language report, the phrase ` identical type' is used when considering assignment compati-

bility of types. llowever, no definition of the phrase 'identical type' is given. Since the pro-

posed ISO Pascal standard [Addyman[uses name equivalent, type compatibility and since

name equivalent compatibility is a subset of structure equivalent compatibility, the use of

name compatible types appears to be a reasonable choice for the Berkeley compiler.

,ti,

7
13

3.2.3. Interrupt Processes

The old compiler provided an explicit syntax for specifying interrupt vector numbers

for interrupt processes as well as a method for indicating that a process was an interrupt

process. This has been omitted from the new implementation due to a desire to implement

the interrupt process concept in a different form.

3.2.4. Octal Address Specification

The old compiler provided a notation for specifying absolute variable addresses in

octal notation. This extra notation has been eliminated since it duplicates a function pro-

vided by the Berkeley Pascal compiler. Octal addresses are now specified using a trailing

`b', as documented in the Berkeley Pascal Users Manual.

3.3. Differences in Run-Time Semantics

Several differences are more properly evident as changes in the run-time system as

opposed to the compiler and affect the semantics of the lauguage more than the syntax.

3.3.1. Lifetime of Activation Records

Standard block-structured languages use a concept of activation records to provide

storage for instances of variables declared in code bodies. For standard programming

languages which have a single thread-of-coutrol, such as Pascal, the dependency of code-

bodies on any given activation record is such that it can be implemented using a stack.

This can be illustrated using a pictorial representation for activation records and the static

and dynamic links used to reference variables in those activation records. For example,

N.

, 40...

Li

14

consider the program segment in figure 4 and the corresponding activation record depen-

dency graph shown in figure S.

In general, the dependency graph for sequential pro grams is a simple list of activation

records. In an actual system, this list is implemented using a stack from which the activa-

tion records are allocated. In the diagrams given here, dashed vectors indicate a procedure

or process call. Solid arcs represent claims made by an instance of a process or procedure

on the activation record of another procedure. Solid boxes represent an instance of a pro-

cedure, and dashed boxes represent instances of processes.

procedure a;
procedure b;
begin end;

procedure c;
begin b end;

begin c end;

Fi gure 4

Figure S

4t.

15

In languages such as Path Pascal, which may have multiple threads of control in a

shared-memory environment, the data-dependency rules become complicated. This situa-

tion arises when process declarations are nested within other code bodies allowing those

processes to reference items in the activation . ecords of the enclosing code bodies. A sam-

pie code fragment illustrating this problem is presented in figure 6.

In this example, an instance of the process labeled `one' is spawned when the process

executing procedure 'illustrate' reaches the first line of that procedure. At the point of the

call to procedure `two' within procedure `illustrate', the dependency graph is as shown in	 .

figure 7. i

procedure illustrate;

var

i : integer;

process one;

begin

delay(20);
writcln ('the value of i is ', i);

end;
,y

procedure • two;
begin

delay(10);
writeln('the value of i is ', i);

end;

begin one; i := 10; two end

Figure 6

4

•i

4

4A
--^ I

16

illustrate	 - - - - - -	 two

r--`^^-----i
one	 i

Figure 7

As indicated, the activation record of procedure 'illustrate' is shared by two processes:

the process which called procedure 'illustrate' and the instance of process 'one' enclosed

within the procedure. In general, the activation record dependency graph becomes a gen-

oral tree with additions and deletions being made only at the leaves of the tree. Each

activation record is owned by the process which entered the code body creating the activa-

tion record, and that process is responsible for disposing of the activation record.

In general, the activation records •could be allocated from a heap and be manipulated

a5 a general graph. Typically, however, greater efficiency is gained by allocating a stack to

every process and imposing restrictions on the possible parallelism in the program.

Considering the example above, we see that the process executing procedure 'illus-

trate' must preserve the activation record of that procedure until process 'one' completes.

In a system using a global heap and a garbage collector, this could be done by a simple

i J.

17

n records and a garbage collection phase. This is a large price

1

to pay for a concurrent programming language. Since Path Pascal programs are similar in

structure to Pascal programs, they are typically decomposed into subroutines and subrou-

tine calls are very common. These subroutine calls and calls to standard procedures, such

as 'writeen' and `new', allocate activation records. Most of these subroutines do not include

nested processes, and most activation records are not shared by multiple processes. Forc-

ing a rather expensive procedure calling convention for every procedure call would make

the language unattractive for system implementation. In addition, it limits the ability to

use subroutines written in other languages since they would probably not use the same pro-

cedure calling conventions.

In an implementation using a single stack per process, the process executing pro-

cedure `illustrate' would need to wait for the process 'one' to complete and then free the

space for the activation record from its stack. This method, called 'wait-for-sons', was used

in the original Path Pascal system and is also the approach used in the new compiler.

I _ Mile the two systems use the same implementation to solve the problem, the seman-

tics of the two constructs are slightly different. In the original compiler, no use-definition

information was maintained in the symbol table for variables. This forced the conservative

approach of having every code body mairtain a count of the number of processes referenc-

ing the activation record for that code body. This count is inspected in the procedure

post-amble and the process suspends itself if there are any outstanding references ta the

activation record. The last child to de-reference the activation record is responsible for res-

tarting the parent process.

is

This runtime check, which is performed for every procedure call, represents another

penalty for procedure calls beyond maintaining the standard dynamic and static links that

Pascal systems typically use. This overhead is avoided in the new compiler by making use

of use-definition information already maintained by the Berkeley Pascal compiler as well as

keeping track of other information related to nested processes. If a procedure does not

contain a process declaration or process call, there is no possibility of sharing activation

records. Likewise, if a process declaration is nested within a procedure, and that process

does not reference any variables within the enclosing procedure(s), there is no reason to

force a wait. Problems introduced by referencing possibly aliased variables, declared using

the var parameter passing mechanism, are avoided by including the procedure parameters

within the activation record. A reference to procedure parameters by a nested process

causes the process which owns the activation record for that procedure to suspend execu-

tion until the nested process terminates.

The %vait-for-sons operation provides an additional synchronization mechanism

beyond the path expressions provided by the object mechanism. It is possible that some

programs use this fact to synchronize processes, and thus, there may be some. slight

differences in program execution when comparing the new compiler to the old compiler.

This is, in fact, the case, as this problem was noticed in an incorrectly coded example in

the compiler validation suite.

Wbil this introduces a substantial semantic difference across the language impletuen-

tatious, the original language definition did not specify details concerning the wait-for-sons

sync hronizatiou, anti the niethod was purposefully left open-ended for a variety of imple-

mentation possibilities. In a true shared meruory multi-proccs!.or system, sonic form of gar-

19

bage collected activation record management might prove useful to allow maximal con-

current activity while in a uni-processor, the wait-for-sons method would be preferred for

efliciency. Thus, it could be argued that the programs using the wait-for-sons synchroniza-

tion are incorrectly coded. This appears to be a valid claim since the Open Path Expres„

lions were intended to be the only synchronization construct in the language.

An example program which illustrates this difference is shown in figure 8. The depen-

dency graph for this program is given in figure 0.

In the old interpreter system, the process labeled 'c' would complete execution before 	
f

t
4

the main process was allowed to free the activation record for procedure V. Under the

new system, process `c' depends only on the activation record for procedure 'a'. and thus

program test(output);

procedure a;
var k : integer;

procedure b;
var j : integer;

process c;
begin

writcln"c starts'); k := 10;
end;

begin c end;

begin b; writeln('return from b') end;

begin a end.
Figure 8

20

g.

a	 ----	 main
in
	 b

l..j

L_	 _J

Figure 9

the main process does not wait on the exit of procedure V. but must wait before exiting

procedure 'a'. Using the old compiler, the results of this program would be:

c starts
return from b

t	 i

Using the new compiler, the output would be:

return from b
c starts	 1^

The delay in executir_g process 'c' arises because the main process does not. need to

wait before exiting procedure 'b' since process	 does not reference the activation record

of procedure 'b'.

There is another way to cause multiple references to an activation record which is not
{
1.

detected or handled by either the current Path Pa,ral compiler or the previous compiler.

This can arise when a variable within a procedure is passed to a process using call-by-

address parameter passing (var parameters). References such as these can be found during

21

compilation, but the process which references the activation record can not easily deter-

mine the activation record on which it depends. This requires a more sophisticated process

spawning method, awi since it was not supported by the original compiler, it was decided

to forego implementing it in the new compiler until alternate solutions could be considered.

A sample program which illustrates this problem is shown in figure 10.

To simplify several other implementation problems concerning shared global resources

such as files, ail processes have an implicit dependency on the main process, which is act.

allowed to terminate until all other processes have finished.

3.4. Extensions to the Language

An extension to the object notation, external objects, has been provided to facilitate

separate compilation at the object level. The syntax is illustrated in Appendix A and file

program s, ^nplc(output);

process a(var ref : integer);
begin

delay(I O); ref := 10;
end;

procedure invokeerror;
var

i : integer;

begin a(i); end;

begin invokeerror end.

Figure 10

22

naming conventions will be described in detail in the Path Pascal User Manual.

An optional procedure automatically executed whenever an instance of an object is

destroyed as been added to provide a matching construct for the 'initially' procedure. The

'finally' procedure appears as the last code body in the object declaration, using the key-

word finally to label the code body. In a manner similar to the 'initially' procedure, the

'finally' procedures of any objects enclosed in the current object are executed after the

'finally' procedure fo: the current object.

Other extensions are the result of using the Berkeley Pascal compiler as the base Pas-

cal compiler and are documented in the Berkeley Pascal Users ;Manual (Joyll.

i
t
i _

23

CHAPTER 4.

Modifications to the Compiler

Adding the extensions required for the Path Pascal language required several changes

to the Berkeley Pascal compiler, although no new major data structures were needed and

the structure of the Path Pascal compiler is very similar to the original Pascal compiler.

This section of the thesis seeks to provide an overview of the data structures used in the

compiler and what modifications were needed to implement the major extensions to the

language in the order they were implemented.

4.1. Extant Data Structures

Before describing the changes made to the compiler. it will be useful to review the

data structures used in the Berkeley Pascal compiler. The data structures in the compiler

can be broken down into two major categories: those related to parse tree representation

and those related to symbol table management.

4.1.1. Parse Tree Representation

The parse tree is represented by a simple list data structure which assumes that the

compiler writer can determine the structure of the parse tree by looking at the first node in

the sub-tree of interest. The storage for the parse tree is allocated in a stack fashion fol-

lowing the static nesting levels of the program. Storane for the parse-tree representing a

procedure or function is released once that procedure or function is parsed. No changes

were made to this data structure other than the addition of several new parse tree nodes to 	 '

r

4_!J

24

^Y
4

,y

represent the new productions added to the language grammar.

4.1.2. Hash Table

The Hash Table is a key element of the symbol table. It provides a one-to-one map-

ping of character strings to integers. The integer returned by the mapping is actually a

pointer to asingle copy of the character string. This allows all string comparisons to be

done using a simple integer comparison, and the hashing mechanism plays an important

part ;n simplifying the design of the Name Table and the Display Table. Once a string is

entered into the Hash Table, it is never removed. The mapping from strings to Hash Table

entries is done during the lexical analysis phase of the compiler.

4.1.3. Name List

(_
	 The Name List is the principal data structure in the symbol table. Entries in the

1
Name List are used to maintain Pascal type information as well as information binding

names to procedures, functions, variables, types and constants. Each Name List entry- has

a type associated with it indicating the use of that Name List entry. There arc additional

fields which have a standard meaning across all Name List types. These maintain informa-

tion about the entry such as storage class, resolved forward declarations, use and

modification information, whether the item contains an instance of a file, the block leN-el at

which the entr y was created, and an optional name associated with the entry and linking

information to maintain a linked-list, structure associated with the entry. The entries are

typically linked together to allow access to all information related to a specific language

unit. by referencing a certain node in the Name List. As an example, a record definition

(node maintains links to all the fields of the record definition. Thus, the record definition

W

F
L

a	 r	 _

1	 25

I

node is the only node which must be `remembered' by the compiler, and the links can be

used to retrieve the actual information concerning subfields within the record. 	 `.

While the uses of the various fields were somewhat obscurely documented in the

Berkeley compiler, the documentation has been extensively revised to illustrate the use of

the various fields since this data structure is central to the compiler.

Items added to the Name List within a procedure are not automatically removed at

the end of that procedure. Instead, a `reset mark' is maintained to indicate the range of

items to be removed from the name table. This alleviates the problem of maintaining a free

list of Name List nodes and cleaning up discarded entry nodes. The Name List nodes must,

exist as long as any item with them is referenced within the compiler. Since Pascal uses a

nesting, or stack oriented, visibility rule, the Name List entries associated with the names

declared within a procedure or function can be freed at the end of that procedure or func-

tion body since those names will not longer be needed. The name List does Lot govern the

allocation of storage within an activation record for a code body. This is handled by a

separate machine-specific module of the compiler which determines the sizes and align-

ments of data items.

4.1.4. Display Table

The compiler maintains a Display Table to keep tract: of names which are currently

available according to the name visibility rules of Pascal. Only those names contained in

the Display Table at a given point may be referenced by the program being compiled.

Mien a code body is entered, all names related to programmer declared symbols declared

in that code body are added to the Display Table. There are several types of `hidden'
. c

3	 t

q,

20

Name List, entries which are never added to the Display Table and are solely used to main-

tain internal compiler information. The Display Table is kept as a 64-way bucket hash

based on the name field of the Name List entries added to the Display Table.

When a code body is completed, all names in that code body are removed from the

Display Table. At that ti me, the use and modification inforination or the entries being

removed is checked and diagnostic information may be printed. This Displ,y Table should

not be confused with the run-time display table which is used to maintain the static nest-

in-, liuks for between activation records during program execution. The latter is the most0

common use of the word 'display', and while the compiler Display Table is closely associ-

ated with the runtime 'display', it performs a separate runction.

4.2. Processes

Processes were the first Path Pascal extc-nsion to be added to the new compiler, prin-

cipall y because they are syntactically similar to procedures and the semantics are fairly

easy to implement. Their implementation provided an exercise in familiarity with the

Berkeley Pascal compiler, providing an ability to estimate the time and extent of

modifications which would be required to implement the entire Path Pascal language.

The major implementatiou decisions to be made centered around the method used to

1 -;pawn' a process. In the original Path Pascal conipiler, the code to spawn .1 process was

venerated at the point of each process call. Since the new compiler needed to support,0

separate compilation or processes, this was not a possible option. Instead, a process call

apprars to have the same form as a procedure call at the assembly kinguage level. Control

is temporarily transferred to the called process which then calls the run-time system to

oar _7

I

27

actually allocate and create the process. At that point, control returns to the process caller

just as if a procedure call had been done. This method was not used in the original Path

Pascal compiler due to the argument passing and procedure calling conventions used by

the Stack Computer.

This method has the advantage of localizing all information needed in spawning the

process, such as the process size. This allows a simplified separate compilation interface

where the process-specific parameters need only be specified in the file where the process is

actually defined. This method also required very few changes to the compiler data struc-

tur;s.

The data structure which was modified was the Name List. A new Name List node

type was created to represent processes. The source code was changed to treat the `process'

nodes exactly like `procedure' nodes except in the actual code-generation subroutines. In

those routines, a different code body pre-amble and post-amble is generated for processes. 	 .I

F

In addition to this, other data structures were added. An arrav called 'hasprocess' was
i

added to indicate whether a static nesting level contains a process declaration. The array

`maxdeplevel' was added to record the maximum static nesting level (and thus the activa-
	 i^ Y

tion record at that nesting level) on which the current nesting level depends. This informa-

tion is used to implement the `wait-for- sons' operation in the procedure post-amble code.

4.3. Ob;ects

The implementation or the object construct was the most difficult aspect or the entire

compiler implementation. Objects affect the visibility rules or Pascal, hiding information or,

in the case or entry procedures, making certain pieces of information visible.

i

C

I

I

^I
t

28

As with processes, the implementation details of objects guided the required changes

to the compiler. Since it was desired to provide a separate compilation facility for objects,

decisions affecting the dispersal of information concerning the implementation details of

objects are critical in the design of the compiler. Local variables in the Berkeley Pascal

compiler are bound relative to the current activation record at compile time. The number

of bytes needed to represent an object must be known at compile time to allow the com-

piler to allocate sufficient room for instances of the object. To avoid over-specifying the

implementation of a separately compiled object, a simple implementation interface is pro-

vided, separating the object into an implementation and an implementation interface.

This hides implementation issues when using separately compiled objects and allows the

programmer to focus on the correct use of the object and not the implementation. The

implementation interface lists the entry procedures, functions and processes. All other

information concerning the object is specified in the actual object implementation.

This implementation interface does not provide enough information to the compiler to

allow it to allocate memory for the object. Instead of requiring more information to be

specified for separately compiled objects, objects were implemented using an indirect

i	 heap-based m: shod. The `size' of an object is the size of a pointer to the item in the heap.

This pointer contains the address of the actual data area for the object. The actual storage
J

i
for the object is declared by the initialization procedure for the object, which is also

responsible for initializing the semaphores for the object.

This method introduces some penalty for using objects. The heap management

software is reasonably efficient, although not as efficient as a simple stack: discipline. The

cost associated with the additional pointer dereference is insignificant. Since the only way

t

w_

iL

29

data may be accessed by procedures external to the object definition is via a procedure

call, the additional indirection is a minimal addition to the existing overhead. 	 .

For data accesses within the object definition, the indirection cost would appear to be 	 -

significant. However, by treating the object definition boundary as a static nesting level

and using the run-time display table to maintain pointers to the storage area for the

object, much as procedures use the display for pointers to activation records, the extra

indirection needed to reference the object on the heap is eliminated. This method has the

additional advantage of requiring little modification to the structure of the compiler since

the code to allocate variables within a static nesting level and to load and store data rela-

tive to pointers stored in the display table is already written. Since the program stack

grows from high memory down to low memory, and objects are referenced from a base

address which is the lowest address in the object, this method does require that the storage

allocation routines be changed to allocate variables from low memory to high memory if

thev are being allocated for an object and from high memory to low if they are being allo-

cated for a normal activation record.

The implementation requires that the address for the data area for an object be

passed to the entry procedure on each procedure call. This address is entered into the

run-time display table. Consider the sample program shown in figure 11. Vvithiu entry pro-

cedure 'a' the run-time display table would be as shown in figure 12. In this diagram, the

dotted box represents the storage for the instance of the object named 'x'. Thus, a call to

an entry procedure in an object appears to be preceded by an 'invisible procedure call'

which establihhes the environment surrounding the entry procedure and then calls the

entry procedure. The code to set up the surrounding environment is actually in the pro-

w.
y

i,-

F

30

program showdisplay;

var
j : integer;
x : object

path a end;
var

i : integer;

entry procedure a;
begin i := j; end;

end (* object *);
begin j := 10; x.a; end.

Figure 11

Figure 12

cedure pre-amble of the curry procedure.

c
f ^^

pK.^

31

;.^

Not only does using an indirect object instantiation method provide for flexible

separate compilation, it leaves the door open for alternative object access methods. When

the language is expanded to include the Distributed Path Pascal 'remote object' extensions,

the implementation should prove easier due to this implementation decision.

One problem associated with implementing objects is providing names for the code

bodies associated with the object. Most of the work associated with separate compilation is

done by the program linker. A unique naming must be established for the code bodies

associated with each object in the final program to allow the linker to link together the

various code segments correctly. The use of anonymous types', that is, un-named types

used in a 'var' definition of an object, are a problem because multiple names may be asso-

ciated with the same object. The choice of which name to use to label the code bodies

affects the usefulness of separate compilaticn since a consistent naming scheme is needed.

To remove the problem in the initial implementation, separate compilation of objects is

resn• ictrd to objects declared in 'type' declarations, as is specified in the production labeled

'type ext_obj_itcui' in the grammar in Appendix A. The type name of an object provides

a unique naming for code bodies associated with the object.

Each object contains two standard procedures which are not defined by the prograui-

mer. The fiat procedure, called I'init', allocates the data area for the object, initiali7,es the

semaphore variables, calf the `$init' routine for any nested objcct instantiations and then

call, the 'initially' procedure if one was specified. This routine is caJcd whenever an object 	 i

is instantiated. Similarly, there is a procedure called '$fini' whirh first calls the `finially'

procedure if one was specified, then calls the Ifini' routine for any nested object instantia-	 I

tious and and then dealloc-.ites the object data area.

32

Implementing the 'entry' procedure concept required chan-es to the Display Table,

because of the changes in the visibility rules due to the addition of objects. Within an

object, the entry procedures and the definition for the object itself must be visible. Entry

procedures become visible once they are defined. The name entering routines for the

Display Table were changed to allow inserting names at any static nesting level as opposed

to only the current nesting level. This is used to 'push out' the definition of entry names

into the nesting level containing the object. This change also allows 'forward' declarations

of entry procedures as shown in figure 13.

program woof(output);

type
xptr = "x;

x = object

path a, b end:

var next : xptr;

entry procedure b; forward;

entry p rocedure a;
begin new(next); next'.b; end:

entry procedure b;
begin new(next); nexC.a; end:

end (* object *);

begin x " a; end.

Figure 13

33

The Name List data structure was also changed to not dispose of the name list nodes

declared within the scope of the object definition. These nodes must be saved for the

duration of the object visibility within the program because the parameter lists, entry

definitions and other information concerning the object is stored in the static nesting level

of the object. Since the Name List is normally allocated and de-allocated according to the

static nesting level, this information would be lost without this change. Consider object `x'

in figure 13. The name `x' is recorded in the static nesting level of the main program, and

the Name List. nodes of all the entry procedures are allocated within the static nesting level

of object x'. If these nodes were deleted at the- end of object `x', the nodes for procedures

`a' and `h' would be removed. This means the entry names would not be visible outside the

scope of the object.

The data structures used to implement the `wait-for-sons' synchronization were also

than-ed. fames referenced within an object definition actually cause a reference to the

activation record enclosing the object definition and not to the nesting level of the object

itself. Thus, a data structure was added to record whether we are nested within an object

definition and the record keeping routines for the `wait-for-son' semantics were changed to

use this table when updating activation record reference information since an object does

not represent a nesting level which actually declares an activation record. However, within

the compiler, the object appears to be an actual nesting level caused by a procedure

deGnition. References to the 'activation record of the nesting level', which are actually

references to the storage for the object, should actually incrementincrement the reference count of

the procedure containing the object. In figure 13, references to variable `next' ;n pro-

cedures `b' and `c' actually cause the reference count of the activation record for the main

program to be incremented.

4

z

34

4.3.1. Path Expressions

Path expressions were implementc-d after the object notation had been installed. The

original algorithm for translating Open Path Expressions was for a top-down recursive de!--

cent style compiler. This algorithm was changed somewhat for the LAL1?(lybased Berkeley

compiler.

The algorithm scans the parse tree of the path expression and generates a set of

Name list nodes describing the required series of semaphore operations. This list is

attached to the Name List entry for a given object and is searched when generating the

procedure prc- and post-ambles for cnt.ry procedures. Each procedure maintains a list of

operations on semaphores and pointers to those semaphores (which are also entries in the

g ame List). Each procedure has a separate list for the pre- and post-amble semaphore

lists. An outline for the algorithm appears in figure H.

The subroutine 'AddSemOp' performs most of the work. The parameter 'Kind'

specifies %%-hether this is a pre- or post-amble synchronization, the parameter `ParseTrec'

points to the Parse Tree, the parameter 'Sera' points to the semaphore to add, the parame-

ter'Op' specifics the type of semaphore operation to acid (P-01', V-OP, PP-OP or VV-OP)

and the parameter 'PathOp' speeir16 which kind of path operation (RESTRICTION,

SEQUENCE, DE-RESTRICTION) is being added. The algorithm for making additions to

the list is very straight forward and is essentially the top-down algorithur using some

knowledge concerning the productions in the YACC grammar. The subroutiues 'PathSe-

quence', 'Pathlfestriction' and 'Patl ► Dellestriction' are called when the productions

'path-sccl', 'path_res' and 'path_deres' in the grammar (see Appendix A) are performed.

The operations of later path expressions involving the same procedure are simply added to

35

Leftivlost(X) :-
return pointer to left-most ITEM or LIST in parse-tree X

Rightl,Iost(X) :-
return r ightmost ITT:M or LIST in parse tree X

AddSemOp(Kind ParseTree, Sem, Op, PathOp) :-
{

if (ParseTree = ITEM) {
if (PathOp = RESTRICTION)

if (Kind = PRE)
add Sem to tail of PRE-list for procedure

else
add Sem to tail of POST-list for procedure

else
if (Kind = PRE)

add Sem to tail of PRE-list for procedure
else

add Sem to tail of POST-list for procedure
} else
if (ParseTree = LIST) 1

recurse and distnl; , ite the operation over all the
elements within the LIST, using the same SEM,
Kind, Op and PathOp values.

} else
if (ParseTree = SEQUENCE) {

if (Kind = PRE)
AddSemOp(leftmost(ParseTree))

else
AddScmOp(rightmost(ParseTree))

}

PathSequence(ParseTree)
s = NewSemaphore
AddSemOp(POST, riehtmost(ParseTree), s, V-OP, SEQUENCE,)
AddScmOp(PRE, leftniost(ParseTree), s, P-OP, SEQUENCE)

Pat h Restriction (ParseTree) :-
s = NewSemaphore
AddScmOp(PRE, ParseTree, s, P-OP, RESTRICTION)
AddSemOp(POST, ParseTree, s, V-OP, RESTRICTION)

PathDeRestriction(ParseTrec) :-
s = NewSemaphore
AddSemOp(PRE, ParseTree, s, PP-OP, DERESTRICTION)
AddScmOp(POST, ParseTree, s, VV-OP, DERESTRICTION)

Figure 14
Algorithm for Constructing Semaphore Lists

38

the end of the list, simplifying the implementation of the multiple path expressions in the

new compiler.

This algorithm constructs the list of semaphore operations. The algorithm to interpret

this list and generate the appropriate synchronization operations is presented in figure 15.

The code to actually perform the various semaphore operations calls standard pro-

cedures in the run-time library. This allows a variety of semaphore implementations to be

G nSynch(Direction, S-List) :-
{

case S-List.kind {
P-OP, V-OP:

if (Direction = POST)
gensynch(POST, S-List.next)

generate simple semaphore operation
if (Direction = PRE)

gensynch(PRE, S-List.next)

PP-OP, VV-OP:
generate P-OP to lock counting semaphore
gensynch(dire, S-list.next)
generate V-OP to unlock counting semaphore

}

GenPreAmble(Procedure)
S-list = Procedure.SemaphoreList
NewS-List = reverse(S-list)
GenSynch(PRE, NewS-List.)

Genl'nstAinble(Procedure)
S-list = Procdure.Semaphoref,ist
NewS-List = reverse(S-list)
GenSynch(Post, NewS-List)

f inure 15
Generation of Sempahore Operations

î
L

37

used, maintaining compiler portability. In practice, the semaphore operations are actually

performed by in-line code which is added by a separate pass of the compiler designed to

optimize calls to oft-called standard subroutines. 	 E

Mile no formal proof of equivalence between the two Open Path Expression translat-

ing algorithms has been produced at this time, the similarity of the algorithms would sub

gent that they are indeed equivalent. Practice has shown no differences in synchronization

when programs have been ported from the old compiler to the new.

4.4. Size of the Additions

The origina; Berkeley Pascal compiler used a common set of source files to implement

a program formatter, the compiler and an interpreter. These files were approximately

21,500 lines of code written in the C programming language. The language grammar was

specified using the YACC compiler-compiler, and the YACC grammar file was about 900

lines long. It was decided that the Path Pascal system would not be using the interpreter

software, so the additional source used to implement the interpreter and program for-

matter was removed to simplify the compiler. This resulted in a base compiler size of
ti

about 18,500 lines. The extensions for processes added approximately 300 lines of code,

those for objects, 1 ,100 lines of code and those for path expressions, 800 lines. The total 	 •

Path Pascal compiler size is now about 21,500 lines Ion,-, with the YACC grammar being
e.

1200 lines long. These lengths reflect both lines of code and documentation, although they

do not reflect documentation added to other areas of the compiler. 	 3

.i

CHAPTER 5.

The Run-time Environment

Most computer languages require a :an-time environment to provide support for

r

implementation specific features, such as file operations, memory allocation as well as sup-

port for semantics defined in the language such as run-time type checking, set manipula-

tion and so on. The run-time environment for the Berkeley Pascal compiler was structured

to use the run-time libraries designed for the programming language C layered on top of

(j	 the standard UNIX buffered I/O library and the standard UNIX math functions library.

i

	

	 The Berkeley Pascal system provides a library containing routines which enforce the

Pascal semantics for file I/O, perform operations on set variables and array variables and

sup port the run-time semantics of the case control structure and subran ge checkin g forPP	 o	 0

` subrange types. In addition to this, several run-time data structures are maintained, includ-

in g the display used to access variables according to the static nesting level of procedures.

Some of the details concerning the Berkeley run-time library can be found in Jov2 .

The semantics of the Path Pascal language requires a much more extensive set of

run-time routines to support a multiprogramming environment as well as operations on

semaphores. It was decided that these routines should be written to take advantage of the

existing run-time library. This set of routines, called the Path Pascal Kernel, is structured

as a layer between the Path Pascal program and the host operating, system. The operations

discussed in this chapter provide the minimal i^ernei which supports the `simulated time'

semantics of the Path Pascal system on the VAX family of computers running the UNIX

operating system. The 511J111l3t('d time scheduler does not provide for pre-emptive 	 ,

39

scheduling of processes, simplif,-iug many implementation issues. While a system involving

pre-emptive scheduling and interrupt processes is currently being constructed for the

VAX/UNIX environment, the details of this implementation would only serve to obfuscate

rather than clarify the structure of the Kernel.

5.1. Context Switching

The central elements of the Path Pascal Kernel are the context-switching routines

and the process management subroutines. The relationship between the Kernel and the

Path Pascal program is shown in figure 16. The Kernel runs as a co-process with the user

processes. Service requests for the Kernel are directed through the context switching

mechanism. From the viewpoint of both the Kernel and the user processes, the context

switch appears to be a simple procedure call.

From the viewpoint of the kernel, an entry point called 'rt> exec' is available to exe-

cute a process. That process executes until it requests an operation from the Kernel. At

that point, it pushes the operands for the request and an operation identifier on the run-

time stack and then calls the subroutine 'rts_call'. The subroutines 'rts_exec' and 'rts call'

perform the context switch in an implementation-specific manner. It is within these rou-

tines that all process-specific data structures need to be saved. In the Berkeley Pascal

environment, the only data structure which needs to be saved and restored is the runtime

('.;splay, although other data structures used within the Path Pascal Kernel need to be

saved over context switches.

9

40

Figure 18

5.2. Kernel Overview

Within the Kernel, a process is represented by a `process control block' which main-

tains all the information concerning the process, including the information needed to per-

form a context switch. Other information stored is used to determine which queue the pro-

cess is waiting on, what the status of• the process is and what area of memory has been

allotted to the process.

A process is in one of seven states:

• Done
• Ready
• Executing
• Suspended
• Delayed
• Blocked on a Semaphore

i

41

These states are closely associated with the various queues used within the Kernel to

manage the processes. The `ready queue' is the queue of all processes ready to execute.

The 'delay queue' is the queue of all processes waiting for a time event. The `suspended

queue' is used to keep track of suspended processes.

The state of the process is stored in a variable within the process control block for

that process. When a process is marked 'Done', it has finished executing and is waiting to 	 , }

be reclaimed. Typically, processes do not remain in this state very long since processes are

immediately reclaimed. A process is 'Ready' when it has been entered on the ready queue

but is not currently executing. When a process is executing, its state is set to 'Executing'. A

'Suspended' process is one which is waitin g for its last child to weaken it before exiting a

procedure which contains a shared activation record. A process is 'Delayed' if it is waiting

for a time event to occur. When a process attempts a P-operation on a semaphore and

fails, its state is set to 'Blocked on a Semaphore'. This state information is maintained

within the Kernel when a process makes a state transition and is used to guard against

potential corruption of any of the queue data structures. If a bad process transition is

detected, an error message is raised and a diagnostic dump of the program is generated.

The allowed process state transitions are illustrated in Figure 17.

5.3. Kernel Operations

The operations performed by the Kernel can be broken down into operations involv-

ing process transitions, operations involving semaphores and other services.

_^	
3

i

'^	 J

i

t

s

f

1 ^ t

i

Figure 17

5.3.1. Process Operations

The process transition operations.allow one to

• Allocate a process
• Free a process
• Wait-For-Sons

The Kernel must maintain the 'wait-for-sons' semantics, which requires additional state

information for each process. Each process has a recorded 'dependency level' which indi-

cates the static nesting level of the inner-most activatio.t record on which the process

depends. Spare is allocated in each activation record to record the count of current refer-

43

ences. VY'hen a process is created, the reference count of the dependent activation record 'ss

incremented, a process control block and process storage space is allotted for the process

and the parameter stack is constructed so as to appear to be created by a procedure call.

The process is initialized to a state which starts its execution at the first instruction of the

process code.	 `11

When a process reaches the end of the process body, it does not perform a normal

end-of-procedure return sequence. Instead, it requests that the Kernel dispose of the pro-

cess storage space and process control block. At the same time, the process decrements the

reference count on the dependent activation record. If that count returns to zero and the

parent process is suspended, the parent process is restarted. Each process maintains a

pointer to the process which created it. Each process also maintains a `process display',

which is somewhat similar to the static nesting level display used in a typical Pascal imple-

mentation. The `process display' is used to keep track of the pointers to the process con-

trol blocks of the processes which own the activation records pointed to by the run-time:

display table. A copy of this is saved at content switchin g time in the process control

block, much as is done with the display table.

1Vhen a process enters a procedure where there is some possibility of multiple refer-

ences to the activation record, the count field in the activation record is cleared and the

pointer to the process control block of the current process is entered into the process

di5pla y . When a process reaches the end of a code bod y where it may be necessary to

check for dependencies on the curreut activation record, the c•,uut field in the activation

record is checked. If it is non-zero, the process issues a `suspend process' request to the ker-

nel. expecting to be awakened by its last child process.

ti

t

1
i

r'	 TNIV

5.3.2. Semaphore Operations

44

While there are typically only two operations defined on semaphores, P and V,

efficiency concerns in the Kernel dictate that four operations be implemented: P, V,

Enqueue and Dequeue. The reasoning behind this has to do with the frequency of sema-

phore operations and the cost associated with a Kernel operation. The semaphore opera-

tions P and V have the normal semantics and perform the entire operation within the Ker-

nel.

In implementations where it is feasible, the P and V operations are expanded by a

third pass of the compiler, generating in-line code to process the P and V operation. This

expanded code uses the the Enqueue and Dequeue operations of the Kernel co actually

move processes on and off of queues. These queue manipulation operations must be per-

formed within the Kernel because they need to appear as atomic operations to the external

world. In systems implementing interrupt processin g , the Kernel typically disables interrupt

processing while it is executing to ensure that this is the case.

The data structure used to implement semaphores is shared by both the compiler and

the run-time system. Extensive modifications to the data structure would require

modifications to the semaphore initialization and allocation routines of the path expression

compilation section of the compiler. fortunately, it is not envisioned that the data struc-

ture will be changed often.

5.3.3. Other Services

The only other services provided by the Kernel at this time are the system initializa-

tion and delay queue management subroutines. 'fhe system initialization is called by the

. 'it. 4I

\^h

. ^e

46

program pre-amble and is used to initialize the process control blocks, statistics counters

and to other data structures used by the Kernel.

The delay management services provides a time ordered event-list. Processes can

request to either 'delay' for some specified number of time units or they may 'await' a cer-

tain time. They are placed on the delay queue until the specified time is reached at which

time they are once again placed on the ready queue.

5.4. Kernel Size and Performance

One of the original goals of the Kernel was to provide a low -overhead implementation

allowing the Path Pascal compiler to be used in many applications for which the Berkeley

Pascal compiler would typically be used.

This goal has been met by a conservative and parsimonious design which stressed

modularity, well defined interfaces and simple semantics. The additional cost for using the 	 ?

Path Pascal compiler for a program which does not use the Path Pascal extensions is
1

I

minimal, allowing a single compiler to be used for both Pascal and Path Pascal programs. 	 ^
't

'everal changes in the Kernel implementation arose due to rather unexpected perfor-

mince problems. One factor which had been overlooked was the affect, of a paain;; memory

on Kernel data structures. The process control blocks for processes are scattered through

memory, being allotted and disposed as processes are created and destroyed. When adding

a process to a semaphore or queue, the. Kernel traversed the list of control blocks associ.

ated with the semaphore or queue in order to maintain a priority queue. In simulations

involving several hundred processes, it was found that this involved not onl y a considerable

amount of traversal time, it also caused every page in the UNIX process to be touched.

L1
'`"	 A

r.
v

0
i 4

48

t
causing a tremendous number of page faults. This caused the access methods for the data

structur^s to b^ redesigned to avoid this problem. Another unexpected cost was for the

actaal allocation and release of process control blocks. In programs which create many

short-lived processes, this cost quickly becomes high enough to merit additional Kernel

code to 6x the problem. To this end, a 'PC T3 pool' of process control blocks is kept. This

reduced the average run time of sample process-bound programs by approximately five to

ten percent.

a	 In the VAX-11 implementation, the Kernel is implemented in about 50 lines of assem-

8

	

	
bl y language (for the context snitching routines) and 900 lines of code written in the C

programming language. Another 100 liucs of definitions and constants is also present.. The

D	 VAX Kernel implements the simple `simulated titue' semantics in which the value returued

r

	

	
by 'wallclock' does not advance if processes a ready to run. If there are no ready

processes, the system clock is advanced to the time specified by the process at the head of

r	 the delay queue. That process is then ready to execute. The statistics for the source code

given above includes an extensive amount of debugging information which has been left in

the Kernel to make future modification easier. Should that code be removed. the size of

the Kernel could be reduced by approximately twenty percent.

Compatibility and Performance

This chapter seeks to address compatibility and performance gains from the perspective of

the compiler user. These measures are rather subjective in some cases, although it is felt

that they reflect the actual change in performance that one can expect as well as the time

required to port programs from the old compiler to the cew.

8.1. Comparison to the Old Compiler

Compatibility must be judged from two directions: from using the old compiler to

using the new compiler and from using Berkeley Pascal to using the new compiler. The

former is to be expected due to the nature of the compiler, and the latter is required as a

goal of the compiler. The.language differenc, in the versions of Path Pascal implemented

have bee:i detailed in chapter three. Rather than reiterate those points, the significance of

those changes from the viewpoint of the compiler user is presented. In a series of programs

which were changed to run under the new compiler, the editing changes required to port 	 ^` v

most of the programs entailed approximately five minutes of modifications. In cases where

extensive use of the 'structure compatible' type declarations had been made, the time to

port the program was increased, although the use of a good text editor simplifyed the pro-

Bess immensely. As an example, a 1300 line program which is used to simulate a file- server

running on an Ethernet was modified to use the new compiler. !Marginal use of the struc-

ture equivalent typing was • jade. The total time needed to modify the program for it to

compile correctly was under five minutes. The titre would have been somewhat more

lu
11

48

lengthy if the procedure 'time', as shown in figure 1, had not been used to redirect calls

from procedure 'time' to procedure 'wallclock'.

The time to compile and run the program, as well as the size of the resultant output

file is shown in figure 18. The size of the output measured reflects the completely linked

UNIX load file for the new compiler and the Pcode file for the old compiler. The compiler

size information is in the format 'text—pages + data—pages', where each page is one kilo-

byte long. Since the new compiler is broken into several small passes, the size of each piece

is smaller than the old compiler. This is useful for small systems with a limited address

space. However there is more paging activity caused by this structuring since the separate

programs needed to be loaded sequentially.

The compile time for the new compiler is approximately three times that of the old

compiler. The principal reason for this is that the compiler involves many passes over

different files, whereas the old compiler is a true one pass compiler generating textual

pseudo-code. The first pass of the new compiler, which is the main pass which was

changed, requires only 15.8 CPU seconds to run. Any errors encountered in the program

would be detected by the first pass, and compilation would stop shortly thereafter. Thus,

in a classroom environment where many more compiles than executions are performed

because of the many errors common in student programs, the new compiler would prob-

ably out-perform the old compiler. Also, one must. realize that the new compiler performs

Version Cornnile Time (o- ee) I Compiler Sizc Kby tes I	 Ob'ert Size (Kb ytes) Run Time ^C CS

New
Old

93.4
34.0

89+140
336+132

I	 15.8
920.9

148
75

Figure 18

1 : .

i

49

much more work, preparing the program for immediate loading and execution. The old

compiler delays some of these expenses until the interpreting stage. Another factor to con-

sider is that the program compiled was developed using the old compiler. Typically, in an

environment which supports separate compilation, such a program would be broken into

several smaller files allowing a quicker compile-debug development cycle.

The program run times presented for the old compiler system are, to a certain extent,

grossly exaggerated because the older system uses an interpreter to run the program

instead of using actual compiled code. However, one should be concerned with extant tools,

not illusorily ones. In the current environment, the interpreter represents the best run

times possible for programs developed using the old compiler. The difference in runtimes

between the Berkeley Pascal interpreter and the Berkeley Pascal compiler is reported as

five to fifteen times faster execution when using the compiler. When a series of measure-

ments were taken on the difference between interpreted and compiled Path Pascal, the

speed-up was seen to be lie in the range of a 40 to 150 times increase. This is a sizable

disparity, and the chief reason it is so great is that the Path Pascal interpreter is written in

Pascal and was the major design emphasis was portability rather than speed. The Berkeley

interpreter was designed for speed above portability, and the compiler produces execution

rates varying from 5 to 15 times greater than their interpreter rates [Joy2l.

One other factor which should be considered when comparing the usability of the new

compiler to the old system is the increased range of problems which can be tackled and the

savings in burnan time. As an example, one set of programs used in the simulation of con-

currency control methods in distributed data base management systems [Moon] required

run times of over 8000 CPU seconds using the old compiler and interpreter. Due to the

}

"i

r

}

,

A

	

}	 I

	

..	 I

t_
F

a

I

1	
^
i

I

b0

unreliability of the hardware and the use of the machine for other development efforts,

these programs would often not complete execution before the machine was rebooted.

Using the new compiler, these run times were reduced to 50 seconds, allowing the project

to be completed with much less work.

In other programs involving simulation of several hundred processes to measure the

effectiveness of distributed control algorithms ,]Railey], the problem could not have been

solved using the old compiler and interpreter due to the large amount of storage and

processes required. The old system had defined limits on the size of simulated memory,

where as the new compiler uses whatever memory is available. On a virtual - memory

machine, this means several hundred processes may be simulated. something not possible

under the old system.

6.2. Comparison to Berkeley Pascal

Another factor to consider with the new compiler is the added overhead of using the

Path Pascal compiler instead of the Berkeley Pascal compiler. The results in figure 19 are

compilation and run times for `pascref', a 750 line Pascal cross-reference program originally

written by Ni/claus Wirth. The program was • hen used to produce a cross-reference listing

of itself.

Version I Com	 file Time	 sec Cvm	 filer Size(hbvtes Ob'ect Si,, (Kb y tes) Run Time sec,
Berkeley Pascal
Path Pascal

63
178.8

81+121
87+ 133

685
679

32.1
32.9

Fi g ure 19

a

i s^ 4

The difference in compilation and execution time demonstrates that the Kernel design

was such as to reduce overhead on programs which do not use the Path Pascal extensions.

The slight increase in execution time can be attributed to the additional start-up and

shut-down costs incurred by using the Path Pascal Kernel. The compilation time increase

NI

is mainly due to the larger language grammar, requiring more time to be spent in the

parser, the more complicated code associated with the end of procedures and the addi-

tional link time needed to load the Kernel. The differences in the size of the load image

can mainly be attributed to the Kernel and its associated data structures.

As can be seen, the use of the Path Pascal compiler causes a slight decrease in perfor-

mance when compared to the Berkeley Pascal compiler. However, the cost is rather

minimal, and may be reduced by `tuning' the compiler.

62

CH"TER 7.

Conclusion

As has been shown, the design goals of the compiler have largely been met. The compiler

provides a significant execution performance increase over the existing system at the

expense of slightly longer compile times.

The language implemented is largely compatible with the previous version, requiring

only minimal program changes to port programs from the old compiler to the new one.

Furthermore, the language is a direct superset of the Berkeley Pascal language (with the

exception of the `wallclock' standard procedure), allowing a single compiler to be used as

the sole development tool. The development environment supported by the compiler is

much more flexible than that supported by the original Path Pascal compiler.

The compiler, Kernel and post-mortem debugging tools, users manual and automated

installation procedures were implemented in approximately ten man-montlis. A pre-release

of the system has been distributed to about fifteen UNIX sites around the country .and in

Korea.

The compiler was originally targeted for the VAX family of machines, and has also

been ported to the SUN workstations using the Motorola 68000 CPU. Further ports are

expected to other 68000-based machines as well as machines based on other CPU architec-

tures.

{

s ^

w

=	 i

53

APPENDDC A.

Path Pascal Language Grammar

The following is the list of reserved words in the Path Pascal language:

and array begin case const div
do downto else end entry extern
file finally for forward function got%
hex if in initially interrupt label
mod nil not object oct of
or others packed path type procedure
process progam record repeat set then
to until var while with

The following defines the precedence relations for operators in expressions in YACC

notation. These are used by the YACC compiler-compiler to eliminate shift-reduce conflicts

in the grammar. See (Johnsonl) for detailed information.

