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1. Introduction and Summary.

The initial control and programming philosophies of the RELAPSE are
discussed in T+ :tion 2. A block diagram showing the relationship of the Arithmetic
Units (composed of Stages and Bit Processors), to the Functional Units. and other
components of the RELAPSE is used to guide this discussion. The latest version of the
Bit Processor design is presented in Section 3. Included in this section is a detailed
discussion of the Bit Processor's new scratch pad memory component. The section
also clarifies the usage of the Bit Processor’'s processing registers, and Input/Output
functions. The final design phase of the Arithmetic Unit is underway by a study of
the Proposed IEEE Floating Point Standard. The decisions on conformation to this

standard will be used as inputs into the finalization of the designs of the Bit Processor.,
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Stage, and Arithmetic Units of the RELAPSE.

Section 4 discusses an update to the previous Semi-Annual Status Report. It §
details the failure of the method by Richards to do multiple input addition. Section S q
of the report deals with two practical multiple input adders and compares them to a § :
two input uniprocessor in both time and cost constraints. g 3
An appendix containing the detailed documentation of the MPP Simulator 3*., j

Programmer’s Documentation concludes the report. The more general simulation

tools of the ASW simulator from which the MPP Simulator is derived will be used to

IS’ I J

simulate the Functional Units of the RELAPSE system. The construction of simulations

of the RELAPSE will be done using the functions of the ASW described in the

documentation.




2. Control Levels of the RELAPSE.

Figure 2.1 shows a block diagram of the functional decomposition of the
RELAPSE computer system. The diagra u will be used to detail the current thinking
and areas of study in the control structur~ and programming of the RELAPSE system.
The figure shows three levels of control: the system level, the functional unit level,
and the arithmetic unit level An earlier stage level control has been determined
unnecessary and has been dropped to simplify the overall design.

The system control level is responsible for arbitrating communications and
data flow between functional units, scheduling input and output, and scheduling
usage of the shared memory resources. Although the system controller is shown asa
centralized control in Figure 2.1 it will in practice be a distributed control. The
functional unit control level is responsible for communication within the functional
units. This includes the sequencing and synchronization of operations on the
arithmetic units and on the usage of any internal functional unit buses. The
arithmetic unit control level is responsible for controlling and sequencing the
micro-operations of the stages, routing logic, and bit processors to perform the basic
arithmetic of the RELAPSE system.

The existence of three distinct levels of control implies that a single language
implementation would be impractical for the RELAPSE system. Such a single
language implementation would have to provide the ability to program the system
from the level of the single bit operations of the stages and bit processors up to the
high level linear algebra oriented user interface. A three "language type” system
under consideration would paralle! the control level structure of the RELAPSE. This
language structure will allow the individual languages of the RELAPSE to be more
easily tailored to specific tasks and provide control level dependent features and

optimizations that would be impractical in a single language system.
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The arithmetic unit language type is a microcode language that will allow the
expression of the full capabilities of both the horizontal mode operation of stages and
the vertical mode operation of bit processors. This language provides the basic
arithmetic operations of the arithmetic units and the capability to customize this
basic arithmetic. Arithmetic unit level programs consist of ROM based micro code.
The customizations provided will allow multiple word formats, numerous roundoff
techniques, and access to important sub-arithmetic operations such as logical
operations, shifting operations, routing operations, and operation on sub word
formats such as floating point mantissas and exponents. The set of customizations will
allow the programming of arithmetic operations on new and nonstandard word
formats to be done from the functional unit level.

The functional unit language type isa high level assembly language that must
provide the convenient expression of scalar, vector, and matrix operations as well as
the inter-arithmetic unit communication within the fuactional unit. The language
will provide primitives for synchronization and be extensible Lo different functional
unit architectures. As shown in Figure 2.1, the functional unit controi memory is
divided into two segments: a primitive memory, and a loadable memory. The primitive
memory is used to store the machine code for the basic operations of the functional
unit such as bus control protocols and basic vector or matrix arithmetic operations.
This control memory defines the basic functionality of the unit and will be either
stored in ROM or loaded at system boot time. The second segment of the memory is a
loadable memory. This segment allows the extension of a basic functional unit to
some specific task. In a RELAPSE system there may be a number of functional uaits
that have the same basic underlying architecture and primitives. It is the loadable

memory that will hold the algorithms that distinguish these otherwise identical
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functional units. This memory can also be used to reconfigure a single functional
unit to do different processing tasks for different jobs. This memory will usually be .
loaded at the start of some processing job.

