

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

\' .

DEP ARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBAN.\, ILLINOIS 61808

TITLE

Research in the Design of High-Performance

Reconfigurable Systems

Fourth

Semiannual Status Report

April I, i 985 -- September 30, 1985

NASA Grant # NAG 5-377

(hASA-CR-176275) RESEAHCH IN THE DESIGM OF N86-i1897
HIGH-PERFORMANCE RECONFIGURABLE SYSTEMS
Seaiannual Status RepoI:t, 1 ApI:. - 30 Sep.
1985 (Illinois UniY., Orbana-Chaapaign.) Unclas
38 p HC lJ3/"1 101 CSCL 098 G3/61 28461

Project Personnel

Graduate Research Assistant

Scott D. McEw311

Gregory j. Smith

Andrew j. Spry

Principal Investigator

~~
D. L. Slotnick

,

I
i

_ _____ ~z;;::~::;:.:::::=~.-'--' ~~--n ... '.'~~ 4~_W .. & '''~ • ...-, ~~. '--'--'-~~ 'p-.r . --, y ,:T1-
I
,

-----,<-. -<----.,,-.'""-< ,,- -- -,.-.. • ->- ~- -... _- •• --"-~ ,-- ' '41 .,:

Table of Contents

1. Introduction and Summary 1

2. Control Levels of the RILAPSE... 2

3. Latest Bit Processor.. 6

3.1 Bit Processor Layout.. 6

3.2 Oueue Register and Scratch Pad Memory.. 10

... Richards' Method Update.. 13

,. Multiple Input Adders .. '" l'

Appendix: MPP Simulator Program11"ler'S Documentation......................... 21

-

~

I
I
,~ , ,

! .

'~~

"
I

,
'.

~!'I""'IIIIII""'Il"~r-"""I_""""""'I""IIIIi""---"'-~~.-'''F"'---~''''''''''-'''''-'-'-'''''''''''''''''''''''--'''''''''~ __ -'-~'''''''''-~

-~~'~~~~.-:.;~- ~~--
.. -.~ *» - .4#

1

t. 1.,roducUo.D. aa. Su •• ary.

The initial control and programming philosophies oC the RELAPSE are

discussed in ~'-" :tion 2. A block diagram showing the relationship of the Arithmetic

Units (coml'osed of Stages and Bit Processors), to the Functional Units, and other

components oC the RELAPSE is used to guide this discussion. The latest version oC the

Bit Processor design is presented in Section 3. Included in this section is a detailed

discussion of the Bit Processor's new scratch pad memory component. The section

also clarifies the usage oC the Bit Processor's proceSSing registers, and Input/Output

functions. The final deSign phase of the Arithmetic Unit is underway by a srudy of

the Proposed IEEE Floating Point Standard. The decisions on conformation to this

standard will be used as inputs into the finalization of the deSigns of the Bit Processor, ~

Stage, and Arithmetic Units of the RELAPSE.

Section", discusses an update to the previous Semi-Annual Status Report. It

details the failure of the method by Richards to do multiple input addition. Section ~

oC the report deals with two practical multiple input adders and compares them to a

two input uniproctssor in both time and cost constraints.

An appendix containing the detailed documentation of the MPP Simulator

Programmer's Documentation concludes the report. The more general simulation

tools of the ASW simulator from which the MPP Simulator is derived will be used to

simulate the Functional Units of the RELAPSE system. The construction of simulations

of the RELAPSE will be done using the functions oC the ASW described in the

do cu men tation .

.~ I

, "
It. I

- -'------~ ... -.-~"- £.·4 ;:eqs:.-! ~-.- _ __ ., .--.. ""-~""~-..,.---" -::.~-- -L.... _______________ ~___ • ...:.: ___ ~ _____ ~ ______________ _ _..I.I_

2

2. Co.trot L ••• ts or til. RELAPSE.

Filure 2.1 shows a block. dialram of the functional decomposition of the

RELAPSE computer system. The dialra 11 will be used to detail the current thinkinl

and areas of study in the control structt.rp and prolramming of the RELAPSE system.

The figure shows three levels of control: the system level. the functional unit level.

and the arithmetic unit level. An earlier stage level control has been determined

unnecessary and has been dropped to simplify the overall design.

The system control level is responsible for arbitrating communications and

data flow between functional units. scheduling input and output. and scheduling

usage of the shared memory resources. Although the system controller is shown as a

centralized control in Figure 2.1 it will in practice be a distributed control. The

functional unit control level is responsible for communication within the functional

units. This includes the sequencing and synchronization of operations on the

arithmetic units and on the usage of any internal functional unit buses. The

arithmetic unit control level is responsible for controlling and sequencing the

micro-operations of the stages. routing logic. and bit processors to perform the basic

arithmetic of the RELAPSE system.

The existence of three distinct levels of control implies that a Single language

implementation would be impractical for the RELAPSE system. Such a single

language implementation would have to provide the ability to program the system

from the level of the single bit operations of the stages and bit processors up to the

high level1inear algebra oriented user interface. A three "language type" system

under consideration would parallel the control level structure of the RELAPSE. This

language structure will allow the individual languages of the RELAPSE to be more

easily tailored to specific tasks and provide control level dependent features and

optimizations that would be impractical in a single language system.

t . ., ,.

\

"

RBLAPSB

.,...... 00aIIVl Unia

1 - 110 Volt
(..... - 1O

I ---I I VO Unil
~ 0 I , 1

--4 0
P
0 B - 110 Volt r u

, 11-2 • --4 • •
--- 110 Vail f.-. , a-I -

I
-

CoaIIoI ..