%binary <	 >	 in
cleft	 +	 -	 or
%left	 - (unary)
%left	 '	 /	 div mod
°'cleft	 not

The following is the grammar for the language. The grammar is left in a form similar

to that which is given to the YACC compiler-compiler to illustrate the sequences of
t

54

productions. Several apparently useless productions are performed, but are the order of

reductions is required in the structure of the compiler for passing information between

aiQerent productions.

goal:
prog-hedr decis block '.' (decls

progdedr:
program ID '(' id_list ')' TI program ID ';'
program error ;	 /• See note Error •/

block:
begin stat_list end;

decls:
deck decl I decis error
/• lambda'/	 /• See note Lambda •/ ;

decl:
labels (const_deci I type_deel I var_decl (proc_decl

labels:
label label_decl V

label_decl:
INT I label_ded ',' INT

const decl:
const ID '_' const ';' const_decl ID '=' const
const error I const decl error ;

typed lecl:
type-ytype type-item I type_decl typeitem
type-ytype, error (type decl error

type.. type:
type ;

type item:
ID '_' typc_noobjects

type objitem decls init_fini end
I

type rxt_obj item ext entry decls end ';' ;

bb

type_obj item:
type obj_itcm_kfudge patA expr ; 	 /' See note Force'/

type objitem_kludge:
ID '_' object

type ext objitem:
ID '_' extern object

ext_entry deck:	 .
ext_entry deck phead_tree (/' lambda'/

var decl:
var var idjist ':' type ';' (var decl varidiist ':' type
var error (var_deel error ;

varidiist:
vid (var.adiist ',' vid

vid:
ID '(' number	 Ill

pros decl:
phead forward T (phead extern
pheadres decls block ';' (phead error

pheadres:	 /• See Note Force2 •/
phead

phead:
phead—tree

phead_tree:
isentry port ID params rtype
isentry process ID sizepart params (type

isentry:
entry (/' lambda •/ ;

port:
procedure I function

sizepart:
'(' number	 lambda •/ ;

U

1
pusms:

param-rat ` ` I /' Imbda •/ ;

puam:
var W-W T type I
fluter W-W param hype I procedure id-list params hype I
id. list T type I Prod WJist Pusan*

(type:
=' type I/* lambda'/

Puamtist:
param I paramtist T puam

coast:
STRING I number I'+ ' number I -' number ;

number:
coustjd I INT I BINT I NUMB

consttist:
coast I constjist '.' const

type:
type_noob jects I object

type-noobjects:
simple type I- ID I structtype I packed struct type

simple type:
type_jd I'(' id-list ')' (coast.. const

struct type:
array 'I' simple-type-list 'I' of type I
file of type I set of simple type I record Acld_list end

simple-type-list:
simple type I simplety pejist '.' simple-type

field-list:
fixed-part variant_part

k

t

i

s.

fixed-part:
teN I lixed„pwt ';' AM I fixed-part error ;

il^ad:

ruinnt ,part:
r lambda •/ I cow type-id at varianuist I
cow ID Y type -W of varissUist

vuissUist:
variant I vuiantJist '; variant I variastjW error

variant:
/• lambda'/ (const-6t ':' •(' lei Dist

object:
obj-path deck init-lai end

obj_path:
object hdr path expr

objecthdr:
object

path expr:

Path-single I pate expr patheinak

path-ein;le:
pathhdr pathJist end ';' I error

pathhdr:
Path

pathJist:
path_" I pathJist V path peq

path}eq:
path item I path,peq ';' pathitem

patbJtem:
>D I'(' pathJist 'j' I'I' pathJist 'I' ! number ':' patbJtesn

r

ss'

MENNI

4L

N

init^nl:
initially finally	 j' See sots Mrs" j

Initially I finally I j' lasabda

Initially:
init'raUdr deck block T;

initial_bdr:
Initlaur T;

Onally:
Sna1. bdr deco block

Analbdr:
8nallr T;

stuJist:
star I $tatJsth star

statjsth:
statjist

cstauist:
cstat I catatjist ., cstat I error I cstatJist error

cstat:
coastJifit T scat I otherwise T stag I /* lambda'/

stag:
/' lambda'i

INT T stag I
pros or-prosjd I
procor_►rosjd '(' wexprjist
ID error
assign

 Lvar I qual var '(' wexprjist
begin statjist end I
case expr of cstatjM end I
with varPub do stat
while expr do stag I
repeat statjist until expr I
for assign to expr do stat
for assign downto expr do stag I
Soto INT I
It expr then stat I if expr then stag else scat I

49

etrt►r ;	 .

aeeita:
variable ':' '^' expr

error

expr T" expr	 ,, Spree '<'	 See Dote prec j
'+' expr	 %pree UNARYSKIN

expr	 spree UNARYSICN
I

expr addop expr	 spreeI
expr divop expr	 eispree

all I^STRING I INT I aINT I NUMB I variable I ID error
rvac M '('	 pr	 'Y I quaLvar T wexpr.1m ^y H' expr 'r I
aesop expr	 %prec a

'(' elemeat„jlet 'i' I'(' it;

element-list:
element l element-t element;

element:
expr I expr .. expr

variable:
ID I qual_yar

qua^Yat:
array-W if expr jig 1' 1 quaLvw if exprjiet I'
record.id " field-W I quaLvar ': AtMid
ptr^ "' Iquat.Far

wexpr:
expr ! expr expr (expr .. expr T expr I expr octbex (expr Y exrr oetwex

octhex:

Oct I bex

exprJut:
expr I expr-*t '.' expr

-wexr^ '/' map ► -

sddopt^

dlsroP
t

a

'/' I
dl►

I
and eW

I /ki ./ L

/

naiable Yujiet	 ratable

ID idjist	 MD

R

conetjd:	 See note Conetid •/	 _^
ED

tYpeJd:

vaujd:

Wray-w:
ID

,-Ptfjd:

@'
tecardjd:

ID •
Aem-w:

'

ID;
faacjd:

ID

Proc-or_pm id:
1D

1

so

a ` &	 n.
Bl!

Notest

Error

The token `error' is used by YACG mA the error recovery techniques of the compiler
to produce a 'correct' purse when an error is encountered. Proper placement of 'erroe
tokens allows the parse to (possibly) bypass -error and continue. See (Johnsoull.

Lambs
Productions marked jt lambs •j are ail-productions indicating the possibility of an
empty reduction.

Force
As mentioned, some productions look odd because the compiler seeds to know cerWa
information at certain times. In this example, the keyword object nut be encoun-
tered before the path expression is parsed because the code for the path expressions
'bangs' information concerning the path expre ssions on the Name List node allotted
for the object. The Name List for the object needs a name associated with it, and in
this case, the name is the associated type name. Thu, the productions force the same
and the object keyword to be reduced at the same time and before the rest of the
object, allowing us to set up data structures.

Force2
This is another instance of an apparently useless reduction. This example is a side-
effect of the structure of the existing compiler at the time it was being extended.
Rather than make major modifications in order to achieve some affect, it was easier to
force small useless reductions which would cause some associated ut on to occur at
that time.

Reduce
This production has this form to avoid reduce-reduce conflicts. Consider the produc-
tions

object otber, tokens ... init—fini end
isit—fiai:

initial y AaaUy ;
initially :

/' lambda'/ Ilnittally
Aaa^y . /' lambda'! I finally

The string "end" can either reduce to an initially or a finally in this context. By listing
the productions as was doar. this is avoided by not having two lambda productions
possibly preceding the end.

0
CM

62

IVA

Prec
The %prec notation is wed by the YACC compiler-compiler to eliminate possible
shift-reduce coudicts by assigning priorities to productions. For details, we (John-
nall.

Constid
These productions are augmented with semantic aaalysisi routines using the symbol
table of the compiler to either declare an error or to indicate that the identifier is of
the appropriate identifier class. -,,

as

i

RE ICRENC

[Addyman]
Addyman, A. M. A Draft Propel for Pascal. ACM SIGPLAN Vol. 15, No. 4, ppl-ft,
1980.

[Ammana]	 -
Amman&, U., Nori, K. and Jacobi, C. The Portable Pascal Compiler. Institut Far
laformatik, EIDG, Teeh&isehe Hochwhuk CH-8096, Zurich.

[Campbellil
Campbell, R.H. and Kolstad, R.B. An Overview of Path Pascal's Design and Path Pas-
cal User Menual. SIGPLAN Vol. 15, No. S, pp144, 1980.

[Campbell21
Campbell. R.H. Path Expressions: A Technique for Specifying Process Synchroniza-
tion. Ph.D. Thesis, University of Newcastle upon Tyne, August, 1976.

[Campbe113]
Campbell, R.H. Distributed Path Pascal In: Distributed Computer Systems, ed. Y.
Paler and J.P. Verjus (London, Academic Pass, 1983) pp191-223.

[Hoare]
Hoare, C. Monitors: An Operating System Structuring Concept. CALM Vol. 17, No.
10, pp540-557, 1974.•

[Lam peon]
Lampson. B. and Sturgis, H. Experience with Process and Monitors in MESA. CACM,
Vol. 23, No. 2, pplO5-117, 1980.

[Jensen]
Jensen, K. and Wirth, N. Pascal User Manual and Report. Springer-Verlag, New
York, 1975.

[Johnsoul]
Johnson, S. Yacc: Yet Another Compiler Compiler. UN1X t Programmer's Manual,
Seventh Edition, Volume 2, 1980. July 1979.

[Johnson2)
Johnson, S. A Tour Through the Portable C Compiler. UNIX Programmer's Manual,
Seventh Edition. Volume 2, 1980.

t UNM is a trademark of Bell Laboratories.

^o} 1l
Joy, W. Graham, S. and Haley, C. Bn*dey Pascal Users Manuel. Version B.D. Techn-
ical Report, Dept. of SECS, University of Calif, Berkeley, 1979.

[Joy2]
Joy, W. aml McKuslek, M. BrrEeley Pascal PX impLemmaWen Notes, Version LO -
January 1#79. Technical Report, Dept, of EECS, University of Calif, Berkeley, 1979.

[Kesslerl
Kessler, P. Tic Intermediate Representation of the Pertabte C Compiler as used by tke
Berkeley Pascal Compiler. Technical Report, Dept. of EECS, University of Calif,
Berkeley, 1993.

[Kolstad]
Kolstad, R. and Campbell R.N. Pack Pascal User Manuel. Technical Report, Dept. of
CS, University of Illinois, Urbana, 1980.

[Moon]
Moon, S. C. and Belford, G. G. Performance of Concurrency Control Atetkods in Dis-
tributed Database Management Systems. Proc. ISMM Intl Symp., June, 1984.

[Raileyl
Railey, M. and Lin, J. Single Leader Election Protocols Using Nonuniform ?4ferits.
Technical Report UIUCDCS-R-85-1197, University of Illinois, Urbana. 1985.

APPENDIX D

Alons in Concurrent Systems

Pankaj Jalote

Department of Computer Science,
A Illinois at Urbana-Champaign,
Urbana, Illinois, 1985.

i

j;

:)NUC ACTIONS IN CONCURRENT SYSTEMS

by
Pankaj Jalote

M. S., Pennsylvania State University, 1982

Yd)

Ph.D. Thesis, Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois, 1985

Lit	 11KECEt1iNG PAGE BLANK NOT FILMED

'h

iv

ACKNOWLEDGEMENTS

There are many people who have helped me psycologically, socially and technically.

First and foremost I would like to thank my advisor Professor Roy H. Campbell for the

helpful advise and direction he gave me. Discussions with Professor M.D. Mickunas, G. G.

Belford and J. W. Liu are also appreciated.

I would also like to thank the members of the Systems Research Group and other

friends, who offered help and friendship which helped maintain sanity, and created a

friendly environment. I would also like to acknowledge the support from NASA grant

NSG 1471.

{

VOL

1.1.

1.2.
1.3.

V

TABLE OF CONTENTS

	1 INTRODUCTION ...	 1

	

ConcurrentSystems .. 	 3

	

Motivation... 	 6

	

ThesisOverview ... 	 8

4 n

	CHAPTER	 2 ATOMIC ACTIONS: RELATED WORK 	 11

	

2.1.	 Dynamically Identified Atomic Actions ... 	 13

	

2.2.	 Recoverable Atomic Actions ... 	 17

	

2.3.	 Basic Atomic Actions ... 	 22

	

2.4.	 Comparison and Discussion .. 	 26

	

2.5.	 Requirements for atomic actions .. 	 28

	

CHAPTER	 3 RECOVERY TECHNIQUES AND FAULT-TOLERANCE 	 32

	

3.1.	 Basic Concepts .. 	 32
...............................

	

3.2.	 Strategies Based on Backward Error Recovery 	 37

	

3.3.	 Strategies Based on Forward Error Recover 	 46

y	 3.4.	 Combined Recovery .. 	 50

	

3.5.	 Atomic Actions and Fault Tolerance .. 	 52

	

CHAPTER	 4 ATOMICITY OF ACTIONS AND RECOVERABILITY 	 55

	

4.1.	 System Model ... 	 55

	

4.2.	 Actions .. 	 57

	

4.3.	 Atomic Actions .. 	 62

	

4.4.	 Recoverability of Actions .. 	 67

	

4.5.	 Discussion ... 	 75

CHAPTER 5 ATOMIC ACT . IONS
. .. FOR

. .. FAULT 'TOLERANCE USING CSP
..	 ... 	 77

	

5.1.	 Communicating Sequential Processes ... 	 77

	

I
5.2.	 Design of the FT-ActionI... 	 80

	

5.3.	 Error Recovery with the FT-Action .. 	 82

i -	 5.4.	 Implementation .. 	 92
R

't	 5.5.	 Discussion .. 	 101

CHAPTER 6 A PROTOCOL TO IMPLEMENT ATOMIC ACTIONS IN DA-

	

TABASES.. 	 103

	

6.1.	 Background .. 	 104

6.2. System Model	 ... 107
6.3. Consistency	 .. 109
6.4. The Delay /Re-Read Protocol .. 114
6.5. Properties of the Protocol 	 .. 119
6.6. Discussion	 .. 121

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 131
7.1. Future Work	 .. 133

REFERENCES ... 139	 j

.^ e

`L•

v^

M

L

1

CHAPTER 1

INTRODUCTION

1	 The concept of an indivisible sequence of actions has been in use to design systems
B:

since the invention of the hardware interrupt. The possibility of interrupts requires the

system designer to identify those primitive system activities that must be uninterrupt-

able. Enable and disable interrupt operations allow the programming of indivisible or

`atomic' sequences of instruction executions that would be executed indivisibly by the

hardware and exclude the undesirable side-effects that could arise as a result of a sudden
i

change of control flow caused by an interrupt.

However, the concept of atomicity need not be limited to operations which are per-

formed indivisibly by the hardware. The concept of atomicity is a general one and can be

extended to general operations. By removing the hardware dependency of the definition,

we can define an atomic action simply as an operation that appears primitive and indi-

visible to the activities outside the atomic action.

Supporting atomic actions in a single sequential process is relatively trivial. How-

ever, concurrent systems involving several processes are more complex than a single

sequential process because of the possibility of interprocess information exchange. The

need for atomicity, and the difficulty of implementing it in concurrent systems, was

recognized in early operating systems and led to proposals for synchronization primitives

such as semaphores[Dijkstra 651. Since then, programming constructs involving atomic

actions have appeared in the contexts of databases, operating systems and fault tolerance.

iM

I=

44

2
	 i

The definition of atomicity does not preclude the possibility that an atomic action

has a structure of its own. Atomicity of an operation requires that the operation appears

to be primitive and indivisible to other activities. An atomic action can have a structure

of its own, though this structure cannot be visible outside the action. This permits the

nesting of atomic actions and the decomposition of an atomic action into, perhaps many,

sub-actions.

The concept of nested atomic actions is also fundamental to system design. The

construction of "large" atomic actions from "smaller ones" is essential for designing con-

current software systems and is derived from the desirability of defining a system using a

functional notation which excludes undesirable side-effects and permits hierarchical

decomposition.

Though the term "atomic action" might seem to preclude any concurrent activity,

this is an unnecessary restriction. The abstract definition does not imply that the atomic

action consists of a single hardware primitive action, nor does it require that the atomic

action be performed by a single process or on a single processor as long as it appears to be

primitive and indivisible to any other activities that may occur at the level of the abstrac-

tion in which it is defined. At a more detailed level of abstraction, the different sub-

activities constituting the atomic action may interleave with other activities. Certain res-

trictions must be imposed on this interleaving of sub-activities in order to preserve the

atomicity at the higher level of abstraction.

The aim of this thesis is to show that atomicity is fundamental to programming

concurrent systems and to demonstrate that many different concurrency control schemes

which have appeared in many different contexts have actually the same goal: to provide a

mechanism that ensures atomicity of system activities. In the recent literature great

E

R
4

S

e database applications of atomic actions. We intend to

show that the concept of atomicity is more general, provides many additional advantages,

and unifies the solutions to many existing problems. In this thesis we argue that the con-

cept of atomic actions is a concise conceptual basis for the design of concurrent systems,

and discuss the many useful properties of atomic actions. It is shown that many different

concurrency control requirements which appear in different distributed system applica-

tions actually have the same goal: to establish the atomicity of operations. Atomic

actions are fundamental to the problem of concurrency control in databases, mutual

exclusion in operating systems and provision of software fault tolerance. We propose the

concept of an atomic action as a structuring mechanism that should be used in the design

of distributed systems of concurrent processes.

1.1. Concurrent Systems

In this section we will define what we mean by a concurrent system. A sequential

prograrr, specifies sequential execution of a list of statements. The execution of a sequen-

tial program is called a sequential process. A concurrent system is a system consisting of

a number of concurrently active sequential processes.

The set of concurrent processes can be classified into three categories, namely

independent, competing and cooperating(Anderson & Lee 811. Concurrent processes are

said to be independent if the sets of objects accessed by the processes are disjoint. Since

the activity of each process must then be completely private from any other process, this

case is conceptually the same as having many physically separate sequential processes.

The second category of concurrent processes removes this restrictive requirement.

Concurrent processes are said to be competing if they share resources but no information

4
}
f

exchange between processes results from the sharing. There are objects in the system
E'

that are accessed by more than one process, but the shared access is solely due to the need

to increase the utilisation of scarce resources. The usage of the resources is private, in
^' R

F	 ^,
that no information flow between processes results from sharing the resources. Conven-

tional multiprocessing systems support competing processes, with resources being shared

between different jobs. Since there is no information flow between processes it is com-

pletely immaterial to the operation of each individual process that the resource is actually

being shared. Each process gets the view that it is the sole user of the resources, and

hence the processes behave as if they were independent. Thus, a set of competing

processes can be treated as a set of independent processes.

The third category of concurrent processes is the most interesting of the three

categories and imposes no restriction on information flow. Cooperating processes have

shared access to objects which are used directly for inter-process communication. Com -

munication between processes can be done either by the use of shared memory or by the

use of message passing. Any problem where coordination of many processes is required

must use cooperating processes. Operating systems need some system of cooperating

processes to ensure proper access to the shared resources by different (competing) process.

Cooperating processes have been an area of research for a long time, and many proposals

have been made to support cooperating processes since the Dijkstra's seminal paper

"cooperating sequential processes"(Dijkstra 651.

Cooperating processes create many problems which do not exist in single process

systems. Interprocess communication is only meaningful if it can be performed in a con-

trolled fashion, and if the programmer has the means to control the communication. Due

to this, a major concern for cooperating processes is process coordination and synchroni-

5

zation between the actions of different process. Process synchronization has been an

active research area and many mechanisms have been proposed. Some of the techniques

for synchronizing processes are the semaphores)Dijkstra 85], monitors(Hoare 741, and path

expressions [Campbell & Habermann 741. Maay languages have been proposed and imple-

mented which use these mechanisms to support cooperating processes. These languages

include Concurrent Pascal[Hansen 75], Path Pascall'Campbell & Kolstad 80a],

Modula]Wirth 77).

Due to the need of synchronization between actions of different processes, many

other problems occur. Problems of mutual exclusion, deadlock, concurrency control and

data consistency arise in cooperating processes. In the remainder of this thesis we will

not consider the first two categories and concentrate on cooperating systems only, and the

term "concurrent systems" will be used for a system of cooperating processes. It should

be pointed out that a system of sequential process is a special case of a system of con-

current, processes. So, the results which are valid for concurrent processes will be valid

for sequential processes, if the problem is applicable to sequential processes too.

Ii, a system of communicating processes, the interprocess communication may be

based on the use of shared variables or message passing. The two communication metho- 	 a
Y
7

dologies introduce somewhat different problems. In a shared memory system, the

processes communicate by reading and writing a shared memory. The access to the

shared data by different processes is controlled to maintain the consistency of the shared

data. In a system using message passing for communication, the variables of different

processes are not subject to concurrent access, because only one process accesses them.

However, different problems arise, such as lost messages and duplicate messages.

yji ?'i
♦T 1

M

6

1.2. Motivation

In this section we discuss the motivation for stu'y ; -g atomic actions in concurrent 	 • j

systems. Informally, an atomic action is an activity, possibly consisting of many steps
f

performed by many different processors, that appears primitive and indivisible to any

activity outside the atomic action. To other activities, an atomic action is like a primi-

tive operation which transforms the state of the system from one state to another

without having any intermediate states. An operation that is executed as an atomic

action has the properties of non-interference, non-overlapping and strict sequencing.

In databases a transaction is the unit of processing. A transaction is a sequence of

read and write actions on the entities of the database. If the actions of different transac-

tions are not properly coordinated an inconsistent database may result. In the database

literature, this problem is referred to as the concurrency control problem. What is really

desired is that a transaction should appear to execute indivisibly. That is, to maintain the

consistency of the database, a transaction should be an atomic action.

Serializability is often the criteria used to ascertain that proper control is being

asserted on different transactions. The serializability criteria states that the net effect of

executing transactions concurrently should be equivalent to executing the transactions

serially in some order. This is exactly the strict sequencing property of atomic actions. If

each transaction is performed atomically, the serializability criteria will be satisfied. Seri-

alizability of actions is a phenomenon which appears if all actions are atomic. So, once

we have the ability to specify and support atomic actions, serializability of actions will be

guaranteed.

An important concept in the area of operating systems is mutual exclusion. If two

processes read and update the same shared set of data then the mutual exclusion

1

Z

requirement permits only one process at a time to operate on the shared data. Mutual

exclusion is required to prevent two or more processes from having interleaving accesses

to shared data resulting in unpredictable results. However, mutual exclusion is not always

required to preserve the consistency of the shared data. Mutual exclusion is often overly

restrictive and leads to loss of concurrency[Lomet 77]. It is, however, simple to imple-

ment. What really is required is that the operations execute atomically. Mutual exclu-

sion guarantees atomicity of the operations executing in mutual exclusion, but is overly

restrictive. Atomic actions provide a more general property than mutual exclusion, and

yet provide mutual exclusion where necessary.

Fault-tolerant techniques use protective redundancy to ensure that an erroneous

system state doe.,, not lead to system failure. These methods aim to place the system in a

state from which processing can proceed and failure can be averted. Techniques for fault

tolerance are usually classified as backward or forward error recovery

techniques [Anderson & Lee 81, Randell et. al. 78]. Backward error recovery involves

backing up one or more processes to a previously checkpointed state, which is expected to

be error free, and then attempting to continue further processing. In contrast, forward

error recovery aims to identify the fault and correct the erroneous state of the system,

before proceeding with normal processing.

Both of these fault tolerance techniques have four major phases[Randell et. al. 781:

error detection, damage assessment, error recovery, and fault treatment and continued

system service. Atomic actions provide a convenient structure to support damage assess-

ment and recovery. In the atomic action framework, the damage due to a fault is

confined to some atomic action which contains both the fault and the detection of the

error resulting from the fault. If the appropriate atomic action can be identified, forward

8

recovery techniques can examine the state of the atomic action to determine the cause of

the error and attempt to restore the state to normal. Backward recovery assumes that

any computation performed inside the atomic action is suspect and so should be dis-

carded. Recovery mechanisms restore the initial state of the atomic action. For both

i
kinds of recovery, atomic actions provide bounds on the damage produced by the fault. n

Many of the existing schemes for providing fault tolerance use atomic actions. The

recovery block, and the conversation construct that have been proposed for backward 	 =*

recovery are in essence atomic actions.

As we can see, atomic actions provide us with many desirable properties. All of

-
these properties have so r3r been studied in isolation from others. Atomic actions provide

a single construct which can be used in operating systems in place of mutual exclusion, in

databases to ensure atomicity of transactions, and in the area of fault-tolerance for sup-

porting forward and backward recovery. Besides this, we expect atomic actions as a 	 t

language construct to provide an useful tool for the programmer to structure, design and

verify concurrent programs. We also expect atomic actions to be useful in specifying

parallelism in programs, and provide proof for h :'.+. tolerant provisions.

1.3. Thesis Overview

The work done by other researchers on atomic actions is discussed in chapter 2.

Atomic actions are informally defined, and then the different views about atomic actions

are divided into three categories: Dynamically identified atomic actions, basic atomic

actions, and recoverable atomic actions. The three views are then discussed. In dynami-

cally identified atomic actions, the boundaries of the atomic actions are defined dynami- -a

cally, based on the history of execution of the system. Recover able atomic actions follow

the "all or nothing" view, that is, an atomic action should either complete successfully or

i •.

('	 9
t

should leave the system in the state it was when the action started. Basic atomic actions

are the ones which are proposed and used in this thesis. The boundaries of such actions

are statically defined, and recoverability is not a requirement of atomicity.

Chapter 3 contains a surrey of techniques for constructing fault tolerant software.

Both forward and backward recovery techniques are discussed. The recovery block

scheme is used for backward recovery, while exception handling is used for forward

recovery. These techniques are discussed first for sequential systems, and then for con-

current systems. The strategies for performing backward recovery in concurrent systems

j	 are divided into two classes. The methods in the first class use the communication hi ,,-
Pi

tory to determine dynamically the amount of roll back required to bring the system to a

consistent state. The techniques in the second class use some language construct, similar

to a recovery block in sequential systems, to define a structure within which recovery can

be performed. For forward recovery in asynchronous systems, a technique based on

atomic actions and exception resolution is described.

In chapter 4 we present our formal model of atomic actions. A general definition of

actions is given. Actions are specified in terms of their state transformation sequences.

Atomic actions are defined in terms of restricted state transformation sequences. This

definition of atomic actions is shown to have the str;ct sequencing property, and is shown

to be compatible to other models of atomicity. Backward and forward recoverability of

actions is defined for this model. We show that if an action is backward recoverable (or

forward recoverable) then it is necessarily an atomic action.

In chapter 5 we propose a notation to use atomic actions for fault tolerance in a sys-

tem of communicating sequential processes. The technique provides a construct to imple-

merit atomic actions, which is used to support the different recovery schemes in a

! I
t^.

10

complementary manner. A conversation-like scheme is employed for backward recovery.

For forward recovery, an exception resolution scheme is used to resolve multiple excep-

tion occurrences into a single exception. Backward recovery is employed if forward

recovery is unsuccessful. The construct is implemented using CSP primitives, and sup-

ports local compile-time and run-time checking of the forward and backward error ,t

recovery schemes.

In chapter 6 we discuss the use of atomic actions in database systems. In databases,

the unit of processing is a transaction, which is a sequence of read and write actions.

Unrestricted concurrency among database transactions can result in an inconsistent data-

base. It is required that a transaction execute atomically. We present a new protocol for

coordinating transactions, called the Delay/Re-Read Protocol. This protocol uses a com-

bination of preventive and corrective measures to ensure atomicity of transactions. The

corrective measure employs a forward error recovery method. The preventive measure

delays the Writes. Many properties of the protocol are proved and discussed and we show

that the protocol is deadlock free and provides atomic execution to transactions.

Chapter 7 contains the conclusion and suggestions for future work regarding atomic

actions. We discuss Many possible benefits of atomic actions, and we argue that atomic

actions will be useful for program proving, program structuring, and proving correctness

under exceptions.

F

t

. v
i

11

CHAPTER 2

ATOMIC ACTIONS: RELATED WORK

Most of the techniques for structuring systems deal with the organization and sub-

division of the static (or spatial) structure of the system. Typical issues addressed by

these techniques are how the static structure of the system can be sub-divided, and how

the components are statically organized. However, the pattern of interaction between the

components of a system is also of interest. Interactions between components reflect the

dynamic (or temporal) structure of the system. The concept of atomic actions can be

used to structure the temporal activity of the system.

We consider the activity of a system component to be the sequence of state transi-

tions of the component. Each transition is regarded as primitive and indivisible. A single

state transition constitutes the simplest atomic action. These transitions are usually

caused by hardware primitives, and the indivisibility of these actions is supported directly

by the underlying hardware.

However, the concept of atomicity need not be limited to operations which are per-

formed indivisibly by the hardware. The concept of atomicity is a general one and can be

extended to general operations. By leaving out the hardware dependency of the

definition, we can define an atomic action simply as an operation that appears primitive

and indivisible to its environment.

Note that the definition says nothing about how the atomicity is provided. It does

not require that the atomic action consist of a single primitive action, nor does it require

that the atomic action be preformed by a single process or on a single processor. By this

12

abstract definition, an atomic action may contain many steps, and the steps may be per-

formed on many processors. The restriction on the computation on the atomic action is

that it must appear primitive and indivisible to its environment.

For our purposes, the environment of an atomic action consists of all the activities

that are not contained within the atomic action. We have used the terms "primitive"

and "indivisible" to define atomic actions intuitively. These two terms are actually

equivalent because if an action is primitive, it is indivisible, and if an action is indivisible,

it can be regarded as primitive. In this informal discussion we will use them together to

convey a better feel for the notion of atomicity.

This definition of atomicity does not preclude the possibility that an atomic action

has a structure of its own. Atomicity of an operation requires that the operation appears

primitive and indivisible to its environment, but does not imply that the operation should

literally be indivisible. An atomic action can have a structure of its own, though this

structure cannot be visible to the environment of the action. This permits atomic actions

to be nested, and allows an atomic action to be composed of many sub-actions. These

sub-actions may be atomic, and may execute concurrently on different processors.

Nested atomic actions aid in modular decomposition of activities and provide a tool

to organize the temporal structure of the system and support parallelism and concurrency

of actions. Nested atomic actions have been proposed by many[Liskov & Scheifler 83,

Davis 78, Lomet 77]. Nesting is a fundamental requirement of atomic actions.

By our intuitive definition of atomic actions, any action which appears primitive to

its environment is considered atomic. However, two different meanings can be attached

to the "primitiveness" of an action. According to one view, a primitive action implies

that either the action completes successfully, or it should behave as if the action never

t

13

i
started. This definition implies some recovery measure to `undo' a partially executed or

unsuccessful action. The second view does not impose the recoverability requirement, and

t	 requires that recovery should be built using atomic actions.

There are also two views on how the boundary of an atomic action should be

defined. According to one view, the boundary of an atomic action is identified dynami-

cally by looking at the history of the computation. The second view is that the boundary

of an atomic action should be specified statically, and that atomicity should be imposed

at run time.

Due to differing opinions on these two basic issues, several different definitions of

atomic actions have appeared in the literature. These views can be classified into three

categories: dynamically identified atomic actions, basic atomic actions, and recoverable

atomic actions. In the following sections we discuss these three viewpoints, and review

the work of other researchers.

2.1. Dynamically Identified Atomic Actions

As mentioned above, atomic actions reflect the dynamic structure of the system,

and atomicity of an activity actually depends on the execution of the activity. By

definition of atomicity, it is not possible to predict the atunticity of an activity statically

(or apriori) before the execution taken place, unless there are language constructs which

impose restrictions at runtime on interactions between components of the system to

ensure that the activity occurs atomically when it is executed.

Dynamically identified actions live up to the dynamic nature of atomic actions.

There is no structure which actually restricts communication between different com-

ponents in order to achieve atomicity. The dynamic techniques do not define the boun-

14

daries of atomic actions statically, but instead consider the history of the actual computa-

tion and the interactions that take place between the components during the computa-

tion, to determine which activities occurred atomically. Conditions on the history are

specified to ascertain the atomicity of activities. Such approaches are useful for modeling

and understanding atomic actions, but they do not provide the programmer with any

mechanism to implement or specify atomicity. The atomicity of actions depends entirely

on a particular execution, and it is possible that an activity may occur atomically in one

execution but may not occur atomically in another execution. For this reason, the use of

such approaches is limited in regard to system design. This approach does not provide

any means for specifying atomic actions whose execution will be guaranteed to satisfy the

atomicity criteria in any execution history.

Formal treatment of dynamically identified atomic actions by means of occurrence

graphs was given in[Best & Randell 81, Best 801. In the next section, we discuss their

approach and results.

2.1.1. Occurrence Graph Model 	 i

The use of the occurrence graph model for atomic actions is proposed by Best and

Randell[Best & Randell 811. They give a purely dynamic atomicity criteria, using the

executions of atomic actions as the basic formal objects. Occurrenc e -raphs are used to

describe computations. In this section we briefly describe the basic model and summarize

some of the results given in[Best & Randell 811.

An occurrence graph is a directed graph in which the nodes are interpreted as

events of the computation, and the edges are interpreted as the "conditions" holding

between events. The direction of the edges indicate an crdering of events. If there is a

•	 '	 r

`	 lb

path from the node a to the node e', that indicates that a occurs before e', and is written

as a <e'. The events a and e' are said to be "concurrent" if neither a <e' nor e'<e.

For any activity that has been performed, there will be a subgraph in the

occurrence graph of the system. The subgraph of the activity contains the relevant infor-

mation about the execution of this activity. The sub-graph t f =_n activity A can be "col-

lapsed" into a single node (representing the event A) by the collapsing operation. The

node obtained by collapsing the occurrence graph of an action represents the event for the

occurrence of that action. The resulting node inherits all the edges of all the nodes of the

collapsed sub-graph. By applying the collapsing operation to a given occurrence graph, a

new occurrence graph is obtained which describes the same computation at a different

[. level of abstraction, where events are no longer basic events, but may represent the

activity of a complex action. The "granularity" of the actions which appear as events in

the occurrence graph, is made "thicker" as the occurrence graph of the computation is

taken to higher levels of abstraction.

An execution at a level of abstraction is a valid execution if the occurrence graph of

the execution at that level of abstraction is acyclic. The basic occurrence graph

(occurrence graph where events correspond to the execution of primitive operations) of
1

any -omputation is always acyclic; any cycle in the basic graph would indicate an event

being its own cause. At higher levels of abstraction, the occurrenc-2 graphs may not be

acyclic. However, the graph obtained by collapsing the subgraphs of atomic actions

should be acyclic. Because atomic actions are primitive activities, the occurrence graph

containing events for atomic actions should be like a basic graph, and should be acyclic.

The difference between a valid and invalid execution is indicated by the absence or

presence, respectively, of a cycle in the occurrence graph. The characteristic dynamic

t16

property of atomicity therefore is that at all levels of abstraction, the occurrence graph of

the computation is acyclic. That is, by collapsing the sub-graph(s) of atomic action(s), 	 I
the graph obtained will represent a partial ordering on the events of the graph.

Interference-Fs eeness and Atomic Occurrences: An event a is defined to interfere

f

with an activity A if it occurs strictly after part of A and strictly before another part of

A. The activity A occurs atomically if it is not interfered with by any event in this

fashion. This is the basic definition of atomic actions in the occurrence graph model. If

an event a occurs after a part of A and before another part of A, this implies that A

does not appear indivisible to e, which is against the intuitive notion of atomic action

which we developed earlier in this chapter. This definition of atomicity depends on the

execution of A and on the non-existence of events outside A which interfere with A.

Note that according to this definition, an activity A may be a part of a cycle and

still be atomic. However, the presence of a cycle in an occurrence graph implies that one

of the events (representing actions) in the cycle did not occur atomically. So, for checking

the atomicity of a single action, the criteria of interference-freeness has to be used. How-

ever, for ensuring that all the actions at a level of abstraction occurred atomically, it

suffices to show that the occurrence graph is acyclic at that level of abstraction.

Inherently Atomic Occurrences: The above definition of atomicity implies that the

atomic occurrence of an activity depends not only on its internal structure, but also on its

environment. However, there are activities which can be shown to be atomic just by exa-

mining the occurrence graph of the activity. Such an activity is called an "inherently

atomic occurrence".

If an activity A is structured such that there is a path from every event that is an

immediate predecessor of A (that is, there is an arc from the event to some event

U 061

17

belonging to A) to every immediate successor of A, then collapsing the graph of A will

i not result in a situation where there is an event outside A which interferes with A. Due

to this restriction, there can be no event a such that a <A and A <e, and so there can be

no interfering activity.

An activity A is said to be an inherently atomic occurrence if there is a path from

each immediate predecessor of A to every immediate successor of A. Such occurrences

are also referred to as "contractions" or "two phase occurrences". A property of

inherently atomic occurrences is that there always exists a line, called the `cut', through

the graph of A, such that from every immediate predecessor of A to every immediate

successor of A there is a path which crosses this `cut'.

2.2. Recoverable Atomic Actions

In this section we discuss the E,-cond category of atomic actions. In contrast to

dynamically identified atomic actions, recoverable atomic actions have statically defined

boundaries. That is, an action is specified to be atomic at the time the system is designed.

The underlying implementation assures the actual atomicity at run-time by restricting

the interactions between components during the execution. In dynamically identified

actions, the execution of an atomic action never appears to overlap with the execution of

(another activity. The effect of failures is not considered. Recoverable atomic actions, on

 the other hand, uphold the "all-or-nothing" view, which requires that either all the

objects changed by the atomic action change to their final state, or all of the objects

(remain in their initial state. This definition of atomicity is more restrictive than the
i

definition of atomicity in basic atomic actions or dynamically identified actions.

Due to indivisibility, an atomic action appears to other actions as a state

transformer that transforms the state of the system indivisibly from the initial state to

<0

°^-^Rs3 *s arevo .	 ..^ .-.

18

the final state of the action. The intermediate states should not be visible. Both con-

currency and failure can expose the intermediate state of an action, and so, according to

the view of recoverable atomic actions, concurrency and failures both threaten to violate

the atomicity of an action. Hence, the atomicity requirement can be decomposed into

two basic requirements(Reed 831.

(1) Concurrency Atomicity. For all primitive steps o which are

not in the atomic action A, either o precedes all the steps

in A or o follows all the steps in A.

(2) Failure Atomicity. Either all steps in A complete, or none

of them complete.

These two requirements are referred to as indivisibility and totality, respectively,

in(Allchin & McKendry 831, and Liskov refers to them as indivisibility and
i

recover ability (Liskov & Scheifler 831. The definitions of dynamically identified actions

and basic actions consider concurrency atomicity to be the basic requirement for atomic

actions, and do not consider recoverability as a requirement for atomic actions.

This definition is useful in some contexts, such as databases, where transactions, the

atomic actions in databases, are required to be recoverable by the database consistency 	 {

requirements. However, due to the added requirement of recoverability the problem of

performing recovery has to be handled along with the problem of ensuring indivisibility.

This usually complicates the issues, and the implementation becomes difficult.

Implementing recoverability requires some stable storage which is not corrupted by

system or action failure. For any action, the state of the system at the start of the action

has to be saved on this stable storage before the action can perfe; m computation. This is

necessary so that if the action fails, or if the system fails, the state of the system at the

l ^

rte. 1	 _	 a

19

start of the action will be safe on the stable storage. This can be used to restore the sys-

tern to the state that existed at the start of the atomic action, thereby satisfying the

recoverability requirement.

Some form of commit protocols are also needed due to the recoverability require-

ment. Usually the two phase commit protocol [Gray 781 is used. In the first phase of this

protocol, all the processes taking part in the atomic action communicate their intention

to commit, that is, to make their changes permanent. In the second phase, they actually

make the changes permanent. In the first phase, if any process communicates its intent

to abort, then in the second phase all the processes will abort. Data is stored on the

stable storage after the first phase in order to handle the case of a system failure between

the two phases; if the system fails after the first phase, this data will be available to com-

plete the second phase when the system restarts.

Besides the complexity of the commit protocols themselves, complications occur due

to nesting of atomic actions. If an action aborts, all its subactions abort. If a subaction

commits, it is only a conditional commit, based on the eventual commit of the parent

atomic action. If any of the enclosing actions abort then the commit of the subaction has

to be revoked. This further complicates the issue of commit and requires some means to

recognize the actions which can commit on their own, and the ones which can only com-

mit conditionally. There are other limitations which come about, due to the recoverabil-

ity requirement. We will discuss some of them in a later section; now let us look briefly

at some of the proposals for recoverable atomic actions.

{
r

!	 1 '

i

20

2.2.1. Recoverable Atomic Actions in ARGUS

Atomic actions have been incorporated as a language feature in the programm;r:g

language called ARGUS1Liskov & Scheifler 831. ARGUS is intended to support the class

of applications concerned with manipulation and preservation of long-lived, on-line, dis-

trib.,ted data. Surviving hardware failures without loosing the distributed information is

a major objective of the language design. We can understand why recoverability is con-

sidered a requirement for atomic actions in this context.

In ARGUS an activity is considered to be an attempt to examine and transform

some data objects from their current (initial) states to new (final) states, with any

number of intermediate states. An atomic action is an activity which is indivisible and

recoverable, and may complete by committing or aborting. When an action aborts, the

effect is as if the action had never begun; all modified objects are restored co their initial

states. When an action commits, all modified objects take on their new states.

To permit recovery, some objects are classified as atomic objects or atomic abstract

data typeslWeihl & Liskov 831. The operations on these objects have the properties of

indivisibility and recoverability, that is, an operation performed on an atomic object by

an action is guaranteed to be atomic. An of • . ation on an atomic object is considered to

be a subaction of the atomic action that invokes the operation. The facility of atomic

objects delegates the work of ensuring atomicity of these subactions to the implementa-

tion of atomic objects, and the jo', of supporting atomicity is reduced to that of support-

ing global atomicity.

The implementation of atomic objects is based on the two phase locking model

[Eswaran et. al. 761. Two kinds of locks are permitted, read locks and write locks. All

locks acquired are held until the completion of that action, to avoid the problem of

v
t

=t

t

21

'he two phase commit protocol is used to ensure that the entire action

he entire action aborts.

Nesting is permitted. An action may contain any number of subactions, some of

which may be performed sequentially aad -ome concurrently. The nested structure of an

action cannot be observed from outside the action. Nesting is used to support con-

currency between subactions of the same and different actions. Subactions appear atomic

W other subact.' ,ns of the same parent. Subactions commit and abort independently, and

a subaction can abort without forcing its parent action to abort. However, a commit of a

subaction is conditional. Even if a subaction commits, aborting its parent will abort the

subaction. Actions are classified into two classes, subactions and top-level actions. The

commit of top-level actions is irrevocable.

The two main concepts in ARGUS are guardians and atomic actions. GuardiansI
cre the logical nodes of the system, which maintain complete control of their local data,

and provides access to the data to other guardians via handler calls. Atomic actions are

the moans by which distributed computation takes plzce in ARGUS.

2.2.2. Reed's Proposal
T

r,	 v

In[Reed 831, an implementation of atomic actions is proposed. The proposal has

t#
concentrated mainly o., synchronizing simultaneous access to shared data objects. Both

concurrency and failure atomicity are considered as ba61c for atomicity. The proposal is

particularly concerned with the mechanicf- of implementing recoverable atomic actions in

a distributed computer system, in which the nodes communicate through messages. Each

node is assumed to be capable of providing stable or non-volatile storage termed "atomic

6
stable stc, age".

•

22

The implementation uses "pseudotime" to order the operations on an object. The

operations on data objects are classified into two categories, READ and WRITE opera-

tions. Each object is represented as an "object history" of "versions", with each WRITE

on the object creating a new version. Versions are grouped together to facilitate back-

ward recovery that is performed in case an atomic action has to be aborted. A variation

of the two phase commit protocol is used to commit an action.

2.2.3. Atomic Actions in the Clouds System

The Clouds project[Allchin & McKendry 83] is studying techniques for the construc-

tion of reliable computing systems in environments of machines connected by local area

networks. For reliability, the Clouds operating system uses abstract data types (objects)

and recoverable atomic actions. The system has three logical entities, objects, processes,

and actions. Objects are passive entities, and reside at a single node. Processes initiate

all activity in the system. A process executes on a single node, and communicate only

through objects. Actions are the units of work, and operation invocation on objects takes

place within the context of actions.

An action may complete normally by committing, or complete abnormally by a

aborting. Pessimistic synchronization schemes are used to ensure the atomicity of

actions. If an action has to be aborted, backw ecovery is used to restore the state of

the system. The aim of atomic actions is to implement atomic transactions, with both

indivisibility and totality as basic requirements of atomicity.

2.3. Basic Atomic Actions

Basic atomic actions have similarities to both dynamically identified actions and

recoverable actions. A basic atomic action is a planned atomic action like the recoverable

4

23

atomic action. That is, the boundary of a basic atomic action is statically defined. But,

as with dynamically identified actions, indivisibility is the only requirement of atomicity.

Recoverability is not considered to be a necessary part of basic atomic actions.

Many researchers have taken this view of atomic actions. Lomet studied atomic

actions[Lomet 771 largely from the point of view of process structuring and synchroniza-

tion. The major problems in this area, mutual exclusion, synchronization, and structur-

ing, require only the indivisibility of operations. Hence, there is no need to impose the

requirement of recoverability on atomic actions.

Anderson & Lee [Anderson & Lee 811 looked at atomic actions from the point of

view of supporting damage confinement for different techniques of fault tolerance. Dam-

age assessment and performing recovery are two different phases in supporting fault toler-

ance. Indivisibility is the property which is of interest for damage assessment. Requiring

recoverability implies that the system employs some recovery technique over which the

designer has no control. This is too restrictive and inflexible for fault tolerant applica-

tions.

