
NASA Contractor Report 172571

NASA-CR-172571
t 19860002439

INTEGRATEDANALYSIS OF ERROR

DETECTIONAND RECOVERY

Kang G. Shin and Yann-HangLee

THE UNIVERSITYOF MICHIGAN
Ann Arbor, Michigan

Grant NAG1-296
October 1985

. :t -- "- • : .., _' , :_,_

! ,f ,

L!L}_.k_:'(,f:..:.,c.1

' 'M,:'..I:'T,,]jlq, Vii.l]lf,!!;.
NationalAeronauticsand
SpaceAdministration

LangleyResearchCenter
Hampton,Virginia23665

TABLE OF CONTENTS

, 1. INTRODUCTION .. 1

1.1. Outline of the Report .. 2

1.2. Survey of Previous Works ... 4

2. ERROR DETECTION PROCESS .. 6

2.1. Classification of Error Detection Mechanisms ... 9

2.2. The Model of Error Detection Process .. 11

2.2.1. Model Development i2

2.2.2. Mathematical Description of State Transitions " 16

3. ANALYSIS OF THE IMPACTS OF ERROR DETECTION MECHANISMS 20

3.1. Estimation of the Probability of Producing and Unreliable Result 20

3.2. Evaluation of Computation Loss and Execution Cost ... 22

3.2.1. Recovery Strategies and Their Respective Overheads 25

3.2.2. Calculation of Computation Loss and Execution Cost 32

3.3. Design Consideration for Detection Mechanisms ... 35

4. EVALUATION OF SOFTWARE RECOVERY BLOCKS .. 39

4.1. Evaluation of Asynchronous Recovery Blocks .. 43

4.1.1. Modeling Assumptions .. 44

4.1. °. A Model for Asynchronous Recovery Blocks .. 45

4.1.3. The Ana|ysis of Asynchronous Recovery Blocks .. 48

4.2. Synchronized Recovery Blocks .. 53

4.3. Implantation of Pseudo Recovery Points ... 60

5. DESIGN AND EVALUATION OF HARDWARE RECOVERY BLOCKS 64

5.1. Hardware Recovery Blocks for Multiprocessor .. 64

5.1.i. Processor Module, Common Memory, and State-Save Mechanism 65

5.1.2. Rollback Recovery Operations of a Task .. 71

5.2. Rollback Propagation and Multi-step Rollback ... 72

5.2.1. Rollback Propagation and Multi-Step Rollback .. 73

5.2.2. The Detection of Rollback Propagation .. 77

5.2.3. The Evaluation of Multi-Step Rollback .. 79

5.3. The Performance of Rollback Recovery Mechanism ... 85

5.3.1. Notations and Assumptions ... 85

5.3.2. The Performance Model ... 87

6. CONCLUDING REMARKS .. 93

7. REFERENCES .. 98

8, .M-_PEN'DIX A .. 105

9. APPENDIX B .. 106

IO APPENDIX C .. 108

ii

FIGURES

• Figure 2.1. The Error Detection Process.

Figure 2.2. The Model for Error Detection Process.

• Figure 2.3. A Cycle of Periodic Diagnostics.

Figure 2.4. A Markov Chain for the Recovery from an Intermittent Fault.

Figure 3.1. Max (Pc)versus the Coverage of Single Diagnostic, _.

Figure 3.2. Max (Pc) versus tn.

Figure 3.3. The Flow Chart of Recovery Processes.

Figure 3.4. Probablistic Flow Diagram of Recovery Processes.

Figure 3.5. The Effects of Periodic Diagnostics.

Figure 3.6. Design Space for Coverage and Mean Error Latency Subject to Constaints
of PI and COST.

Figure 4.1. A History Diagram of Oecurance of Interactions and Recovery Points.

Figure 4.2. The Model or Asynchronous RB's for 3 Processes..

Figure 4.3. The Simplified Model of Asynchronous RB's for n Processes.

Figure 4.4. The Construction of State S2I and So2 of Discrete Markov Chain Ya-

Figure 4.5. Mean Value of X vs. the Number of Processes.

Figure 4.6. The Density Function of X3 f,(t).

Figure 4.7. Establishment of Recover)' lanes upon Synchronization Requests.

Figure 4.8. Establishment of Pseudo Recovery Points for Rollback Error Recovery.

Figure 5.1. The Organization of a Fault-Tolerant Multiprocessor Using a Rollback
Recovery Mechanism.

Figure 5.2. Sequences of a Rollback Recovery.

Figure 5.3. State-save Operations in One Module.

Figure 5.4. An Example of Rollback Propagation and Multi-step Rollback.

Figure 5.5. Interaction Patterns Related to Rollback Propagation.

Figure 5.6. The Rollback Propagation Network.

Figure ,5.7. Rollback Coverage vs. No. of Rollback Steps,

• Figure 5.8. Task Execution Phases.

Figure 5.9. Mean Time-Overhead vs. Error-Free Execution Time.

• Figure 5.10. Variance Time-Overhead vs. Error-Free Execution Time,

Figure 5.11. Mean Time-Overhead vs_ Total Number of Recovery Blocks for a Given
Task.

iii

TABLES

Table 3.1. Performance Expressions of Several Parameters in Error Recovery.

• Table 4.1. Mean Values of X and Li for Constant p.

v

I. INTRODUCTION

Reliability in computing systems can be obtained through two means: fault

avoidance and fault tolerance. Fault avoidance aims to prevent the occurrenceof faults

so that system operations are not disturbed.The typical methodsof fault avoidance are

the selection of reliable components and design of reliable structures. The second

approach, fault tolerance, is to fortify system operations against faults. The basic idea

of fault tolerance is to install redundancyin data or hardwarecomponents. Such redun-

dancy provides additional information with which to mask or recoverfrom the fault.

Fault tolerance is becoming important because as time progresses,morecomputers can

be expected to be involvedin critical applications where the repairof faulty components

is inhibited and/or human lives could be at stake. For this reason, specificationsof the

failure probability of computers can be expected to be stringent. Indeed, the overal!

failureprobability of such a computerhas to be much less than the failureprobabilityof

any one of its components. Simple fault avoidance is not sufficient when extremerelia-

bility is required:one requiresthe ability to tolerate faults as well.

To evaluate the extent of fault tolerance in any system, two aspects have to be

examined. One is the survivability of syst.-m which is concerned with the type and

number of faults t_:_t the system can tolerate before it fails. The other aspect is con-

cerned with how considerablyinstalled techniques of fault-tolerance affect the normal

operational characteristicsof the system. In most traditional reliability-relatedmodels,

• severalmeasures,like system reliability, availability,computation capacity or performa-

. bility, etc., are evaluated in dealing with the first problem.These modelsusually make

certain assumptions about failur_ treatment and lack the capacity to evaluate the

impacts of fault-tolerance techniques on normal system performance, and the

consequences of mis-handling of errors. It is easy to see that in some cases, a mis-

handling of failure may be more serious than the occurrence of failure. In this report, we

study the second aspect in detail and establish several models for error detection and

recovery. •

In the discussions that follow, we adopt the terminology of Randell et. al., [59]. A i

fault means a malfunction in a physical component. It does not affect the system opera-

tions before its marA_estation which we term the occurrence of an error. Thus, a fault is

not "visible" before a corresponding error is induced. An error can be generated because

of the existence of a fault or through the propagation of other errors. When an error

occurs, the system is in an erroneous state, by definition.

1.1. Outline of the Report

To exhibit fault tolerance during normal operation, the first step is to identify the

occurrence of a fault which has to be recognized through a process of error detection. By

investigating error symptoms or executing a diagnostic, the source of the error is deter-

mined. The second step is to isolate the faulty components from system and to reconfig-

ure the hardware/software so that the whole system remains or becomes operational.

Finally, the computation processes which have been contaminated by the error have to

be recovel_ed. These three steps can be realized serially. However, they depend on each

other. For instance, when error detection mechanisms are sluggish, recovery of computa-

tion becomes difficult and inefficient since the errors will have propagated over a wide

area. Reconfiguration also affects the capability to detect further errors, which ability is

necessary especially when the mission life cycle is long and there is insufficient redun-

dancy.

2

In this report, We assume that there are enough resources such that the system can

be reconfigured after an error is detected. It is likely to see that the impacts of detection

mechanisms on the system performance and the efficiency of various recovery pro-

' cedures.

In Chapter2, the propertyof fault anddetectionmechanismsarestudied. A fault

is latent when it exists in the system but does not harm any operations. Once an error is

generated,the detection mechanisms are supposed-- in contemporary models-- to iden-

tify the error immediately.Nevertheless,some errors may not be captured by these

detection mechanisms upon its appearance and may then spreadas a result of subse-

quent flow of information. The time disparity between generation and detection of an

error is called as error !atency. A model is established to incorporate both imperfect

coverage and the existence of error latency.

Because of the existence of error latency, the system or task may have to suffer cer-

tain defects, like the production of reliable computation results, the delay in task com-

pletion, etc. In Chapter 3, as well as the measures of these impacts, the design of detec-

tion mechanisms is studied which, in corporated with recovery procedures, will achieve

the specified requirements of system performance.

We also model and analyze the recovery of the computation processes that are con-

taminated by the error. Depending on the detection mechanisms used, corresponding

recovery methods will be adopted. The performance of these recovery methods is dis-

. cussed and evaluated quantitatively. Among these recovery methods, we concentrate on

rollback recovery because of its variety and the importance for distributed system. The

evaluation of software recovery blocks in cooperating processes is carried out in Chapter

4. Finally, the hardware implemented recovery blocks in multiprocessor system are

designed and analyzed in Chapter 5. The report concludes with Chapter 6.

1.2. Survey ot"Previous Works

There is an extensive literature in the area of error detection, error recovery, and

models of fault-tolerant computers. Surveys of error handling were made by Randell et

al. [59], Kim [38], Anderson [2], and Siewiorek [68] where procedures of error handling

are described. These procedures provided for error detection and recovery considered

separately. The relationship between these facts is not considered.

Ever since Ball and Hardie [5] gave the statistical results about the failures in com-

puters, many papers have appeared in the literature concerning the modeling of failures,

detections and associated performance. Gunther [33] and Shedletsky [62] assumed that

the input, signals are independent and then applied the concept of the fault set to esti-

mate the probability of error generation and error detection. Agrawal studied the same

problem using information theory [1]. Several experiments and simulations were carried

out to measure the probability of error detection and the distribution of detection time

by injecting hardware faults [8, 22-23, 48, 50-52, 75, 79]. These measurements deter-

mined the interval between fault injection and error detection, tlowever, no direct way

is known for estimating the moment of error occurrence which is within the above iater-

val. "

' About the intermittent faults, their transient behavior are assumed to have Marko-

vian properties by Breuer [11] and then extensively used by tlopkins [34], Malaiya [48-

49], Ng [55], etc. Tasar, in a literature survey of intermittent faults [74], discussed the

theoretical modeling of intermittent faults, and then pointed out the difficulty of diag-
t

nosing intermittent faults. Indeed, run-time detection is more efficient than any kind of

diagnostic in the matter of detecting intermittent faults.

There are many studies of error-correctingcodes, and self-checkingcircuits.Several

papers examined the impact of partial self-checkingon system reliability [23-24,03,70].

Bossen and Hasio [10], and Carter et al. [15] investigated the design problems of self-

" checking circuits,the placement of these circuits, and their cost effectiveness.However,

little work has been done on performancemeasuresfor function level detections. Cour-

tois presentedexperimentson a microprocessorfor the detectionof errorby the mechan-

isms of timeout and invalidop-code [22]. Andrewsdiscussedthe inclusion of executable

assertion to providerun-timeerror detection [3].The overheadsin programsize and exe-

cution time are measured in the experiments.

Among error recoverymethods, rollback recoveryhas receivedmoreattention than

any of the others. The recovery block, proposedby Homing [35]and Randell [58]has

been widely used for backwarderrorrecovery.Forthe implementationof recoveryblocks

in multiprocess systems, Merlin and Randell suggested the conversation scheme in

[54,59]. Kim proposed more flexibleprogramming structions in [40].There are mal::,'stu-

dies concerning rollback propagation and the dominoeffect, such as the detection of roll-

back propagation by Wood [80], the insertion of redundant recovery points by Kim

[37,39]and Kant [36], the s;'nchronized rollback schemes for transactions using a two-

phase commitment protocol by Gray [32],Kohler [41],and Ferran [27],and the re.qora-

tion of information for blocking propagation by Russell [60-61]. Although the proposed

refinements can be proved to avoid the domino effect, the overheads associated with

them are generally high. However,no quantitative estimates of the probability of a dom-

ino effect and the associated loss have been made so that it is impossibleto compare the

• relative benefit which we obtain from these respectiverefinements.

Several methods for analyzing the performance of rollback recovery system have

been proposed [4,19-21,30-31,78,80]. They, in general, deal with a transaction-oriented

database system and compute the optimum length of the intercheckpoint interval. The

assumptions that the checkpoints are completelyreliable and no multi-step rollback is

involved are adopted to simplify the derivations. Castillo and Siewiorekstudied the

expectedexecutiontime whichis requiredto completea task with the restartrecovery

method [16].Brodetskiy included the problemsof single step rollback and restart in [12-

14]. These studies, in general, confine to the mono-processingenvironment. For distri-

buted processes,rollbackpropagation and multi-step rollbackhave to be considered.

2. ERROR DETECTION PROCESS

When there exists a fault in a computer system, an input signal may cause the

fault to induce some errors, or it may simply be unaffected by this fault and produce a

correct output. The fault is said to be latent if it does not harm normal operations. The

time interval between the moments of "fault occurrence and error occurrei:ce is called

fault latency. For an ultra-reliable system, a latent fault is a considerable threat since it

may cause a catastrophe in the event that more than one latent fault becomes active at

the same time.

When an error is generated, it is desired that the error detection mechanisms asso-

ciated with the system identify it immediately. Nevertheless, some errors may not be

captured by error detection mechanisms upon occurrence and then spread as ::,result of

the subsequent flow of information. Thus, the damage caused by an error will propagate

until it is detected and bandied appropriately. See Figure 2.1 for a typical error detec:

tion process. The delay between the occurrenceof an error and the moment of its detec-

tion, called error latc_:cy, is important to damage assessment, error recovery, and

A B A C Error
,, v × × "'_ detected

___ Error
Time' _- latency

Duration A: A fault exists and active in the system

Duration B: The fault becomes inactive

Duration C: Errors exist in the system

Figure 2.1 The Error Detection Process.

establishing confidence in the computation results.

The error latency has been defined by Courtois as detection time [22,23] and by

Shcdletsky as latency difference [63]. Courtois also presented results of on-line tests of

the M6800 microprocessor that included the distributions of detection time for certain
i

detection mechanisms. Shedletsky proposed a technique to evaluate the error latency

based on the "fault set" philosophy and the probability distribution of input signals.

Bavuso et al. investigated the problem of the latent fault and proposed experiments to

measure the time interval between the moments of fault injection and error detection [8].

Their study indicated that a significant proportion of faults is not, detected even after

many iterations of a process.

_qacn error latency is significant, there is the possibility of the system putting out

incorrect computation results, since there may be some undetected errors at the output

phase. Also, even if the system detects all errors before the output phase, the computa-

tion achieved during the latent period may already have been contaminated and thus be

useless. In practice, error latency is never zero, and in the event of an error the whole

system is delayed by the more complicated recovery that is required to remove the con-

tamination that is spread during error latency.

To evaluate these two effects -- the probability of producing an unreliable result

and the computation loss resulting from error -- it is necessary to examine the error

detection mechanisms incorporated in computer systems :rod their respective capabilities.

One may then establish a different recovery strategy for the errors captured by each diz-

tinct detection mechanism, thus obtaining the most appropriate possible recovery per-

formance and execution cost. To evaluate error-handling capability including tradeoffs

8

between various detection mechanisms and recovery methods, it is necessary to consider

recovery performance and execution cost, taken as a whole.

In this chapter, a model is proposed to describe error detection process. In the fol-

lowing section, the classification, properties, and associated recovery methods of error

detection mechanisms are discussed. The detection model is then developed.

It is assumed throughout this report that faults in hardware components are a

potential cause of transition to erroneous states during normal operation. An error is

defined to be the erroneous information/data resulting from fault(s).

2.1. Classification of Error Detection Mechanisms

There are various error detection mechanisms which can be incorporated in a com-

puter system. The basic principle of these mechanisms is the use of redundancy in dev-

ices, information, or time. Based on (i) where th_:y are employed, (ii) their respective

recovery methods, and (iii) performance measures, error detection mechanisms are

divided into the following three categories.

1. Signal level detection mechanisms

Usually, the mechanisms in this category are implemented by built-in self-checking

circuits. Whenever an error is generated by a predescribed fault, these circuits detect the

malfunction immediately even if the erroneous signal does not have any logical meaning.

Typical methods in this category include error detection codes, duplicated complemen-

tary circuits, matchers, etc. The performance of these detection mechanisms is measured

• by the coverage, denoted by c, which is the probability of detecting an error induced by

an arbitrary fault. It is difficult to have a perfect coverage because (i) it is prohibitively

expensive to design detection mechanisms which cover all types of faults, and (ii)

9

physical dependencebetween function units and detection mechanismscannot be com-

pletely eliminated.