.........
Uait Ii

: .. , ..••...•.•• ~ ~
· · · · · · · PunctioaIl Unit · ..;.... · CoaIroIJer · · · · · · · · · 1 1 · · · · · · · · · · · · · ~
Iru"~1 · · . · · . · : I I · · (RON. RAM) · · · · · · · • · ~...;.. · Iru~1 · · · · MtmOry · · · • · · · (IWI) · · · · · · · · . ~ •••••••• e •••••••••••••

••

. .•.......................... ,
• • • · · • · 1~~

...-. · • • • MImDry · • • • ~ · • • • I · • · • · · · • • • • • · • • • I U-Anayol \-f. · • • • 1 I ... 1 1 ~ • • • · •
~ 1+ · MemodIe • • • · · · ,•.....................•

•......•..................... , · :. :

11~~~Y ~
i I i
: II. .~:

1 I u..wAnayol H--
! I 1 .eo 1 1 i
! -+I hap MemorM 1+ · . · . ,••.••....••....••..•

•••••........••••........•••. · · • · · · ·:
I u....r Array of s.,..!+
1 I ... 1 : !

! L.j ,... M.morieI 1+ · . ·••.

........................•..... · • t :

l rt~F~Y ~
i l :
1 ~. ..:
! I u..r Array of SIal" !+
i It e .. J t !
i L.j $1atI Memori.. 1+ · . · . a •••••••••••• ~ ••••••••••••••••

.... 2.1: CodIaI 811 of IUlLAPSB.

'tl:l

3

, ..

I
l

The arithmetic unit language type is a microcode language that will allow the

expression of the full capabilities of both the horizontal mode operation of stages and

the vertical mode operation of bit processors. This language provides the basic

arithmetic operations of the arithmetic units and the capability to custoJJtize this

basic arithmetic. Arithmetic unit level programs consist oC ROM based micro code.

The customizations provided will allow multiple word formats. numerous roundoff

techniques. and access to important sub-arithmetic operations such as logical

operations. shifting operations. routing operations. and operation on sub word

formats such as floating point mantissas and exponents. The set of customizations will

allow the programming of arithmetic operations on new and nonstandard word

formats to be done from the functional unit level.

The functional unit language type is a high level assembly language that must

provide the convenient expression of scalar. vector. and matrix operations as well as

the inter-arithmetic unit communication within the functional unit. The language

will provide primitives for synchronization and be extensible to different functional

unit architectures. As shown in Figure 2.1. the functional unit controi memory is

divided i.nto two segments: a primitive memory. and a loadable memory. The primitive

memory is used to store the machine code for :.he basic operations of the functional

unit such as bus control protocols and basic vector or matrix arithmetic operations.

This control mem.ory defines the basic functionality of the unit and will be either

stored in ROM or loaded at system boot time. The second segment of the memory is a

toadable memory. This segment allows the extension of a basic functional unit to

some specific tast. In a RELAPSE system there may be a number of functional units

that have the same basic underlying architecture and primitives. It is the loadable

memory that will hold the algorithms that distinguish these otherwise identical

1.~

..

· , · I

•
t
i ·

,
functional units. This memory can also be used to reconfi,ure a sinlle functional

unit to do different processing tasks for different jobs. This memory will usually be

loaded at the start of some processin, job.

The system level language type will provide synchronization and control now

primitives that allow the full use of the multiprocessing cr.pabilities of the functional

units. It will also allow the development of a mathematically oriented user interface

t~at wHI contain as its heart a linear algebra oriented programming language for the

RELAPSE system. It is this user interface and linear algebra programming language

that will provide "he Unear Algebra processing system I)f the RELAPSE.

Programming the RELAPSE system will require the generation of programs

for two of the three control levels of the system. For most applications a new system

level program will be required in the linear algebra programming language. A

number of system wide parameters (such as round off algorithm) will be set via the

user interface. Modification of these parameters will be allowed either during

processing or between jobs without recompiling the application. For most

applications the built in programs of the functional units will be used without

modification. If some function required by an algorithm is not provided by a

functional unit a new algorithm may be 'Written at the functional unit level.

---.-.--. ---
, ¥.:

..

,.
l.,

,

H
~1 , .
f"'

~.:

~--'-

6

3. L&&e.t Bit Proc r.

3.1 Bll Proc r Layout.

The updated bit processor layout is shown in Figure 3.1. The major changes

r~rm the layout presented in the third Semi-Annual Status Report is the reduction of

the number of processing registers by L the introduction of a scratch pad register

memory. and a clarification of register inputs. The scratch pad memory is discussed

in detail in the nelt section. The remainder of the changes are summarized below.

The general purpose registers of the bit processor have been designated as

processing registers. It is assumed that the contents of these registers 'Will be

destroyed and modified by any horizontal or vertical mode algorithm. It is for this

reason that the scratch pad memory was added to the bit processor design as a location

for temporary values. The use of the processing register inputs and outputs have

been clarified. The speCific uses are given in Table 3.1. The input Jines to these

registers have been divided up as follows: line 1 is for vertical mode arithmetic. line

2 is for horizontal mode arithmetic. line 3 is for input from the a bus. and line" is for

input from the b bus. Any register (elcept the mask. register) can be placed on the 0

bus. The remaining output 'lses of the registers are specific to vertical and horizontal

mode arithmetic and are explained in Table 3.1. and Table 3.2.

The remaining clarification deal 'With the input and output from the bit

processor itself. The bit processor has four input/output ports. Two of these ports are

devoted to the two bank memory. One port is devoted to 110 directly with the

processing section of the BP. This port makes the registers of the BP directly

accessible from outside the BP. The final 110 port is devoted to 1/0 'With the memory of

the BP·s. This port provides an 110 path to the memories without using any BP

processing registers.

= ~ =~' "~-'-'

,
I

, ,

,

=

7

-----_ -----

L : .. .

(a) BP Da .. CocaedoaI.

1 ..

0"-

(II) BP PmceIIar Sectiaa.