Campbell and Randell [Cain pbell & Randell 831 needed some language construe', for

asynchronous systems, which could be used to support different fault tolerant techniques. 	
V

They needed the flexibility to perform any recovery method yet combine the different

methods, if needed. Recoverability is too restrictive a requirement for this purpose, and

will not permit the kind of flexibility needed. However, if the construct has the property

of indivisibility, the problem of supporting different recovery techniques is simplified. So,

they too choose indivisibility as the only requirement of atomic actions.

To understand the intuitive notion of indivisibility in somewhat more concrete

terms, Lomet has given a few definitions. One of them is in terms of the restrictions on

24

i
the interactions between the activities inside the atomic action and the activities outside

T
{

the action. This definition is also proposed in(Anderson & Lee 811 and is used

in(Campbell & Randell 83]. An atomic action is defi;..1 in terms of the absence of

interactions:

"The activity of a group of components constitutes an

atomic action if there are no interactions between that

group and the rest of the system for the duration of the

activity."

With this restriction, all of the activity within an atomic action will appear to the rest of

the system to be a single indivisible computation.

This definition does not faithfully translate the meaning of atomicity. It will

guarantee indivisibility, but is overly restrictive in that there can be activities which do

not satisfy the above defnition but still appear indivisible to other activities. This fact is

acknowledged in(Anderson & Lee 81]. We later give a more formal definition of indivisi-

bility. Now let us look briefly at the construct proposed by Lomet to implement atomi-

city.

2.3.1. Lomet's Proposal 	 t`

A language construct was proposed by Lomet to implement basic atomic

actions(Lomet 771. The aim was to provide a facility by which a writer of a procedure

could directly state that a procedure must execute atomically. For this reason, a mechan-

ism was proposed for writing action procedures. An action procedure is identified by the

word action in the procedure header. The notation proposed for action procedures is

shown below.

<identifier>: action (<parameter list>);

tax:

F-

2b

<statement list>

end;

The semantics of an action procedure are same as those of normal procedures except that

action procedures are to be performed as atomic actions. Action procedures may be

nested.

The effect of having action procedures is to shift the responsibility for resource

acquisition and release in a way such that the atomicity of the action procedure is

guaranteed, to the implementor of actions rather than the being the responsibility of the

programmer using actions. Since resources that are accessed only by one process do not

require any special protection, resources are syntactically divided into two classes, shared

and private. The shared and private attributes apply to an object as a whole and not to

its separate components. The purpose of this classification is to simplify the implementa-

tion of atomic procedures.

In order to allow conditional synchronization, some mechanism is needed to delay

the entire action procedure until the test for the conditional synchronization can be

satisfied. For this purpose, the await statement is introduced. It has the following syn-

rr

r

await (boolean expr) then <procedure>

The semantics of the await statement require the process to block at the await statement

the Boolean condition in the statement is true. Then the procedure may be executed.

Since the await statement is allowed inside an action procedure, restrictions on the

Boolean expression are needed. Since the expression may be repeatedly executed until it

evaluates to true, and since some activity outside the action procedure can change the

variables used in the expression so that it eventually becomes true, information could flow

-	 -

26

between activities inside the action and activities outside the action. To prevent a viola-

tion of the atomicity of the action procedure, the await statement must be primitive, and

the evaluation of Boolean expression must not have any side effects.

2.4. Comparison and Discussion

The two issues on which the models differ are (a) how the boundaries of the atomic

actions are defined, and (b) whether recoverability of actions is a basic requirement of

atomicity. From the point of view of defining the boundaries of the atomic actions, recov-

erable atomic actions and basic atomic actions can be grouped into the category called

planned atomic actions.	 i

Planned at-.:.nic actions are atomic actions that wei a planned during the design of

the system and are supported by some run-time mechanism. Atomic actions are

identified and their boundaries are defined during the system design. Both recoverable

atomic actions and basic atomic actions are planned atomic actions in that both tech- 	 -
4

niques define the atomic actions statically.
FF

This is in contrast to dynamically identified atomic actions, where atomic actions	 3

are identified dynamically by looking at the execution history. There is no language con-

struct for atomic actions, and atomicity of activities depends entirely on the particular

execution under consideration. These methods do not provide the programmer with any

mechanism to specify atomic actions, and so are not very useful from the point of view of

designing systems.

In planned atomic actions, we may or may not have recoverability as a basic

requirement for atomicity. As we have seen, recoverability introduces many complica-

tions. It requires some stable storage and the action has to record data on the stable

27

storage at certain times before it can proceed with its computation. Commit protocols

are needed, and methods are needed to retrieve and store data on the stable storage.

Committing becomes more complicated for nested actions.

To support proper committing of nested actions, atomic actions have to be divided

into two classes: top level actions, and subactions (using Liskov's terminology). This

prohibits uniform treatment of all the atomic actions and requires proper classification of

the atomic actions at the design time. Without recoverability all actions are similar in

nature and so nested and top level actions can be handled uniformly in a similar fashion.

Recoverable actions are not suitable for programming fault tolerance. They imply

that some recovery mechanism is employed by the system to ensure recoverability. This

mechanism is fixed, and the designer has no control over it. So, different fault tolerant

techniques cannot be programmed. Moreover, for fault tolerance, some means have to be

provided to ensure continued service, after recovery is performed. In recoverable actions

backward recovery is usually performed, but it does not permit the programming of alter-

nates, which is the method of providing continued service. So, even for the backward

recovery, the scope of recoverable actions is limited. And, it does not permit the pro-

gramming of forward recovery techniques.

Furthermore, as LeBlanc points out in[LeBlane 84] the "all or nothing" definition is

not well suited for real-time distributed systems, simply because many operations in such

systems do not naturally behave in that way. Also, such atomic actions cannot be imple-

mented for systems which have non-recoverable objects. In such systems recoverability

cannot be ensured.

.

	

	 With all these reasons we believe that indivisibility is fundamental but recoverabil-

ity is not. If recoverability is desired, it should be programmed using basic atomic

I

28

actions. By adding the recovery primitives, both kinds of recovery can easily be pro-

grammed using basic atomic actions. A recoverable action is essentially a basic action

with recovery primitives which are automatically invoked. So, a recoverable atomic

action can be built using basic atomic actions, though the reverse is not true. For the

rest of this thesis we will use the term atomic actions to refer to basic atomic actions.

2.5. Requirements for atomic actions

Any implementation of an atomic action must satisfy certain conditions. In this

section we define those requirements. These are general requirements and are indepen-

dent of the type of system or the mode of interprocess communication.

1) Well defined boundaries : Each atomic action should have start and end boun-

daries, and it should have two side boundaries. By side boundaries we mean that if there

is more than one process taking part in the action then the side boundaries of the atomic

action separate C a processes taking part in the atomic action from those which are not.

The start and end boundaries might he spread over several processes. The start boun-

dary consist of the points (maybe in different processes) which define the initial state of

the system at which the atomic action begins its computation. The end boundary
v

correspondingly specifies points which define the state of the system after the computa-

tion has been performed. Together the boundaries enclose the amount of computation

which has been specified to be atomic, and which the implementation should ensure has

the property of indivisibility and atomicity.

The final state and the initial state may be made available in parts, which implies

that the whole of the start boundary and whole of the end boundary need not exist at a

single instance of time, but may be distributed over time. However, it is necessary that

g

in
,t

29

the different processes taking part in the atomic action have a consistent view of the sys-

tem at the initial and final boundaries. That is, the state a process sees at the boundaries

is consistent with the state other processes see at the boundaries. Without this the action

cannot be a coherent entity with each process performing some activities which are a part

of a single operation which the atomic action represents.

2) Indivisibility : This is the most fundamental requirement of atomicity. An

atomic action must not exchange information from any activity outside the boundaries of

the atomic action, in a manner which will violate the indivisibility of the action. To

other activities, an atomic action must be like a primitive operation which transforms the

state of the system from c,ne state to another without having any intermediate states.

Due to the indivisibility requirement atomic actions have the properties of non-

interference, non-overlapping and strict sequencing.

The non-interference property states that for a given initial state, the final state

productd by an atomic action depends only on the computation inside the atomic action,

and is not affected by any activity outside the atomic action. No two atomic actions may

share internal state information and this gives the property of non-overlapping states.
ir Y

Thus, the computation specified by an atomic action is conceptually isolated from all

other concurrent computations. Similarly, an atomic action has the property of strict

sequencing with respect to other atomic actions. If variables are shared between two or

more atomic actions, then the values of those variables, regardless of the concurrency

between actions, are determined by a strictly sequential execution of the actions taken in

some permutation. It should be pointed out that these properties of atomicity can be

viewed as derivatives of the indivisibility requirement of atomic actions.

.I

^4r

30

3) Nesting : Atomic actions may be nested. Nesting permits an atomic action to be

defined in terms of other nested atomic actions, allows modular refinement and structur-

ing of atomic activities, and permits concurrent execution of atomic actions. Only strict

nesting can be allowed, that is, no boundary of a nested atomic action should cross any

boundary of the enclosing action.

Without nesting no concurrency is possible between different actions if they access

the same shared data. Only `independent' actions, that is, the actions which operate on

different data objects, may then execute concurrently. With nesting interleaved execution

of subactions of different atomic actions is possible, while still preserving atomicity of the

actions to which the subactions belong. Nesting also allows concurrent execution of

subactions of the same action; if two subactions are `independent' then they may execute

concurrently. This property can be employed to exploit the inherent parallelism of opera-

tions. Different rules for decomposing atomic actions may be provided to simplify design-

ing concurrent systems, exploit parallelism, and facilitate specifying semantics of systems

utilizing atomic actions.

I - 4) Concurrency : Atomic actions should support concurrency. Atomicity of opera-

Lions can be trivially satisfied by restricting the operations to execute sequentially. In a

system where operations are executed sequentially, there is little reason to introduce the

concept of atomic actions. So, we consider concurrency a basic requirement of atomic

actions, and not simply a factor to be considered for efficiency reasons. Concurrent exe-

cution is made possible by nesting, and independence of actions. Atomic actions should

exploit this and permit the programming of concurrency in systems.

5) Robustness : An implementation should be robust. We include the properties of

fairness, deadlock freeness etc. under this category. This property, is a desired property

i	 , n

i^

ti +7

31

L. ,!
rather than a strict, basic requirement.

1,:

i

r

t

32

CHAPTER 3

RECOVERY TECHNIQUES AND FAULT-TOLERANCE

As computer systems get more complex and ubiquitous, reliability of such systems

becomes more critical. Fault-tolerance techniques enhance system reliability beyond the

point which can be achieved by regular software engineering methods. In this chapter we

will look at the concepts and principles of fault-tolerant software. First some basic

definitions and concepts relating to fault tolerance are discussed. Then some techniques

for constructing fault tolerant software are described. The techniques are classified into

two groups: those which are based on backward error recovery, and those which are

based on forward error recovery. Techniques in both these groups are separately dis-

cussed. In each case, first the techniques for sequential systems are described, and then

the proposed extensions of the approaches to concurrent systems are discussed.

3.1. Basic Concepts

The reliability of a system is a measure of the success with which the system pro-

vides the intended service. A failure of a system occurs when the the behavior of the sys-

tem deviates from that required by its specification [Anderson & Lee 811. An erroneous

state of a system in an internal state which could lead to system fail ure[Anderson & Lee

811, and an error is a part of an erroneous state which constitutes a difference from a

valid state[Anderson & Lee 811. The cause of an error is a fault[Anderson & Lee 811 and

an error is a manifestation of a fauit[Anderson & Lee 811.

The traditional approach to achieving reliability in computing systems has been

based largely on fault avoidance[Randell et. al. 781. Fault avoidance is concerned with

AW

I<

33

4
techniques to avoid the introduction of faults during the design and construction of the

system. The use of high level design strategies, proven technologies, testing and

verification methodologies, are all examples of techniques used for fault avoidance.

Another approach for improving system reliability is that of fault-tolerance.

Fault-tolerant techniques use protective redundancy to ensure t'.eat occurrences of errone-

ous states do not result in system failures. The goal of fault-tolerance is to tolerate faults

in the system, such that service can be provided despite the presence of faults. By the

nature of the two methods, fault avoidance and fault tolerance are actually complemen-

tary rather than competitive approaches to system reliability.

ault-tolcr an t techniques can be regarded as comprising of four phases, which pro-

vide the general structure for implementing fault-tolerance[Anderson & Lee blj. The four

phases are 1) error detectica, 2) damage confinement and assessment, 3) error recovery,

and 4) fault treatment and continued service. The particular strategies may vary in

different phases and the order in which these phases are carried out may vary, but the

starting point is always error detection. There can be much interaction between the

different phases. The additional components that support these various phases can be

considered to constitute the ` protective redundancy'. 	 i

1) Error detection: In order to tolerate a fault in a system, its effects must first be

detected. Faults cannot be directly detected; only their manifestations may be observed.

Thus the usual starting point for fault tolerance techniques is the detection of an errone-

ous state, that is a state which, in the absence of any corrective actions, could have led to

a system failure. The success of any fault tolerant system is critically dependent upon the

effectiveness of the techniques applied for error detection.

9R

-	 1j•--1I

34

An useful technique for error detection can be based on checking if the outputs pro-

duced by the system conform to the specification. For such a technique there are three

criteria for an ideal test(Anderson & Lee 81). 1) The checks should be based solely on the

specification, and should not be influenced by the design of the system. 2) The checks

should also be independent of the system with respect to its susceptibility to faults. 3)

The checks should be complete, that is, should completely represent the specifications and

detect all occurrences of errors on the state the checks are applied. In practice, it is not

possible to construct ideal tests, due to practical and co-t considerations. Often tests are

applied to check the acceptability, rather than correctness, of the system output, and are

like the executable assertions [Andrews 79]. Redundancy in data structures can also help

detect and correct errors[Taylor et. al. 80b, Taylor et. al. 80a].

2) Damage confinement and assessment: Measures for error detection can hope to

identify some errors, but error detection cannot guarantee that all the damage caused due

to the fault will be identified. In case of an error, much more of the system state might

be in error than that on which the check is applied. Because there may be a substantial

delay between the erroneous transition caused by a fault and the detection of any error,

the damage can spread through the system. Thus, before attempting any error recovery

it may be necessary to assess the extent of the damage caused by tl-. fault. This assess-

ment will depend on the structure of the system, and any constraints (known or incor-

porated by system design) that are placed on the flow of information in the system.

Atomic actions provide a useful structure for damage assessment [Anderson & Lee 81].

3) Error recovery: Following error detection and damage assessment, the system

must recovery from the error. The aim of this phase is to eliminate errors from the sys-

tem state. The techniques for error recovery aim to transform the current erroneous sys-

tj

35

tem state into a well defined and error free system state from where normal computation

can begin. Without this state transformation, system failure is likely to occur. Hence,

error recovery is one of the most important aspects of fault tolerance and is one the area

where most work has been done. Different techniques are usually applied for unantici-

pated damage and anticipated damage.

4) Fault treatment and continued service: The first three phases return the system

to an error free state. However, an error is a manifestation of a fault, and the removal of

the error does not .Wean the removal of the fault which produced the errors. Unless meas-

ures are taken to treat the fault, it may continue to produce errors. This phase provides

treatment for the fault itself, and can be divided into twc phases. First fault location is

done, in which the fault is accurately identified. This may not be trivial since the rela-

tionship between faults and errors can be complex, and the detection of the error does not

necessarily identify or accurately locate the fault. In the second phase of system repair,

often s; stem reconfiguration or fault repair is done to avoid or remove the fault.

The c: ror recovery phase, unlike the first two phases, is not a passive phase, in that

it changes the state of the system. The aim is to eliminate the error from the system

stz te. If the fault is anticipated during the design of the system, the damage predicted by

the damage assessment phase may be anticipated damage[Anderson & Lee 81]. When the

fault ;s unanticipated, like a design fault, an accurate prediction of the damage cannot be

made and the damage i s called unanticipated[Anderson & Lee 811. Anticipated and unan-

ticipated damage usually are handled by different recovery strategies.

The techniques for error recovery can be classified into two categories: backward

recovery and forward recovery [Anderson & Lee 81, Randell et. al. 781. Backward error

recovery involves backing up of one or more processes in the system to a previous state

w^

4

38

which was saved and which is hoped to be error free. The idea is that if a system is

restored to a state it occupied prior to the manifestation of a fault, then all errors result-

ing from that fault will be removed. In contrast, the forward error recovery schemes aim

to make further use of the state in which the error has been detected. It aims to identify

the error and, based on this knowledge, correct the system state containing the error.

Forward recovery measures are usually employed for performing recovery from

anticipated damage. Due to the nature of forward recovery, it is dependent on damage

assessment and the error identification. Consequently, it is has to be designed specially

i
for a particular system, and is an inappropriate rr.eans to recover from unanticipated

faults. Due to these it is impossible to implement it as general mechanisms [Anderson &

Lee 8111.

In contrast, backward recovery is capable c providing recovery from arbitrary and

unanticipated faults. It is a general concept applicable to all systems, and can easily be

provided as a mechanism. However, due to the state restoration, backward recovery is

usually more expensive than forward recovery, and is not applicable to systems which

have unrecoverable objects[Anderson & Lee 8111.

With this background, now we will describe some of the techniques for constructing

fault-tolerant software. We will first discuss the different strategies for providing fault

tolerance that employ backward error recovery, and then we will discuss the strategies

that are based on forward error recovery. Within this broad classification we will

separately discuss the techniques for sequential and concurrent systems.

4.

I[

I^

	 37

3.2. Strategies Based on Backward Error Recovery

In this section we will discuss the strategies that have been proposed for construct-

ing fault tolerant software, and which employ backward recovery for their error recovery

phase. First the recovery block scheme is described, which is applicable to sequential sys-

tems. Then the schemes based on the conversation construct are discussed. The conver-

sation construct is an extension of the recovery block scheme to concurrent systems.

Finally, other strategies for recovering in concurrent systems, which are not based on the

conversation construct, are discussed.

3.2.1. The Recovery Block Scheme

The recovery block scheme[Horning et. al. 74, Randell 751 provides a technique for

structuring sequential programs so as to provide means of tolerating faults whose exact

.ocation and nature may not be known. It utilizes a backward error recovery method for

performing recovery from an error, and so is capable of handling unanticipated faults.

Recovery blocks can be considered as providing a means for expressing atomic actions in

sequential systems[Randell et. al. 78], and for specifying a final programmed check on the

results of an atomic action.

The error recovery scheme depends on the provision of recovery points. A recovery

point is the program location at which the state of the process is recorded, to which the

process may be later reinstated. Different techniques can be used for supporting recovery

points. The recovery points are planned, that is, the locations at which recovery points

are to be established are stated in the program itself.

Error detection in a recovery block is done by an acceptance test. Acceptance tests

attempt to enforce some standard of behavior lower than absolute correctness, since test-

f [

I I .

-•--... __ _4I

4 J

1

l

38

ing for absolute correctness is impractical. In the recovery block scheme an acceptance

test is a function applied to the state of the system after the computation is performed,

and tries to determine if the state of the system is acceptable. It is hoped that the accep-

tance tests would identify states that have major errors. It usually does not try to iden-

tify the nature of the error, and the `failing' of an acceptance test signifies the presence of

errors in the state.

If an acceptance test fails, it is assumed that the system component which was

responsible for producing that state has some design fault, and so the damage is assumed

to be limited to that component. If this assumption turns out to be incorrect, then the

system component to which this component belongs is assumed to be having the fault and

the damage limited to it. After error recovery is successfully performed, continued ser-

vice of the component is provided by `alternates', which act as standby-spares.

The functioning of the recovery block scheme is as follows: a recovery point is esta-

blished at the start of the recovery block. The first algorithm, called the `primary', of the

recovery block is then executed, followed by the evaluation of the acceptance test of the

recovery block. If the acceptance test fails, backward recovery is invoked and the state of

the process is reset to the state recorded by the recovery point of the recovery block.

Then the next algorithm, called an `alternate', is executed. Since, the state of the process
f

was reset to the state at the start of the recovery block, everything the primary had done

is discarded, and the alternate starts in a hopefully correct state. After the alternate is

executed, the acceptance test is again evaluated, and if it fails again, another alternate is

executed, again after first restoring the state of the process to its state at the start of the

recovery block. If the recovery block runs out of alternates without successfully evaluat-

ing the acceptance test, then the recovery block `fails', and to avoid failure of the system,

_i
_r

f

39

recovery and fault tolerance must be attempted at a higher level of abstraction, in some

t	 enclosing recovery block.
r

Because each of the alternates start with the same state at the start of the recovery

block, their designs can be independent of each other. The designer of an alternate need

not have any knowledge of the design of other alternates, and has no responsibility for

coping with any damage that may have been caused by other alternates. For better

results it is necessary that the alternates be independently designed, such that the `fault

coverage' increases. If all the alternates have the same faults, recovery block scheme will

not be of help. The underlying assumption is that the alternates are independent of each

other such that the faults in different designs are not correlated. On subsequent uses of

the recovery block, possibly with different input data, the primary is again used.

The recovery block scheme is conceptually quite simple, and the only mechanism

needed is the mechanism to create recovery points and reinstate the state of the system

automatically, if the acceptance test fails. It can be extended to multilevel

systems[Anderson et. al. 78[. An implementation of recovery blocks is described

in[Anderson & Kerr 761.

3.2.2. Extensions of Recovery Block in Concurrent Systems

Providing backward recovery in sequential systems is relatively straight forward.

Means are needed to record a state and restore a previously recorded state, if needed.

However, the situation becomes more complex in a concurrent system, due to the interac-

tion between the different processes of the system. An assumption of backward recovery

is that the state to which the system is reverted back, should be error free. In backward

recovery, since the cause of the error is not determined, all the computation performed

40

since the recovery point is considered as suspect, and consequently if a process performs

recovery, any other process that may have communicated with the computation that is

being discarded, must also recover. For instance, if a process detects an error and rolls

back to its nearest recovery point RP, then information which was exchanged between

this process and other processes from RP to the error detection point must be revoked.

This will cause other processes to roll back. Communication causes dependencies between

the processes, which forces a process to recover due to error detections in other processes

with which it has interacted.

Let us consider an example. Suppose there are two processes P i and ' ' 2 , which

have the recovery points RP 1 and RP 2. Suppose P i receives information from P2 before

RP 1 , sent by P 2 after RP 2 has been established. Also suppose P 2 receives information

from P 1 , after the recovery points RP 1 and RP 2 have been established. If P 1 performs

recovery and reverts its state back to the state at RP 1 , then the process P 2 will have to

recover to RP 2 since it can no longer depend on the communication with P 1 , which has

been discarded by P 1 . Due to the interaction between P 1 and P 2 between the establish-

ments of RP 1 and RP 2, P 1 will have to further perform recovery, and recover to a

recovery point earlier than RP 1
1
 So, recovery initiated by P 17 becomes the cause of

further recovery by P1.

The reason of this cyclic dependency for performing recovery is that the recovery

points of different processes are not well coordinated with the communication between the

processes. Unless the process interactions are properly controlled such that the process

interactions and recovery points are well coordinated and cyclic dependencies are avoided,

an uncontrolled rollback may result, which is called the domino effect[Randell 751.

4

y	 Ai

41

To restrict communication between processes in such a way that the communication

is well coordinated with the setting of recovery points of the processes and the domino

effect is avoided, the conversation construct was proposed(Randell 751. A conversation is

a two-dimensional enclosure of recoverable activities of interacting processes, and forms a

recoverable interacting session(Kim 82(. It is a two dimensional recovery block, which

spans two or more processes, and creates a boundary which process interactions may not

cross.

The conversation construct works as follows. Each process sets a recovery point

when it enters the conversation construct. The set of recovery points at the entry of the

conversation together form the recovery line of the conversation construct. Once inside

the conversation construct, a process may interact only with the activities of the

processes that are inside the same conversation, and is not permitted to interact, directly

or indirectly, with any process outside the conversation. The part of a process taking

part in a conversation forms a recovery block like structure. Each process has its own

acceptance test and alternates. When a process evaluates its acceptance test, it is

required to wait until the other processes have evaluated their acceptance tests. If all the

acceptance tests succeed then the processes leave the conversation. However, if any of the

acceptance tests fail, all the processes inside the conversation must recover to their

recovery points at the entry of the conversation. The set of acceptance tests together

forms the test line of the conversation block.

In essence, the conversation construct is trying to restrict communication between

processes such that the computation inside the conversation forms an atomic action. The

restrictions imposed ensure that no activity inside a conversation interacts with any

activity outside the conversation. Due to this restriction only the processes taking part in

1 x

i

x i

42

d to perform recovery.

s of the conversation scheme can be summarized as follows[Kim 82,

Randell 751:

1) A conversation defines a recovery line as a line which processes do not cross dur-

ing the rollback.

2) Processes enter the conversation asynchronously.

3) A conversation defines a test line which is an acceptability criterion for the
f

results of the conversation. A test line can be viewed as the acceptance test for the

conversation.

4) Process cooperate in error detection, and if an error is detected, regardless of the

source of error, all processes must perform recovery.

5) No interaction may take place between activities inside the conversation and the

activities outside the conversation block.

6) The conversations may be nested, but only strict nesting is permitted.

Some implementations of the conversation construct have been proposed. In[Kim

821 A proposal has been made for the mechanization of the conversation scheme which is

based on monitors. Special monitors are proposed with access restrictions on processes to

satisfy the restrictions of the conversation scheme. An implementation of the conversa-

tion construct in the language Concurrent Pascal is described in[Shrivastava 791.

3.2.3. Dynamic Techniques

There are two major advantages of the conversation construct. The first advantage

is that the recovery line is statically defined. That is, the set of recovery points to which

4	 ^

F.
	 43

the processes should roll back, in order to establish an error free state, is simply the set of

recovery points set up by the processes when they entered the conversation. As a conse-

quence of the property that the recovery line is statically defined, the amount of recovery

needed, in case an error occurs, is fixed and statically determined, and consequently, no

domino effect can take place. These properties arc obtained by imposing restrictions on

the interactions between the processes. These restrictions are reflected as restrictions on

the system structure during the design time, and requires the system designer to follow

special design restrictions for the construction of fault tolerant software.

Instead of imposing restrictions on process communication, an alternative approach

for performing rollback is to keep a record of the process interaction, and based on this

record determine which set of recovery points together form the recovery line. With the

knowledge of past interaction between processes, if a process is rolled back (due to error

detection, or due to the rollback of another process with which it interacted), it can be

determined which other processes should roll back. This approach does not need support

from the system designer, and recovery can be performed by the underlying system.

However, in its simplest form, this approach does not prevent the domino effect from

occurring. To prevent the domino effect the state of the processes have to be saved at

points other than the recovery points. In this section we will briefly describe some of the

proposed methods, which rely on the history of interaction between processes for perform-

ing recovery.

Let us first consider those methods which dynamically determine the recovery line,

but have no provision for preventing the domino effect. The chase protocols of Merlin

I
and Randell[Merlin & Randell 781 are an example of such a method. The method uses the

occurrence graph model to determine the recovery line. In the model the occurrence of an

I44

event is denoted by a `bar' and the input to the bar indicate which conditions were neces-

sary for the event to occur. The conditions are called `places'. A restorable condition (a

recovery point, for instance) is represented by a restorable place. Simply stating, the

detection of an error makes some places and bars invalid. The goal for performing proper

recovery is to find a subgraph that contains all the invalidated places and bars, such that

there are no outgoing arcs from this subgraph to other subgraphs, and the incoming arcs

come directly from restorable places. This subgraph contains the computation to be dis-

carded and the restorable places from which the input arcs to this subgraph start,

together form the recovery line.

An occurrence graph represents the actual occurrence of events during execution,

and pertinent conditions which actually influence them. Communication between activi-

ties of processes will be reflected as input and output arcs from bars. Setting of a

recovery point will be represented as a recoverable place. So all the history of process

interaction is captured in the occurrence graph, and is used when the recovery is per-

formed. The recovery line is the set of recovery points in processes, such that no process

has communicated with any other process after its recovery point (no outgoing arcs from

the subgraph). The way recovery line is determi ►:ed, there is no mechanism to limit roll

back, and the domino effect may take place.

The scheme of Wood[Wood 81[is an optimized implementation of Merlin and

Randell's scheme. A recovery point RP in a process P is called a direct propagator to a

recovery point RP' in the process P, if information flows from P to P, and RP and RP'

are active recovery points. The scheme requires that information about direct propagator

be kept for each recovery point. If each process is aware of the recovery points to which

each of its own recovery points is a direct propagator, then it knows where it should 	 _

zjr-

r+T1

45

invoke recovery in the event it has itself to recover. Methods are proposed to efficiently

keep this information, and algorithms are given to use the information to determine the

recovery line. This scheme too, like the chase protocols, has no means for controlling the

amount of roll back, and the domino effect is not prevented.

There are other schemes which dynamically determine the amount of rollback

needed, and also prevent domino effect from occurring. The programmer-transparent

scheme of Kim is an example[Kim 80, Kim 781 of such a method. However, there is a

price for this property. Extra recovery points are set up by the system, besides the one

that are defined by the system designer. These extra recovery points called branch-RPs,

are established immediately before any interaction (in the scheme the processes interact

via monitors, and are responsible for preventing the domino effect. If a process P rolls

back, all its interactions are revoked. Any process which had interacted with P only

needs to roll back to the branch-RP that was established just before the interaction with

P. If no branch-RPs were established other processes will have to roll back to their

recovery points, which might revoke other interactions and cause further roll back.

The problem of state restoration has been formally discussed by Russel in[Russel

801. Propagation of rollback is categorized into two categories, and then conditions are

derived under which no domino effect can take place.

3.2.4. The Deadline Mechanism

Specifications of a real-time system often include real-time constraints. Incorrect

design or implementation of the system can cause timing faults which can result in sys-

tem failures. The deadline mechanism [Campbell et. al. 79, Horton 791 was proposed to

aid in the design of fault-tolerant real-time systems.

1

ti

46

The mechanism is based upon the recovery block mechanism. Two algorithms are

provided for each service subject to timing constraints. The "primary" algorithm pro-

duces a better quality service than the "alternate". The alternate is a simpler algorithm

which produces acceptable results in a known, fixed length of time. The aim is to ensure

that either the primary or the alternate completes before the deadline. The acceptance

test of the recovery block is replaced by a centralized scheduler and supervisor.

The difference between the deadline time and the time it takes to complete the

alternate is called the Slack time. The deadline works as follows. First the primary is exe-

cuted. If it produces acceptable results within the slack time, the program can be exited.

However, if the primary module is not completed within the slack time due to some time

or design fault, its execution is terminated and the alternate module is invoked (which

will complete before the deadline, due to the way slack time is defined). An alternate pes-

simistic strategy would be to first invoke the alternate module, and store the results it

produces in a cache. The primary is then attempted. If the primary fails to complete

before the deadline, the results of the alternate are used.

3.3. Strategies Based on Forward Error Recovery 	

.y y'{

In the schemes based on backward recovery, the state of some component during

the error recovery phase is changed to the initial state of that component. A scheme can

be regarded as `forward' if the states of some of the variables involved in recovery are

different from their initial states. A forward recovery action is based on the knowledge

about the semantics of the component for which recovery is planned, and has to be expli-

citly programmed by the programmer. Forward recovery also requires accurate damage

assessment and the knowledge about the nature of the fault. A framework for supporting

forward recovery can be provided by the notion of exception and exception handling. The

47

framework of exception handling is general enough to handle backward recovery also. In

the next section we will briefly discuss the exception handling framework.

3.3.1. Exception Handling

To provide fault tolerance, redundancy must be added into the system. To minim-

ize the increase in complexity due to complexity, the system must be carefully structured

and controlled. Some framework is needed within which the four constituent phases of

fault tolerance can be implemented, and the abnormal activities (the measures of fault

tolerance) of the system sep2rated from the normal activity of the system, and automati-

cally invoked when required. A framework for fault tolerance can be provided by the

notion of exception, exception conditions and exception handler. Here we will briefly dis-

cuss the exception candling framework described in[Anderson & Lee 81, Campbell & Ran-

dell 83).

The abnormal responses of a component are referred to as exceptional responses or

exceptions. Measures that are provided within the program for dealing with ail exception

are termed as the handler for that exception. In case of an exception, the exception

mechanism of the system automatically invokes the handler for the exception, by forcing

a change in the flow of control of the program. If a service provided by a component is 	 '

invoked with an invalid set of parameters, the component may return au interface excep-

tion. Similarly, if a component cannot tolerate a fault it has detected, it may return a

failure exception. If a component returns an exception, it is said to signal exception to the

component that requested its service. An interface exception need not always indicate the

presence of a fault, while the failure exceptions must Ee associated with the presence of

faults.

I

48

If a component either receives an abnormal response from some some component it

invoked or detects an error, it raises an exception, and invokes fault tolerance measures.

Recovery is continued until the component either returns to its normal activities or sig-

nals an exception. The flow of control within a component changes to an exceptional flow

of control as a result of a raised exception, and executes the exception handler for the

raised exception. Note that an exception that is signaled in a component is handled in the

component that invoked it, while an exception that is raised N handled inside the com-

ponent it is raised.

If fault tolerance measures are successful, a handler may p ovide a normal control

flow return from the component which handled the exception to the component that

invoked that component. If the fault tolerance measures are unsuccessful or inadequate, a

handler should signal a failure exception. Usually no means are provided to resume the

activity that signals the exception, after the exception has been handled. This is called

the termination model, as opposed to the resumption model. It has been argued that the

termination model is sufficient for exception haridling[Liskov & Snyder 791, though the
t

proposal in[Goodenough 75] has provisions for both.

3.3.2. Exception Handling in Asynchronous Systems

Exception handling in concurrent systems is complicated by the possibility of com-

munication of erroneous information, which requires coordination of processes involved in

recovery. The situation is further complicated by the fact that multiple exceptions can

simultaneously occur in different processes, and different exceptions in different processes

might be caused by the same fault in the system. Generalizing the exception handling

framework to concurrent systems requires additional system structure concerning the

cooperation and coordination of the individual processes. In this section we describe the

49

proposal by Campbell and Randell for supporting exception handling in asynchronous

systems(Campbell & Randell 831.

Atomic actions are chosen as the basic structure to support fault tolerance. An

atomic action is considered as composed of other nested atomic actions called internal

atomic actions. An atomic action provides the context for the application of error detec-

tion and damage assessment techniques. They propose two principles for structuring fault

tolerance within asynchronous systems:

1) The operations provided by a fault tolerant asynchronous system should be

implemented by atomic actions.

2) Each fault tolerance measure should be associated with a particular atomic

action and should involve all of its processes.

If a component of an atomic action raises an exception, it indicates the detection of

an error. The raising of an exception within a atomic action requires the application of

abnormal computation and mechanisms to handle the exception. If the recovery meas-

ures succeed, the atomic action should produce the results that are normally expected

from. its activation. If an exception is raised in an internal atomic action, then the fault

tolerance measures of that internal action should be applied. However, if the internal

action signals an exception, then that exception is raised in the atomic action itself.

The main features of the proposed scheme are described below. If one or several

components of the atomic action raise an exception, the fault tolerant measures neces-

sarily involve all the processes of that atomic action. Every component of the atomic

action responds to the raised exception by changing to an abnormai activity, and each

proce,.s whose normal control flow is within one of the components changes to an excep-

tional control flow, which executes a handler for that exception. This handler either

R

Y

`'. n

A

50

returns the component to normal activity or signals a further exception.
t
i

Each component of an atomic action is restricted to return the same exception.

This ensures that the components agree on the abnormal result that should be returned

to indicate the failure of the atomic action. If any of the components for an atomic

action do not have a handler for the raised exception then all of the components should

signal an atomic action failure.

An exception resolution scheme handles the situation when multiple exceptions are

raised inside an atomic action. The aim of the resolution scheme is to resolve the multi-

ple exceptions into a single exception for the atomic action, such that all the components

can then perform recovery for the same exception. For exception resolution, a exception

hierarchy is established. Exceptions are o -ized in a lattice structure, with universal

exception as the upper bound of the lattice. In case of multiple exceptions, the resolution

scheme returns the exception that is the upper bound of the smallest sub lattice contain-

ing all the raised exceptions. Each atomic action has its own exception lattice. The

scheme is flexible and can incorporate backward recovery, and use the two recovery

schemes in a complementary manner.

3.4. Combined Recovery

It has been suggested that the two recovery techniques should be considered as com-

plementary rather that competitive[Melliar-Smith & Randell 77, Cristian 82, Anderson &

Lee 81]. Forward recovery technique uses some part of the current state and tries to

modify such that an error free state can result. Since backward recovery is independent

of the type of fault and the actual erroneous state, application of forward recovery does

not violate the applicability of backward recovery, and backward recovery can success-

„:,

It
bl

fully be applied after forward recovery has been attempted. The class of faults which the

two methods aim to handle are also different. Forward recovery is usually applied for

anticipated faults, while backward recovery aims to cope with unanticipated faults. So,

the two techniques should be considered as complementary, and mechanism for both

should be provided.

A framework based on exception handling was proposed by Cristian to incorporate

both recovery techniques [Cristian 821, and was later extended to asynchronous systems

by Campbell and Randell[Campbell & Randell 83]. The technique is based on failure

exceptions and default handlers. If an unanticipated exception occurs (i.e. one which was

not anticipated by the programmer) it is called a failure exception. By definition of a

failure exception, if a failure exception is detected, there may riot be a handler to handle

the exception. The suggestion is to associate a default handler, provided by the system,

t
which is automatically invoked in case of a failure exception.

The default handler must also try to mask the error and try to bring the system to

a consistent state, failing which it must signal a failure. Since, a failure exception is an

unanticipated error, it can be best handled by backward recovery, and consequently, the

default handler should attempt backward recovery. If a recovery block structure is used

for backward recovery, a failure exception may be detected because some component used
I

by the primary signaled a failure excep' ion, or because the acceptance test of the recovery

block fails. If a failure exception is detected in the primary algorithm, the default handler

restores the state from the recovery cache, and executes the alternate algorithm.

The state restoration provides the consistent state, and the aim of the alternate is

to mask the failure detected by the primary, by achieving the required post condition in a

different way. If the alternate also detects a failure exception, a different alternate is

52

tried, until the recovery block runs out of alternates. In the case that there are no more

alternates left, the recovery cannot be performed in the current recovery block and so the

failure of the last alternate results in a signaling a failure exception to the user of this

recovery block.

In the framework of exception handling, the two forms of error recovery can be

combined. Exception handling for anticipated faults provide th , forward recovery, and

default exception handling based on automatic backward recovery provide the backward

recovery. The two techniques are used in a complimentary manner, since backward

recovery is invoked when forward recovery technique cannot be applied, and forward

recovery is preferred for anticipated faults.

3.5. Atomic Actions and Fault Tolerance

In this section we will discuss the usefulness of atomic actions for damage

confinement and error recovery. Damage confinement is concerned with the structure of

activities within a system, and the interaction between the components of the system.

Concurrency in a system complicates the problem of damage confinement, due to the ease

with which the damage may spread through a system. Atomic actions can be used for

structuring the activities of the systems, such that damage confinement is

facilitated [Anderson & Lee 81].

By definition of atomic actions, if there is no interaction between the activities of an

operation and the activities outside the operation, then the operation is an atomic action.

Damage spreads through the system through interaction between activities. So, if the

fault occurs inside an atomic action, and is also detected inside the same atomic action,

then the damage caused due to the fault is confined to the atomic action. If atomic

t

ti

4

4

1

53
i

actions can be identified in the system, then the damage due to a fault is confined to an

atomic action containing all the computation between the first erroneous transition due to

!	 the fault and error detection. The problem of damage confinement can then be reduced

tY
to finding the `smallest' atomic action which satisfies this requirement. There are two

different strategies to identify such an atomic action.

Dynamic measures start with an initial estimate and then refining it. To implement

such techniques, it will be necessary to provide measures to explore, in some fashion, the

data of the system. These exploratory measures which attempt to investigate the spread

of damage can be viewed as searching for and identifying atomic actions to which the

damage is confined, at run time. Atomic actions identified in this manner are dynami-

cally identified atomic actions.

Static damage assessment techniques are often used for apriori damage assessment
1

within systems. For these techniques to be successful, the atomicity of the computation

to which the damage is confined, is assumed by the system designer, and must be enforced

by providing measures and mechanisms. The run time structure that is assumed by the

system designer should actually be present during execution. The mechanisms that

enforce this structuring by confining the activity of a process, and hence providing con-

straints on the flow of information within the system enable planned atomic actions to be

specified and supported. With planned atomic actions, static assessment of the damage is

possible.

Many techniques for supporting fault tolerance have used the property of atomicity.

The conversation block has the restriction that there may be no interaction across the

boundaries of the conversation. This restriction guarantees the atomicity of the computa-

tion performed inside the conversation. The recovery block in sequential systems, and the

:o

54

conversation block in concurrent systems, both form atomic actions with recovery primi-

tives. The dynamic techniques for backward recovery aim to identify that part of the

computation which had no interaction with the rest of the computation. This approach

essentially tr*,.es to identify atomic actions dynamically [Anderson & Lee 81, Best & Ran-

dell 81]. For forward recovery in asynchronous systems the approach proposed by Camp-

bell and Randell [Campbell & Randell 83] utilizes the framework of planned atomic

actions.

So, atomic actions are useful for damage confinement, and performing recovery.

Many techniques utilize the atomicity criteria for providing fault tolerance. In the next

chapter we will show that atomic actions are actually necessary for performing backward

or forward recovery.

bb

CHAPTER 4

ATOMICITY OF ACTIONS AND RECOVERABILITY

In this chapter we discuss the relationship between atomicity and recoverability of

actions. A model of computation is developed in which actions are defined; this definition

is applicable both to sequential and to concurrent systems. For this model, atomic

actions are defined as actions which satisfy certain conditions. Restrictions on actions that

make a general action an atomic action are specified. Recoverability of actions is defined

using this model and then the relationship between recoverability and atomicity of

actions is shown.

4.1. System Model

In a software system, the activities of the system are generated by by system com-

ponents referred to as processes. A process can be thought U; as the sequence of primitive

operations generated when a program or set of programs is executed [Anderson & Lee 811.

A primitive operation is an operation that is indivisibly executed by the hardware. We

consider a system consisting of a set of communicating processes. No assumption is

made about the relative speeds of processes. The processes communicate with each other,

and a process may affect control of another process. No form of interprocess communica-

tion is assumed. Processes may communicate through shared memory or by message

passing. We assume an interleaved model of computation; the execution of the primitive

operations of different processes may be interleaved. An action is generated when

sequences of primitive operations are executed by some processes. For the purposes of

fault detection and recovery, an action is considered as the basic unit of computation.

V

t

55

1
The state of a concurrent system at any instant is specified by a parr (S,C), where

S is the memory state of the system, and C is the control vector. The control vector C

of the system is the set of control points, one for each process in the system. The control

point for a process at any instant is specified by the contents of its program counter, that

is, the location of the statement to be executed next by the process. The memory state of

the system is specified by the set of values of all the variables in all the processes of the

system at the time instance under consideration. This definition of memory state is simi-

lar to the one proposed in[Hoare & Lauer 741. The value of any variable can be retrieved	 -

from the memory state by using appropriate retrieve functions. The value of a variable x

in a state S will be denoted by x(S). A similar definition for state for a concurrent sys-

tem has been used in [Lamport 83, Owicki & Lamport 82[. Wherever clear and unambi-

guous, we will use the term state to refer to the memory state of the system.

Definition 4.1 : A state (S,C) is defined to be a viable state as follows:

(a) The initial state of the system is a viable state.

(b) Starting from the initial state, there exists some normal execution of processes which

will bring the system to the state (S,C).

Viable states are the states which the system may assume during a normal execu-

tion. A normal execution is characterized by an execution that has no erroneous transi-

tions [Anderson Lee 1981 It is assumed that the system is such that starting in a non-

viable initial state some normal execution of the system would lead to a non-viable sys-

tem state. For the purposes of recovery, we note that a state of the s) stem after a suc-

cession of states containing errors may be a valid system state [Anderson Lee 1981 This

occurs in the case an error is detected and a successful recovery from the error is per-

57

formed. Such a state will also be a viable state, as some error free computation of the

system could take the system to this state.

4.2. Actions

We regard an action as having statically defined boundaries. The primitive opera-
_

tions of different processes that are enclosed inside these boundaries comprise the body of

the action. A computation of the action is an execution of the primitive operations in its

body. For example, in sequential systems actions may correspond to a statement, a

block, a procedure, or a control structure. This view of an action leaves the definition of

the boundaries of an action to the user. However, the boundaries of an action may not be

chosen arbitrarily. The restrictions on the boundaries of actions are described later. We

define an action for a concurrent system as follows.

Definition 4.2 : An action A is a 3-tuple.

A = (1, F, P)
where,

1 is the initial boundar y of A
F is the final boundary of A
P is the set of processes taking part in A.

The initial boundary I, is the set of initial points, one for each process p in P. The	 4

initial point of a process p for tLe action A specifies the start of its computation contri-

buting to the computation of the action A. Similarly, F is a set of final points, one for

each process in P. The final point of a process p specifies the end of the computation

contributing to the computation of the action A. The initial point of p will be

represented as p(I) and the final point as p(F).

We define the state variable set of an action A, as the set of all the variables in the

domain of the computation of A. The initial state S-(A) of an action A is the set of

i

58

values of the variables in the state variable set of A just after each of the processes has

crossed its initial point. Similarly, the final state Sf (A) is the state of the variables in the

state variable set of A just before the processes cross their final point. If the action A is

well-defined, the initial and final states of A will be uniquely defined for each computation

of A. In our model we assume that the actions are well-defined.

