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ABSTRACT

In this report, we investigate a cascaded coding scheme for error

control. Tne scheme employs a combination of hard and soft decisions in

decoding. Error performance is analyzed. If the inner and outer codes are

chosen properly, extremely high reliability can be attained even for a high

channel bit-error-rate. Some example schemes are studied. They seem to be

quite suitable for satellite down-link error control.



A CASCADED CODING SCHEME FOR ERROR CONTROL

1. Introduction

In this paper we investigate a cascaded coding scheme for error control

for a binary symmetric channel with bit-error rate e< 1/2. In this 6cheme,

two linear block codes, C1 and C2 , are used. The inner code C 1 is a binary

(n l ,k l ) code with minimum distance d l . The inner code is designed to cor-

rect t  or fewer errors and simultaneously detect X 1 (al > ti) or fewer

errors where t l+al+1 < dl [1]. The outer code C2 is an (n 2 ,k 2 ) code with

symbols from the Galois field GF(2 k ) and minimum distance d 2 . If each code

symbol of the outer code is represented by a binary k-tuple based on certain

basis of GF(2 Q ). Then the outer code becomes an (n 2 R,k 2 U linear binary

code. For the proposed coding scheme, we assumed that the following condi-

tions hold:

kl = mi k ,
	 (1)

and
n2 = mlm2 .	 (2)

The encoding is performed in two steps as shown in Figure 1. First a

message of k 2 2 binary information digits is divided into k 2 bytes of

information bits each. Each k-bit byte (or binary Z-tuple) is regarded as a

symbol in GF(2 Q ). These k 2 bytes are encoded according to the outer code

C 2 to form an n 2 -byte (n 2 Z bits) codeword in C 2 . At the second stage of

encoding, the n 2 -byte codeword at the output of the outer code encoder is

divided into m2 segments of ml bytes (or ml k bits) each. Each ml-byte

segment is then encoded according to the inner code C 1 to form an nl-bit

codeword. This n l-bit codeword in C 1 is called a frame. Thus, corre-

sponding to a message of k 2 Z bits at the input of the outer code encoder,

the output of the inner code encoder is a sequence of m 2 frames of n 2 bits

each. This sequence of m2 frames is called a block. A block format is



depicted in Figure 2. We may view that the entire encoding operation is to

cascade the two block codes, C 1 and C 2 . The resultant cascaded code,

denoted C, is a binary (m 2 nl ,k 2 U linear code. If m  = 1, the cascaded code

C is a concatenated code [2].

In the proposed scheme, the decoding also consists of two stages as shown

in Figure 1. The first stage of decoding is the inner code decoding.

Depending on the number of errors in a received frame, the inner code decoder

performs one of the three following operations: error-correction, erasure and

leave-it-alone (LIA) operations. When a frame in a block is received, its

syndrome is computed based on the inner code C I . If the syndrome corre-

sponds to an error patter a of t  or fewer errors, error correction is per-

formed by adding a to the received frame. The n l-k l parity bits are removed

from the decoded frame, and the decoded m1 byte segment is stored in a

receiver buffer for the second stage of decoding. A successfully decoded seg-

ment is called a decoded segment with no mark. Note that the decoded segment

is error-free, if the number of transmission errors in the received frame is

t  or less. If the number of transmission errors in a received frame is

more than a l , the errors may result in a syndrome which corresponds to a

correctable error pattern with t  or fewer errors. In this case, the

decoding will be successful, but the decoded frame (or segment) contains 	 A

undetected errors. If an uncorrectable error pattern is detected in a

received frame, the inner code decoder will perform one of the following two

operations based on a certain criterion [3):

1. Erase Operation -- The erroneous segment is erased. We will call

^i

F0	
such a segment an erased segment.

e	 2. Leave-it-alone (LIA) operation -- The erroneous segment is stored in

the receiver buffer with a mark. We call such segment a marked

segment.
a

-2-



Thus, after m2 frames of a received block have been processed, the receiver

buffer may contain three types of segments: decoded segments without marks,

erroneous segments with marks, and erased segments.

The above inner code decoding consists of three operations: error-

correction, erasure and LIA operations. The decoding operation is described

by the flowchart in Figure 3. An inner code decoding which performs only the

error-correction and erasure operations is called an erasure-only decoding.

On t}e other hand, an inner code decoding which performs only the error-

correction and LTA operations is called a LIA-only decoding.

As soon as m^ frames in a received block have been processed, the

second stage of decoding begins and the outer code decoder starts to decode

the m2 segments stored in the buffer. Note that an ei:: sed segment creates

ml symbol erasures ( or ml ,2-bit byte erasures). Symbol errors are con-

tained in the segments with or without marks. The outer code C 2 and its

decoder are designed to correct the combinations of symbol erasures and symbol

errors. Maximum-distance -separable codes with symbols from GF ( 2 k ) are most

effective in correcting symbol erasures and errors.

Now we describe outer code decoding process. Let i and h be the numbers

of erased segments and marked segments respectively. The outer code decoder

declares an erasure ( or raises a flag) for the entire block of m 2 segments

if either of the following two events occurs:

(i) The number i is greater than a certain threshold TeS with Tes

r(d2-1)/m1)1.

(ii) The number h is greater than a certain threshold Tek (i) with

Tek M < l(d 2-l-ml i) / 2J for a given i.

If none of the above two events occurs, the outer code decoder starts the

error-correction operation on the m 2 decoded segments. The m 
1 i symbol

t
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erasures and the symbol errors in the marked or unmarked segments are cor-

rected based on the outer code C 2 . Let t 2 (i) be the error-correction

threshold for a given i where

t 2 < J(d2- l-mli)/2J.	 (3)

If the syndrome of the m2 decoded segments in the buffer corresponds to an

error pattern of ml i erasures and t 2 (i) or fewer symbol errors, error-

correction is performed. The values of the erased symbols, and the values and

the locations of symbol errors are determined based on a certain algorithm.

If no error correction is made in a marked segment, or more than t2(.;.II

symbol errors are detected, then the outer code decoder again declares an

erasure (or raises a flag) for the entire block of m 2 decoded segments. The

entire outer code decoding operation is described by the flowchart shown in

Figure 4.

In the rest of this paper, the error performance of the proposed cascaded

coding scheme is analyzed. We show that, if proper inner and outer :odes are

chosen, the scheme provides extremely good reliability even for high bit-

error-rate c= 10-2 . The scheme is particularly suitable for down link error

control in satellite communications. We also consider interleaving the outer

code. The minimum distance of the cascaded code is studied, and a lower bound

is derived.

2. The Minim ,!m Weight of a Cascaded Code

Consider the code C obtained by cascading the inner code C 1 and the

outer code C 2 as described in Section 1. This cascaded code is an

(m2 n1 ,k 2 Z) binary linear code. Let d be its minimum distance. For 0<i<ml,

let dl'i be the minimum weight of those codewords in C 1 which have exactly

i nonzero symbols (a symbol is an k-bit byte) in the first m l k-bit bytes.