PI 3.1: 81& PI'OCMIOr LayoU&. ,

. '

Data. Source and Destination of the BP Processing Registers.

Reg. Sources o(Input Destinations of Output

The carry bit from the sum carry The 0 bus. one bit of the add and
1"0 adder. one bit of "..he sum from the multiply ROM address. and 1 bit

add ROM. the a bus. and the b bus. of the sum carry adder input.

The sum bit from the sum carry The 0 bus. one bit. of the add and
1"1 adder. one bit of the low order muWply ROM address. and the byte of the product. the a bus. q register input. and the b bus.

The q register. one bit of the high The 0 bus. one bit of the add and
rZ order byte of the product. the a multiply ROM address. and 1 bit

bus. and the b bus. of the sum carry adder input.

The 0 bus. one bit of the add and

The routing logic. the a bus. and
multiply ROM address. the equi-

1"3 valence function. the routing the ~ bus. logic. and I bit of the sum carry
adder input.

ID.
The bit and stage level masks. the The equivalence (uncilon. and
a bus. and the b bus. the bit processor masks.

Table 3.1: Source aad nesUaatioa oC Processia& Re&ister Da1&.

•

,
I .

\

Input/Out.put. Number.

1

2

3

6

7

8

9

10

11

BP Iapu&. aad Outpu&. Poiab.

Bit. is To or From.

To sum-or tree. and zero detect logic.

OAe bit. of the high order byte of the add or
multiply ROM address (horizontal mode).

One bit of the low order byte of the add or
mult.iply ROM address (horizontal mode).

To the routiAg logic.

OAe bit of the Sum from t.he add ROM
(horizontal mode).

OAe bit of the low order byte of the product from
the multiply ROM (horizontal mode).

OAe bit of the high order byte of th~ product. from
the multiply ROM (horizontal mode).

From the routing logic.

CurrenUy unused.

Bit Processor bit level masks.

Stage and arithmetic unit. level masks.

Table 3.2: Inpu&. and Output Points or the BP Shown in Filure 3.1.

. -- ... -

9

...

, .

m

r
! ,

~ w- %51' r=-t:' ----r'---"- {I. ,iF A.
- ~ ~~ "'--::., ,' - ------"

to

3.2 Queue ae.ister .ad Scralcla Pad lIeaory.

The Queue and Scratch Pad Memory (Q/SP), shown in Fi.ure 3.2, is a

component oC the Bit Processor. It is a combination oC a filed len.th queue reamer

and a scratch pad me'lIlory. The proposed total size of the queue and scratch pad

portions of the unit is 32 bits. The boundary between the two portions is software

reconfilurable by setlinl the len.th of the queue portion. The queue's lenlth is

decoded from a l bit control value supplied by the control unit.

The queue portion of the unit receives its inputs from the BP's processinfl

register rl and sends its output to the BP's processing register rZ (Figure 3.2(c». On

each shift cycle oC the queue the input is plact.d in the queue '5 tail bit and the

queue's head bit is available as the output. The bit output can ~ither be loaded into

the r2 register or neglected (i.e.when the ::{ueue is being filled for the first time).

Each internal bit oC the queue receives the value of the preceding bit in the queue

and makes its contents available for the succeeding bit in the queue during each shift

cycle (Figure 3.2(a». The tail of the queue is considered bit 0 and the head is

considered bit 1-1 where I is the length of the queue. Thus it requires N shift cycles

of the queue to move a bit through a queue oC length N.

The scratch pad portion of the unit receives its input from the BP's output bus

(o-bus) and its output can be placed on either of the BP's input buses (a-bus or

b-bus). Each bit of the scratch pad memory is individually addressable. The read and

write addresses of the scratch pad memory are decoded from ~ bit values supplied by

the external c(\ntrol unit. A write control signal is set on any cycle that will o.:dorm

a write operation while the read operation can b\. JJne on any cycle. Rei','! ::.nd write

operations of the scratch pad memory can be performed simultaneously. If the same

cell of the scratch pad is read Crom and wrillen into on the same cycle the value read

will be the previous contents of the cell and the new contents of the cell will be the

• _. _M_

.4,t;11

i.

- .

11

..... •• A
.... ~

81 •• ,

Q", I , Q a.
A

(') 0-- Pal UaK C

(a) Que. " PU <A8.

(c) DaIa C CIIDaIID tilt BP

"

... 0

• ' .. ~
'" I ,

Wft. I
SP_

Qc-l
Q"

,

:::::==:-:-:_~ __ -'~_-W_·~.~_'_~~ __ -C_--if_¥_*_~_-_·_-----_·_-__ M--"o.~_-_-_~ __ -_---__ .. --__ -_-~. ::--::=-~-:':.~':~'~'~.~~~~.::~::_-_-~=-~--:~-::~_-~~:::::::::::::::::::::JI

#¥AUtU¢ \U -.

12

value written in that cycle. The scratch pad memory thus acts like a small dual ported

random access memory.

The software configurable boundary between the queue and scratch pad

memory portions of the Q/SP unit provides hardware protection against writting into

the queue via a scratch pad memory write. In the event of a scratch pad write

operation to the portion of the Q/SP unit that is currently the queue the write

operation will simply fail and the contents of !hat bit of the queue will remain

unchanged (provided no queue operation also occurred on that cycle that would

change the value). Figure 3.2(a) shows that no other hardware boundary checking

done in the Q/SP itself. It is up to the controller to generate an interrupt Signal a

scratch pad write operation is in the legal address range. There is currently no

hardware protection against reading from the queue portion of the Q/SP unit via a

scratch r.:'\d read. This is not a deSign feature however and may not be retained in the

final design of the Q/SP unit.