During the computation of an action the processes taking part in the action need

not cross their respective initial and final points synchronously. This gives rise to the

possibility that the variables in the state variable set of A have different values at initial

points for different processes. For well-defined actions the boundaries are chosen in such

a way that the initial and final state of the action are defined, and the states of the vari-

ables in the state variable set of A have the same values at the initial (final) point of each

process taking part in the action. The initial (final) state of an action can then be

regarded as the state of the variables in the state variable set of A when any one of the

processes taking part in the action is at its initial (final) point. Moreover, the initial

(final) boundary should be such that the control points of the processes taking part in the

action can simultaneously be at their respective initial (final) points. However, the

definition imposes no restriction on how the computation of an action may interact with

the activities outside the action.

An action A can then be regarded as an operation that, when executer!, transforms

the state from S (A) to S (A). There may be intermediate states in transition from

S(A) to Sf (A). We can, therefore, represent the computation of an action A as a

transformation sequence of the form

A=Si(A), s I (A), s 2(A), ...,sn (A), Sf(A)

' 1

^4

59

The states a,(A),1<i<n are intermediate atatea. In the case when there is no inter-

mediate state (n=0), the action is a primitive operati•.a which is executed indivisibly by

the hardware. For the rest of the chapter we will refer to the transformation sequence

representing the computation of an action as the transformation sequence of that action.

Due to the non-determinism introduced because of concurrency, many transformation

sequences of an action are possible, even for a given initial state.

We assume that computation of an action modifies some variables in its state vari-

able set, and the final state of an action is not same as its initial state. This assumption

eliminates the trivial case where the initial state is same as the final state. However, the

assumption also disallows an action consisting of serially reusable processes, which only

have effect on the outside world. As we are interested in modeling the system and not its

effect on the outside world, such processes are not of interest to us.

The states in a transformation sequence of an action are partial states of the system,

since they define the values of a ubset of the variables in the system. Since we often need

to consider the state of the system, we need to define the state of the system for these

partial states. For this purpose, we consider a partial state as a system state in which the

variables that do not contribute to the partial state are labeled as don't care variables.

Two partial states are disjoint if every variable is labeled don't care in at least one of the

two states. We have the following definition of compatibility of two partial states.

Definition 4.3 : Two partial states S and S' are said to be compatible if every variable

in S (S') either has the same value as in S' (S), or is labeled don't care in either or both

of S and S'.

4

60
	 _M

Because of the don't care variables there might be many partial states that are

compatible to a partial state. If a partial state S' is obtained from a partial state S by

assigning a value to a don't care variable in S, then S and S' will be compatible states.

The notion of compatible partial states is a generalization of the notion of

equivalent states. If no variable in the partial states is labeled don't care then two partial

states are compatible if and only if they are equivalent. We can represent this as a binary

relation on states of the system. This relation is symmetric and reflexive. However,

unlike the equivalence relation, in general the compatibility relation is not tra. sii we.

That is, if we have the partial states S 1 ,S2 ,S3, then Sl is compatible with S and Sz is

compatible with S 3, does not imply that S l is compatible with S3.

4.2.1. Nesting

An action may have other aetions nested inside it. If an action .4' is nested within

%n action A, we write this as A'CA. If A' is an action outside A, we write this as A'

A. Nesting allows an action to be composed of many, possibly concurrent, actions. A

nested action must be correctly nested, that is, no boundary of the sub action may cross

any boundary of the parent action. An action A'=(1',F',P') is said to be nested within

another action A =(j,F,f), if it satisfies the following:
t

(1) P'CP

(2) For any process QEP', the ir_itial point of Q fo. A' does

not occur before the initial point of Q for A.

(3) For any process QE.?', the final point of Q for A' does not

occur after the final point of Q for A.

s

r	 I

61

The semantics of nested actions require that an action finishes only after all its sub

actions have completed the" computation. Nested actions aid in decomposing activities

in a modular fashion, and are important in designing concurrent activities.

Let A' C A, and let the transformation sequence for A' be

A '=S, (A ') , 8 , (A ') , 8 2(A '), ...,s.(A'), Sf(A')

Since A' is nested within A, this transformation sequence must also take place in

the transformation sequence of A. We can now specify the condition of correct nesting in

terms of the state transformation sequences. The action A' is correctly nested within the

action A if

(1) For every state s,(A'),1` i<,n in the state transformation

sequence of A', there exists a state s, (A) in the transforma-

tion sequence of A, such that the two states are compatible.

2) There exists a state sy (A) compatible with S.(A'), and

another state s9 (A) compatible with S, (A'), such that

P <7•

The first condition states that every partial state in the transformation sequence of

A' exists as a partial state ire the transformation sequence of the action A. The second

condition state that the initial state of A' appears as a partial state in the transformation

sequence of A before the final state of A' does. These conditions ensure that the compu-

tation of the action A can finish only after A' has finished its ^omputation.

a

t,

62

4.3. Atomic Actions

An atomic action is an operation that appears primitive and indivisible to any

activity outside the atomic action. In defining an action, no restriction was imposed on

interactions between different actions. For actions to be atomic, interactions between

different actions have to be restricted. To define atomic actions we need the following

definitions. In these definitions, the initial state of an action A is represented by s o(A)	 I
and the final state as en?, 1 (A). The variables that are in the state variable sets of two

actions A and A' are called common variables.

Definition 4.4 : An action A' uses a state si (A),0<j<n+l of an action A, if S(A') and

s,(A) are not disjoint, and s,(A) is compatible with S(A') and is compatible with Sf(A').

Definition 4.5 : An action A' modifies a state 8,(A),0<j <n+1 of an action A, if S(A')

and s, (A) are not disjoint, and s, (A) is compatible with S (A') and there exists sR(A')

such that sk (A') is not compatible with s,.(A).	
t

If the actions compute sequentially or compute at different times, atomicity of

actions is trivially satisfied. Hence, for the purposes of defining atomic actions we are

interested in actions that compute concurrently and can interact with each other in a

fashion that violates atomicity. We assume that if there are many states of an action

compatible with another state, then the final state is chosen over the initial state and the

initial state over the intermediate states.

We consider an action to be computing if the control of at least one of the processes

taking part in the action is between its initial and final point. Two actions A and A' are

said to be concurrent, if there is some time instance when both the actions are computing.

We can spe-ify this notion of concurrent actions using our system model. For a process

i

M.,

83

p, let the value p(C) reflects its control point in the system control vector C.

Definition 4.8: Two actions A =(I,F,P) and A'=(I',F',P') are concurrent if, A' !T= A,

and there exist4 some system control vector C such that for some process pEP, and for

some process P'EP', p(C) is between p(I) and p(F), ar.d p'(C) is between p'(P) and

p'(F').

With these definitions we now define an atomic action. Let A be an action

represented by the transition sequence

A =S (A), s 1(A), s 2(A),..., sn (A), Sf (A } .

Definition 4.8 : An action A is an atomic action if there exists no action A', such that

I	 A' and A are concurrent, and 1:' modifies S,(A), or uses some intermediate state

sj (A), 1 < j < n.

The requirement that A' not use s l(A),... I SM) preserves the indivisibility of A.

The only states seen outside A are the initial and final states of A, which agrees with the

view that an atomic action should appear to transform the state without any intermedi-

ate states. The lost update problem (Gray 78, Bernstein & Goodman 811 is avoided

because A' is not allowed to modify S,(A). If A' can modify some values in S; (A), and if

A also modifies the same values of Sj (A), then the final state resulting after the execution

of both A and A', will not reflect the modification of one of the actions.

4.3.1. Nesting

The three conditions for correct nesting of general actions will hold for atomic

actions also. However, due to the atomicity of sub actions, the conditions on transforma-

tion sequences of atomic actions are different from the conditions for general actions. Let

H i^

t
f

T

64

A and A' be atomic actions, such that A'CA. By definition of atomicity no intermediate

state of A' may be used by A. For the initial and final state of A', we have the following

conditions.

(1) Sj (A') is compatible with sk (A), for some k.

(2) Sf (A') is compatible with s, (A), for some I >k.

These conditions imply that the initial and final states of A' are reflected in the

transformation sequence of A. Atomicity of A' prevents the intermediate states from

being used by A, so the condition that each of the intermediate states of A' also be

reflected in the transformation sequence of A is not required for atomic actions.

In the above situation, the atomic action A' modifies or uses some intermeditate

state in the state transformation sequence of the action A. However, this is permissible

by the definition of atomic actions, because the restrictions on the states in the transfor-

mation sequence of A are only for actions A' such that A' !7= A .

4.3.2. Strict Sequencing Property

Atomic actions should appear to act in strict sequence, even if they execute con-

currently. This is the strict sequence property of atomic actions[Lomet 771 and is often

referred to as the serializability criteria[Eswaran et. al. 76, Liskov & Scheifler 831. Let

A 1 , ...,A,, be atomic actions which execute concurrently such that Ai ^ Aj 1<i,j<n.

According to the st';rict sequencing property, when all the actions have terminated, the

resulting state should be equivalent to executing the actions serially in some order. The

serial order to which the execution is equivalent will be called an Equivalent Serial Order

(ESO). This means that the state of the system obtained by executing the actions is com-

patible to the state obtained by executing the actions sequentially in the order specified

.• _. _ .	
`fit

i

db

f
	 by the ESO. There might be more that one ESOs for the execution of actions.

The execution of the actions can be checked for serializability using its correspond-

ing precedence graph [Ullman 801. We construct the graph precedence graph Gp as fol-

lows. The nodes correspond to the actions. The arcs are determined by the following

rules. The variables that are in the state variable set of both A^ and A k will be referred

to as common variables.

(1) If A, uses Si (A k), and A,t modifies some common variables, draw an are from

Aj to Ak.

(2) If Ai uses Sf (Ak), draw an arc from Ak to A^.

(3) If Ai modifies Sf (A k), draw an arc from A k to A,.

If the state variable sets of two actions are disjoint then there is no are between the

actions in the precedence graph. Moreover, if two actions use the initial state of each

other, the situation is similar to the read-read dependency situation in

databases [Bernstein & Goodman 811, and no arc is created. By definition, if any action

A, uses the initial state, or uses or modifies the final state of another action A V the state
W_

variable sets of A, and Ak are not disjoint.

Lemma 4.1: In the graph Gp, if an arc is created by rule (1) from an action A, to AV an

arc will also be created from A, to A k by rule (3).

Proof: A^ uses SJA k), therefore, SJA k) is compatible to Sf (Aj). Since, Ak modifies

some of the common variables, Sf (AJ is not compatible with Sf (A^). This implies that

Ak modifies Sf (A j), and this will cause an arc from Af to Ak by rule (3).

t

t
88

From the precedence graph, GP, we construct the reduced precedence graph, GR,

by deleting the arcs formed due to rule (1). In a precedence graph, we say a node n l pre-

cedes another node n 2 , if there is an arc from n l to n2 . We say that two graphs are

equivalent, if they have the same set of ncr'es, and if a node n l precedes another node n2

in one graph, then n l also precedes n 2 in the Aber graph.

Lemma 4 .2: The reduced precedence graph G. and the precedence graph GA are

equivalent.

Proof: Follows from Lemma 1.

Definition 4.7: For a sequence of partial states S 1 ,S21 ... , SP we define the composite

state C(S,, ... , SP) as the state in which the value of a variable x is x(S^), 1<j<p, such

that for all k > j, x(Sk) is labeled don't care. If x is labeled don 't care in all tEe S,,

1<j<p, then it is labeled don't care in the composite state also.

If an action A l modifies a state S and another action A 2 modifies or uses the final

state of A 1 , then A 2 is actually modifying or using the composite state C(S,Sf(A1)).

That is, for a variable x which is labeled don't care in Sf (A 1), but has a value assigned in

S, the value of x used by A 2 is x(S). However, if x has a value assigned in both the states

then the value in Sf (A 1) is used, since it is the "most current" value.

To show the strict sequence property we will draw a precedence graph for the

atomic actions. Let A1,A21 ... 'An be a set of actions which execute concurrently. We

assume the existence of an action A O which precedes every action and assigns value to all

the variables in the state variable set of the actions. This will ensure that if a node A, in

the precedence graph does not have an arc from any other node, then there will be an arc

ti^

4
1

from the node A O to A;. This ensures that the precedence graph is fully connected and

there is an incoming edge for each node, except A
O* We construct the reduced precedence

graph G. for the atomic actions as described earlier in the section.
l

Lemma 4.3: Let A1;A2;...;A, be a path in the graph GR , and let

c
S=C(Sf(A1),...,Sf(Aj)). Then S is not compatible to the states S,(Ak), 1 <k<j.

Proof: For an action, the initial and final states are not compatible. The actions

A,t ,...,AP can be considered as sub actions of an enclosing action, with the initial state as

Sj (Ak) and the final state as S. It follows that Si (A k) and S are not compatible.

b;

Theorem 4.1: The reduced dependence graph GR is acyclic.

Proof. The proof is by contradiction. Let there be a cycle A 1 ;A 2 ; • • • ;AP ;A 1. By the

second occurrence of A l in the cycle, S,(A 1) is compatible to the composite state

S=C(Sf(A1),Sf(A2), ... ,Sf (A P)). By Lemma 4.3, the composite state S is not compatible

to S,(A 1). This is a contradiction. Hence the assumed cycle cannot exist.

't

Hence, the dependence graph of the execution of atomic actions is acyclic. This

6	 ensures that there is always a serial order of execution of actions, to which an execution is

equivalent. Hence, actions which satisfy the definition of atomicity, also satisfy the strict

_	 sequence requirement.

4.4. Recoverability of Actions

The system model of actions and concurrent processes can be applied to fault

tolerant systems, to investigate the role of atomic actions in recovery schemes. We

67

11

.4

68

assume that an action is the unit within which a user will specify fault-tolerance. Since

our definition of an action is very general, this assumption does not impose a restriction

on choosing appropriate units for recovery. Nested actions can support nested recovery

schemes. We assume that if the recovery measure for the action is successful, the final

state of the action that is produced is one which would result if the action had performed

a correct execution.

We require that recovery be planned recovery, that is, the recovery methods to be

applied are decided at design time, and the recovery methods have a predictable effect on

the system state. That is, in case of an error during the computation of the system, the

recovery methods to be applied can be determined statically, and, for a given initial state,

the state of the system after the recovery is performed, can be predicted apriori. The

model of planned recovery disallows a recovery technique that is non deterministic, or a

recovery technique that invokes an oracle to perform recovery.

We represent a successful recovery sequence of the action A as:

Si (A) ----► sj (A) ----► recovery ---► Sf(A)

t
This sequence represents a computation of A in which a successful recovery is initiated at

s, (A). We want that every successful recovery sequence should result in a viable system

state. In that case, the function of the fault tolerant technique is fulfilled, by taking the

system to a state it could have reached by a normal computation, and from where normal

processing can again be resumed. This notion of recovery sequence is abstract and per-

mits a general form of error detection at any intermediate state in the state transforma-

tion sequence. For the purposes of our arguments, we assume that after the recovery is

performed there exists a system state (S,C) such that S and Sf (A) are compatible.

4411

J

69

4.4.1. Backward Recoverability

Our model of backward recovery is based on the recovery block model(Randell 75).

To perform backward recovery for an action, we assume that each process taking part in

the action saves its state at its initial point for the action. By doing this, the initial state

of the action is saved. In case an error is detected, each process restores the saved state,

changes its control point to its initial point, and then perform an alternate computation.

As in the recovery block scheme, the alternate computation is specified statically, and has

a predictable effect on the state of the system. For a successful backward recovery in an

action the initial state of the action is assumed to be error-free.

A successful recovery sequence of this method for an action A is of the form

SJA) ----+ sj (A) Si (A) ---► Sf(A)

This sequence has two phases. The recovery measure first perfor;us state restora-

tion and restores the state of the action to its initial state. In the second phase, an alter-

nate computation is performed which produces a valid final state of the action, for the

given initial state of the action. This sequence represents a successful completion of back-

ward recovery for the action A. Note that if recovery is invoked, it implies that there 	 k..

must be some intermediate states in the state transformation sequence which are errone-

ous. For this model of backward recovery we define the backward recoverability of an

action as follows.

Definition 4.8 : An action A is backward recoverable if a successful completion of back-

ward recovery in action A always results in a viable system state.

Before we relate backward recoverability of an action with the atomicity of the

I I
	 action, we would like to show that the system state must be viable after the state restora-

I I
R

_

70

tion, for A to be recoverable. For this we need to show that if the system state after

state restoration is not viable, there always is some recovery sequence of A, which would

take the system to a state that is not viable. This implies that a completion of backward

recovery of A does not always lead to a viable system state.

Lemma 4.4 : The condition that the system state is viable after state restoration is

necessary to ensure that an action A is backward recoverable.

Proof : Let the system state after the state restoration in A be (S,C). S is compatible

to S (A). Assume that after the state restoration is performed, all the processes not tak-

ing part in A do not perform any computation until the recovery of A is complete. Let

the system state after a successful completion of backward recovery in A be (S',C'). S' is

compatible to Sf (A). Any execution of the system reaching (S',C') must execute the

action A in the initial state S (A). Furthermore, the only way to advance the system

st. f e from (S,C) to (S',C') is by performing an error free computation of A (which in the

case of successful backward recovery is the computation of the alternate algorithms).

Consequently, if (S,C) is not a viable state, (S',C') is not viable. By assumption about

the normal computation, if the system state after state restoration is not viable, there

exists an execution in which the completion of backward recovery does not lead to a

viable system state.

As a consequence of this lemma, it is sufficient to show that a non-viable system

state can occur after state restoration within an action to conclude that the action is not

backward recoverable. In a state (S,C), we will use the nota,ion S(A) to represent the

state of the variables in the state variable set of the action A. The definition of backward

.. 1

71

recoverability and atomic actions can now be compared.

Theorem 4.2 : If an action A is backward recoverable, then A is an atomic action.

Proof : We show this by proving the contrapositive of the theorem, that is, if A is not

atomic, it is not recoverable. Let (S,C) represent the state of the system after state res-

toration is performed. There are two cases.

Case 1: Some action A', A' 9; A, modifies the initial Si (A). Although S(A) —SjA)

the value of C implies that A' has been executed (so, the effects of A' are lost). There-

fore, a normal computation of the system will not produce (S,C).

Case 2: Some action A', A' g= A, uses s, (A), and s, (A) is erroneous. Then no nor-

mal execution will generate the state s,(A). Consequently, a normal computation will

not produce (S,C).

So, if A is not an atomic action, the state (S,C) may not be a viable state. By

lemma 4.1, this implies that A is not backward recoverable.

Here we have shown that atomicity of the action is needed for state restoration.

Since state restoration is the first step after error detection, atomicity is essential for any

fault tolerant method employing backward error recovery techniques. It should be

pointed out that if A' also performs backward recovery, then the system state after both

actions have performed state restoration, could be a viable state. In this case, backward

recoverability and state restoration should be considered as being performed in an enclos-

ing action A", composed of A and A'. In case 2 of the proof, s, (A) is assumed to be

erroneous. If sj (A) is not erroneous, the argument will not be true. However, since an

%^ I

r

waf .., r

72

,

s

error was detected, there must be at least one intermediate state that is erroneous. Con-

sequently, there is always a case (when that erroneous state is used) where lack of atomi-

city will lead to a non viable state. By our definition of recoverability, this implies that

the action is not recoverable.

4.4.2. Forward Recoverability

In contrast with backward recovery, the forward recovery methods do not save the

previous states the system. Forward recovery techniques manipulate some portion of the

state at whirl; the error is detected to produce a new state, in the hope that the new state

will be error free. The activities that are performed during forward recovery are depen-

dent on the type of error and the operation in which the error occurred.

Consequently, there are no g,2neral rules to predict the nature of the state manipula-

tion which might be done by a forward recovery scheme. For example, forward recovery

can also "undo" a command, though this "undoing" has to be done by performing opera-

tions on the erroneous state, and no previously stored state can be used. For example, for

an erroneous insert command, the forward recovery might execute a delete command to

"undo" the previous insert command.

In performing forward recovery on an action A, if some error is detected at state

8,(A) in the transformation sequence of A, then a different transition sequence will begin

from s, (A). The successful recovery sequence of an action A for forward recovery is of

the form

S; (A), s,(A),..., s -(A), s;,(A), si JA),..., s,," (A), Sf (A) .

The state transition sequence si1 (A), sjz(A), ... , Sjm (A),Sf (A) is the result of the

activities during the forward recovery, and is called the exception sequence. The state of

i

1
_Y

73

the action after a successful recovery is performed is an acceptable final %tat, for that

action. For this model of forward recovery we define the forward recoverability of an

action as follows.

Definition 4.2 : An action A is forward recoverable if a successful compaction of forward

recovery in the action A, always results in a viable system state.

Theorem 4.3 : U the action A is forward recoverable, then A is an atomic action.

Proof : We show this by proving the contrapositive of the theorem. Let (S,C) represent

the system state after the recovery on A is completed. There are two cases.

Case 1: Some action A', A' g A, modifies Si (A). Let the exception sequence modify

the variables modified by A' in a different manner than the normal sequence of A. Con-

1
	 sequently, a normal computation of the system will not produce (S,C).

Case 2: Some action A', A' ¢ A, uses s, (A), and s, (A) is erroneous (later

`corrected' by the exception sequence). No normal execution will generate the state s,(A).

Consequently, a normal computation will not produce (S,C).

So, if A is not an atomic action, the state (S,C) may not be a viable state. Thus,

A is not forward recoverable.

0

j	 Since forward recovery methods are system and error specific, it is difficult to rea-
1

son about fc,rward recoverability and the proof of the above theorem depends on assump-

tions about the exception sequence. These assumptions might not always be true, and

consequently, there might be cases of forward recovery where atomicity of the action

might be an overly strict requirement. However, if the action is not atomic, there would

u

be cages in which a successful recovery for the action will not lead to viable system state.

Since our definition of recoverability requires that every successful recovery for an action

leads to a viable system state, to be able to support a general forward recovery for an

action, atomic actions are necessary. Atomic actions provide the structural framework

within which any forward recovery can be programmed, without worrying about the

effect of the recovery measure on the actions outside the action in which the recovery is

being performed.

4.4.3. Combined Recoverability

It has been suggested that the two techniques for providing fault tolerance should be

used in a complimentary fashion to take the benefits of both(Randell et. al. 781. Different

schemes to combine the two forms have been proposed (Cristian 82, Campbell & Randell

831. The details of the schemes for combining the two forma of recovery need not concern

us here. However, if both forms of recovery are to be performed for an action, then the

action should be both forward and backward recoverable. Recoverability of one type does

not necessarily imply the other. For the combined recoverability of actions we have the

following definition.

Definition 4.10a: An action A is recoverable if it is forward recoverable and backward

recoverable.

The above definition is motivated by the goal of supporting both forward and back-

ward recovery in a complimentary manner. However, there is another view which can be

taken for recoverability of actions. From the point of view of an activity which is outside

the action in which recovery is being performed, the type of recovery measure being

employed is not of importance. What is important is whether the action will be success-

" r"?

74

4^

tIE
75

ful in performing recovery of not. With this view point, a recoverable action can be

defined as follows.

Definition 4.10b: An action A is recoverable if it is backward recoverable or forward

recoverable.

Irrespective of the definition of recoverability chosen, we have the following

I

1	 theorem, which trivially follows from the previous theorems.

Theorem 4.4: If an action A is recoverable, then A is an atomic action.

4.5. Discussion

In this chapter we have proposed a model for understanding atomicity and recover-

ability of actions, in a possibly concurrently environment. In the model, an action is
t

defined as a static construct with statically defined boundaries, and is characterized by a

state transformation sequence. The boundar. ; of an action are not allowed to be chosen
a

arbitrarily, but are required to be chosen such that the initial and final state of the action

are always defined. This is a preliminary model aimed to explore the relationship

between atomicity and recoverability. Restrictions have to be loosened, and the model

made more formal for the results to have wide applicability.

In this model, an atomic action is defined as an action, with restrictions on how

other actions may access the states in its state transformation sequence. The definition of

atomic actions is shown to have the strict sequence property. The model is used to define

forwa. d and backward recoverability of an action. Only planned recovery is considered.

It is then shown that if an action is backward or forward recoverable, it is necessarily an
i

atomic action. Consequently, the problem of provi.ling recovery can be divided into two

76

ems, the problem of providing atomic actions and the problem of providing

us, we propose that the continued study of recovery techniques should be

nin the framework of atomic actions, and the design of recovery techniques

:pendent from concerns of atomicity.

N

i	 .".

4

^I

f

[

77

CHAPTER b

ATOMIC ACTIONS FOR FAULT TOLERANCE USING CSP

Several practical techniques for the construction of fault-tolerant software have

evolved [Randell et. a]. 781. The aim of these techniques is to ensure that the system pro-

vides the intended service despite possible software or hardware faults. The techniques

depend upon two complementary approaches to fault-tolerance known as forward error

recovery and backward error recovery and it has been suggested that both be used to pro-

vide more reliable software [Anderson & Lee 81, Campbell & Randell 83, Cristian 82].

Few implementations permit both approaches to be combined within a particular

application. Fewer techniques are available for the construction of fault-tolerant software

for systems involving concurrent processes and multiple processors. In this chapter, we

propose a scheme to support backward and forward error recovery in a system of Com-

municating Sequential Processes (CSP)[Hoare 78] based on the framework of atomic

actions. The atomic action is used as the basic unit for providing fault tolerance. The

atomic action is called a FT-Action, and both forward and backward error recovery are

performed in the context of a FT-Action. An implementation for the FT-Action is pro-

posed, which employs a distributed control, uses CSP primitives, and supports local com-

pile and run-time checking of the forward and backw ard error recovery schemes. The

results of this chapter have been reported in[Jalote & Campbell 841.

5.1. Communicating Sequential Processes

CSP was proposed by Hoare as the basis for a concurrent programming language.

Dijkstra's guarded commands [L* ikstra 751 are used as sequential control structures, and

t

C

.79

78

as the sole means of introducing and controlling nondeterminism. A parallel command

specifies concurrent execution of its constituent sequential commands (processes). All the

processes star(, simultaneously, and the parallel command terminates successfully only if

and when they all have successfully terminated. Simple forms of input and output com-

means are introduced which are used for communication between the concurrent

processes. CSP processes may only communicate with each other using the input and

output message commands. Messages are passed through named synchronous static chan-

nels. An output command is of the form:

destination ! expression

where destination is the process name and expression is a simple or structured value. An

input command has the form:

source ? target

where source is a process name and target is a simple or structured variable.

Communication occurs between two processes of a parallel command whenever (l)

an input command in one process specifies as its source the process name of the other pro-

cess; (2) an output command in the other process specifies as its source the process name

of the first process; and (3) the target variable of the input command mat,hes the value

denoted by the expression of the output ,umand. On these conditions, the input and

output commands are said to correspond. An input command fails if its source is ter-

minated. An output command fails if its destination is terminated or if its expression is

undefined.

79

r
Commands which correspond are executed simultaneously, and their combined

effect is to assign the value of the expression of the output command to the target vari-

able of the input command. There is no automatic buffering, and an input or output

command is delayed until the other process is ready with the corresponding output or

input command. A communicating process may wait forever if another process does not

match its command. This inherent limitation of a synchronous message passing scheme

makes detection of a so called "deserter" [Kim 821 or dead process difficult. After the com-

muni ,̂ ation, both processes proceed independently and concurrently.

i-	

Dijkstra's Guarded Commands[Dijkstra 751 are used in CSP in the form:

G —► C

where G is a guard consisting of a list of Boolean expressions followed by an optional

input command list, and C is a command list. Output commands may not appear in the

guards. If an input command appears in a guard, it is called an input guard. A guarded

command may be executed if and when the execution of its guard does not fail. First, the

guard is evaluated by determining the value of its Boolean expressions. If any expression

is false, the guard fails; but a guard that evaluates to true has no effect. An input guard

may be evaluated only if and when there is a corresponding appropriate output.

The alternative command may be executed by a sequential process. It has the form:

(C1'—► Cl q G2--+C2 q ... q Gn —' C,]

and selects the execution of exactly one of the constituent guarded commands. If all the

guards fail, the alternative command fails. Otherwise a command is selected non-

deterministically from those commands with successful guards. In the case when more

80

than one command list can be selected, the choice is nondeterministic. If several of the

input guards in an alternate command correspond with output commands elsewhere, only

one is selected and the others have no effect.

The notation (i:l..n) G —► C represents the alternative command

[Gl—+Cl q G2--► C2 q ... q Gn --+CAI

where each G,.—► C,. is formed from G—► C by replacing every occurrence of the bound

variable i by the numeral j.

A repetitive command specifies as many iterations as possible of its constituent

alternative command. It has the form:

* [alternative command I

When all the guards fail, the repetitive command terminates. Otherwise, the alternative

command is executed once and the whole repetitive command is executed again. A repeti-

tive command may have input guards. If all the sources named by the input guards have

terminated, then the repetitive command also terminates.
4.

yti

It is possible to program coroutines using the CSP notation, and consequently sub-

routines can also be programmed. The provision of output commands within the guards

has been advocated in[Bernstein 80, Silberschatz 79]. We will assume a version of CSP

with both this facility and a basic exception mechanism for a single process.

5.2. Design of the FT-Action

The FT-Action should be designed so that the atomicity of the FT-Action is

guaranteed. The atomicity guarantee permits the programming of recovery for the con-

MT---7'T77r

81

struct. The scheme should be able to support both the programming of backward er 'or

recovery and forward error recovery. For backward recovery we employ a conversation-

like scheme, which can be easily implemented in a planned atomic action framework. For
i'

forward recovery we use the scheme proposed by Campbell and Randell which is based

on planned atomic actions.

We define a Fault Tolerant Atomic Action (FT-Action) as a distributed control

structure that a group of processes may join or leave together in synchrony. Inside an

FT-Action the processes may communicate with one another, but not with processes not

in the control structure. The FT-Action will be used as a framework within which error

recovery can be provided. It has the following properties.

Atomicity: The communications of processes in the control structure must be isolated

from other processes to guarantee atomicity and prevent information smuggling[Kim 821.

Hence, in a FT-Action, no communication may take place across the boundaries of the

FT-Action, and the corresponding command for an input or output command inside the

FT-Action must also be inside that FT-Action.

A recovery line for backward error recovery: In the event of an error, the processes

may be rolled back to the recovery points that were established at the recovery line. The

FT-Action provides a recovery line which is defined by the synchronized entry of all the

par ticipating processes.

A test line for the processes: The test line is a set of diagnostic tests, one for each pro-

cess, which is used to determine whether any errors have occurred. In the FT-Action the

exit statements (see next section) in the constituent processes together form a test line.

The processes synchronize at the test line.

t

82

Recovery measures: The FT-Action should have provision and primitives for perform-

ing recovery. If any process detects errors inside the FT-Action, it is an error for the

entire FT-Action and all the processes taking part in the FT-Action must cooperatively

invoke appropriate recovery measures.

Nesting of FT-Actions: The FT-Actions may be nested. Only strict nesting is permit-

ted. Nesting is needed to program nested recovery techniques, and if recovery is unsuc-

cessful in a FT-Action, it may be attempted in the enclosing FT-Action.

As a practical point, an implementation ought to detect and allow recovery from a

deserter process [Kim 821. In terms of CSP, this can occur if an input or output com-

mand is never matched or a process dies. This may also occur if a process which is

expected to participate in an FT-Action does not. Recovery from this form of exception

is especially difficult to implement in a message passing system since a process cannot uni-

laterally observe the state of another process (systems permitting shared data allow a

simple solution).

5.3. Error Recovery with the FT-Action

In this section, we give the notation for a basic FT-Action and describe the primi-

tives needed for the FT-Action. We outline how backward, forward and combined

recovery may be implemented using the FT-Action primitives. The primitives have CSP

implementations which are described in the following section.

5.3.1. FT-Action Primitives

Each process taking part in an FT-Action must declare an FT-Action entry state-

ment. The entry statement is identified by a name and includes a list of all the other

-

^t

83

processes which will also participate in the FT-Action. 	 The name and lists supplied by

each of the processes taking part in the FT-Action are compared at run-time to ensure

consistency. The syntax for an FT-Action shown in Fig. 5.1.

P 1 	:[...
FT-Action A with (P 2 ,P,, ... ,Pn)

^. < code >
exit unless <e>
< code >
exit unless <e>

end

Figure 5.1: The FT-Action.

l

The	 FT-Action	 synchronizes	 recovery	 schemes	 involving	 the	 processes

P 1 ,P27	 ,Pn.	 Each process should declare a similar statement to that declared in P1.

i
The body of the FT-Action includes "exit" statements, each of which corresponds to a

test point within a test line.	 When a process reaches an exit, it waits for the other

processes in the FT-Action to reach their corresponding exits. The exception "e" of a test

line is evaluated by an interprocess voting scheme (described in the next section). This

scheme combines exceptions detected by the processes in the FT-Action using exception

resolution [Campbell & Randell 831 and distributes the resulting exception value to each

process.	 Thus, the test line returns the same exception to each process. In the case that

i
no process detects an exception, the scheme produces a null value. If the exception is null,

then the FT-Action is successful and the exit statement terminates the structure. 	 Other-

t
wise, the processes continue in the FT-Action and recovery measures are invoked. 	 An

FT-Action can terminate abnormally by "signaling" an exception.

To ensure the atomicity of the FT-Actions, for the duration of the FT-Action, the

process P 1 only communicates with the processes mentioned in its entry statement of the

84

.t
FT-Action. That is, within the body of the FT-Action, an input or output command in

P 1 may only have a process P2,P3, ... ,P, as the source or destination. process, respec-

tively.

In general, implementation of either the forward or backward error recovery scheme

will require the use of several exit primitives. In the rest of the section we will omit the

body of the process P 1 enclosing the FT-Action.

5.3.2. Backward Recovery

Informally, the FT-Action may be used to specify backward error recovery as shown

in Fig. 5.2.

FT-Action A with (P2,P3, ... ,Pn)
ensure <acceptance test>
by	 < primary >
else by <alternate>

else by <alternate>
else signal error

end

Figure 5.2: Backward Recovery Structure.

v
The backward error recovery constitutes a Conversation involving the processes

P1,P2,•••,P.. Each process executes its primary and may communicate with other 	 s'

processes executing their primaries in the FT-Action. The process then evaluates its

acceptance test. An exception is raised if the acceptance test fails or a run-time error is

detected. If no exception is raised, the FT-Action terminates. If an exception is raised by
f

any of the processes, then every process invokes backward error recovery. The FT-Action .i

requires the processes to have the same number of alternates. The FT-Action synchron-

izes execution of the alternates so that each process keeps in step. The processes may 	 r .

1

F

85

communicate with one another during the execution of an alternate.

The specification can be transformed into the FT-Action primitives shown in Fig.

5.3.

FT-Action A with (P VP2, ' ' ,Pa)
<save state>
<primary; acceptance test>
exit unless <e>
<restore state>
<alternate; acceptance test>

exit unless <e>
<restore state>
signal error

end

Figure 5.3: FT-Action Backward Recovery.

The state (values of the variables) of each process is saved after it enters the FT-

Action. The saved states of all the processes together form the recovery line. Before the

first test line (first set of exit statements), each process evaluates its acceptance test to

detect exceptions. If one or more processes detect exceptions, the exception "e" returned

by the test line will not be null and the exit statements will not terminate the construct.

Instead, the processes roll back and execute the next alternates. After reevaluating their

acceptance tests, the processes reach another test line. This sequence is repeated until

either the exception returned by a test line is null or the last alternates are attempted.

The last alternates are used to "signal' an exception to indicate that the FT-Action has

failed.

o.	 1

,.

.. `ter► . • °•e .

r	 ^

88
	

i

5.3.3. Forward Recovery

To specify forward error recovery using a FT-Action, the notation presented

in[Cristian 82] is used with some modification. Informally, the FT-Action may be used to

specify forward error recovery as shown in Fig. 5.4.

FT-Action A with (Pz,P3, ... ,Pn)
< algorithm >

(excep a --t, handler (e))
end

Figure 5.4: ForwaA Recovery Structure.

The FT-Action coordinates forward error recovery for the processes PVP2, ... ,Pn . It

terminates if no exceptions are raised during the execution of the algorithms. If an excep-

tion is raised by any process, then all the processes in C are notified of the exception.

Each process will then execute its exception handler ("handler (e)") for that exception.

Forward error recovery completes when every process either "signals" an exception or

successfully completes its handler. If an exception is "signaled" in an FT-Action, the FT-

Action terminates abnormally with an exception and, if it is nested within another FT-

^4.

Action, the exception is raised in the containing FT-Action. 	 a

The forward error recovery can be translated into the primitives shown in Fig. 5.5.

87

FT-Action A with (P 2,P3, • • ,Pp)
< primary >
exit unless <e>

f	 e = my-signal	 signal e
q e 0 my-jignal —+ handler(e)

(exit unless <e>
1.

e = my-oignal	 —+ signal e
I	 q e ?6 my-jignal --+ signal error

end	 J

Figure 5.5: FT-Action Forward Recovery.

The first test line after the primaries resolves any raised or signaled exceptions dur-

ing the execution of the primaries. For simplicity, we require that no exception may be

both raised and signaled in the same FT-Action. If the resolution scheme is applied to a

raised and a signaled exception, this restriction guarantees that the scheme will not

return the signaled exception.

If the exception "e" returned by the test line is null, the exit statement terminates

the FT-Action. If each process locally signaled "e", the FT-Action terminates by "signal-

ing" "e". Otherwise, each process attempts recovery by executing the handler for "e".

When the processes complete their handlers, the exception "e" for the second test

line is determined. If "e" is a null exception, the exit statement terminates the FT-

Action. If each process locally signaled "e" within its handler, the FT-Action terminates

by "signaling" "e". Otherwise, the FT-Action "signals" error.

er

I
L	 1

-- 1- - I - -U.

88

5.3.4. Combined Recovery

Forward and backward error recovery schemes may be combined. One method of

using the two techniques in a complimentary manner is shown in figure 5.6.

FT-Action A with (P 2,P3 , • • • ,Ps)
ensure <acceptance test>
by <primary>

I excep a --o^ handler (e)]
else by < alternate>

else by <alternate>
else signal error

end

Figure 5 . 6: Combined recovery structure.

In figure 5.6, a forward recovery scheme is associated with the primary algorithm

and would be invoked for the specified exceptions. The backward recovery scheme would

be invoked for other exceptions and any exceptions that might occur in the handler.

There are many ways to combine forward and backward recovery schemes. Such combi-

nations may be transformed into primitives as before. The translation shown in Fig. 5.7

is a translation supporting the structure described above using the FT-Action primitives.

AI

81t^

...FT-Action A with (P Z,P3 ,	 ,Pa)
<save state>

<primary; acceptance test>
exit unless <e>

e = my-signal —+ signal e
O e * myjignal —+ handler(e)

< acceptance test>

{exit unless <e>

`restore state>
f <alternate; acceptance test>

exit unless <e>
{ <restore state> r

signal error
end

Figure 5.7: FT-Action Forward and Backward Recovery.

f

Each process completes its primary and evaluates its acceptance test. If the excep-

tion "e" returned by the first test line is the null exception, the exit statement terminates !
t

111

the FT-Action. If each process locally signaled "e", the FT-Action terminates by "signal-

^. ing" "e".	 In this case, we assume that the signal is a valid result of the primary and

! passes the acceptance test.	 Otherwise, each process attempts recovery by executing the

handler for "e".

The exception for the second test line is determined after the reevaluation of the

acceptance tests. This time, if the exception is not null, backward error recovery is

j

applied and the processes execute their next alternates. Although the FT-Action does not

t •	 impose any implementation restriction, we choose to simplify recovery strategies by

transforming any exceptions which are signaled from a handler into an error.

S

90

5.3.6. An Example

To illustrate the use of FT-Actions, we present a simple example. There are two

processes, P and Q. P computes n different values, and sends the computed data to Q.

The purpose of Q is to construct records using the data sent by P, to sort the records,

and then to store them in a file. Two nested FT-Actions provide fault tolerance. FT-

Action A encompasses the whole activity and provides fault tolerance based on backward

recovery. The FT-Action B is nested within A, and supports forward recovery for the

construction of each record.

The backward recovery scheme for Q employs two different methods to produce a

sorted file of records. The primary method inputs data, constructs a record, and inserts

it in its proper place in a sorted file. The alternate method inputs data, constructs a

record, and appends it to an unsorted file. After all the data has been received, "he file is

sorted. The backward recovery scheme for P uses the same algorithm for both the pri-

mary method and the ._—ernate method.

The process Q may receive erroneous data, or might raise an exception in construct-

ing the record. We refer to this exception as a check-sum-error exception. The FT-

Action B provides forward recovery for this exception. The example is shown in fig. 5.8.

P .. [....
FT-Action A with (Q)

ensure (true) by
[
	

i:= 0;
*[i <n -+

.= i+1;
FT-Action B with (Q)

[Compute (data);
Q ! data;

[excep check-sum-error —►
Q ! data;

end

-ti	
Y

- a
91

else by
f i:= 0;

*(i<n^

Compute (data)
Q 1 data;

)
#	 else signal error

end

FT-Action A with (P)
ensure (file sorted) by
(i.=0;

*[i<n^
i .=
FT-Action B with (P)

(P ? data;
Compute rec using data;

`	 (excep check-sum-error —+
P ? data;
Compute rec using data;

)
i	 end

Insert rec in the file;

else by

(k

~
1 .= 0;

*[i<n^
t i

P ? data;
Compute rec using data;
Store rec in file;

)
Sort the file;

else signal error
t	 end

Figure 5.8: An example using nested FT-Actions

ti

92

The example simplifies discussion of the following points. In the FT-Action B,

though Q detects the exception, P must also take part in the recovery. Consequently, the

exception can be regarded as applying to the FT-Action B, and it is irrelevant which pro-

cess detects the error. Accordingly, it is not possible to determine the process which

detects the error by examining the program. Similarly, in the FT-Action A, even though

the `acceptance test' in process P is trivially satisfied, P will have to perform recovery if

the acceptance test in the process Q for the FT-Action B fails.

The primaries and alternates do not need to have a similar structure. In the above

example, the primaries of the FT-Action A have a nested FT-Action B, while there are

no nested actions for the alternates of action A.

Fault tolerance provisions may lead to a loss of concurrency. In the above example,

the alternates for the FT-Action A allow P and Q to compute the data and the record

concurrently. However, there is less concurrency possible in the primaries of A because of

the action B nested within A. The exit of the FT-action B imposes an additional syn-

chronization constraint on the processes P and Q.

5.4. Implementation

An implementation of the FT-Action primitives is described in this section. The

implementation uses only the CSP primitive's for communication and synchronization

between processes. The reliability of the recovery schemes is enhanced by compile and

run-time checking.

A combination of compile and run-time checking is used to prevent information

smuggling. A syntactic check ensures that, inside an FT-Action, a process only communi-

cates to the other processes named in the entry statement of the FT-Action. A further

Vim.-..,-_

g Z

E
93

run-time check must be used to ensure that the C-Sets of the processes involved in a par-

ticular FT-Action	 the	 the Cfor	 FT-Action isare	 same, where	 -Set of a process	 an	 the set

containing the name of the conversation, the name of the process and the name of the

processes specified in the FT-Action statement.

	1.:	 The correct nesting of FT-Actions can be checked at compile-time by examining

I

	

	 each process. Each process identifier that occurs in the statement of a nested FT-Action

must also occur in the statement of any enclosing FT-Action.

An FT-Action can be transformed into CSP primitives by a preprocessor. For the

purposes of implementation, we require the processes within an FT-Action to have a

static ordering (for example, we use the lexicographic ordering defined by their

identifiers).

5.4.1. FT-Action Entry

Entry of a process into an FT-Action requires synchronization and a C-Set con-

sistency check. The consistency check uses a voting technique based on the Two Phase

	

-	 Commit protocol(Gray 781 Voting is implemented by passing a message up and down a

chain of the processes attempting to enter the FT-Action.
1.

The processes whose identifiers are included in the C-Set of an FT-Action are organ-

ized into a chain using their static ordering. In a vote, starting from the head of the

	

-	 chain, each process passes C-Set information to its successor. If the C-Set of any process

does not agree with the information that the process receives, a C-Set exception is passed

- on. This ensures that the tail process will receive a C-Set exception if the C-Sets are not

consistent. Next, the tail process returns the result of the vote back down the chain to

the head. In this way, every process receives an exception if the C-Sets are inconsistent.

s

t	 l^

I

`' ".

94

If the C-Sets are inconsistent, the FT-Action is aborted by each process.

The voting algorithm is shown in Fig. 5.9. Different algorithms are used for the

head, middle and the tail of the chain. Since the chain is constructed using the static ord-

ering of the processes, a compile-time algorithm can construct the voting scheme. We

assume that process Pi is the predecessor of process Pi+1•

For the head of the chain (process P1):

P2 ! C-Set;
[P2 ? success () -. skip

q P2 ? failure () -+ ABORT

I

For the middle of the chain (process Pd:

Pi ? C-Set ;

[(C-Set = My-C-Set) -+ Pi+1 ! C-Set

q (C-Set 34 My-C-Set) --► Pi +1 ! C-Set-Exception

1

[Pi+1 ? success () y Pi _1 ! success ();

skip

q Pi+1 ? failure	 Pi_1 ! failure ();

ABORT

I

For the tail (process Pn):

Pa-1 ? C-Set;

[(C-Set = My-C-Set) -_+ Pn _1 ! success O ;

skip;

q (C-Set 3,^ MY-C-Set) --+ Pn _1 ! failure () ;

ABORT

Figure 5.9: Translation of the entry statement

R
. 3

_F

-a

i
;:_	 I

i

77.