Then we have that

-4-
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m2

d >	 min	 ( I d	 )	 (4)
0<il,i2, ... 1 im2 <m1 j=1 1'lj

m 2

CC 
i >d 2

J=1

It is readily seen that

dl jd2/mll , for ml < dl	(5)

d _

1 d2	 for ml > dl	(6)

Suppose that tt.e outer code C 2 is a maximum-distance-separable code over

GF(2 R ) (4-8). Then

d2 = n 2 - k 2 + 1 .	 ( 7 )

Let R 1 , R 2 and R be the rates of Cl. C 2 and C respectively. Then

k2 R	 k2m1R

R 
= nlm2 = nlmlm2 

= R 1 R	 (8)2 

Let 6 be the ratio of d to the length n 
1 
m 
2 
of C. It follows from (5) to (7)

that

(d /n ( rn2-k2+1) /M 11 
/m2 ) ,	 for ml <d 

1 
	 (9)

>

(Rl /R) (1 - R/Rl + 1/n2 )	 for ml >d
1
	(10)	 {

For a nontrivial max.4 mum-distance-separable code with symbols from GF(2 R ), the

code length is 2 k+2 or less. Therefore, for a given R, the length of the

cascaded code is upper bounded by a constant. Since m l /n l = R11R, we see

that, if d l /n I is lower bounded by a positive constant, then the conditio.,

ml < dl

holds for large n 2 . Suppose that m1< d l and k 2 is divisible by ml.

It follows from (2) and (9) that

.

-5-



6 > (d l/n l )(1-R/R l+l/m 2 ) .	 (11)

If the inner code meets the Varshamov-Gilbert bound [5-7], then

6 > H -1 (1-R 1 ) (1-R/R 1 + 1/m 2 ) ,	 (12)

where H-1 (x) is the inverse of the binary entropy function H(x) 	 xlog2x -

(1-x)log2(1-x).

Equation (12) gives a lower bound on the ratio 6 of the minimum distance

to the length of the cascaded code C with a maximum-distance-separable as the

outer code C 2 . This bound is a generalization of Zyablov's bound [9] for con-

catenated codes,
-1

6 > H (1-R1)-(1-R/Ri+ 1/n 2 )	 (13)

Since n2 >m2 , the bound given by (12) is tighter than that of Zyablov's.

Blokh and Zyablov[ 10 ] showed that the general concatenated codes with

varying binary linear block inner codes exist which asymptotically meet the

Varshamov-Gilbert bound for all rates. Thommesen [11] showed that there exist

concatenated codes with varying nonsystematic binary linear block inner codes

and Reed-Solomon outer codes which asymptotically meet the Varshamov-Gilbert

bound for all rates. A concatenated code with varying binary linear block

inner code can be regarded as a cascaded code with n 2 = m l and m2 =1.

It is unknown whether there exist concatenated codes with n 2 > 2 and a

single inner code or cascaded codes with m 2 > 2 which asymptotically meet the

Varshamov-Gilbert bound.

3. Probabilities of Correct Decoding, Incorrect Decoding and Decoding
Failure for a Frame

In this section, we analyze the inner code decoding. We assume that the

channel is a binary symmetric channel with bit-error-rate E <1/2. Let P(1)
C

be the probability tht a decoded segment is error-free. A decoded segment is

error-free if and only if the corresponding received frame contains t  or

fewer errors. Thus

-6-



Pcl) = I (

t l n 

i )
E l (1-,)

n

 1

-i

(14)1
a0

Let Pit ) be the probability of incorrect decoding for a frame. This is

actually the probability of an error pattern of X 1+1 or more errors whose

syndrome corresponds to a correctable error pattern of t 1 or fewer errors.

Let P (1) be the probability of a frame erasure, and let Pet ) be the probabi-

lity that a LIA operation is performed on a frame. Let P er ) be the probability

that a decoded segment with or without a mark contains errors. Then

P (1)	 (1) + P (1) + P (1)

	

+ P	 1C	 is	 es	 et	 (15)
and	

P (1) = P (1) + P (1) .	er	 is	 ek	
(16)

Note that P (1) + P ic ) is the probability that a received frame is decoded

successfully, and P (1) + P (1) represents the probability of a decoding
es	 ek

failure.

Let Ai l) and Bi t) be the numbers of codewords of weight i in the

inner code C l and its dual code C1 respectively. Let W^ i) ( n) denote the

number binary n -tuples with weight j which are at a Hamming distance s from a

given binary n-tuple with weight i. The generating function for W^ 1s(n) [12]

is

nC nn
L	 L W( 1) (n)X 3Y s = (1+XY)

n-1
(X+Y) 1 	(17)

J -0 s=0 j's

It was proved by MacWilliams [12) that

P (1) + P ic ) 	 I All) L	 L W (1)s
( nl ) e 3 (1-E)

nl J
	 (18)

i-0=0 s-0 j'

n 
	 t

= 2 -r1 1 Bi 1) (1-2e)
1
 1 Ps (i,nl )	 (19)

i=0	 s=0

Ii^
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where r l Mn 1  -k I is the number of parity-check bits of the inner code, and

Ps ( • , • ) is a Krawtchouk polynomial [7, p. 129 1 whose generating function is
n

Ps
 (i,n)Ys - (1+Y)n-1(1-Y)1

s=0	

(20)

Equations ( 18) and ( 19) are useful for computing P
c
(l) 

+ Pic ) if a formula

	

for A 	 B 	 known, or min(k l ,r l ) is small enough ( say less

than 25) to be feasible to compute A 	
Bil) 

by generating all the

1
codewords in C 1 or Cl.

In order to evaluate the probability P ( 1 ) , we need to specify the

condition, under which the LIA operation is performed. For the LIA-only

decoding, the LIA-operation is performed whenever an incorrectable error

pattern in the received frame is detected. In this case, the frame erasure

probability P (e1) is ' zero'. For the erasure-onl- decoding, it is obvious that

P (1) = 0. Now we consider the following case. Let d = 2t +2. Suppose

	

eR	 1	 1

that t l is odd (or even), and the LIA-operation is performed whenever an

incorrectable error pattern with even (or odd) number of errors is detected.

Erasure-operation is performed otherwise. For odd t l , we have

_	 n	 t

	

Pek ) 	E1 (1-E) nl , R
	

A 	 (nd	 (21)

even 3	 i=0	 s=0 JJJJJ 

j < n 

n	 t
2 -1

{1 + ( 1 -2E) nl - 2-il	 Bi l) [(1-2E) i + (1-2E)nl-iJ c 
Ps(i,nl) }.	 (22)

i-0	 S=O

(See Appendix A for a derivation of (22). For even t l , we have

n	 t

	

P 	 E3(1 -E)nl-3[(nl) -	 A(1)	 WW (n )) , (23)

	

ek	
odd j	 3	 i=0 i s=0 3 ' s 1

j < nl

n	 -r n 	 n -i t 
2 -1 {1 - (1-2E) 1 - 2 1 1 Bi l) [(1-2E) 1 - (1-2E) 1 j I PS(i,n1) }	 (24)

i=0	 s=0

(See Appendix A for a derivation of (24)).

i

s

3	 ^
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(1)	 (1)	 (1)	
P( 

1)	 (1)if PeR (or Pes ) is known, then Pes (or Pe z ) and Per	 can

be computed from (14) to ( 15) and (18) (or (19);.

4. Detail Error Probabilities for a Decoded Se qment with no Mark

For 0 4 w ^ m l, let P (1) be the probability that the number of symbol (or

byte) errors in a decoded segment without a mark is w. It is clear that

P (1) . P(1)

and	 c	 e,0

m

P (l) = I P(1)	 (25)is	
w=1 e,w

To obtain the probability of a correct block decoding, we need to know P(1)
e,w

for O < w< m l . In this section we will derive a formula for Pelw.
asi
i	 For a binary n l -tuple v, we divide the first k l =m k  bits into m l Z-bit

bytes as shown in Figure 5. For 0 <  h <  ml , let i h be the weight of the

,.	 h-th Z-bit byte of v. Let im 
+1 

be the weight of the last r l =n 1 -k 1  bits.
1

Then the (ml+l)-tuple, (il,i2,..•,im +1), is called the weight structure of v.
1

Suppose that a frame u is transmitted and an error pattern a with weight

structure (j i , j2 '" .tr im 1 
+1.) occurs. The probability of occurrence of a is

M +1
J

P(e) = (1-0

	

	 n(lEE) h	 (26)
h=1 

Suppose that there is a codeword v in C 1 which is at a distance t  or less

from e. Since the minimum distance of C 1 is assumed to be greater than 2t1,

such a code v in C 1 is uniquely determined. Then the inner code decoder

assumes that the frame u+v was sent, and the error pattern a+v occurred. The

decoded segment is the first k l -bits of u+v. If v is a nonzero codeword,

the decoding is incorrect, and the first k 1 bits of v represent the errors

introduced by the inner code decoder. If there is no such codeword v in C1.

F	 then the inner code decoder performs either the LIA-operation or the erasure-

ti
operation. Conversely, for a codeword v in C whose weight structure is

(i1'i2'.. .'lm 
+1) there are

t
-9-



ml (i )	 (i	 )
n W. h
	

(R) • W , ml+ l	 (r )	 (27)

h=1 ^h' sh	 ImI+1'sm1+1 l

error patterns e's with weight structure 
(j l' j 2' " '' jm1 

+1) such that the

weight structure of v+e is (sl,s2,...,sm1+1). Let 
Ail'i2,...,im +1 be the

1
number of codewords in C 1 with weight structure (il,i2,...,im +1)• For

1
0 < w < m l , let

I
w	

(( i
1 

,i 2
#
	

m1+1	 h
....i	 ): 0<i <k for 1<h<m 1 , 0<i m1+1 <r 

1
, and

— —	 — —	 —	 — 

exactly w components of (i l ,i 2 , ..,lm 
+1) are nonzero}	 (28)

1
Then, P (l) is given below:

e,w
r

(1)	 k	 k	 1

PA
=

i	 e,w	 ^	 i ,i ,...,i	
^...	 L

	(i ,i ,...	 m +1 j =0 j =0 j	 =0
1 2	 m1+1 w	 1	 1	 ml	 m1+1

ml (i )	 (im +1 )	n ml
11 W. h	 (R) w. 1	 (r ) (1-C) 1 11 ( C ) h

(sl,s2,...,sm +1)CSt h=1 ^h' sh	 ,ml+l,sm1+1 1	 h=l 1-e

1	 1
(29)

where

Stl = ( ( s l , s 2 , ... , sml+1) :0 < s h < Z„ for 1 < h < m l , 0 < sml+1 ` rl

m1+1

	

and	 I	 s  < t  }	 (20)
h=1

The formula given by (29) is useful if either (1) the dimension of C l , kl,

is small enough (say k l <25) to be feasible to compute the detail weight

distribution, iAi ,i',...,i	 }, by generating all the codewords in C l , or
1 2	 m1+1

1
(2) the dimension of C 1 , r l,is small enough to be feasible to compute the

1
detail weight distribution of C 1 a .^; the number of elements in Iw, W,

'	 is small enough to be feasible to enumerate all the elements in I  and

compute iAi ,i ,...,i 	 } by using the generalized MacWilliams' Identity
1 2	 m1+1

[7).

-10-	 ^`



Next we will express the probability P e
l W in terms of the detail weight 	 +

1	 `
distribution of the dual code C 1 of C l . Let H be a subset of { 1,2....,m}.

Let P (1) (H) be the probability that for hE H, the h-th Z-bit byte of a
e

decoded segment is error -free. Let H be the complement of H in 1 1,2, ...,m}.

Define the following set:

I(H) - { (i l , i 2 1 . . . , i m +1) 	 i.h `0 for h E H, 0 < i
h 

<Z for h c H and
1

0 < iml +1 < r  } (31)

Then, we have that

`D.1)(H)	 G
Ail)1	 CC	

rl	

cc... 
C	 Z

,

1	 L
im141 ) E I(H)	 1'	 2	 M1+1	 3 1 -a 32,1-0 Am

	

-0	 L Sti

(lh 1

[hn'l

(im1^I)	 ^ .1 j
(32)

jh'^h

(R) w 
j 2,^i1' 82,1 i1	 1 [h1n-1

t

Define
i

s

Qs (i,n,m,Y)	 Y3 (j?Ps-j(i,n) (33)	 i	 1

j-0 i

t

Qt(i,n,m,'I)	
w	

Qs(i,n,m.Y) (34)

S=O

It follows from	 (20) and	 (33)	 that i

n+m
(i+YY)m(l +y) n-i (1	 )	 I	 Q5 (i,n,m,Y) Y s . (36)

s=0
a

1
Let Bi be the number of codewords in C 1 with weight structure

,i
1	 2 r ""

i 
m1+1

(il,i21 ... ,im +1 ). Then we have Lemma 1.
1

Lemma 1.

p
(H) - Z -rl	 •••	 Z	

sll)1	
[ ii (1-2E)lhl(1-2E) 0 _L)

i I wo	 iml-o i*1.I-V 1' 2 ...... W I- 1 hEH

1 hEM
	 (36)

where IHI denotes the num 'aer of elements in H.

-11-
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Proof: See Appendix B. 	 AA

For 0< s <ml , let U s be the sum of Pe l) (H) where H is taken over all the

subsets of t1,2,...,m1; with s elements. Define

.+1	 Rs
Us (i l li 2 1	 ' lm +1; E) _	 [ 1I - (1-2E)	 )(1-2E)	 1	 (1-E)

1	 Hc_{1,2,...,m1} hEH
IHI = s

• Qt ( ^- ih ,nl-ks ' zS,E/l- E) 	 (37)

1 hEH

In the sum Us , error patterns with m l -s-1 or less symbol (or bvte) errors in a

decoded segment are counted more than once. In fact,

U = P (1)	 + ( s+1 )p (1)	 + ( s+2 )
P (1)	 + ... + ( ml )P(1)

s	 e,ml-s	 1	 e,ml-s-1	 2	 e,m1 -s-2	 ml-s e,0

(38)

Using the principle of inclusion and exclusion [13], we have that

r	
CC
J	 ((m -j+h

€	 P	 (-l)helj	 L	 \ 1 h ) Um -j+h	
(39)

h=0	 1

For 0 < j < ml , define

J	
h 

ml-j+h	
(i ,i ,...,i	 ;E)	 (40)

T.(i1,i2,...,im1+1;E) = h=0(-1) C h ) Um1-3+h 1 2
	 m1+1

J

Then it follows from (36) to (40) that we have

Theorem 1:

	-r 
C
R	

CQ
	 R	

rl

	

P (1 ) = 2 1 L	 L ...	 B(1).	 T.(i ,i 

e ' J	 it=0 i 2=0	 im =0 im +1=0 i
1 ,i 2 ,...,im1+1 J 1 2	 m1+1

1	 1	 (41)

(1)
It is feasible to obtain the detail weight distribution 

{Bi 	 ,...,i	 }
1	 1 2	 m1+1

by generati , ►g all the codewords in C 1 for relatively small r l , say less

than 25. Note that the number of terms to be added in the right-hand side of

m
(37) is ( s ), and therefore the number of terms to be added or subtracted in

m
the right-hand side of (39) is at most 2 1 . For small m l , Tj(il,i2,...,

im1+1; E) can be easily computed and added eor each codeword generated. If the

-12-



^e

1
p_	 dual code of C' 	 C1 contains the all-one vector, then 

Pell 
can be computed

by generating every codeword in the even -weight subcode and using

Tj (lip i21 ... ,im1+1; e) + Tj(k-ilOk-i2,...,^-iml,rl-1m1+l;e)

instead of 
Tj(il'i21"" 1 +1'e)'

1
For Z= 1, the outer code is a binary code. In this case, the formula

given by (41) is not easy to evaluate since m l is relatively large. For

x =1, let 
Ail)i 

be the number of codewords in C 1 whose weight in the first
1 2

k  bits is i t and weight in the last r l bits is i 2 . Then

(l)	 rl	 kCl	 r 
	 C	

)	 (i2)	 J1+j2	
n 

j j
P	 = L A	 L	 L	 L	

W•(i 
1 (k )W.	 (r ) E	 ( 1-6 1 l 2

)
e,11 i

2=0 1 1' 12 j1=0 j 2=0 (s i ts 
2 
)CSt 31's1 

1 
32's2 

l

1
(42)

where

{(slI s2 ):	 0 < sl	< kl , 0 < s 2 < rl	and 0 < sl + s2 < tl } (43)Stl =

Let B( l) be the number of codewords in the dual code of C	 whose weight
1

in
11 , 1 2

the first
k 
	 bits is it and weight in the last rl bit is i 2 .	 Define

Q , (i,n,h,m,y)	 =
s	 m
C p	 (inn)	 c W(h)

(m)I i (44)
s u=O 

s-u	
i=O 7,u

t

Qs( i .n, h , m ,Y)	 _ I Qs(i,n,h.m,Y) (45)
S=O

Note that Q s (i,n,m,Y) = Qs(i,n,O,m,Y). It follows from (17), (20) and (44)

that
n+m

(1+-,(Y)m-h(Y+Y)h(1+Y)n-i(1- Y)1 =	 Q' (i,n,h,m,Y)Y s 	(46)
S=O

Then we have Theorem 2.

Theorem 2: For Q = 1,

k kl rl	 h

Peli = 2-r`(1-E ) 
1 1
	 1 

Bhl)h 
(1-2e) 

2 
Pi (hl ,kl )Qt (h2'rl,il,kl,F_/l- e).

1	 h1=0 h 2=0 1 2	 1	 1
(47)

-13-



Proof: See Appendix C.

For k  > r l , it is more convenient to use (47) than (42) to evaluate Pe,i .
1

5. Detail Error Probabilitv for a Marked Seqment

In this section we will evaluate th.: probability of symbo:= errors in a

marked segment. Let P (1) be the probability that the number of erroneous
ek,w

symbols in a marked segment is w. Then

ml

	

Pe Q) = S Pe)w	
(48)

w=1

We first consider the LIA-only decoding. Define

Jw = {(j1.J2,...,jml+l): 0<jh<Q for 0<h<ml, 0<jm1+1<r1

and there are exactly w nonzero components =n (j1'i2'...,jm+1)}

(49)

Then it follows from the definition of P e(1̂ ) w that

( 
m 

l	
k- 9.w	 k	 R

Pek,w - \ w/ [1- (1-6)
1
	-	 I ...

	

i1=0	 im,=0

	

r 
	

(1)	 ml	 (ih )	 jh	 ,2-jh

	

I	 A.	 I	 W.	 (Z)E	 ( 1 -e)
l
m +1=0 il,i2,...,im1+1 J

w St I=1 3h'sh

	

1	 1

	W.	 (r )^ 1	 (1-	 llm1+l)	 ,m+1	 e)r1-]m+l
	 (50)

3m1+1'sm1+1 1

where 
Stl 

is defined by (30). The first term of (50) represents the probabi-

lity that there are exactly w erroneous symbn i - ,,r bytes) in the first ml

bytes of a received frame, and the second term is the probability that the

syndrome of these symbol errors corresponds to an error pattern of t, or fewer

errors.,

-14-
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Define

R (i . i , ... , i	 : e) _	 I	 11 { (1-2E) lh - (1-E) ^} 	 (51)
w 1 2	

ml 	 H e fl, 2,...,m1 } hEH
JHJ =w

where the summation is taken over all the subsets of {1,2,...,m11 with exactly

w elements. Then P (1) can be expressed in terms of the detail weight distri-
ek,w

bution of the dual code of C1.

Theorem 3:

Pei) w = ( 1 - e) 
k 

1
- kw 

l( 
m w) (1- ( 1 - E)	

k]w -

	

l	 r

2	 L i1,i2	 m,...,i +1 (1-2c)

	

i1=0	 im =0 im +1 -0	1
1	 1

m1+1

	• Pt (	 ih-l,n1-1)Rw(il,i2,...,im ;E)^.	 (52)
1 h=1	 1

	

Proof: See Appendix D.	 AA

m +1 For It= 1, Rw (i 1 ,i 2 ,...,iml ;E) can be simplified as follows. Let i denote

1
ih . Since O< i

h 
<1 for 1 < h < m1,

h=1

( 1 -2E) ri - (1-0 _ (-1)
1-h
 E.

Consequently, we have that

Rw (i1 ,i 2 ,...,im ;E) = Ew I (-1)h(h)( w h	
(53)

1	 h=0

Using the definition of Krawtchouk polynomial [7, p. 1511, we have that

Rw ( i 1 , 121 .... im ;E) = EwPw (i,k) .	 (54)

Define

I . = {(i1,i2'...,im ): 0<ih <1 for 1<h<m1 =k 1 and
^	 1

m1

j i = j} .	 (55)
h=1 h

I "	 -15-



Then

B(1) 	 B.
j1,j2	

I.	
11'i2....,im 1j2

) 1 	1

	 (56)

It follows from (52), (54) and (56) that we have Corollary 4 [see Appendix E).

Corollary 4: For Z= 1,

	

P (1) = Ew 
(1-E) kl-w^(k1) - 2-rl	

E) 12ek,w	 w	 i =0 i =0 11'12
1	 2

• pt (i1+i 2-1,n1-1)Pw (i 1 ,k1 )1 .	 (57)
1	 I

Now we consider the decoding in which both LIA and erasure operations are

performed. Suppose that the LIA-operatioi. is performed whenever an incorrect-

able error pattern with even (or odd) weight is detected. In a similar way

to t-h-t for deriving (22), formula (54) and (57) can be modified. For R,= 1,

\

r1

Pe^,)w = Ew(1- E) 
k 

1 K(

w k 
w I[1 ± (1-2 E) 

r

 
1]/2

r1 	
1-

i 	 r i
-2-1 

k	

/

^l	 Bil)i [(1-2E) 2 ± (1 - 2E)	
2J

i 1=0 i 2=0	 1 2

. pt
1	 I

( i I+i2-l,n1 -1)Pw (i 1 ,k1 )1 ,	 (58)

where + (or -) is taken for even w, and - (or +) is taken for odd w.

An important question is which provides better performance, `the LIA-only

decoding," or "the erasure-only decoding." LIA-only operation may be reasonable

only if

	

G	 P(1)	 <P(1)

w=tm1/2)
+1 

ek,w	 et

If

(59)

F

r,.

A

ml

+1 ek,w	 c	 is
w=[m1/2J 

-16-



where Pe(1) w is computed under the assumption that the inner code decoding is

a LIA-only decoding, then a LIA-only decoding provides better performance than

the erasure-only decoding.

6. The Probability of a Correct Block Decoding

In this section, we will evaluate the probability that a block of m segments

will be decoded correctly by the outer code decoder. Let P e (j,i,h) denote the

probability that there are h segments with marks and j symbol errors in a set

consisting of i decoded segments without marks and h segments with marks. It

follows from the definition of P e (j,i,h) that

P 01110) = P (1) 	 for 0 < j <m ,	 (61)
1

Pe ( j .0.1) = P(1)j	
for 0 < j <ml	(62)

Pe 01 1 10) = Pe ( j , 0 . 1 ) = 0	 for j >ml	(63)

and
min (j,ml)

Pe (i, j , h ) =	 Pe(j-w,i-l,h)Pe(1) + Pe (j-w,i,h-1) p(l) w	(64)
w=0

From (61) to (64), Pe (j,i,h) can be computed readily.

The probability that, after the inner code decodinq of a block of m 2 frames,

there exist i erased segments, h marked segments, and j symbol errors in the

marked and unmarked (or decoded) segments is

Cm2 / [P (1) l i Pe (j ,m
2 -i-h,h)	 (65)

Therefore, the probability of correct decoding of a block denoted P c , is

given by

Tes m	 Te ? (i) t 2 (i)
`	 .

Pc = 1 ( 2 J[P (1) j =	 1 Pe (j,m2-i-h, h)
i esi=0	 h=0	 j=0

-17-

Let P
es	 er

and P denote the L'rcbabilities of a block erasure and an inc

decoding respectively. Then



(67)P + P + P

	

c	
es	

er = 1

t	 It follows from definitions that the following equality and bounds hold:

Tes m	
iT e (i ) n2-m1i

PeS+Per	 L ( i )[Pes)I	 L	
c
L	 Pe(j,m2-i-h,h)

c	 i=0	 h=0	 j=t2(i)+1

+	 m2 1 (m2-i
 )[P(l)]h(P(l)+P(1))m2-i-h

h=T (i)+1\ h	
eR	 c	 is

eR

+ i2 / [P
(1) 1 i (1-P (1) ) m2 i	 (68)

i=T +1\es
	 es

es

es m	 TeR(iI
	 n2-mli

2)[P (1) ) 1	 P (j,m -i-h,h)	 (69)Per < i-0 i	 es	
h=0 j=d2-mli-t2(i) 

i

s
>	 (m2)[P(eS)]1(1-

Pes))m2
-i

Pes
i=T	 +1

es

Teccs	 m TecR(i)
d2-mli- -1Ct2(i)

+	 L	 ( i )[Pes))1 L L	 Pe(j,m2-i-h,h)
i=0 h=0 j =t2 (i) +1

+	 m 2
-i 
	

(m

2-i [P(1jIh(P(1)+p(1)) m2 -i-h	 (70)

h= eR ()
T i +

1 \ h ) e	 c	 is

a-	 where
d2-mli-t2(i)-1

Pe (j,m2 -i-h,h) = 0
j=t2(i)+1

if d2-ml i-1 =2t 2(i).

If every error pattern of symbol-weight equal to or greater than

d2-mli-t 2 (i) causes an incorrect block decoding,then the equality holds in

(69). We consider the number of those error patterns of the smallest symbol-

weight w =d 2 -M 1 i-t 2 (i)  which lead to an incorrect decoding. Suppose that C 2 is

a maximum-distance-separable code over GF(2 R ). Let L be a set of w symbol posi-

tions outside the erased segments such that every marked segment has a symbol

-18-



position in L. The number of codewords in C 2 of weight j >d 2  whose nonzero

positions are specified is [6, p. 711

j-d2	
h j )(2 

Z(j-h-d2+1)

I (-1) (h  
h-0

Let E(L) be the set of vectors of symbol-weight w which satisfies the following

conditions: (1) L is the set of nonzero symbol positions of each vector, and

(2) there exists a codeword in C 2 which is at a distance (outside the erased

segments) t 2 (i) or less from each vector. If such a codeword exists, then

the codeword is unique, has weight d 2 and has a nonzero symbol at every symbol

position in either L or an erased segment. The number of such codewords in

C2 is
n -m i-w
2 1	

(2 
k
-1)	 (71)

t 2 (i)

Therefore the number of error patterns in E(L) is

n2-mli-w\	
Z-1)
	 t2(i)+1

E(L) ^ =	 1 (2 -1) < (2 -1)	 /t2 W!	 (72)
t2 (i) )

The ratio of IE(L)I to the number of error patterns whose set of nonzero symbol

positions is L is	 7

n2-mli-w	
R 1-w	

Z mli+1-d2

t2 W	
Z_
 -2t2(i)

If any nonzero symbol error occurs with the same probability and Pe(w,m2-i-h,h)

is dominant in the summation of (69), then P is nearly equal to
R	 -2t2(i)	

er

(2 -1)	 /t2(i)! times of the right-hand side of (69). On the other hand,

if a symbol error with a small bit-weight is more likely than the symbol errors

with a larger bit-weight, then the right-hand side of (69) might be a tight

bound.

-19-	 `+



No feasible procedure for computing Pea or Per has been devised except

for small k 2 k or (n2-k 2 )Q. The following simple bounds on PeS+Per and PeS are

useful for small bit-error rate E. We will consider an erasure-only decoding.

If there are symbol errors in a set of decoded segments, then there are at

least (s/mll segments containing error symbols. Hence

n2 

11P	
(m2-i [pe^))fs/m1l	

(74)
1	 (^,me	 2

-i3O) < 
O s/m

J =2	 1l

It follows from (68) , (69) and (74) that

Tes 

\m2/ 

m2 -i	 ) i (1) f0(i)

Pes+Per	 L	 i	 (1))[Pe

(

s ) iPer )
i=0	 f0

+	 2 (m2
)
1P (1) l l (1-P (1) ) m2-i	 (75)

	

i=T +1 1	
es	 es

es

P	
< TCs (m2 m2-i IP(1);i (1)) f 1 (i) 	 (76)

er — 1=0 i f1(i) es	 er

where

f0(i) = I(t2(i)+1)/m1' and fl (i) = [(d2-m1 i-t2 (i))/m1 1 .

Suppose that dl >2t 1 +1.  In the right-hand sides of (72) (73), the product,

[P 
(1) ) i [P (1) ) fa(i)

es	 er

for a =0 or 1., is upper bounded by

1)	
f
a(1)

max x 
i 

(1-P (	 - x)	 (77)
x c

under the constraint,

I
-t. -1

1 ^1 \nl/ E1(1- E) n
1 -1 < x < 1-P (1)	 (78)c 

i = t1 +1 1

since d1-t1-1 n
	 n -i

es — _ = t 1+1 i

I

A

-20-
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a

and P (1) + P (1) = 1 - P (1) . Let LH denote the left-hand side of (78) . Then the
es	 er	 c

maximum of (77) occurs at x - LH for i (1-P
c
1) ) (i+f (X (i) ) < LH, and

x - i(1-P(1))/(i+fa(i)) otherwise. Similarly, in the second summation of (72),

P (1) is upperbound by 1-P (1) if 1-P M< i/m2 , otherwise Pe(1) is upperbounded

by i/m2 . The bounds derived from (75) and (76) in this way are w=ak for large

E, however they are useful for a quick estimation of the system reliability

because they do not depend on the detail weight structure of the inner and outer

codes, C1 and C2.

7. Interleaving

_a this section, we investigate how interleaving affects the error perfor-

mance of the cascaded scheme. Suppose that the outer code is interleaved in

such a way that each symbol (or Z-bit byte) in a segment is from a different

outer code codeword as shown in Figure 6. Thus, the interleaving depth (or

degree) is ml . The code array consists of n 2 frames and is transmitted column

by column. As for the decoding, after n 2 received frames have been decoded,

the n2 decoded segments are arranged into an array as shown in Figure 7. Then

each row is decoded based on the outer code C 2 . Note that buffers are needed

to store code arrays at both transmitter and receiver.

For 1 <u < ml , let Pe (u) be the probability that the u-th symbol of a

decoded segment with no mark is erroneous. If the inner code C 1 is quasi-

cyclic by every s-bit shift where s divides k, then P e (u) is independent of u.

It follows from the definition that

P (u) = P (1) + P.( 1) - P (1) ({u})	 (79)e	 c	 is	 e

where P (1) ({u}) is given by (31) or (35). Hence Pe (u) can be computed from

either (18) and (31) or (19) and (35).

Let PeZ (u) be the probability that the u-th symbol of a marked segment is

erroneous. For simplicity, the LIA-only decoding is cons' !red. Define

-21-	 ^ ,



J(u)iOl,12, ... Jm 
1 +1). 0<jh <k for 1 < h < ml , j u j 0 and

0 < m1 
+l <rl}

Modifying the derivation of (50) or (52), we have that

r

	

1	
l

	

Pek (u) - 1 - ( 1-e) -	 ...	 A	 ^	 ccc

^ i = 0 i 
L
=0 i ^ 1 1 ,12' ' ' 1m +1 J(U) S

L
1	 ml	 m1+1	 1	 tl

[ II 

W ( 1h) (k) E]h ( 1 -E) 
^h • 

W 
(1m1 +1) 	

(r )c ( 1 -E) rl-]m1+1

	

h=l ih'sh	
]m1+l'sm1+1 1	 (80)

and

-r k	 k	 rl

Pek (u) = 1 - ( 1 -E) k - 2 1 ^	 ...	 ^	 ^	 Bi l ,i ,...,i
it=0	 im =0 im +1=0 1 2	 m1+1

	

1	 1

m1+1 
	

m1+1

•	 ]] (1-2 E) h fl- (1-E)k(1-2E) u l Pt ( I ih-1, nl -1)	 (81)
h= 1	 1 h=1

[See Appendix F for the derivation of (81)].

Since the outer code is interleaved by a depth of m l , the u-th symbol of

every segment is from the u-th outer code codeword for 1 < . 0 <m 1*  Let Pc(u),

Pes (u) and Per (u) denote the probabilities of a correct decoding, an erasure

and an incorrect decoding for the u-th outer code codeword respectively. Then

formulas or bounds for Pc (u), Pes (u) and Peru) can be derived from those for

it, Pc , 
PeS 

or Per by the following replacements: m l i -+i, m2 -0-n 2 and

^

	

h
P e (j,m2-i-h,h) i	 \n h 1) L	 \n2 s

-h` \jh )s\ 
[Pe (u) ) s

j	 h	 j s=0	 ) 

1
-P(1)-P(1)-P (u)^n2-i-h-s

	 j-s	 (1)	 h-j+s
es	 ek	 a	 [Pek(u))

	 1P 
(1)

-Pek(u)]

The restrictions on thresholds, TeS, Tek(i) and t l (i) can be relaxed as follows:

TeS < d2 - 1,	 Te. (i) < (d 2 -1-i) / 2 ,	 t2 (i) ^ (d2-1-i)

-22-`



B. Example Schemes

In the following we consider two example schemes using cascaded coding

°jr error control. In the first example scheme, the inner code is a triple-

error-correcting and quadruple-error detecting (59,40) code which is o!.)tained

by deleting 4 information bits from the distance-8 (63,44) BCH code. The gen-

erator polynomial of this code is

9 1
 (X) - (1+X)(1+X+X6)(1+X+X2+X4+X6)(1+X+X2+X5+X6)

Since the code contains only even-weight codewords, it is capable of detecting

all the error patterns of weight 4 and all the error patterns of odd weight

greater than 4. Moreover, the code is majority-logic decodable in two steps

(1), and hence the decoct-r can be easily implemented. The outer code is the

(255,223) Reed-Solomon (RS) code with symbols from GF(2 8 ) and minimum dis-

tance d2 =33. This outer code is capable of correcting any combination of i

symt,ol erasures and t 2 (i) symbol errors with i+2t 2 (i) < 33. For the first

example scheme, the important parameters are: n 2 = 255, k 2 =223, n1 = ^,

k1 = 40, Z = 8, ml = 5, m2 = 51, t,= 3 and d2 = 33. Suppose that the erasure-only

decoding is adopted. Then, T eS=6 and t 2 (i) = ((32-5i)/2). The error per-

formance of this example scheme for bit-error -rate E=10- 
2  

and 10 -3 is

given in Table 1. The bounds on P eS+P er and Per are computed based on

the weak bounds given by Eq. (75) and Eq. (76). Even from these weak bounds,

we see that this scheme provides extremely high reliability. Tighter bounds

on error performance based on ( 68) and (69) are being computed for inner code

decoding with all three operations. Computation results will be tabulated in

our next report. We believe that high reli;^:,ility can be achieved by using a

less powerful RS code of length 255 as the outer code. We are also computing

the error performance of the scheme using interleaving.

-23-
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For the second example scheme, the inner code is a double-error-

correcting and triple-orror-detecting (53,40) code which is obtained from the

distance-6 (63,50) BCH code by deleting 10 information bits. Besides

detecting all triple errors, the code is also capable of detecting a'1 the

error patterns of odd weight greater than 3. The generator of the code is (1),

g(X) - (1+X)(1+%+X6)(1+X+X2+X4+X6)

The outer code is the same as the one used in the first example scheme. The

error performance of this second example scheme is still being evaluated.

However, if we use erasure-only decoding with Tea -3, t 2 (0) - t 2 (1) _t 
2 
(2)  -

t 2 (3) -0, then for bit-error-rate c- 10- 2 ,  the block error probability Per

is upper bounded by 2.13 x10-12.

Table 1 Error performance of the first example scheme

=10-2 =10-3E I 	 E

P (1) 0.289 x 10 -2 0.4348 x 10-6
es

P 
(11,

0.4491 x 10-4 0.7246 x 10-9
er

P	 +P < 0.265 x 10 -8 < 0.1664 x 10-27
es	 es — —

P < 0.2183 x 10 -8 < 0.1664 x 10-27
er — —

9. Conclusion

In tnis report, we 1.':v= investigated a cascaded coding scheme for error

control. The scheme employs a combination of hard and soft decisions in

decoding. Error performance is analyzed. If the inner and outer codes are

chosen properly, extremely high reliability can be achieved even for a high

channel bit-error-rate. Two example schemes are being studied. Both use

shortened BCH codes as the inner codes. One code has a rate of 2/3, and is

-24-
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majority-logic d*codable. Hence the decoding can be implemented easily. The

other code has a rate of about 4/51 and since it has only 13 parity-check

bits, it can be decoded with a table-look-up decoding. Based on our prelim-

inary computation results, both schemes provide high reliability even for a

h.-,h bit-error-rate, say E -10-2 . They seem to be quite suitable for sat*l-

lit* down-link error control. Since the inner codes have rates greater than

1/2, the two example schemes definitely have advantage in bandwidth over the

usual concatenated coding scheme using a rate 1/2 convolutional code as the

inner code and a RS code as the outer code. Further evaluation of these two

example schemes will be reported in our next technical report to NASA.
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APPENDIX A

Derivation of Expression (22) and (24)

It follows from (17) and MacWilliams' identity [11) that

I A(1) L	 L W( i) (nl )XlY i _	 nl 1I Ail) ( 1+XY)(X+Y)1

i=0 i j=0 S=O ]is	 i=0
n

= 2-rl 

I B11)(1+X)nl-1(1-X)1(1+Y)nl-1(1
i=0	 (A-1)

Therefore, we have that

n 
	

(1)	 C W U) (n )X Y s
L

i 0 
Al 

even j 
s=0 j,s 1

(or odd j)
n

- 2-r1-1 tBi
l)

{(l+X)
n- 1

(1-X) 1 t (1-X)n-i}(1+Y)n1- 1(1-Y)1

i

where the "+" and "-" signs of the second term in the bracket for even and

odd j respectively. It follows from (20) and (A-2) that

nCl	
C	 tCC1

L (1j	 L	 L W(
1) xiYj

i=0 1
	 even j s=0 3's

(or odd j)

t	 t
2-r1-1 c B(1+X)

nl- 1 (1-X) 1 ± ( 1-X)nl- 
1 

(1+x) 	 (A-3)

i==O	 s O

Substituting E/(1-E) for X and 1 for Y and multiplying both sides of (A-3) by

n
( 1-E) 1 , we obtain the second term of (22) for even j and the second term of

(24) for odd j.

(A-2)

A-1



Proof of Lemma 1

Let IHI = U. It follows from (17) that

	

(1,	 ml	
cck
	 R	 (ih)	

jh s 
(, , i  	 i	 ) E I (H) Ail' i

21 ... 1 
m +1 n
	 L	 W	 M x Y

1 2 1 " ' P ^n1 +1	 1	 h=1	 jjh=0 sh=0 h'sh

	

(im1+1 )	]m +1 sm +1

	

W.	
,s
	 (r )x1 Y 1

3m1+1-1 sml+1=1 m1+1 m1+1

	

m1+1	 m1+1

A(1)	
nl 

CC 

h=l lh

	

h=l
lh

_	 i ,i  	 i	 ( 1+XY)	 (X+Y)
(1 1' 1 2' . ' lm +1) tI(H) 1 2""' m1+1

1	 m1+1	 m1C+1

L

	

n l -ku- I 
ih 	 ih

h=1	 h=1
= (1+XY) X-u 	I	 A(1)	 (1+XY)	 (X+Y)

(il ri 2 1im +1) 
EI(H) 

11'i2,...'im1+1

1

The set of codewords in C1 whose weight in the h-th Z-bit byte is zero for every

h in H is a linear (nl' kl-Zu) subcode of C 1 . Let C1 (H) denote the linear

(n 
1
-u,kl-Zu) code obtained from the above subcode by deleting the u zero 2-bit

bytes for the u positions in H. Let A{ 1) (H) denote the number of codewords of
1

weight i in C 1 (h). Then

A^ 1) (H) =	 L	 A.	 (B-2)1 (i1 12'...'im +1)E	 1I(H) 1'12'*"'im1+1
1

m1+1

ih= i
h=1

The right-hand side of (B-1) can be rewritten as

r, - ku

	

1tu 1	 (1)	 nl-^u-i	 i
(1+XY)	 ^ Ai (H)(1+XY)	 (X+Y)	 (B-3)

i=0

Let B( 1) (H) be the number of codewords of weight i in the dual code of C
1 (F).

Then, by MacWilliams' identity [7], (B-3) can be written as

(B-1)

© n

B-1



_	 --.-.	 _ , _ _	 yam-.. s-s-. ^+R •,.-.-_	 ^	 a ^{ •-

i

1

-r	
nl-Ru	

n -Ru- i 	 n Ru- i	 i
2 1(1+XY) Ru ^	 Bil) (H) (1+X) 1- (1-X)1 (1+Y) 1 -	(1-Y)

i=0

It follows from (35), (B-1) and (B-4) that

	

ml	 R	 R	 (i )	 j sc	 A '	 ^	 c C W. h M X hY hi

(il • i2" "' im +1) E I (H) 1' 12, ... , im1+1 h=1 j hL=O sh=0 3h'sh
1

rl	 rl	 (lm +l ) 	3ml+l sml+1
W. 1	 (r )X	 Y

	

7m +l	
m=0 s +1-0 im1+1' sm1+1 1

1	 1

-r nl
-Ru	

r -Ru-i	 i n 	 s
= 2 1 1 B ^ 1) (H) (1+X) 1	 ( 1-X)	 C	 Qs (i, r l -Ru, Ru,X) Y

	

1	 G
i=0	 s=0

Taking the terms on both sides of (B-5) for which the degree of Y is t 1 or less

and substituting "1" for Y, we have that

r

L	 Ai1,i ,...,i	 L	 G	 ... G	 G
(il,i2,...,im1+1) EI(H) 1 2	 m1+1 j l=0 jm1=0 7m1+1=0 (sl,s2 .... ,Sm1+1 

)ES tI

r.1+1

ml( )	 (lm +1)	
1 3h

II W . 
ih ( 

R)	 W . 1	 (r ) X h
=1

h=1 3h' sh	 jm1+1'sm1+1 1

-ri 
nl-Ru	

n1- Ru-i	
-

2	
B 

(1) 
(H) (1+X)	 ( 1 -X)

i
 Qt (i,n1-Ru,Ru,X)	 (B-6)

i=0	 1

Substituting E/(1 -E) for X and multiplying the left-hand side of (B-6) by
n

( 1-E) 1 , we obtain the right-hand side of (32). Therefore we have that

-r nl-Ru

Pet) (H) = 2 1 1	 B ( l) (H) (1-2E)1(1 -E) Ru Q
t (i,nl -Ru, Ru, E/ ( 1- E)) .	 (B-7)

	i=0	 1

Since a generator matrix of the dual code of C 1 (H) can be obtained from a

parity-check matrix of C 1 by deletin•j all columns corresponding to the h-th

R-bit positions for h EH, the following relation holds.

B (1) (H) =	 I	 B(1)(B-8)
1	 I1(H) ll.i2.....im1+1

(B-4)

(B-5)

B-2



J

... 
im1 f1 ) :

0< ih < i for 1 < h < ml , 0 < lml+1 < r1

L ih = 1}.
h EH

(36) of Lemma 1 follows from (B-7) and (B-8).

B-3



It follows from (17) that

r1 (1)	 kl	
kl (i

l )	 j1 sl	 r1	 r1 (i2 )	 32 s2
A,	 W,	 (k )X	 Y	 W.	 (r )X Y

i 2=0 1 1' 1 2 j l=0 s l=0 ^1' s1 1	 j1=0 s 2=0 32's2 1

r

(1+XY) k1-11 %X+Y) 11 1 
Ail)i 

(1+XY)r1-12(X+Y)12.

i 2=0	 1 2

By the generalized MacWilliams' identity (7, p. 147), we have

-r	 k1r``1
All) 1 = 2 1	 L	 G Bhl)h Pi (h 1 ,k1 )Pi (h2' r 1 ) .
1 2	 h1=0 h2=0 1 2	 1	 2

(C-1)

(C-2)

It follows from (20) that

r 
	

r -i	 i	 r -h	 h	 r -h	 h
I Pi (h2,r1)(1+XY) 

1 2
(X+Y) 2 = (1+X) 

1 2
(1-X) 2(1+Y) 1 

2
(1-Y) 2 .	 (C-3)

i2=0 2

It follows from (C-1) to (C-3) and (46) that

r
C
l -(1)	 (il)	 j  sl	 r

c
l 	r

C
l ( i2 )	 j2 s2

L Ai ^i [ L	
Wi l l s (kl )X Y ][ L	 L Wj 's 

( r )XY
i2=0 1	 il=0 s l=0	 1	 32=0 s 2=0 2 2

	k 	 r

	

2-r1 (1+XY)
k1-11

(X+Y) 11 I	 I i (l) P i (hl,kl)(1+X)r1-h2(1-X)h2
hl =0 h2=0 1' 2 1

r -h	 h
• (1+Y) 1 2 (1-Y) 2

k	 r	 n
2-rl	

C
G	 G Bhl)h P

i 	 (h l .k 1 )(1+X)
rl-h2

(1-X) h2 i Qs, (h2,rl,il,kl,X)Ys
h 1=0 h2=0	 1' 2	 1	 s=0

(C-4)

Taking the terms on both sides of (C-4) for which the degree of Y is t  or

less, substitnting E/(1-E) for X and 1 for Y and multiplying the both sides by
n

( 1-E) 1 , we obtain Eq. (47) from (42).

C-1



APPENDIX D

R . i	 Proof of Theorem 3

Let F(Xl ,X2 , ... ,Xm +1, Y) be defined as follows
1

F(X ,x ,...,x	 ,Y) _	 I ... I	 I	 A.1 2	 mi+1	
11=0 im -0 	 im +1=0 11,i2,...,im1+1

	

1	 1

m	
k	 k ()
	 3  sh	

c	 cc

It 1i
=0 jh=0 sh=0 ^h'sh	 ^Lj + 0 s	 =0

	

mi 1	 m1+1

s
(IM +1)	 ,m1+1 m1

+
1
J .

W] 1
m1+1'smi+1(r1)Xml+1 Y

(D-1)

It follows from (17) and generalized MacWilliams identity (7, p. 147) that

k	 k	 m
F(X ,x ,...,x	 . Y) =	 I ... I	 I	

A (1)	 1	 k-i
i i=0 im =0 im +1_0 1 1 , 1 2 ,..., iml+1 hIIl(1+XhY)

1	 1

• (}Ch +Y ) lh (1+X .	 Y ) r
l .^.ml+l (X ,

	

+Y) im1+1
i
mi+l	 lmi+l

= 2	 ...	 B	
k-i 	 1ht-ri	

(1)	
T( ( 1+Xh )	 h(1-Xh) l

	

YO=0 i m	 m +1=0 i	 =0 1111 2 . .. ' ' 1 1m +11h-1
J

1 
1	 1	 ml+l	 ml+1

_im	
n -	 I i

	

(1+Xm +1)r
	

+1

1	 1 (1-X +1 ) 1+1(1+Y) 
l h-1	 (1-Y) h=1 h

1	 ml

Let H be a subset of {1,2,3,...,m1) and 
FH,t1 (Xl'X2""' 

x 
mi 

+1'Y) be the sum

of the terms of F(X
i ,X2 1 ... Xm1+11 Y) for which the degree of Xh is nonzero for

h E H and is zero for h E{1,2,...,m1I-H, and the degree of Y is t 1 or less.

Using (20), and (D-2), we have that

-ri	
(k'	 ck
	 i

FH.I(Xi,X2,....xm +1'Y) = 2 	 L	 L	 Z	 B(1)
1	 ii=0 im1=0 im1+1=0 11'i2'." 'imi+1

(D-2)
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1 
Ps( C ih.n1)y

S=O	 h=1

(1-Xml+1)1m1+1,

rI x 

k-i	 i	 -im +•

• hEH` 1+ h)	 h (1-Xkj ) h -11 (1+Xm1+1):.I. 	 1

(D-3)

D-1



Let Fw't1(Xl,X2" "'Xm1+1Y) be defined as the sum of FFi't1(Xl,X2,...,Xm1+1,Y)

over all the subsets, H's, of (1,2,...,mj with exactly w elements. Then the

second term of (50) is equal to
n

-(1-E) 1 Fw't	 ,,...,,1)	 (D-4)
1

Using (D-3), the definition of R  given by (51) and the following identity

(7, p. 153):

tt

	

.IOPs(i,n) - Pt (i-l,n-1)	 (D-5)

Then (D-4) is equal to

-r	 k -fbw k	 k	 r 	 lm +1
-2 1 (1-E) 1	 i ...	 B (1)	 (1-2E)	 1

i =0 i	 i	 11' 2 1 "" M +1
1	 m1=0 m1+1=0	 1

m1+1
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L1 h=1	 1

FY
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APPENDIX E

Derivation of (57)

Let

	

kl
	 k 	 kl (i )	 j s	 r1	 rrrl

F(X l ,X 2 ,Y) _	 A(1)	 W. is (k )X 1
Y 1	

L	 L

	

it=0 1 2=0 11' 12 ] 1=0 s 1=0 ]1'l 1 1	 ]2=0 s2=0

( i 2 )	 ]2 s 

Wj 2 
F 2s 

( r1 ) X2 Y

It follows from (17), (20) and the generalized MacWilliams' identity [7, p. 1471

that

kl rl _	 k -i	 i	 r -i	 i

F (Xl .X 2 ,Y) _	 A.(1) i (1+X1 Y) 1 1 (X1+Y) 1 (1+X2 Y) 1 2 (X2
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+Y) 2
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2	 1	 1 Bi 
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	 L	 L Bi l ,i L	
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 1- 1 2

(1-X 2 ) 2
i1=0 i 2=0 1 2 j =0 ]	 -	 11

n 

[ IPs(i1+i2,n1)Y
S=O	

s] .

Let F j,t (Xl ,X20 Y) be the sum of the terms on the right-hand side of (E-1) for
1

which the degree of X1 is j  and the degree of Y is t 1 or less. Then, it follows

from (E-2) that

k	 r

	

j	 r -i	 i
F.	 (X ,X ,Y) = 2-r1
	

L	 L 
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P. (i ,k )X 1 (1+X ) 1 2 (1-X ) 2
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1 1 1 1	 2	 2
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By (56), we have that
k	 j	 k -j	 n

Pe Q) j	 j1/ E 1 ( 1 —E) 
1 1- (1

-E) 1 F j t (E/ ( 1 -E) E/ ( 1 -E) 1 )	 (E-4)

	

1	 1	 1 1

Thus (57) follows from (E-3) and (E-4).

(E-1)

(E-2)

E-1



F-1

Derivation of (8l)

Let Fu(Xl,X2, ... , Xm1+1 ,Y) be the sum of terms of F(Xl,X2,...,Xm1+1, Y)

defined in Appendix D for which the degree of X
u 

is nonzero and the degree of

Y is tl or less. Using (20) and (D-2), we have that

-r1	 k	 Jt	 r 
	

(1)
F.(X,X,...,X,Y) - 2	 ...	 1	 B.
1	 it=0	 im -0 im +1=0 
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s=0 s h=1	
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hOu
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im1+1

• (1+X)	 (1-X)	 (F-1)

The second term of (80) is equal to

n
- (1-E)

1Fu
(E/(1-E),E/(1-E),...,E/(1-E),1) .

Then (81) follows from (D-5).
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Figu;P 1 A cascaded coding system
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