In summary the Q/SP unit of the Bit Processor (Figure 3.2(b» is a 32 bit

register that can runction as a 1-32 bit "shift register U queue, as a 1-32 bit scratch pad

memory, or as a 1-32 bit combination of both. The register has two data inputs and " ~

"two data outputs (black arrows in the Figure), one pair for the queue and one pair for

the scratch pad. Control lines (grey Arrows in the Figure) are provided for

designating the read address. the write address, setting the queue's length,

performin~ a shift operation, performing a write operation, and asynchronously

clearing the entire unit. To reduce the overall number of control lines to the Q/SP

the 32 bit control signals (the read and write addresses, and the queue boundary) will

be decoded from, bit input control signals.

13

.c. Ric d.· lIetbod U,d.te.

The addition method by Richards (Page 3 a.nd Figure 1.1 in the thesis proposal

and SAR -3) does not work in general. Briefly, the method was proposed to allow the

addition of more than two numbers with a single adder circuit using half adds, carry

saves, and a final full addition to propagate any remaining carries. The method relied

on the fact that the carries resulting from a haif addition can be added to the "half

sum" to generate an unpropagated carry. The u.npropagated carries are then

propagated during a final full addition step. The method does guarentee that two

carries cannot occur jn the same digit position on subsequent steps (half adds) but it

does not guarentee t".at multiple carries into the same digit position will .not occur on

alternate steps. J.n example where the method fails is shown in Figure 4.1.

Form t.he sum of

Al - 0 0 0 1 1 1: A2 - 0 0 0 0 1 1: A3 - 0 n 0 1 1 0

using Richards met.hod.

000111 +AI Half ADD first
000011 +-A2 operands.

000100

000110
Half ADD carries.

(Ooiooo) 000010 Half ADD final
000110 +-A3 operands. Unpropogated

carries to be 000100 propogated Half ADD carries.
by the final 000100

fuU addition!
~)

000000

Figu .. e 4.1: F.ilure of Richa .. ds Method with Three Inputs.

;q ;. :: x,

..,
1

~ ", '.

... ..,.~~~"'"'Ir".--.-~-.".- .~~~~~~. ..-- "''' -H •. _ --~-........ _-.--; ,_.-.• -.-. -'.,-'.-,. i.-y---.- ~.-" l~,

1"

In the example two unprcpagated carries are generated in the 23 digit

position. This implies that t ... o carry propagate additions will be needed to propagate

these carries and the method fails. In general on each alternating step (half add of

carries) a Jlew carry can be generated for each digit position so at most N:.l

unpropala.ted carries can accumulate at any digit position when there are N input

numbers. Therefore. the methlld will still .need N-l carry propagate additio.ns in

general to propagate the carries across the final "half sum."

: ,

~---.----.-~-~-----------"-- -_ .. ,,- ---
j ..

'I '. -,-','

,. Multip.e lapul Adders.

A number of different multiple input adders can be built using binary trees of

two input adders. The individual adders in these trees can be bit serial 01" bit parallel

and they can use any addition speedup techniques such as carry look ahead addition

or ROM assisted addition. In order to distinguish the speedup provided by multiple

input addition from the speedup provided by bit parallel versus bit serial addition. it

is necessary to study how multiple input adders built from both bit serial and bit

parallel adders compare in the solution of a suitable problem. One such suitable

problem can be stated as follows: compute the fixed point sum of k numbers of word

length 1 in a time less than some constant T and at a cost less than some constant J)

A J; input adder can be constructed from a set of bit serial full adders with

separate 1 bit carry registers. If the basic word format of the machine is an 1 bit

parallel word, a parallel to serial conversion register (of length 1) will be needed to

convert each input operand, and a serial to parallel conversion register (also of

length 1) will be needed to convert the output. At each level in the addition tree a

single 1 bit register for each adder wjJJ also be needed to store the bits of the .. partial

sum" for the next level. Since an overflow can result from any of the intermediate

sums, the carry out of each of the bit serial adders must be considered when detecting

overflow of the k input sum. An example of a such an adder tree for .k • " inputs is

shown in Figure '.1.

A J; input adder can also be constructed from a set of bit parallel adders (of

word length 1) where each adder has a set of input registers for its input operands.

Thus at each level of the tree there are twice as many 1 bit registers as there a!'e

parallel adders. Since an overflow can result fro11\ any of the intermediate sums, the

carry out of all the parallel adders must be considered when detecting overflow of the

k input sum. Figure ~.2 shows a .k • " input adder constructed from parallel adders.

In order to achieve the fastest addition speed each parallel adder should use some

,j

. ,
'" . ..J ,.,

\,

I
I ,

Io

I
I.

:

X 3

:
Load/Shift

I' ,

-' f.."..

OVerflow
Logic OVerflow

Load-Shift

j

.... .1

3
Y .. l: x.

J

i· 0

Figure '.1: Four Illput Bit Serial Adder Tree.

-3

t---~>" Overflow

3

'------,r--S----- y = 1: X i
i·O

Fi«ure ~.Z: Four Input Parallel Adder Tree.

16

--"-" "------"--' "--'--'-""-'''-''~'-'-''''-'''-""---"-"~-''-''-''-''---'-...... --.~--"----:-~.'"'.~.- - --. -':-==."::":::'-:::::''".::''~'='~'''''''::'-=''''':''::'"--''-=-~-=::::'':':====~~--_ ...

i ,

AI

;

~
(:
Ii
~
~ , ,

17

technique to reduce carry propagation delays such as carry look ahead addition.