95

5.4.2. The Exit Statement

The exit primitive is used to terminate an FT-Action if it is successful. The imple-

mentation of the exit primitive also uses a chain-based voting scheme to decide whether

an exception has been detected by any of the processes in the FT-Action. If an exception

is detected, all the processes in the FT-Action must participate in recovery. Each process

resolves any exception it may have received from a predecessor process with any excep-

tion it has raised and sends the result to its successor process. The final result is sent to

each process in the FT-Action by transmitting it back down the chain. The "value" of an

exception is taken to be null if no exception occurred. The implementation scheme is

shown in Fig. 5.10.

e

98

For the head of the chain (process P1):

P 2 1 my-exception;

PZ ? final-exception

[final-exception = null -+ exit
O final-exception 0 null --+ skip;

For the middle of the chain (process Pj):

Pj _1 ? exception ;

Pi+1 ! resolve(exception , my exception)

Pi+1 ? final-exception --*

Pi
-1

 ? final-exception;

[final-exception = null -+ exit
O final-exception 54 null --+ skip

For the tail (process Pn):

Pn _ 1 ? exception ;

final-exception := resolve (exception,my exception);
Pn-1 ! final-exception;

[final-exception = null -+ exit 	 E

q exception 91- null --+ skip

Figure 5.10: Translation of the exit statement

5.4.3. The Exception Mechanism

So far we have considered planned error detection, that is, errors are detected at

certain specified points, which, in the case of the FT-Action, are at the end of the primary

or the alternates. However, a process may raise an exception in a point other than at the

end of some computation. In this situation, the processes in the FT-Action should not

continue with the normal computation. Instead all the processes should execute the exit

statement and start the voting process. This also happens if an FT-Action terminates

abnormally by signaling an exception, in which case the recovery action of the enclosing

4
`a

97

FT-Action should be invoked.

Because of the synchronous message passing scheme of CSP, it is not possible sim-

ply to discontinue the normal computation of the process which detects the error. Other

processes which communicate in a normal manner with this process will wait indefinitely

since the corresponding input or output command will not be executed by the process.

A mechanism is required by which all the processes are notified of the occurrence of

the exception. On being notified of the exception, a process should then start voting. The

mechanism should also be capable of handling the occurrence of multiple exceptions.

There are several ways to implement such a mechanism. For the purposes of this

paper, we propose a simple scheme for implementing such a mechanism which only uses

CSP primitives and requires a broadcaster process (BP) for each FT-Action. However,

our scheme does require output commands in guards. A process that detects an exception

communicates with the broadcaster process. The broadcaster process informs other

processes taking part in the FT-Action that an exception has occurred. We briefly

describe how such a mechanism may be implemented.

The broadcaster process has two phases. In the first phase, it waits for input from

any of the processes in the FT-Action. Any process which detects an exception outputs

an appropriate message to the broadcaster process. In the second phase, the broadcaster

process tries to inform the other processes taking part in the FT-Action that an exception

has been detected and will accept further exception messages. In this scheme, the broad-

caster process only informs the processes that an exception has occurred. The identity of

the exception is still transmitted to the processes by the voting scheme. The broadcaster

process is described in fig. 5.11.

i I
4

98

(i:l..n) Pi ? excep() —► skip

(i:l..n) Pi ? excep() —+ skip
q (i:l..n) Pi 1 excep() —i skip

Figure 5.11: The Broadcaster Process (BP)

The processes taking part in the FT-Action have to be able to input an exception

from the broadcaster process as well as input and output to other processes. Thus, each

input or output command of a process is transformed into an alternative command which

may also input an exception message from the broadcaster process. If it receives an

exception message, the process discontinues normal processing and starts the voting pro-

cess. Otherwise it continues with the normal processing. The translation of an input or

output command C in a process is shown in figure 5.12.

BP ? excep() —+ start voting;
q C--+ skip;

Figure 5.12: Translation of a command C.

A simple argument reveals the correctness of this scheme. If no exception occurs in

the FT-Action, the command C will always be executed by all the processes as the broad-

caster process will not be trying to output any exception message. Hence, the FT-Action

will execute normally. If an exception occurs, a process which has not yet encountered

the exception may reach the exit of the FT-Action, start voting, and detect an exception.

Alternatively, it may try to communicate with another process which has already encoun-

tered the exception and block. In this case, either the other process detected the excep-
ts
s^t

`f

U,

99

Lion and informed the broadcaster process or the other process received an exception mes-

sage from the broadcaster process. As a consequence, the broadcaster process will either

enter its second phase or will already be in its second phase. Thus, the process, if

blocked, will receive an exception message from the broadcaster process which will allow

it to proceed to vote. So, the processes always reach the voting phase, and the voting

phase will then ensure that they are notified of the exception.

Note that the solution involves non-deterministic communication. A process, in an

attempt to execute a command C, may non-deterministically either execute C or may

input a message from the broadcaster process. Thus, it cannot be exactly predicted when

or if an individual process will receive an exception message from the broadcaster process.

However, it can be guaranteed that all the processes eventually reach the voting phase

and the voting phase ensures that all the processes are informed of the exception.

The propose] scheme is simple and demonstrates that the exception mechanism can

be implemented in the framework of CSP and FT-Actions. Other schemes can be

designed with and without a broadcasting process. Similarly, other schemes can also be

devised for implementing the entry and exit statements.

5.4.4. The Timeout Mechanism

The translation scheme for the entry and exit statements has no mechanism to cope

with the problem of a deserter process or the problem of a faulty design of the FT-Action

mechanism. If a process is in the C-Set of a set of processes taking part in an FT-Action

but it does not itself contain an appropriate FT-Action construct (a deserter process),

then it will block the other processes from entering the FT-Action because its neighbors

in the FT-Action voting chain will never be able to satisfy their I/O requests during the

ly_

i^, e

100

ase of the voting. A similar situation can arise if two processes have different C-

the same FT-Action. There appears to be no satisfactory solution to this prob-

&VUR v., less a timeout mechanism is provided in CSP. We describe a simple timeout

mechanism which can be employed to solve the problem.

Each process starts a preset timer when it tries to communicate to its successor or

predecessor process during the first phase of the voting process. This can be easily imple-

mented using the CSP notation, by a simple translation. If the I/O command to be exe-

cuted is C, its translation is:

I

C --► skip
O timer= timeout --+ ABORT

I

If a matching input/output command to the command C is not executed within the set

time, the process locally aborts the FT-Action. The timeout scheme assumes that output

commands are allowed in the guards. It is possible to provide translation of a command

C without using output commands in the guar _ ' j, but such a mechanism will not be as

simple and natural as the one given above.

If there is a deserter process, then the first phase of voting cannot complete, and

some process will timeout. A simple argument shows that if one process taking part in a

FT-Action A times out, then all the processes for A will timeout and abort the FT-

Action.

Suppose Pi is the first process to timeout. All the processes below P, in the chain

will timeout in the second phase of voting because no message will be sent by P i to Pi -11

The processes above P, in the chain will time out in the first phase since P, will not send

any vote to Pi+i. Hence, all the processes will eventually timeout.

'ti,

IT,

101
	

^I
i

l

In the simple scheme described here, all the processes in a FT-Action timeout indivi-

dually. It is possible to make the timeout scheme more efficient by having a mechanism

that informs other processes whenever one process times out. Such a scheme is likely to
r

be more complex.

5.5. Discussion

In this chapter we have proposed a notation to specify an atomic action for support-

ing fault tolerance in a system of Communicating Sequential Processes. The atomic

action is called an FT-Action and supports both forward and backward error recovery in

an uniform manner. The control structure of a FT-Action is distributed over the

processes taking part in it and is implemented using CSP primitives. The number of

communication messages needed to coordinate the S-conversation is O(n), where n is the

number of processes taking part in the FT-Action. The minimum number of communica-

tions needed is also O(n) since all processes must receive at least one message.

Although we have considered practical support for error recovery in concurrent sys-

tems, much further research and development is still required. Because of the static

	

channel naming of CSP we have not been able to devise a simple strategy to detect a 	 3-

i

deserter process. The use of the scheme in practical systems depends on whether the Sys-

tem designers can construct correct and appropriate algorithms. For example,
i

input/output commands in an FT-Action must only match output/input commands in

that FT-Action; failure to comply with this structure cannot be detected at compile time

and will result in a communication protocol time-out and abortion o'j' the FT-Action.

{	 We believe that a structure like the FT-Action should be used in concurrent

l
languages to provide both backward and forward error recovery support and encourage

1.

I
the practi-

ansformed

1 4-5

103

CHAPTER 6

A PROTOCOL TO IMPLEMENT ATOMIC ACTIONS IN DATABASES

In a database system, the database is required to be in a consistent state, satisfying

the integrity constraints of the database. A transaction is the unit of consistency, that is,

a transaction is the unit of computation which transforms a database from one consistent

state to another. Therefore, to maintain consistency, it is required that each transaction

appear as an operation which is performed indivisibly on the database, and the different

transaction must not appear to overlap. In other wards, the consistency requirements of

a database require that a transaction must execute atomically. However, a transaction

may not be indivisibly executable by the hardware as it may consist of many primitive

operations. So, system support is required to ensure the atomicity of transactions. In a

database system, the problem of supporting atomicity of transactions is referred to as the

concurrency control problem.

For database consistency, actually the transactions should be recoverable atomic

actions. However, most concurrency control protocols are intended to provide only the

concurrency atomicity (hence the name). The failure atomicity is usually provided by the

system, and involves log of the computation and commit protocols. In this chapter we

present a new protocol to implement (basic) atomic actions in databases. The protocol

called the Delay/Re-Read Protocol, employs a combination of preventive and corrective

strategies, to ensure the atomicity of transactions. The protocol is deadlock free, and

requires no backup data for its operation. The results of this chapter have been reported

in(Mickunas et. al. 891.

R,

104

8.1. Background

The problem of concurrency control in databases has received a good deal of atten-

tion in recent years[Bernstein et. al. 79, Bernstein & Goodman 81, Eswaran et. al. 76,

Papadimitriou 79, Thomas 791. In a database system, a transaction is the unit of con-

sistency. Unrestricted concurrency among database transactions can result in an incon-

sistent database[Bernstein & Goodman 81, Gray 781. What is needed is that each tran-

saction executes atomically with respect to other transactions. Concurrency control is the

activity of co-ordinating concurrent access to a database by various transactions, such

that the actions of one transaction do not interfere with the actions of another and each

transaction executes atomically. Eswaran et. al.[Eswaran et. al. 761 proposed a protocol,

known as Two Phase Locking, to preserve database consistency.

Two Phase Locking requires that each transaction lock the entity it is going to	 -

access. A transaction may request a Read lock or an Update lock on an entity. A lock is

"granted" only if no other transaction holds a conflicting lock. Furthermore, e-tch tran-

saction runs through both a "growing phase" and a "shrinking phase". In the growing

phase a transaction collects the locks that it requires, and in the shrinking phase it

releases them. A transaction cannot request any further locks once it has released any

lock. A disadvantage of Two Phase Locking is that deadlock may occur. Deadlock is a

major concern in concurrency control[Isloor & Marslang 80, Yannakakis et. al. 791, and

usually one or more of the deadlocked transactions must be aborted before processing

may proceed. This implies that backup data must be maintained so that if deadlock

occurs, transactions may be aborted and "undone", thereby restoring the database to a

consistent state.

105

Many variations on locking protocols have been proposed[Bayer & Schkolnick 77,

Ellis 801, and it has been demonstrated that locking achieves somewhat better results

when the database is structured as a hierarchy[Kedem & Silberschatz 79, Silberschatz &

Kedem 82;. The solutions proposed by Thomas[Thomas 791 and Stearns et. al.[Stearns

et. al. 76[have been found to be special cases of Two Phase Locking [Bernstein et. al. 79[.

The use of locking to maintain consistency is an entirely preventive measure that is,

it tries to prevent any view of the database from becoming inconsistent. Two Phase

Locking assumes the worst case in which synchronization is imposed upon any transaction

which potentially may conflict with another transaction. Since this is a sufficient but not

a necessary condition for actual conflicts [Bernstein & Goodman 79, Bernstein et. al. 791

Two Phase Locking tends to be overly restrictive and results in a reduction in con-

currency.

Conflict Graph Analysis [Bernstein et. al. 801 is another technique used to increase

the degree of concurrency that employs a preventive technique. It uses a static analysis of

the conflict graph to reduce the amount of synchronization needed to ensure that the
i

database remains consistent.

Kung and Robertson(Kung & Robe*: -on 811 proposed a corrective measure for con-

currency control in an effort to relieve the tight restrictions of locking protocols. In his

scheme each transacticn works on a private copy of the database and no control is

imposed on the actions of any transaction. If, on termination, it is determined that the

transaction has operated on a consistent state, the transaction is committed and its

changes made permanent. However, if the transaction operated on an inconsistent state,

the view of the transaction is "corrected" before its changes are made permanent. The

"corrective measure" is to use a backward error recovery technique. The transaction is

4

108

aborted and rolled back and then re-executed, in the hope that the transaction will subse-

quently be presented with a consistent view. In the basic scheme a transaction is prone to

repeated abortion. Special measures had to be taken to detect and prevent "starvation"

of a transaction.

In the present paper we present a new protocol, which employs both preventive and

corrective measures. The method proposed by Garcia-Molina[Garcia-Molina 83] was also

a combination of corrective and preventive techniques. The aim of his scheme is to allow

nonserializable schedules which preserve consistency and which are acceptable to system

users. The technique employs a locking scheme, but adds a corrective technique, to avoid

backing up transactions. The method used is to provide countersteps, which can be exe-

cuted to provide semantic compensation for the steps performed by a transaction and

which need to be "undone". To semantically compensate the activity of a step, a coun-

terstep is needed for that step. However, this technique requires the users to provide

countersteps to the different steps of the transactions. If the counterstep to a step is not

provided, or if it is not possible to construct the counterstep, then the compensation tech-

nique cannot be applied.

The protocol, which we call the Delay,Re-Read Protocol, acts, on the one hand, in a

corrective fashion by sometimes forcing a transaction to perform forward error recovery

before proceeding with normal processing; it does so upon recognizing that a transaction

has read an inconsistent set of data. The error recovery measure requires that the tran-

saction re-read the entities for which it has inconsistent values, and recompute those

values for which the inconsistent values were used before it can proceed with normal pro-

cessing. The protocol acts, on the other hand, in a preventive fashion by sometimes

imposing a delay before permitting a transaction to write to the database; it does so upon

y^.

tea•

107	 l X

recognizing that such a write might, at the present time, jeopardize the integrity of the

database. A Read request by a transaction is always granted without delay. A Write

request may be delayed. The protocol is deadlock-free and no transaction is ever aborted.

Consequently, no backup data is needed for the operation of the protocol. The protocol

often supports a greater degree of concurrency than Two Phase Locking and no transac-

tion is ever delayed indefinitely.

6.2. System Model

We consider the database to be a collection of distinct objects with unique	 t

identifiers, called entities. Assertions, called integrity constraints specify the possible

values of the entities. Integrity constraints govern the possible interactions of operations

upon entities. A database which satisfies all of the integrity constraints is said to be in a

consistent state. A complete specification of the integrity constraints for a database

might be very large and it might not have an explicit representation.
0t

In order to formalize our moded, we present some definitions.

We denote the set of entities in the database by "E". Each entity may be read or

written indivisibly.

Definition 6.1. A transaction, denoted T 	 a set of actions

k	 k Pk
T ={t^ }^=i

together with a linear ordering * < Tk , on Tk .
< T k is meant to reflect the temporal order-

ing of the individual actions of T k . Each tk is a 4-tuple

Recall: a partial ordering < on a set X is a subset _< C XXX for which (a, b)(< and
(b,a)<< implies a=b, and for which (a,b)c< and (b,c)<< implies (a,c)e<; (a,b)c< is
usually written a <b; if a <b and a 34b then we write a <b; < is said to be a linear order-
ingon X if for every a,b(X, either a<b or b<a.

108

k	 k k kti =(k,ai,ei,U^)	 a

where

(1) k uniquely identifies the transaction, T to which tk belongs

(2) a, (JR,W), called the operation, denotes either Read or Write

k	 k.

(3) ek fE denotes the entity upon which the operation a k is performed

(4) Uk C 2E (power set of E), called the Use Set.

0

In the case ak=W, Uk denotes a set of entities which are used to compute the new

value of ek. Consequently, we may often use a "function" notation when describing a 	 T.

Write action:

ti =(k,W,ek(U'E))

In the case ak=R, Uk is the empty set. Consequently, we may often omit Uk when
`l

describing a Read action:

tk=(k,R,ek)
a

It is important to note that the Use Set for a particular Write is not necessarily the

entire Read Set for the transaction, i.e. a given Write, tk = (k, W, ek(Uk)) requires only
7

that the entities in Uk be consistent. Our protocol derives much of its flexibility from the

explicit knowledge of these "data dependencies".

We require that each transaction be well formed, that is

(1) a transaction may read an element at most once;
R

(2) a transaction may write an element at most once;

's,

109

(3) all Reads of a transaction must preterit -11 of its Writes;

l	 (4) the Use Set for a Write action must inAude the entity being written, i.e. the new

value of an entity depends on its old value (among other things), and;

(5) an entity must be read before it can appear in the Use Set of any write.

1
{	 Formally, these constraints may be written as follows:

1pDefinition 8.2. A transaction Tk = (tkl ; ' 1 is said to be well-formed if and only if the

j	 following conditions hold:
l

(1) if tk=(k,R,e^,) and tk=(k,R,ek) then a 34 ek

(2) if tk=(k,W,ek,U) and t =(k,W,ekIU^) then ek34e^

(3) if tk=(k,R,ek) and t^=(k,a^,e^,U.) then either tk < T,t, or a^=R

(4) if tk = (k, W, ek, U,) then ek is in U,'

k	 k k	 k	 k	 k

r
(5) if t^ = (k,W,e,,U,) then for every ye U, there exists ti. for which t,=(k,R,y) and	 s

t; <Tktk.

O
f

Our model is thus a generalization of Papadimitriou's "two-step restricted"

model[Papadimitriou & Kanellakis 82], in which our restrictions (4) and (5) with

Uk = { ekl reduce to Papadimitriou's broader restriction that an entity must be read

s

before it can be written.

6.3. Consistency

We assume that a given transaction, T 	 the database from one con -

_ 	.
sistent state to another consistent state (although the database may temporarily be in an

N.

II

110

inconsistent state while T is executing). Our goal is to allow concurrent transactions,

yet ensure that when the transactions complete the database will be in a consistent state.

The notion of concurrent transactions is captured by the following definition.

Definition 8.3. Let T 1, ... ,
T"

be transactions. A schedule, S, for T 	 , T
n

is the

set of actions

s

S = U T'

i—i

together with a linear ordering, <S , on S, for which for all i, < Ti C <S.

As before, the relation <S is meant to reflect temporal ordering (with truly simul-

taneous actions having an "effective" temporal ordering imposed by <S). Since actions

of each transaction are performed in the order the transaction requests them, it follows

that if tk < T A tkt hen we must have t- <S tk; hence the requirement that <T ► C <S.

For each transaction T 	 define its registration, (i,w), as a request which pre-

cedes T''s Writes and which follows T''s Reads. As we shall see, the registration for a r

transaction will actually be an enumeration of its Write Set. We extend <Tc (and

correspondingly, <S) to include (i,w) in the obvious way, viz., (i,R,x) < T;(i,w) and

(i,w) <Tc(i,W,y). Moreover, we further extend <S so that if (i,w) precedes (j,w) in

time, then (i,w) <S(j,w).

The aim of any concurrency control method is to ensure that the schedules per-

formed on the database transform it from one consistent state to another.

Serializability[Eswaran et. al. 76, Papadimitriou 791 has been generally accepted as the

I

im

111

consistency criterion for schedules. Serializability holds that a schedule for transactions

TI , ... , T is consistent if the state of the database after executing the schedule is the

same as it would have been had the transactions been executed one after another in some

order. Note that the order (corresponding to some permutation {tr-}f 1 of [1,n]) is not

specified.

Given a schedule S, which satisfies the serializability criteria, we refer to the per-

muted serial execution T ?r', ... , Tr" as an Equivalent Serial Schedule (ESS). Such an

ESS is not necessarily unique. A schedule having an ESS will be called a Consistent

Schedule. Not all the schedules are consistent. A concurrency control protocol is said to

be consistent if it ensures that the schedule that finally acts on the database (which might

be different from the schedule submitted) is consistent.

Since our model requires that each entity be read before it can be written, a

schedule S can be checked for serializability using its corresponding precedence graph,

GS [Ullman 80]. We construct the graph as follows. The nodes correspond to the transac-

tions. The arcs are determined by the following rule:

if (i,R,x)<S(j,W,x) or (i,W,x)<S(j,W,x) or (i,W,x)<S(j,R,x) for any x, then

draw an arc from T' to Tj.

We note that since < S is a total relation, it follows that the undirected version of

GS is a complete graph.

A schedule S is serializable if its precedence graph is acyclic. It follows that we can

find an ESS for S by topological sorting.

Clearly the temporal ordering of the registrations induces a serial schedule, S. If

T' precedes T' in such a serial schedule, S, we write T' <^ V. We shall see that the

112

Delay/Re-Read Protocol, using those registrations, produces a schedule, S whose

equivalent serial schedule is 9.

If the registration of a transaction T' occurs before the registration of the transac-

tion T', and the transaction T' writes the entities before Tj reads them, then the graph

GS can have no arc from T' to T'. This is formally stated and proved in the following

Lemma.

Lemma 6.1. Let S be a schedule for well-formed transactions. Then the precedence

graph GS has no arc from T' to T' if (i,w) <S(j,w), and (i,W,x) <S(j,R,x) for every

(i,W,x) and (j,R,x) in S.

Proof. The proof is by contradiction. There are only three ways that G S can have an

are from Ti to T':

(1) (j,R,x)<S(i,W,x). Since <S is anti-symmetric, this directly contradicts the

hypothesis that (j,R,x)(S and (i,w)<S(j,w) and (i,W,x)<S(j,R,x).

(2) (j,W,x) <S (i,W,x). Since T' is well-formed, we have

(j,R,x) <S(j,W,x)

As in case 1, the hypothesis yields

(i,W+x)<SU,W,x)

which, by anti-symmetry of GS , disallows this case.

(3) W,x) <S (i,R,x). Since T' is well-formed, we have

(i,R,x) <S(i,w).

Also

(j,w)<_S(j,W,x),

so

mot,

i

e
113

(J,w)<S(i,w)

which, by anti-symmetry of < S , contradicts the hypothesis that (i,w)<S(j,w).

If the condition in the Lemma is satisfied for every pair of transactions, then GS

will be acyclic. That is, if for every pair of transactions T' and T', if the registration of

the transaction T' occurs before that of T' implies that T' writes an entity before Tr

f	

reads that entity, then the graph GS will be acyclic. This if formally stated and proved

l	 in the following theorem.

t _1i
Theorem 6.2. Let S be a schedule for well-formed transactions, and T' and T' be any

f

two transactions. Then the precedence graph GS is acyclic if (i,w)<S(j,w) implies

(i, W,x) <S(j,R,x) for every (i,W,x) and (j,R,x) in S.

Proof. The proof is by contradiction. Suppose that G S has a cycle involving nodes

T^ 1, • • • T '' (k>1). Since <S strictly orders the registrations of the transactions, there is

one registration (i,w) among i(il,w),...,(ik,w)} which is "earliest" in time. Now for every

other transaction, Tj , j((il,...,ik) (j340, we have (i,w)<S(j,w), which by hypothesis

implies (i,W,x)<S(j,R,x). So Lemma 6.1 applies and there can be no arc to T' from

each such T', P"il,...,ik 1 (j X0. Therefore, the presumed cycle involving T' is not possi-

ble.

n

Corollary 6.3. Let S be as in Theorem 6.2 and S the serial schedule induced by the

registrations. Then S is consistent and S is an ESS of S.

Proof. Since by Theorem 6.2, GS is acyclic, it follows that S is serializable and hence

consistent. Moreover, any serial schedule having G S as its precedence graph is an ESS of

114

S. Clearly 9 is such a serial schedule.

Informally, the theorem lays down a sufficient condition to be satisfied by the

schedule that will ensure that every transaction sees a consistent state, that is, the set of

values returned by the Reads of the transaction is such that it is the same as the set of

values of these entities in some consistent database state. This does not imply that all

the Reads must be performed on the same consistent state. A Read can be performed on

any database state, possibly transitory and inconsistent, but the set of values read by all

Reads must be such that all the values can co-exist in some consistent database state.

Theorem 6.2 specifies the condition when this is satisfied. This theorem is the basis of

Delay/Re-Read Protocol.

In the following sections W (x) and R,(x) mean same as (i,W,x) and (i,R,x) respec-

tively.

8.4. The Delay/Re-Read Protocol

Not all schedules satisfy the condition of Theorem 6.2 in the form they . are submit-

ted. The purpose of the Delay/Re-Read Protocol is to control any schedule so that the

schedule that finally acts on the database satisfies the condition of the theorem.

Each transaction is submitted to a Transaction Manager which assigns a Transac-

tion Process (TP) to each transaction. A History File is used to record the information

about the actions performed on the database by the various transactions. This is

different from a "log file". A log file, alone with data about the actions also records the

old and new values of the entities which are modified to provide a "backup". The history

file records only a window of activity and no "backup" data is recorded. As we shall see,

. L

rJ

t

f

115

the history file need only maintain a record of the actions of recent transactions.

When a transaction requests a Read, the TP permits the read and records this

action in the history file. No control is exercised over the Read requests. When a transac-

tion requests a Write, the TP executes the protocol and awaits its instruction(s). The pro-

tocol may allow the TP to permit the request or may require the TP to re-read some

entities, to re-do the computation, and to re-submit the Write request. When the Write is

granted the TP permits the Write and records the action in the history file.

The Delay/Re-Read Protocol is used to ensure that any schedule remains consistent.

This is accomplished by a combination of preventive and corrective measures. The

Delay/Re-Read Protocol sometimes delays a Write request (a preventive action). Alterna-

tively, the Delay/Re-Read Protocol sometimes requires TP to re-read some entities prior

to proceeding with a Write (a corrective action), thereby assuring that the Use Set for the

Write is consistent.

We assume that the Write Set of the transaction is known by the TP. This informa-

tion is required after the transaction has performed all of its Reads. A similar assump-

tion has been made in SDD1[Bernstein et. al. 80], and is required in locking protocols in

order to determine whether to request a shared or exclusive lock. This does not place any

restrictions on what may be read and written by transactions, but rather merely requires

that a transaction's Write Set be known. As we will discuss later, the protocol can

effectively handle, with possible loss in performance, the situation where the write set is

not accurate and contains extra entities. After the transaction has performed all its

Reads and before it performs its first Write, it records its Write Set in the history file. If

the Write Set of Ti is (x,y,z j', this is recorded in the history file as wjx)v) jy)tu jz). The

recording of the Write Set is assumed to be an atomic action. This action serves the

r

lla

purpose of the registration as discussed in section 3.

A Read action is recorded as Ri (entity-name) in the history file. A N':ite action of

the form Wi (z(U)) is recorded as W,(z)u;(z,)u;(zz) ... uj (zm) where each z,eU. The

writing of this sequence is taken to be atomic. (Note that one of the z, =z and we need

not include u,(z) since it is implied by W,(z). For the sake of uniformity we will assume

that u, (z) is also recorded)

The protocol consists of three sections. Two sections perform preventive actions,

and one section performs the corrective action. The aim is to ensure the consistency by

ensuring that the conditions laid down in theorem 6 . 2 are satisfied. Read requests are

granted without delay. The protocol is exercised only for write requests.

Suppose that a write request Wj (x(U)) is made by the transaction T'. To ensure

that all the values of the entities in U are "current", the protocol has to ensure that the

transaction T' read those entities after any transaction T1 , which registered before T'

did, has written the entity. This is done in a preventive manner, by waiting for T^ to

write the entity. This constitutes the section 2 of the protocol.

If T' does not have the "current" values of the entities in U, then the corrective

action is performed. Ti is forced to re-read those entities that are "outdated", and then

recompute the value of x(U) using the latest values. This corrective action is performed

only after all transactions which have registered before T' have performed their

corresponding writes. This is the section 3 of the protocol.

However, the possibility of re-reads complicates the situation. Due to the re-reads a

transaction may no longer have all its reads before its registration. This implies that

even if all the entities in U are "current", W.(x(U)) cannot be permitted until it is cer-

P
I.

I

117

tain that any transaction that registered before T' will not re-read the entity z. This is

done in section 1, and the write is prevented until the occurrence of such a re-read aa no

longer possible.

Let us now present the Delay/Re-Read Protocol formally.

Let x, y r E

t	
The History File, H is maintained as a string over the alphabet

1	 ^'=(R;(x),W,(z),wi(x),u,(z) i x(E}

Let an ellipses (...) denote an arbitrary string over Z (possibly of length zero).

Let TP(j) be the transaction process of Ti . The Delay/Re-Read Protocol is shown

in figure 1.

^w

f

E

f

ii

low	 a

a

a

118

Given a request for W^ (.:(U%

! Sr CT ION I 'J
for every T' <S T do

2.	 { if H= ... Ri(z)... 8 H 54 ... ui(x)...
then

3.	 if there exists Tk <S T' for which H= ... t"k (z)... 8 H-X ... Wk (x) ... R,(x)...
4.	 then await u^ (x)

1 (' SECTION II *)
5.	 for every y c U do.
6.	 (for every T' <S T' do
7.	 { if H=...tUj(y)... & Ho ... Wi(y)...
3.	 then await Wi (y)

r }

SECTION Ill ')
S.	 if there exists y e U & T' <S T' for which HX... Wi (y)...Rj (y)...

then

` 10.	 (for every y c U
11.	 {if there exists T' <S T'
12.	 for which H ?6 ... W (y)...Rj(y)...
13.	 then instruct TP(j) to reread y	 .t

14.	 instruct TP(j) to recompute x(U)
" 15.	 instruct TP(j) to resubmit W,(x(U))

}
16.	 else authorize W, (x (U)).

Figure 1: The Delay/Re-Read Protocol

Sections I and II constitute the preventive action of the protocol (causing delays);

section III constitutes the corrective action (causing re-reads).

Informally, the Delay/Re-Read Protocol ensures that there is no are in GS from T'

to T' (where T' <S T'). Fo ► this the protocol must ensure that for any x (E

(1)	 W jx) < S Rj (x)	 (ensured by Section III)

^^ I

471

119

(2) Wj(x)<S Wj (x)	 (ensured by Section II)

(3) R;(x)<SWj(x)	 (ensured by Section I)

Since re-reads are possible, R here means the effective or the final Read. For any

T' <9 T', if condition 1) does not hold (line 12 and 7), the protocol ensures that T' waits

until W,(x) is performed (line 8) and then re-reads the entity (line 13), thus ensuring con-

dition 1).

Condition 2) is satisfied since the well-formedness criterion R,(x)<SW,(x) together

with Condition 1) ensure that Wj(x)<SWj(x).

It takes a bit more thought to see why it is necessary to do anything more to ensure

that Condition 3) is satisfied. A transaction, T' may not perform W (x) if some

V < j T' will "soon" be instructed to re--ead x. This situation is illustrated by the fol-

lowing time line.

-----------► tim e ----------►
Tk.

Rk(x) wk(x)	 Wk (2:
T':	 R,(x)R^-(y)tiJ(y)	 Rj(x)1'1',(y(x,y))
T':	 R;(x)1MX) FWA)J------------- --- W;(x)ut(x)

It should be pointed out that in the protocol when we refer to a T' such that

T' <9 T', we can exclude from consideration any transaction T' which terminated before

T' started, since such a T' automatically satisfies the conditions of Theorem 6.2. To

avoid complication, we do not mention it in F h. .)rotocol.

6.5. Properties of the Protocol

In this section we state and prove a number of properties of the Delay/Re-Read

Protocol.

11

120

Claim 6.1. The Delay/Re-Read Protocol is consistent.

Sketch of Proof. The above discussion illustrates that for any two transactions T , and

T', if (i,w) <S (j,w) then R,(y) occurs after the W,(y) that may occur and the final R,(x)

occurs before W,(x). Thus, the hypotheses of Corollary 6.3 are satisfied, and the result-

ing schedule is consistent.

0

Claim 6.2. The Delay/Re-Read Protocol is deadlock-free.

Sketch of Proof. T' is made to wait for T' only if (i,w)<S(j,w). Since <S is a linear

ordering, it follows that no deadlock can occur.

r,

Claim 6.3. For any entity at most one re-read is performed by any transaction.

Sketch of Proof. Before a transaction, T' discovers in Section III that it must perform

a Re-read of some entity y, T' must first pass through the "gate" of Sec+.ion II. Section

II delays the progress of T' until all elder transactions, T `

<S T1 have performed their

Writes of entity y. Therefore, upon entry to Section III, transaction T' is assured that

elder transaction have finished their Writes to entity y. Moreover, any younger transac-

tion Tk > S T' which wants to perform a Write to entity y is delayed in Section I until T'

has performed its Re-read of y.

0

Claim 6.4. No transaction is delayed indefinitely.

Sketch of Proof. Inspection of the protocol shows clearly that no delay is ever imposed

on the eldest transaction. Since we assume that transactions always terminate, it follows

that eventually every transaction becomes the eldest of the active transactions, and is

s

121

therefore immune to further delay.

O

Claim 8.5. If an entity y belongs to the use set of an already authorized write of the

transaction T', then Ti will not thereafter be requested to reread y.

Sketch of Proof. If a reread is required at all, it is performed when the first write hav-

ing y in its use set is requested. Else a reread is not necessary. By claim 6.3 there can be

at most one reread of y, so subsequent uses of y cannot induce another reread.

Claim 8.8. For a schedule, the number of rereads performed by a transaction is fixed

and is independent of the use sets.

Sketch of Proof. At the time of registration of a transaction T', the first read of the

entities by T' has completed. At registration, for some transaction T' and entity x, if

UM)<(i,w) and H= • • • w,(x) •	 F! HX • • • W
j
(x)	 Ri(x), then x will be reread

by T" at one of its write requests. Else a reread is not needed. Since there is at most one

reread of an entity possible, the number of rereads is fixed.

8.8. Discussion

A basic limitation of a preventive approach based on delaying requests is that delay-

ing a request of a transaction also delays the later requests of that transaction, even if

there is no actual data dependency between the requests. The actions of a transactions

are presented with a linear ordering on them. However, this ordering of actions often does

not reflect dependency between the actions. For example, in a transaction contains R(x)

followed by R(y) the two reads are ordered but there is no data dependency between the

122

actions, and they can as well be performed in a different order, without affecting the com-

putation. In the above example delaying R(x) will also delay R(y), even if R(y) could be

performed without delay.

A method using only a corrective technique, such as Kung's optimistic approach,

avoids this type of unnecessary delay by not delaying any request. However, by not per-

forming a preventive control over any request, transactions have to be restarted in case of

conflicts.

The Delay/Re-Read protocol avoids unnecessary `forced' delays of the read requests,

by allowing the reads to take place without any delay, and then rereading some entities

when needed. So, the effective ordering of the reads by a transaction is not same as the

ordering of the read requests. The cost of breaking the ordering imposed by the ordering

of requests in a transaction is extra reads. The protocol maintains the ordering of the

write requests.

In the rest of this section we will discuss some issues relating to the operation and

the efficiency of the protocol. Two examples are provided and a brief comparison is made

with two phase locking.

8.6.1. History File

It may appear that the history string, H, grows without bound. However, there is a

simple method by which we can prune H. We observe that we need not record the actions

of any transaction that terminated prior to the start of all currently active transactions.

Hence, actions of such transactions can be removed from H. We further observe that the

performance of a Re-Read, R,(x), obviates the need for any previous record of R,(x); thus

H can be further pruned of such R,(x)'s.

123

	 N

History file pruning need not be done by the Protocol or the TPs. A background

process can maintain and prune H. Since, the record of actions being removed from H are

not being considered by the protocol, the background process will not interfere with the

protocol, and so no synchronization is needed for it. This technique will keep the history

file pruned and make the act invisible to the protocol while reducing its overhead.

6.6.2. Protocol Overhead

We may make a few observations concerning the overhead of the Delay/Re-Read

Protocol. Overhead in the Delay/Re-Read Protocol i3 of three forms:

1) Delay overhead: Caused due to the preventive measures of delaying write

requests. Corres p onds to the delay of a Write in lines 4 ac.d 8.

2) Re-Read overhead: This is the overhead due the corrective measures of the proto-

col and includes the overhead of re-computing values. Corresponds to lines 13 and 14.

3) Search overhead: Can be viewed as the execution overhead of the protocol. It is

largely caused due to the pattern searching in the history file that is needed for determin-

ing the conditions to delay a write or reread an entity.

For a given schedule, the reread overhead is fixed (claim 6.6), and the delay over-

t head is largely dependent on the accuracy of the use sets. If the use sets are minimal, the

delay overhead will be minimal, otherwise extra delays might be incurred (see also discus-

sion below on use sets). Across different schedules these overheads increase as the level of

concurrency increases. There is no reread or delay overhead if there is only one active

}	 transaction. Moreover, there remains no delay or reread overhead, even with multiple

'	 transactions, so long as they operate on disjoint sets of entities. The delay and reread

overheads increase only as the interaction among transactions increases, vis a vis increas-
f

^e"t

124

ingly overlapping Z Tse Sets.

The scheme can also be modified to eliminate the recomputation overhead, where

the computation is expensive. Suppose T' attempts Wj (x(U)) where the computation of

x(U) is expensive. T i might view W, (x(U)) as merely a request to write, without first

performing the expensive computation. Only once the Write has been authorized. does

T' proceed with the computation of x(U), finally performing the Write.

Though the number of rereads is fixed for a schedule, the cost of rereads can be

reduced by proper buffer ma:.agement. Usually, the permanent database resides on a

disc, and there is a database buffer in the main memory, in which the pages that are

needed for transaction processing are read(Haerder & Reuter 83). At the end of a transac-

tion, the changes made by the transaction are made permanent by writing the buffer

affected by the transaction to the permanent database. If at the time of reread, the data

is still in the buffer the reread will cost considerably less than a regular read, since a regu-

lar read requires the data to be first transferred from disc to the buffer. By properly

managing the buffers and the times of writing the buffers on the permanent database, it

can be arranged the data is still in the buffer when a reread is to be performed. Such a

method will considerably reduce the cost of rereading entities.

The search overhead of the protocol can be reduced for a given schedule by using

the properties of the protocol and the structure of the history file. The search overhead is

reduced by pruning H. It is apparent that if H is pruned, as indicated above, then there is

no overhead when there is only one active transaction. The overhead can be further

reduced by organizing the history file efficiently. For example, since each pattern the pro-

tocol looks for is specified by actions on the same entity, we can divide the history file

into sub-history files, one for each entity (or a group of entities). Hashing and/or

+._	 .

k.

125

indexing can then be used to further reduce the search time.

The overhead can be further reduced by utilizing the claim 6.5 of the protocol. If

an entity y has appeared in the use set of an already permitted write of the transaction

T', then the loops of the sections 2 and 3 need not be executed for the entity y. It follows

that once all the entities that are read by T' have appeared in at the use set of at least

one authorized write, then the sections 2 and 3 of protocol actually need not be executed

at all for the requests by T'. However, the cost of reducing the searching of the history

file in this manner, is to keep extra information about each transaction.

5.6.3. Use Sets

The Delay/Re-Read Protocol requires explicit knowledge of various data dependen-

cies (via the Use Sets of the Writes). In the present paper we have not addressed the

problem of determining such data dependencies. We believe that very often the Use Sets

can be specified ea; licitly by the transaction. Moreover, we believe that even without

explicit specification of Use Sets, techniques such as data flow analysis can be used to

jdetermine (or to approximate) Use Sets. However, it is clear that the unconstrained prob-

e	 lem of automatically determining Use Sets is recursively undecidable.

Though minimal use sets will result in minimal overheads for the protocol, the pro-

tocol is robust enough to work properly even if the use set are not accurate. In such a

situation it is required that the actual use set be a sub set of the use set used in the proto-

col. That is, the use set used by the protocol must include at least the entities on which

the computation depends, but may contain other entities on which the computation does

not actually depend.

r

41

126

The effect of extra entities in the use sets, is a possible increase in the delay over-

head. Suppose an extra entity y appears in U of the request Wjz(U)). When the write is

requested, two extra actions might be performed, which would not occur if y is not

included in U. 1) The protocol might `await W,(y)' for some transaction T'; and 2) The

protocol might request TP(i) to reread y. Action 2) does not incur any extra overhead, as

the reread overhead is fixed; it merely makes the reread occur earlier. However, the delay

in 1) would be lesser, and may not even take place, if y is not included in U.

So, the effect of having extra entities in the use sets is to possibly increase the delay

overhead, without violating the basic properties of the protocol. Thus, the requirement of

accurate use sets can be relaxed, the extreme condition being that the use set of each

write request contain all the entities the transaction reads. It should be mentioned that

even in this situation the delay overhead might not increase at all, as shown in example 1

below.

Inaccuracy of this mature in the write set can also be handled by the protocol. How-

ever, the protocol requires that a write of the entity must be recorded in the history file,

if the entity is considered in the write set. This can be easily achieved by performing

dummy writes of the extra entities at the end of the transaction (with null use sets). This

method also might result in increased delay overhead, as other transactions may have to

wait unnecessarily till the dummy write is performed. The reread overhead may also

increase, since the dummy writes may induce rereads, where they are not needed. How-

ever, the protocol will remain consistent and deadlock free.

127

6.6.4. Comparison With Locking

It is difficult to compare Two Phase Locking with the Delay/Re-Read protocol

because both have different overheads resulting from the different strategies followed.

However some comparisons are possible (although we make no attempt here at a full

comparison).

1) By using Two Phase Locking transactions can deadlock. The Delay/Re-Read

Protocol is deadlock-free. Due to the possibility of deadlock, transactions might have to

be aborted to break a deadlock. Transactions are not aborted in the Delay/Re-Read pro-

tocol. Furthermore, due to the possibility that transactions may be aborted, the locks of

a transaction are usually released at the end of the transactions. If the locks are not held

till the end, aborting a transaction may require other transactions to be aborted, and may

cause an avalanche of aborts. This restriction further reduces the allowable concurrency

with Two Phase Locking.

2) Because of the corrective strategy, the Delay/Re-Read Protocol provides greater

concurrency, sometimes at the cost of re-read overhead. But, the Protocol also provides a

greater degree of concurrency even without any re-read (see example 1 below). However,

there are pathological cases where two phase locking would perform better. Such a case

can occur when there is a daisy chain of dependencies but two transactions which are not

neighbors in the chain have no dependency between them.

3) The Delay/Re-Read Protocol requires explicit knowledge of various data depen-

dencies, whereas Locking requires no such knowledge.

4) Locking requires a lock table, the size of which is fixed and is a function of the

total number of entities in the database. This can be a rather large and unnecessary

overhead under low concurrency. Moreover, locking also requires a "log file", so that the

1.

128

actions of some transactions can be "undone".

The Delay/Re-Read Protocol needs merely the history file, the size of which depends

upon the current degree of concurrency. For low concurrency this overhead is low. More-

over, no backup data need be recorded for the protocol.

5) There is a possibility of 'starvation' in Two Phase Locking, when more than one

transaction is waiting to lock an entity. The problem is solved by using so-called fair

schedulers. No problem of starvation occurs with the Delay/Re-Read Protocol and no

extraordinary measures are needed to prevent starvation.

8.6.5. Two Examples

We give two examples. (left-to-right vertical alignment indicates temporal order-

ing) First in which no re-read is to be done and no write is delayed. In the second exam-

ple, a re-read is needed.

Example 1:

TI:R1(x)	 RJO ti Jx) tb JY) 	 W' (x (x , y))	 WJY(0)

T2: R 2(x)R 2(z) w 2(x)	 W2(z(x,z))

Two-Phase Locking would force R 2(X) to wait until after Wjx(x,y)), effectively forcing

serial execution, while the Delay/Re-Read Protocol permits full concurrency. In this

example the ESS produced by the Delay/Re-Read protocol is T2 T I , while the two phase

locking will produce the ESS T 1 T2 . This demonstrates that the ESS produced by the

Delay/Re-Read protocol and two phase locking may be different. In this example the

Delay/Re-Read Protocol will result in optimum throughput (neglecting the search over-

head of the protocol). There is no delay or reread overhead in this example. It should

also be noted that in this example, if all the use sets were the read sets of the transac-

129

tions, the delay and reread overhead will still remain the same. (There is only one

request, W,(y(y)), whose use set is not the read set. By adding x to its use set will not

delay the request, and no reread of x will be needed)

Example 2:

T' :	 R i (y)R ,(x) wi(x)wt(y)W,(y(Y)) 	 WJX(x))ui(x)

T2 :R 2(Z)	 R2(y)w2(x)w2(y)W2(y(y)) 	 R 2 W2(x(x)

In this example there is no delay overhead. There is a reread overhead of reading one

extra entity. Prior to performing W2(x(x)) T2 must re-read x (shown emboldened), and

must recompute x(x) (if it had already been computed using the old value of x). Locking

will force serial execution and a simple minded Two Phase Locking protocol w::l

deadlock.

8.8.8. Concluding Remarks

It has been suggested that there are three basic techniques that can be used for

implementing atomic actions in databases- waits, timestamps and rollbacks [Bhargava

82a, Bhargava 82b]. We have shown that there is yet another technique, namely forward

error recovery, which can be utilized in place of rollbacks for optimistic protocols. More-

over, this forward recovery is a refinement of rollback inasmuchas it can be used to

update only a part of a transactions view, rather than the whole view. Our protocol also

demonstrates that the various techniques need not be used in isolation, as they have eften

been used, but can be combined and used in a complimentary manner. Thus, this

approach can exploit the advantages of different techniques while avoiding some of their

drawbacks.