The system level language type will provide synchronization and control flow
primitives that allow the full use of the multiprocessing capabilities of the functional
units. It will also allow the development of a mathematically oriented user interface
iaat will contain as its heart a linear algebra oriented programming language for the
RELAPSE system. It is this user interface and linear algebra programming language
that will provide ihe Linear Algebra processing system nf the RELAPSE.

Programming the RELAPSE system will require the generation of programs
for two of the three control levels of the system. For most applications a new system
level program will be required in the linear algebra programming language. A
number of system wide parameters ( such as round off algorithm) will be set via the
user interface. Modification of these parameters will be allowed either during
processing or between jobs without recompiling the application. For most
applications the built in programs of the functional units will be used without
modification. If some function required by an algorithm is not provided by a

functional unil a new algorithm may be written at the functional unit level. T
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3. Latest Bit Processor.

31 Bit Processor Layout.

The updated bit processor layout is shown in Figure 3.1. The major changes
form the layout presented in the third Semi-Annual Status Report is the reduction of
the number of processing registers by 1, the introduction of a scratch pad register
memory. and a clarification of register inputs. The scratch pad memory is discussed
in detail in the next section. The remainder of the changes are summarized below.

The general purpose registers of the bit processor have been designated as
processing registers. It is assumed that the contents of these registers will be
destroyed and modified by any horizontal or vertical mode algorithm. It is for this
reason that the scratch pad memory was added to the bit processor design as a location
for temporary values. The use of the processing register inputs and outputs have
been clarified. The specific uses are given in Table 3.1. The input lines to these
registers have been divided up as follows: line 1 is for vertical mode arithmetic, line
2 is for horizontal mode arithmetic, line 3 is for input from the a bus, and line 4 is for
input from the b bus. Any register (except the mask register) can be placed on the o
bus. The remaining output n1ses of the registers are specific to vertical and horizontal
mode arithmetic and are explained in Table 3.1.and Table 3.2.

The remaining clarification deal with the input and output from the bit
processor itself. The bit processor has four input/output ports. Two of these ports are
devoted to the two bank memory. 0ne port is devoted to 1/0 directly with the
processing section of the BP. This port makes the registers of the BP directly
accessible from outside the BP. The final 1/0 port is devoted to I/0 with the memory of
the BP's. This port provides an 1/0 path to the memories without using any BP

processing registers.
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Data Source and Destination of the BP Processing Registers.

-_——-—————_—'#

Sources of Input

Destinations of Output

r0

The carry bit from the sum carry
adder, one bit of the sum from the
add ROM, the a bus, and the b bus.

The o bus, one bit of the add and
multiply ROM address, and 1 bit
of the sum carry adder input.

rl

The sum bit from the sum carry
adder, one bit of the low order
byte of the product, the & bus,
and the b bus.

The o bus, one bit of the add and
multiply ROM address, and the
qregister input.

rZ

The q register, one bit of the high
order byte of the product, the &
bus, and the b bus.

The o bus, one bit of the add and
multiply ROM address, and 1 bit
of the sum carry adder input.

r3

The routing logic, the a bus, and
the b bus.

The o bus, one bit of the add and
multiply ROM address. the equi-
valence function, the routing
logic, and 1 bit of the sum carry
adder input.

The bit and stage level masks, the
8 bus,and the b bus.

The equivalence funciton, and
the bit processor masks.

Table 3.1: Source and Destination of Processing Register Data.
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BP Iaput and Output Points.
Input/Output Number. Bit is To or From.

1 To sum-or tree, and zero detect logic.

2 One bit of the high order byts of the add or
multiply ROM address (horizontal mode).

3 One bit of the low order byte of the add or
multiply ROM address (horizontal mode).

4 To the routing logic.

s One bitof the Sum from the add ROM
(horizontal mode).

6 One bit of the low order byte of the product from
the multiply ROM (horizontal mode).

7 One bit of the high order byte of the product from
the multiply ROM (horizontal mode).

8 From the routing logic.

9 Currently unused.

10 Bit Processor bit level masks.

11 Stage and arithmetic unit level masks.

Table 3.2: Input and Output Points of the BP Shown in Figure 3.1.




3.2 Queue Register and Scratch Pad Memory.

The Queue and Scratch Pad Memory (Q/SP), shown in Figure 32, is a
component of the Bit Processor. It is a combination of a fixed length queue register
and a scratch pad memory. The proposed total size of the queue and scratch pad
portions of the unit is 32 bits. The boundary between the two portions is software
reconfigurable by setting the length of the queue portion. The queue’s leagth is
decoded from a 5 bit control value supplied by the control unit.

The queue portion of the unit receives its inputs from the BP’s processing
register r1 and sends its output to the BP's processing register r2 (Figure 3.2(¢)). On
each shift cycle of the queue the input is placed in the queue’s tail bit and the
queue’s head bit is available as the output. The bit output can either be loaded into
the r2 register or neglected (i.e.when the jueue is being filled for the first time).
Each internal bit of the queue receives the value of the preceding bit in the queue
and makes ils contents available for the succeeding bit in the queue during each shift
cycle (Figure 3.2(a)). The tail of the queue is considered bit 0 and the head is
considered bit /-1 where / is the length of the queue. Thus it requires N shift cycles
of the queue to move a bit through a queue of length N.

The scratch pad portion of the unitl receives its input from the BP's output bus
(o-bus) and its output can be placed on either of the BP's input buses (a-bus or
b-bus). Each bit of the scraich pad memory is individually addressable. The read and
write addresses of the scratch pad memory are decoded from 5 bit values supplied by
the external control unit. A write control signal is set on any cycle that will n2cform
a write operation while the read operation can be :June on any cycle. Rea: 2ad write
operations of the scratch pad memory can be performed simultaneously. If the same
cell of the scratch pad is read from and wrillen inlo on the same cycle the value read

will be the previous contents of the cell and the new contents of the cell will be the
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value wriuexi in that cycle. The scratch pad memory thus acts like a small dual ported
random access memory.

The software configurable boundary hetween the queue and scratch pad
memory portions of the Q/SP unit provides hardware protection against writting into
the queue via a scratch pad memory write. In the event of a scratch pad write
operation to the portion of the Q/SP unit that is currently the queue the write
operation will simply fail and the contents of that bit of the queue will remain
unchanged (provided no queue operation also occurred on that cycle that would
change the value). Figure 3.2(a) shows that no other hardware boundary checking
done in the Q/SP itself. It is up to the controller to generate an interrupt signal a
scratch pad write operation is in the legal address range. There is currently no
hardware protection against reading from the queue portion of the Q/SP unit via a
scratch rad read. Thisis nota design feature however and may not be retained in the
final design of the Q/SP unit.

In summary the Q/SP unit of the Bit Processor (Figure 3.2(b)) is a 32 bit
register that can function as a 1-32 bit "shift register” queue, as a 1-32 bit scratch pad
memory, or as a 1-32 bit combination of both. The register has two data inputs and
two data outputs (black arrows in the Figure), one pair for the queue and one pair for
the scratch pad. Control lines (grey arrows in the Figure) are provided for
designating the read address, the write address, setting the queue's length,
performinyg a shift operation, performing a write operation, and asynchronously
clearing the entire unit. To reduce the overall number of control lines to the Q/SP
the 32 bit control signals (the read and write addresses, and the queue boundary) wilt

be decoded from 5 bit input contro! signals.
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4. Richards' Method Updaste.

The addition method by Richards (Page 3 and Figure 1.1 in the thesis proposal
and SAR *3) does not work in general. Briefly, the method was proposed to allow the
addition of more than two numbers with a single adder circuit using half adds, carry
saves, and a final full addition to propagate any remaining carries. The method relied
on the fact that the carries resulting from a haif addition can be added to the "half
sum” to generate an unpropagated carry. The unpropagated carries are then
propagated during a final full addition step. The method does guarentee that two
carries cannot occur in the same digit position on subsequent steps (half adds) but it
does not guarentee tkat multiple carries into the same digit position will not occur on

alternate steps. An example where the method fails is shown in Figure 4.1.

Form the sum of
Al1-000111; A2-000011; A3-000110
using Richards method.

000111 < Al Half ADD first
00001] @4 A2  oOperands

—

0oo100
000110

W“l 0coo010 Half ADD final

Unpropogated e’ 000110 4 A3 Operands
carries to be 000100 )
propogated Half ADD carries.

by the final 000100

full addition! 00000 0
0010007

Figure 4.1: Failure of Richards Method with Three Inputs.

Half ADD carries.

vyl
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In the example twc unprcpagated carries are generated in the 23 digit
position. This implies that two carry propagate additions will be needed to propagate -
these carries and the method fails. In general on each alternating step (half add of
carries) a new carry can be generated for each digit position so at most N-1
unpropagated carries can accumulate at any digit position when there are N input
numbers. Therefore, the method will still need N-1 carry propagate additions in

general to propagate the carries across the final “half sum.”
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5. Multiple Input Adders.
A number of differeat multiple input adders can be built using binary trees of
two input adders. The individual adders in these trees can be bit serial or bit parallel

and they can use any addition speedup techniques such as carry look ahead addition
or ROM assisted addition. In order tc distinguish the speedup provided by multiple

input addition from the speedup provided by bit parallel versus bit serial addition, it
is necessary to study how multiple input adders built from both bit serial and bit
parallel adders compare in the solution of a suitable problem. One such suitable
problem can be stated as follows: compute the fixed point sus of £ numbers of word
length / in atime less than some constant 7 and at a cost less than some constant 2

A £ input adder can be constructed from a set of bit serial full adders with
separate 1 bit carry registers. If the basic word format of the machine is an / bit
parallel word, a parallel to serial conversion register (of length /) will be needed to
convert each input operand, and a serial to parallel conversion register (also of
length /) will be needed to convert the output. At each level in the addition tree a
single 1 bit register for each adder will also be needed to store the bits of the "partial
sum” for the next level. Since an overflow can result from any of the intermediate
sums, the carry out of each of the bit serial adders must be considered when detecting
overflow of the # input sum. An example of a such an adder tree for £ = 4 inputs is
shown in Figure 5.1

A £ input adder can also be constructed from a set of bit parallel adders (of
word length /) where each adder has a set of input registers for its input operands.
Thus at each level of the tree there are twice as many [/ bit registers as there are
parallel adders. Since an overflow can result from any of the intermediate sums, the
carry out of all the parallel adders must be considered when detecting overflow of the
£ input sum. Figure 5.2 shows a £ - 4 input adder constructed from parallel adders.

In order to achieve the fastest addition speed each parallel adder should use some
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technique to reduce carry propagation delays such as carry look ahead addition.

The bit serial adder tree shown in Figure 5.1 can be thought of as a bit serial
arithmetic pipeline containing rlogz(l')-l steps. After the setup time of rlogz( £)]
addition cycles the first bit of the £ input sum is loaded into the output register. An
additional /- 1 addition cycles are then required to determine the remainder of the
£ input sum. Therefore, the total time required to compute the £ input sum using the

bit serial adder tree (denoted Ty (B)) is

T, (B) = £(ADDA) = (/-1+[1og,(4)]) x £ (FULL ADD)

The bit parallel adder tree shown in Figure 5.2 can also be thought of as an addition
pipeline that has a setup time of rlogz( £)1 steps. In the parallel adder tree pipeline,
however, the final result is available after the setup time so the pipelining
characteristic is only valuable if there are multiple £ input additions w be
performed. Using carry look ahead addition the time required by the bit parallel

adder tree to solve the £ input addition problem (denoted Ty (L)) is given by

Ty(L) = ¢(ADDA;) = [logy(£)1x( 2[1og,(£)]+ ¢ (FULL ADD) )

The speedup of the bit parallel adder tree over the bit serial adder S, (L) is found by
dividing the time required to solve the problem on the bit serial adder by the time
required to solve the problem on the bit parallel adder. The speedup for the carry

look ahead parallel adder tree is

(/- 1+[10g,(£)1) x ¢ (FULL ADD)

rlogz(t)] x(2 rlogz(t)-l + ¢ (FULL ADD) )

Analyzing this equationi shows that the bit serial adder tree is faster only for very

short word lengths (/ < 16) when there are many inputs to be added (£ > 128). In all
other cases the bit parallel adder tree will be fas!. ¢ 1ian the bit serial adder tree. For

example for a 16 input addition of 64 bit opsrand: the parallel adder tree has a
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speedup of 6.7 over the bit serial adder tree. The advantage of the bit parallel adder
tree over the bit serial adder tree is directly proportional to the word length / and
inversely proportional to the aumber of inputs £.

In order to determine the speedup of the multiple input adders over two input
adders the time required to solve the £ input addition problem on a two input adder
must be known. Two different two input adders will be used as the base line for the
speedup analysis: a carry propagate adder and a carry lock ahead adder. The time
required to do a single addition using a carry propagate adder is /x¢ (FULL ADD)
because, in the worst case, the carry has to be propagated across the entire / bit word.
The time requirea to do a single addition using a carry look ahead adder is
2 rlog4(1 Y] + 2 (FULL ADD) assuming logic with a fan in of 4 is used. The 2 input
adders solve the problem in an iterative manner so a total of £ - | additions are
needed to form the £ input sum. Therefore, the time needed to solve the addition
problem using the carry propagate adder (denoted T[(P)) and the carry look ahead
adder (denoted T[(L)) are given by

T,(P) = ¢(ADDA ;) = (£-1)x /x¢(FULL ADD)
and

T(L) = ¢(ADDA;) = (£~ 1)x (2[logg(/)]+ £ (FULL ADD))

The 2 input carry look ahead adder will be used in both comparisons. The 2 input
carry propagate adder will be used in the speedup comparison of the bit serial sdder
tree because that adder tree suffers from the carry propagation delay. In that adder
tree the carry propagation is done in parallel bv all the adders in the tree but stifl
requires 0(/ ) cycles to propagate .
The speedup of the bit serial adder tree over the carry propagate adder
(denoted S, (B)), determined by dividing T;(P) by T, (B), is
(£-1)x 1
(/- 1+ [logy(£)])

S,(B) =

[, SRS Y

T .
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From this it is easy to see that for all word lengths 7/ and two or more inputs (£>2 )
this adder is faster than a single carry propagate adder. The speedup increases
rapidly as both /and £ incerase because the addition time of the bit serial adder tree
depends on the sum of the word length and number of inputs rather than their
product. The same general results are obtained by analyzing the speedup of the bit
serial adder tree over a 2 input carry Juok ahead adder. The speedup function does ot
increase as rapidly as it does in th: carry propagate adder case because the 2 input
carry look ahead adder time depends on the logy of the word length instead of
linearly on it.

The speedup of the bit parallel adder tree over the carry look ahead adder

(denoted S (L)), determined by dividing T (L) by T, (L). is
(£-1)

S{(L) = —m——

As with the bit serial adder tree the bit parallel adder tree is faster than a 2 input
adder. When comparing the carry look ahead adders the speedup in only a function
of the number of inputs. If the speedup comparison is done with a 2 input carry
propagate adder the speedup will be greater than that shown by a multiplicative
factor of the word length.

The final part of the problem statement deals with a cost analysis of the
different adders. A detailed cost analysis would have to involve a determination of the
hardware necessary to deliver all £ operands to the £ input adders, as well as a cost
analysis of the adders themselves, and any conversion registers needed in the bit
serial adder tree case. To get an order of magnitude estimate of the costs involved
only the adders, their necessary associated registers, and data connections will be
considered. As a basis for this comparison the cost of a single 1 bit adder, its

associatcd data lines, a carry register, and two | bit input r~gisters will be denoted
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D(BIT ADDER). The 2 input carry propagate adder is composed of / of these bit adders
except that only one carry register is needed. Thus the cast of the 2 input carry )
propagate adder D,(P) is 0(/ X D(BIT ADDER)). The 2 input carry look ahead adder is
more difficult to analyze because of the carry look ahead circuitry. If the number of
gate delays is used as a comparison factor the carry look ahead circuitry for each bit
position will be roughly as complex as the adder for reasonable word lengths and
logic fan ins. The bit cost of a carry look ahead adder will therefore be about 1.5 times
the bit cost of the carry propagate adder so D;(L) = 0(,"x D(BIT ADDER)). The bit
serial adder tree contains AL — 1 bit serial adders each with an associated 1 bit carry
register, two 1 bit operand registers. and 1 bit data connections. Thus the cost of the

4 input bit serial adder tree D (B) is 0( 4 X D(BIT ADDER)). The £ input carry look

ahead adder tree contains £ — 1 carry look ahead adders which have a cost of D,(L) so
the cost of the carry look ahead adder tree D (L) is O(&4 X /X D(BIT ADDER)).
Comparing these estimates it is easy to see that the £ input bit serial adder tree costs
0(£ { /) more than either of the 2 input adders and that the £ input bit parallel
adder tree costs O( & ) more than the 2 input adders. It can also be seen that the

£ input bit parallel adder is 0(/ ) times as expensive as the £ input bit serial adder.
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1 Introduction.

The Architecture Simulation Workbench simulator of the MPP consists
of an MPP emulator, which provides full functional emulation of the Main
Control Unit, PE Control Unit and the Array Unit, along with a program
debugger and a set of routines that control the execution of the simulator
modules and provide communication between modules. This document describes

the structure, modules and individual files making up the simulator.

Throughout this document the unix dircctory path conventions are used,
where “dir/file” means the file named “file” in directory "dir", The directories
used by the MPP simulator are:

mpp, which contains the main routines for the MPP emulator,

libsim, which contains subroutines used to simulate ARU functions,

debug, which contains the source for the debugger, and

libasw, which contains the routines used to sitnulate parallel operation of the

W - — .

simulator components, provide I/O and inter-module communication. These

routines act like a virtual operating system for the simulation.




2 Structure.

The simulator is broken up into several modules, with a module being a
distinct functional entity which operates in parallel with the other modules of the
system. There is a module corresponding to each of the MCU, PCU, I0CU
(currently a null program, since the code to use the IOCU is in place but an
emulator has not yet been written) and the simulator debugger. Since the C
programming language does not provide th-: capability of running multiple
processes, a set of routines is provi led to simulate parallel execution in the
directory "libasw". Each module acts like a separate program, with calls to the
routines in libasw for communication, I/O and synchronization. This section will
describe the libasw routines and how the modules of the simulator interact with

them.

2.1 The Simulator Operating System - libasw.

The directory libasw contains the routines which perform operating
system functions for the simulator - creation of modules, communication between
modules and I/O with the Vax file system and the user’s terminal. Also included
in this directory are routines for performing common simulator operations
involving simulated MPP memories and register sets. These routines provide a
common interface for all memory or register operations, as well as allowing the
ASW decbugger to transparently transfer data to and from the simulated

memnorics.

The file "libasw/multi.c” contains the heart of the ASW operating system -

the routines for simulating concurrent execution of the modules. Each module
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has a corresponding module descriptor, a C structure defined in h/multi.h, which
contains the module’s name, its run time stack, the address to set the Vax stack
pointer when the module is run, and information about the module's state. The
routine "sp.exec” in libasw/multi.c defines a new module. Sp_exec creates a new
module descriptor, allocates stack space, initializes the module's stack, and then
places the descriptor in the system run queue. The bottom of the stack is set up
so that if and when the main routine of the module finishes, the subroutine return
will cause control to jump to the routine sp_die. This routine disposes of the
module descriptor and returns control to the scheduler. The address of the main
routine for the module is placed on the stack above sp_die, and the initial value of
the module stack pointer is set to point to this address, so that the first time the

module is scheduled the main routine is called.

The routine "scheduler” (in libasw/multi.c) schedules the execution of
modules. Two queues are maintained for modules ready to be run and those
waiting for some event. The scheduler first checks to see if there are any
modules in the run queue. If there are, the first one is removed from the queue
and restarted. If not, the wait queue is traversed to find any modules that are
ready to be transferred to the run queue. A module is ready to run when its state
matches the system state variable and :t is not waiting for elapsed time. If there is
no runnable module, the system clock is updated, all modules have their wait

time counters updated and the wait queue is again traversed.

When a module is scheduled to run, a pointer to the module descriptor is put
in the global variable "u" and the routine "sp_swap" is called. sp_swap alters the

Vax stack frame so that the subroutine return address is substituted with the
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address saved when the module was suspended. The Vax subroutine return then

continues execution at this point.

The routines "sp_sleep” and “"wait_for" are used to suspend execution of a
module. Each of these routines updates the module descriptor to reflect the event
that is to wake up the module (either clapsed time or a change in the system
state), places the module on the wait queue and swaps in the scheduler. sp_sleep
causcs the module to sleep for a number of clock ticks. wait_for causes the module
to sleep until a specified bit in the system state is set. A module can signal an
event (set a bit in the state) via the routine "sp_ch”. The bit can then be cleared
by a module calling the routine 'sp_seen", to indicate that the event has been

seen.

Each module of the simnulator consists of a large lvop in which an instructicn
is interpreted, and then the module calls "sp_sleep” to sleep for the number of
clock ticks corresponding to the time used by the instruction. Modules are
automatically suspended when they try to perform some operation that cannot be
done at that time: for instance, when the PCU tries to take a command of the
call queue, if the queue is empty, the queue routine suspends the PCU until a
signal is received indicating something was put on the queue. (Since the signal
only says that something was put on a queue, without specifying which queue, the
routine actually has a loop to check if there is something on the proper queue,

resuspend if not, anJ calls “sp_scen” when it does get something.)

The file "libasw/imc.c” contains routines for communication between
modules. These routines are used to define and access intermodule resources.

The definition of a resource comes from the “item|NITEM|" table. Currently it
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delimits the classes "section of memory", "function”, and bit plane of data.
" goreat” makes a resource in one module available to other modules. These
resources can then be read or written to using the routines "Lread" and "Iwrite".
A resource can be loaded from or written to a file via the routine "Ifile". I file

uses the routines in "libasw/load.c” for loading and unloading resources.

The file "libasw/memory.c” contains routines for creating and using
simulated computer memories or register sets. These routines allow all memory
accesses to be done through a common interface, which checks for illegal
addresses and performs the trace and brezkpoint functions for the ASW
debugger. The PCU, MCU and ARU memories and registers are all created and
accessed with these routines. The routine "M _create" creates a memory space by
placing a descriptor for the memory in a table. This descriptor contains the name
of the memory (for example, MCU memory is called "mspace”; this name is for
printing out messages, such as when a breakpoint is activated), tre type (scalar or
array), access permission, a flag for turning on the trace function, word length,
the memory’s size, an array of breakpoints which can be set by the debugger, and
a pointer to chunk of VAX memory to be used as the simulated memory.
M_create also calls "I_creat” to make the memory available to the debugger. Once
a memory has been created, it can be read or written to by the routines "M_read”
and "M_write". "M_address" returns a pointer to some address in a memory — this
is used mainly by the array routincs hecause it is more efficient to use this pointer

to perform an operation directly on an ARU plane rather than reading it into a

bufer, performing the operation, then writting the result back.

.
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The file "libasw/queue.c” contains routines for setting up and using queues.
The routines are general-purpose; a queue can be created with any number of
elements and the queue elements can be anything desired. The routines are used
in the simulator for the PE call-queue. The file "h/queue.h” has the declaration
for the queue structure. This structure has fields for the queue element size in
bytes, the number of elements, the count of elements currently in the queue, the
head element of the queue, and a pointer to the block of memory containing the
queue. The routine queuesize creates a new queue. The routine "enq" places an
element on a queue; "deq" removes the top element. "topq" returns the top
element without removing it from the queue. "dumpq" empties the queue. When
a module calls "enq” to place an element on a queue which is already full, it is
automatically suspended, and the next time an element is removed from the
queue, a signal is sent to wake up the module and the operation is completed.
Similarly, when a module attempts a "deq” on an empty queue, it is suspended

until an element is placed on the queue.

2.2 Module Structure.
The simulator currently has 4 modules: the MCU, PCU, 10CU(null

program) and the ASW debugger.

Each module (except the debugger) is of the form:

main_routine () {

< variable declarations >

Icreat ("<module name>", _LMEM, u, u, sizeof *u);

TP —————
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This makes the module descriptor available to the debugger. By
manipulating this descriptor, the module can be stopped or started by -

the debugger, and the module status can be read.
<space> = M create ("<space>", <access>, <word length>, <size>);

<space> is the name of some memory space or register set. <access>
is some combination of M_READ, M_WRITE, M_DATA, M_INST,
M_SPACE or M_ARRAY, ORecd together. Any combination is possible,
except that M_SPACE and M_ARRAY are mutually exclusive. This
parameter specifies whether thc memory is an array or not, and what
kinds of access are permitted on it. <word length> is the length of a
word of the memory. For array memories it is in bit-planes, for others,
in bits. Note that for MCU memory this is 8, because MCU addresses are 1]
byte addresses. The fact that the MCU works on 2 bytes at a time |
simply means that all memory accesses are in multiples of 2 bytes.
<size> is the size of the memory, in words (i.e., bytes for MCU
memory, bit planes for ARU memory). The size of a memory can be )"i
changed by the debugger at any tiie. Some memories are created with 0 !
words and then dynamically expanded at start up or when loaded with

dala.

Memories declared with M_create can be accessed with the memory
management routines in libasw/memory.c, most notably M_read and
M _write. It is not necessary for each module to use M_create for every

memory that it uses, but using the memory management routines




provides several advantages. Bounds checking is done automatically, and
the trace and breakpoint facilities of the debugger can be used for every

memory (even registers) using the routines.
STATUS = SP_WAIT;
Wait for start command from debugger.
for (;; sp_sleep (< speed >)) {

Or similar loop, with "sp_sleep"” of appropriate number of clock ticks at

end. The rest of the prograin is enclosed in this loop.

while (ERROR) {

wait_for (S_CONTROL);

As long as the module status .z "error”, wait for signal.

if (STATUS & SP_SINGLE) {

STATUS |= SP_WAIT;

If single stepping, wait for control signal.

while (STATUS & SP_WAIT) {

wait_for (S_.CONTROL);

o R A S e




If status is "wait", wait for signal.

M_read (<space>, <pc>, <nwords>, &inst, M_INST);

<pc> += <nwords>;

Read next instruction, increment program counter.

The rest of the program consists of interpreting the instruction.

MLE R
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3 Debugger structure.

The debugger is the overall controller for the simulation. All 1/0 to the
terminal and the file system is handled by the debugger. The debugger controls
and monitors the operation of the MPP emulator by manipulating emulator and
system variables. Variables which have had been made inter-module resources by
"I creat" or memories created by "M_create” can be accessed by the "open” and
"assign” debugger commands. Certain emulator variables are placed in the
debugger symbol table at start up. These variables can be seen in
"mpp/mppsyms.c'.

The debugger main routine is "command" in "debug/command.c”. This
routine initializes some variables, uses the C library routines "setjmp" and "signal"
to arrange for control-C interrupts to cause the debugger to restart (this works
fine on unix but only about half the time on VMS), and then calls "yyparse", the
debugger command parser. Input to the debugger is initially taken from the file
"mpp.ini", which opens channels to emulator resources and defines several

debugger variables and procedures. Input is then taken from the terminal.

The debugger uses the routine "read_ferm" in “libasw /termio.c” to perform
non-blocking reads on the terminal. If there is no input available when

attempting to read from the terminal, "sp_sleep” is called.

The parser is in "debug/y.tab.c”. This file was created by the parser

generator program "yacc” from the file "debug/c.y", a BNF-like grammar for the

debugger command language.

a2
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The parser action is to form a parse tree of the statement, if currently inside
a block or procedure definition, add the parse tree to the structure, otherwise
execute it and print the result. The routine "eval” in "debug/eval.c” evaluates
parse trees. It recursively evaluates each sub-expression in the tree until the
entire tree has been evaluated, and passes the result to the calling program (which
is either itself, one of the routines in “eval.c” which evaluates particular functions
or expression types, or the parser).

The routines in "libasw/ime.c” are used to transfer data between the

debugger and the other modules of the simulator.
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4 Simulator execution.

The file "debug/master.c” contains the main routine for the simulator.

This routine does the following:

Calls the C library routine "signal” to set up signal handling. The "trap"
and "pipe” (unix signals) signals are ignored; the "terminate" (control-C)

signal causes a call to "quit", which halts the sitnulator.

Interprets the command line options, which, in unix fashion, are of the
form "-<option>". The options are "-i<dir>", which tells the the
simulator to use the directory "< dir>" rather than the default directory
for the debugger initialization file, “-p", which causes writes to the
terminal to be held until after a carriage return when something is being
typed by the user, and "-w", which is the opposite of "-p" (and the

default) - writes to the terminal are sent immediately.
Calls "queuesize” to create the PCU call queue.

Calls "sp_exec" to start each of the simulator modules running.

Calls "lexfile” to open the debugger initialization file.

Calls "multi_task" to take over and start running the simulator modules.
At this point, each of the modules described above (MCU, PCU and debugger)
begin to operate. The MCU and PCU arc in a wait state, waiting for input. The
user can now use dcbugger commands to load a program into memory and start

the MCU running. The PCU will wake up upon a call from the MCU.
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Each of the modules runs in a non-terminating loop, interpreting its

-
instructions, or simply idling and waiting for input. An abort command to the

debugger halts the simulation.
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b Adding a module to the simulator.

To add a module to the simulator (for example, a staging memory
emulator), one must first write a program for the new module. This can be done
pretty much independently of the rest of the simulator, with only a few

subroutine calls to connect it to the rest of the system. The call
Lcreat ("<module name>", . MEM, u, u, sizeof *u);

should be put at the top of the main routine. If any memories are to be created

using the memory routines in memory.c, a call such as
<space> = M_create ("<space>", <access>, <word length>, <size>);
should be inciuded for every such memory. This can be followed by
STATUS = SP_WAIT;

to indicate that the module is to wait for a signal from the debugger to begin

execution. The following sequence of code should be placed before each iteration:

while (ERROR) {
wait_for (S_CONTROL);

}

if (STATUS & SP_SINGLE) {

STATUS |= SP_WAIT;

}
while (STATUS & SP_WAIT) {

& W'w_"-“
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wait_for (S_CONTROL);

Finally, the program should execute “sp_sleep” after every iteration, to sleep for

the siinulated amount of time used by the module.
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