The bit serial adder tree shown in Figure ~.1 can be thought of as a bit serial

arithmetic pipeline containing rl082Lt)1 steps. After the setup time of rlog2Lt)1

addition cycles the first bit of the k input sum is loaded into the output register. An

additional 1- I addition cycles are then required to determine the remainder of the

k input sum. Therefore. the total time required to compute the k input sum using the

bit serial adder tree (denoted Tt(B» is

Tk(B) = I (ADD A j) = (1- I + r I082Ck)1) X t (FULL ADD)

The bit parallel adder tree shown in Figure ~.Z can also be thought of as an addition

pipeline that has a setup time ofrlog2(1'")1 steps. In the parallel adder tree pipeline.

however. the final result is available after the setup time so the pipelining

characteristic is only valuable if there are multiple 1: input additions to be

performed. Using carry look ahead addition the time required by the bit parallel

adder tree to solve the k input addition problem (denoted Tjc(L» is given by

Tt(L) = t(ADDA j) = rl082(1'")lx(Zflo82(.c)1+ t(FULLADD))

The speedup of the bit parallel adder tree over the bit serial adder Sk(L) is found by

dividing the time required to solve the problem on the bit serial adder by the time i. ~ :,
required to solve the problem on the bit parallel adder. The speedup for the carry ,

look ahead paraUel adder tree is

Analyzing this equatioti shows that the bit serial adder tree is faster only for very

short word lengths (/ (16) when there are many inputs to be added (k) 128). In all

other cases the bit parallel adder tree will be fasl't' "i'jan the bit serial adder tree. For

example for a 16 input addition of 64 bit opf'r3.r..~'~ the parallel adder tree has a

. ~-.-. - ~ --- ---.. --
----~-.- _ _- --_. - -_. -- ---

.
t

11

speedup oC 6.7 over the bit serial adder tree. The advantage oC the bit parallel adder

tr.,e over the bit serial adder tree is directly proportional to the word length I and

inversely proportional to the number of inputs k.

In order to determine the speedup oC the multiple input adders over two input

adders the time required to solve the .k input addition problem on a two input adder

must be known. Two different two input adders will be used as the base line for the

speedup analysis: a carry propagate adder and a carry look ahead adder. The time

required to do a single addition us-ing a carry propagate adder is IXI (FULL ADD)

because, in the worst case, the carry has to be propagated across the entire I bit word.

The time requireci to do a single addition using a carry look ahead adder is

2 rlog4(1)l + I (FULL ADD) assuming logic with a fan in of .. is used. The 2 input

adders solve the problem in an iterative manner so a total of k - I additions are

needed to form tile k input sum. Therefore, the time needed to solve the addition

problem using the carry propagate adder (denoted T I (P» and the carry look ahead

adder (denoted T I (L» are given by

and
T .(P) = t (ADD A j) = (1" - 1) X Ixt (FULL ADD)

TI(L) = t (ADD A j) = C,k - 1) X (2 rJog4(/)1 + t (FULL ADD))

The 2 input carry look ahead adder will be used in both comparisons. The 2 input

carry propagate adder will be used in the speedup comparison of the bit serial i:SClder

tree because that adder tree suffers from the carry propagation delay. In that adder

tree the carry propagation is done in parallel by all the adders in the tree but still

requires O(I) cycles to propagate.

The speedup of the bit serial adder tree over the carry propagate adder

(denoted S I(B», determined by dividing T I(P) by Tt(B), is

(k-1)xl

... L. f ... 5 .. --" -...,.

-----~~---------~ -.--.- _. __ ..

,
I

• I

~ ~I

\.
>"

,I

II
"

19

From this it is easy to see that for all word lengths' and two or more inputs (ok ~ 2)

this adder is faster than a single carry propagate adder. The speedup increases

rapidly as both 'and ok incerase because the addition time of the bit serial adder tree

depends on the sum of the word length and number of inputs rather than their

product. The same general results are obtained by analyzing the speedup of the bit

serial adder tree over a 2 input carry ',Jot. ahead adder. The speedup function does not

increase as rapidly as it does in th'" carry propagate adder case because the 2 input

carry look ahead adder time depends on the log .. of the word length instead of

linearly on it.

The speedup of the bit parallel adder tree over the carry look ahead adder

(denoted S I (L». determined by dividing T I (L) by T k(L). is

(.1;-1)

As with the bit serial adder tree the bit parallel adder tree is faster than a 2 input.

adder. When comparing the carry look ahead adders the speedup in only a function

of the number of inputs. If the speedup comparison is done with a 2 input carry

propagate adder the speedup will be greater than that shown by a multiplicative

factor of the word length.

The final part of the problem statement deals with a cost analysis of the

different adders. A detailed cost analysis would have to involve a determination of the

hardware necessary to deliver all k operands to the k input adders. as well as a cost

analysis of the adders themselves. and any conversion registers needed in the bit

serial adder tree case. To get an order of magnitude estimate of the costs involved

only the adders. their necessary associated registers. and data connections will be

considered. As a basis for this comparison the cost of a single 1 bit adder. its

associated data lines. a carry register. and two 1 bit inpuf f"l'gisters will be denoted

t~.--
-------- • ._A ".""'u _~ $

" f
I
\

I
I

I

20

D(BIT ADDER). The 2 input carry propagate adder is composed of , oC these bit adders

except that only one carry register is needed. Thus the cast of the 2 input carry

propagate adder Dt(P) is O(Jx D(BIT ADDER». The 2 input carry look ahead adder is

more difficult to analyze because of the carry look ahead circuitry, If the number oC

gate delays is used as a comparison factor the carry look ahead circuitry Cor each bit

position will be roughly as complex as the adder for reasonable word lengths and

logic Can ins. The bit cost of a carry look ahead adder will therefore be about 1.' times

the bit cost of the carry propagate adder so DI<L> • O{/ x D<BIT ADDER». The bit

serial adder tree contains 1: - 1 bit serial adders each with an associated 1 bit carry

register. two 1 bit operand registers. and 1 bit data connections. Thus the cost of the

1; input bit serial adder tree Dt(B) is O(1: X D(BIT ADDER». The 1: input carry look

ahead adder tree contains 1: - 1 carry look ahead adders which have a cost of Dl (L) so

the cost of the carry look ahead adder tree Dt(L) is Oel" X I X D(BIT ADDER».