1

130

The protocol we have presented for implementing atomic actions in a database uses

both preventive and corrective measures for ensuring atomicity. The protocol is

deadlock-free and accomplishes its "forward recovery" without the need for backup data,

without the need for reversing the effects of any Writes, and without aborting transac-

tions. The utility of this method will vary from system to system, depending on the re-

read overhead in a particular system. We are currently studying the effects of the under-

lying system structure on the overhead of the protocol.

^^

U:	 ..._

,I

181.

CHAPTER 7

CONCLUSION AND FUTURE WORK

An atomic action is an activity, possibly consisting of ma ay steps performed by

many different processors, that appears primitive and indivisible to any activity outside

the atomic action. To other activities, an atomic action is like a primitive operation

which transforms the state of the system from one state to another without having any

intermediate states. An operation that is executed as an atomic action has the properties

of non-interference, non-overlapping and strict sequencing.

Atomicity is fundamental to programming concurrent systems and many different

concurrency control schemes which have appeared in many different contexts have actu-

ally the same goal: to provide a mechanism that ensures atomicity of system activities.

In the recent literature great emphasis has been placed on the database applications of

atomic actions. We have shown that the concept of atomicity is more general, provides

many additional advantages, and unifies the solutions to many existing problems. Many
i

different concurrency control requirements which appear in different distributed system

applications actually have the same goal: to establish the atomicity of operations.

Atomic actions are fundamental to the problem of concurrency control in databases,

mutual exclusion in operating systerns and provision of software fault tolerance.

We have proposed a new model for planned atomic actions, based on transforma-

a. tion sequences of actions. Using this method we have shown that atomic actions are fun-

damental for fault tolerant software. Ma;,y schemes for supporting backward recovery

hither implement or identify atomic actions in some way. We have shown that an action

132

that is backward recoverable must be an atomic action. Similarly, we have shown that

for general forward recovery in an action, the action must be an atomic action.

These results give a theoretical basis for providing fault tolerant software in terms

of a system model based on processes, actions and viable states. It has been made clear

that to perform recovery within an action, the action must be atomic. With this as a

basis, the problem of providing recovery can be divided into two disjoint problems, the

problem of providing atomic actions and the problem of providing recovery. It follows

that the continued study of recovery techniques should be discussed within the framework

of atomic actions, and the desi ;n of recovery techniques should be independent from con-

cerns of atomicity.

We have proposed a notation to specify an atomic actions in a system of Communi-

cating Sequential Processes (CSP). The atomic actions are used for supporting different

recovery techniques. In the proposed scheme the planned atomic action is used as the

basic unit for providing fault tolerance. The atomic action is called an FT-Action, and

both forward and backward error recovery are performed in the context of an FT-Action.

An Implementation for the FT-.Action is proposed, which employs a distributed control,

uses CSP primitives, and supports local compile and run-time checking of the forward

and backward error recovery schemes.

In databases a transaction is the unit of processing. A transaction is a sequence of

read and write actions on the ^ atitieu of the database. If the actions of different transac-

tions are not properly cow inated an inconsistent database may result. In the database

literature, this problem is referred to as the concurrency control problem. What is really

desired is that a transaction should appear to execute indivisibly. That is, to maintain

the consistency of the database, a transaction should be an atomic action. We have

4,

+7

133

presented a new protocol, called the Delay/Re-Read Protocol, which uses a combination

of preventive and corrective measures for ensuring the atomicity of transactions. The

Protocol is deadlock-free, requires no backup data, and often supports a greater degree of

concurrency than Two Phase Locking. A transaction is never aborted or delayed

indefinitely by the Protocol.

7.1. Future Work

In this thesis we have studied in some depth the relationship between atomic actions

and fault tolerant software. The need of atomic actions in databases and operating sys-

tems is also well understood. However, even though the --oncept of atomicity has been in

existence for a long time, only recently have people started understanding the fundamen-

tal nature of atomic actions. As a result, many consequences of having atomic actions as

• oasic programming structure are still not well undo :.stood or studied. Here we propose

• few areas in which we consider that atomic actions can be useful and future work relat-

in-0 to atomic actions can proceed.

7.1.1. Proving Correctness

t
Almost all the techniques for proving correctness of parallel programs in a shared

memory system assume atomicity of actions at some level. The Owicki and Gries method

of proving correctness[Owicki & Gries 76b, Owicki & Gries 76a[, and the method pro-

posed by Lain port [Lamport 771 both explicitly identify the operations that will be exe-

cuted atomically. Because these operations are interference free, assertions can be made

easily about the results of such operations. If atomic actions are supported by a program-

ming language, then abstract operations can be specified as atomic and guaranteed to be

interference free. Such a guarantee about "large" operations would simplify the proof of

t4'

134

a concurrent system considerably.

Let us briefly consider the Owicki and Gries method of proving parallel programs

correct[Owicki & Gries 76a, Owicki & Gries 76b] and show that atomic actions will sim-

plify the proofs constructed using their method.

Their technique uses the concept of the "interference" of a process with the proof of

another. First the proof of each process is studied as an independent, sequential program,

disregarding parallel execution. Then, the method requires a proof that the execution of

the other processes does not interfere with the proof of each process considered indepen-

dently. The ability to specify an operation as being atomic in a programming language

would simplify the proving of "interference-freeness". An atomic action, being an indi-

visible operation, could be treated as a single statement free from interference from any

other action. So, only the pre-condition and post-condition for the atomic actions need to

be interference free. Owicki and Gries also point out that the proof of correctness for an

atomic activity is relatively simple[Owic] ' & Gries 76b]. However, the impact of

language supported atomic actions has not been explicitly considered, and remains a

research problem.

• i4-

7.1.2. Correctness of Programs with Exceptions

The problem of proving correctness of sequential programs with exceptions has only

recently attracted attention. A proof technique has been developed by Cristian[Cristian
i

83, Cristian 841. We expect that atomic actions Nvill provide a convenient framework to

extend the technique to concurrent systems.

Cristian's approach considers a sequential program as a set of predicate transform-

ers. One transformer is the standard transformer for normal execution, and the other

I

..ill ?.	 4T

135

transformers are for the different anticipated exceptions.

There are two basic underlying assumptions which must be satisfied for this tech-

nique to be successful. The first is that only one exception can occur at a time (though

different exceptions may occur in different executions), and that the only cause for the

occurrence of the exceptional condition is that the computation began in an exceptional

domain (in contrast to the standard domain). The second assumption is that the execu-

tion of the activity cannot be interfered with by the execution of any other activity, so

that the predicate transformers of the program are always valid and are independent of

the activity of the rest of the system.

In general, both of these assumptions are hard to satisfy in concurrent systems. By

definition, an atomic action satisfies the non-interference assumption. The occurrence of

multiple exceptions can be resolved into a single exception using the scheme of Campbell

and Randell[Campbell & Randell 83]. Therefore, both the basic assumptions in Cristian's

scheme can be satisfied by atomic actions. Hence, if atomic actions are used as the basic

unit to support exception handling, it should be possible to extend the technique to con-

current systems. However, further work needs to be done to work out the details for this

extension.

7.1.3. Program Structuring

In design;ng concurrent program, some notation is needed to specify the atomicity

of operations. In(Dijkstra et. al. 78] the atomic actions assumed are clearly stated. Pro-

gramming language constructs may be used to specify the atomicity of operations, as in

monitors, where an operation on a monitor executes in mutual exclusion. We believe,

that provision of atomic actions in programming languages will help the designer in

136

designing parallel programs, because he can specify an activity as atomic and then be

assured of interference freeness of that activity. Consequently, he can concentrate on

designing the structure of the system and the activities in the system which should be exe-

cuted atomically. This would transfer some of the burden of designing parallel programs

from the system designer to the language designer and implementor. Moreover, as men-

tioned in the previous section, reasoning about the programs is expected to be easier and

this will aid the rigorous design of concurrent programs. The nesting property of atomic

actions supports hierarchical decomposition. The rules for decomposing atomic actions

can guide the decomposition of an abstract concurrent system into a hierarchy of atomic

actions. This too is an area which needs more research before definite claims can be

made.

7.1.4. Decomposition Rules for Atomic Actions

An atomic action can be decomposed into other atomic actions. The recursion

implied by this definition terminates when an atomic action can be programmed in terms

of primitive atomic actions. To simplify the construction of atomic actions and specify-

ing the semantics of atomic actions, we believe that an atomic action should be decom-

posed into other atomic actions using a small set of rules. The decomposition rules

should aid in design of atomic actions using "smaller" atomic actions, and should aid in

verification and specification of semantics of atomic actions using the semantics of the sub

atomic actions. Our preliminary results indicate two rules of decomposition.

The set of decomposition rules is based on sequential decomposition and parallel

decomposition. A sequential decomposition of an atomic action A is a sequence of atomic

actions A I A21 ...
)An written:

i

k
E

s

s

4	 v

137

A =Al;A2i ... ,An.

For all j such that j>2 and j <n, the initial state of atomic action A, is determined by

the final state of atomic action A, -1 - The atomic action A terminates when A n ter-

minates.

An atomic action may be decomposed into a set of atomic actions which can execute

concurrently using parallel decomposition. An atomic action A, decomposed into parallel

atomic actions A 1 ,A 2, - - - ,A n , can be written as

A=All i A 211 ... l lAn•

The sub-actions A 1, - - - ,A n have no defined order of execution. A terminates when all

the sub-actions terminate. The strict sequence property requires that the final state of A

will be same as if A ll - - - ,A n were executed in strict sequence. However, the equivalent

strict sequence order cannot be determined apriori and is non-deterministic, and may

result in different final states for A.

Although we have not worked out the details, the atomic actions that constitute a

sequential or a parallel decomposition of an atomic action may depend upon more com-

plex control flow mechanisms that permit conditional execution and iterative execution.

For example, an iterative atomic action may specify repeated execution of one atomic

action or may specify the concurrent execution of multiple instances of one atomic action.

Further work needs to be done to demonstrate the completeness and power of these rules.

7.1.5. Independence of Actions and Parallelism

Nested atomic actions can be very useful in exploiting and specifying concurrency

and parallelism in a program, especially with the concept of independent actions. Let A

..i

4

v

138

be an atomic action with two atomic actions A 1 and A 2 nested within it.

The two actions A, and A 2 are independent if

(1) A, and A 2 are parallel atomic actions.

(2) the final state of A is independent of the order in which A 1 and A 2 occur.

If A, and A 2 are independent then the result produced by A is the same irrespective

of the effective order in which the two nested atomic actions perform their computations.

This is in contrast to the situation where the two atomic actions are not independent. In

such situations, the final state may be determined in a non-deterministic manner and may

depend on the order in which the nested actions occur.

Independent actions are useful in exploiting parallelism in a program, though ensur-

ing independence of actions may be difficult. If two actions are independent, they can be

computed separately, possibly on different machines, without affecting the result of the

overall computation of the enclosing action. For vector machines the enclosing atomic

action is often a loop, and the different sub-actions are the computation of a loop body for

different loop indexes. The synchronization needed in case of independent actions is also

minimal because of the independence. Synchronization is only needed to determine the

final boundary of the enclosing action.

To ensure the independence of sub-actions may not be easy, and work needs to be

done to specify rules to easily check for independence and structure atomic actions in such

a way that independence of sub-actions is guaranteed. The program transformation

techniques[Kuck 81, Padua et. al. 80] aim to restructure loops in such a way that indepen-

dence of sub-actions is guaranteed.

L

W;

NIL

L^y^`"a+^-dam...\.w
.
ul

139

REFERENCES

Pankaj Jalote was born in Lucknow, India. In 1980, he recieved the Bachelor of

Technology in Electrical Engineering from Indian Institute of Technology, Kanpur, India.

He recieved the Master of Science degree in Computer Science in 1982 from Pennsylvania

State University, University Park, Pennsylvania. In 1985 he recieved his Ph.D. in Com-

puter Science from University of Illinois at Urbana-Champaign. His research interests

include fault tolerant software, programming languages, distributed systems and data-

bases, and software engineering.

{

APPENDIX E

l

MEDIATORS: A Synchronization Mechanism

Judith E. Grass

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois

PRELIMINARY: Do NOT Distribute
MEDIATORS: A SYNCHRONIZATION MECHANISM

Judith E. Grass

tw	 Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois

1. Introduction

This paper introduces the mediator construct for implementing synchronization and scheduling in
distributed systems. This language construct supports systems programming applications that require
complex and flexible synchronization and scheduling schemes. The research was prompted by the recog-
nition that many of the existing language constructs either overly constrain concurrency, make expres-
sion of some kinds of synchronization and scheduling difficult, or due to formal language design con-
siderations fail to provide practical support for real programmers. The discussion of design goals that
follows ndicates examples of each of these failings.

1.1. The Problem

The development of the mediator was motivated by the lack of synchronization and scheduling
tools to adequately support the development of distributed systems, such as those embedded in space
craft.	 Such tools must meet a number of requirements, including support for modular and structured
system design, flexibility, expressiveness, clarity and ease of use.

Modular design is a powerful aid to structuring software development which affects all phases of
the software life cycle from specification, through development, testing and validation to maintenance.
These three aspects of modularity 	 must be considered: resource modularity, encapsulation of con-
currency and synchronization modularity.

Resource modularity is a basic concern in both sequential and concurrent program design. 	 The
development of abstract data types and object-oriented programming are an expression of this concern
111.	 The encapsulation of data and controlled access to that data through carefully defined operations

1
provide the user with a higher-level, abstract view of a data resource. 	 At the same time, the data is pro-
tected from invalid accesses. 	 The module also creates a locality of reference, placing the data and opera-
tion definition in one place rather than scattered throughout r''Ae code.

Early synchronization tools, such as busy-waits, semaphores [2[, and conditional critical regions [3-
• 51, did not create a locality of reference, and so made structuring synchronization difficult. 	 Most recent

proposals have recognized this problem, and have taken some version of the abstract data type as a
(base.	 In some cases the module is a passive and takes no action until called on by an active process (e.

g, m(,nitors [6[).	 Passive synchronization modules are the rule in constructs based on shared data. 	 Usu-
ally construes based on message passing use an active module. 	 Ada [7[, Distributed Processes (DP) [8[,
Synchronizing Resources (SR) 191, and Argus 1101 belong in this category. 	 CSP [111 also belongs to this
group, although it is less clearly based on an abstract data type model. 	 In CSP, individual processes
encapsulate data.	 Other processes may access the encapsulated data only by an exchange of messages.
The process owning the data resource defines all the operations on the data and localizes data access.
Synchronization is not as w, 11 localized, because the synchronization depends on the "matching" of input
and output commands distributed among many processes.

Although there are many synchronization constructs that support resource modularity, relatively

(few of them permit real concurrency within the synchronization module. 	 Such constructs do not allow
(. encapsulated concurrency.	 For instance, monitors allow at most one process to be active at a time. 	 In

order to allow multiple processes to access a resource simultaneously (as for reader processes in the well-
known readers and writers problem 1121), a monitor is used only to implement a pre-read/ post-read

and pre-write/ post-write protocol, which is called before and after a call to an external read or write
routine 161. There is no assurance that the protocol will be followed. Deadlock or data corruption may
result if it is not. The lack of encapsulated concurrency also makes it difficult to nest modules or to oth-
erwise structure concurrency. Structured concurrency is needed to develop atomic action and fault-
tolerant systems 110,13-151. Concurrent Pascal (which is monitor based) 1161, DP 181, Ada 171 and CSP
[11I all fail to encapsulate concurrency. Argus (10,17), provides encapsulated concurrency, but with
severe restrictions to ensure recoverability. In effect, the restrictions eliminate most parallelism. SR 191,
Path Pascal (PP) 1181 Distributed Path Pascal (DPP) 1101, serializers 1201, and MCP (21) do allow
specification of encapsulated concurrency.

Synchronization modularity refers to the ability to specify synchronization and scheduling con-
straints separate from the specification of the resource data abstraction. This additional structuring
device aids in system development, but also benefits the validation of design and code. Modular syn-
chronization may also make it possible to develop libraries of synchronizers and schedulers. The isola-
tion of timing aspects contributes to real-time programming as well.

Few constructs provide synchronization modularity. Among those are PaLh Pascal (PP and DPP)
118, sentinel processes 1221, and serializers 120). Serializers are implemented in a LISP environment.
Sentinel processes appear to be the imperative language analog. Both combine built-in counters with a
queueing primitive to allow modular specification of synchronization. These constructs appear to be well
suited to FIFO scheduling problems and variants of the reader/writer problem, but less flexible than
desired 1231. Path Pascal encapsulates most synchronization specifications in a path expression. This
often provides a high degree of synchronization modularity. The synchronization modularity is lost
when conditional synchronization or scheduling is specified. These must be programmed using nested
objects. This results in loss of modularity as well as inefficiency due to the implicit scheduling applied at
each level of nesting 121,251. In order to maintain synchronization modularity, synchronization data
must be encapsulated. In addition, there must be support for conditional synchronization and schedul-
ing.

For practical embedded distributed systems, it is important not to overly constrain the system
implementer in terms of possible synchronization and scheduling. Synchronization schemes that enforce
atomic recoverable transactions (such as Argus and Clouds 126,271) are essentially ruled out, as they
severely limit what can be specified.

Other schemes allow more flexibility in what can be specified, but make the expression of some
kinds of constraints difficult. As we noted above, Sentinel Processes make FIFO scheduling problems
quite easy to specify, but specification of operation sequences is complicated 1281. In Path Pascal it is
easy to specify sequences of operations, but implementing scheduling or conditional synchronization is
complicated. It should be possible to express constraints in terms of resource history, resource and syn-
chronization state and information about pending requests.

The configuration of concurrent systems raises other questions about flexibility. Many proposed
language constructs for writing distributed systems rely on static systems. In DP and Concurrent Pascal
18.161 processes and modules are instantiated at system creation and never terminate. This is not rea-
sonable for real systems that sometimes require on-the-fly reconfiguration, partial rein itialization, or sim-
ply need to print a diagnostic message before failing. DP and Concurrent Pascal do not support
resource nesting, so all resources are alive for the duration of the system, which is essentially infinite.

Other constructs allow processes and objects to come and go, but are inflexibic in other ways. Fre-
quently communication paths are static. CSP is an extreme case of this 1111 in which the sender and the
receiver of a message need to know each other's name. This feature of CSP makes it impossible to write
libraries of services. CSP Aas meant to be an exercise in input/output rather than a complete language
proposal. Some CSP successors, such as OCCAM 1291, have attacked this problem by introducing ports.
SR 1301 has a similar communication problem. Server processes and clients are tied in a one-to-one rela-
tionship that is explicit and rigid.

Most synchronization proposals allow servers to honor requests from anc , ,yn,ous clients. This is a
flexible arrangement, but occasionally there are cases in which the client's identity must be known.

t,

	
- Ut

2

Some language constructs provide this information (PLITS 1311), but more often it is left up to the
implementer. The mediatnr proposal supports dynamic creation and termination of mediators and flexi-
ble communication paths. It also provides a means of identifying clients.

1.2. A Proposal
The mediator combines several proposals in an attempt to provide a solution to the problems that

are outlined above.

1) The Path Pascal object 1181 serves as the model for the mediated object. The path expression is
replaced by the mediator. The external view of the object should change little.

2) The Path Pascal object initiation block is replaced by initiation and termination code encapsulated in
the mediator.

3) The essential control structure within the mediator is an adaptation of Dijkstra's guarded commands
1321. Our adaptation uses delay semantics 181 rather than Dijkstra's abort semantics.

4) Guards may contain status tests to inquire about pending requests, and boolean tests which may refer
to data contained in pending requests 111,311.

S) Requests are associated with unique keys that allow the mediator to manipulate requests and imple-
ment scheduling.

G) The mediator controls request execution by commands allowing coupled and uncoupled client process
execution 1281. There is an explicit command to return results to a client.

7) Parallel guards are used to multi-program the mediator. Mediator execution is guaranteed atomic
between guard evaluations.

Section two explains these features in greater detail, presenting a syntax and examples.

Section 3 discusses the problems of specifying a new language construct. This paper relies on a
BNF grammar to specif y syntax, and informal descriptions of the semantics supported by examples.
Ultimately, a more formal description must be produced. A meta-language description supported by
temporal logic axioms will be used.

Section 4 examines implementation aspects. Many of the individual components of the mediator
have been implemented in other languages. The main difficulty is combining these in an efficient
manner.

The proposal presented here is preliminary. Some features of the syntax and semantics may
change as a formal description is developed, and as implementation issues become more central.

2. Concepts and Notations

s The descriptions that follow first present a BNF grammar of a portion of the mediated object syn-
tax and then an informal semantic description with examples. In this BNF notation, terminal symbols
are represented in bold-face. Optional items are enclosed in braces: (}. Items that may repeat zero or
more times are surrounded by parenthesis, followed by an asterisk: O`.

. The mediated object is one component of a larger language. This paper does not present a com-
plete language. The "host" language is assumf d to be similar to Pascal. Not all non-terminals are
resolved. The meaning of such non-terminals should be self-evident.

1

. . I F

7=- ------7

74-

3

2.1. The Mediated Object

object type	 ..= object constant_def part type def_part var def—part
operation —part mediator —part end object

operation —part ::= routine (; routine)*
routine	 = procedure—process_function decl

operation_decl
operation_decl ::= entry procedure_process_function decl
mediator —Part :.= mediator constant_def—part type_def_part var_def—part

procedure function def—part (init—part} body body end body
(term —part} end mediator

init_part	 ..= init stt_list end snit
term—part	 ..= after stt_list end after

The structure of the mediated object is very similar to that of the Distributed Path Pascal object
1331. The scope rules are used. Access to the object occurs only through the declared entry procedures.
The constants, types and variables defined within the object are shared by the object routines. The
mediator regulates access to these routines and may contain data and routines not accessible to any
external caller. Mediator data usually consists of flags and counters, although it may also include queue
structures for scheduling. Mediator routines may include schedulers and service routines. The mediator
may access the data encapsulated in the object only during object initiation and termination.

Like Path Pascal objects, the mediated object is a type. A user may create several instantiations
of a given object. The mediator initiation code is executed when an object is instantiated. The termi-
nation code executes whrn the body of the mediator terminates.

The example that follows presents a complete mediated object. In other examples, only the media-
tor will be presented.

reader_writer = object
var R%V_data: data type;

entry procedure read (parameters);
local variables and code for a read operation

end procedure;

entry procedure write (val parameters);
local variables and code for a write operation

end procedure;

mediator
vat reader_count : integer;
Init

reader_rount := 0;
end snit
body

any i In pid:
cycle

req(i); job(i).op = write ->
when

reader_count = 0- >
exer(i);
release(i);

end when	 I

a

V1—

r
4

a
req(i); job(i).op = read ->

reader_count: — reader_count + 1;

spawn(i);
end cycle

any i In pid:
cycle

WOO,; job(i).op = read ->
reader count := reader_count - 1;
release(i);

end cycle
end body

end mediator
end object

I This example contains many notations that have not yet been explained, but it does illustrate the
declaration of object data (RIV_data), entry routines (read and write), and local mediator data
(reader_counl). Entry routine parameters are passed by value and by value-result. Reference parame-
ters seriously compromise data encapsulation and are impractical for distributed implementations.

Clients call for mediator ser v ices by using a remote procedure call. Once a process has requested
the execution of an entry routine, it is blocked until the results return. This makes the semantics of a
call on a mediator (remote or local) the same as that on a local routine. For asynchronous services, the
user must implement an explicit buffer.

2.2. Basic Mediator Statements

stt_list	 statement (; sta(ement)'
statement	 assignrnent_stt	 -- and other basic statements	 l

routine—call

choice—block

break
exec(id)	 id is a "key" idcntifirr
spawn(id	 id is a "key" identifier
release(id	 id is a "kcy" idcntifirr
exec(id) with id	 second id is a routine	 V
spawn(id) with id	 second id is a routine	 A

Thik statement definition applies to the mediator body only. The choice block contains a guard
command, which is explained below. Break causes an exit front the current innermost choice block.
This is a structured exit to the first statement after the block. The alarm clock object below shows one
possible use of break. Assignment statements and routine calls within the mediator body may reference
local entities only.

Exec, spawn and release are special service routines. Their parameter is a key variable that
uniquely identifies a client and its service request. Keys are explained in detail below. Exec begins cou-
pled execution of a requested the entry operation (identified by the key). The mediator starts a process
to execute the request, but blocks until that process has terminated. For example, in the reader_titriter
object above, the !.tatetnent czec(i); starts a process to execute the write operation for client i. The
mediator blocks during execution. Because of the guard when readcr_count = 0 -> preceding this
statement, no other operation process will be active, and write will occur in mutual exclusion. On the
other hand, spawn initiates uncoupled execution. The mediator forks off a process to execute an opera-
tion and does not wait for it to terminate. It continues executing mediator code. In the reader_wriler

4^,

b

object, the statement spawn(i); forks off a process to execute a read operaOi)n for client i. When the
process terminates, the guard term(i), job(i).op = read-> becomes true.

The release command returns the results of an operation to the client and removes the request
from the mediator. This may be invoked oniy after an exec has been completed, or a status test (term,
see below) reveals that a spawned process has completed. Reader writer contains examples of release
both after coupled and encoupled execution. The separate termination t est allows synchronization data
to be maintained as services complete. Release also makes it possible to delay and synchronize the ter-
mination and return of results. This can be used to implement a conversation scheme or sorre forms of
fault-toierance.

The with keyword allows the mediator to substitute an equivalent service for one requested. This
may be used fc- mar.^ping several identical units of a resource (line printers for example), when the
actual choice of the unit allocated makes no difference to the client. It may also be applicable to dead-
line scheduling. In coupled execution, the mediator blocks until the substitute service completes. In
uncoupled execution (spawn), the mediator continues processing; when the substitu t e service completes,
the term test for the client process becornes true.

2.3. The Choice Block

choice_bock	 {key} guard_block
key	 any id in pid

any id in id :
-- first id is a variable id, second is a scalar type

guard —block	 cycle guard_ust end cycle
when guard —list end when

guard—list	 guard -> stt_list (o guard -> stt_list)*
guard	 booi_equation

status
status ; bool_equation
otherwise

status	 req(id)
term(iu)	 -- id is "key" identifier

The mediator choice block has many similarities to Hoare's CSF guarded commands 111, which in
turn can be credited to Dijkstra (3` 1. The chosen keywords and semantics are closer to the guarded
regions of Brinch Hansen's DP (8]. The concept of key is related to Hoare's guard command range, but
ite intent and implernentation are different 1311. The similarities and differences will be discussed below.

' A guard block is a control statement in which different statement lists are chosen for execution
based on the truth value of the associated guards. Because the evaluation of guards is central to this
construct, they will be explained first. The guard command will be described after. Keys will be

	

j	 present(J 1^5t.

Guards are made up of a status test and boolean equations. Mediator guard evaluation always
result in either a true or a Pale value. The special guard otherwise is true only when all the other
guards in the guard command are false.

' Status tests allow inquiries about pending requests for mediator service. These are requests to ini-
tiate an operation (req) or to return results after the operation has completed (term). For the guard
re?(i) to be true, the list of unserved requests must contain a request from client i. Once the guard has
been fired (it's associated statement list chosen to execute), req(i) can not become true again until the
service has been completed and the results returned (by release(r)). The guard term(i) is similar,
becoming true when the execution of an operation for client i terminates.

A boolean guard paired with a status tests may test the value of a client's request parameters.
Each client's request is represented wi + hin the mediator by a job descriptor. The descriptor is a variant

4 y a'r t

d

record containing fields for a client processor identifier, a time stamp and the name of the operation
requested. The operation field serves as a tag for variant fields allowing access to the operations param-
eters. The descriptor is accessed using the key by indexing on the variable job, as in these examples. A
job descriptor for the reader_writer would have the following structure:

record

pid : client_process_id;
is : time_ stamp;
case op: (read, write) of

read: (read parameter list);
write: (write parameter list);

end case
end record

In the reader_writer object, job (i).op references the operation field. Boolean guards may also test the
value of the mediator' , local variables. Boolean guards paired with status tests are not evaluated if the
status test is false,

In the following explanation of a guard command, the execution of the guard is considered in isola-

U

tion, without considering possible interleaving with other parallel guards. The presence ^:,f parallel
 guards introduces delays, but does not affect the semantics of the guard command.

Mediator guard commands are closely related to Brinch Hansen's guarded regions (8). The media-
for process must wait until some guard condition is true, and then execute the associated statement list.
A statement list associated with a true guard is said to be enobled. A guard whose associated statement
list has been chosen and started execution is said to hav 	 fired.

Nondeterminism enters when more than one guard is enabled. In this case, one guard will be
chosen to fire. A mediator implementation must ensure fairness to avoid starvation problems. The
mediator can not dcla- i t there are enable:. guards.

In a when statement, execution delays until some guard is true. Some guard fires and executes its
statwments list. When the statement list terminates, the when staterent terminates. A cycle state-
ment repeatedly executes these actions its execution loops forever unless a break statement is executed.

The delay semantics of this guard command differs from Dijkstra's original definition and Iioare's
adaptation 111;321. Hoare and Dijkstra's constructs abort the guarded command when no guard is true.
This creates a framework that is very nice for formal verification, but results in servers that do not
easily implement. waiting. Waiting is usually implemented with a busy loop. This is not practical for
real resource managers that may spend a lot of time waiting.

Brinch ILmsen implements both delay semantics in guarded regions and abort semantics for
guarded commands. The mediator proposal includes only delay semantics, because the inclusion of an
otherwise guard and a break statement make the abort semantics redundant.. The otherwise guard
has other applications for implementing background actions and is a useful shorthand for the negation
of all other guards. Break also has useful applications beyond simply terminating cycle execution under
the conditions that, Iloare's guarded commands would terminate, These would be necessary even with a
second kind of guard command.

Keys are used to identify the client to th^ mediator, to access job descriptors for guard evaluation
!	 and scheduling purposes and to tie clients to specific resources, as in allocator objects. The key concept
!	 was suggested by Hoare's C'SP process range labels 11 11,341, but. their use in mediators is considerably

d;"^rent. Hoare applies ranges to processes to create a finite number of explicitly and contiguously
{ .	 indexed processes. This function of ranges is not included in mediators. Hoare also applies ranges to
¢	 guarded commands to substitute values within a given range for a bound variable in the guard state-

ments. The following example is from [Ili:

(i:l..n)G -> CL stands for

4

`i

7

G1 -> CL1 q G2 -> CL2 q ... q Gn-> CLn.

In effect, the guard is expanded by creating a guard and statement list for every value of i. The applica-
tion of ranges in Hoare's guarded commands is quite general.

In the mediator proposal, keys serve only to identify client processes. Like Hoare's ranges, a key
statement (any ...) defines a key variable which will be bound within the guard command it modifies.
Consider the following choice block:

any i in range:	 range = 1..10
cycle

req(i); job(i).op = A ->
exec (i);
release(i);

q

req(i); job(i).op = B ->
X : = x+ 1;
exec (i);
release(i);

end cycle

It is executed as if it were written:

cycle
req(1); job(1).op = A ->

exec(1);
release(1);

req(1); job(i).op = B ->
X:=x+ 1;
exec(1);
release(1);

req(2); job(2)-op = A ->
exec(2);

req(10); job(10). op = B ->
x:=x+1;
exec(10);
release(10);

end cycle

In this example the value of the key identifier is bounded and of the user declared type range. Usually
the implicit process identifier (the pid descriptor field) will be used as the key. The process identifier
range is not bounded. Mediator writers do not need to know explicitly what process identifier values are
being used, just that they are unique. Although, in an abstract sense, a potentially infinite key variable
range implies an infinitely expanded guard, there is no need to implement them that way. Keys are
always associated with status tests. if no client with a given process identifier has a request for the
mediator, there is no possibility of a true status test, so there is no reason to evaluate such a guard.
Guard evaluation can be limited to the set of clients with requests. In fact, it can be restricted further
when fairness is taken into consideration.

.T

I

i

8

Key variables are tied to job descriptors. For a pid type key, Lhe reference is to the process
identifier field. In the case of a user declared range type, as in the example above, some other unique
field of the descriptor must be used. This will require an explicit declaration in the mediator.

The following mediator for the object diner implements synchronization for the dining philosophers
problem:

'	 mediator
type range= 0.. n-1
v ar

fork : array [range] of (free, inuse);
j	 : range;

lnit
for j := 0 to n-1; fork(j) := free;

end Init

body
t	 any i In range:

cycle
req(i); job(i).op = eat and fork(il = free

and fork[(i+l) mod n] = free ->
fork[i[:= inuse;

(fork((i+l) mod n) := inuse;
spawn(i);

0
term(i); job(i).op = eat ->

fork[i[:= free;
I	 fork[(i+l) mod n] := free;

release(i):
end cycle

end body
end mfediator

The client process executes the statement diner. eat (rangeprrn); to call the mediator's eat routine. This
solution will not deadlock, but it is still possible for starvation tc occur. A slightly more complex solu-
tion using nested mediators solves that problem.

2.4. Parallel Choice Blocks

body ::= choice—block (// choice_block)*

Parallel choice blocks are proposed to allow different sets of guards to be evaluated at different
times during mediator execution. It allows the mediator to shuffle together the guards of several

l guarded commands. The choice of the notation // to separate parallel choice blocks is deliberate. A
mediator containing parallel choice blocks uses a multiprogrammed thread of control, one thread of con-
trol for each choice block. Only one thread of control is active at a time. The active control block can
change only when guards are evaluated. This creates atomic execution of the statement lists between
guard evaluations. The mediator body terminates if all of the parallel guard blocks terminate.

Consider the stripped down example that follows. (Labels have been included to make discussion
easier).

i_.	 body
II: cycle

A ->	 12: SA;

3

9

13: when	 B ->	 14: SB	 end when
end cycle

ml: cycle
C->	 m2: SC;

m3: when	 D ->	 m4: SD end when

end cycle
end body

In this example, A, B, C, D are guards.	 SA, SB, SC, SD are statement lists. The control vector of this
mediator has two elements. 	 Initially it is: <11, ml>.	 When guard evaluation occurs in the initial state,
the guards A and C are evaluated.	 Like for isolated guard commands, the associated statement list of
some true guard will be executed.	 If the guard A from the cycle 11 is fired, the statement list starting at f

12 will begin execution. 	 It will continue executing without interruption until the new guard command at b

13 is encountered (assuming SA contains no guard commands). 	 At this point the control vector is <13,
ml>, and the new guard evaluation includes the guards B and C. Considering all possible combinations,
the set of guards evaluated at any one time may be: [A, C[, [A, D[, [B, Cl or [B, D[. t

The parallel guard notation is an easy and concise way of specifying changing sets of enabling con-
ditions.	 It is possible to rewrite a parallel guard as one large simple guard command by using a distribu-
tion algorithm.	 The resulting guard command is considerably more bulky and actually less clear.

The introduction of a control vector within the mediator does not create the same complications
for reasoning about programs that are usually associated with parallel processes. 	 The control flow in T

mediators is very restricted, giving recognizable atomic actions. 	 This atomicity of action combined with
the small size of mediators and the explicit statement of preconditions in the guards makes it quite easy
to reason about the behavior of parallel guards. -

Manna and Pneuli have created a formal tool that can be applied to parallel guards.	 In the paper
[35[, they appiy temporal logic to validating multiprograms in a control framework that is much less res-
trictive.	 Their results are applicable to the mediator construct. 7

The reader/writer mediator demonstrates one application of the parallel guard. 	 In that example,
firing the guard req(i), job(i).op = write executes the associated statement, which is a when statement.
As long as its guard reader_count = 0 is false, the guard can not fire.	 No new write or read operations -.
will be accepted, but the second parallel guard will allow read operations to finish up and leave the medi-
ator.	 Parallel choice blocks coupled with nested guard commands gives a convenient way to block some
actions while permitting others.

2.5. Some Additional Examples

The examples that follow demonstrate some applications of mediators. 	 Only the mediator portion
is included.

2.5.1. Alarm clock

The alarm clock object delays a caller for a time period specified in the call's parameter n.	 Calls to
the wake operation cause a delay.	 Calls to the lick operation advance the clock.

Init
now := 0;

end InIt
body

any i In pid:
cycle	 -•

req(i); job(i).op = wake ->
start the op, but termination will be delayed 	 "`

t

r
10

job(i). out—time := now + job(i). n;
spawn(i);

end cycle

any i in pid:
cycle

req(i); job(i).op = tick ->
now := now + 1;

{	 exec(i);
i!	 release(i);

any j in pid:
cycle

term(j); job(j).op = wake
and job(j).out time <= now ->

felease(j);
QE
otherwise -> break -- exit cycle

end cycle
end cycle

end body

The field out—time must be declared for the operation wake job descriptor within the mediator. This
example contains the use of otherwise and break for cycle termination. The incrementation of now
could also be done internally.

j	 2.5.2. Shortest Job Next
t

This mediator implements a scheduler that chooses the job with the lowest estimated ser v ice time
for the next execution. Requests are serv ed in mutual exclusion. This framework is applicable to many
scheduling problems.

v
}	 body

any i in pid:
cycle

`	 req(i)-, job(i).op = service ->
enqueue (i, job(i).estimate);

end cycle

cycle
{	 queue_not_empty ->

j := dequeue;
spawn(j);	 -- initiate service operation
when

term(j); job(j).op = service ->
release(j);

end when
end cycle

end body

The first guard command simply calls a user defined process local to the mediator to queue up job
descriptors in order of their estimate parameter. The second guard command removes the head element
of the queue and starts its execution. The spawn and wait for termination allows the mediator to con-
tinue enqueueing new requests while a service operation is executing.

T

4J

11

The key variable j in the second guard command is set by direct assignment rather than through a
cycle nodifier.	 -;

2.5.3. An Allocator

An allocator gives a client process exclusive rights to a resource for a series of accesses. The client
must request an allocation, then may make repeated calls on the resource. Finally, the client must expli-
citly release the resource before it can become available to another client.

body
any i In pid:

cycle
req(i); job(i). op = allocate ->	 --

exec(i);
release(i);
cycle

req(i); job(i).op = use ->
exec(i);
release(i);

req(i); job(i).op = free ->
exec(i):
releme(i);

break;

end cycle
end cycle

end body

This example uses the key binding of the outer cycle to restrict use of the resource to one process in the
inner cycle. This also demons t rates another use of the break statement..

3. Formalisms

The description of mediators presented in this paper is adequate for an introduction to mediator
concepts and notations. This overview avoids some of the dirty details that must be faced in implement-
ing and documenting a language. It is inadequate as a complete specification

There are a great number of possible choices for specifying a programming language or language
construct. These include operational definitions (often accomplished by an implementation), attribute
grammars, denotational semantic descriptions and various flavors of axiomatic definitions (36]. Bec^use
the purpose of this research is to develop a language construct, and not to develop a specification metho-
dology, only those methods that are well developed for specifying concurrency and offer ready-made
tools are useful.

Denotational semantics is quite highly developed for application to sequential programming
languages. Applicatic . to concurrent languages is very much an ongoing field of research (37,38. For
this reason, denotational semantics is not a reasonable specification tool for mediators.

A mediator specification must meet two particular goals. It should give adequate guidance to an
implementer and serve as a support for users. The first of these goals may be met by an operational
description, the second by an axiomatic description. There are several ways to operationally describe a
language, as there are several systems of axiomatic descriptions.

The fact that the mediator does not represent an entire language implies that it must be hople-
mented as an extension of an existing language. Pascal is the most likely host due to its wide availability 	 T
and because the compiler source is easy to obtain. Implementation wiil probably be through bootstrap-
ping from a host compiler. This makes it especially attractive to rrake a tn^ , ta-language description of

I

4 ' try....

I

12

the construct using the host language for a meta-language. This would give a great deal of aid to a
potential implementer.

A meta- language description is of some use to a potential user, but not unambiguous enough.
Some effort should be made to support verification. The goals of this research limit what can reasonably
be done. Once again, a ready-made tool is needed. The current best candidate is temporal logic as
described by (35,39]. This framework has been further developed by (40 ,41]. Temporal logic allows
direct reasoning about program control, making most uses of auxiliary variables or history variables
unnecessary. The directness of temporal reasoning is very attractive. The fact that Manna and Pneuli
directly addressed multiprogramming in their work is also helpful.

Temporal logic provides a well developed logical system, but it does not provide us with the axioms
for mediators. These are being developed now. It is not expected that the results will be either complete
or consistent. Complete and consistent axiom systems are easier to develop for languages that have been
simplified to achieve nice formal characteristics. Mediators are meant to be applied to real problems.
Where choices have been made between utility and formal characteristics, utility has been prefered.
Formalizing these features may be difficult.

The axiomatic specification of mediators hopefully will be complete enough to gain an insight into
how mediators might be validated. It should also be useful as a design tool. There has been a good deal
of research into temporal logic as a specification tool]22,28,42,43]. The creation of a temporal axiom
system for mediators could enhance their value as a development tool.

4. Implementation

Implementing mediators should not present significant problems, because many of the components
of the construct have been implemented in other languages. The main problem will be fitting the com-
ponents together in an efficient manner.

Several different implementation exist of remote procedure calls for distributed processing. They
are implemented in Ada !71, DP (8], and SR [30]. A remote procedure call can be implemented as an
exchange of messages between the client and mediator. The client sends a request message containing
the name of the operation requested, its process identifier and parameters. It then waits to receive a
reply , which will arrive when the mediator has :eleasc^ the operation. The mediator receives a request
and creates a job descriptor. This is placed in the list of pending requests, becoming available for status
tests. The job descriptor is destroyed when the mediator releases a job and returns results to the client.
In the perception of the client process, a remote procedure call appears to be no different than a simple
local procedure call.

The exec and spawn statements require system support to create a process and schedule its execu-
tion. McKendry's execute statement]•11] may be applicable, or these may be implemented using lower

	
is

level system calls.

Guard command evaluation can be a source of inefficiency, either because guards are constantly
being reevaluated or because of the large number of guards that need to be reevaluated each time. The
number of guard reevaluations in mediators can be limited because of their limited application. After a
guard evaluation, only certain events may change the value of the guards: the arrival of a new request,
the termination of an active request or the execution of mediator statements after a guard has fired. If
all guards have evaluated as false, there is no need to reevaluate the guards until either new requests
arrive, or active requests terminate.

It is possible to limit the number of guards considered during evaluation as well. The evaluation of
guards containing status tests can be limited in two ways. Status tests need only be evaluated for clients
that are present in the mediators list of pending requests, since the value of any other status guard is
automatically false. Application of fairness limits the evaluation of status tests for clients as well. These
can be evaluated in the order of their arrival until an enabling guard is found.

The evaluation of pure boolean guards can not be limited this way. Fortunately, these are likely to
be few in number. These also present a fairness problem. It is easy to apply a fair ordering criteria for

13

a
requests based on time of arrival, but such criteria can not be applied to simple boolean guards that
may, without firing, become true and false repeatedly. Implementing fairness may require implementing	 -•
some kind of counter so that these guards may be ordered. It is important to make the effort to ensure
some kind of fairness, as it is nearly impossible to prevent requests from starving otherwise. The solu-
tion of making the user responsible for forcing fair execution from an inherently unfair mechanism, (as
advocated by Hoare for CSP 111) ducks the issue.

The design of mediators is best suited to a system made up of distributed multiprocessor nodes,
with one or several mediated objects installed at each node. Implementing mediators on such a system
should be straightforward. Implementation of mediators on a uniprocessor is also possible using mul-
tiprogramming, but would probably be very inefficient. Mediators implemented on a distributed net- 	 -
work of uniprocessors could work quite well. This could be accomplished by multiprogramming the
mediated object on one node, or by allowing the mediator to exist on one node, and execute operations
at remote nodes. The limiting factor would be the amount of object data that would need to be sent to
the remote service nodes.

b. Conclusion

This paper has presented a preliminary proposal for a new language construct, the mediator, that
msy serve as a useful tool in programming distributed embedded systems. Mediators allow direct pro-
gramming of synchronization and scheduling and are able to directly use both information about a pend-
ing request and the present synchronization state. This makes mediators a powerful construct for syn-
chronization and scheduling applications.

At the same time, the design of mediators supports structured design of concurrent programs.
Mediators also provide some support for program verification. 	 -

Finally, mediators should not present significant implementation problems and are adaptable to a
number of distributed architectures.

References

1. Dijkstra, E. W. A Discipline of Programming. Prentice-Ball, Englewood Cliffs, NJ, 1976.

2. Cooperating Sequential Processes. In: Programming Languages, F. Genuys, ed.
Academic Press, New York, NY, 1968.

3. Hoare, C. A. R. Towards a Theory of Parallel Programming. In: Operating Systems

	

Techniques, C. A. R. Hoare and R. H. Perrott, ed. Academic Press, London, 1972, pp. 	 ';t
61-71.

4. Brinch Hansen, P. Structured Multiprogramming. CACM (July, 1972) vol. 15, no. 7, pp.
574-578.

5. Concurrent Programming Concepts. ACM Computing Surveys (Dec. 1973) vol. 5,
no. 4, pp. 223-245.

6. Hoare, C. A. R. Monitors: An Operating System Structuring Concept. CACM (Oct. 1974)
vol. 17, no. 10, pp. 549-557.

7. Defense, U. S. Department of. Programming Language Ada: Reference Manual. In: Vol.
108 Lecture Notes In Computer Science, Springer-Verlag, New York, NY, 1981.

8. Brinch Hansen, Per, Distributed Processes: A Concurrent Programming Concept. CACM
(Nov. 1978) vol. 21, no. 11, pp. 934-941.

9. Andrews, Gregory R. Synchronising Resources. ACM TOPLAS (Oct. 1981) vol. 3, no. 4,
pp. 405-430.	 ^f

-t

14

10.	 Liskov,	 Barbara	 and	 Robert Scheifler.	 Guardians and Actions: Linguistic Support for
Robust, Distributed Programs. ACM Tran. Prog. Lang. and Syst. (July 1983) vol. 5,
no. 3, pp. 381-404.

11.	 Hoare, C. A. R. Communicating Sequential Processes. CACM (Aug. 1978) vol. 21, no. 8,
pp. 666-677.

12.	 Courtois, P. J., F. Heymans and D. L. Parnas. Concurrent Control with Readers and Writ-
ers. CACM (Oct. 1971) vol. 14, no. 10, pp. 667-668.

13.	 Campbell, Roy H. and Brian Randell. "Error Recovery in Asynchronous Systems", Tech.
Report: Univ. of Illinois, Urbana-Champaign, Dept. Comp. Sci., Urbana, IL, 1984.

14.	 Jalote, Pankaj and Roy H. Campbell. "Recoverability of Actions and Atomicity", Submitted
to a conference. Dept. of Comp. Sci., University of Illinois, Urbana-Champaign, Urbana,
IL, 1985.

(15.	 Best, E. and B. Randell. A Formal Afodel of Atomicity in Asynchronous Systems. Acta
i Informatics (1981) vol. 16, pp. 93-129.
i

16.	 Brinch Hansen, P. The Programming Language Concurrent Pascal. IEEE TOSE (1975)
t vol. SE-1, pp. 199-206.

r 17.	 `,Yeihl, William and Barbara Liskov. Specification and Implementation of Resilient, Atomic
Data Types. SIGPLAN Notices (June 1983) vol. 18, no. 6, pp. 53-64.

18.	 Campbell, R. If. and R. B. Kolstad. An Overview of PATH PASCAL's Design. SIGPLAN
Notices (Sept. 1980) vol. 15, no. 9, pp. 13-14.

19.	 Kolstad, Robert Bruce. "Distributed Path Pascal: A Language for Programming Coupled
Systems",	 Ph.	 D.	 Thesis,	 Tech. Report:	 Dept.	 Comp.	 Sci., University	 of Illinois	 at
Urbana-Champaign, UIUCDCS-R-83-1136, Urbana, IL, 1983.

20.	 Hewitt, C. E., and R. R. Atkinson. Specifications and Proof Techniques for Serializers.
IEEE TOSE (1979) vol. SE-5, no. 1, pp. 10-23.

21.	 Bahsoun, H.,	 C.	 Betorne and L. Feraud.	 Une Expression	 de to Synchronisation	 et de
l'Ordonnancement des Processus Concurrents par Variables Partagees. In: Proc. 8th
Int. Symp. on Programming: LNCS 107, M. Paul and B. Robinet, ed. Springer-
Verlag, New York, NY, 1984, pp. 13-22.

22.	 Ramamritham, Krithivasan and Robert M. Keller. Specifying and Proving Properties of
Sentin , l Processes. In: Proc. 5th Int. IEEE/ACM Soft. Eng. Conference., 1981,
pp. 374-381.

23.	 Bloom, Toby. Evaluating Synchronization Afechani8ms. In: Proc. 7th Symposium on OS
Principles (Paciflc Grove, CA. Dec 10-12). ACM, New York, NY, 1979; pp. 24-32.

24.	 Grass, Judith Ellen. "Mediators: A Synchronization Mechanism", Prelim. proposal, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 1984.

25,	 Campbell, Roy H., Jeff Donnelly, Raymond B. Essick, Judith Grass, Dirk Grunwald, Pankaj
Jalote and David A. McNabb. "The Embedded Operating System Project: Midyear
Report, May 1984", Software Systems Research Group, University of Illinois at Urbana-

- Champaign, Dept. of Computer Science, Urbana, IL, 1984.

26.	 Allchin, J. E. and M. S. McKendry. Synchronization and Recovery of Actions. Preprint:
2nd ACM SIGACT-SIGOPS Symposium on Priciples of Distributed Comput-

t ing (Aug. 17-19, 1983).

27.	 Allchin, James E. and Martin S. McKendry. "Support for Objects and Actions in Clouds:

.i

lb

Status Report", Tech. Report Georgia Institute of Technology, Atlanta, GA, Atlanta,
GA, 1983.

28. Ramamritham, Krithivasan and Robert M. Kei: 	 Specification of Synchronizing

Processes. IEEE TOSE (Nov. 1983) Vol. SE-9, no. 6, pp. 722-733.

29. May, D. OCCAM. SIGPLAN Notices (April 1983) vol. 18, no. 4, pp. 69-79.

30. Andrews, Gregory R. "The Distributed Programming Language SR - Mechanisms, Design
and Implementation". Soft. Pract. and Exper. (1982) vol. 12, pp. 719-753.

31. Feldman, Jerome A. High_Level Programming for Distributed Computing. CACM (June
1979) Vol. 22, no. 6, pp. 353-367.

32. Dijkstra, Edsger W. Guarded Commands, Nondeterminacy and Formal Derivation of Pro-
grams. CACM (Aug. 1975) vol. 18, no. 8, pp. 453-457.

33. Campbell, R. Ii. and R. B. Kolstad. PATH PASCAL User Manual. SIGPLAN Notices
(Sept. 1980) vol. 15, no. 9, pp. 15-24.

34. Hoare, C. A. R. A Model for Communicating Sequential Processes. In: On The Construc-
tion of Programs, R. M. McKeag and A. M. McNaughton, ed. Cambridge University
Press, Cambridge, UK, 1980, pp. 229-243.

35. Manna, Z. and A. Pneuli. Verification of Concurrent Programs: The Temporal Framework.
In: The Correctness Problem In Computer Science, R. S. Boyer and J. S. Moore,
ed. Academic Press. London, UK, 1983, pp. 215-273.

36. Pagan, Frank G. Formal Specification of Programming Languages: A Panoramic
Primer. Prentice hall, Inc., Englewood Cliffs, NJ, 1981.

37. Toward Complete Programming Language Descriptions That Are Both Formal and
Understandable. Soft.- Pract. and Exper. (March 1984) vol. 14, no. 3, pp. 199-206.

38. Pneuli, A. The Temporal Semantics of Concurrent Programs. In: Semantics of Con-
current Computation: LNCS 70. Springer-Verlag, New York, NY, 1979, pp. 1-20.

39. Manna, Z. and A. Pneuli. 6'erifieation of Concurrent Programs: Temporal Proof Principies.
In: Logics of Programs: LNCS 131, Dexter Kozen, ed. Springer- Verlag, New York,
NY, 1982, pp. 200-252.

40. Owicki, S. S. and L. Lamport. Proving Liveness Properties of Concurrent Programs. ACM
TOPLAS (July 1982) vol. 4, no. 3, pp. 455-495.

41. Ifailpern, B. Verifying Concurrent Processes Usiny Temporal Logic. In: LNCS, Vol. 129.
Springer-Velag, New York, NY, 1981.

42. Lamport, Leslie. Specifying Concurrent Program Modules. ACM TOPLAS (April 1983)
vol. 5, no. 2, pp. 190-222.

43. Manna, Zohar and Pierre Wolper. Synthevis of Communicating Processes from Temporal
Logic Specifications. ACM TOPLAS (Jan. 1984) vol. 6, no. 1, pp. 62-93.

44. McKendry, Martin S. and Roy 11. Campbell. Implementing Language Support in high-Level
Languages. IEEE TOSE (May 198 .1) vol. 5E-10, no. 3, pp. 227-236.

I,
_.	 s

-t

EOS Project: Mid-Year Report May 1985 	 Appendix E-1

PRELIMINARY: Do NOT Distribute

MEDIATORS: A SYNCHRONIZATION MECHANISM

Judith E. Grass

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois

7.1. Introduction

This paper introduces the mediator construct for implementing synchronization
and scheduling in distributed systems. This language construct supports systems pro-
gramming applications that require compiex and flexible synchronization and schedul-
ing schemes. The research was prompted by the recognition that many of the existing
language constructs either overly constrain concurrency, make expression of some
kinds of synchronization a p d scheduling difficult, or due to formal language design con-
siderations fail to provide practical support for real programmers. The discussion of
design goals that follows indicates examples of each of these failings.

7.2. The Problem

The development of the mediator was motivated by the lack of synchronization
and scheduling tools to adequately support the development of distributed systems,
such as those embedded in space craft. Such tools must meet a number of require-
ments, including support for modular and structured system design, flexibility, expres-
siveness, clarity and case of use.

Modular design is a powerful aid to structuring software development which
affects all phases of the software life cycle from specification, through development, 	 ''•
testing and validation to maintenance. These three aspects of modularity must be con-
sidered: resource modularity, encapsulation of concurrency and synchronization modu-
larity.

Resource modularity is a basic concern in both s.-quential and concurrent program
design. The development of abstract data types and object-oriented programming are
an expression of this concern [Dijkstra, 1076[. The encapsulation of data and con-
trolled access to that data through carefully defined operations provide the user with a
higher-level, abstract view of a data resource. At the same time, the data is protected
from invalid accesses. The module also creates a locality of reference, placing the data
and operation definition in one place rather than scattered throughout the code.

Early synchronization tools, such as busy-waits, semaphores [Dijkstra cooperating,
19681, and conditional critical regions [Iioare, 1972 Toward a Theory, Brinch Hansen
1972, Brinch_jiansen 1973 Concurrent[, did not create a locality of reference, and so

It

it

i

m

e
J

I L

4i

[

<s: {

EOS Project: Mid-Year Report May 1085	 Appendix E-2

made structuring synchronization difficult. Most recent proposals have recognized this
problem, and have taken some version of the abstract data type as a base. In some
cases the module is a passive and takes no action until called on by an active process
(e. g. monitors [Hoare 1974 Monitors]). Passive synchronization modules are the rule
in constructs based on shared data. Usually constructs based on message passing use
an active module. Ada [U. S. Department of Defense 1981 Reference Manual[, Distri-
buted Processes (DP) [Brinch-Hansen 1978 CACM1, Synchronizing Resources (SR) [An-
drews 1981 TOPLAS], and Argus [Liskov Scheifler 1983 Actions] belong in this
category. CSP [Hoare 1978 CACM Communicating] also belongs to this group,
although it is less clearly based on an abstract data type model. In CSP, individual
processes encapsulate data. Other processes may access the encapsulated data only by
an exchange of messages. The process owning the data resource defines all the opera-
tions on the data and localizes data access. Synchronization is not as well localized, be-
cause the synchronization depends on the "matching" of input and output commands
distributed among many processes.

Although there are many synchronization constructs that support resource modu-
larity, relatively few of their permit real concurrency within the synchronization
module. Such constructs do not allow encapsulated concurrency. For instance, moni-
tors allow at most one process to be active at a time. In order to allow multiple
processes to access a resource simultaneously (as for reader processes in the well-known
readers and writers problem [Courtois]), a monitor is used only to implement a pre-
read/ post-read and pre-write/ post-write protocol, which is called before and after a
call to an external read or write routine [Hoare 107.1 CAC;N1 Monitors]. There is no as-
surance that the protocol will be followed. Deadlock or data corruption may result if
it is not. The lack of encapsulated concurrency also makes it difficult to nest modules
or to otherwise structure concurrency. Structured concurrency is needed to develop
atomic action and fault-tolerant systems [Campbell Randell, Jalote Campbell recovera-
bility, Liskov Scheifler actions, Best Randell). Concurrent Pascal (which is monitor
based) [Brinch_Ilansen 10751, DP [Brinclijlansen 10781, Ada [Defense 1081] and CSP
[Hoare 1978 CACN1 Communicating) all fail to encapsulate concurrency. Argus [Liskov
Scheifler actions, Liskov Weihll, provides encapsulated concurrency, but with severe
restrictions to ensure recoverability. In effect, the restrictions C"urinate most parallel-
ism. SR [Andrews TOPLAS 10811, Path Pascal (PP) [CampF ell Kolstad SIGPLAN
1080 overview] Distributed Path Pascal (DPP) [Kolstad 1083 Distributed], serializers
[Hewitt Atkinson 1979 TOSE], and MCP [Bahsoun) do allow specification of encapsu-
lated concurrency.

Synchronization modularity refers to the ability to specify synchronization and
scheduling constraints separate from the specification of the resource data abstraction.
This additional structuring device aids in system development, but also benefits the
'validation of design and code. Modular synchronization may also make it possible to
develop libraries of synchronizers and schedulers. The isolation of timing d,spects con-
tributes to real-time programming as well.

.,i

i

9

t•

1 N

7n,

1
EOS Project: Mid-Year Report May 1985 	 Appendix E-3

Few constructs provide synchronization modularity. Among those are Path Pascal
(PP and DPP) (Campbell Kolstad 1980 SIGPLAN overview], sentinel processes
]Ramamritham Keller 1981], and serializers]Ilewitt Atkinson 1979]. Serializers are im-
plemented in a LISP environment. Sentinel processes appear to be the imperative
language analog. Both combine built-in counter: with queueing primitives to allow
modular specification of synchronization. These constructs appear to be well suited to
FIFO scheduling problems and variants of the reader/writer problem, but less flexible
than desired (Bloom 1979 Evaluating]. Path Pascal encapsulates most synchronization
specifications in a path expression. This often provides a high degree of synchroniza-
tion modularity. The synchronization modularity is lost when conditional synchroniza-
tion or scheduling is specified. These must be programmed using nested objects. This
results in loss of modularity as well as inefficiency due to the implicit scheduling ap-
plied at each level of nesting [Grass 1984 Mediators, Campbell Donnelly 198 .1]. In ord-
er to maintain synchronization modularity, synchronization data must be encapsulat-
ed. In addition, there must be support for conditional synchronization and scheduling.

For practical embedded distributed systems, it is :^nportant not to overly con-
e strain the system implementer in terms of possible synchronization and scheduling.

Synchronization schemes that enforce atomic recoverable transactions (such as Argus
and Clouds]Allchin i\1cKendry 1983 Recover y , Allchin NIckendry 1983 Support]) are
essentially ruled out, as they severely limit what can be specified.

Other schemes allow snore flexibility in what can be specified, but make the ex-
pression of some kinds of constraints difficult. As we noted above, Sentinel Processes
make FIFO scheduling problems quite easy to specify, but specification of operation se-
quences is complicated [Ramamr;tham Keller 1983 TOSE]. In Path Pascal it is easy to
specify sequence of operations, but implementing scheduling or conditional synchroni.
zation is complicated. It should be possible to express constraints in terms of resource
history, resource and synchronization state and infcrrnation about pending requests.

The configuration of concurrent systems raises other questions about flexibility.
Many proposed language constructs for writing distributed systems rely on static sys-

	

tems. In DP and Concurrent Pascal [Brinch Ilansen 1 1075, Brinch Hansen 19;81 	 !y"
processes and mcdules are instantiated at system creation and never terminate. This
is not reasonable for real systems that sometimes require on-the-fly reconfiguration,
partial rein itialization, or simply need to print a diagnostic message before failing. DP
and Conde, rent Pascal do not, support resource nesting, so 111 resources are alive for
the duration cf the system, which is essentially infinite.

! Other constructs allow processes and objects to come and go, but are inflexible in
other ways. Frequently communication paths are static. CSP is an extreme case of
this]Iloare 1978 CACM Communicating] in which the sender and the receiver of a
message need to know each other's name. This feature of CSP makes it impossible to
write libraries of services. CSP was meant to be an exercise in input/out.put rather
than a complete language proposal. Some CSP successors, such as OCCANI (May Oc-
earn April SIGPLAN], have attacked this problem by introducing ports. Sit [Andrews
1982 Mechanisms] has a similar communication problem. Server processes and clients

j

EOS Project: Mid-Year Report May 1985 	 Appendix E-4

are tied in a one-to-one relationship that is explicit and rigid. -

Most synchronization proposals allow servers to honor requests fr :n anonymous
clients.	 This is a flexible arrangement, but occasionally there are cases in which the J
client's identity must be known.	 Some language constructs provide this information
(PLITS [Feldman 1979 High]), but more often it is left up to the implementer. The
mediator proposal supports dynamic creation and termination of mediators and flexible -^
communication paths. It also provides a means of identifying clients.

7.3. A Proposal -

The mediator combines several proposals in an attempt to provide a solution to
the problems that are outlined above.

1) The Path Pascal object [Campbell Kolstad 1980 Overview] serves as the model for]
the mediated object.	 The path expression is replaced by the mediator. 	 The external
view of the object should change little.

2) The Path Pascal object initiation block is replaced by initiation and termination
code encapsulated in the mediator.

i

3) The essential control structure within the mediator is an adaptation of Dijkstra's
guarded	 commands	 [Dijkstta	 Guarded].	 Our	 adaptation	 uses	 delay	 semantics
[BrinchJiansen Distributed Processes] rather than Dijkstra's abort semantics. 1

:.1

4) Requests are associated with unique keys that allow the mediator to manipulate re-
quests and implement scheduling. j

S) Guards may contain status tests to inquire about pending requests, and boolean
tests which may refer to data contained in pending requests [Hoare 1978 CACNI, Feld-
man 1979 High].

0) The mediator controls request execution by commands allowing coupled and uncou-
pled client process execution [Ramamritham Keller 1083 TOSE]. There is an explicit
command to return results to a client. 	 -

7) Parallel guards are used to multi-program the mediator. Mediator execution is
guaranteed atomic between guard evaluations.

Secti^n two explains these features in greater detail, presenting a syntax and ex-
amples.

Section 3 discusses the problems of specifying a new language construct. This pa- 	 -
per relies on a BNF grammar to s p ecify syntax, and informal descriptions of the se-
mantics supported by examples. Ultimately, a more formal description must be pro- -
duced. A meta-language description supported by temporal logic axioms will be used.

Y•

M

1

Appendix E-5	 i

Section 4 examines implementation aspects. Many of the individual components
of the mediator have been implemented in other languages. The main difficulty is
combining these in an efficient manner.

I	 ,

The proposal presented here is preliminary. Some features of the syntax and se-
mantics may change as a formal description is developed, and as implementation issues
become more central.

EOS Project: Mid-Year Report May 1985

+.. _.

ti:

APPENDIX F

Path Pascal Compiler Documentation

T
	 t5

t
The original user manual s for Path Pascal mentions the existence of interrupt processes" but

does not give the details of their implementation. As a feasibility study, a temporary implementa-
tion of interrupt processes has been made for a version of Path Pascal operating on Berkeley ver-
sion 4.2BSD Ur:ix.

The central feature of interrupt processes under Path Pascal is the doio system call. Its
arguments are implementation-defined, and it performs the functions of (possibly) initiating an
I/O transfer, and then blocking the currently active process until an interrupt occurs. When the
interrupt does occur, the scheduler returns both the interrupt process and the process that was
interrupted to the ready queue, and then dispatches them according to their priorities. In this

rway, interrupt-driven pre-emptive scheduling can ire implemented by giving the process that
►j	 issues the doio request priority over normal processes.

In the temporary Unix implementation, doio was implemented to take a single argument: the
Unix signal number which the process wishes to await. The occurrence of the corresponding event
causes the interrupt and context switch. In testing this mechanism, two signals were chosen for
use: SIGINT, witich reports that the user has issued an interrupt request using a control sequence
at the terminal; and SIGALRM, which reports that a program-controlled interval timer has
expired.

The existence of a doio request capable of handling these signals, together with support func-
tions to change a process's priority and to set the real-time-clock, provided enough power to
implement a reasonably complex demonstration program. The program that was chosen was the
real-time scheduler' described in Chapter 7 of Per Brinch Hansen's Architecture of Concurrent
Programs.

This system, inspired by an earlier program designed for process control at an ammonia
nitrate plant, allows a fixed number of concurrent tasks to be carried out periodically with fre-
quencies chosen by the operator. The functions available to the operator are to tell the system
what time it is, say when a task should first be executed, and say how often a task must be
repeated. Each task, the program that manages the real-time clock, and the program that
interacts with the operator, are all model:-.a as concurrent processes in i,he implementation.

'	 The conversion of this system from the original Concurrent Pascal to Path Pascal went quite
(smoothly; only a few minor problems were noted. The ease of the conversion has convinced the

author that Concurrent Pascal has at least the expressive power of Path Pascal. The only
significant changes (other than minor differences in syntax) required between the two implementa-
tions related to the fact that Concurrent Pascal supports only dynamically created and initialised
objects, whereas Path Pascal allows objects to be created statically, and initialized before the main
program is entered. The static nature of objects means that their initialization procedures may

1	
not accept parameters; some of the data supplied to the monitors at initialization time in the Con-

t	 current Pascal implementation had to be passed as parameters to entry procedures in the Path
Pascal version.

This author, in doing the conversion, copied many of Brinch Hansen's objectionable pro-
gramming practises. In particular, the system is dependent throughout on knowing in advance the
identifying numbers assigned to each process by the runtime system. This assumption is fraught
with peril (and, in fact, caused this author some debugging problems, since the process indices
changed in the Path Pascal implementation from their original values in Concurrent Pascal). This
problem was the only serious impediment when the program was being debugged; all of Brinch
Hansen's test harnesses were also converted to Path Pascal and used when debugging the system.
None of his test cases required more than four runs before giving correct results; most executed
correctly on the first attempt.

1 Grunwald, Dirk C., Path Pascal User Manual, University of Illinois at Urbana-Champaign, Urbana, Illi-
nois, May 1985.

• Brinch Hansen, Per, The Architecture of Concurrent Programs, Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1977.

s

_.__.

titi

-2—

The reader who is interested in the details of the implementation is invited to compare the
accompanying source code listing with Brinch Hansen's original program.

t
'r

ORIGINAL PALS IS

DE POOR QUALITY

e
c

'c

c

r

i

i

i

i

r

r

0

0
a	 ^	 +	 a

a	 u	 .+	 i+	 a ^ u

m	 A	 r	 II	 O
Ln	 4	 uuu	 .+	 w	

a	 u	 n	 u^^	 u

.-1	 oa	 0 O	 L	
O	 ^!	 O	 r U

Aj

..	
a	 4	 u	 C r

h	 U	 C	 U	 ^	 O	 .0 	O	 S 144	 ^.	 tl	 {^
ro	

b	 N	 u	 w	 0.	 a	 . +	 .0^

0.	 >	 iA	 5B	 O	 Cc 	 Y	 •ĉ+A	 Y	 0

a	 ^^
04	 ax

.8	
u ^	 eu	 ^^v>,r-^	 o r	 a •.

m	 ^ s	 M	
r r	

4	 4.a4
+'O'0 r	 au0.

°^i	 u r	 n	 w°	 w	 o v	 .^ L

n	 a	 x	 uu	 -H i	 a a0i
.4 0 a	 04	 a w ^

M	
... 	 O.Q.	

0.4

Aj 41	
a'	 u^"

ti	 0.	 a	 0.A	
C
 'et",

- _	 .;+rte•	 __	 _^, ^ ^-

ORIGINAL PACE IS
DE POOR QUALITY

0
.r

N

^i

a
o
.,

Vu
a

•• f
uo
ra o
o a

r
>x >

.^ a
r ,^

Y u
^

a °^

a
o4

o1 pp

o it ^P	 %1.

r
^

.. •1 0•
^14

o Ob^

vN	 10 u V! w M
P	 II 4 ^ `•' O

O
do U U .•.^^ 6

C
u M ? a

M	
y

a u
M	 +J O Y

a 1

F .

a+ M

5P

b C ♦ i II

CC

v

+i

.q^
9^j 9Q -0

o

A

.01	 11

0 +.CC
O i 0'09 .^ -I Cb^ A d A ^ *^

Cw	 o.^ 7 0
^d

•• r > aw+.•I O Gp►.	 II •0 O ^ ••	 C '.
i^ +1 Y 1. Y. • • • • O 1. 0	 •r M II	 r Q, 0 ^ II•

p,Y y	 "" .-1 .-1	 II• ^ - ^U1	 U q ••1 w 1^ .•^ 4 4 a 0 M {. • • y II ^
a	 'own	 a0^+ a auo 01. G 1nM ..

an
b	 ^••

n u	 u

••.^	 Awrb
O

OOC^+^
1j L • a	 41 O Y O	 w 4

+i
Y.
Y 14

4	
••)

y
'O r•1

y^	 ,

P	 t	 1.uof	 a^ -I	 ••
—1

o	 B •iy
+1	 PPP
s. -I C

a	 r v
^+	 r C u g Y	 .r r .1 C

.

arrwr
00.0.0.0.a

^•• u	 -4.i UC
► r0rN.+

gu	 00
•OC^+ uC $ tG1	 y

w
Oro

^	 LN.+.^
0
M^

a
^GNti .r

r •a C
4
a w

^
w w

a
w .+

w

°i	
w

Lu O.i a^+^
^+ s

>
Q Y a ti u a pq ai a	 ^C s+

p
a 	

^q
v

p
a ti -C oa

a

a
.0ubo.iN +0	 1..+ •G

r	
v0

o.	 ^I

e	 • ••ro/ It	 V
O ^ v
nM

a0+	 ^UO-roi	 C,r ••w

-4

U7	 4f
CDP
m

O
N

5

i

i

f

as
4)

S

^^ a

y
f+

a
U)

o

y _

O L.	 n o

0	 ld.

O N

"ae4
4

o^-4 1 V • y

40iM •al+ O0.YO 0 11•

vS :.., u eq ••j - -U N Y `-^ -^. Y 0

Qx
0

•^ 0^ s: ---
0 a 0

8-11 1 0tl 'O 'b -1	 •.0.ro
0

{. 9
O 4. ►. u -4 •.1

10
O -roi 10 10 0 +•I

3
•

^^. u-4
O L 0. o L. 01

S
v

u	 trr
yra

o	 Y
j

7.	 -1

Vv
O.ei

rII44Y411

^° a	 8

Y	 a

s. --- C w 	 .r

IxoMYr

• 1006.. +1444PLL. O
0. M wO-i •• 010 r -^w

ow a
a r> B

b
a

a+
r
a
.r

r

1
•

`^a

b
'd

M

yY tyyio
e +^ r M +1
M

1 C
ono

0.

u	 •

AN p	 /..
111 •+	 U

Y a1	 y 0
»	 p N

yY	 aC ^
»

x Y
	

0

a o	 H7 0 ...Cp{Yy	

^^A^fl

>	 > N rx 4
/ r Y »

	

Y	
0

• »	 c `--r O

.i	 >>	 amwo^
O	 a••	 -mv01,Y

10 U	 i 4
D.	 O	 i H

.r	 -
a	 O U

a	

>7p,, ••

	 YY YY V 4

41401

4j 0
O	 L r	 r	 0 0 0	 W

0	 >4	 O	 o T 0 7 0 i^

»	 w	 Soa0000Wa	 .^ a	 O	 o. Y YYY YY0	 r	 .+	 pp r rr r»r ^^
O	 V	 w	 A L L L. 7. 10 4 ..

1n	 a	 ^-~i y	 ^000aa0a
1	 o	 .a x

CO
.i	 L.	 02 a	 0Or •d A

.1	 O	
1

• 0 .Q a	 114

y'	

O +i

N	 O	 0 2 .00 {J u	 p

O ►.	 OO.
a >r	 as

a
v

O
rl

II

N +1v

U

O
•+

O

C

..>

O^

4 17 0
PO 0I►

O
O
C ro	 VI 4
C

.i 0p
J1

O ^.
^

w
y0

O
Y^ Y ^A	 C

4j 4j

e
••iU •.^ -1 II	 n	 L. T!

+1
41

+1 •Yi •.^	 Y
p

a

COL y^,
r

oo
`-^ `1 ^ ^ 'i w

»>
L

" e
+1

V

II
iina
a II V

o^-
Il o

ro

.-O4
±Sr
o

^7

o

II O^
p•q̂

x
Al LC.S YC ^„9

••^
4 ••Cs

Y •.^ -.1 +i 40
•Cp

lL. ` 1. R
O O -1 0

^ p̂ ^o

Yb^

^yp Oao
IS

wi oa
0.A 0 0.A 4 u>A 4>A

1

ORIGINAL	 11-

OE POOR QUALITY

ti

^S
^y

a a..,8
^aou •^E7^

°0^.,

ar	 ° •^ i p. C^	 0.^

In	 $	 i _uuv°v°
P	 11 •n ••O 0000.-1	 O `^.1 .0 L L L Y
uPf	

11
a^7^JJ^ ^'^'^^ r;.^a

7 0.P. P. O 0 998 101
co aaaa

C
P

ii0P0A^a

i

X	 •w
H

	

	 O4 Y.0.iO
`oa^a
Itl I. O L 0

/ YOYoqg 0. q

yyeUaa^^
0

f

a 'r•	 4	 v ^	 o

r	 r	 ^ v	 Y	
1Y.

••oi
00. 1 ^1^7e	 vM •• tl pLp
	 Ot1	 ^	 ^ U	 ^^ Y Y ..q O•ML Y •

v	 GGGG	 O	 M O O	 O q

V
Y

	

	 M O	 MP p^,
O
 ŷy^	

11 II II II a^

Q	 V UÛ	 .^.Yj 1^.,0

t0.	 ••U	 i- O?OLOOLv	 00^+.M	 ooq II 0t7 Wo 11 ^ , U^ 0 0O	 `^-+7	 O u0 Q •. LO OLY^UU CCCUU eL
vv	 LII	 OMpT•X 0.0. OMUr/V p,fin 	 1Y	 L L	 0.•• 11 !:	 0 N-4.-4-4 O

.1	 "' br a	 MLJ.4

6 41

V

V	 ^ t

i

4
v

I

IGINAL PAZ ► 3

POOR QUALITY

..a..

•r •r .rrr

a a air!

^ _	 5sosas°
a ~	 ^	 0 r

a^r^
r^ ^

II	 O	 i +/ 00	 u y
p y

O
(n
	 b ^ ! r

y.1	
u	 ..1 i r N 0 	 yy

	

X 0-1 0- -0u A.	 0.1+u	 r r MaO

	

s u y s .+ . •i U Z'a 	Iru O	 p r r04
co	00 L u	 •• u u o	 1^ u 1^ u 3^ O o M
of	 rrayV VolY ^Y p, •	 OOiN i	 roaoa uOLovl	 u o Y x u .•^ .Y L

i l.

-1••	 -4 L -^ L -^ 4	 NO
p
B^LNO p.-i.,-4-4L,

O	 L O4.+ 1110o0^0.	 Lx u 0	 xxxx
a /. a+.0 uNd NYU
zzz z:::::ar+s

+ 	u•u•Vu04Juno
0000000o00000

0 v 0 vv 3z	 0vvvn	 aa^aa^a^yna
~	 uu^uuuuuu

s.s.s
uuu 	 S

^.s.s s.s.s.s.s
^, a ssssssssssss r

a	 ^^r
a

a	 ...8 B
L	 0
y	 r
o	 auo

^

r	 Lp O a r

0 0 70 0

LA	 O MLm	 u
.i	 II as 0

O0
.1	 p L Lo••aaO.	 L ri

...^^...

T9

}

n • a §

f ^^^ (^) | %

$)) \^| kj k

§2	 -^ {^^ S
^

0

^	 }^ $ ^ ^| n ! n a n

n 	 ^
^)

40

2`
tsf
\^	 k^
L.	 x 0

} /\	 ^ \ ^ \ •.	 ^^^^.	 ».	 ^^	 ^	 t$..
. a
	 AL ^
	 0 22^

B	

^ ^
A.)A
	 ^E	 x,^ k/

,I ,	 rqk^	 i
—'j
	 §	 as ti

|_^	 " —	 f	 §§ ^^kk^^	 ^L
§ | !d ^, 11 11 	 ^^^kkkkkk^

-^|^	 .. .,.:| III a ON 0 d

	

^!kkl^ n ^ 2 nS. ^iliii!	 |2
43 .^ ,^ ^^^^	 ,.^ ^oa „ as

^

^

/

.^

ORIGINAL PACE 13

OE POOR QUALITY

o^

i!

all

u'
-1 'ti L Y Y •	 11	 . ••1 Y84	 1	

'Q tom/)L: O	 v C C -4 II• ^	 `u•-	 !1	 11

Uf .1 •y1
+►̂ui.

Y
A uY.

iei r r ' 4'U	 .	 U

1o11 4

L

^

^

L

•

II

L

^

'La 0 • oLo 'Iv y'

ell Ai
y47, ° S

c
^'S

oo p

^''

0

0

a

i	 {OTI

L .•1 ^	 P .A II• ^ 'I• .Vj +1

0.^g^ 3

f

.+	 v

•

0

'	 a
^	 7	 It	 II	

M	
^	 ..	 +

^	 -,-I	 Y	 Q	 b	 U	
y

x
-14

0 0.N•w
1Gi

^ l.^• ^ p^ •• 9

•
•

Y w
O a ^	 .,^ Y .1	 v

Y
^
w

V
Y •.

O

M.
M to

.
i U	 u

r 7 9 It	 9 1 `. y p Y `.

jY d

+1 11 y

^

v S/

yM

n 	 .^ .

of

O	
^ ^

C
v ^ v r

v^	
^ ^^Cii	 Y ^1• Y

It

^ w

Aj

,I'

++,ii ^ Y

O 	 d rJ d " •• •• Y u r IL	 w

n	 .ti. ^.

00
Y NaS

1^^ ^
o	

•.

rat
a	 •.

H ^
^'P
	

•.

r.a^
^•

b1
..

-4
'S	 v

1	 1^
`1

^

a\

^ ^ n

.^

f/

"^ $

k
aj4.1,

]"2

^ ..

{

.^

^

a

^

^

_
§
a
k

j

.]

^	 /\

.	 !	 f

fx L}0
	 ..	 k

}	 £f	 ©	 ^	 §	 ^	 ^§^^ ^	 :	 I
p o	}	 _	 &	 ;t^^	 \	

.

, ..
;	 0	 n 	 $	 2^	 2	 IF|	 b	 ^
^	 ^

- ^^^,	 $	 k^ }
0 n 	 N/ n

4
	 ^ ^^	 a	 a~)^

.^ ^$_ If	 ..	 n _	 ^^	 ^	 ^	 .^	 ^	 i ^	 ^	 E2^	 ^
^f ®-	 |tea 	 ^ ^	 - ^

	 l

/2 §	 2 \k^	 ^| §^	
^^^

a ^a.^ ^	 ^ ^^	 $ 22	 2 2	 ^ 2	 2. a	 2	 .
!!	 a	 f	 ^-	 k	 a

J^^ f	 i	 2 | ^t^_^ ^ ^^_ ^ n B 2_ n ^ 2 ^s^_	 ^	 !	 ^ 	 &

^â 4 	 ^

d	 (ƒ

o°
of

0
0

.^	 C
"0	 0

"b r md

o	 ou
9u0u

v.+ ••
O-0

N Y N •--^ ^ry `--'^
eq

n .-I Mry	
YpB pf^	 II ryO8Q8 I II	 11	 N

II	 N ri	 • I° 1•f V^
••, II 0P1am j 0O x II

to 1.MO'OP
'i

OO	 II	 II
yy	 1) L' II	 II 1 7 C O

N ON •.4 o'J	 4T a b^7	 7• N u+
ri G'.d0 C 	 Oba II	 pN.1

oI1;
ro

oc uo	 c w v
C G C 'Cl CO•i t°. ^ o o^

,•. 0.-f o o	 o ,., 0.0.-+.-1 7ry .1 3
N

M
O

i u
1.

n

OF POOR QJAL!

., a
L ••

^ fit C
O Mm O `

Y L

^ ^y ^e yv. v a

u o -yi v V

'.iLn 1.. II ., N
.^.

o ut1 ao+ y o	 u

w • oaa o a `^	 o
' 4 	 A o

D
d

.°,-1	 r7.1 O N Y

ia o^

4l

EOS Project: Mid-Year Report May 1985
	

Appendix G-1

APPENDIX G

Path Pascal Compiler Distribution List

r
c
c

e

t
	 ,h

{
s

Partial Path Pascal VAX Compiler Distribution List.

1. Tungning Cherng Digital Equipment Corp. Continental Boulevard, MK02-1/1 110
Merrimack, NH 03054

2. Arnold Robbins School of Information and Computer Science Georgia Inst. of
Technology 225 North Avenue N.W. Atlanta, Georgia 30332

3. Joan Eslinger Gould Computer Sy stems 1101 E. University Urbana, 11 61801

4. Ray- Ford, University of Iowa, Department of Computer Science, Iowa City, Iowa
52242

5. Lawrence Fitzpatrick National Library of Medicine Lister Hall Center 8600 Rock-
ville Pike Bethe da, MD 20209 Bldg 38A, Room 8N815

6. Mike Finn Nuclear Physics Lab University of Illinois, Urbana Illinois

7. Ginnie Lo, Dept. of Computer & Information Science, 64 Prince Lucien Campbell
Hall University of Oregon, Eugene, OR 97403

8. Professor K. H. Kim, University of South Florida, College of Engineering, Dept. of
Computer Science and En gineering, Tampa Florida, 33620

9. Eric Kaylor Engineering Computer Labor,-
Box 10-15 St Louis, Mo. 63130

^ I

^ I

APPENDIX H

Path Pascal Program Examples

i+

it

4-

PATH PASCAL USER MANUAL

Original Manual byt
Robert B. Kolstad
Roy H. Campbell

Revised for PPCt
Dirk C. Grunwald

Department of Computer Science

University of Illinois at Champaign —Urbana

Urbana, Illinois 61801

217-333-0215

ABSTRACT

Original Manual: 1/29/80
Revised: 11/1/84
Printed: 8/9/85

(Funded in part by NASA Grant NSG1471 and NSF Grant MCS 77-09128)
(C) 1980, University of Illinois Board of Trustees. All rights reserved.

1. Introduction

Path Pascal was designed to investigate the benefits and problems that arise when Path
Expressions are combined with a language to provide a system programming tool. Instead of
altering the Pascal language extensively, a minimal number of features was added such that Pascal
programs still compile and execute. The language can be used for instruction or construction of

	

example system programs. It has also proven useful for discrete systems simulation and perfor-
	 N

mance analysis.

	

Path Expressions were introduced as a technique for specifying process synchronization by
	 i

[Campbell & Habermann, 741, and further discussed by [Habermann, 751, [Lauer & Campbell, 75],
[Flon & Habermann, 761, [Andler, 791 and [Campbell, 77]. Variations of the Path Expression idea
have been proposed by [ONERA CERT, 77] and notations that are similar to paths that model
system behavior have been developed independently by [Shaw, 77] and [Riddle, 761. A
specification language has also been designed [Lauer & Shields, 781 based upon the use of a Path
Expression notation.

The current system, called `ppc', is an extension of the Berkley Pascal compiler [Joy, Gra-
ham & Haley, 80], and is largely intended to build upon the work started with the Experimental
Path Pascal compiler which was based on the P4 subset of Pascal [Kolstad & Campbell, 79]. Pas-
cal was augmented with an encapsulation mechanism (see chapter 2), Open Path Expressions
[Campbell, 77] (see chapter 3), and a process mechanism (see chapter 4). Open Paths are
integrated with the encapsulation mechanism to enforce a strict discipline upon the programmer to
describe shared data objects. All access to encapsulated data is performed by operations synchron-
ized by Open Paths. A process invoking such operations may execute the operation only if

ti

I E	 y

rl ^

I I

I E

dwr

—2—

permitted by the Open Path Expressions associated with the shared data object.
The following chapters describe Path Pascal in more detail. Motivations for the design of

Path Pascal are discussed further in [Miller, 78], [Campbell & Kolstad, 79a], [Campbell & Kolstad,
79b], [Campbell & Kolstad, 80], [Horton & Campbell, 801, [Kolstad & Campbell, 801, and [McKen-
dry & Campbell, 80]. A description of Pascal can be found in the Pascal Report [Jensen & Wirth,
751, with the Berkley Pascal extensions noted in [Joy, Graham & Haley, 80]. The additional Path
Pascal syntax and changes to the Berkley Pascal compiler are listed in Appendix A. The
differences between PPC and Experimental Path Pascal are listed in Appendix B. The algorithim
to generate semaphore P and V operations from Open Path Expressions is given in Appendix C.
Appendix D contains several sample programs. Appendix E contains information useful for debug-
ging PPC programs.

2. Data Encapsulation

2.1. Introduction to Objects

Encapsulating data and definitions of operations on that data ensures that only intended

accesses and transformations are made to an information structure. The addition of a synchroni-
sation mechanism to data encapsulation allows protection from asynchronous access. In Path Pas-
cal, an encapsulation mechanism called an object specifies access, transformation, and synchroniza-
tion. An object 's data and code are accessible to other parts of the Pascal program only by expli-
cit declaration of entry operations. Objects are implemented as a restricted extension of the Pas-
cal structured type facility.

2.2. Object Declaration

Each object begins with the declarator object, then specifies the synchronization for the

object via one or more Path Expression (see chapter 3), followed by the Pascal declarations
(consts, types, vars), the routines of the object (procedures, functions, processes, initialization and
finalization procedures) in appropriate order for scope consideration, and finally an end token.
The const, type, var, and routine specifications are expressed as in standard Pascal and have the
same actions.

The object defines a block which follows the scope rules of standard Pascal; though exported
procedures, functions, and processes have the additional attribute of appearing as defined in the
scope containing the object. Only exported procedures, processes, and functions are available to
enclosing scopes for examination and manipulation of encapsulated data.

Object types may be declared with explicit names in a type statement or implicitly (along
with instauiation) using the var statement. Object names defined as types may be used to declare
any number of object instaniations in var statements. Once instaniated, each object has its own
copies of storage, the object 's operations, and synchronization information.

Objects may be nested within structures or withii. other objects. Recursive object instania-
tions, like recursive record instaniations, are flagged as errors during compilation.

Pointers to objects are declared in var or type statements similar to declarations of pointers
to other data types. The body of the referenced object must be processed before any qualifications
or. the pointer can be made in other object definitions. Dynamic instaniations may be created by
executing the standard procedure named new with a pointer argument. Pointers to objects permit
the construction of encapsulated and recursive data structures.

2.8. Operations

Functions, processes, and procedures whose names are exported from an object are known as
operations. They are differentiated from internal procedures, processes, and functions by prefixing
their declaration by the token entry. Operations, like all routines within an object, can invoke
other operations And routines within the object (as long as scope considerations are satisfied).
Synchronization is applied as usual for invoked operations.

^j

f
Y

E

rj

6

:i

SS

-3-

Operations within an object are invoked as standard procedures. Outside the object, how-
ever, the name of the object's instaniation (or a dereferenced pointer to the object's instaniation)
and a period must precede the name of the operation to be invoked. Operations may be invoked
recursively, even though a deadlock might eventually result.

2.4. Exported Types

Exported types were defined in Experimental Path Pascal, but have not yet been imple-
mented in PPC. Exported types can be simulated through the judicious use of ##include files.

2.6. Path Declaration

The object's Path Expression specifies the synchronization constraints of the object's opera-
tions. The syntax for Path Expressions has changed slightly from Experimental Path Pascal, and
these changes are mentioned in Chapter 3, which discusses Path Expressions in detail.

2.6. Initialisation Procedure

The initialization procedure of an object is an optional procedure which is executed upon
instaniation of the object. The procedure is a full Pascal procedure with declarations and subpro-
cedures allowed. The syntax is different from a standard procedure as no parameters are allowed.
Standard scope rules apply. The initialization procedure must appear after all the procedures
within an object and before the finalization procedure

An initialization block is composed of the token initially followed by a semicolon, declara-
tions and a procedure body. Any objects declared within Lhe object are initialized and available
from within the initialization procedure. However, references to objects defined in the same scope
as the current object are to be avoided since the order of object initialization is undefined.

2.7. Finialization Procedure

The finalization procedure matches the purpose of the initialization procedure. It is executed
immediately before the resources for the object are dealiccated. The finalization procedure must be
the last procedure in the object.

A finalization procedure is composed of the token finally followed by a semicolon, declara-
tions and a procedure body. Any objects declared within the ohjcc; are disposed of after the finali-
zation procedure is executed. As with initialization procedures, references to objects declared in the
same scope as the current object are to be avoided as the order of finalization procedure execution
is undefined.

2.8. Externally Declared Objects

It is possible to compile an object implementation and link it into the final load image using
externally declared objects. To access the entry points within the object, an object outline must be
provided. The syntax for this follows the Berkley Pascal model for separate compilation.

External objects can only be declared at the global level, and then only as a type, as this
provides a one-to-one naming for the object and the code body associated with the object. Within
the object, only the entry procedures, functions and processes are listed. The linking phase of the
compiler ensures that no type violations have occurred. An example is given at the end of this sec-
tion.

2.9. Implementation Details

Assignments between variables containing objects are not permitted since they are semanti-
cally unsound. An object maintains not only the data contained within the object but also the
state information of processes which are blocked waiting to access that information. Object vari-
ables or structured variables containing objects must always be passed as reference parameters to
routines. Objects are actually allocated from the global heap, and are disposed of when a pro-
cedure invocation ends. Thus, the size of an object, for purposes of computing the size of an

k
f

-4-

activation record for processes, is the same as the size of a pointer.

2.10. Examples of Objects

The example below shows the declaration of a typical object type, its instaniation, and two
invocations:

conat
nbuf = b;

type
bufrange = l..nbuf;
ring = object

path nbuf:(1:(put);1:(get)) end;

var
buffer: array (bufrange] of char;
inp, outp: bufrange;

entry procedure put(x: char);
begin

inp :_ (inp mod nbuf) + 1;
buffer[inp] := x

end;

entry function get: char;
begin

outp :_ (outp mod nbuf) + 1;
get := buffer(outp]

end;

Initially;
begin

inp := nbuf;
outp := nbuf

end;
end;

var
buf: ring;
c: char;

begin
buf.put('a');
c := buf.get

end.

The initialization block sets the pointers to appropriate values for standard ring buffering. The
operation 'put' is called to deposit characters within the buffer, `get' retrieves them. The Path
Expression eliminates the need for any further synchronization specification of the head an- 4 tail of

:i

r
.s

-i

1

t.

i °!

71-
r

-b-

the buffer.

2.11. Syntax for Objects
Backus Naur Form for each of the new specifications is shown below:
obj type :.= object

1 <path-decl.part>
t { <object-declerations> }'

{ <initially> }
{ <finally> }
end

object-declerations
{ <pascal-declerations> }
<entry-header> <body>

<entry-header> ::=
entry procedure <id> (<parameters>);
entry function <id> (<parameters>) s type

s

entry process <id> { [constant] } f parameters

e <initial!y> ::-
Initially; <body>

<finally> ..=
flnially; <body>

f

(
2.12. Examples of External Objects

t The following example illustrates the use of an externally compiled object. 	 This requires
three files to be processed. The first contains the actual definition for the object:

	

t	 bufferobj.p:
const

nbuf = 5 •

	

F. d	 1
k t

type

	

ti ±	 bufrange = L.nbuf;
ring = object

	

' 1	 path nbuf:(1:(put); 1:(get)) end;

< .. The rest of the type `ring' is as in the previous example .. >

.	 bue'erobj.i:
const

nbuf — 5;
}

type
bufrange = l..nbuf;
ring = external object

entry procedure put(c : char);

	

1	 entry function get : char;
end;

t

{

i
-8—

	 i

1

usering.p:

program use(output);

#include "bufferobj.i'

var
but: ring;
c : char;

begin
buf.put('a');
c := buf.get;

end.

The commands given to the UNIX shell to compile these modules and link them together would be
the following:

% ppc —c bufferobj.p
% ppc —c usering.p
% ppc —o usering usering.o bufferobj.o

2.18. Syntax for External Objects

The syntax is similar to the object:

<external—object > ::= external object
<entry— header—list>
end;

<entry—header—list> ::=
<entry—header>
Gentry—header—list> <entry—header>

The major difference is that the only entry definitions may appear. The previous restrictions
(must appear at the global level, and can only be used in type declarations) also hold, but have not
been shown, although they do hold in the actual language grammar. An additional restriction is
that the size of processes may not be specified in an < external —object>.

8. Path Expressions

8.1. Introduction to Path Expressions

An Open Path Expression specifies the synchronization constraints for a possibly concurrent
set of process, procedure, and function executions within objects. This static description allows
code to be written without any explicit reference to synchronization primitives. In Experimental
Path Pascal, each object could contain a single Path Expression with multiple references to object

t	 entry points. In PPC, each object can contain multiple Path Expressions with at most one refer-
ence to any entry point within a single Path Expression.

Path Expressions specify- the sequential and concurrent synchronization for the object. Since
only the entry operations can be accessed from outside the object, the information structure can be
protected from unsafe sequences.

Normally, the order of invocation of procedures is unknown until the invocation occurs since
processes can execute asynchronously. Path Expressions allow three distinct kinds of constraints
to be specified: sequencing (denoted by ';'), resource restriction (denoted by 'n:()'), and resource
derestriction (denoted by '[['). Each of these can be combined with the other forms to provide
complex synchronization constraints and several constraints can be contained in a single Path

W04 _140
rt't ..

^f

t

i^

a

a•

^Y

'4 .

e
—7—

Expression. These forms i.re described with examples below.

A Path with no synchronisation information consists of a comma separated list of operation
{	 names surrounded by path and end. The Path below:

path namel, name2, name3 end

imposes no restriction on the order of invocation of the operations and no restriction on the
number of concurrent executions of'namel', `name2', and'name3'.

The sequencing mechanism imposes an order on procedure executions. The order is specified
by a semi—colon separated list. In the example below:

path first; second; third end

one execution of operation 'first' must complete before each execution of 'second' may begin, and
one execution of 'second' must complete before each execution of 'third' can begin. Of course, the
execution of a 'third' or 'second' in no way inhibits the initiation of 'first'; severai operations may
be executing concurrently.

Limited resources (e.g., line printers) occasionally make it desirable to limit the number of
concurrent executions of an operation. The resource restriction specification allows concurrent
execution of operations to proceed until the restriction limit is reached. Restrictions are denoted
by surrounding the expression to be restricted by parentheses and preceding it with the integer res-
triction limit and a colon. The restriction below:

path 2:(ttyhandler) end

allows only two invocations of 'ttyhand"-_r' to proceed concurrently. Any invocation of
'ttyhandler' will wait until less than two executions are active before it begins execution. The
number preceding the colon in a restricter can be thought of as the number of resources for which
the operation competes. A critical sectioti, in which only a single resource is to be shared, is easily
specified. In the example below:

path 1:(routinel, routine2, routine3) end

only one of the three operations can be active at a time. Restricters may be positive integers or
positive constants.

For some applications it is convenient to process all calls to ap operation once that
operation's execution has begun. Such a situation might occur when a large spooler is brought
into memory to process I/O requests. The specifier denoting 'derestr;Aion' of a list of operations
is shown by surrounding the list in square brackets. The path belov.:

path setup; [:spooler] end

requires 'setup' to be executed before each sequence of calls to `spooler', but once `spooler' has
begun execution, its invocations proceed to execution .tntil all executions have terminated. After-
wards, 'setup' must again complete before any 'spo r ier' can proceed.

Each of the forms above (without path a ,,d end) can be considered to be a subexpression of
a Path. Subexpressions may be combined (v-4h the optional use of parentheses for clarity) in the
formats above to yield complex paths, with the restriction that an entry name may appear only
once within a single path express on. *formally, the sequencing operator (";") has higher pre-
cedence than the alternation operato r (",").

It is possible to specify multiple Path Expressions, one right after the other. The restrictions

77

described by the Path Expressions are imposed in the order listed. Thus, if we wish to specify a
resource restriction and a sequence operation, we could use:

path reader;writer end
path L(reader, writer, status) end

Note that procedure 'status' appears only in the last Path Expression. If we had reversed the order
of the two Path Expressions:

path 1:(reader, writer, status) end.
path reader;writer end

the system would quickly deadlock if a writer were to access the object before a reader, since the 	 -
writer would pass the restriction path, but would block on the sequencing path.

The ability to have multiple Path Expressions is a change from Experimental Path Pascal,
where the same semantics could be expressed using multiple references to object entries within a
single path expression. The syntax has been changed in an effort to clarify the order of evaluation
of the Path Expressions. This syntax allows a less expressive notation, however it can be conjec-
tured that examples which can not be easily expressed in the current syntax are most likely
inherently unclear to begin with.	 N

3.2. Examples of Open Paths

1. path a end,

Routine 'a' can execute at any time, and any number of 'a's c;an execute concurrently. No
synchronisation is specified.

2. path a, b, c end

Routines 'a', 'b', and 'c' can execute at any time. Any number of each one can execute cian-

U1
	 currently. No synchronisation is specified.

3. path a; b end

Routine 'a' can be executed at any tir , , Lut 'b' can only begin if the number of 'b's that
have begun e- • --ution is less than the number of'a's that have completed.

4. path 1:(a) end

Row"..e 'a' must be executed sequentially (only one ' i' active at a time).

o. path 2:(a) end;	 y

At most two executions of routine 'a' may proceed. concurrently.

6. path 1:(a), b !nd ;

Multiple invocations of routine 'a' proceed in seouential execution. No restriction is placed
on routine W.

7. path 1:(a); 1:(b) end

Both 'a' and 'b' are critical sections. A maximum of one each of 'a' and one 'b' can execute
concurrently.

S.

-9-

path 6:(5:(a), 4:(b)) end

or
path 5:(a), 4:(b) end
path 8:(a, b) end ;

As many as five invocations of 'a' and four of 'b' can proceed concurrently as long as the
limit of six total executions is not exceeded.

NO'T'E; This is not equivalent to
path 6:(a, b) end ;
path 5:(a), 4:(b) end

sitace this version is different in that it if six calls to 'b' were past the first restriction, and
four executions of 'b' were underway, they would block any further calls to 'a' from proceed-
ing since the first restricter is full. This path provides less concurrency than the previous
paths.

9.
path 5:(a;b) end

or
path a;b end
path 5:(a) end

No more than five executions of routine 'a' and routine 'b' can be proceeding ^oncurrently.
Each execution of 'b' must be preceded by an execution completion of 'a'.

10.path 1:([a], (b)) end ;

Routines 'a' and 'b' operate in mutual exclusion. Either is authorised to proceed as long as
requests for its execution exist. When the executing routine's request list is exhausted, either
routine may start again.

11. Due to the production rules for the derestriction operation, none of the following paths are
equivalent to another:

path 1:((a],(b]) rnd;

path 1:(a,b) end;
path [a], [b] end;

or
path (a], [b] end;
path 1:(a,b) end;

The derestriction operation should only be specified in the same path as the restriction which it is
derestricting.

8.8. Syntax

The BNF syntax for Open Paths is shown below:
pathded :._

path-expr
pathded path-expr

path-Dist :.-
path <list> end

-10-	 _`I

lut ::_
<sequence> { , <sequence> }

sequence :.-
<item> (t <item> }	 ti{

item .._
<bourd > i (<list>)
(<list>) 	 ^+	 1

(<list>) j	 .s
<ident>

bound

<unegndint> ;	 -
<const>

4. Processes	 • l

A process is a program structuring unit which has an independent execution sequence associ-
ated with it. Processes can interact and are coordinated by performing operations on synchronised
shared variables. In Path Pascal, the declaration of a process is separated from its activation. A 	 -
process may be declared in any block and activations of the process may be created from any body
of code with scope that includes the declaration.

Processes are declared in a manner similar to standard Pascal procedures. They may possess
parameters (passed by value or by reference) and may also have a size attribute. The optional size
attribute is an estimate of the process 's storage requirements.

4.1. Instanla, tion	
^l ,

An instance d process is dynamically created by invoking the process name in thr same
manner as a procedure invocation. The creating process need not wait for the created process to
terminate and continues its own execution. Each process created is allocated a run -time heap and
stack from the global runtime heap. The number of bytes allocated is optionally apeci6ed by the
sise attribute. No mechanism is provided to abnormally terminate a process; termination occurs
only when the end of a process's code body is reached.

4.2. Process Storage Considerations	 j

Processes may themselves spawn processes. The storage from any process is acquired from
th• global heap of the path pascal virtual machine. It is occasionally desirable to specify a larger
or smaller heap for a process than that of the default. This may need to be done due to sterage
used in procedures called by the process. This is done by inserting the storage requirement in
words between the name of the process and the parameters (if any). An example is:

process bigun (500001 (arg: integer);

A process 's storage is automatically released when a process terminates.

4.E. Process Lifetimes

The lifetime :)f a processes depends on both static and dynamic properties. A process
remains in an block as long as any other process is referencing information in that block.
Currently, only static references are detected.

If a process reaches the end of a block which is being referenced by other processes, it waits 	
. r

until those processes complete, at wHch time it releases the activation record assoc'.ated with the
block. If no other process references the activation record, the process need not wait. For example: 	 `.

Emp-

19

I I

07

I E!

r7

—11—

procedure A;

var i : integer;

process B;
process C;
began

delay(10);
i := wallclock;

end;
begin

C;

end;
begin

B;

end;

If the process calling procedure A were called, one activation each of processes B and C would be
created. The process calling procedure A would need to wait until process C ends, but process B
would not need to wait for process C, and the process calling procedure A would not need to wait
for process B.

The reason for this is obvious from the body of process C. Process C references a variable in
the scope of process A, but it does not reference any variables in the scope of process B. It is possi-
ble to have a dynamic reference to an activation record, by the following means:

process A;
var k : integer;

process B(var j : integer);
begin

j = 0;

end;

process C;

begin
B(k);

end;

begin
C;

end;

Process C v^,viously makes a reference to the variable `k' in process A, but it is not detected
by static seeping. While the reference to `k' is not currently noted, this will be done in future
releases of PPC. This leads us to the (undetected & unenforced) restriction which Experimental
Path Pascal demands, namely Parameter Restriction.

4.4. Parameter Restriction

The scope of an actual parameter which is passed by reference to a process must contain
scope of the process's declaration (hence s!orage for the parameter will exist as long as the process
does). It should be noted that a call to an entry operation carries an implicit reference to the
object containing the entry operations. Thus, calling a process within an object could fall under
`parameter restriction'.

I n
	

':

_

—12—
3

4.6. Simulated Time

A process can be delayed for a fixed time interval by calling the procedure `delay'. Its integer
argument specifies how long the process is to be delayed. The number of simulated time units
which have elapsed since execution began can be obtained from the parameterless integer function
`wallclock'. Wallclock was originally defined in Berkley Pascal as returning the `time of day' in
seconds from some point in the early '70s. When programs are run in `non- simulation mode',
where a call to `delay' causes an actual delay, this meaning will hold. Currently, simulation mode
is the only option possible, and wallclock returns the simulated time. 	 "t

4.6. Interrupt Processes

Interrupt processes were defined in Experimental Path Pascal, but have not yet been imple-
mented in PPC. Future releases of this reference manual will have more information regarding
interrupt processes and their implementation. One aspect of interrupt process which has already
been implemented is absolute variable bindings.

Bindings between variable names and absolute memory locations can be assigned by an
extension of the var mechanism. This is intended to provide access to memory -mapped I/O dev-
ices. The name of the variable to be allocated is succeeded by the location to be assigned enclosed
in square brackets. The address can be any valid Berkley Pascal integer constant. Consider the fol-
lowing example which sets absolute long -word 144 to 0. 	 }

fvar
poke (100] : array [0..100] of integer;

begin	 -

poke (44] := 0;
end

4.7. Process Syntax

procs-decl ::_	 t
<procs-hdg > < block>

procs-hdg	 •J	 3

process < id> < size-part >
process < id> <size-part > (< formal-parm-,sec > { ; < formal-parm-5ec> } ;	

E

size-part
(<const>
<empty>

Summary

PPC is an extension of Berkley Pascal with extensions for concurrent processes, data encap-
sulation, absolute bind of variables and Path Expressions, The PPC compiler is written in C and
produces PCCIR, the Portable C Compiler Intermediate Representation. The compiler attempts to
provide debugging support through standard UNIX debuggers. The language is a re-

implementation of the Experimental Path Pascal compiler developed at the University of Illinois.

Implementation details can be found in the forth -comming master thesis of the third author.
The system currently runs on the DEC-VAX architecture running 4.x BSD UNIX and Sun 	 -
Microsystems workstations.

^s

t

-13-

References

[Ammann, et al., 76 1 Ammann, U., K. Nori, and C. Jacobi, "The Portable Pascal Compiler," Insti-
tut Fuer Informatik, EIDG, Technische Hochschule CH-8096, Zurich, 1976.

[Andler, 791 Andler, Sten, "Predicate Path Expressions," 6th Annual ACM Symposium on Princi-
ples of Programming Languages, San Antonio, Tex., pp. 226-236, 1979.

[Campbell & Habermann, 741 Campbell, R. H., and A. N. Habermann, "The Specification of Pro-
cess Synchronisation by Path Expressions," Lecture Notes in Computer Science (Editors G.
Coos and J. Hartmanis), Vol. 16, pp. 89-102, Springer-Verlag, 1974.

[Campbell, 761 Campbell, R. H., "Path Expressions: A technique for specifying process synchroni-

'
sation," Ph.D. Thesis, The University of Newcastle upon Tyne, August, 1976; Also, Depart-
went of Computer Science Technical Report, University of Illinois at Urbana-Champaign,
UIUCDCS-R-77-863, May, 1977.

[Campbell & Kolstad, 79a] Campbell, R. H. and R. B. Kolstad, "Path Expressions in Pascal,"
Fourth International Conference on Software Engineering, Munich, September 17-19, 1979.

[Campbell & Kolstad, 79b] Campbell, R. H. and R. B. Kolstad, "Practical Applications of Path
Expressions to Systems Programming," ACM79, Detroit, 1979.

[Campbell & Kolstad, 801 Campbell, R. H. and R. B. Kolstad, "A Practical Implementation of
Path Pascal," Technical Report, Department of Computer Science, University of Illinois at
Urbana-Champaign, UIUCDCS-R-80-1008, 1980.

[Dahl, et al., 681 Dahl, O. J., B. Myhrhaug, and K. Nygaard, "The Simula 67 Common Base
Language," Norwegian Computer Center, Oslo, 1968.

[Flon & Habermann, 761 Flon, L. and A. N. Habermann, "Towards the Construction of Verifiable
Software Systems," SIGPLAN Notices Vol. 8, No. 2, March, 1976.

[Habermann, 75] Habermann, A. N., 'Path Expressions," Department of Computer Science Techn-
ical Report, Carnegie-Mellon University, June, 1975.

[Habermann, 761 Habermann, A. N., Introduction to Operating System Design, Science Research
Associates, p. 89, 1976.

[Horton & Campbell, 80] Horton, Kurt H. and Roy H. Campbell, "PDP-11 Path Pascal Implemen-
tation Manual," Technical Report, University of Illinois at Urbana-Champaign, to be pub-
lished, 1980.

[Jensen & Wirth, 75] Jensen, K. and N. Wirth, Pascal User Manual and Report, Springer-Verlag,
New York, 1975.

[.Toy, Graham & Haley, 801 William Joy, Susan Graham and Charles Haley, Berkley Pascal User's
Manual, Version 2.0 Technical Report, Dept. of Electrical Engineering and Computer Sci-
ence, University of California, Berkley

t
i
1

St
,,,yK..,..	

_` ^4

-14-

[Lauer & Campbell, 751 Lauer, P. E. and R. H. Campbell, "Formal Semantics of a Class of High
Level Primitives for Co-ordinating Concurrent Processes," Acta Informatics, No. 5, pp.
297-332,1975.

[Lauer & Shields, 781 Lauer, P. E. and M. W. Shields, "Abstract Specification of Resource Access-
ing Disciplines: Adequacy, Starvation, Priority and Interrupts," SIGPLAN Notices, Vol. 13,
Number 12, pp. 41-59, 1978.

[Miller, 78] Miller, T. J., "An Implementation of Path Expressions in Pascal," M. S. Thesis,
University of Illinois, Urbana, May, 1978.

[ONERA CERT, 78] "Parallelism, Control and Synchronisation Expression in a Single Assignment
Language," Sigplan Notices Vol. 13, No. 1, January, 1978.

[Riddle, 761 Riddle, W. E., "Software System Modelling and Analysis," RSSM f 25, Tech. Report,
Department of Computer and Communication Sciences, University of Michigan, July, 1976.

[Shaw, 771 Shaw, A. C., "Software Descriptions with Flow Expressions," IEEE TSE, Vol. 4, No. 3,
p. 242-254, May, 1978.

(Wirth, 771 Wirth, N., "Modula: a Language for Modular Multiprogramming," Software-Practice
and Experience, Vol. 7, pp. 3-84, 1977.

-15-

Appendix A
Path Pascal Syntax

The actual syntax for PPC will be released if and when copyright agreements can be reached
with UCBerkley.

Appendix B
Implementation Note

Differences between PPC and Berkley Pascal

The main differences between PPC and Berkley Pascal are as follows:

•	 A new type constructor `object' is provided with synchronization and data encapsulation (see
eection 2).

•	 The `case' construct can specify an `otherwise' clause. The format is:

case expr ::=	 case (<expr>) of
case-list
otherwise : <stmt>
end

•	 A `process' construct is included, allowing concurrent execution.

•	 Variables can be bound to hardware addresses (see section 4.6).

•	 A standard procedure `delay' (see section 4.5) is introduced to delay a process for a simulated
time amount of time.

•	 The semantics of function `wallelock' are different in that they refer to simulated time, not
real time.

•	 The following are new reserved words: otherwise, initially, finally, process, object, entry,
path.

•	 The following are new system defined procedures: delay, await.

•	 The -C compiler flag causes a check in each procedure to ensure that the stack for the
current process has not overflowed its bounds.

The differences between Experimental Path Pascal and PPC are as follows:

• The base version of Pascal is different. Since Experimental Path Pascal was based on the P4
compiler, any P4-speciuc functions will be lacking. Consult the Berkley Pascal Users Manual
for more details concerning Berkley Pascal. Some key points are identified below.

• Name-compatible type checking is used. As an example, this; may causes problems if you
define instances of pointers to records as ` "recnam '. You should declare a type 'reenampt'
of type ` "recnam ' and use that instead.

is

i

e

4.

1
-16-

•	 The names for many standard functions is different. Most importantly, the old function 	 `i
'time' is now called 'wallclock', in keeping with the Berkley Pascal namings. In Berkley Pas-
cal, 'time' is a procedure used to return the alphanumeric representation of the current time.
A'pseudo-compatibility' mode can be invoked by including the provided compatibility file,
which defines function 'time' in terms of 'wallclock'.

• Storage requirements are vastly different. If you have specified storage requirements for your
processes, these will need to be changed to reflect the storage costs in the Berkley Pascal
compiler. Typically, multiplying them by four and adding in a couple of hundred suffices. A
simple procedure call takes 60 bytes. The default process size is 2044 bytes.

• Storage size for integers depends on the number of bits to represent the integer. For exam-
ple, t = 0.127 would require 1 byte. Sets require as many bits (modulo word size) as the set
requires. Sets can have up to 64K elements.

•	 The 'init' block is now a full parameterless procedures, and is called 'initially'.

•	 There is a 'finally' procedure to match 'initially' (see section 2.7)

• Path expressions are somewhat different in that you may specify multiple path expressions
each containing at most one reference to an operation. These which are enforced in top-to-
bottom in the order given (see section 3).

typically, If you have a path of the form:

path Al, A2, ..., An end

where entry x is referenced once each in any pair Ai and Aj, i < j, you can restate this as:

path Al, A2, ..., Ai, ..., Aj-1, Aj+l, ..., An end
path Aj end

Thus, the standard path for a bounded buffer, multiple-proiucers/consumers using shared
'input' and 'output' pointers :

path buffers:(produce;consume), 1:(produce, consume) end

becomes

path buffers: (prod uce;consume) end
path 1:(produce, consume) end

•	 Debugging your programs becomes a more exciting and irritating proposition. References to	 i
bad addresses and whatnot will deliver the standard UNIX "bus error(core dumped)" mes-
sage. Debugging can best be accomplished using the ADB debugger at this time. Before
assuming that the compiler is not working, try running your program using the -C attri-
bute, which causes run-time checks to be turned on. Often, you will find that your process 	 -,
sizes are too small. For more information, see appendix E.

i
ti

•	 The standard subroutine "malloc" is used to create processes and objects. This subroutines
works most efficiently if the allocation size is 2^K - 4 bytes.

-17—

Appendix C
OPEN PATH ALGORITHMS

Open Path semantics are described below in terms of P and V operations on counting sema-
phores in the prologues and epilogues of the procedures, functions, and processes. The following
recursive algorithm [Campbell, 77] will translate Open Paths into this P and V implementation. In
general, the Path Expression to be translated will be surrounded by two strings of generated syn-
chronization operations which are on its left and right (L and R respectively.) Each translation
rule operates on a string of the form "L M R" which represents the left, middle, and right parts of
the string. The translation rule chosen to operate on M corresponds to the production rule which
recognises M (see Appendix A). The translated string consists of one or two strings of similar
form and initialisation code denoted by "[sx := y]."

The algorithm is initialized when Path <list> End is transformed into R=null,
M=<list>, L=null. The left column of the table below shows M (assumed to be surrounded by
L and R); the right columns show the new translated L, M, and R.

Transformation Table

M new L new M new R new L new M new R init
<se > <list> L <se > R L <list> R
<item> • <se > L < item > V sl P sl <se > R 51:=0

n: <list> P :2 L <list> R V(s2) f s2:=n
<list> I PP c s L <list> W c s R s:=! c:=0
<list> L <list> I R

<op-id > be in L• o eration •R end

where PP(c,s,L) and W(c, s, R) are defined as:

PPcsL WCSR
P(s); P(s);

c:=c+1; c:=c-1;
IF c=1 THEN L; IF c=0 THEN R;

Vs Vs

r

r

6
t

F

NETWORK

A small network simulation program patterned after [Brinch Hansen, 781 is presented below.
The network is ring oriented and request—driven. Requests are sent from a processor through the 	 —
network to a (probably foreign) processor, where a complementary process transmits a reply. This	 t
reply is then forwarded to the original processor. Each processor contains a single input link and
a single output link. A request/response message pair circumnavigates the ring once in a normal
request/respond cycle or twice if the processor attempts communication with itself. This program 	 E
is presented only to compare and contrast different methods of synchronisation specification, not
as a solution to data transfer problems.

As presented, the program contains not only a network system, but also a simulation of the
machines and physical lines. The program is somewhat shorter than Brinch Hansen's, ane refers
to synchronization only in the Path Expressions of the objects: semaphores (or conditions), moni-
tors and queues are not required. The programmer can therefore simply invoke routines,
knowledgeable of the fact that they are already synchronized correctly. 	 s ,

The program source is shown here:

program network(output);

const
nmax = 3;	 (' three nodes *)
cmax = 6;	 (* six channels *)
bmax = 3;	 (* three buffers *)

(r

' The constants above define the network configuration
r)

type
node = L.nmax;
channel = L.cmax;
channelset = set of channel;
item = array[1..10] of char;

message = record
kind: (alequest, a-response);
link: channel;
contents: item

end;

' 'item' is the logical atomic data packet sent
' between nodes. A'message' contains routing information and the 'item'.
r)

	

_.	 1

R

—19—

(•
• The 'line' simulates the physical line between machines. Each machine
• references two different 'line's: one for input, one for output.
•)

line = object	 (• physical line *)

path 1:(output tc—buslink; inputjrom—buslink) end;

(•
• Input must wait for output from elsewhere,
• only a single output can occur before an input
•)

var mesgbuffer: message;

entry procedure output_to—buslink(m:message);
begin

delay(s);
mesgbuffer := in

end;

entry procedure input-from-buslink(var m:message);
begin

m := mesgbuffer
end;

end;	 (* line ')

(*
* The 'machine' object contains all the attributes of a simulated machine.
* these include: 'buffer' operations for the physical line; 'inputs',
* which waits for data to be returned after a request has been sent;
* 'outputs', which sends the data after requested;
* 'reader', monitors traffic on line, routing messages forward or through
* request/response mechanism;
* 'writer', which copies messages from the output buffer to the physical line;
* 7startmachine', forks the processes 'reader'/'writer' as initialization;
* and finally 'receive' and 'send': the user accessible routines to use
* the network
s)

'(t
r

F

L

-20-

machine = object

path startmachine end;
(i

' no synchronization necessary for this initialization

type
buffer =object	 (' handles simple queue')

path bmax:(1:(bufenter); 1:(bufretrieve)) end;

' bmax outstanding requests (namely'bufenter's) may exist,
' 'bufente*'s must precede 'bufretrieve's.

var iobuffe:: array[l..bmax] of message;
inpp, outp: L.bmax;

entry procedure bufenter(m:message);
begin

iobuffer[inpp] := m;
inpp :_ (inpp mod bmax) + 1

end;

entry procedure bufretrieve(var m:message);
begin

m := iobuffer[outp];
outp :_ (outp mod bmax) + 1

end;

Initially;
begin

inpp := 1;
outp := 1

end;
end;	 (' buffer ')

' Only the Path Expression synchronizes
' the buffer code.
s)

-21-

inputs = object	 (* handle inputting messages *^

path response-received; response -wait end;
(*

* 'response wait' will not continue until 'response-received' is finished.
* it then merely copies the message from the line monitor.

var mesgcontents: item;

entry procedure responseseceived (cont: item);
begin

mesgcontents := cont
end;

entry procedure response wait (var cont: item);
begin

cont := mesgcontents
end;

end;	 (* inputs *)

outputs = object	 (* handles message outputs *)

path request -received; build_mesg end;
(*

* 'build . mesg' may not be executed until 'request-received' is complete

entry procedure build-nesg (c:channel; info:item;
var mesg:message);

begin

mesg.kind := a-response;
mesg.link := c;
mesg.cor► tents — info;

end;

entry procedure requestseceived;
begin end;

(*

* this procedure is empty as no code is required, only a 'signal' for
* the Path expression to process.
*)

end;	 (* outputs *)

A

—227

var buf. buffer;
inp: array [channel] of inputs;
out: array [channel] of outputs;

• logical channels are used for communication. each machine has a different
* set of input and output channels. "T

process reader(inpset, outset:cliannelset; inline:line);
(* handle all messages from line')

var m: message;

begin
repeat

inline.inputfrom—buslink(m); (* get message from line *)
If (m.kind = alesponse) and (m.link in inpset)

(* response for me? *)
then inp[m.link].responaeleceived(m.contents)

else
If (m.kind = a-request) and (m.link in outset)

(* request for me? *)
then out[m.link].requestseceived

else
buf.bufenter(m) (* pass message on ')

until false
end;	 (* reader process *)

process writer(outline:link);	 (* put messages onto line *)
var m: message;

begin
repeat

buf.bufretrieve(m);
outl ine.output—to_huslink(m)

until false
end;	 (' writerprocess ')

entry procedure startmachine(who: node; inpset, outset:channelset;
inline, outline: line);

begin
reader(inpset, outset, inline);
writer(outline)

end;

-23-

user called procedures:

procedure receive(c:channel; var v:item);

var mesg: message;

begin
mesg.kind :_ &.request;
mesg.link := c;
buf.bufenter(mesg);	 (• request mesg)
inp[c].response wait(v)	 (• wait for response •)

end;

procedure send(c: channel; info:item);

var mesg: message;

begin
out[c].build-inesg(c, info, mesg); (' build mesg after regst •)
buf.bufenter(mesg)	 (' send cnesg along •)

end;

each machines's code would go here: it would be invoked by startmachine
a)

P

end;	 (• machine')
	

I
i

finally, it is necessary to specify the physical lines between the
' machines

s

var machines: array [node] of machine;
lines: array [node] of line;

vi
begin

machines[1].startmachine(1, [2,3], [1,4], lines[3], lines[21);
machines[21.startmachine(2, [1,6], [2,5], lines[1], lines[31);
machines[3].startmarhine(3, [4,5], [3,6], lines[2]. lines[1])

end.

-24-

DINING PHILOSOPHERS

The well known problem of the dining philosophers invoiv ei .i set of five philosopherA whose
activities in life are eating aad thinking. Each philosopher th'As for a while, eats, thinks, eats
and so on. The philosophers share a unique dining arrangement: though two utensils are required
for a philosopher to eat, the five dining places are located around a circular table with only one
utensil on Cie right of each dining place. Therefore, the philosophers must share utensils. The
problem involves the scheduling of the philosophers so that no philosopher attempts to begin eat-
ing when his utensils are not available. The Path Pascal solution to this problem is different from
many in that no explicit queues are needed. Each philosopher is a process attempting to use the
'fork' objects. Paths synchronise access and prevent deadlocks from occurring. Note that only
simple synchronisation statements are given (e.g., only four philosophers eating at a time, only one
using each fork). The rest of the program specifies the lcgic of thinking and eating.
program phils (ouput);

conat nphilosophers = 5;
maxindex = 4;	 (• nphilosophers - 1 ^)

type diner = O..maxindex;

var	 i s integer;
table: object

path maxindex: (starteating; stopeating) end;
var	 fork: array (diner] of

object
path 1:(pickup; putdown) end;
entry procedure pickup; begin end;
entry procedure putdown; begin end;

end;

entry procedure starteating (no: diner);
begin

fork (no].pickup;
fo.k((no+l) mod nphilosophers]. pick up

end;

entry procedure stopeating (no: diner);
begin

fork[no].putdown;
furk](no+l) mod nphilosophers] . putdown;

end;
end;	 V table *)

^l
11

..i

i
t"

r

-25-

process philosopher(mynum: diner);
begin

repeat
delay (ran (seed));
table.starteating(mynum);
delay(ran(seed));
table.stopeating(mynu m);

until false;
end;

t

begin
for i:= 0 to maxindex do philosopher(i)

end.

y
4 y

6

^i
>	 'i

-26-

BUFFER MANAGEMENT
A simple ring buffer implementation is shown below:

program buffering (output);

const bufsize = 32;
maxbuf = 31;

type buffer = object	 (' buffers i/o')

path bufsize: (1: (fill); 1: (empty)) end;

type bufrange = O..maxbuf;
bufarray = array[bufrange] of char;

var	 inptr, outptr: bufrange;
buf: bufarray;

entry procedure fill(ch: char);
begin

buf[inptr] := ch;
inptr := (inptr+ l) mod bufsize

end;

entry procedure empty (var ch: char);
begin

ch := bui [outptr];
outptr := (outptr + l) mod bufsize

end;

initially; begin inptr := 0; outptr := 0 end
end;

Two routines are provided, 'fill' and 'empty'. Note that the routines are very terse: only informa-
tion relating to the actually changing of pointers and : is presented. All synchronization and
restriction information is described by the Path Expression, which assures mutual exclusion for
each routine and places a maximum on the buffer size. Attempts to exceed the buffer size are not

.l

't

5

<i

I

i
s-

4

i

-27-

BIBLIOGRAPHY

(Brinch Hansen, 781 Brinch Hansen, P., "Network: A Multipro^rssor Program," IEEE Trans.
Software Eng., Vol. SE-4, No. 3, pp. 194-199, May, 1978.

\I

-28-

Appendix E
Debugging Aids

To aid programmers in debugging, certain information regarding the structure of the Path Pascal
run-time system is needed, as well as information regarding naming conventions for processes and
object entry routines.

Namings

-Y

With each object type is associated several code bodies. These code bodies must be named
internally to reference them. In the current Berkley scheme, nested procedures have nested names
using the procedure names. Th.,'. is, if you have the following:

F

Procedure A;
Procedure B;

Procedure C; end
end

end

Then the code body for procedure 'A' will have the name ' -A', the body for procedure 'B' will be
named '-"' and that for procedure 'C' will be named 'AI3 C'. Additionally, each procedure
named 'X' has a name 'x' used for procedure references passed as parameters. So, we also have 	 -
symbols' --A', '__AB' and ' - -A B C'. You can more or less ignore these.

For a procedure, there is a one-to-one mapping for names and code-bodies. For objects
declared in types, this is also true. The name of the type is the name of the object. However, an 	 -
object can be declared as an 'anonymous type' in a var declaration. Thus, in something like:

var
a, b : object ... end

what should the name of the code bodies associated with the object be? It turns out that it is easi-
est, from the view point of the compiler, to associate an arbitrary 'object number' with the object.y

Associated with each object is a procedure ' $init' which allocates memory for the object, ini-
tializes the semaphores, calls '$init' on any objects nested within this object and calls the pro- 	

_. Tia,cedure ' $initially' (if it exists). Similarly, there is a procedure '$fini', which calls the procedure
'$finally' (if it exists), calls'$fini' on any nested objects and deallocates the memory for the object.

The '$initially' and 'finally' procedures are the names given to the initially and finally
procedures within an object. They are only present if the corresponding routine was declared in
the object.

All operations prepend their name with the objects name. As an example, consider.

procedure A

type	 -

B = object
var i : integer;

path C end;	 -

i,
entry procedure C; begin end;

initially; begin C end;

- - 4^a

j;.

..

r

r

f
r
r

r.

t

-29-

end;

var
D : object

var i : integer;

path E end;

entry procedure E; begin end;

end;

L

begin
end

In the above, we have the following names: -A, -AB$obj C, AB$obj$initially,
,AB$obj_$init, -A-B$obj $fini, -,A—$obj90001 -D, _A_$obj00001 $init A$obj00001$fini.

Processes also present a little bit of a naming problem, but much less troublesome than
objects. Essentially, we would like a process call to be equivilant to a procedure call. We do
this by the following construct:

Process A;
begin
end;

L expanded as:

-1:
set up parameters for run-time-system;
using -a as the process start label.
call `process-create' routine
return

-a:
actual process code
call `kill process' routine

The `actual process code' is preceded by a name which is the same as the process name, but
reversed in case (that is A -> a, b -> B, etc).

Object Structures

Calls to entry procedures causes an implicit reference to the context for the given object.
Berkley Pascal uses a `display list' stored in disply to handle static nestings. Object refer-
ences use this same display list to handle references to variables within objects. The display
list is a per-process data structure, but the context switching routines correctly saves it.

On every call to an object entry, the base address for the object must be passed to the
entry procedure so that it may fix up the display list. This is pushed as an invisible first
parameter on any entry call. Thus, a call such as:

A.entryname(1,2,3)

-30—

is really processed as:

entryname(addrof(A), 1, 2, 3)

You need to be aware of this when using ADB to debug your object entries.

Run Time System

The run time system is written in C. The interface between the run time system and the 	 r	 x
Path Pascal program is managed by two procedure: its-call and --rtsexec. When a process 	 #
wishes to request a service from the run time system, it pushes the parameters and the service
number and then calls p. -3cedure --rtseall. This saves the context for this process and starts
up the context for the run-time-system.

When the run-time-system wishes to restart a Path Pascal process from where it was
last suspended, it calls _rts exec with the pointer to the Process Control Block for that pro-
cess.

t

Debugging information can be turned on by calling the routine "rtsdebugging" with a
non-zero integer parameter. The higher the number, the more debugging information. This
can be called from Path Pascal if you define: 	 ^M

t

procedure rtsdebugging (i : integer); external; 	 -f

This information is not exactly the most clear or informative information possible, but it is a
good way to untangle deadlocks and what not.

Future debugging aids

In the future, we plan to provide a post-mortem dump analyE .s routine as well as exten-
sions to allow DBX to work with Path Pascal.

^I

i

	0012A02.pdf
	0012A03.pdf
	0012A04.pdf
	0012A05.pdf
	0012A06.pdf
	0012A07.pdf
	0012A08.pdf
	0012A09.pdf
	0012A10.pdf
	0012A11.pdf
	0012A12.pdf
	0012A13.pdf
	0012A14.pdf
	0012B01.pdf
	0012B02.pdf
	0012B03.pdf
	0012B04.pdf
	0012B05.pdf
	0012B06.pdf
	0012B07.pdf
	0012B08.pdf
	0012B09.pdf
	0012B10.pdf
	0012B11.pdf
	0012B12.pdf
	0012B13.pdf
	0012B14.pdf
	0012C01.pdf
	0012C02.pdf
	0012C03.pdf
	0012C04.pdf
	0012C05.pdf
	0012C06.pdf
	0012C07.pdf
	0012C08.pdf
	0012C09.pdf
	0012C10.pdf
	0012C11.pdf
	0012C12.pdf
	0012C13.pdf
	0012C14.pdf
	0012D01.pdf
	0012D02.pdf
	0012D03.pdf
	0012D04.pdf
	0012D05.pdf
	0012D06.pdf
	0012D07.pdf
	0012D08.pdf
	0012D09.pdf
	0012D10.pdf
	0012D11.pdf
	0012D12.pdf
	0012D13.pdf
	0012D14.pdf
	0012E01.pdf
	0012E02.pdf
	0012E03.pdf
	0012E04.pdf
	0012E05.pdf
	0012E06.pdf
	0012E07.pdf
	0012E08.pdf
	0012E09.pdf
	0012E10.pdf
	0012E11.pdf
	0012E12.pdf
	0012E13.pdf
	0012E14.pdf
	0012F01.pdf
	0012F02.pdf
	0012F03.pdf
	0012F04.pdf
	0012F05.pdf
	0012F06.pdf
	0012F07.pdf
	0012F08.pdf
	0012F09.pdf
	0012F10.pdf
	0012F11.pdf
	0012F12.pdf
	0012F13.pdf
	0012F14.pdf
	0012G01.pdf
	0012G02.pdf
	0012G03.pdf
	0012G04.pdf
	0012G05.pdf
	0012G06.pdf
	0012G07.pdf
	0012G08.pdf
	0012G09.pdf
	0012G10.pdf
	0012G11.pdf
	0012G12.pdf
	0012G13.pdf
	0012G14.pdf
	0013A02.pdf
	0013A03.pdf
	0013A04.pdf
	0013A05.pdf
	0013A06.pdf
	0013A07.pdf
	0013A08.pdf
	0013A09.pdf
	0013A10.pdf
	0013A11.pdf
	0013A12.pdf
	0013A13.pdf
	0013A14.pdf
	0013B01.pdf
	0013B02.pdf
	0013B03.pdf
	0013B04.pdf
	0013B05.pdf
	0013B06.pdf
	0013B07.pdf
	0013B08.pdf
	0013B09.pdf
	0013B10.pdf
	0013B11.pdf
	0013B12.pdf
	0013B13.pdf
	0013B14.pdf
	0013C01.pdf
	0013C02.pdf
	0013C03.pdf
	0013C04.pdf
	0013C05.pdf
	0013C06.pdf
	0013C07.pdf
	0013C08.pdf
	0013C09.pdf
	0013C10.pdf
	0013C11.pdf
	0013C12.pdf
	0013C13.pdf
	0013C14.pdf
	0013D01.pdf
	0013D02.pdf
	0013D03.pdf
	0013D04.pdf
	0013D05.pdf
	0013D06.pdf
	0013D07.pdf
	0013D08.pdf
	0013D09.pdf
	0013D10.pdf
	0013D11.pdf
	0013D12.pdf
	0013D13.pdf
	0013D14.pdf
	0013E01.pdf
	0013E02.pdf
	0013E03.pdf
	0013E04.pdf
	0013E05.pdf
	0013E06.pdf
	0013E07.pdf
	0013E08.pdf
	0013E09.pdf
	0013E10.pdf
	0013E11.pdf
	0013E12.pdf
	0013E13.pdf
	0013E14.pdf
	0013F01.pdf
	0013F02.pdf
	0013F03.pdf
	0013F04.pdf
	0013F05.pdf
	0013F06.pdf
	0013F07.pdf
	0013F08.pdf
	0013F09.pdf
	0013F10.pdf
	0013F11.pdf
	0013F12.pdf
	0013F13.pdf
	0013F14.pdf
	0013G01.pdf
	0013G02.pdf
	0013G03.pdf
	0013G04.pdf
	0013G05.pdf
	0013G06.pdf
	0013G07.pdf
	0013G08.pdf
	0013G09.pdf
	0013G10.pdf
	0013G11.pdf
	0013G12.pdf
	0013G13.pdf
	0013G14.pdf
	0014A02.pdf
	0014A03.pdf
	0014A04.pdf
	0014A05.pdf
	0014A06.pdf
	0014A07.pdf
	0014A08.pdf
	0014A09.pdf
	0014A10.pdf
	0014A11.pdf
	0014A12.pdf
	0014A13.pdf
	0014A14.pdf
	0014B01.pdf
	0014B02.pdf
	0014B03.pdf
	0014B04.pdf
	0014B05.pdf
	0014B06.pdf
	0014B07.pdf
	0014B08.pdf
	0014B09.pdf
	0014B10.pdf
	0014B11.pdf
	0014B12.pdf
	0014B13.pdf
	0014B14.pdf
	0014C01.pdf
	0014C02.pdf
	0014C03.pdf
	0014C04.pdf
	0014C05.pdf
	0014C06.pdf
	0014C07.pdf
	0014C08.pdf
	0014C09.pdf
	0014C10.pdf
	0014C11.pdf
	0014C12.pdf
	0014C13.pdf
	0014C14.pdf
	0014D01.pdf
	0014D02.pdf
	0014D03.pdf
	0014D04.pdf
	0014D05.pdf
	0014D06.pdf
	0014D07.pdf
	0014D08.pdf
	0014D09.pdf
	0014D10.pdf
	0014D11.pdf
	0014D12.pdf
	0014D13.pdf
	0014D14.pdf
	0014E01.pdf
	0014E02.pdf
	0014E03.pdf
	0014E04.pdf
	0014E05.pdf
	0014E06.pdf
	0014E07.pdf
	0014E08.pdf
	0014E09.pdf
	0014E10.pdf
	0014E11.pdf
	0014E12.pdf
	0014E13.pdf
	0014E14.pdf
	0014F01.pdf
	0014F02.pdf
	0014F03.pdf
	0014F04.pdf
	0014F05.pdf
	0014F06.pdf
	0014F07.pdf
	0014F08.pdf
	0014F09.pdf
	0014F10.pdf
	0014F11.pdf
	0014F12.pdf
	0014F13.pdf
	0014F14.pdf
	0014G01.pdf
	0014G02.pdf
	0014G03.pdf
	0014G04.pdf
	0014G05.pdf
	0014G06.pdf
	0014G07.pdf
	0014G08.pdf
	0014G09.pdf
	0014G10.pdf
	0014G11.pdf
	0014G12.pdf
	0014G13.pdf
	0014G14.pdf
	0015A02.pdf
	0015A03.pdf
	0015A04.pdf
	0015A05.pdf
	0015A06.pdf
	0015A07.pdf
	0015A08.pdf
	0015A09.pdf
	0015A10.pdf
	0015A11.pdf
	0015A12.pdf
	0015A13.pdf
	0015A14.pdf
	0015B01.pdf
	0015B02.pdf
	0015B03.pdf
	0015B04.pdf
	0015B05.pdf
	0015B06.pdf
	0015B07.pdf
	0015B08.pdf
	0015B09.pdf
	0015B10.pdf
	0015B11.pdf
	0015B12.pdf
	0015B13.pdf
	0015B14.pdf
	0015C01.pdf
	0015C02.pdf
	0015C03.pdf
	0015C04.pdf
	0015C05.pdf
	0015C06.pdf
	0015C07.pdf
	0015C08.pdf
	0015C09.pdf
	0015C10.pdf
	0015C11.pdf
	0015C12.pdf
	0015C13.pdf
	0015C14.pdf
	0015D01.pdf
	0015D02.pdf
	0015D03.pdf
	0015D04.pdf
	0015D05.pdf
	0015D06.pdf