Since this class of detection mechanisms detects an error immediately upon

occurrence,there is no contamination through errorpropagation. This makes the subse-

quent recoveryoperations simple and effective. Two kinds of recoverymethods are suit-

able for this category; one is error masking, in which redundant information is used to

retain correctness,the other is retry, in which the previousaction is re-executed.

2. Function level detection mechanisms

The detection mechanisms in this category are intended to check out unacceptable

activities or information at a higher level than the previouscategory. Unlike the signal

level detection mechanisms, they verify system operations by functional assertions on

response time, working area, provable computation results, etc. These detection

mechanisms can be regarded as "barriers"or "guardians" around normal operations.

After an erroris generated by a fault, the resultingabnormality may growvery quickly--

the "snowball effect" [22], or "error rate phenomenon" [50J--untilit hits the barriers.

Several software and hardwaretechniques such as capability checking, acceptance test-

ing, invalid op-codechecking, timeout, and the like can be applied.

The important issues for function level detection mechanisms are error isolation

and damage assessment. Both issues depend upon system structure as well as on

inherent properties of the executed programs or tasks. When there are clear cleavages

between subsystems or sub-tasks, the effective detection assertions can be easily

declared, thus permitting greater error isolation and reducing contamination. Usually,

rollback and restart recovery methods are used to rescue failed processes. Rollback

requires state restoration such that part of the process can be resumed. The restart

10

method purgesthe old computationand then re-issuesthe same task to other non-faulty

processors.

3. Periodic diagnostics

This method is usually referredto as off-line testing because the processing unit

under test cannot performany useful task. It is composedof a diagnostic programwhich

supplies inputs such that all existing faults are activated and thus generate errors.

Severaltheoretical approaches and simulations have been proposedto determinethe pro-

bability of finding an error after applying diagnostics for a certain duration (equivalent

to the probability of detecting fault as a function of test duration) [11,29,62,75].All

these results have indicated that the effectivenessof the present .categoryis a monotoni-

cally increasingfunction of testing time. Since the time requiredfor complete testing(i.e.

ensuring 100% coverage}is in general too long, an appropriate policy of diagnostics is to

perform an imperfect test periodicallyduring normaloperation and perform a thorough

diagnostics when the system is idle.

2.2. The Model of Error Detection Process

For analytical convenience, occurrenceof faults is usually modeledas a Poisson pro-

cess. Let MTBF be the mean time between two successivefault occurrences. Also, let Fi

and p, i--1,2,3 denote the event and the probability that the fault is transient, intermit-

tent, or permanent, respectively. Naturally, pt+p2+p3---_l.When the classification of

faults into these three types is independentof occurrenceof fault, occurrenceof event Fi

can be modeled as a Poisson process with rate Pi/MTBF. Then, the following model

can be used for a separate analysis of the effects of each type of faults.

11

2.2.1. Model Development

Figure 2.2 shows our model of the error detection process. The model consists of

three parts: the occurrence of a fault, the consequent generation of an error, and the

detection of that error. Since the probability of having multiple faults at any time is

small, they are excluded from the model. There are six states in the model as follows:

(1). NF (non-faulty): In this state no fault exists in the system.

(2). F (faulty): There is a fault which is active and capable of inducing errors, but

there are no errors.

(3). FB (fault-benign): There is an inactive intermittent fault.

(4). E (error): There is at least one undetected error in the system and the fault which

has caused that error is still present.

(5). EFB (error-fault-benign): At this state the intermittent fault has become inactive

or the transient fault has disappeared after it induced an error.

(6). D (detection): At this state, the detection mechanisms have identified the error in

the system. To distinguish between whether the system has been contaminated or

not, two substates, called D 1 and D2, are included. The system will enter D I when

the detected error has contaminated at least part of the system. On the other

hand, the system enters D 2 when an error is detected before it begins to propagate

through the system. Signal level detection and diagnostics cause transitions from F

to D 2. In fact,, these transitions can be divided into two steps: an existing fault

induces an error, and the error is detected immediately following its occurrence.

Let k denote the rate of occurrence of Fi type faults, i.e., k _ p,/MTBF i-----1,2,3

when transient, intermittent and permanent faults are separately considered. Since

12

Note: The transitions between NF, F, FB, and E, EFB are
dependent on the type of fault.

Figure 2.2 The Model for Error Detection Process.

13

intermittent faults may become inactive, a benign state has to be included in the model.

Several models of intermittent fal, lts have been proposed and used for testing and relia-

bility evaluation [11.48,55,71,77]. In our model, the transitions between NF, F, FB, and

between E, EFB are used to describe the behavior of intermittent faults. For _ransient

and permanent faults, FB does not exist, implying that the transition rates between F

and FB, It and v, are zero. Similarly, for intermittent and permanent faults the rate of

transition from F to]N-F, r, equals zero.

Consider the process of generating errors by a given fault. With the assumption

that the signal patterns of successive inputs are independent, Shedletsky treated the

period of fault latency as a random variable with a composite geometric distribution for

discrete inputs or cycles [62]. [.:sing the concept_ of information theory, Agrawal

presented a formula to estimate the probability of inducing error [1]. For tractability we

have assumed in our model an exponentially distributed fault latency with rate a when a

task is executing. While the diagnostic program is running, the transition duration from

F to D2 is assumed to be exponentially distributed with parameter -,. If the diagnostic

program is executed for period tp following a normal operation period t_ and a process

swapping period t v as shown in Figure 2.3, the coverage of a single diagnostic, denoted

by _, is equal to 1-e -_tp for each execution of diagnostics.

Once the system enters E, the erroneous information starts to spread until function

level detection mechanisms identify any unacceptable result. There are two paths to D l

and they represent transition rates of 3(t) and "_(t), respectively. At state E. since the

fault still exists, it is possible that the fault is captured by signal level detection mechan-

isms or diagnostics prior to the function level error detection. We exclude this case from

14

normal process
operation swap diagnostic,w-i I I _ i

.___>

Figure 2.3 A Cycle of Periodic Dh_o_[o.

15

the model because the process has already become erroneous, and the subsequent signal

level detection has no effect on this error. (Namely, a direct transition from E to D2 is

not included.) It is also possible that there are multiple errors induced by the same fault

or by an old, undetected error when the system is in E or EFB. The [unction level

detection mechanisms will recognize that the system is erroneous regardless of which

error is captured. However, the error latency must be measured from the moment that

the first error occurs.

2.2.2. Mathematical Description of State Transitions

Let a computer system incorporate the three types of error detection mechanisms

discussed above. For notational convenience number the states NF, F, FB,

E, EFB. D1, D e with i for i_1,2,...,7. Then one can obtain a transition probability

matrix HT×7(t) by making use of the model in Figure 2.2.

-k),v -)'P 0 0 0 0
p+v It+v

r -(it+r+_z(t)+_2(l)) tt oq(t) 0 0 o2(t I

0 v -v 0 0 0 0
I2.1)

H7x7(t) _- 0 0 0 -(itq- TA-f](t)) /tq-v _(t) 0

o o o v o
o o o o o o o
0 0 0 0 0 0 0

Since the diagnostic is invoked periodically, transition rates al(t), a2(t), fl(t), and 3'(t) are

the following functions of time.

16

{ (1-c)_ if _tn+tp+tv) < t _ r_t.+tp-t-t_)+t nal(t) -- 0 otherwise

ca if r_t.+tp+tv) < t < r_tn+tp+tv)-i-t ,o2(0--- - (2.2b)w otherwise

{a if ,(t.+tp+tv) < t __ r_t.-i-tp+t_)+t._(t) = 0 otherwise

.i if n(tn+tp+tv) < t _ n(tn+tft-tv)+t n (2.2d)
"7(t) = 0 otherwise

where c is the coverage of the signal level detection; o is the transition rate that a fault

generates an error;/9 and 7 represent the transition rates that the function level detec-

tion captures errors in states E and EFB, respectively; and n is a positive integer.

Hence the state probabilities, _r(t)_[rrt(t),lr2(t),...,tr7{t)], can be obtained by solving

the following differential equation:

dMt} _ Mr)H{t); _{0)---- Tr0 {2.31dt

where :r,{t) is the probability that the system is in state i at time t. Because of the

absorbing property of D 1 and D2, one can easily see that 7r6(c_}+trT(¢c}-----1.

Assume the initial state that the system begins with is INT. When a transient or a

permanent fault occurs, the system will enter the non-faulty state again after either tile

fault disappears or the system is reconfigured to eliminate the source of the fault.

In case of an intermittent fault, it is possible for the system to be in FB instead of

NF even after some recovery procedures are successfully applied. For example, when

the fault becomes benign during the retry recovery, the system enters FB. Let 'ql {or ,%)

be the event that the system is in state NF (or FB) after recovery from an intermittent

fault. This process can be represented by a Markov chain shown in Figure 2.4 and the

17

transition probabilitiesbetween Sl and $2,denoted by 61and 62. These transition proba-

bilities are computedusing Eq.(2.3)and the correspondingrecoveryperformancewill be

discussed in the recoverystrategy of next chapter. Note that, under $2, the same inter-

mittent fault will be detectedby the signal leveldetectionwith probabilityone if it

induces an error again.

A task may start execution when the system is in any one of NF, F, FB, E, EFB

(but certainly not in D_, D2,). Using the Markov model in [18], we can calculate (i) the

mean number of visits to state i, i=1,2,..,5, before the system is absorbed into D 1 or D2

for every Fj j=1,2,3, and (ii) the mean time interval, E[X_IF_].i=1,2,3,duringwhich the

system stays in state i before transition to D_ or D2 takes place. Then, the probability

that a task begins execution when the system is in state i, is formulated as follows:

,%\',Ir,.I/ E[._IF_]
k=l for i=1,2,..,5 (2.4)

_'(01rj)=0 for i=0,7

It may be possible that the active duration of an intermittent fault increases every

time it becomes active following its first occurrence. This would imply that the tr.-usi-

tion rates between fault active and fault benign depend on the duration for which an

intermittent fault exists. In such a case, the model suggested in [49] can be used in the

above system equations.

It cannot be over-emphasized that our modeling of the error detection process is

intended to evaluate the effects of various detection mechanisms on task execution. This

fact is in sharp contrast to most conventional methods in which models have been

developed and then used to estimate the system reliability or to determine the coverage

of failure. For example, in CARE III [71,77] the error propagation rate is defined by the

18

Figure 2.4 A Markov Chain for the Recovery from an Intermittent Fault.

19

user and the model is applied to determine the coverage. Note that a transition to D l

represents the detection of error by function level detection mechanisms, whereas D2 is

reachable directly from F by signal level detection mechanisms or diagnostics. The

impacts of detection mechanisms on task execution will be reflected through Eq. (2.3)

and the state distribution _ tlFj).

3. Analysis of the Impacts of Error Detection Mechanisms

In case of imperfect coverage (i.e. c<l.0) in the signal level detection and non-zero

error latency in the function level detection, the system will suffer from tl:c following

two undesirable effects; one is the possibility of putting out potentially erroneous results

and error propagations because the system is unaware of the existence of error, and tile

other is the additional recovery overhead resulting from error propagation through the

system (luring error latency. \Yqth the model proposed in the previous section and

moderate assumptions regarding error recovery, we will in this section analyze these two

effects and then use them to specify the requirements for design of error detection. The

erT:;r recovery strategy is presented here for studying computation loss. tlowcvcr,

detailed discussions concerning rollback recovery method are given in Chapter 4 and 5.

3.1. Estimation of the Probability of Producing an Unreliable Result

The execution of a task consists of parallel and/or serial execution of processes. We

can alw:'ys partition the task into processes in such a way that every process receives all

the input data at the beginning of its execution and sends the computation result to its

successors at the end of execution. A serious situation, namely the propagation of

erroneous information through the system, appears if an error occurs and cannot be

2O

discoveredbeforethe end of execution.For convenience,let us define an unreliable result

as follows:
i..

Definition: If there exists at least one errorat the momentof processcompletion and if

the system is at that momentstill unaware of the presenceof that error,the processis

said to end with an unreliablereault.

An unreliableresult may even include the cases of producingwrong and/or no out-

puts. On the other hand, it may yield a correctoutput despite the presence of errorif

the computation is not contaminated by the error.However,the resultcannot betrusted

owing to the presenceof an undetectederrorat the moment of output. (No one would

have much confidencein the computation result underthis circumstance!)It is therefore

important to estimate the probability of producingan unreliable result, denoted by p_,

as a measureof lack of confidence in the computation result.

Let T denote the execution time of a process. If T is deterministic, Pe is given by

3

P_= _Pi {_r4(TIFj). rc_(T]Fj}},which is the probabilitythat the system is in E or
j=l

EFB at the momentof processcompletion. When T is a randomvariable with density

,-,,o 3

function f_t), then Pebecomesp,=f { _ Pi [lr4(tlF_)+ ltlF,)l}/rIt)d,.
0 j=l

When a diagnostic is scheduled periodicaily for the process, the resulting pe

becomes a function of the time interval between the output moment and the time the

previousdiagnostichas run.The shorterthis time intezTal,the more reliablethe compu-

tation result. However,becauseof the uncertainty of the processexecutiontime, it is dif-

ficult to schedule periodicdiagnosticsso that the system is tested just beforethe process

movesinto the output phase. Here,usingthe proposedmodel,we can compute the max-

21

imum value of p,, denoted by maz(pe), which occurs when the time intorval between the

process completion and the last diagnostic is equal to tn. Observe that 1-max(pc)

represents the lower bound of confidence (or sure confidence] in the computation results

and thus can be used for design specifications. Some simulation results are graphed in

Figures 3.1 and 3.2. In Figure 3.1, maz_pt) starts to decrease sharply only when each

diagnostic has a higher coverage (_>_0.95). In Figure 3.2, we compare three different

cases: (i) with periodic diagnostics and c=0.6, (ii) with periodic diagnostics and c=0.8,

and (iii) with periodic diagnostics, c=0.6, and doubled function level detection rates.

From the model, we can observe that ma_pt) is linearly related to the coverage of the

signal level detection and varies exponentially with respect to the function level detec-

tion capability. Itowever, perfect coverage and zero error latency are impossible to

attain in practice. Thus, the combination of both the signal level and the function level

detection mechanisms have to be used to reduce Pc.

3.2. Evaluation of Computation Loss and Execution Cost

The designer needs to evaluate the expected computer performance if the properties

of detection mechanisms such as coverage and error latency are known. To this end, we

have considered here two important parameters to represent the impact of these detec-

tion mechanisms on computer performance; computation loss and execution cost. Com-

putation loss -- a system oriented view -- is represented by the amount, of time used for

error handling, whereas execution cost -- a task-oriented view -- shows the effect of error

detection and recovery on a particular task in the event that an error is detected during

its execution. After the dete::_ion of an error, one may use one of several recovery

methods to rescue the executing process. Recovery strategies usually depend on the

detection mechanisms and the fault]error types.

22

_ case ,3

case 2

case 1: t n=5.0u-
Q case 2: t_=lO.O

case ,3: t_=20.O

0
•-- ; i I I I

€:_O.O0 0.20 0.40 0.60 0.60 1.00
Coverag_of slngl_ dla.

Figure 3.1 Max(p_) versus the Coverage of Single Diagnostic, _.
(X----10-6,p----0.2,_-_0.1,r_0.2,a----_O.2,/Y------0.5,-t-------O.l,ar-_20.0,c-_---0.6,T_ 100.0).

23

case 1; c =0.6
case 2; c =0.8

_,__, case ,.'3=c =0.6 and _, 7 are doubled case 1

! ! I I I
'::=0.00 10.00 20.00 30.00 40.00 50.00

P_rlod of Dla. Cycle

Figure 3.2 Max(p_) versus t..

{,k--_10-6,#--_0.2,zr-_---0.I ,r-__0.2,a_--0.2,/Y_--0.5,7_--0.1,w_--20.0,__--0.8, T___100.0).

24

The overhead and efficiencyassociatedwith these recoverymethodsare brieflydis-

cussed in the sequel. This discussionis not intended to present the details of error

recovery. Moredetailed accounts of rollbackand restart recoveriesare given in Chapter

4 and 5.

3.2.1. Recovery Strategies and Their Respective Overheads

If an erroris detected by somedetection mechanism,rollbackor restart can always

be applied to recoverthe process fromthe error.It is, however,possible to use ma_';king

or retry if the error is captured by signal level detection mechanisms. Figure 3.3 illus-

trates four recoverystrategies, their applications and their application precedencewhen

multiple strategies are used to recoverfroma singleerror. In Figure 3.4, a probabilistic

flow diagram between these recoverymethodsis presented.

Note that a transient fault may no_induce any error beforeits disappearance.The

probability of having an error, given the occurrence of fault, is P(E)----_--_)+_+p_.

Let Ri,_ and p,j represent respectively the mean overheadand the probability that the

i-th recoverymethod is applied to recoverfrom an errorwhich is generatedby Fj, where

i----1,2,3,4for masking,retry, rollbackand restart,respectively. We also define 0i,j as the

conditional probabilitythat the process is recovered,given that the i-th method is used

when Fj occurs. Let pj' be the probability of F_ given an error is detected, which are

listed in Table 3.1. We can use Figure3.4 to represent the mean total overhead of

3 4

recovery R T ----_ Pi' (_ Pi.iRid)for everyerror detection.
j--I i=1

26

Anerror Is
detected

signal level function leve

; No

Retry 1

Figure 3.3 The Flow Chart of RecoveryProcesses.

28

p,v /.,,_,(t)

1-0_, restart
function level 1-P,u f (u)= _ O_j

detection / rollback

_ ,-°_, -o,o, _)-_r-'°_'_
error _ unsuccessful retry 1-p_ rollback process

detected - _ ,f recovered\

signal level (_ successful retry

detection __. _t.i \

error-masking

u: recovery delay
f (u): density function of 1=

nl=n_=l , and Prob(r_=n)=62(l-62) _'=

Figure 3.4 Probabilistie Flow Diagram of Recovery Processes.

Ft F2 F3
(transient fault) (intermittent fault) (permanent fault)

_/ PtPE1 P2 P3
P(E) P(E} _ E)

rr7(_[Ft) (l-pl):rT{_[F2) (1-pl):rT(_lF._):2,i (1-r_)
PE t

02,i l-e -rt' 0 0

tf

R2,s tr "7 tr
o2

zr6(_IFt) ',1-p._){:rs(oolF2)+p2,e(1-02,2)}:l-p.v){_'6(_lF3)+p2,3(1-02,3)}
P3j l_psv) { PEt +p2,t(l_O2,t)}

0,3,: 1 rr6(°<_lF't)D, I-rc6(°°IF?)D2 l-:r6(°clF's)Ds
PE_

|el O0

whereD,= f 1-P46(tlF')dt-f._,6(tlF,)dt,and PE:=_r6(o_lF,l+,rdo_lFl).
0 tch t_k

Table 3.1 t'erformance Expressions of Several Parameters in Error P,ecovery.

28

1. Error Masklng

Most error masking methods employ error-correcting code in data transfer,

memory, and arithmetic units. Error masking is the most efficient recovery method

when it can be applied successfully. In fact, we can regard in this case that the error has

never occurred since the system still provides correct results despite the existence of

error. Thus, one can assume Rij=0 , i.e., zero recovery overhead, and 01._=1. The pro-

bability that error-masking is used, pl.l=plrr7(oo[Fl)(c_/(_+r)) and pl.i----plTrT(OOlFi)for

all j_2,3, depends on the conditional probability that error occurs due to the faults in

the units with error-correcting code and can be corrected by the error-correcting code,

' given that the error occurs.

2. Retry Recovery

Retry can be attempted at various levels, e.g., at the levels of micro-instruction,

instruction, or I/O operations. Retry is useful when error has not, propagated yet at the

time of detection. Re-executions of the same operation can produce a correct result, only

if the related fault is transient or intermittent and disappears during retry. Ideally, the

system should apply retry recovery until the fault disappears if it is transient with a

short active duration. For permanent faults, retry recovery is not helpful. }towever,

after the detection of error by signal level detection mechanisms, it is very difficult, if

not impossible, to tell the type of fault. Moreover, if it is transient, it is impossible to

predict when the fault will disappear.

Due to above reasons, assume the system will retry automatically for a fixed dura-

tion t r upon detection of an error by the signal level detection. Then, we can obtain

29

mathematical expressions of P2j, 82d, and R2j for j=1,2,3 as listed in Table 3.1. Note

that the second subscript j represents here the fault type j.

Recall that if an error generated by an intermittent fault is recovered successfully

by retry, the same fault will be detected again by the signal level detectionwhen it

becomes active and induces error again. Thus, there are 1/62 retries on the average

among which application of tile last retry will be unsuccessful. In case of intermittent

faults the transition probabilities, 61, 62, between S t and S2 are expressed as follows: (See

Section B for the definition of St and $2.)

6x ____:7(c_1r2)(l_pl) (1_, -t_#) (3.1)

62 ___e-l''. (3.2)

From Eqs. (3.1) and (3.2), it is easy to see that though it is simple and practical,

the above retry method is not intelligent. It may be more desirable to design a retry

mechanism which can recognize the intermittent nature of the fault following several

consecutive, successful retries for the same fault. Since retry mechanism observes the

active duration of a fault, and the detection mechanism gives the duration of fault

occurrence, it, is possible to measure the fault characteristics. However, the information

obtained is not complete because the failure of retry. It should be attractive to find a

combined retry and estimation methodology.

3. Rollback Recovery

Rollback recovery, can be regarded as a type of retry which needs to save process

states during normal operation. When an error is detected, the process rolls bacl_ to one

of the previously saved states. The original idea of rollback recovery is accommodated

with acceptance tests for software reliability [35,56]. Here, for rollback recovery we

30

• assuwe periodic insertion of checkpoints such that the processcan be resumedat any

one of these checkpoints. Let toyand tchbe respectivelythe overhead for saving states

and the interval between two adjacent checkpoints. Then, the percentage of the over-

head for establishing checkpoints is to_/(to_+tch). Note that rollback recoveryfails if

the states saved are destroyedby a fault, or if the states are contaminatedby error(e.g.

due to the presenceof errorduring the state saving).

The time lost in rollback recoveryis the sum of the computation undone and the

setup timex for rollback, tb.When we considerthe re-occurrenceof errorduring recovery,

it is extremely difficult to determinethis time loss. However,when the fault, occurrence

rate is very small (typically 10-6 per second for the IC's manufactured today), we can

assume no error occurrenceduring rollback. We also assume that only the most recently

saved state is kept in orderto minimizethe storagerequirementsfor checkpoints. Then,

the time loss in computation simply becomesthe interval between the moment of the

last state saving and that of the erroroccurrence which cannot be recoveredby error-

masking or retry. Since the MTBF is in general much greaterthan the inter-checkpoint

interval tch,one c_n assume that the occurrenceof rollbackrecovery is uniformlydistri-

buted within the inter-checkpointinterval,given that it is applied. Let p,_be the proba-

bility that the saved state becomesinaccessibleor unusable and p4dtlF_)be the probabil-

ity distribution function of error latency for fault type Fi, i.e. the probability that the

system is in DI at time t when the system starts fromE. p4dtlFj) is equal to rr6(tlFj)in

Eq. (2.3) when _(0)_-[0,0,0,1,0,0,0].Then, we obtain P3,i,03j and /73./as listed in Table

3.1.

1Thesetuptimesforboth roi|backandrestartrecoveriesare neededfor hardwarereconfigurationand
softwareinitialization.Thehardwarereconfigurationis to eliminatethesourceof error{i.e.fault(s))forthe
residentprocessin thefaultymoduh.

31

4. Restart Recovery

When restart recovery is applied, the whole processis re-executedfrom the begin-

ning to recoverfrom an error. Since the systemcan be reconfiguredto replacethe faulty

component, restart recovery willeventually succeedas long as there are enough resources

to replace faulty components. Hence, we have 04,j=l and p4,j=l - Pt,i- P2,j02,i- P.s,jO._,r

The time wasted in each restart is the sum of the setup time for reconfiguration and

reinitialization, and the time of error detection, Ta',measured from the beginning of pro-

cess execution. For simplicity, we assume that the moment of restart recovery is uni-

formly distributed within the task execution period. Thus the density function of the

overhead involved in restart, faart,_(t) is equal to 1]T for t,<t<_ T+t,, and R4,i = t,+T/2

where t8 is the setup time for restart. Details of the effects on task execution time by

successive restarts can be found in [45].

3.2.2. Calculation of Computation Loss and Execution Cost

Now with the preceding overhead analyses, consider the computer time that is used

for actual computation instead of error handling. The average computation loss due to a

single error detected, denoted by CL, has to include the overheads due to periodic diag-

nostics, periodic insertion of checkpoints, and recovery in the event of error. Define)1 as

the percentage of the average computation loss for each error detection, which is

expressed by:

CL 3 4

't _ I/(X _E)) -- _' + >,:_E} _Pi' (_Pi, ini, i) 13.'_Ii=l i=1

where 1/(), P(E)) is an approximate mean time between two successive error detections,

and a is the percentage loss due to periodic diagnostics and insertion of checkpoints and

32

is given by:

tp+ tv toy

tn-F tp't-t_ toy+ tea

The above equation indicates that the time wasted for executing periodic diagnos-

tics and checkpointing is a dominating factor in the total computation losswhen the sys-

tem is highly reliable(i.e. the system has a small),). In Figure 3.5, plotted are the simu-

lation results for the percentage of the total computation loss, I/, and the mean loss in

recovery,RT. The reduction in recoveryloss by periodicdiagnostics is small because(i)

the diagnostic is useful only if it can capture faults beforethey induce errors, and (ii)

the diagnostic is incapable of detecting an intermittent fault when the fault is inactive.

(iii) even if the diagnostic identifies a fault, the system still has to reconfigureor retry to

eliminate this fault. Detection mechanisms other than on-line diagnostics are more

advantageous due to their favorableeffects and overheadson the computer performance.

Observethat this time loss is related to the system, not to tasks to be executedon

the system. One can thereforeregard this as the system overhead. On the other hand,

tasks executing on the system may suffer fromdelays in execution due to errordetection

and recoveryoverheadwhich are ta_k-specific. When a task is time-critical,the delay in

its execution may cause a catastrophe (e.g. loss of human lives, economic and social

disaster, etc.) if the execution is not completedwithin a specifiedtime limit called hard

deadline, denoted by ta'ea#.This was termed dynamicfailure in [43,65]. Also, the running

cost -- the cost for use of computer as well as controllingan actual system which uses

the computed results -- will certainly go up with the increaseof the execution delay. In

case of error, based on Figure 3.4, we can write the probabilitydensity function of the

execution delay due to the recoveryfrom an Fi type fault, .fr(tlFi,T}, where T is the

33

Parlod of Dla. CyL[e

Figure 3.5 The Effects of Periodic Diagnostics on Percentage of Total Loss (case 1), %
and Total RecoveryLoss (cue 2), RT.
(X= 10-6,#=0.2,w=0.1,r=0.2,e=0.2,_=0.5,'/=0.1,w=20.0,_=0.8,c=0"6,
T--IO0.O).

34

needed time for task completion under a fault-free condition. These density functions

are listed in the Appendix A. Note that for intermittent faults the task may be com-

. pleted with successful retries. In the expression for .fr(tlF2,T) given in the Appendix A,

for simplicity we used the upper bound of error handling delay; that is, whenever an

erroroccurs,the task completion is achievedwith rollbackor restart recovery.

Since the overhead associated with checkpointing and diagnostics has to be

included, the time needed for task execution under the fault-free condition becomes

_'----(l+a)T. For any computation process,the delay in execution may induce an extra

cost. For example, in real-time applications this cost may be the additional enerD"or

fuel used for the controlledsystem, the consequenceof longer responsetime. etc. Given

a cost function for the execution time t, _t), which is a monotonic non-decrcasingfunc-

tion (see [43,65]for an example of its detailed derivation),we can obtain the total execu-

tion cost, COST, and the probability of dynamic failure, Pdyn, as below.

3 oo

COST= X-]pj f. qt) f,(tlF,,?")dt (3.4)
j=l T

3

p_= _pj f f,{tlF,,:r)dt (3.5)
j,=! t_.a4

3.3. Design Consideration for Detection Mechanisms

Consider the performance and reliability measures, p_, PaT, and COST. These

measures quantitatively represent the consequencesof imperfect detection mechanisms

and then reflect the effects of detection mechanismson the system performance.In this

section, these measuresare used to addressproblemsin the design of detection mechan-

isms.

35

Suppose that the specifications of performance requirements and application tasks

are now given. To provide the required fault-tolerance in the design, we have to answer

the following two questions: (i) what kinds of detection mechanisms should be incor-

porated in the computer system to be designed?, and (ii) what are their properties in i

meeting the specifications? In other words, we need to know the coverage by signal level

mechanisms, the error latency in function level mechanisms, and the period of diagnos-

tics. Suppose for instance that the real-time operations and time-critical processes arc

now our major design concern. The specifications must include the limit for the proba-

bility of failure as well as the maximum allowable extra cost caused by shortcomings of

detection mechanisms.

According to our simulation results in Figure 3.5, the avoidance of error by diag-

nostics appears useful only if the cycle time of diagnostics is not much greater than tile

fault's active period, which is usually small for transient and intermittent faults. "|'his

implies that a frequent application of diagnostics is needed. However, in such a case, the

computation time wasted for executing diagnostics as well as the total execution cost

increases prohibitively, making the periodic use of diagnostics during normal operation

less useful. It also indicates that the probability of capturing intermittent faults and the

improvement of loss in recovery by diagnostics are small. Consequently, on-line diagnos-

tics are not useful for time-critical applications.

As a conservative measure, the probability of failure due to imperfect detection

mechanisms, denoted by Pl, can be represented by the sum of p_ and Paw- From the

model, one can see that p, is dependent exponentially on error latency but linearly on

coverage, c. That is, the decreasing of error latency has a greater impact on p_ than

does the increasing of the coverage. However, an improvement in the coverage will

36

decreasethe probabilityof errorpropagationand thus reducethe recoveryoverhead. In

Figure 3.6, curves with constant Pl and constant COST are plotted, where C_t) is

assumed to be (t-_c)"_for t>__7". It showsthe combination of the coverage and the mean

• error latency required to attain Pl and COST, below the specified values. The area

under both the constant p! and constant COST lines indicates the design space for

selecting the coverage and the mean error latency? It is clearly that perfect signal level

detection is within the design space, though it is impractical. By contrast, the combina-

tion of small error latency and zero signal level detection may not satisfy the specifica-

tions. This can be seen easily from the fact that with a zero signal level detection, every

recovery must require rollbacks and/or restarts. The use of rollbacks and/or restarts for

recovery is more time-consuming than error-maskingand retry which are available only

to signal level detection mechanisms. Hence, signal level detection mechanisms must, be

included in the design. The cu:ves with constant C'OSTshow that the average exec,-

tion cost is insensitive with respect to the coverage of the signal level detection mechan-

ism. This is due to the fact that all errors induced by intermittent or permanent faults

have to be recovered by rollback or restart whatever the nature of the error detection

process, and that because of the overheads imposed on saving states, recovery points

have to be placed relatively far apart. It is important to recognize that an effective

recovery method willhave severe impact on the delay of task execution.

The feasible design space indicated in Figure 3.6 will provide the requirements in

detection mechanismsfor certain system performancespecifications, tlowever,it is very

difficult to objectively determine an optimal combination of signal level and function

• level detection mechanisms.The main reason for this is that (i) the coverage has to be

2 The mean error latency is equal to the mean time needed fromstate E to state D 1 and will reflect
the capability of function level detection mechanisms.

37

=i

. y p/_ 0.75 × lo -s

_ 0.0497

i
I I I I I I

'='0.,€0 0.50 0.6o o:70 o.eo o.so CO0
CoverageoF signal level detection

Figure :_.6 D_'._lg::y'i.':,ccf._r Coveragc and Mean Error l.atency Subject to Constraints of
pl and COST.
(With the same system parameters as in Figure 3.5 and Tale€T=IS0,p,_=0.2).

38

related to actual hardware costs, (ii) error latency and performance of function level

detection mechanisms are application-dependent, and (iii) the cost of fur,ction level

detection mechanisms, especially, software checking, is neither well structured nor well

understood at present.t

4. EVALUATION OF SOFTWARE RECOVERY BLOCKS

The recovery block (RB), proposed by Horning [35] and Randell [58], has been

widely used for backward error recovery. It is a sequential program structure that con-

sists of an acceptance test, a recovery point(RP), and alternative algorithms for a given

process. A process saves its state at a recovery point and then enters a recovery region.

At the end of a recovery block, the acceptance test is executed to check correctness of

the computation results. In case an error is detected during the normal execution or the

computation results fail to pass the acceptance test, the process rolls back to an old

state saved at the previous RP and executes one of the other alternatives.

Unfortunately, however, for cooperating concurrent processes the rollback of a pro-

cess may cause other processes to roll back (this phenomenon is called rollback propaga-

tion) because of interprocess communications and imperfect checking of global correct-

ness. Moreover, rollback may propagate to further RP's since recovery points of indivi-

dual processes may not provide globally consistent states for all processes involved. This

rollback propagation continues until it reaches a recovery line at which globally con-

" sistent states for all involved processes do exist. In the worst case, an avalanche of roll-

back propagation, called the domino effect, can push the processes back to their begin-

nings, thus resulting in loss of the entire computation done prior to the occurrence of

error.

39

A detailed description of the domino effect can be found in [59]. For convenience

let us consider Figure 4.1 to visualize rollback propagations. Process Pl begins to roll

back because of unsuccessful acceptance test ATe. Due to interprocess communications

the rollback P1 propagates to the other two processes P2 and P3. Eventually, the whole

system has to restart from recovery line RLz, undoing the entire computation between
t

RL 2 and ATe. The time interval between the restart point following an error recovery

and the time point at which an error is detected or the acceptance test fails, called the

rollback distance, can be used to represent the computation loss in rollback error

recovery. The rollback distance may be unbounded in the case of the domino effect.

The domino effect is the major obstacle in implementing the recovery block scheme

for concurrent processing. The process designer is able to predict neither the time of the

occurrence of process interactions nor that of the appearance of recovery lines. In addi-

tion, it is not desirable to randomly place recovery points and acceptance tests without

considering process characteristics. Thus, it is impossible to avoid the domino effect

only by appropriate placement of recovery blocks and it is possible to have a disaster

such as unbounded rollback propagation, a large rollback distance, and a great number

of largely useless recovery points occupying large amounts of memory space, etc. Furth-

ermore, detection of rollback propagation and determination of recover3' lines will

become more complex though they can be made in a centralized [44-45]or decentralized

manner [54,78,80].

Several refinements have been proposed to overcome the drawbacks in the recover5'

block scheme. One approach is to put concurrent processes into a controlled scope, either

to synchronize the occurrence of acceptance tests or to direct process interactions. For

the former, Randell [58] has suggested the conversation scheme which requests every

40

P l Pa Ps

Lime I

RP Il ,, / - - - "CI"7- - -, _, 7_'
R L I HII Tr

•,, RH _

['-"7

RPd

Pi fads at A1'_ interaction

l

Figure 4.1 A History Diagram of Occurrence of Interactions and Recovery Points.

41

cooperating concurrentprocess to leave its acceptance test at the same moment (called

test line]. He has also proposeda language structure in an abstract form for the conver-

sation scheme. Other mechanizations of the conversation scheme on the basis of the

same concept but with more flexibilityhave been devised by Kim [40]. Synchronized

rollback recoveryschemes for transactions using a two-phase commitment protocol or

transaction ordering are also studied in [27,32,41]. Russell has proposed that informa-

tion be retained for directed interactions from producersto consumers so that rollback

propagation can be blocked [60-61].Another approach is to save additional states based

on the occurrenceof interactions; for example, the branch recoverypoint [39] and the

system defined checkpoint (SDCP) [36].

In this paper we propose to employ p_eudo recoverypoints3(PRP's) to alleviate the

rollback propagation problemby allowing a process to restart at a PRP in case the pro-

cess is forced to roll back by others as a result of rollback propagation. Hence, we can

classify these refinements into two categories, synchronized recovery block8and pseudo

recovery point_, providing a contrast with the third category called a_ynchronous

recovery block#.

To implement a rollback error recovery scheme, we have to weigh trade-offs

between these threc categories and the characteristics of concurrent processes.A satisfac-

tory scheme should have such features as a low (acceptable) delay in process completion

due to rollbacks, the preservation of process autonomy in concurrent processing, and

programmer transparency. Therefore, optimal solutions may be a combination of these

3 We call it a pseudo recovery point(PRP) since there is no acceptance test before the saving of pro-
cess state at _ PRP. The states recorded at PRP's may have been contaminated and thus can not be used
to recover a failed process. But PRP's can be used to prevent rollback propagations due to interactions with
the faulty process as we shall see in the following.

49.

three categories. A quantitative analysis has to precedeany of such optimal solutions.

For example, it is necessaryto determinethe mean amount of computationundone in

case processesroll back, the optimal interval between two successive synchronizations,

the mean size of memoryspace requiredto save states, etc. However,becausethe pro-

gram behavioris unknownand its executionproceedsstochastically,accuratemodelingis

in generalvery difficult if not impossible.

In the following,_e will develop modelsto quantitatively describe the characteris-

tics of rollbackrecoverysche:nes as well as their effectiveness.

4.1. Evaluation of Asynchronous Recovery Blocks

Let us consider the history diagram in Figure 4.1 to illustrate the activities ct"

cooperatin_ concurrent processes Pi, i=1,2,...n. Process P_ establishes its jth recovery

point R_ I without synchronizingwith other processes.Interprocesscommunications are

represented by arrowed horizontal lines. Let set AC{1,...,n}, i.e. a subset of concurrent

processes. Then one may find a combinationof R_ for all lEA, which forms a recovery

line for set A, denoted as RL_ for the rth recoveryline. For simplicity, superscripts in

representingrecovery lines will be omitted in the sequelas long as that does not result in

ambiguity. The interval between two successiverecoverylines RLr and RLr.I in process

Pi is a random variable and denoted by)_r. Since a recovery line providesgloballycon-

sistent states to all membersof processset A, it is reasonableto assume that X'r is sto-

chastically identical for all lEA. Thus, X, is used to representthe interval between the

rth and (r+1)th recoverylines.

43

4.1.1. Modeling Azsumptlons

We make the following assumptions in our subsequent analyses.

A1. Autonomous Pro=e_ses: Cooperative autonomy is regarded as the most important

requirement in distributed processing. Each process should be executed according to

its own program and environment, almost as if there were no process to interfere

with. Thus, processes will transmit messages or establish their recovery points

independently of other processes.

A2. Perfect Local Acceptance TeM: Acceptance testa should detect all errors within the

local process during the execution of recovery blocks or, at least, guarantee that the

computation results have passed acceptance test are "acceptable" [59].

A3. Probability Distribution of Interactions: To describe the occurrences of interactions,

for both tractability and simplicity, we have adopted here the concepts of constant

reference rates in the multiprocessor and of exponentially distributed intervals

between two successive message transmissions in the computer network. The inter-

val for two successive interactions between Pi and P1 is assumed to be exponentially

distributed with mean Ill; 0 and _ii-----niifor all i,j=l,2,...,n and i_j.

A,t. Con._istent Communications: Let two messages m a and mb be sent from Pi to Pi"

Consistent communications should satisfy : (i) every message sent from Ps to Pi will

be received eventually by Pj, and (ii) maand m6 are received by Pi in the same order

as that they are sent.

At3. Distribution of Recovery Point_: Because of process independence and the uncer-

tainty of execution conditions, the appearances of recovery points are random and

difficult to model. To avoid complexity, establishment of recovery points in a pro-

cess is assumed to be an independent Poisson process with parameter S'ifor process

44

4.1.2. A Model for Asynchronous Recovery Blocks

Since individual recovery points by themselves may not be sufficient in rollback

recovery due to the possibility of rollback propagations, we consider in this paper only

the formation of recovery lines for asynchronous recovery blocks instead of separate indi-

vidual recovery points. The requirements of a recovery line for processes Pi, for

i=1,2,...n, can be stated as follows:

1. Each recovery line has to include one recovery point R_ for every process Pi.

2. Let the moment ofestablishmentofthejthrecoverypointinprocessPibe t[RI_]

and lett_i be the moment of theqth interactionfrom P_ to Pi • For everypail"

(RP_, RI_;) in a recoveryline,theredoes not existan integerk such that

ti€ E[t[R_],t[RP_11irtin]_<tire;] {otherwise,ti€ E[t[R_ 1,tin,ll).This

implies that no communication from Pi to P_ (and vice versa) can be sandwiched

betweent[Rl]andtiRl,:].

The basic idea underlying the model is to trace the occurrence of both recovery

points and interactions. Based on the assumptions, random variablc Jr; can be modeled

by a continuous-time Markov process starting from a recovery line (RLr) and ending at

the next recovery line (RLr+l}. For a set of processes, nA={P,[iEA} where A={ 1,2,...,n},

two types of states are defined:

(a). End states Sr and St+l: transitions start from Sr where all processes have formed

the rth recovery line, and end at Sr+1 upon establishment of the (r+l)th

recovery line.

45

(b). Intermediate states S = (zl, z2, . . . ,z,), wherez;_-0 if the previous action of Pi

was an interaction, and z,_-I if it was establishmentof a recoverypoint.

Note that both S r and St. t are equivalent to state (1,1,...,1).

Occurrences of interactions and recovery points in a process make the system go

through these states. Note that both Sr and Sr+t are equivalent to state (1,1,...,1). We

can establish the followingtransition rules:

R1. The systcm goes to statc (zl,..,zi_l,l,zi+l,..,z,) from state (zl,..,zi_t,O,zi+l,..,z,)

with rate fi upon establishment of a recovery point in Pi.

R2. The system leaves state (zl,..,zi_i,l,zi+ t.... Zi_l,l,zi+t,..,z,) and enters state

(zl,..,ziq,O,Zi.l,..zj_l,0,Z_+l,..,z_) with rate _ij if there is an interaction bctween Pi

and Pi"

R3. The system arrives at state (zt,..,zi_l,0,z,+t,..,z,) from state (zl,..,zi_l,l,zi+l,..,z,)

with transition rate _ to,)where Bi={j [zj=0, jygi and lEA}.
j__B,

R4. The system can transfer directly from state Sr to state St+1 with transition rate

n

fk-
k-_---1

Under these transition rules a Markov model is developed for three processes P1, P2

and P3, and presented in Figure 4.2. The single-arrow lines are unidirectional transi-

tions. The double-arrow lines are bidirectional transitions in which left-hand side param-

eters represent leftward transition rates and right-hand side parameters rightward tran-

sition rates. The total number of states for a set of n processe3is 2"+1.

46

_13
to S,+1 ,

/¢23 _23,S'2

entry -' ,fl f_ from _qr

* to state (0,0,0)

Figure4.2 THeModelof AsynchronousRB's for 3 processes.

47

When f,_--fi----fand tc,i=t¢ for all i,] E A, the model can be simplified since all

intermediate states S={xl,z2, . . . ,zn} containing exactly u l's in (zl,zz, . . . ,z,) can be

replaced by a single state Su where u=0,1,2,...,n-1. A simplified model is obtained under

the following transition rules and presented in Figure 4.3.

RI'. For u = O,1,...,n-1 , the system will move to state Su+t from state Su with tran-

sition rate (n-u)f when a new recovery point is formed.

R2'. For all u > 2, the system is able to leave state Su for state Su-2 with rate

u(u-1)t_
2

R3'. For all u > 1, there is a transition from state Su to state Su-1with rate u(n-u)t:.

R4'. The system can transfer directly from the entry state, St, to the terminal state,

St+l, with transition rate n_'.

4.1.3. The Analysi_ of Asynchronous Recovery Blocks

With the model developed above, we can characterize the behavior of asynchronous

recovery blocks in terms of the degree of interprocess communications and the distribu-

tion of recovery points. With the exponentially distributed interprocess communications

and recovery points, Xr becomes stochastically identical for all r. Let X denote a ran-

dom variable representing the interval between two successive recovery lines, L, the

number of states saved in process Pi during interval X. The probability distribution of

X and the mean Value of L i are derived below.

(a). The distribution of X

48

entry _, ___......_

(n-l)_ 2(n-2}_ .--_-- _ - 2(n-2__)_: ,, (n-1)_: _.

1(_lXn-2)_

Figure 4.3 The Simplified Model of Asynchronous RB's for n Processes.

49

Let the state space q/={0,1,2 ,m} where m=2 n be the set of states of the preced-

ing continuous-time Markov process with the following convention for numbering states:

(a). Sr _ state 0,

fi

(b). an intermediate state (zx,t2, . .. ,z,) _ state (_ zi2 i-x +1), and
/=--1

(c). St+ 1 "---*state m.

Then, the Chapman-Kolmogorov equation becomes

d

d--t_t)= _t)H, (4.1)

where H s is the ((m+l)X(m+l)) transition matrix [h_(u,v)] in which the (u,v) element is

the transition rate from state u to state v, and :r(t) is a vector whose kth element is the

probability that the system is in state k at time t. The initial condition is

r(0)=[1,0,0...,0]. The interval between two successive recovery lines, X, is equal to the

time needed for transition from state 0 to state m. Therefore, the density function of X,

namely f_(t), is given by

f:(t)=4t rrm(t) (4.2)

(b). The mean value of Li

Since we are only concerned with the number of recovery points established by pro-

cess Pi during interval X, a discrete Markov chain is used. To compute the mean value

of Li, a new Markov chain, denoted by Yd, is constructed based on the previous model

with the following two steps.

5O

S1. Convert the previous model to a discrete model:

The new chain, Y_, has the same states as the previous Markov process. Let

tt fl n

G "=--_ _ _,j + _ ft be the normalization factor. The transition probability

from state u to state v in Ya is equal to: for u, v = O,1,...,m, p(u,v) = h(u,v) if
. G

fl

u#v, and p(u,u)-_ 1 - E p_u,v)
v_-t,v#u

$2. Decompose states of discrete model:

Arrivals at a state Su _ (21,_2,...,zt,...,2n) where zj-_--_lcan be grouped into two

classes. One is formed as a result of the occurrences'of RP's in P_ and the other is

formed as a result of interprocess communications and establishments of RP's in

processes other than P_. Accordingly, the state Su=(Zl,x2,...,zi, . . . ,Xn) with z,'-_-_l

can be split into two states S_ and S_wrepresenting the two classes, respectively.

Both states have the same departure processes as that of Su. However, all arrivals

at state Su due to the occurrence of recovery points in Pi enter state S_ whereas

all other transitions are made to S_u. Hence the number of RP's associated with

state Stuis represented by that of arrivals at S_.

Figure 4.4 shows the conversion and the split of state $2 ----(1,0,0) of the Markov

model for the three concurrent processes in Figure 4.2. With the new discrete model, Yd,

we can calculate the the mean number of visits to state S_ denoted as Nst, and the

mean value of Li using the following relationship:

E(L,).= E E(Ns:) (4.3)

where q y, is the state space of Yd.

51

_23
from state So

Zzs from$8'andSe"

from& toSz fZ_ X23

to$4' fromS4'and$4"

rt 1"t 7%

:. _=1

Figure4.4The ConstructionofStateS_and _ ofDiscreteMarkovChain Ya.

52

Suppose process Pi detects an error or fails the acceptance test at one of its

recovery points RP_, where j-----1,2,...,Li.The rollback of Pi may propagate to k processes

in the process set, n A = {P_ lEA} where A_{l,2,...,n}. Let D_ be the rollback distance

associated with the k processes and RP_ for j=l,2,..,Li. Then, X represents the

fl n fl

supremum of these random variables, i.e., D_. Let p----(Y_ _ _ii)/(_ _k) which

represents the relative ratio between the density of interprocess communications and

recovery point establishments. In Figure 4.5, the mean values of X are plotted as a func-

tion of n for different values of p. It shows that X increases drastically when there is an

increase in the number of processes involved in the rollback recovery. The density func-

tion of X, fz(t), is plotted in Figure 4.6. For all the three cases in Figure 4.6, there is a

sharp pulse near t=0, which is due to direct transitions between S, and St+1 and a

longer transition time needed once the system enters intermediate states.

With a fixed value of p and varying values of f's and _'s for three processes, we

have performed computer simulation and the results are tabulated in Table 4.1. The

minima of X and L i occur when the distribution of recovery points among these

processes is uniformly balanced (i.e., fl-----f2-----fs).The distribution of interprocess com-

munications does play an important role in determining the probability of rollback pro-

pagation but has little effect on X and Li once the set of processes involved in rollback

recovery is determined.

4.2. Synchronlzed Recovery Blocks

The simplest way of avoiding unbounded rollback propagation is to synchronize

the establishment of recovery points during process execution. In this method, interac-

63

t--!

(Xl .

p=l.O

r_

p=0.5

€:= I I I ! I
41.00 2.00 3.00 4.00 5.00 6.00

NUMBER OF PROCESSES (n)

n n

p=(E E
(= IJ"=l.j _ /€=1

k_i=Aforalli,]and/_,=/_2=....=/_=1.0

Figure 4.5 Mean Value of X vs. the Number of Processes.

54

o

I , case3:(/_,,/_2,/_)=(0.6,0.45,0.45),(Az2,)_2._,A,a)=(O.75,0.75,0.75)

•

_ ' -'___ . _.,

I

=0.00 0.40 Ti_[0 120 1.60 2.00(NORMALi'ZED)

" Figure 4.0 The Density Function of X, f_t).

55

(Pl,P2,P3) (1.0,1.0,1.0) (1.5,1.0,0.5) (1.0,1.0,1.0) (1.5,1.0,0.5) (1.5,1.0,0.5)
(_12,_2_,_13)(1.0,1.0,1.0)(1.0,1.0,1.0)(1.5,0.5,1.0)(1.5,0.5,1.0)(0.5,1.5,1.0)

E(X) 2.598 3.357 2.600 3.203 3.354

E(L1) 2.500 4.847 2.453 4.533 4.967

E(L_) 2.500 3.231 2.453 3.022 3.111

E(L3) 2.500 1.616 2.453 1.511 1.656

E(LI+L2+L3) 7.500 9.693 7.360 9.065 9.933

Table 4.1 Mean Values of X and L, for Constant p.

58

tions are inhibited between any pair of processes during their establishment of recovery

points. There are three conceivable strategies in deciding when a synchronization request

is to be issued: (1) at a constant interval, denoted as 7",;(2) when the time elapsed since

the previous recovery line exceeds a specified value, T, I ; or (3) when the number of

states saved after the previous recovery line is larger than a prespecified number, M,.

The implementation of the first strategy is simple since the synchronization request is

issued without any knowledge of the state of execution. Nevertheless, some synchroniza-

tion requests may become redundant and unnecessary if they are issued immediatedly

after the formation of recovery lines. For the second and third strategies, the rollback

distance and the number of saved states are prevented from becoming too large, flow-

ever, for these two strategies, additional overhead will be required because each process

must be aware of the occurrence of a recovery line whenever it is established. Note that

the conversation scheme is a special case of the third strategy where Ms=l.

Upon the receipt of a synchronization request, every process has to prepare for

establishing a recovery line and also has to wait for the commitment (for establishing a

recovery line) from other processes before it executes an acceptance testl Thus, all

cooperating processes perform their acceptance tests at the same instant upon receiving

the commitments from all other processes. Let P,i-ready, for j=1,2,n, be the flags in

process P, to indicate commitments from Pi"The steps for synchronization in each pro-

cess P_ are described as follows:

1. execute "its own normal process" until "acceptance test";

2. set Pii-ready :_ ON and then broadcast Pii-ready;,

67

3.while not (all Pii-ready .= ON) do

receivemessages:

if a message is Pifrcady then set Pii-ready :_ ON

else recordthe message

4. do "acceptance test" and recordprocessstates.

Establishment of recovery lines upon synchronization requests is shown in Figure

4.7. Synchronization causes the computation power to be reduced because processes

have to wait for the commitments (as in step 3) from other processes. And, process

autonomy, a principal characteristic of distributed computing systems, is sacrificed. Let

y, be the interval between the receiving of a synchronization request and the moment

that process Pi reaches its next acceptance test (in step 1). Then, according to the

assumptions in Section 2.1, Yi is an exponentially distributed random variable with

parameter f,. Let Z=max{yl, Y2,... ,Yn}. The total loss in computation power is

n

CL--_ _ (Z-Yi). The mean loss becomes
_-_1

O0

" 1

C'-L= nf (1-F_(t))dt -o_t-f,:- (4.4)

N

where Fz(t) is the distribution function of Z, and equals I-I(!-e-¢J).
/=1

The time interval between two successive recovery lines is a function of the stra-

tegy used for issuing synchronization requests as well as characteristics of the processes

involved (e.g. patterns of interprocess communications and RP establishments). Let Zl

and ge be random variables having the same distribution as Z-----max{yl, Yz,..., yn},

then the value of this time interval becomes Ts+Zl-kZ 2 where k is the largest integer

58

Pl P_ Ps

I timesynchronization
request ') >

¢r------

Pzz-readY P33-ready

r--_ < L__ > r-3
P22-re ady

==

[Z'7

synchronization

_°'°°_T' _ T_ T• .,l, . Ys
r

Y 1 P22-re ady [Z

P33--reacly _ _ _m_ m

r- -_zzZ]-_-ready, r--1 [- -1

Figure 4.7 Establishment of Recovery Lines upon Synchronization Requests.

69

which is less than TJ22, or T,I +Z I. Observe that Zt and 22 represent the amount of

time required for a process to be ready for establishing an RP after it received a syn-

chronization request. For the third strategy, the maximum number of rollback steps is

M e. Thus the supremum of this time interval can be expressed as max{zl,z2,... ,z,}

m,

where zi= _ Yi.
n=l

4.3. Implantation of Pseudo Recovery Points

In the construction of a recovery block, an acceptance test consists of a number of

executable assessments provided by the programmer, followed by a state saving. Note

that process states can also be recorded upon any other requests whenever they are con-

sidered useful in the rollback recovery. A pseudo recovery point (PRP) is defined as a

recovery point that is established without a preceding acceptance test and is proposed

here as an alternative for avoiding the domino effect in a set of cooperating concurrcnt

processes. With a monitor as the interprocess communication means, Kim [39] and Kant

and Silberschatz [36] discussed methods for implanting recovery points in a central

manner. Similarly, we consider a method for implanting PRP's in the set of cooperating

concurrent processes in a decentralized manner. Also, note that the use of PRP's does

not require any particular interprocess communications mechanism (e.g. the implementa-

tion does not have to be based on monitors).

To make a recovery point R_ I in process Pi maximally useful for :-oliback error

recovery, there should be corresponding recovery points in the other processes affected

by the rollback propagation from Pi. If such recovery points do not actually exist, for a

given R_ in process Pi a pseudo recovery point, PRPi _ , has to be inserted in process

6O

P_ . Further, in order to avoid the need of tracing recovery points at that particular

moment, for RP i a PBP is established in each of the other processes involved. An algo-

rithm for implanting PRP's is given below.

1. When Pi establishes a recovery point R_, it broadcasts a PRP implantation

request to other processes.

2. If Pt receives the implantation request, it records its state as PRPf upon the

completion of the current instruction without an acceptance test. Then Pi broad-

casts the commitment Ct .

3. Every process executes its own normal task after it establishes R_ or PRI_ € .

However, the messages sent to a process by Pt prior to C'1 have to be retained

in the state saved.

Assume that process Pi detects an error at time ta which is prior to the establish-

ment of R_+ I. If this error is local to P; then the recovery line {called a pseudo recovery

line, PRLi) formed by R_ and all PR_ _ 's is able to recover these processes even if the

error has already propagated to other processes. However, when the error detected in Pi

is due to error propagation from another process, Pt land therefore not local to P;), the

contents of PRPi t may have already been contaminated if this error occurred prior to

establishing PRPi t. The restart from the pseudo recovery line formed by both R_ and

all PRI_ ¢ 's may just reproduce the same error. Therefore, rollback propagation may

continue until every process involved has rolled back to a pseudo recovery line, say
?

PRL'k, for which all processes but Pi have passed at least one of their recovery points.

Since there exists an RPCI in P_ for all _ #i between PRL i and td, every state belong-
?

ing to PRL'k is now guaranteed to contain correct information of the corresponding pro-

61

cess 4. Also, note thatthis pseudo recovery line renders the shortest rollback distance for

backward error recovery in case forced synchronization is not used. An algorithm of

rollback recovery with these pseudo recovery points is given by:

1. If an error is found in process Pi, set p := i where p is a rollback pointer.

2. Pv rolls back to its previous recovery point RP_i. All processes PC affected by

the rollback of Pp roll back to their respective pseudo recovery points PRP_ ¢ .

3. For every affected process P_ , if the rollback has not passed its most recent

recovery point, then set p :-----_ and go back to step 2.

In Figure 4.8, the establishment of PRP's in processes 1"1,P2, and Pa is illustrated.

When P3 fails its acceptance test A7"_2, all processes have to restart from the pseudo

recovery line formed by (R_, PR_ _, PRP_3) if Pl and P2 are affected by the rollback of

P3.

In the above algorithm, we can find that every process needs to preserve a recovery

point for restart in case it fails. Also (n-l) pseudo recovery points are needed for a pro-

ccss to form a pseudo recovery line with other processes where n is the total number of

concurrent processes. It is therefore required to save n states for every RP, i.e. one RP

and {n-l) PRP's, and all old RP's and PRP's except those in the pseudo recovery lines {

PRL;:]i= 1,...,n, and R_: is the most recent RP in Pj-}can be purged when a new

recovery point is established, thereby reducing storage requirements for saving RP's and

PRP's. Note that rollback distance is bounded by the supremum of {Yt,Y'z,... ,Y,}

where Yi is the interval between two successive recovery points of process Pi" The addi-

4 If the state saved at P,RPi _ was contaminated, then the error should have been detected at the
. ," . i •

subsequent recovery point, RP_, . Meanwhile, the state saved at RP k Is correct by the assumption of per-
fect local acceptance test.

62

Pl P2 Ps.

time I

RP._ PRP_ 3
i:7.:::1- _ 7: _._ _

---- _ "'"-- restart line with respect to
PRP_ 2 the failure ofP., at AT_

implantationrequest
RP_

PRP_ 1 !_
PRP_ 2

AT_

: Recovery Point (RP)
£Z_ : Pseudo Recovery Point (PRP)

Note: all occurrences of interactions are omitted

Figure 4.8 Establishment of Pseudo Recovery Points for Rollback Error Recovery.

63

tional time overhead for every recovery point is (n-1)t r where t, is the time needed to

record the process state. These overheads should be assessed against the gain of process

autonomy and avoidance of unbounded rollback propagations.

5. DESIGN AND EVALUATION OF HARDWARE RECOVERY BLOCKS

In this chapter, we employ the concept of recovery blocks to construct a hardware

rollback recovery mechanism for multiprocessor. In order to resume a failed process, an

error-free process state--which includes the status of internal registers of the assigned

processor and the process variables stored memory--should be restored. The hardware

recovery block is constructed in a quasi-synchronized manner which saves all states of a

process consecutively and automatically. This happens in parallel with the execution of

the process by using a special state-saving unit implemented in hardware.

The hardware recovery block is different from the software recovery block which

only saves non-local states when a checkpoint is encountered. Moreover, instead of the

assertions in the acceptance test, of software recovery block, the hardware resourccs arc

tested by embedded checking circuits and diagnostic routine.

In the following, we will describe the structure of this hardware recovery block.

Then, the coverage of a multi-step rollback which is the probability of having a success-

ful rollback recovery when cooperating processes roll back multiple steps, and the perfor-

mance of this method will be discussed.

5.1. Hardware Recovery Blocks for Multlproeessor

The multiprocessor under consideration has a general structure and consists of pro-

cessor modules, interconnection network and/or common memory modules. To benefit

64

from the locality of reference, every processor module owns its local memory which is

accessible via a local bus. Every processor module can also access the shared memory

through the interconnection network. The rollback recovery operations of a task can be

applied to two types of multiprocessors: in one, there is no common memory, but local

memory of one processor module is accessible by other processor modules (e.g., Cm* sys-

tem [72]); in the other, the system is equipped with separate common memory modules

[25] and restricts the access of local memory only to the resident processor. These two

types are representatives of contemporary general-purpose multiprocessors.

5.1.1. Processor Module_ Common Memory, and State-Save Mechanism

A basic processor module (PM) in the multiprocessor comprises a processor, a local

memory, a local switch, state-save memory units (SSUs) and a monitor switch as shown

in Figure 5.1. It is _._sumedthat a given task is decomposed into processes each of

which is then assigned to a processor module. The shared variables among these

cooperating processes are located in the shared memory which is either separate common

memory or local memories depending upon the multiprocessor structure discussed above.

Thus each process in a PM can communicate with other processes (allocated to other

PMs) through the shared variables. Each PM saves its states (i.e. process local variables

and processor status) in SSUs at various stages of execution; this operation is called a

state-save. Ideally, it would be preferable to save states of all processes at the same

instant during the execution of task. Because of the indivisibility and asynchrony of

instruction execution in PMs, it is difficult to achieve this ideal case without forced syn-

" chronization and the consequent loss of efficiency. In order to alleviate this problem, we

employ a quasi-synchronized method in which an external clock sends all PMs a state-

save invocation signal at a regular interval, T,. This invocation signal will stimulate

65

Inter-
• connection

Network

Q

P = processor PM = processormodule
S = switch CM = common memory
MS _---monitorswitch AC = accesscontroller
LM _---localmemory SSU = state-saveunit

Figure 5.1 The Organization of a Fault-Tolerant Multiprocessor Using a Rollback
Recovery Mechanism.

68

every PM to save its states as soon as it completes the current instruction and then to

execute a validation test. If the processorsurvivesthe test, the saved state would be

regardedas the recovery point for the next interval. If the processorfails the validation

test or an erroris detected duringexecution of the resident process,the system will be

reconfiguredto replacethe faulty component and the associated processwill roll back to

one of the previouslysaved states. The detailed operationsof state saving and rollback

recovery are shown in Figure 5.2.

Similarly to a processor module, each common memory module (CM)also contains

state-save memory units and a monitor switch. These SSUs are used to record the

updates of CM only. The access requestsof CM are managed by an accessqueue on the

basis of the first-come-first-servediscipline. When a PM refersto a variableresident in

a CM, an accessrequest is sent to the destination CM through the interconnectionnet-

work and enters the access queue associated with the CM. When all the preceding

requests to this CMare completed,the accessrequestwill be honoredand a reply will be

sent back to the requesting PM. When a state-save invocation is issued, a state-save

request is placed at the tail of every access queue. Thus the state-save in CM is per-

formed when the requests made priorto the state-save invocation have been completely

serviced.

During a state-save interval, besides the normal memory referenceor instruction

execution, certain operationsare automatically executed;for example, an errorcorrecting

code is used whenevera data is retrievedfrommemory. Someredundanterrordetection

unit_ also accompany the processormodule [38],dual-redundancycomparison, address-

in-bound check, etc. These units are expected to detect malfunctions whenever the

87

Time

<- State-save invocation

..... Complete the current instruction
..... Save internal state

..... Execute validationprocess

Set switches betweenSSU's

Startnormal process,SSU update,SSU transfer,
anderrordetection

€_..... Fail
Retry the process

..... Fail again

Declare permanent fault, stop processes, check
propagation, and migrate failed processes to
other PM's

(- Resume processes

Figure 5.2 Sequnece of a Rollbacl Recovery.

68

i

correspondingfunction units are used. An additionalvalidation processwhich could be

the execution of diagnostic routine is used to guarantee that the saved state be correct

and thus guards against the existingfault extending to the next state-save interval.

Suppose there are (N+I) state-save units for every PM (and every CM), called

SSUI, SSU:, ... SSUN+1. These units are used for saving states at (N+I) consecutive

state-save intervals. Thus each PM or CM is able to keep N valid states saved in N

SSUs and recordthe currently changing state in the remainingSSU. As shown in Figure

5.3, the SSU1,SSU2, ..SSUNare so arrangedto recordthe states for consecutive state-

save intervals T(1),T(i.I),...,T(i._ and the SSUN+1is used to record the updates in the

current state-save interval, _i.N.l). To minimize the time overhead required for

state-saving, the saving is done concurrently with process execution. Ever)"updatc of

variables in the local memory is also directed to the current SSU. When a PM or CM

moves to the next state-save interval, each used SSU will age one step and the oldest

SSU will be changed to the current position if all SSUs are exhausted. The monitor

switch is usedto route the z:pdatesto SSUsand to manage the aging of SSUs.Therefore

the state-save mechanism of each PM or CM providesan N-step rollbackcapability. In

the next section,we will show that only a small numbcrof SSUsare sufficient to estab-

lish high coverageof rollbackrecoveryfor typical multiprocessorapplications.

Since the update of dynamic elements is recordedin only one SSU, the other SSUs

are ignorant of it. This fact may bringabout a seriousproblem:the newly updated vari-

ables may be lost. In order to avoid this, it is necessary to make the contents of

currentlyupdated SSU identical with that of the memory or to copy the variables that

have been changed in the previous intervals into the current SSU. A solution to this

89

:state-save invocation

:state-saving

begins

• • • • SSUN SSUN+I SSUI
state-save SSUI SSUz SSU3unit used

Figure 5.3 State-save Operations in One Module.

problem has been discussed in [26]. At each state-switching instant, the current SSU con-

tains not only the currently updated variables but also the previously updated variables.

Consequently, the contents of the current SSU always represents the newest state of the

PM or CM.

5.1.2. Rollback Recovery Operations of a Task

Suppose a task is partitioned and then allocated to M modules (i--1,2,...,M). These

modules _include PMs and CMs and will be dedicated to this task until its completion.

The state saving of a task implies the state-savings of these modules. The rollback of a

process is equivalent to the state restoration of the associated modules. Since the pro-

cess state includes the internal hardware states, local variables and global variables, the

resumption of a failed process may need cooperation from common memory and/or other

processes. Moreover, due to arbitrary interactions between cooperating processes and the

asynchrony in state savings among them, the rollback of one process may cause others to

roll back and it is therefore possible to require a multi-step rollback (a detail of this will

be discussed in the next section). In order to make a decision as to rollback propagation

and also to perform housekeeping jobs, (e.g. task allocation, interconnection network

arbitration, reconfiguration, etc.), a system monitor and a switch controller are included

in the muitiprocessor. The switch controller handles the global variables references and

records these references for analyzing rollback propagation and multi-step rollback. The

system monitor receives the task execution command and then allocates PMs and CMs

to perform the task. Both devices are defined in a logical sense. They could be a host

computer, or a special monitor processor, or one of general processor modules in the sys-

71

tern.

To deal with the error recovery, the system monitor receives reports from each

module regardingthe state-save operationsand its conditions. Once an erroris detected,

the system monitor will signal "retry" to the module in question. If the error recurs, a

permanent fault is declaredand the followingsteps are taken by the system monitor and

the switch controller.

1. Stop all PMs that are executing processesof the task in question.

2. Make a decisionas to rollback propagation.

3. Resume execution of the processesthat are not affectedby rollback propagation.

4. Find free moduleto replacethe failedone.

5. Transfer the process or data in the failed moduleto the replacementmodule and

reroute the path to map addressesdirectedto the faulty module into its replace-

ment.

6. Restore the previous states of the processes affected by the rollback of the

resident process in the faulty module.

7. Any interaction directed to a module to be restored must wait for the resumption

of the module. Old and unserviced interactions issued by the rolled-back PMs,

which are still queued in the accessqueues, are cancelled.

5.2. Rollback Propagation and Multl-step Rollback

In order to roll back a failed process, the consistent values of the process variables

and the internal states of the associated PM should be provided. The local variables and

internal states which are saved in the SSUs of a PM are easily obtainable. However, the

shared variables--which may be located in any arbitrary PM or CM and may be accessed

72

by any process--bringabouta difficultproblem:the rollbackof a failedprocessinduces

the rollbackof otherprocesses.(i.e. Rollbackpropagationoccurs.)The rollbackpropaga-

tion mightresult in anotherinconsistentstate forcertainprocessesof the task, thereby

requiringa multi-steprollback.

5.2.1. Rollback Propagation and MultbStep Rollback

In general rollback propagation can not be avoided if the processes interact with

each other arbitrarily. For the multiprocessororganization in the previous section, a

processis allocated to one PM and/or several CMsand each modulehas its own rollback

recoverymechanism. So each modulecan be regardedas an object for rollbackpropaga-

tion. An interaction betweencooperating processesis implementedas a memoryrefer-

ence to a shared variable, i.e. a memory referenceacross the modules. To avoid the

need of tracing every referenceto the shared variables and to simplify the detection of

rollback propagation, we assume that the failure of a particular module leads to the

automatic rollback of all modules that have interacted with the module during its

current state-save interval. Let Pi"'* P1 denote the rollback propagation in which the

rollbackof processP, induces the state restorationin one or more modulescontaining Pi,

that is, the rollbackof Pi causes Pi to roll back. Let the n-th state-save intervalof Pi be

T,(n) and the beginningmoment of T,(n) wherePisaved its state bt t,(n). An example is

presented in Figure ,5.4,where processPl fails at time tl and saves its state at tl(n) dur-

ing state-save interval Tl(n). Sinceinteractions between PI and P_exist during the time

interval [tl(n), t/I, process P2 must roll back to revive the interactions when Pl is

resumed. The rollback of P2 will propagate further to other processes;in this example,

P_-" P4, Pl -" P3, and P3 -" P2. When Wood's definitions [80] are used, the state of

73

state-save state*save

invocation _t tl(n-1) invocation_
PI i , , td.) t/i II +_ ILl ' "

I , Pl fails
I I
I I
I i _(.)

e_ 'D_("-:1, '_,,l-I
I l
I i
I l
i t3(.-1)

P_ ' D " !D "

o,!
I
!
I

' D
P+ I .-1) II I t+(.)

time-_ Ik r. I

(a)

o1lo iO li]1 0 1 0 KG 1KC2= 1000 =oooo I °°

ooo 1[oooo10 0 0 Kp I ="P': oo1°°° OlOO
(b)

RBI(n)___{1 n<2 RB2(.) .__{1 n<_2otherwise otherwise

+._+.1:{1°_<_ _+,+.1:{'o"-<'otherwise otherwise

(c)

Figure 5.4 An Example of Rollback Propagation and Multi-step Rollback.

74

process Pl saved at tt(n) can be regarded as a potential recovery initiator of the saved

states of P2, P3 and P4"

In the above example, we can find that the rollback of P3 and P2 to their most

recently saved state still cannot provide a consistent task state. The reason that a roll-

back of cooperating processes can not recover the process states is mainly due to the

occurrence of references between the asynchronous state savings of interacting processes.

For convenience, a restorable state for Pi is defined as follows.

Definition: Supposeprocess Pi rolls back to the state saved at t,(k). This state is rea-
torablefor Pi if either of the followingtwo conditions is satisfied:

C1. Pi has no interaction with other processesduring"the state-save interval
T,(k).

C2. The rollback of Pi to t,(ki) induces the rollback of Pi to t_(ki) for
j----1,2...,Mand j_i, but there is no interaction needed to be reissued
between Pi and Pi during the interval [t,(ki),ts(ki)] if t,(k,)<t_(ki) or
[tj(ki), t,(ki)]otherwise.

Considerthe cases in Figure 5.5 Pi rolls back to l,{k)because of failure or rollback

propagation from another process. In case (a), the state saved at t,(k) is restorable for Pi

only. A single step rollback of Pi is sufficient to recoverits state. In cases (b) and (c),

both P, and Pi have to roll back and the states saved at t,(k) and tj(k-1) are restorable

for Pi and Pi respectively,while in case (d), the states at t,(k-1) and t_(k)becomerestor-

able.

The necessary condition for recovering a task TK, where TK={P_Ii=I,2,Af},

with rollback mechanisms can be obtained from the above definition. The task TK is

recoverablefrom a failure if for all i either Pi is not affected by the roilbacks of other

processesor Pi rollsback to its most recentlyrestorablestate.

75

t,(k-z) t,(k) t,(k)
P, D B P,

olI o
t_{k) t_(k-1) tj(k)

(el (d)

: state saving

: interaction

Figure 5.5 Interaction Patterns Related to Rollback Propagation.

7fl

5.2.2. The Detection of Rollback Propagation

Since every external memory reference is managed by the switch controller, the

switch controller should take responsibility for detecting rollback propagation and decid-

ing on multi-step rollbacks. Suppose there are (N+I) SSUs in each module, then the

maximum possible number of rollback steps is N. Let the current state-save interval of

module i be Ts(k), then an n-step rollback will restore the module i to the beginning of

interval T,(k-n+l) (i.e. the state at t,(k-n+l)). For state-save interval T,(k-n+l),

(n-_-1,2,3,....A_, we assign two matrices KC,_(M×M) and KP,_(MXM) to represent the

interactions during T,(k-n+l). Every element in both m_trices consists of a 8ingle bit.

KCn(i,]) is set to 1 if an interaction occurs between module i and module j during the

state-save intervals T,(k-n+l) and Tj(k-n+l). If an interaction exists between the two

during module fs previous state-save interval, T_(k-n), then KP,_(i,I)=I. We also define

RB,(k), k_--'l,2,...,N, to indicate the number of rollback steps for module i. If module i

rolls back n steps, then RB,{k)---_-Ifor all k<_n. So, if RB,{k)---Ofor all k, then module i

does not have to roll back. The steps for setting these elements and checking the roll-

back propagation are listed below.

S1. Reset both matrices to zero at the beginning of the task.

$2. When an interaction is issued from module i and directed to module], then
KCl(i,j) and KCI(j, 0 are set to 1.

$3. If module i saves its state and moves to the next state-save interval, then for
j=l,2,...,M
(a). If P_has already moved to its new state-save interval, then

KPI{j,i)=KPI{j,s)+KC1(i,j) where + is logical OR operation.
KC,(j,,9=0

(b). K Cn(i,j)=KC,,_,(;,3),
KP,_(i,j)-_-KPn_I(i,$) for n_-N,N-1,...,2

(c). K C,(i,l]----O, KPl(i,j)=O

$4. When an error is detected in module i, RB,(1) is set to one and all other RB's are
reset to zero.

77

S5. If RB,(n)=I (i.e. module i rollsback at least n steps), the switch controllerchecks
the correspondingrows in matricesgcn and gPn, namely gc,,(i,j), gc,_(fi), and
KP,_(i,j)for j_I,2,...,M. There are four possiblerollbackpropagations:
(i). if KP,(i,j)_I then modulej has to roll back (n+l) steps. Set RB_(k)for

all k_<(n+l) to 1.
(ii). if KP,_(i,j)=O, KC,(i,.D-_I and KC,(fi)=I, then module/ also has to roll

back n steps. Set RBj(k) for all k< n to 1.
(iii). if KP,(i,j)---O,KC,,(i,j)=I and KC,(£O-._O,then modulej needs to roll

back (n-l)steps. Set Rg(k) for all k<(n-1) to 1.
(iv). if KP,,(i,j)=O and KC,_(i,j)=O,then there is no direct rollback

propagation from module i to module£

S1, $2, and $3 are used to record interactions. $4 initiates rollback in module i

which may propagate to a farther state in the same module and/or to cooperating

modules. $5 deals with the determination of rollback propagations. In the condition (i)

of $5, there is an interaction occurred in both the P,'s (k-n+l)-th and the Pi's (k-n)-th

state saving intervals. Thus, Pi has to roll back (n+l) steps to recover this interaction.

The conditions (ii) and (iii) indicate that an interaction occurred in the Pi's (k-n+l)-th

and (k-n-2)-th state saving intervals respectively. The correspondingbits of RBj areset

for these conditions. Since the rollback of Pi decidedin $5 can only providea restorable

state for Pi, recursivechecking for every j with RB_(k)_-I is necessary. $5 can also be

easily implemented by a recursiveprocedurewhich will cease when no more setting of

RB's is needed. The final figure of RB's represents the number of necessary rollback

steps for each process.

An example is shown in Figure 5.4, where Figure 5.4(a) describes memory refer-

ences, Figure 5.4(b) is the current contents of KC and tiP matrices,and Figure 5.4(c) is

the result of rollback propagation.

78

5.2.3. The Evaluation of Multi-Step Rollback

If module i fails at time t/during the k-th state-save interval, T_k), then we con-

sider a single step rollback of module i to see if it is sufficient to recover from the failure.

The result may lead to rollback propagations and thus to multi-step rollbacks as previ-

ously discussed. Since the number of state-save units associated with each module is fin-

ite, the whole task may have to restart when all the states recorded in SSUs are

exhausted. In this section a probability model is derived to evaluate the coverage of the

multi-step rollback recovery which indicates the effectiveness of the present fault-

tolerant mechanism. Recall that a module has (N+I) SSUs and the task is allocated to

M modules including PMs and CMs. To derive the coverage, the following assumptions

are made and notations used:

A: The access matrixwhose element aii representsthe probabilityof making a
referencefrommodule i to modulej. For a memorymodule i, aij----O,for all j.
The sum of all elements in one row must be equal to 1 for a processor

M

module i, i.e. _ aij=l.
i=l

biin: The probability that KPn(I,3_-----0,which means no interaction occursduring
the disparity between module ,'s and module fs (k-n+l)-th state saving in-
stants. For simplicity bii,, is assumed to be a constant for all n, i.e.
bijl----biy2...... boN_bip The exact value of bij is difficult to obtain. Since
the state-saving invocations are synchronized,there is at most one instruc-
tion occurred during this disparity. An approximaterepresentation is used,
i.e., bii-_Prob((BOf"lBii)l..J(Bi,["lBii)),where Bij is the event that a memory
referencefrom module i to modulej occurs at any arbitrarymoment.

fij,,: The average probability of having direct rollback propagation from module i
to module j due to an n-step rollbackof module i. We also assume fii,, to be
a constant, fii, for all n.

rij: The probability that module j has to roll back because of the direct or in-
direct propagations if module i fails and then roilsback. Note rii_l for all i.

79

E: The matrix [%],i,j-_l,2,...,M, in which element % is the averageexecution
time for memoryreferencesissuedfrommodule i to modulej.

Tel The total execution time of a given task under an errorfree condition and
without the time overheadfor generatingrecoveryblocks.

T,(k): The duration of the k-th state-save interval of module i. Because of the
asynchrony between state-save invocationand actual state saving, T,(k) is a
random variable. If T, is long enough such that there is always a state
saving followingevery state-save invocation, the mean of T,(k} is equal to
T,,. To make the analysis simple, this duration is assumed to be constant
and equal to the duration of state-save invocationinterval, T,.

Ts_: The time overheadfor generatinga recoveryblock.

Art."The total numberof state savings beforetask completionin error-freecondi-
tion. Nt=[T,//(2",,-To_)].

uijk: The average memory referencerate from module i to module j during the k-
th state-save interval of module i. Occurrence of these memory referencesis
assumed to be a Poisson processwith a time-varying parameter during the
progressof task execution. In general, the memory referencesby processes
can be divided into different phases each of which has a constant reference
rate [7,471. Thus, if Nt is moderately large, uiik could be assumed to be a
constant during the k-th state-save interval.

To derive the coverage of a multi-step rollback, the probability of direct rollback

propagation, i.e. fi_,should be obtained first. From the above definitions and assump-

tions, fii is the average probability that there exists at least one memory reference

between module i and modulej during one state-save interval. It can be expressedas fol-

lows:

[,j = _i -----gs_q-gji-gijgii (5.1)

N,

where OO=(1/Nt)_ (1-e-u':r") represents the average probability of having an interac-
k=l

tion from module i to module] during a single state-save interval. Since the total

number of memory references between module i and module j is equal to

M N,
%(Tel/(_ ai,,,ei,,,))and _ ui/_(T.-T,_), we have the followingrelationship:

rn_ 1 k---_-I

80

Nt M

t=1 m=l

Also the maximum value of memory reference rate uijk must be less than or equal

_o the reciprocal of eq, that is,

1 > ("_;_)m_> .;j__>0 (5.3)
eij

It is easy to observe that Jii is a monotonically increasing function of gii and gii is a

bounded concave function of uijt. With the above two constraints we can get the

extrema of fij as follows:

(I). The maximum value of f,j, denoted as max(fij), occurs when uii,lffiuii,2--_...=u,i,Nt.

(2). The minimum value of fii, denoted as rain(f ,j) occurs when there are

M

(i) h intervals [h----e,jTela,J((T, f T, v)__j airneim)]in which uijt-_l/e,j ,

(ii) (Nrh-1) intervals in which uijk-----O, and

M

(iii) one interval in which uijk=(Te/aJ((T_,- T_v)__jai,.eim))-h/eij.
m_l

To solvefor rij from.fi_,a fullyconnectednetworkis drawnas Figure5.6in which

every node represents a module, and the link (i,.i) connecting node i and node j denotes

the relationship for direct rollback propagation between module i and module j. Then ,fij

can be considered as the probability of having a directly connected link between .-,ode i

and node j. The theoryof network :_liability[57]can be used to solve for rii:

rii-----U(Dij,q) (5.4)
q

where Dii,q is the probability that the q-th path from node i to node j is connected and

81

: Modulei

Figure 5.6 The Rollback Propagation Network.

82

{,.J is the probability union operation. With an additional assumption that the

occurrenceof failureis equallydistributedoverthe entiremodulesin a statisticalsense,

the coverage of a single step rollback, denoted by C(1), becomes

M M M

ql)=(I/M)E II(l-rdl-E bik)) (5.5)
/==1/'---1 k=l

And the accumulatedcoveragefroma singlestep rollbackto an h-step rollbackcan be

derived by the following recursive equation:

qh)=ql)(1-qh-1))+qh-1) (5.0)

The coverage of the multi-step rollback recovery is calculated for an example with

the following access matrix:

0.9 0.08 0.02 O.
0.1 0.85 0.03 0.02
0.03 0.03 0.9 0.04
O. 0.02 0.08 0.9

This example has the access localities0.85 and 0.9 for processeswhich correspondto the

experimental results obtained from Cm* [72]. The numerical results are presented in

Table 1 and are also plotted in Figure 5.7. These results include three cases: the best

coverage computed from rain(f,y)for different values of Nt, and the worst coverage com-

puted from max(f;i). These results show that only a small number of SSUs is enough to

achieve a satisfactory coverage of rollback recovery. It should be particularly noted that

the requirement of a small number of SSUs is mandatory for actual implementation. On

the other hand, this conclusion mus_be interpreted in the context of access localities; the

number of SSUs required for a given coverage tends to increase with the decrease in

access localities (i.e., when there are heavy interactions). This tendency, however,should

83

1.25

)est cases

t:lO0
1.00

worst case

W 0.75
(_9
,_ N =I0
n-" t
W
:> 0.500
rO

0.25

I ! I I 1
0.000. 0 2.0 4.0 6.0 8.0 I0.0

NO.OF STEPS

Figure 5.7 RollbackCoveragevs. No. of RollbackSteps.

84

be understoodas an inherentproblemassociatedwith multiprocessorsrather than with

the present fault-tolerantmechanism(see [64]for the dependenceof multiprocessorper-

formanceon access localities).

5.3. The Performance of Rollback Recovery Mechanism

Several methods for analyzing the rollback recoverysystem have been proposed

[12-14,19-20,30-31,83].They in general deal with a transaction-orienteddatabase system

and compute the optimum value of the intercheckpointinterval. Castillo and Siewiorek

studied the expectedexecutiontime which is requiredto completea task with the restart

recovery method [16]. All of these approaches either assume the state restoration is

obtainable by a single checkpoint or do not include the rollback propagation at all. In

this section, we explicitly take into account the problemof multi-step rollback and the

risk of restart for the rollbackrecoverymechanism.

5.3.1. Notations and Assumptlons

The following notations will be used in the sequel:

T(The total execution time to complete the given task with occurrence
of errors. It includes the required execution time under error-freecon-
dition, the time loss due to rollbacks and restarts, and the time over-
head for generating recovery blocks.

Treaf The total execution time to complete the task when all failures are
recovered by rollbacks instead of restarts.

TSroa.,_:The time lost due to the j:th rollback in module m which consists of
the set up time for resumption, t_b,and the computation undone by
rollback.

85

T',,t: The time lost due to the _th restart which includes the set up time
for restart, t,u, and the time between the previous start and the mo-
ment at which error is detected.

TEk: The accumulated effective computation before the k-th rollback when
the task can be completed without restart.

A_'r(_): The duration between two consecutive rollbacks (restarts).

C[,1: The accumulated coverage of rollback recovery from a single step to i
steps. This value is calcu!ated by the Equations 5.5 and 5.6 presented
in the previous section.

Pb(Ps): The probability of rollback (restart} when a failure occurs.

P,t(h): The probability of having an h-step rollback given that the failure is
recovered by the rollb_ck.

P,.(m): The probability of having m rollbacks during the time interval, Tr_,,t.

Z,(z),Zst(z): The probability generating functions of Pr(m), "Pet(h)respectively.

q>t(_),C_real(_): The characteristic functions of Tt, Treat respectively.

The goal of our analysis is to calculate the mean and variance of the total execution

time of a given task, T t. Recall that the task is decomposed and then allocated to M

modules. During the normal operation, the small overhead is required to generate con-

secutive recovery blocks in each module. When the 2:th error occurs, module m spends

TJrott.rnto recover from this error if the error is recoverable by a rollback. Otherwise, the

whole task has to restart. T_rot_mconsists of the set up time which is composed of the

decision delay required for examining rollback propagation, the reconfiguration time, and

the time used to make up for the computation undone by the rollback. We assume that

the task completion be delayed by max{T_roU.m}where m_l,2,..M for the rollback

recovery of the jLth error. The resultant completion time will be the upper bound

because of the following reasons. First, TlroU,m can be interpreted as the time lost due to

the rollback in module m. So, the total time lost in all the concerned modules is

8fl

M

ot(m. Si;:cethe completionof a task is regardedas the completionsof all its
m_l

processes,the time lost from the task's point of view couldbe max{_ogm} but not

largerthan this maximalvalue. Secondly,the true delay effect on the completionof

task by a rollbackwillbe shortenedbecauseofthe possiblereductionin the waitingtime

of processsynchronization.To facilitatesystemreconfiguration,we also assumethe

multiprocessorhas a sufficientnumberof standbymodulesso that the task may be exe-

cuted continuouslyfrom start to end withoutwaitingfor the availabilityof modules.

The time neededforerror-freeexecutionis regardedas constantand is independentof

reconfiguration.

Ingeneral,the occurrenceof errorcan be modeledas a Poissonprocesswith param-

eter k(t) which equalsthe reciprocalof mean time betweenfailures[17].Since k(t) is

slowlytime-varying(forexamplewitha periodof oneday), it is assumedto be constant

overthe durationof onetask execution,i.e.,),(t)----),.Forsimplicityan erroris assumed

to be detected immediatelywheneverit occurs. Fromthe definitionsof P,, Pb, and

P,t(h),we have P,----1-6_N)wheneach modulehas (N.I) SSUs.Thereforethe probabil-

ity of rollback,P6,becomesqN). P,t(h)is equal to (1/P_)(qh)-qt_l))forh=2,...,N,

and P0_I)----q1)/Pb. Afterthe detectionof error,the occurrenceof rollbackand restart

can be regardedas a Bernoulliprocess,with probabilityPb and P, respectively,and

independentof the errorgenerationprocess.Thus they can be modelledas Poisson

processeswithparameters_b_),Pband_,_),P,, respectively.

5.3.2. The Performance Model

The total task execution time, Tt, can be divided into several phases as shown in

Figure 5.8. The last phase is always ended with the completion of task. Other phases are

87

I_ T'rst_ _1_ T 2 _t _ Trea I I
I I I I
I I I I
I I I

® I rollback I rollback i rollback rollback z0oO © x-o x-o x-o x-o x-o x-O

,os_e0i__ _ __ __1_ __ _o_,o,ion' lT roll T I I 2roll T roll T roll

restart restart

Figure 5.8 Task Execution Phases.

followed by a restart. This implies that the amount of effective computation at the

beginning of each phase is zero. During each phase, the effective computation between

rollbacks are accd'mulated toward the task completion. To derive the distribution of Tt ,

we should determine the distribution of the duration of the last phase (which is defined

as Treat),the probability of having R restarts prior to the last phase, and the distribution

of the durations of other phases which are defined as T_r,tfor/_1,2,..R.

I:1the last phase, the task will be executed from the beginning to the completion

without any restart. It is assumed that Tel is much larger than T,, (TeI_ _ T,) so that

the rollback distance of an h-step rollback can be approximated by hT,. The effective

computation between two consecutive roUbacks becomes (XFhTn) + when a module rolls

back h steps where (X)+----max{0,X} is a positive rectification function. With the proba-

bility of an h-step rollback, P,_h), two functions are introduced:

N

Z= E e-'_"L'P,_ h) (5.7)
h-----I

H(t,k)----E t) (5.8)
/:=:0

where Gk__(t) is the (k-s')-th order gamma distribution function with parameter),_ for

(k-t)_>0, and G0_l. In Appendix B, we show that the distribution function of the accu-

mulated effective computation after k rollbacks is Prob(TEt__t)_I_t,k). Therefore the

probability of k rollbacks during the time interval Treat, Pr(k), is given by

P,(k) --'--P(fE_l > T,I)-P(fVt> T,I) (5.9)

= H(Tck)-I-I{Tck+I)

Tr,al is composed of TeI and the time lost due to rollbacks which is a sum of identically

89

distributed random variables, _ott.m, for j=l,2,..k. Sabstituting the probability mass

functions of Pr(k) and Psi(h), we get the characteristic function of Treat which is given

below:

¢rea_(s) = e-'r'1z,(e-'t"Z,_ e-'r')) (5.10)

From Figure 5.8, The total time Tt can be represented as the sum of T,.tat and the

random sum of _,t. The characteristic function of T t derived in Appendix C is given in

the following:

co _k n

?_ e (-- (- 1_q)r,a/(/+ 1)(k,+*))} (5.11)
_-_o X,+$ =

This equation presents a general expression of the total execution time. For the system

without the rollback recoverT mechanism, we can use P.=I, Pb-_O, and then ¢r_a_($)

becomes e-sT''. The result obtained from the above equation is the same as that in [16I.

The mean and variance of the total execution time can be obtained from - O----_Jr=-0

and _ I#=0- In Figure 5.9, the mean execution time for the example in the previous
0s 2

section is plotted. It is obvious that the overhead of generating recovery blocks has an

important effect oll the rollback recovery method. Since the state savings are performed

in parallel with the normal process execution, the overhead contains only the time

required for the validation test. When the embedded checking circuits are not very much

cost-effective and complex [15], the overhead of generating recovery blocks can be

reduced with a completely self-checking mechanism. Figure 5.10 expresses the variance

of execution time for the previous example. It suggests that the prediction of the total

execution time becomes more accurate when the rollback recovery mechanism is used.

This result is expected intuitively since the probability of restart is reduced considerably.

gO

285.71 -

228.57 -

o without rollback

171.45- " capability

... 114.29

"__ _with flij

_ 57.14 - with f#ij

0.00 I ! ! I
0.0 200.0 400.0 600.0 800.0 I000.0

TIME- FAILURE FREE (sec.)

Figure 5.g Mean Time-Overheadvs. Error-FreeExecutionTime.

91

557.14 -

(j withoutrollback
capability

03
285.71

Q3
I-
I

_- 214.29

LL.I
0
Z
<:[142.86

withfl0/ ij
<[
>

71.43

with f ll..
ij

0.00 ! 1 J
0.0 2_00.0 400D 600.0 800.0 I000.0

TIME- FAILURE FREE (sec.)

Figure 5.10 Variance Time-Overhead vs. Error-FreeExecution Time.

92

In a system with a higher probability of restart, the system contains a larger and more

uncertain recovery overhead (i.e. larger mean and variance).

Another interesting parameter is the duration of state-save invocation, T,0 . The

interval has two mutually conflicting effects. Figure 5.7 indicates that the increasing of

Ts° will induce more rollback propagations and degrade the coverage (a larger value of

N t means a shorter state-save interval). Since the occurrence of error is distributed

throughout the state-save interval, the average computation loss due to rolibacks is pro-

portional to the state-save duration. Therefore the increase of T,°, which invokes longer

state-save intervals, will introduce more computation loss and higher probability of res-

tart. On the other hand, the percentage of the total time overhead for generating

recovery blocks is reduced by the increase of T0°. The optimum value which minimizes

the expected execution time can be found in Figure 5.11. The Figure shows that there

exists a linear relationship between Tt and T0, when Nt is larger (i.e. T0°gets smaller),

where the overhead of generating recovery blocks dominates the final result. When T0,

is greater than the optimum value, the loss due to recovery increases considerably

because of the larger time loss in each rollback.

8. CONCLUDING REMARKS

In this report, we have prescated first a general model for the error detection pro-

cess and then applied it for estimating two important performance-related parametcm of

fault-tolerant computers. These two are not usually included in the traditional reliability

models. The first parameter, the probability of having an unreliable result, indicates the

degree of lack of confidence in computation results. Suspicion in the computation results

is wholly due to the imperfect nature of error detection. Unfortunately, such

g3

61.71-

_5
I/)

54.57

o with f I
I-" ii
I

47.43

<
W 40.29
:E
r'r"
W
> with f//
0 55.14 ij
Z
<i:
w

I I I26.00
I0.0 20.0 30.0 40.0 50.0 60.0

NO.OF RECOVERYBLOCK

Figure 5.11 Mean Time-Overhead vs. Total Number of Recovery Blocks for a Given
Task.

g4

imperfectioncannotbe eliminatedcompletelyfromanypracticalerrordetectionmechan-

ism. For the secondparameter,we take a moredetailedaccountof the computationloss

and executioncost resultingfromthe occurrenceof error, its detectionand subsequent

recovery. Since most reliablesystemseither includeerrorrecoverymechanismswith

unknownoverheadsor may sufferfroman erroneousoutput, any reliabilityanalysishas

to quantifythe aboveoverheadsand uncertaintyandalsohas to providea goodmethod

forestimatingthesequantities.

Meanwhile,we have outlineda feasibledesignspacein whicha propercombination

of differentimperfectdetectionmechanismsneededto meet the specificationsis indi-

cated. Sincethe determinationof a feasibledesignspaceof detectionmechanismsmust

integratethe recoverymethodsusedin the system,we alsobrieflypresentedthe perfor-

mance of variousrecoverymethods. Unfortunately,we cannot determinean optimal

trade-offbetweenvariousdetectionmechanismsbecauseof the insufficientunderstand-

ing of the functionleveldetectionandthe lackof relationsbetweenhardwarecostsand

the signal level detectic:_,capability.Furtherresearchis neededalongthese directions,

especially,experimentsof programbehaviorundererroneousconditionsand the design

of functionleveldetectionmechanisms.

In the secondpart, the rollabckrecoverystrategiesare examined. The software

rollbackrecoveryand hardwarerecoveryblockshavebeenstudiedextensively.The dis-

tributionof the intervalbetweentwosuccessiverecoverylines,whichis the upperbound

of recoveryoverheadin softwarerollbackrecovery,are used to representthe perfor-

mance of differentstrategies in softwarerollbackrecovery. For hardwarerecovery

blocks,the distributionof task completiontimehas beenformulated.Withthe combi-

95

nation of the model of detection mechanisms and these quantitative evaluations of

recovery methods, the execution cost and the probability of failure can be obtained

which will reflect the effects of fault-tolerance techniques on the system's normal opera-

tions.

After these studies in error detection and recovery, it is important to investigate

the reconfiguration of system after a faulty unit is detected. Since fault-tolerance is

grounded on redundancy, the management of redundancy will certainly effect the whole

error handling operation and system performance. One simple example is the assignment

of redundant modules for a single task in such a way that a certain number of errors can

be tolerated or detected through mutual consistency, thereby blocking error propagation.

Usually, system reconfiguration has two objectives; one is to enhance the computation

capability, the other is meant to improve reliability. The former emphasizes the effective

utilization of system resources, and the latter is to establish adequate redu:,dancy for

error detection and recovery. When the system has enough resources for both purposes,

reconfiguration becomes trivial because no competition for resource exists. For an appli-

cation with a long life cycle, however, this may not apply. In such case, the management

of redundancy becomes essential.

Also of interest would be an analysis that allows the treatment of simultaneously

extant multiple faults. Since most faults in the system are likely to be transient or inter-

mittent, there is the possibility that the fault-latency is large. Note that the retry

recovery is applied as a temporary remedy when an intermittent fault becomes benign

shortly after its presence. This intermittent fault may still exist but is inactive. These

would cause faults to accumuiate in F and/or FB, thus making the entire system

vulnerable to any environmental or other events that might activate them. The diffi-

96

culty with any such model is likely to be a considerableexpansion in the numberof

states, thus increasing the model complexity. It is likely that in any realistic analysis,

some means must be sought to reduce the state-space size by approximatingsuitably.

The approach used in CARE III [71],where states are aggregatedand the state transi-

tion rates are separately determined,may be an appropriateattempt although the model

is forcedto be non-homogeneous. The nature of such approximationsis a matter for

further research.

97

REFERENCES

[1] Agrawal, V. D., "An Information Theoretic Approach to Digital Fault Testing", :iIEEE Trans. on Computers, Vol. C-30, No. 8, August 1981, pp. 582-587.

[2] Anderson, T. and Lee, P. A., Fat, It Tolerance: Principle and Practice, Prentice-
Hall International., Inc., 1981.

[3] Andrews, D. M., "Using Executable Assertions for Testing and Fault Tclerance,"
Pro. of 9-th lnt'l Conf. on Fault-Tolerant Computing, 1979, pp. 102-105.

[4] Baccelli, F. "Analysis of a Service Facility with Periodic Checkpointing', Acta
Information, Vol. 15, 1981,pp. 67-81.

[5] Ball, H. and Hardie, F., "Effects and Detection of Intermittent Failures in Digital
Systems," AFIP Conf. Proc., Fall 1969, pp. 229-235.

[6] Barigazz, G. and Strigini, L., "Application-Transparent Setting of Recovery
Points," Proc. of 13-th Int'l Conf. on Fault-Tolerant Computing, 1983,pp. 48-55.

[71 Batson, A. P., "Program Behavior at the Symbolic Level," Computer, Nov. 1976,
pp. 21-26.

[8] Bavuso, S. J. et al., "Latent Fault Modeling and Measurement Methodology for
Application to Digital Flight Control", Advanced Flight Control Symposium,
USAF Academy, 1981.

[9] Ben R..-mdhane, M. and Courtois, B., "Error Confinement / Data Recovery in
Distributed Ssytem," Proc. of Reliability in Distributed Software and Data Base
System, 1982, pp. 11-18.

.

[10] Bossen, D. C. and Hasio, M. Y., ';Model for Transient and Permanent Error-
Detection and Fault-Isolation Coverage," IBM J. Res. Develop. Vol. 26, No. 1,
Jan. 1982, pp. 67-77.

[11] Breuer, M. T., "Testing for Intermittent Faults in Digital Circuits," IEEE Trans.
on Computers, Vol. C-22, No. 3, March 1973, pp. 241-246.

[12] Brodetskiy, G. L., "A Problem of Periodic Storing of Results," Cybernetics, Vol.
14, No. 3, pp. May-June, 1978, pp. 390-395.

!18

[13] Brodetskiy, G. L.,"Effectiveness of Storage of Intermediate Results in Systems
with Failures that Destroy Information," Engineering Cybernetic, Vol. 10, No. O,
Nov.-Dec. 1978, pp. 75-81.

[14] Brodetskiy, G. L., "Periodic Dumping of Intermediate Results in Systems with
storage-Destructive Failures," Cybernetics, Vol. 15, No. 5, Sept.-Oct. 1979, pp.
685-689.

[15] Carter, W. C. et al., "Cost Effectiveness of a Self Checking Computer Design,"
Proc. of the 7th Int'l Syrup. on Fault-Tolerant Computing, 1977, pp. 117-123.

[16] Castillo, X. and Siewiorek, D. P., "A Performance-Reliability Model for Comput-
ing Systems," Pro¢. of the 10th Int'l Syrnp. on Fault-Tolerant Computing, 1980,
pp. 187-192.

[17] Castillo, X. and Siewiorek, D. P., "Workload, Performance, and Reliability of
Digital Computing Systems," Proc. of the 11th Int'l Symp. on Fault-Tolerant
Computing, 1981, pp. 84-89.

[18] Cinlar, E., Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs,
N.J., 1975.

[19] Chandy, K. M. and Ramamoorthy, C. V., "Rollback and Recovery Strategies for
Computer Programs," IEEE Trans. on Comp., Vol. C-21, No. 6, June 1972, pp.
546-556.

[20] Chandy, K. M., Browne, J. C., Dissly, C. W. and Uhrig, W. R., "Analytic Models
for Rollback and Recovery Strategies in Data Base Systems," IEEE Trans. of
Software Eng., Vol. SF_,-1,no. l, March 1975, pp. 100-110.

[21] Chandy, K. M., "A Survey of Analytic Models of Rollback and Recovery Stra-
tegies," Computer, Vol. 8, No. 5, May, 1975, pp. 40-47.

[22] Courtois, B.,"Some Results about the Efficiency of Simple Mechanisms for the
Detection of Microcomputer Malfunction", Proc. of the 9th Annual Int'l Syrup. on

Fault- Tolerant Computing, 1979, pp. 71-74.

[23] Courtois, B., "A Methodology for On-line Testing on Microprocessors", Proc. of
the 11th Annual Int'l Syrup. on Fault-Tolerant Computing, 1981, pp. 272-274.

[24] Courtois, B., "Performance Modelling of Partially Self Checking Systems", Proc.
of IP,-th lnt'i Conf. on Fault-Tolerant Computing, 1982, pp.140-146.

[25] Enslow, P. H., "Multiproeessor Organization - A Survey," Computing Surveys,
Vol. 9, No. 1, March 1977, pp. 101-129.

99

[26] Feridun, A. M. and Shin, K. G., "A Fault-Tolerant MultiprocessorSystem with
Rollback RecoveryCapabilities," Proe. 2nd lnt'l Conf. on Distributed Computing
System, April 1981,pp. 283-298.

[27] Fen'an, G., "Distributed Checkpointing in a Distributed Data Management Sys-
tem," Proc. of Real Time Systems Syrup., 1981,pp. 43-49.

[28] Fuller, S. H. et al., "Multi-Microprocessors: An Overview and Working Example,"
Proc. of IEEE, Vol. 66, No. 2, Feb. 1978, pp. 216-228.

i

[29] Gay, F. A., "Reliablity of Partially Self-Checking Circuits," Proe. cf 7-th lnt'l
Conf. on Fault-Tolerant Computing, 1977, pp. 135-142.

[30] Gelenbe, E. and Derochette, D. "Performance of Rollback Recovery Systems
under Intermittent Failures," Comm. of the ACM, Vol. 21, No. 6, June 1978, pp.
493-499.

[31] Gelenbe, E., "On the Optimum Checkpoint Interval," JACM, Vol. 26, No. 2,
April 1979, pp. 259-270.

[32] Gray, J. N., "Notes on Database Operating Systems, " Operating Systems: A
advanced course, edited by R. Bayer, et al., Springer-Verlag, 1979, pp.393-481.

[33] Gunther, N. L. and Carter, W. C., "Remarks on the Probability of Detecting
Faults", Proc. of th lOth Annual lnt'l Syrup. on Fault-Tolerant Computing, 1980,
pp. 213-215.

[34] Hopkins, A. L., Smith, T. B. and Lala, J. H., "FTMP - A Highly Reliable Fault-
Tolerant Multiprocessor for Aircraft," Proceedings of the IEEE, Vol. 66, No. 10,
Oct. 1978, pp. 1221-1240.

[35] Horning, J. J., Lauer, H. C., Melliar-Smith, P. M., and Randell, B., "A Program
Structure for Error Detection and Recovery," Lecture Notes in Computer Science:

Operating Systems, Springer-Verlag, 1974, pp. 171-187.

[36] Kant, K., and Silberschatz, A., "Error Recovery in Concurrent Processes," Proc.
COMPSAC 80, Oct. 1980, pp. 608-614.

[37] Kim, K. H., "An Approach to Programmer-Transparent Coordination of
Recovering Parallel Processes and its Efficient Implementation Rules," Proc. 1978
lnt'! Conf. on Parallel Processing, Aug. 1978, pp. 58-68.

[38] Kim, K. H., "Error Detection, Reeonfiguration and Recovery in Distributed Pro-
cessing Systems," Proc. 1st lnt'l Conf. on Distributed Computing Systems, Oct.

1979, pp. 284-295.

I00

[39] Kim, K. H., "AnImplementationof a Programmer-TransparentSchemefor Coor-
dinating ConcurrentProcessesin Recovery,"Proc. COMPSAC 80, Oct. 1980, pp.
615-621.

[40] Kim, K. H., "Approaches to Mechanizations of the Conversation Scheme Based on
Monitors," IEEE Trans. on Software Eng., Vol. SE-8, No.3, May 1982, pp. 189-
197.

[41] Kohler, W. H., "A Survey of Techniques for Synchronization and Recovery in
Decentralized Computer Systems," Computing Surveys, Vol. 13, No. 2, June 1981,
pp. 149-183.

[42] Koren, I. and Berg, M., "A Module Replacement Policy for Dynamic Redundancy
Fault-Tolerant Computing Systems," Proc. of ll-th lnt'l Conf. on Fault-Tolerant
Computing, 1981, pp. 90-95.

[43] Krishna, C. M. and Shin, K. G., "Performance Measures for Multiprocessor Con-
trollers," Performance '83: Ninth lnt'! Syrup. Comp. Perf., Mess., and Eval., pp.
229-250.

[44] Lee, Y. H. and Shin, K. G., "Rollback Propagation Detection and Performance
Evaluation of FTM2P--AFault-Tolerant Multiprocessor,"Proc. of the 9th Annual
Symp. on Comp. Arch., 1982,pp. 171-180.

[45] Lee, Y. H. and Shin,K. G., "Designand Evaluation of a Fault-Tolerant Multipro-
cessor Using HardwareRecovery Blocks,"To appear at IEEE Trans. on Corn-
pater.

[46] Liaw, C. C., Su, S. Y. H. and Malaiya, Y. K., "Test-Experiments for Detection
and Location of Intermittent Faults in Sequential Circuits," IEEE Trans. on

Computers, Vol. C-30, No. 12, Dec. 1981, pp. 989-995.

[47] Madison, A. W. and Batson, A. P., "Characteristics of Program Localities,"
Comm. ofACM, Vol. 19, May 1976,pp. 285-294.

[48] Malaiya, Y. K. and Su, S. Y. tt., "Reliability Measure of Hardware Redundancy
Fault-Tolerant Digital Systems with Intermittent Faults", IEEE Trans. on Com-
puters, Vol. C-30, No. 8, August 1981, pp. 600-604.

[49] Malaiya, Y. K. and Su, S. Y. ,i., "Analysis of an Important Class of Non-Markov
System," IEEE Trans. on Reliability, Vol. R-31, No. 1, April 1982, pp. 64-67.

[50] Marchal, P. and Courtois, B., "On Detecting The Hardware Failures Disrupting
Programsin Microprocessors",Proc. of 12-th lnt'l Conf. on Fault-Tolerant Com-
puting, 1982,pp. 249-256.

101

[51] McGough, J. G. and Swern, F. L., "Measurement of Fault Latancy in a Digital
Avionic Mini Processor," NASA Contractor Report 856g, Oct. 1981.

[52] McGough, T. G. and Swern, F. L., "Measurement of Fault Latency in a Digital
Avionic Mini Processes," NASA Contractor Report 3651, Jan. 1983.

[53] Meraud, C. and Browaeys, F., "Automatic Rollback Techniques of the COPRA
Computer," Proc. of 6-th Int'l Conf. on Fault-Tolerant Computing, 1976, pp. 23-
29.

[54] Merlin, P. M. and B. Randc!l, B., "State Restoration in Distributed Systems,"
Proc. of 8-th Int'l Conf. on Fault-Tolerant Computing, 1978, pp. 129-134.

[55] Ng, T. W. and Avizienis, A. A., "A Unified Reliability Model for Fault-Tolerant
Computers," IEEE Trans. on Computers, Vol. C-29, No. 11, Nov. 1980, pp.
1002-1011.

[56] Osden, S.,"The DC-9-$0 Digital Flight Guidance System's Monitoring Tech-
niques", Proc. of the AIAA Guidance and Control Conf., 1979, pp. 64-79.

[57] Rai, S. and Aggarwal, K. K., "An Efficient Method for Reliability Evaluation of a
General Network," IEEE Trans. on Reliability, Vol. R-27, No. 3, Aug. 1978, pp.
206-211.

[58] Randell, B., "System Structure for Software Fault Tolerance," IEEE Trans. on
Software Eng., Vol. SE-1, No. 2, June 1975, pp. 220-232.

[59] Randell, B., Lee, P. A. and Treleaven, P. C., "Reliability issues in computing sys-
tem design," Computing Surveys, Vol. 10, No. 2, June 1978, pp. 123-165.

[60] Russell, D. L., "Process Backup in Producer-Consumer Systems," Proc. of 6th
ACM Symposium on Operating System Principles, Nov. 1977, pp. 151-157.

[61] Russell, D. L., "State Restoration in Systems of Communicating Processes," IEEE
Trans. on Software Eng., Vol. SE-6, No. 2, March 1980, pp. 183-194.

[621 Shedletsky, J. J., "Random Testing: Practicality vs. Verified Effectiveness", Proc.
of the 7th Annual Int'l Syrup. on Fault-Tolerant Computing, 1977, pp. 175-179.

[63] Shedletsky, J. J., "A Rollback Interval for Networks with an Imperfect Self-
Checking Property", IEEE Trans. on Computers, Vol. C-27, No. 6, June 1978,
pp.272-274.

[64] Shin, K. G., Lee, Y. H. and Sasidhar, J., "Design of HM2p--A ttierarchical Mul-
timicroprocessor for General-Purpose Applications", IEEE Trans. on Computers,

102

Vol. C-31, No. 11, Nov. 1982, pp. 1045-1053.

[65] Shin, K. G., Krishna, C. M. and Lee, Y. H., "The Applications to the Aircraft
Landing Problems of an Uniform Method for Evaluation Real-Time Controllers,"
Proc. of IEEE Real-Time System Syrup. Dec. 1982, pp. 242-256.

[66] Shin, K. G. and Lee, Y. H., "Analysis of the Impact of Error Detection on Com-
puter Performance," Proc. of 18-th Int'l Conf. on Fault-Tolerant Computing, June
1983, pp. 356-359.

[67] Shin, K. G. and Lee, Y. H., "Analysisof BackwardError Recoveryfor Concurrent
- Processeswith RecoveryBlocks,"Proc. of 1988lnt'l Conf on Parallel Processing,

Aug. 1983, pp. 362-366.

[681 Siewiorek,D. P. and Swarz,R. S., The Theoryand Practiceof ReliableSystem
Design,DigitalPress,1982.

[69] Simoncini, L. and Friedman,A. D., "IncompleteFault Coveragein ModularMul-
tiprocessorSystems," ACM Proc. of 1978Annual Conf., 1978,pp. 210-215.

[70] Stiffler, J. J., "Robust Detection of Intermittent Faults," Proc. of lO-th lnt'l Conf.
on Fault.Tolerant Computing, 1980, pp. 216-218.

[71] Stiffler, J. J. and Bryant, L. A., "CARE III Phase Report - Mathematical Descrip-
tion," NASA Report, No. 3566, Nov. 1982.

[72] Swan, R. J., Fuller, S. H. and Siewiorek, D. P., "Cm*: a Modular Multi-
Microprocessor," Proc. of 1977 AFIPS Natl. Computer Conf., Vol. 46, 1977, pp.
637-644.

[73] Tantawi, A. N. and Rusehitzka, M., "Performance Analysis of Checkpointing
Strategies", IBM Research Report, RC 9999(43430), Jan. 1983.

[74] Tasar, O. and Tasar, V., "A Study of Intermittent Faults in Digit Computers,"
AFIP Conf. Proc., 1977, pp. 807-811.

[75] Tasar, V., "Analysis of Fault-Detection Coverage of a Self-Test Software Pro-
gram", Proc. of the 8th Annual lnt'l Symp. on Fault-Tolerant Computing, 1078,

• pp. 65-74.

[76] Troy, R., "Dynamic Reconfiguration: An Algorithm and its Efficiency Evalua-
tion," Proc. of 7-th Int'l Conf. on Fault-Tolerant Computing, 1977, pp. 44-49.

[77] Trivedi, K. S. and Geist, R. M., "A Tutorial on the CARE III Approach to Relia-
bility Modeling", NASA Contract Report 3488, 1981.

103

[78] Tsuruoka, K., Kaneko, A. and Nishihara, Y., "Dynamic recovery schemes for dis-
tributed processes," Proc. of Reliability in Distributed Software and Database Sys-
tems, 1981, pp. 124-1:30.

[79] Wimmergren, A. L., "Verification of a Fault Tolerant Multi-ProcessorArchitec-
ture," CSDL-T-78'2,The Charles Stark Draper Lab., May 1982.

[80] Wood, W. G.,"A DecentralizedRecovery Control Protocol," Pro:. of ll-th lnt'l
Conf. on Fault-Tolerant Computing, 1981,pp. 1/59-164.

[81] Young, J. W., "A First Order Approximation to the Optimum Checkpoint Inter-
val," Commu. of the ACM, Vol. 17, No. 9, Scp. 1974, pp. 530-531.

104

APPI_NDU r A

DENSITY FUNCTIONS OF TASK EXECUTION TIME
i

• The density functionsof task executiontime with erroroccurrencedue to threedif-

ferenttypes (i.e. transient, intermittent,and permanent)faults are expressedas follows:

/_tlrl,T)= {1- ¢o(ZlFl)- ¢7(TIr_)(_.-p_)}_(t)+ ¢o(_rl)f,,o._(t,0)

+ r:7(_F1)(1-pl)[e-rt'6T(t-t,)+ (1-e)fr,,,l(t,l)]

f,(tlF:,f)= {1- _8(_F2)- _rT(TIF:)(I-P,)}6_(t)+ r%(flF2)f,b,2(t,O)

oo

+ _'7(TJF.")tl-Px)[_ (l-62)')-16zf,},._(t,n)]
_=I

Ir(tlF3,T) ----{1 - _%(T1F3)- _'7(T_F3)(1-P,)}6_(t)+ _%(_Fz)fr,,,2(t,O)

-}- 7r7(TIFs)(1-Pl)frbs,2(t,1)

where frb°,j(t,n)is the density functionof the time loss in recoveryfroman errorinduced

by Fj after n unsuccessfulretries,which is givenas follows:

t..)----(l-p.)p4dt-nt,-t_IFj)_,{.7(t-nt,)-uT(t-.t,-t_,)}fr,s,1(

lea

+(r,.+(l-p.){l-fP'_(t]D) dt}f_,U(t-nt,)
0 tch

where 6T_6(t-T), ur-_u(t-Y-tb), 7f_tartd----Ltart_(t-T),and _(t) and u(t) are impulsc and

step functions.

105

APPENDIX B

CALCULATION OF TILE PROBABILITY OF I_VING k

ROLLBACK DURING THE DURATION Treat

From the definition of P,t(h) in Chapter 5, the task will roll back h steps with pro-

bability Psi(h) following a failure detection within the last phase of duration Treat. Let

the rollback distance for the/:th rollback recovery be _ott which is approximately equal

to hTsg with probability Pet(h). Thus the accumulated effective c6mputation time before

the k-th rollback, TEk, is given by

k

TE_ = E (A_,- _ou)
j=l

Since the occurrence of rollback is a Poisson process with parameter kb, the density func-

N

tion of)_ is X6e-x't. The probability of having (A_-_o,l)=0 is _ Pst(h)(1-ex'hr"). The
h=l

density function of (A_-T_ro,,)becomes

N N

f_,(t) = E Pst(h)(1-e-xthr°')_(t)+e-xtt _ Pst(h)e-x'hT°"
h_l h=l

N

where _f(t)is an impulse function. Let Z_--_ Pst(h)e-)'thr'. Then f_ is simplified by
h=--I

fa(t) = (1-Z)_(t)+e-X'tZ

The characteristic function of TEk,which is equal to (Ca(s))k where (P_(s)is the charac-

teristic function of (A_-_oU),becomes

I08

o 1 " k i(X6,,,,(')--E(_(-z)_z)- -_61b-'

Taking the inverse Laplace transform, the density function of TE t (denoted as

fte,t_t)) is obtained. Then the distribution function of TE t becomes

t t--1

• l_TEi<_t)= ffte,t(r)dr= _(_i(l-Z_i(Z)k-iG___t)+(l-Z)t

where Gt_i(t) is the (k-0-th order gamma distribution function.

107

APPENDIX C

CALCULATION OF THE CHARACTERISTIC FUNCTION OF

TOTAL EXECUTION TIME, 4)_8)

From Figure 5.8, the total execution time Tt is the sum of Treatand Tra, where

tl

T,st= _ T',a when there are n restarts. Given the conditional probability of Tt, we can
i:1

write the followingeqnation:

E(T,ITreat) = T..,a+ E(Tr,,I r...t)

It is assumed that the time interval between the (i-1}-th and the i-th restarts, X_, is

exponentially distributed with mean 1/kr Thus, for a given T.eat, the time lost due to

the t:th restart, _a, is randomly distributed between t,u to Tr_at't't.,, with density func-

tion, fral T,,._ t), given by:

X sg-x't

.p,alr,._t+tJ-- l_e_X,r,.. ' for O<t<T,e,,

The probability of having n restarts for a given Treat is

Prslr,,._n) _- (e-X,T,,._(I_e-X,T'°'_"

n

Since Tt--_-T_eat+ __aT'rst if there are n restarts before the task completion, the characteris-
/=1

tic function of T t for a given T_eatbecomes

108

oo

.,,r...lo)=
a==0

where _r,tlT,,._°) is the characteristic function of the time loss due to a restart for a

• given Treat, i.e., the Laplace transformation of fr,t]T,._t). By substituting Pr,]r,.._n) and

• d_r,:lT,,._O) into the above equation and integratingwith the density functionof Trc_bthe

characteristic function of T#is obtained as the Eq. (5.11) in Chapter 5.

109

1. Report No. J 2. GovernmentAccezzionNo. 3. Recil)ient'$CatalogNo.
NASACR-172571]

4. Title im_ _Mitle S. Report Date

October 1985
INTEGRATED ANALYSIS OF ERROR DETECTION 6. PerformingOrganizationCode

AND RECOVERY

7. Author(s} 8. Performing Organization Report No.

Kang G. Shin and Yann-Hang Lee
10. Work Unit No.

9. Performing Organization Name and Address

Department of Electrical and Computer
Engineering 11. Contract or Grant No.

The University of Michigan NAG1-296
Ann Arbor, MI 48109 13.Typeof Repo__d PeriodCovered

12.Spor_oringA_-,cyN_me_d Add,e, Final Report: 1/1/84-12/31/84

! ' '
NationalAeronauticsand Space Administration 14.spongingA_cy Code
Washington,DC 20546

505-34-13-32
15. Supp4ementarv Notes

LangleyTechnicalMonitor: Ricky W. Butler

16. Abstract

In this report, we present an integrated modeling and analysis of error detec-
tion and recovery.

When fault latency and/or error latency exist, the system may suffer from
multiple faults or error propagations which seriously deteriorate the fault-tolerant
Cal_bility. We develop several detection models that enable us to analyze the effect
of detection mechanisms on the subsequent error handling operations and the
overall system reliability.

Following detection of the faulty unit and reconfiguration of the system, the
contaminated processes or tasks have to be recovered. The strategies of error
recovery employed depend on the detection mechanisms and the available redun-
dancy. We consider several recovery methods, including, especially, the rollback
recovery. The recovery overhead is evaluated as an index of the capabilities of the
detection and reconfiguration mechanisms.

i

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Error detection, latent errors/faults, diagnos-

tics, unreliable results, computation loss, roll- Unclassified- Unlimited
back recovery, retry, restart, recovery blocks.

SubjectCategory62

.-3os ForsalebytheNationalTechnicalInformationService,Springfield,Virginia22161