Comparing these estimates it is easy to see that the Jr input bit serial adder tree costs

O(1: I I) more than either of the 2 input adders and that the 1:: input bit parallel

adder tree costs O(1:) more than the 2 input adders. It can also be seen that the

1; input bit parallel adder is O(I) times as expensive as the 1: input bit serial adder .

,\

...:--,. ~ - -.--------,---~-~~-----~

r
~ ,
I

Appcndix: MPP Simulator Pro«rammcr's Documentation.

21

",
•

1

1 Introduction.

The Architecture Simulation Workbench simulator of the MPP cc:..nsists

of an MPP emulator, which provides full functional emulation of the Main

Control Unit, PE Control Unit and the Array Unit, along with a program

debugger and a set of routines that control the execution of the simulator

modules and provide communication between modules. This document describes

the structure, modules and individual files making up the simulator.

Throughout this document the unix directory path conventions are used,

where "dir/file" means the file named "file" in directory "dir". The directories

used by the MPP simulator arc:

mpp, which contains the main routin~s for the MPP emulator,

libsim, which contains subroutines used to simulate ARU functions,

debug, which contains the source for the debugger, and

libasw, which contains the routines used to simulate parallel operation of the

simulator components, provide I/O and inter-module communication. These

routines act like a virtual operating system for the simulation.

2

2 Structure.

The simulator is broken up into several modules, with a module being R.

distinct functional entity which operates in parallel with the other modules of the

system. There is a module corresponding to each of the MCU, PCU, IOGU

(currently a null program, since the code to use the 10CU is in place but an

emulator has not yet been written) and the simulator debugger. Since the C

programming language docs not provide th,: capability of running multiple

processes, a set of routines is prov; Jed to simulate parallel execution in the

directory "libasw". Each module acts like a separate program, with calls to the

routines in Iibasw for communication, I/0 and synchronization. This section will

describe the Iibasw routines and how the modules of the simulator interact wit.h

them.

2.1 The Simulator Operating System - libasw.

The directory Iibasw contains the routines which perform operating

system functions for the simulator - creation of modules, communication between

modules and I/O with the Vax file system and the user's terminal. Also included

in this directory are routines for performing common simulator operations

involving simulated MPP memories and register sets. These routines provide a

common interface for all memory or register operations, as well as allowing the

ASW debugger to transparently transfer data to and from the simulated

memories.

The file "libasw /multi.c" contains the heart of the ASW operating system -

the routines for simulating concurrent execution of the modules. Each module

lf1
I

I
I

: l
I .J. 1

1
, I

~~ , ,
,
4

I

has a corresponding module descriptor, a C structure defined in h/multi.h, which

contains the module's name, its run time stack, the address to set the Vax stack

pointer wht:n the module is run, and information about the module's state. The

routine "sp_ exec" in libasw /multi.c defines a new module. Sp...exec creates a new

module descriptor, allocates stack space, initializes the module's stack, and then

places the descriptor in the syst.em run queue. The bottom of t.he st.ack is set. up

so that if and when t.he main routine of t.he module finishes, t.he subrout.int ret.urn

will cause control to jump to the rout.ine spJiie. This rnutine disposes of the

module descriptor and returns control to the scheduler. The address of the main

routine for t.he module is placed on t.he stack above spJiie, and t.he init.ial value of

t.he module stack pointer is set t.o point. to this address, so that the first t.ime t.he

module is scheduled the main rout.ine is called.

The rout;ne "scheduler" (in Iibasw /multi.c) schedules t.he execut.ion of

modules. Two queues are maint.ained for modules ready t.o be run and t.hose

wait.ing for some event.. The scheduler first checks to see if there are any

modules in the run queue. If t.here are, the first one is removed from the queue

and rest.arted. If not., t.he wait. queue is t.raversed t.o find any modules t.hat. are

ready to be t.ransferred t.o the run queue. A module is ready t.o run when it.s state

matches the system st.ate variable and ,t if. not waiting for elapsed time. If there is

no runnable module, the system clock is updat.ed, all modules have their wait.

time count.ers updated and the wait queue is again t.raversed.

When a module is scheduled to run, a pointer to the module descriptor is put.

in the global variable "u" and the routine "sp.JIwap" is called. sP t;wap alters the

Vax stack frame so that the subroutine return address is subst.ituted with the

i

I
t.

,
.,

I

¥4- . _ ill.::: -z-;-

4

address saved when the module was suspended. The Vax subroutine return then

continues execution at this point.

The routines "sp...llleep" and "waitJor" are used to luspend execution or a

module. Each of these routines updates the module descriptor to reflect the event

that is to wake up the module (either elapsed time or a change in the system

state), places the module on the wait queue and swaps in the scheduler. Ip...llleep

causes the module to sleep for a number of clock ticks. waitJor causes the module

to sleep until a specified bit in the system state is set. A module can lignal an

event (set a bit in the state) via the routine "sp~h". The bit can then be cleared

by a module calling the routine'spJleen", to indicate t.bat the event has been

seen.

Each module or the simulator consists of a large loop in which an instructicn

is interpreted, and then the module calls "sp .. :lleep" to sleep for the number of

clock ticks corresponding to the time used by the instruction. Modules are

automatically suspended when they try to perform some operation that cannot be

done at that time: for instancc, when the PCU tries to take a command of the

call queue, if the queue is l'mpty, tht! queue routine suspends the PCU until a

signal is received indicating sonwthillg wa.'I put on the queue. (Since the signal

only say~ that sornethiuK was put on a qUl~ue, without specifying which queue, the

routine actually has a loop to check if there is something 011 the pro,l)er queue,

resuspend if not, an.i calls "sp..JIeen" when it does get something.)

The file "li~asw limc.c" contains routines for communication between

modules. Tht:!e routines are used to define and acceSt' intermodule resources.

The definition of a resourcc COUles from the "item[NITEMj" table. Currently it

_,. ____ -~~==~-.--::'-. .-:.,~::_:::::::;:::::::;;;;-__ liiii--iitiJl.-------------=~ .. I!i !J,. ...

6

delimits the classes "section of memory", "function", and bit plane of data.

"l.,£rt:at" makes a resource in one module available to other modules. These

resources can then be read or written to using the routines "uead" and "Lwrite".

A resource can be loaded from or written to a file via the routine "IJile". lJile

uses the routines in "libasw jload.c" for loading and unloading resources.

The file "libasw jmemory.c" contains routines for creating and using

simulated computer memories or register sets. These routines allow all memory

accesses to be done through a common interface, which checks for illegal

addresses and performs the trace and bre:1kpoint functions for the ASW

debugger. The PCV, MCV and ARV memories and registers are all created and

accessed with these routines. The routine "M_create" ci'eates a memory space by

placing a descriptor for the memory ill a table. This descriptor contains the name

of the memory (for example, MeV memory is called "lli<;paCe"j this name is for

printing out messages, such as when a breakpoint is activated), t~)e tipe (scalar or

array), access permission, a flag for turning on the trace function, word length,

the memory's size, an array :>f breakpoints which can be set by the debugger, and

a pointer to chunk of VAX memory to be used as the simulated memory.

MJ:reate also calls "Lcreat" to make the memory available to the debugger. Once

a memory has been created, it can be read or written to by the routines "MJead"

and "M_write". "IvLaddress" returns a pointer to some address in a memory - this

is used mainly by the array routines hncause it is more efficient to use this pointer

to perform an operation directly on an),j{U plane rather than reading it into a

buffE:!r, performing the operation, then writting the re::'!llt back.

- +

The file "libasw /queue.c" contains routines for setting up and using queues.

The routines are general-purpose; a queue can be created with any number of

elements and the queue elements can be anything desired. The routines are used

in the simulator for the PE call-queue. The file "h/queue.h" has the declaration

for the queue structure. This structure has fields for the queue element size in

bytes, the number of elements, the count of elements currently in the queue, the

head element of the queue, and a pointer to the block of memory containing the

f{ueue. The routine queuesize creates a new queue. The routine "enq" places an

I lid" h I II If h e ement on a queue; eq removes t e top e ement. topq returns t e top

element without removing it from the queue. "dumpq" empties the queue. When

a module calls "enq" to place an element on a queue which is already full, it is

automatically suspended, and the next time an element is removed from the

queue, a signal is sent to wake up the module and the operation is completed.

Similarly, when a module attempts a "deq" on an empty queue, it is suspended

until an element is placed on the queue.

2.2 Module Structure.

The simulator currently has 4 modules: the MCV, PCV, IOCU(null

program) and the ASW debugger.

Each module (except the debugger) is of the form:

mainJoutine 0 {

<variable declarations>

L~reat (" < mod ule name> ", LMEM, u, u, sizeof *u);

• _- = ":----.. ---....,.......~~mr;;-~-----....... -~

..

\
" .

7

This makes the module descriptor available to the debugger. By

manipulating this descriptor, the module can be stopped or started by

the debugger, and the module status can be read.

<space> = M_create ("<space>", <access>, <word length>, <sile»;

< space> is the name of some memory space or register set. < access>

is some combination of M-READ, ~WR.ITE, M.J)ATA, MJNST,

M.J)P ACE or M..ARRA Y, ORcd together. Any combination is possible,

except that M.J)P ACE and M..ARRA Yare mutually exclusive. This

parameter specifies whether the memory is an array or not, and what

kinds of access are permitted on it. < word length> is the length of a

worcl of the memory. For array memories it is in bit-planes, for others,

in bit.s. Note that for MCl] memory this is 8, because MCU addresses are

byte addresses. The fact that the MeU works on 2 bytes at a time

simply means that all memory accesses are in mllitiples of 2 bytes.

<size> is the size of the memory, in words (i.e., bytes for MCV

memory, bit planes for ARU memory). The size of a memory can be

changed by the debugger at any tiIIi~. Some memories are created with 0

words and then dynamically expanded at start up Qr when loaded with

data.

Memories declared with M ... ueate can be accessed with the memory

management routines in libasw /memory.c, most notably MJead and

M_write. It is not necessary for each module to use M.sreate for every

memory that it uses, but using the memory management routines

.'

1
,J
oj

\

'"

-~ ...

8

provides several advantages. Bounds checking is done automatically, and

the trace and breakpoint facilities of the debugger can be used for every

memory (even registers) using the routines.

Wait for start command from debugger.

for (jj sp.Jlleep (<speed») {

Or similar loop, with "sp.Jlleep" of appropriate number of clock ticks at

end. The rest of the program is enclosed in this loop.

while (ERROR) {

waitJor (S_CONTROL)j

}

As long as the module status ;,; "error", wait for signal.

if (STATUS & SP ..BINGLE) {

STATUS 1= SP _WAIT;

}

If single stepping, wait for control signal.

while (STATUS & SP _WAIT) {

waitJor (S_CONTROL);

}

..

\ .. ,

f

9

If status is "wait", wait for signal.

M..read (< space>, < pc >, < nwords >, &inst, MJNST)i

<pc> += <nwords>;

Read next instruction, increment program counter.

The rest of the program consists of interpreting the instruction.

,
... ,.

"11 ' • 1 n

10

3 Debugger structure.

The debugger is the overall controller for the simulation. All I/0 to the

terminal and the file system is handled by the debugger. The debugger controls

and monitors the operation of the MPP emulator by manipulating emulator and

system variables. Variables which have had been made inter-module resources by

"" . d b ''l.A - It b d b h" " d L.creat or memOries create Y m....s;reate can e accesse y t e open an

"assign" debugger commands. Certain emulator variables are placed in the

debugger symbol table at start up. These variables can be seen in

"/ " mpp mppsyms.c .

The debugger main routine is "command" in "debug/command.c". This

routine initializes some variables, uses the C library routines "setjmp" and "signal"

to arrange for control-C interrupts to cause the debugger to restart (this works

fine on unix but only about half the time on VMS), and then calls "yyparse", the

debugger command parser. Input to the debugger is initially taken from the file

"mpp.ini", which opens channels to emulator resources and defines several

debugger variables and procedures. Input is then taken from the terminal.

The debugger uses the routine "read....term" in "libasw /termio.c" to perform

non-blocking reads on the terminal. If there is no input available when

attempting to read from the terminal, "sp..sleep" is called.

The parser is in "debug/y.tab.c". This file was created by the parser

gencrator program "yace" from thc file "debug/ c.y", a BNF -like grammar for the

debugger command language .

.. __________________________ ~~~~ __ ~-w.~-.~._ _~~-J_. __) ____________________ ~ ~

.... -----------------------." .. " .. ---"-~-"- -"

"

11

The parser action is to form a parse tree of the statement, if currently inside

a block or procedure definition, add the parse tree to the structure, otherwise
j .,

execute it and print the result. The routine "eval" in "debug/eval.c" evaluates

parse trees. It recursively evaluates each sub-expression in the tree until the

entire tree has been evaluated, and passes the result to the calling program (which

is either itself, one of the routines in "eval.c" which evaluates particular functions

or expression types, or the parser).

The routines in "libasw lime.e" are used to transfer data between the

debugger and the other modules of the simulator.

--------~----------"-.--" .. --"-" -
"'.l .;

•• '*'-~ ".~ '.

, i' \.

12

4 Simulator execution.

..
The file "debug/master.c" contains the main routine for the simulator.

This routine does the following:

Calls the C library routine "signal" to set up signal handling. The "trap"

and "pipe" (unix signals) signals are ignored; the "terminate" (control-C)

signal causes a call to "quit", which halts the simulator.

Interprets the command line options, which, in unix fashion, are of the

form "-< option> ". The options are "-i < dir > ", which tells the the

simulator to use the directory" < dir >" rather than the default directory

for the debugger initialization file, "_p", which causes writes to the

terminal to be held until after a carriage return when something is being

typed by the user, and "-w", which is the opposite of "--p" (and the

default) - writes to the terminal are sent immediately.

Calls "queuesize" to create the rcv call queue. i . , ~ .
- ' ..

Calls "sp~xec" to start each of the simulator modules running.

Calls "Icxfile" to open the debugger initialization file.

Calls "multLtask" to take over and start running the simulator modules.

At this point, each of the modules described above (MCV, rcv and debugger)

begin to operate. The MCV and rcv arc in a wait state, waiting for input. The

user can now use debugger comm:tnds to load a program into memory and start

the MCV running. The rcv will wake up upon a call from th,~ MCV.

- ~.-..,. •• #4,? .. 44

, " ,.

13

Each of the modules runs in a non-terminating loop, interpreting its

instructions, or simply idling and waiting for input. An abort command to the

debugger ha.lts the simulation.

---~- --.-~---~.

..

j
j

.~
!

,
-,

------------------------------______ ~.~~ ~=-~rrzrnrr~~.~ ..• a~=~&a ~Qi~~~~

~ •
4 • "

'\
"

5 Adding a module to the s£mu/ator.

To add a module to the simulator (for example, a staging memory

emulator), one must first write a program for the new module. This can be done

pretty much independently of the rest of the simulator, with only a few

subroutine calls to connect it to the rest of the system. The call

ureat ("<module name> ", LMEM, u, u, sizeof *u)j

should be put at the top of the main routine. If any memories are to be created

using the memory routines in memory.c, a call such as

< space> = M_create (" < space> ", < access>, < word length>, < size>);

should be included for every such memory. This can be followed by

STATUS = SP _W AITi
t
t
>1

to indicate that the module is to wait for a signal from the debugger to begin I
,',

execution. The following sequenw of code should be placed before each iteration:

while (ERROR) {

waitJor (S_CONTHOL)i

}

if (STATUS & SP ...BINCLE) {

}
t

J • while (STATUS & SP _WAIT) {

= .' ==: I . 10- : ... ~
, . .

16

waitJor (S_CONTROL);

}

Finally, the program should execute "sp_JJleep" after every iteration, to sleep for

the dimulated amount of time used by the module.

t ·

I. I"'.

	0023A02.TIF
	0023A03.TIF
	0023A04.TIF
	0023A05.TIF
	0023A06.TIF
	0023A07.TIF
	0023A08.TIF
	0023A09.TIF
	0023A10.TIF
	0023A11.TIF
	0023A12.TIF
	0023A13.TIF
	0023A14.TIF
	0023B01.TIF
	0023B02.TIF
	0023B03.TIF
	0023B04.TIF
	0023B05.TIF
	0023B06.TIF
	0023B07.TIF
	0023B08.TIF
	0023B09.TIF
	0023B10.TIF
	0023B11.TIF
	0023B12.TIF
	0023B13.TIF
	0023B14.TIF
	0023C01.TIF
	0023C02.TIF
	0023C03.TIF
	0023C04.TIF
	0023C05.TIF
	0023C06.TIF
	0023C07.TIF
	0023C08.TIF
	0023C09.TIF
	0023C10.TIF
	0023C11.TIF
	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG

