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1. INTRODUCTION

Reliability in computing systems can be obtained through two means: iault
avoidance and fault tolerance. F#ult avoidance aims to prevent the occurrence of faults
so that system operations are not disturbed. The typical methods of fault avoidance are
the selection of reliable components and design of reliable structures. The second
approach, fault tolerance, is to fortify system operations against faults. The basic idea
of fault tolerance is to install redundancy in data or hardware components. Such redun-
dancy provides additional information with which to mask or recover from the fault.
Fault tolerance is becoming important because as time progresses, more computers can
be expected to be involved in critical applications where the repair of faulty components
is inhibited and/or human lives could be at stake. For this reason, specifications of the
failure probability of computers can be expected to be stringent. Indeed, the overall
failure probability of such a computer has to be much less than the failure probability of
any one of its components. Simple fault avoidance is not sufficient when extreme relia-

bility is required: one requires the ability to tolerate faults as well.

To evaluate the extent of fault tolerance in any system, two aspects have to be
examined. One is the survivability of systom which is concerned with the type and
number of faults t:at the system can tolerate before it fails. The other aspect is con-
cerned with how considerably installed techniques of fault-tolerance affect the normal
operational characteristics of the system. In most traditional reliability-related models,
several measures, like system reliability, availability, computation capacity or performa-
bility, etc., are evéluated in dealing with the first problem. These models usually make
certain assumptions about failur: treatment and lack the capacity to evaluate the

impacts of fault-tolerance techniques on normal system performance, and the



consequences of mis-handling of errors. It is easy to see that in some cases, a mis-
handling of failure may be more serious than the occurrence of failure. In this report, we
study the second aspect in detail and establish several models for error detection and

recovery.

In the discussions that follow, we adopt the terminology of Randell et. al., [59]. A
fault means a malfunctiop in a physical component. It does not affect the system opera-
tions before its marnifestation which we term the occurrence of an error. Thus, a fault is
not "visible” before a corresponding error is induced. An error can be generated because
of the existence of a fault or §hrough the propagation of other errors. When an error

occurs, the system is in an erroneous state, by definition.

1.1. Outline of the Report

To exhibit fault tolerance during normal operation, the first step is to identify the
occurrence of a fault which has to be recognized through a process of error detection. By
investigating error symptoms or executing a diagnostic, the source of the error is deter-
mined. The second step is to isolate the faulty components from system and to reconfig-
ure the hardware/software so that the whole system remains or becomes operational.
Finally, the computation ‘processes which have been contaminated by the error have to
be recovered. These three steps can be realized serially. However, they depend on each
other. For instance, when error detection mechanisms are sluggish, recovery of computa-
tion becomes difficult and inefficient since the errors will have propagated over a wide
area. Reconfiguration also affects the capability to detect further errors, which ability is
necessary especially when the mission life cycle is long and there is insufficient redun-

dancy.



In this report, We assume that there are enough resources such that the system can
be reconfigured after an error is detected. It is likely to see that the impacts of detection
mechanisms on the system performance and the efficiency of various recovery pro-

cedures.

In Chapter 2, the property of fault and detection mechanisms are studied. A fault
is latent when it exists in the system but does not harm any operations. Once an error is
generated, the detection mechanisms are supposed -- in contemporary models -- to iden-
tify the error immediately. Nevertheless, some errors may not be captured by these
detection mechanisms upon its appearance and may then spread as a result of subse-
quent flow of information. The time disparity between generation and detection of ﬁn
error is called as error latency. A model is established to inco.rporate both imperfect

coverage and the existence of error latency.

Because of the existence of error latency, the sysiem or task may have to suffer cer-
tain defects, like the production of reliable computation results, the delay in task com-
pletion, etc. In Chapter 3, as well as the measures of these impacts, the design of detec-
tion mechanisms is studied which, in corporated with recovery procedures, will achieve

the specified requirements of system performance.

We also model and analyze the recovery of the computation processes that are con-
taminated by the error. Depending on the detection mechanisms used, corresponding
‘recove—ry methods will be adopted. The performance of these recovery methods is dis-
cussed and evaluated quantitatively. Among these recovery methods, we concentrate on
rollback recovery because of its variety and the importance for distributed system. The
evaluation of software recovery blocks in cooperating processes is carried out in Chapter

4. Finally, the hardware implemented recovery blocks in multiprocessor system are



designed and analyzed in Chapter 5. The report concludes with Chapter 6.

1.2. Survey of Previous Works

| There is an es(tensive literature iﬁ the area of error detection, error recovery, and
models of fault-tolerant computers. Surveys of error handling were made by Randell et
al. [59], Kim [38], Anderson [2], and Siewiorek [68] where procedures of error handling
are described. These procedures provided for error detection and recovery considered

separately. The relationship between these facts is not considered.

Ever since Ball and Hardie [5] gave the statistical results about the failures in com-
puters, many papers have appeared in the literature concerning the modeling of failures,
detections and associated performance. Gunther [33] and Shedletsky [62] assumed that
the input signals are independent and then ;applied the concept of the fault set to esti-
mate the probability of error generation and error detection. Agrawal studied the same
problem using information theory [1]. Several experiments and simulations were carried
out to measure the probability of error detection and the distribution of detection time
by injecting hardware faults [8, 22-23, 48, 50-52, 75, 79]. These mecasurements deter-
mined the interval between fault injection and error detection. However, no direct way
is known for estimating the moment of error occurrence which is within the above iuter-

val.

* About the intermittent faults, their transient behavior are assumed to have Marko-
vian properties by Breuer [11] and then extensively used by Hopkins [34], Malaiya [48-
49], Ng [55], etc. Tasar, in a literature survey of intermittent faults [74], discussed the
theoretical modeling of intermittent faults, and then pointed out the difficulty of diag-
nosing intermittent faults. Indeed, run-time detection is more efficient than any kind of

diagnostic in the matter of detecting intermittent faults.



There are many studies of error-correcting codes, and self-checking circuits. Several
papers examined the impact of partial self-checking on system reliability [23-24,63,70].
Bossen and Hasio [10], and Carter et al. [15] investigated the design problems of self-
checking circuits, the placement of these circuits, and their cost effectiveness. However,
little work has been done on performance measures for function level detections. Cour-
tois presented experiments on a microprocessor for the detection of error by the mechan-
isms of timeout and invalid op-code [22]. Andrews discussed the inclusion of executable
assertion to provide run-time error detection [3]. The overheads in program size and exe-

cution time are measured in the experiments.

Among error recovery methods, rollback recovery has received more attention than
any of the others. The recovery block, proposed by Horning [35] and Randell (58] has
been widely used for backward error recovery. For the implementation of recovery blocks
in multiprocess systems, Merlin and Randell suggested the conversation scheme in
[54,59]. Kim proposed more flexible programming structions in [40}]. There arc mary stu-
dies concerning rollback propagation and the domino effect, such as the detection of roll-
back propagation by Wood [80], the insertion of redundant recovery points by Kim
[37,39] and Kant [36], the synchronized rollback schemes for transactions using a two-
phase commitment protocol by Gray [32], Kohler [41], and Ferran [27], and the restora-
tion of information for blocking propagation by Russell [80-61]. Although the proposed
refinements can be proved to avoid the domino effect, the overheads associated with
them are generally high. However, no quantitative estimates of the probability of 4 dom-
ino effect and the associated loss have been made so that it is impossible to compare the

relative benefit which we obtain from these respective refinements.



Several methods for analyzing the performance of rollback recovery system have
been proposed [4,19-21,30-31,78,80]. They, in general, deal with a transacti_on—oriented
database system and compute the optimum length of the intercheckpoint interval. The
assumptions that the checkpoints are completely reliable and no multi-step rollback is
involved are adopted to simplify the derivations. Castillo and Siewiorek studied the
expected execution time which is required to complete a task with the restart recovery
method [16]. Brodetskiy included the problems of single step rollback and restart in [12-
14). These studies, in general, confine to the mono-processing environment. For distri-

buted processes, rollback propagation and multi-step rollback have to be considered.

2. ERROR DETECTION PROCESS

When there exists a fault in a compﬁter system, an input signal may cause the
fault to induce some errors, or it may simply be unaffected by this fault and produce a
correct output. The fault is said to be latent if it does not harm normal operations. The
time interval between the moments of fault occurrence and error occurrerce is called
fault latency. For an ultra-reliable system, a latent fault is a considerable threat since it
may cause a catastrophe in the event that more than one latent fault becomes active at

the same time.

When an error is generated, it is desired that the error detection mechanisms asso-
ciated with the system identify it immediaﬁely. Nevertheless, some errors may not be
captured by error detection mechanisms upon occurrence and then spread as @ result of
the subsequent flow of information. Thus, the damage caused by an error will propagate
until it is detected and handled appropriately. See Figure 2.1 for a typical error detec-
tion process. The delay between the occurrence of an error and thé moment of its detec-

tion, called error latc:icy, is important to damage assessment, error recovery, and
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Figure 2.1 The Error Detection Process.



establishing confidence in the computation results.

The error latency has been defined by Courtois as detection time [22,23] and by
Shedletsky as latency difference [83). Courtois also presented results of on-line tests of
the M6800 microprocessor that included the distributions of detection time for certain
detection mechanisms. Shedletsky proposed a technique to evaluate the error latency
based on the "fault set” philosophy and the probability distribution of input signals.
Bavuso et al. investigated the problem of the latent fault and proposed experiments to
measure the time interval between the moments of fault injection and error detection [8].
Their study indicated that a significant proportion of faults is not detected even after

many iterations of a process.

When error latency is sigﬁiﬁcant, there is the pbssibility of the system putting out
incorrect computation results, since there may be some undetected errors at the output
phase. Also, even if the system detects all errors before the output phase, the computa-
tion achicved during the latent period may already have been contaminated and thus be
useless. In practice, error latency is never zero, and in the event of an erroi the whole
system is delayed by the more complicated recovery that is required to remove the con-

tamination that is spread during error latency.

To evaluate these two effects -- the probability of producing an unreliable result
and the computation loss resulting from error -- it is necessary to examine the error
detection mechanisms incorporated in computer systems 2nd their respective capabilities.
Omne may then establish a different recovery strategy for the errors captured by each dis-
tinct detection mechanism, thus obtaining the most appropriate possible recovery per-

formance and execution cost. To evaluate error-handling capability including tradeoffs



between various detection mechanisms and recovery methods, it is necessary to consider

recovery performance and execution cost, taken as a whole.

In this chapter, a model is proposed to describe error detection process. In the fol-
lowing section, the classification, properties, and associated recovery methods of error

detection mechanisms are discussed. The detection model is then developed.

It is assumed throughout this report that faults in hardware components are a
potential cause of transition to erroneous states during normal operation. An error is

defined to be the erroneous information/data resulting from fault(s).

2.1. Classification of Error Detection Mechanisms

There are various error detection mechanisms which can be incorporated in a com-
puter system. The basic principle of these mechanisms is the use of redundancy in dev-
ices, information, or time. Based on (i) where thcy are employed, (ii) their respective
recovery methcds, and (iii) performance measures, error detection mechanisms are

divided into the following three categories.

1. Signal level detection mechanisms

Usually, the mechanisms in this category are implemented by built-in self-checking
circuits. Whenever an error is generated by a predescribed fault, these circuits detect the
malfunction immediately even if the erroneous signal does not have any logical meaning.
Typical methods in this category include error detection codes, duplicated complemen-
tary circuits, matchers, etc. The performance of these detection mechanisms is measured
by the coverage, denoted by ¢, which is the probability of detecting an error induced by
an arbitrary fault. It is difficult to have.a perfect coverage because (i) it is prohibitively

expensive to design detection mechanisms which cover all types of faults, and (ii)



‘physical dependence between function units and detection mechanisms cannot be com-

pletely eliminated.

Since this class of detection mechanisms detects an error immediately upon
occurrence, there is no contamination through error propagation. This makes the subse-
quent recovery operations simple and effective. Two kinds of recovery methods are suit-
able for this category; one is error masking, in which redundant information is used to

retain correctness, the other is retry, in which the previous action is re-executed.

2. Function level detection mechanisms

The detection mechanisms in this category are intended to check out unacceptable
activities or information at a higher level than the previous category. Unlike the signal
level detection mechanisms, they verify system operations by functional assertions on
response time, working area, provable computation results, etc. These detection
mechanisms can be regarded as "barriers” or "guardians” around normal operations.
After an error is generated by a fault, the resulting abnormality may grow very quickly--
the "snowball effect” [22], or "error rate phenomenon” [56]--until it hits the barriers.
Several software and hardware techniques such as capability checking, acceptance test-

ing, invalid op-code checking, timeout, and the like can be applied.

The important issues for function level detection mechanisms are error isolation
and damage assessment. Both issues depend upon system structure as well as on
inherent properties of the executed programs or tasks. When there are clear cleavéges
between sub-systems or sub-tasks, the effective detection assertions can be easily
declared, thus permitting greater error isolation and reducing contamination. Usually,
rollback and restart recovery methods are used to rescue failed processes. Rollback

requires state restoration such that part of the process can be resumed. The restart

10



method purges the old computation and then re-issues the same task to other non-faulty

processors.

3. Periodic diagnostics

This method is usually referred to as off-line testing because the processing unit
under test cannot perform any useful task. It is composed of a diagnostic program which
supplies inputs such that all existing faults are activated and thus generate errors.
Several thcoretical approaches and simulations have been proposed to determine the pro-
bability of finding an error after applying diagnostics for a certain duration (equivalent
to the probability of detecting fault as a function of test duration) [11,29,62,75]. All
these results have indicated that the effectiveness of the present category is a monotoni-
cally increasing function of testing time. Since the time required for complete testing(i.e.
ensuring 10095 coverage) is in general too long, an appropriate policy of diagnostics is to
perform an imperfect test periodically during normal operation and perform a thorough

diagnostics when the system is idle.

2.2. The Model of Error Detection Process

For analytical convenience, occurrence of faults is usually modeled as a Poisson pro-
cess. Let MTBF be the mean time between two successive fault occurrences. Also, let F;
and p, i=1,2,3 denote the event and the probability that the fault is transient, intermit-
tent, or permanent, respectively. Naturally, p;+p,+p;=1. When the classification of
faults into these three types is independent of occurrence of fault, occurrence of event F;
can be modeled as a Poisson process with rate p; /MTBF. Then, the following model

can be used for a separate analysis of the effects of each type of faults.

11



2.2.1. Model Development

Figure 2.2 shows our model of the error detection process. The model consists of

three parts: the occurrence of a fault, the consequent generation of an error, and the

detection of that error. Since the probability of having multiple faults at any time is

small, they are excluded from the model. There are six states in the model as follows:

(1).
(2).

(5).

(6).

NF (non-faulty): In this state no fault exists in the system.

F (faulty): There is a fault which is active and capable of inducing errors, but

there are no errors.
FB (fault-benign): There is an inactive intermittent fault.

E (crror): There is at least one undetected error in the system and the fault which

has caused that error is still present.

EFB (error-fault-benign): At this state the intermittent fault has become inactive

or the transient fault has disappeared after it induced an error.

D (dctection): At this state, the detection mechanisms have identificd the error in
the system. To distinguish between whether the system has been contaminated or
not, two substates, called D, and D,, are included. The system will enter D, when
the detected error has contaminated at least part of the system. On the other
hand, the system enters D, when an error is detected before it begins to propagate
through the system. Signal level detection and diagnostics cause transitions from F
to D,. In fact, these transitioﬁs can be divided into two steps: an existing fault

induces an error, and the error is detected immediately following its occurrence.

Let A denote the rate of occurrence of F; type faults, i.e., A\ = p, [MTBF +=1,23

when transient, intermittent and permanent faults are separately considered. Since

12



Note: The transitions between NF, F, FB, and E, EFB are
dependent on the type of fault.

Figure 2.2 The Model for Error Detection Process.
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intermittent faults may become inactive, a benign state has to be included in the model.
Several models of intermittent favlts have been proposed and used for testing and relia-
bility evaluation [11,48,55,71,77). In our model, the transitions between NF, F, FB, and
between E, EFB are used to describe the behavior of intermittent faults. For iransient
and permanent faults, FB does not exist, implying that the transition rates between F
and FB, p and v, are zero. Similarly, for intermittent and permanent faults the rate of

transition from F to INF, r, equals zero.

Consider the process of generating errors by a given fault. With the assumption
that the signal patterns of successive inputs are independent, Shedletsky treated the
period of fault latency as a random variable with a composite gebmetric distribution for
discrete inputs or cycles [62]. Using the concepts of information theory, Agrawal
presented a formula to estimate the probability of inducing error [1]. For tractability we
have assumed in our model an exponentially distributed fault latency with rate a when a
task is executing. While the diagnostic program is running, the transition duration from
F to D, is assumed to be exponentially distributed with parameter w. If the diagnostic
program is executed for period t, following a normal operation period ¢, and a process
swapping period t, as shown in Figure 2.3, the coverage of a single diagnostic, denoted

. ~wt . . .
by £, is equal to 1-e “ for each execution of diagnostics.

Once the system enters E, the erroneous information starts to spread until function
level detection mechanisms identify any unacceptable result. There are two paths to D,
and they represent transition rates of A(f) and 7(¢), respectively. At state E, since the
fault still exists, it is possible that the fault is captured by signal level detection mechan-

isms or diagnostics prior to the function level error detection. We exclude this case from

14
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the model because the process has already become erroneous, and the subsequent signal
level detection has no effect on this error. (Namely, a direct transition from E to D, is
not included.) It is also possible that there are multiple errors induced by the same fault
or by an old, undetected error when the system is in E or EFB. The function level
detection mechanisms will recognize that the system is erroneous regardless of which

error is captured. However, the error latency must be measured from the moment that

the first error occurs.

2.2.2. Mathematical Description of State Transitions

Let a computer system incorporate the three types of error detection mechanisms
discussed above. For notational convenience number the states NF,F,FB,
E, EFB. D,, D, with ¢ for 1=1,2,...,7. Then one can obtain a trapsition probability

matrix H; ,;(t) by making use of the model in Figure 2.2.

Y -Ali -—)‘—”— 0 0 0 0
ptv ptv

r-(prrra(+ag(t)) p a,(1) 0 0 ayt)

0 v -v 0 0 0 0 (2.1)
HyA) = 0 0 0 Aptr+Bl0)  pir A O

0 0 0 v ~(v+4(1) ) O

0 0 0 0 0 0 0

) 0 0 0 0 0o 0

Since the diagnostic is invoked periodically, transition rates oy (1), ay(t), AlY), and ~A(¢) are

the following functions of time.

18



(l—c)a if "(‘n+‘p+'v) < ‘S n(’n""p'*"v)'*'tn
a,(t) = 0 otherwise (2.22)
cx if "('u+'p+’v) <t S "(ln+'p+'v)+’n
a(t) = w otherwise (2.2b)
{ B if ottt 41) <t < n(tytt41,)+t, 29
Alt) = 0 otherwise (2:2¢)
{ o~ if nlt,+t+¢) <t < n(t,+t,4t,)+t, (2.24
At = 0 otherwsse -2d)

where ¢ is the coverage of the signal level detection; e is the transition rate that a fault
generates an error; A and ~ represent the transition rates that the function level detec-

tion captures errors in states E and EFB, respectively; and nis a positive integer.

Hence the state probabilities, w(t)=[my(t),my(8),...,m t)], can be obtained by solving

the following differential equation:

D — oy By w0) = x, (23)

where (1) is the probability that the system is in state ¢ at time f. Because of the

absorbing property of D, and D,, one can easily see that me(00)+m,(00)=1.

Assume the initial state that the system begins with is NF. When a transient or a
permanent fault occurs, the system will enter the non-faulty state again after cither the

fault disappears or the system is reconfigured to eliminate the source of the fault.

In case of an intermittent fault, it is possible for the system to be in FB instead of
NF even after some recovery procedures are successfully applied. For example, when
the fault becomes benign during the retry recovery, the system enters FB. Let S (or S,)
be the event that the system is in state NF (or FB) after recovery from an intermittent

fault. This process can be represented by a Markov chain shown in Figure 2.4 and the

17



transition probabilities between S, and Sy, denoted by &, and 6,. These transition proba-
bilities are computed using Eq.(2.3) and the corresponding recovery performance will be
discussed in the recovery strategy of next chapter. Note that, under S, the same inter-
mittent fault will be detected by the signal level detection with probability one if it

induces an error again.

A task may start execution when the system is in any one of NF, F, FB, E, EFB
(but certainly not in D,, D). Using the Markov model in [18], we can calculate (i) the
mean number of visits to state i, 1=1,2,..,5, before the system 1s absorbed into D, or Do
for every F; j=1.2,3, and (ii) the mean time interval, E[X||F}] /=1,2,3, during which the
system stays in state { before transition to D; or D2 takes place. Then, the probability

that a task begins execution when the system is in state 1, is formulated as follows:

5
X\ F; E[XF;
E1X) ,]/E1 [XHF] tor =125 (2.4)

m{0|F}) = |0 for =06,7

[t may be possible that the active duration of an intermittent fault increases every
time it becomes active following its first occurrence. This would imply that phe tronsi-
tion rates between fault active and fault benign depend on the duration for which an
intermittent fault exists. In such a case, the model suggested in [49] can be used in the

above system equations.

It cannot be over-emphasized that our modeling of the error detection process is
intended to evaluate the offects of various detection mechanisms on task execution. This
fact is in sharp contrast to most conventional methods in which models have been
developed and then used to estimate the system reliability or to determine the coverage

of failure. For example, in CARE 111 [71,77] the error propagation rate is defined by the
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Figure 2.4 A Markov Chain for the Recovery from an Intermittent Fault.
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user and the model is applied to determine the coverage. Note that a transition to D,
represents the detection of error by function level detection mechanisms, whereas Dy is
reachable directly from F by signal level detection mechanisms or diagnostics. The
impacts of detection mechanisms on task execution will be reflected through Eq. (2.3)

and the state distribution n{{|F}).

3. Analysis of the Impacts of Error Detection Mechanisms

In case of imperfect coverage (i.e. ¢<1.0) in the signal level detection and non-zero
error latency in the function level detection, the system will suffer from the following
two undesirable effects; one is the possibility of putting out potentially erroncous results
and error propagations because the system is unaware of the existence of error, and the
other is the additional recovery overhead resulting from error propagation through the
system during error latency. With the model proposed in the previous section and
moderate assumptions regarding error recovery, we will in this section analyze these two
effects and then use them to specify the requirements for design of error detection. The
error recovery strategy is presented here for studying computation loss. However,

detailed discussions concerning rollback recovery method are given in Chapter 4 and 5.

3.1. Estimation of the Probability of Producing an Unreliable Result

The exccution of a task consists of parallel and/or serial execution of processes. We
can always partition the task into processes in such a way that every process receives all
the input data at the beginning of its execution and sends the computation result to its
successors at the end of execution. A serious situation, namely the propagation of

erroncous information through the system, appears if an error occurs and cannot be
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discovered before the end of execution. For convenience, let us define an unreliable result

as follows:

Definition: If there exists at least one error at the moment of process completion and if
the system is at that moment still unaware of the presence of that error, the process is

said to end with an unreliable result.

An unreliable result may even include the cases of producing wrong and/or no out-
puts. On the other hand, it may yield a correct output despite the presence of error if
the computation is not contaminated by the error. However, the result cannot be trusted
owing to the presence of an undetected error at the moment of output. (No one would
have much confidence in the computation result under this circumstance!) It is therefore
important to estimate the probability of producing an unreliaLic result, denoted by p,,

as a measure of lack of confidence in the computation result.

Let T denote the execution time of a process. If T is deterministic, p, is given by

3
p. = Y, p; {ny TIF,) + ns( TIF,)}, which is the probability that the system is in E or
;=1 :

EFB at the moment of process completion. When T is a random variable with densit;

> 3
function f{t), then p, becomes pe=f (S p; [mltlF)) + ms((F))} f7 (1) dt.
0 j=1

When a diagnostic is scheduled periodicaily for the process, the resulting p,
becomes a function of the time interval between the output moment and the time the
previous diagnostic has run. The shorter this time interval, the more reliable the compu-
tation result. However, because of the uncertainty of the process exccution time, it is dif-
ficult to schedule periodic diagnostics so that the system is testcd just before the process

moves into the output phase. Here, using the proposed model, we can compute the max-
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imum value of p,, denoted by max(p,), which occurs when the time interval between the
process completion and the last diagnostic is equal to t, Observe that 1-maz(p,)
represents the lower bound of confidence (or sure confidence) in the computation results
and thus can be used for design specifications. Some simulation results are graphed in
Figures 3.1 and 3.2. In Figure 3.1, max(p,) starts to decrease sharply only when each
diagnostic has a higher coverage (£>0.95). In Figure 3.2, we compare three different
cases: (i) with periodic diagnostics and ¢=0.8, (ii) with periodic diagnostics and ¢=0.8,
and (iii) with periodic diagnostics, ¢=0.8, and doubled function level detection rates.
From the model, we can observe that maz(p,) is linearly related to the coverage of the
signal level detection and varies exponentially with respect to the function level detec-
tion capability. However, perfect coverage and zero error latency are impossible to
attain in practice. Thus, the combination of both the signal level and the function level

detection mechanisms have to be used to reduce p,.

3.2. Evaluation of Computation Loss and Execution Cost

The designer needs to evaluate the expected computer performance if the propertics
of detection mechanisms such as coverage and error latency are known. To this end, we
have considered here two important parameters to represent the impact of these detec-
tion mechanisms on computer performance; computation loss and ezecution cost. Com-
putation loss -- a system oriented view -- is represented by the amount of time used for
error handling, whereas execution cost -- a task-oriented view -- shows the effect of error
detection and recovery on a particular task in tﬁe event that an error is detected during
its execuiion. After the detection of an error, one may use one of sevcral recovery
methods to rescue the executing process. Recovery strategies usually depend on the

detection mechanisms and the fault/error types.
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The overhead and efficiency associated with these recovery methods are briefly dis-
cussed in the sequel. This discussion is not intended to present the details of error
recovery. More detailed accounts of rollback and restart recoveries are given in Chapter

4 and 5.

3.2.1. Recovery Strategies and Their Respective Overheads

If an error is detected by some detection mechanism, rollback or restart can always
be applied to recover the process from the error. It is, however, possible to use masking
or retry if the error is captured by signal level detection mechanisms. Figure 3.3 illus-
trates four recovery strategies, their applications and their application precedence when
multiple strategies are used to recover from a single error. In Figure 3.4, a probabilistic

flow diagram between these recovery methods is presented.

Note that a transient fault may nov induce any error before its disappearance. The

a
probability of having an error, given the occurrence of fault, is P(E)=-—— +p,+ps.

(a+7)

Let R,; and p,; represent respectively the mean overhead and the probability that the
i-th recovery method is applied to recover from an error which is generated by F}, where
i=1,2,3,4 for masking, retry, rollback and restart, respectively. We also define 4,; as the
conditional probability that the process is recovered, given that the s- th method is used
when F, occurs. Let p/ be the probability of F; given an error is detected, which are

listed in Table 3.1. We can use Figure 3.4 to represent the mean total overhead of

3 4
recovery RT = Y, p/ (Y pijRi;) for every error detection.
=1 =1
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1. Error Masking

Most error masking methods employ error-correcting code in data transfer,
memory, and arithmetic units. Error masking is the most efficient recovery mcthod
when it can be applied successfully. In fact, we can regard in this case that the error has
never occurred since the system still provides correct results despite the existence of
crror. Thus, one can assume R, =0, i.e., zero recovery overhead, and 6, ,=1. The pro-
bability that error-masking is used, p,,1=p,1r7(oo|F1)(c:/(a+r)) and p, j=p,m;(oo|F}) for
all 7=2,3, depends on the conditional probability that error occurs due to the faults in
the units with error-correcting code and can be corrected by the error-correcting code,

given that the error occurs.

2. Retry Recovery

Retry can be attempted at various levels, e.g., at the levels of micro-instruction,
instruction, or 1/O operations. Retry is usciul when error has not propagated yet at the
time of detection. Re-exccutions of the same operation can produce a correct result only
if the related fault is transient or intermittent and disappears during retry. Ideally, the
system should apply retry recovery until the fault disappears if it is transient with a
short active duration. For permanent faults, retry recovery is not helpful. However,
after the detection of error by signal level detection mechanisms, it is very difficult, if
not impossible, to tell the type of fault. Moreover, if it is transient, it is impossible to

predict when the fault will disappear.

Due to above rcasons, assume the system will retry automatically for a fixed dura-

tion ¢, upon detection of an error by the signal level detection. Then, we can obtain
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mathematical expressions of pyj, 02, and Ry for 7=1,2,3 as listed in Table 3.1. Note

that the second subscript j represents here the fault type j.

Recall that if an error generated by an intermittent fault is recovered successfully
by retry, the same fault will be detected again by the signal level detection when it
becomes active and induces errér again. Thus, there are 1/6, retries on the average
among which application of the last retry will be unsuccessful. In case of intermittent
faults the transition probabilities, 8, §,, between S; and S, are expressed as follows: (See

Section B for the definition of S; and S,.)

b, = mloolFy) (1-py) (1-¢™) (3.1)

8, =¢"" (3.2)

From Egs. (3.1) and (3.2), it is easy to see that though it is simple and practical,
the above retry method is not intelligent. It may be more desirable to design a retry
mechanism which can recognize the intermittent nature of the fault following several
consecutive, successful retries for the same fault. Since retry mechanism observes the
active duration of a fault and the detection mechanism gives the duration of fauit
occurrence, it is possible to measure the fault characteristics. However, the information
obtained is not complete because the failure of retry. It should be attractive to find a

combined retry and estimation methodology.

3. Rollback Recovery

Rollback recovery can be regarded as a type of retry which needs to save process
states during normal operation. When an error is detected, the process rolls back to one
of the previously saved states. The original idea of rollback recovery is accommodated

with acceptance tests for software reliability [35,56]. Here, for rollback recovery we
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“assume periodic insertion of checkpoints such that the process can be resumed at any
one of these checkpoints. Let ¢,, and t. be respectively the overhead for saving states
and the interval between two adjacent checkpoints. Then, the percentage of the over-
head for establishing checkpoints is ¢,, / (t,+ts). Note that rollback recovery fails if
the states saved are destroyed by a fault, or if the states are contaminated by error (e.g.

due to the presence of error during the state saving).

The time lost in rollback recovery is the sum of the computation undone and the

setup time' for rollback, t;. When we consider the re-occurrence of error during recovery,
it is extremely difficult to determine this time loss. However, when the fault occurrence
rate is very small (typically 107® per second for the IC's manufactured today), we cén
assume no error occurrence during rollback. We also assume that-. only the most recently
saved state is kept in order to minimize the storage requirements for checkpoints. Then,
the time loss in computation simply becomes the interval between the moment of the
last state saving and that of the error occurrence which cannot be recovered by error-
masking or retry. Since the MTBF is in general much greater than the inter-checkpoint
interval ., one can assume that the occurrence of rollback recovery is uniformly distri-
buted within the inter-checkpoint interval, given that it is applied. Let p,, be the proba-
bility that the saved state becomes inaccessible or unusable and pyq(¢|F}) be the probabil-
ity distribution function of error latency for fault type Fj, i.e. the probalility that the
system is in D, at time ¢ when the system starts from E. py(t}F;) is equal to me({|F}) in
Eq. (2.3) when n(0)=[0,0,0,1,0,0,0]. Then, we obtain ps; 05; and Rj; as listed in Table

3.1.

The setup times for both rollback and restart recoveries are needed for hardware reconfiguration and
software initialization. The hardware reconfiguration is to eliminate the source of error (i.e. fault(s)) for the
resident process in the faulty module.
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4. Restart Recovery

When restart recovery is applied, the whole process is re-executed from the begin-
ning to recover from an error. Since the system can be reconfigured to replace the faulty
component, restart recovery will eventually succeed as long as there are enough resources
to replace faulty components. Hence, we have 0, ;=1 and p, ;=1 - py; ~ p2,02; - 3,03,
The time wasted in each restart is the sum of the sctup time for reconfiguration and
reinitialization, and the time of error detection, T4, measured from the beginning of pro-
cess execution. For simplicity, we assume that the moment of restart recovery is uni-
formly distributed within the task execution period. Thus the density function of the
overhead involved in restart, fy,,(t) is equal to 1/ 7 for t,<t<T+t, and Ry; = t+ T/2
where ¢, is the setup time for restart. Details of the effects on task exccution time by

successive restarts can be found in [45].

3.2.2. Calculation of Computation Loss and Execution Cost

Now with the preceding overhead analyses, consider the computer time that is used
for actual computation instead of error handling. The average computation loss due to a
single error detected, denoted by CL, has to include the overheads due to periodic diag-
nostics, periodic insertion of checkpoints, and recovery in the event of error. Define 7 as
the percentage of the average computation loss for each error detection, which is

expressed by:

CL e St (R
1= a0 T B L (L) (3.3)

where 1/(\ P(E)) is an approximate mean time between two successive error detections,

and o is the percentage loss due to periodic diagnostics and insertion of checkpoints and
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is given by:

tp'*' & 'ou
t,+ lp+ t, tovtten

The above equation indicates that the time wasted for executing periodic diagnos-
tics and checkpointing is a dominating factor in the total computation loss when the sys-
tem is highly reliable (i.e. the system has a small X). In Figure 3.5, plotted are the simu-
lation results for the percentage of the total computation loss, 5, and the mean loss in
recovery, RT. The reduction in recovery loss by periodic diagnostics is small because (i)
the diagnostic is useful only if it can capture faults before they induce errors, and (i1)
the diagnostic is incapable of detecting an intermittent fault when the fault is inactive.
(iii) even if the diagnostic identifies a fault, the system still has to reconfigure or retry to
climinate this fault. Detection mechanisms other than on-line diagnostics are more

advantageous due to their favorable effects and overheads on the computer performance.

Observe that this time loss is related to the system, not to tasks to be executed on
the system. One can therefore regard this as the system overhead. On the other hand,
tasks executing on the system may suffer from delays in execution due to error detection
and recovery overhead which are task-specific. When a task is time-critical, the delay in
its execution may cause a catastrophe (e.g. loss of human lives, economic and social
disaster, etc. ) if the execution is not completed within a specified time limit called hard
deadline, denoted by t4,,4 This was termed dynamic failure in [43,65]. Also, the running
cost -- the cost for use of computer as well as controlling an actual system which uses
the computed results -- will certainly go up with the increase of the execution delay. In
case of error, based on Figure 3.4, we can write the probability density function of the

execution delay due to the recovery from an F; type fault, f{{|F;,T), where T is the

33



(o] [=4
S | 12
<t —_
[ =]
- S
- [ ad
o Qe
U’LD.__ case 1 -’3
nMm 3
o Y]
- U
S -
=
2 a5
2 1°¢
g case 2 o
o . .
e ool m foel
QD._"_ = o ) = s e ﬂ b
oM o
. [7;]
LU T2
=
= o
< o
as o
VLo > o
G4 ———— . &
a. N ! =
+m
o =
S S ‘ ; — , ' R
N .00 168.00 200.00 300.60 400,00 500.60 600.00 700.00 —

Perlod of Dlia. Cycle

Figure 3.5 The Effects of Periodic Diagnostics on Percentage of Total Loss (case 1), 1,
and Total Recovery Loss (case 2), RT.
(A=10"%, 4 =0.2,y=0.1,r=0.2,6=0.2,§=0.5,7=0.1,w=20.0,6=0.8,c=0.6,
T=100.0).

34



needed time for task completion under a fault-free condition. These density functions
are listed in the Appendix A. Note that for intermittent faults the task may be com-
pleted with successful retries. In the expression for f{{|F,,T) given in the Appendix A,
for simplicity we used the upper bound of error handling delay; that is, whenever an

error occurs, the task completion is achieved with rollback or restart recovery.

Since the overhead associated with checkpointing and diagnostics has to be
included, the time needed for task execution under the fault-free condition becomes
i‘=(1+o) T. For any computation process, the delay in execution may induce an extra
cost. For example, in real-time applications this cost may be the additional energy or
fuel used for the controlled system, the consequence of longer response time. etc. Given
a cost function for the execution time ¢, ({¢), which is a monotonic non-decrcasing func-
tion (see [43,65] for an example of its detailed derivation), we can obtain the total execu-
tion cost, COST, and the probability of dynamic failure, py,,. as below.

(o]

COST = ip, [t f(4F, T) dt (3.4)
;=1 T
3 © .
Pam = Yo7 [ JAUF,T) dt (35)

5= tyegy

3.3. Design Consideration for Detection Mechanisms

Consider the performance and reliability measures, p,, pyy, and COST. These
measures quantitatively represent the consequences of imperfect detection mechanisms
and then reflect the effects of detection mechanisms on the system performance. In this
section, these measures are used to address problems in the design of detection mechan-

isms.
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Suppose that the specifications of performance requirements and application tasks
are now given. To provide the required fault-tolerance in the design, we have to answer
the following two questions: (i) what kinds of detection mechanisms should be incor-
porated in the computer system to be designed?, and (ii) what are their properties in
meeting the specifications? Ip other words, we need to know the coverage by signal level
mechanisms, the error latency in function levc! mechanisms, and the period of diagnos-
tics. Suppose for instance that the real-time operations and time-critical processes are
now our major design concern. The specifications must include the limit for the proba-
bility of failure as well as the maximum allowable extra cost caused by shortcomings of

detection mechanisms.

According to our simulation results in Figure 3.5, the avoidance of error by diag-
nostics appears useful only if the cycle time of diagnostics is not much greater than the
fault’s active period, which is usually small for transient and intermittent faults. T'his
implies that a frequent application of diagnostics is needed. However, in such a case, the
computation time wasted for executing diagnostics as well as the total execution cost
increases prohibitively, making the periodic use of diagnostics during normal operation
less useful. It also indicates that the probability of capturing intermittent faults and the
improvement of loss in recovery by diagnostics are small. Consequently, on-line diagnos-

tics are not useful for time-critical applications.

As a conservative measure, the probability of failure due to imperfect detection
mechanisms. denoted by p;, can be represented by the sum of p, and pgy,. From the
model, one can see that p, is dependent exponentially on error latency but linearly on
coverage, ¢. That is, the decreasing of error latency has a greater impact on p, than

does the increasing of the coverage. However, an improvement in the coverage will
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decrease the probability of error propagation and thus reduce the recovery overhead. In
Figure 3.6, curves with constant p; and constant COST are plotted, where C{t) is
assumed to be (¢- 7“)2 for t> T. 1t shows the combination of the coverage and the mean
error latency required to attain p; and COST, below the specified values. The area

under both the constant p; and constant COST lines indicates the desizn space for

selecting the coverage and the mean error latency.? It is clearly that perfect signal level
detection is within the design space, though it is impractical. By contrast, the combina-
tion of small error latency and zero signal level detection may not satisfy the specifica-
tions. This can be scen easily from the fact that with a zero signal level detection, every
recovery must require rollbacks and/or restarts. The use of rollbacks and/or restarts for
recovery is more time-consuming than error-masking and retry which are available only
to signal level detection mechanisms. Hence, signal level detection mechanisms musi be
included in the design. The curves with constant COST show that the average exccu-
tion cost is insensitive with respect to the coverage of the signal level detection mechan-
ism. This is due to the fact that all errors induced by intermittent or permanent faults
have to be recovered by rollback or restart whatever the nature of the error detection
process, and that because of the overheads imposed on saving states, recovery points
have to be placed relatively far apart. It is important to recognize that an effective

recovery method will have severe impact on the delay of task execution.

The feasible design space indicated in Figure 3.6 will provide the requirements in
detection mechanisms for certain system performance specifications. However, it is very
difficult to objectively determine an optimal combination of signal level and function

level detection mechanisms. The main reason for this is that (i) the coverage has to be

2 The mean error latency is equal to the mean time needed from state 5 to state D} and will reflect
the capability of function level detection mechanisms.
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related to actual hardware costs, (ii) error latency and performance of function level
detection mechanisms are application-dependent, and (iii) the cost of furction level
detection mechanisms, especially, software checking, is neither well structured nor well

understood at present.

4. EVALUATION OF SOFTWARE RECOVERY BLOCKS

The recovery block (RB), proposed by Horning [35] and Randell [58], has been
widely used for backward error recovery. It is a sequential program structure that con-
sists of an acceptance test, a recovery point{RP), and alternative algorithms for a given
process. A process saves its state at a recovery point and then enters a recovery region.
At the end of a recovery block, the acceptance test is executed to check correctness of
the computation results. In case an error is detected during the normal execution or the
computation results fail to pass the acceptance test, the process rolls back to an old

‘state saved at the previous RP and executes one of the other alternatives.

Unfortunately, however, for cooperating concurrent processes the rollback of a pro-
cess may cause other processes to roll back (this phenomenon is called rollback propaga-
tion ) because of interprocess communications and imperfect checking of global correct-
ness. Moreover, rollback may propagate to further RP’s since recovery points of indivi-
dual processes may not provide globally consistent states for all processes involved. This
rollback propagation continues until it reaches a recovery line at which globally con-
sistent states for all involved processes do exist. In the worst case, an avalanche of roll-
back propagation, called the domino effect, can push the processes back to their begin-
nings, thus resulting in loss of the entire computation done prior to the occurrence of

€rror.
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A detailed description of the domino effect can be found in [59]. For convenience
let us consider Figure 4.1 to visualize rollback propagations. Process P, begins to roll
back because of unsuccessful acceptance test ATi. Due to interprocess communications
the rollback P, propagates to the other two processes P, and P;. Eventually, the whole
system has to restart from recovery line RL,, undoing the entire computation between
RL, and AT). The time interval between the restart point following an error recovery
and the time point at which an error is detected or the acceptance test fails, called the
rollback distance, can be used to represent the computation loss in rollback error

recovery. The rollback distance may be unbounded in the case of the domino effect.

The domino effect is the major obstacle in implementing the recovery block scheme
for concurrent processing. The process designer is able to predict neither the time of the
occurrence of process interactions nor that of the appearance of recovery lines. In addi-
tion, it is not desirable to randomly place recovery points and acceptance tests without
considering process characteristics. Thus, it is impossible to avoid the domino effect
only by appropriate placement of recovery blocks and it is possible to have a disaster
such as unbounded rollback propagation, a large rollback distance, and a great number
of largely useless recovery points occupying large amounts of memory space, etc. Furth-
ermore, detection of rollback propagation and determination of recovery lines will
become more complex though they can be made in a centralized [44-45] or decentralized

manner [54,78,80].

Several refinements have been proposed to overcome the drawbacks in the recovery
block scheme. One approach is to put concurrent processes into a controlled scope, either
to synchronize the occurrcnce of acceptance tests or to direct process interactions. For

the former, Randell [58] has suggested the conversation scheme which requests every
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cooperating concurrent process to leave its acceptance test at the same moment (called
test line). He has also proposed a language structure in an abstract form for the conver-
sation scheme. Other mechanizations of the conversation scheme on the basis of the
same concept but with more flexibility have been devised by Kim [40]. Synchronized
rollback recovery schemes for transactions using a two-phase commitment protocol or
transaction ordering are also studied in [27,32,41]. Russell has proposed that informa-
tion be retained for directed interactions from producers to consumers so that roliback
propagation can be blocked [60-61]. Another approach is to save additional states based
on the occurrence of interactions; for example, the branch recovery point [39] and the

system defined checkpoint (SDCP) [36].

In this paper we propose to employ pseudo recovery points® (PRP’s) to alleviate the
rollback propagation problem by allowing a process to restart at a PRP in case the pro-
cess is forced to roll back by others as a result of rollback propagation. Hence, we can
classify these refinements into two categories, synchronized recovery blocks and pseudo
recovery points, providing a contrast with the third category called asynchronous

recovery blocks.

To implement a rollback error recovery scheme, we have to weigh trade-offs
between these threc categorics and the characteristics of concurrent processes. A satisfac-
tory scheme should have such features as a low (acceptable) delay in process completion
due to rollbacks, the preservation of process autonomy in concurrent processing, and

programmer transparency. Therefore, optimal solutions may be a combination of these

8 We call it a pseudo recovery point(PRP) since there is no acceptance test before the saving of pro-
cess state at a PRP. The states recorded at PRP’'s may have been contaminated and thus can not be used
to recover a failed process. But PRP's can be used to prevent rollback propagations due to interactions with
the faulty process as we shall see in the following.
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three categories. A quantitative analysis has to precede any of such optimal solutions.
For example, it is necessary to determine the mean amount of computation undone in
case processes roll back, the optimal interval between two successive synchronizations,
the mean size of memory space required to save states, etc. However, because the pro-
gram behavior is unknown and its execution proceeds stochastically, accurate modeling is

in general very difficult if not impossible.

In the following, we¢ will develop models to quantitatively describe the characteris-

tics of rollback recovery sche:nes as well as their effectiveness.

4.1. Evaluation of Asynchronous Recovery Blocks

Let us consider the history diagram in Figur;t 4.1 to illustrate the activities of
cooperating concurrent processes P;, #=1,2,..n. Process P; establishes its jth recovery
point RP} without synchronizing with other processes. Interprocess communications are
represented by arrowed horizontal lines. Let set AC({1,...,n}, i.e. a subset of concurrent
processes. Then one may find a combination of F.’P;t for all s€A, which forms a recovery
line for set A, denoted as RL? for the rth recovery line. For simplicity, superscripts in
representing recovery lines will be omitted in the sequel as long as that does not result in
ambiguity. The interval between two successive recovery lines RL, and RL,,, in process
P; is a random variable and denoted by X'. Since a recovery line provides globally con-
sistent states to all members of process set A, it is reasonable to assume that X' is sto-
chastically identical for all i€A. Thus, X, is used to represent the interval between the

rth and (r+1)th recovery lines.
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4.1.1. Modeling Acsumptions

Al.

A2.

A3.

A4,

Ab.

We make the following assumptions in our subsequent analyses.

Autonomous Prccesses: Cooperative autonomy is regarded as the most important
requirement in distributed processing. Each process should be executed according to
its own program and environment, almost as if there were no process to interfere
with. Thus, processes will transmit messages or establish their recovery points

independently of other processes.

Perfect Local Acceptance Test: Acceptance tests should detect all errors within the
local process during the execution of recovery blocks or, at least, guarantee that the

computation results have passed acceptance test are "acceptable” [59].

Probability Distribution of Interactions: To describe the occurrences of inteructions,
for both tractability and simplicity, we have adopted here the concepts of constant
reference rates in the multiprocessor and of exponentially distributed intervals
between two successive message transmissions in the computer network. The inter-
val for two successive interactions between P; and P; is assumed to be exponentially
distributed with mean 1/, and k;=x«;; for all 1,;=1,2,...,n and ##;.

Consistent Communications: Let two messages m, and my be sent from P; to P;.
Consistent communications should satisfy : (i) every message sent from P; to P; will
be received eventually by P;, and (ii) msand my are received by P;in the same order
as that they are sent.

Distribution of Recovery Points: Because of process independence and the uncer-
tainty of execution conditions, the appearances of recovery points are random and
difficult to model. To avoid comple;(ity, establishment of recovery points in a pro-

cess is assumed to be an independent Poisson process with parameter ¢; for process
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4.1.2. A Model for Asynchronous Recovery Blocks

Since individual recovery points by themselves may not be sufficient in rollback
recovery due to the possibility of rollback propagations, we consider in this paper only
the formation of recovery lines for asynchronous recovery blocks instead of separate indi-
vidual recovery points. The requirements of a recovery line for processes P; for

i=1,2,...n, can be stated as follows:
1. Each recovery line has to include one recovery point RP} for every process P;.

9. Let the moment of establishment of the jth recovery point in process P; be t[RP;]
and let tf," be the moment of the gth interaction from P; to P; . For every pair
(RP},RP;;) in a recovery line, there does not exist an integer k such that
i €[{RPY, {RP.)) if RP] < {RP} | (otherwise, &f €[(RP} ], (RP))). This
implies that no communication from P; to P, (and vice versa) can be sandwiched

between t[RP;] and t[RP,': -

The basic idea underlying the model is to trace the occurrence of both recovery
points and interactions. Based on the assumptions, random variable X, can be modeled
by a continuous-time Markov process starting from a recovery line (RL,) and ending at
the next recovery line (RL,,,). For a set of proccsses, Q,_{ P|{€A} where A={1,2,...,n},
two types of states are defined:

(a). End states S, and S,,,: transitions start from S, where all processes have formed
the rth recovery line, and end at S,,, upon establishment of the (r+1)th

recovery line.
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(b). Intermediate states S = (z;, 2,, . . . ,2,), where z,;=0 if the previous action of P;

was an interaction, and z=1 if it was establishment of a recovery point.

Note that both S, and S,,, are equivalent to state (1,1,...,1).

Occurrences of interactions and recovery points in a process make the system go
through these states. Note that both S, and S, are equivalent to state (1,1,...,1). We

can establish the following transition rules:

R1. The system goes to state (zj,..,Ziy,1,Zi11,-,2,) from state (z;,..,2,1,0,2;,1,..,7,)

with rate ¢; upon establishment of a recovery point in P;.

R2. The system leaves state (zl,..,z,-_l,l,z,'H,..,:rj_l,l,z)-ﬂ,..,z,,) and enters state
(:rl,..,z,-_l,0,z,~+1,..:,_1,0,11+1,..,zn) with rate &, if there is an interaction between P;

and P;.

R3. The system arrives at state (z,,..,2;1,0,2,,;...,2,) from state [ 2000 7508 IF PR |

with transition rate ¥, k,; where B={j | ;=0, j7i and jEA}.
JEB,

R4. The system can transfer directly from state S, to state S,,; with transition rate

Under these transition rules a Markov model is developed for three processes Py, P,
and P;, and presented in Figure 4.2. The single-arrow lines are unidirectional transi-
tions. The double-arrow lines are bidirectional transitions in which left-hand side param-
cters represent leftward transition rates and right-hand side parameters rightward tran-

sition rates. The total number of states for a set of n processes is 2"+1.
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When ¢=¢=¢ and &,=« for all i, j € A, the model can be simplified since all
intermediate states S=(z,,Zo, . . - ,2,) containing exactly u 1's in (2,2, . . . ,2,) can be
replaced by a single state S, where v=0,1,2,...,n-1. A simplified model is obtained under

the following transition rules and presented in Figure 4.3.

R1. For u=0,1,..,n-1, the system will move to state S,,, from state S, with tran-
sition rate (n-u)¢ when a new recovery point is formed.

R2'. For all u> 2, the system is able to leave state S, for state ‘éu—Q with rate

u(u-1)k

—

o
R3'. For all u > 1, there is a transition from state S, to state S, with rate o n-u)x.

R4’. The system can transfer directly from the entry state, S, to the terminal state,

S,.1, with transition rate ng.

4.1.3. The Analysis of Asynchronous Recovery Blocks

With the model developed above, we can characterize the behavior of asynchronous
recovery blocks in terms of the degree of interprocess communications and the distribu-
tion of recovery points. With the exponentially distributed interprocess communications
and recovery points, X, becomes stochastically identical for all r. Let X denote a ran-
dom variable representing the interval between two successive recovery lines, L, the
number of states saved in process P; during interval X. The probability distribution of

X and the mean value of L, are derived below.

(a). The distribution of X
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Figure 4.3 The Simplified Model of Asynchronous RB's for n Processes
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Let the state space ¥={0,1,2,...,m} where m=2" be the set of states of the preced-
ing continuous-time Markov process with the following convention for numbering states:

(a). S, — state 0,

n .
(b). an intermediate state (z,,25, . . ,z,) — state (), 22! +1), and

=1

(c). S,.y — state m.

Then, the Chapman-Kolmogorov equation becomes
d
= ™8 = m(H, (4.1)

where H, is the ((m+1)X(m+1)) transition matrix [h{u,v)] in which the (u,v) element is
the transition rate from state u to state v, and 7(t) is a vector whose kth element is the
probability that the system is in state k at time ¢ The initial condition is
7(0)=[1,0,0...,0]. The interval between two successive recovery lines, X, is equal to the
time needed for transition from state 0 to state m. Therefore, the density function of X,

namely f,(¢), is given by

1(0=—3 7t (42)

(b). The mean value of L;

Since we are only concerned with the number of recovery points established by pro-
cess P; during interval X, a discrete Markov chain is used. To compute the mean value
of L, a new Markov chain, denoted by Yy, is constructed based on the previous model

with the following two steps.
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S1.

S2.

Convert the previous model to a discrete model:

The new chain, Y, has the same states as the previous Markov process. Let

n n n
G=Y ¥ k;+ Y ¢ be the normalization factor. The transition probability

from state u to state v in Y, is equal to: for v, v=10,1,....m, p(u,v) = h(_zgv) if

u7v, and p(u,u) =1 - z": plu,v)

v=1uty

Decompose states of discrete model:

Arrivals at a state S, = (z,,2,,...,2;...,2,) Where z,=1 can be grouped into two
classes. One is formed as a result of the occurrences of RP’s in P; and the otheris
formed as a result of interprocess communications and establishments of RP’s in
processes other than P,. Accordingly, the state S, =(z,,2,,...,2;, . . . ,2,) with z=1
can be split into two states S, and S% representing the two classes, respectively.
Both states have the same departure processes as that of S,. However, all arrivals
at state S, due to the occurrence of recovery points in P; enter state S, whereas
all other transitions are made to S2. Hence the number of RP's associated with

state S! is represented by that of arrivals at S..

Figure 4.4 shows the conversion and the split of state S, = (1,0,0) of the Markov

model for the three concurrent processes in Figure 4.2. With the new discrete model, Y,

we can calculate the the mean number of visits to state S., denoted as N, and the
w S'

mean value of L; using the following relationship:

AL)= ¥ ANy

sie¥y, (4.3)

where V¥ is the state space of Y.
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Suppose process P; detects an error or fails the acceptance test at one of its
recovery points RP}, where j=1,2,...,L;. The rollback of P; may propagate to k processes
in the process set, 1, = {P] IEA} where A={1,2,...,n}. Let Df be the rollback distance

associated with the k processes and RP,': for j=1,2,..,L;, Then, X represents the

n n n
supremum of these random variables, i.e., D]. Let p = (X ¥ x)/(¥ ) which
=1 j=14#i k=1

represents the relative ratio between the density of interprocess communications and
recovery point establishments. In Figure 4.5, the mean values of X are plotted as a func-
tion of n for different values of p. It shows that X increases drastically when there is an
increase in the number of processes involved in the rollback recovery. The density func-
tion of X, f,(t), is plotted in Figure 4.8. For all the three cases in Figure 4.6, there is a
sharp pulse near t=0, which is due to direct transitions between S, and S,,, and a

longer transition time needed once the system enters intermediate states.

With a fixed value of p and varying values of ¢'s and &'s for three processes, we
have performed computer simulation and the results are tabulated in Table 4.1. The
minima of X and L; occur when the distribution of recovery points among these
processes is uniformly balanced (i.e., §=¢=g¢;). The distribution of interprocess com-
munications does play an important role in determining the probability of rollback pro-
pagation but has little effect on X and L, once the set of processes involved in roliback

recovery is determined.

4.2. Synchronized Recovery Blocks

The simplest way of avoiding unbounded rollback propagation is to synchronize

the establishment of recovery points during process execution. In this method, interac-
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(ppaps) | (1.0,1.0,1.0) | (1.51.005) | (1.0,1.0,1.0) | (1.5,1.0,0.5) | (1.5,1.0,0.5)

(\ohashis) | (1.0,1.0,1.0) | (1.0,1.0,1.0) [ (1.5,0.5,1.0) | (1.5,05,1.0) | (05,1.5,1.0)
X 2.598 3.357 2.600 3.203 3.354
HL,) 2.500 4.847 2.453 4.533 4.967
AL, 2.500 3.231 2.453 3.022 3.111
B(Ly) 2.500 1.616 2.453 1.511 1.856
BA(L,+Ly+Ls) 7.500 9.693 7.360 9.085 9.933

Table 4.1 Mean Values of X and L, for Constant p.
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tions are inhibited between any pair of processes during their establishment of recovery
points. Theie are three conceivable strategies in deciding when a synchronization request
is to be issued: (1) at a constant interval, denoted as T,; (2) when the time elapsed since
the previous recovery line exceeds a specified value, T, ; or (3) when the number of
states saved after the previous recovery line is larger than a prespecified number, M,.
The implementation of the first strategy is simple since the synchronization request is
issued without any knowledge of the state of execution. Nevertheless, some synchroniza-
tion requests may become redundant and unnecessary if they are issued immediatedly
after the formation of recovery lines. For the second and third strategies, the rollback
distance and the number of saved states are prevented from becoming too large. How-
ever, for these two strategies, additional overhead will be required because each process
must be aware of the occurrence of a recovery line whenever it is established. Note that

the conversation scheme is a special case of the third strategy where M,=1.

Upor the receipt of a synchronization request, every process has to prepare for
establishing a recovery line and also has to wait for the commitment (for establishing a
recovery line) from other processes before it executes an acceptance test. Thus, all
cooperating processes perform their acceptance tests at the same instant upon receiving
the commitments from all other processes. Let Pj-ready, for j=1,2,...,n, be the flags in
process P; to indicate commitments from P;. The steps for synchronization in each pro-

cess P; are described as follows:

1. execute "its own normal process” until "acceptance test”;

2. set P;-ready := ON and then broadcast Pj-ready;
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3. while not (all P;-ready = ON) do
receive messages;
if a message is Pj;-ready then set Py-ready:= ON

else record the message

4. do "acceptance test” and record process states.

Establishment of recovery lincs upon synchronization requests is shown in Figure
4.7. Synchronization causes the computation power to be reduced because processes
have to wait for the commitments (as in step 3) from other processes. And, process
autonomy, a principal characteristic of distributed computing systems, is sacrificed. Let
y; be the interval between the receiving of a synchronization request and the moment
that process P; reaches its mext acceptance test (in step 1). Then, according to the
assumptions in Section 2.1, y, is an exponentially distributed random variable with

parameter ¢, Let Z=max{y, ¥, - - . ,¥,}- The total loss in computation power is

n
CL=Y(Z-y;). The mean loss becomes

=1

L = nf(1-F(t)dt - 3, (4.4)

0 =15

where F(t) is the distribution function of Z, and equals H(l—e_"').

=1
The time interval between two successive recovery lines is a function of the stra-
tegy used for issuing synchronization requests as well as characteristics of the processes
involved (e.g. patterns of interprocess communications and RP establishments). Let Z'
and 7 be random variables having the same distribution as Z=max{y,, t, . - -, Ya}s

then the value of this time interval becomes T+Z'-kZ* where k is the largest integer
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Figure 4.7 Establishment of Recovery Lines upon Synchronization Requests.
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which is less than T,/Z, or T, +2Z'. Observe that Z' and Z* represent the amount of

time required for a process to be ready for establishing an RP after it received a syn-

chronization request. For the third strategy, the maximum number of rollback steps is

M,. Thus the supremum of this time interval can be expressed as max{z,z, .. .,z,}
M,

where z=1Y v,
n=1

4.3. Implantation of Pseudo Recovery Points

In the construction of a recovery block, an acceptance test consists of a number of
executable assessments provided by the programmer, followed by a state saving. Note
that process states can also be recorded upon any other requests whenever they are con-
sidered useful in the rollback recovery. A pseudo recovery point (PRP) is defined as a
recovery point that is established without a preceding acceptance test and is proposed
here as an alternative for avoiding the domino effect in a set of cooperating concurrent
processes. With a monitor as the interprocess communication means, Kim [39] and Kant
and Silberschatz [36] discussed methods for implanting recovery points in a central
manner. Similarly, we consider a method for implanting PRP’s in the set of cooperating
concurrent processes in a decentralized manner. Also, note that the use of PRP’s does
not require any particular interprocess communications mechanism (e.g. the implementa-

tion does not have to be based on monitors).

To make a recovery point RP; in process P; maximally useful for rollback error
recovery, there should be corresponding recovery points in the other processes affected

by the rollback propagation from P;. If such recovery points do not actually exist, for a

given RP;: in process P; a pseudo recovery point, PRP,':" , has to be inserted in process
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P; . Further, in order to avoid the need of tracing recovery points at that particular
moment, for RP; a PRP is established in each of the other processes involved. An algo-

rithm for implanting PRP’s is given below.

1. When P; establishes a recovery point RP;, it broadcasts a PRP implantation

request to other processes.

9. If P; receives the implantation request, it records its state as PRP,':’ upon the
completion of the current instruction without an acceptance test. Then P; broad-

casts the commitment C; .

3. Every process executes its own normal task after it establishes RP;: or PRP;-" .
However, the messages sent to a process by P; prior to C; have to be retained

in the state saved.

Assume that process P; detects an error at time which is prior to the establish-
ment of RP;+,. If this error is local to P; then the recovery line (called a pseudo recovery
line, PRL}) formed by RP;: and all PRP;-" 's is able to recover these processes even if the
error has already propagated to other processes. However, when the error detected in P;
is due to error propagation from another process, P; (and therefore not local to P;), the
contents of PRP;’ may have already been contaminated if this error occurred prior to
establishing PRP;'. The restart from the pseudo recovery line formed by both RP;i and
all PRP;:{ 's may just reproduce the same error. Therefore, rollback propagation may
continue until every process involved has rolled back to a pseudo recovery line, say
PRL;:, for which all processes but P; have passed at least one of their recovery points.
Since there exists an RP} in P; for all ¢ 7é; between PRL',: and t,, every state belong-

ing to PRL} is now guaranteed to contain correct information of the corresponding pro-
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cess®. Also, note that.this pseudo recovery line renders the shortest rollback distance for

backward error recovery in case forced synchronization is not used. An algorithm of

rollback recovery with these pseudo recovery points is given by:
1. If an error is found in process P, set p := ¢ where p is a rollback pointer.

2. P, rolls back to its previous recovery point RP{. All processes P; affected by

the rollback of P, roll back to their respective pseudo recovery points PRPJ’-”1 .

3. For every affected process P} , if the rollback has not passed its most recent

recovery point, then set p := ¢ and go back to step 2.

In Figure 4.8, the establishment of PRP's in processes Py, P,, and P; is illustrated.
When P, fails its acceptance test ATs, all processes have to restart from the pseudo
recovery line formed by (RP!, PRP\?, PRP}®) if P, and P, are affected by the rollback of

Ps.

In the above algorithm, we can find that every process needs to preserve a recovery
point for restart in case it fails. Also (n-1) pseudo recovery points are needed for a pro-
cess to form a pseudo recovery line with other processes where n is the total number of
concurrent processes. It is therefore required to save n states for every RP, i.e. one RP
and (n-1) PRP's, and all old RP’s and PRP's except those in the pseudo recovery lines {
PRL;I t=1,...,n, and RP;: is the most recent RP in P;} can be purged when a new
recovery point is established, thereby reducing storage requirements for saving RP's and
PRP's. Note that rollback distance is bounded by the supremum of {y,,y, ... ,y,}

where y; is the interval between two successive recovery points of process P;. The addi-

4 If the state saved at P, Pi,{ was contaminated, then the error should have been detected at the
subsequent recovery point, RP,' . Meanwhile, the state saved at R P} is correct by the assumption of per-
fect local acceptance test.
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tional time overhead for every recovery point is (n-1)t, where ¢, is the time needed to

record the process state. These overheads should be assessed against the gain of process

autonomy and avoidance of unbounded rollback propagations.

5. DESIGN AND EVALUATION OF HARDWARE RECOVERY BLOCKS

In this chapter, we employ the concept of recovery blocks to construct a hardware
rollback recovery mechanism for multiprocessor. In order to resume a failed process, an
error-free process state--which includes the status of internal registers of the assigned
processor and the process variables stored memory--should be restored. The hardware
recovery block is constructed in a quasi-synchronized manner which saves all states of a
process consecutively and automatically. This happens in parallel with the execution of

the process by using a special state-saving unit implemented in hardware.

The hardware recovery block is different from the software recovery block which
only saves non-local states when a checkpoint is encountered. Moreover, instead of the
assertions in the acceptance test of software recovery block, the hardware resources are

tested by embedded checking circuits and diagnostic routine.

In the following, we will describe the structure of this hardware recovery block.
Then, the coverage of a multi-step rollback which is the probability of having a success-
ful rollback recovery when cooperating processes roll back multiple steps, and the perfor-

mance of this method will be discussed.

5.1. Hardware Recovery Blocks for Multiprocessor

The multiprocessor under consiccration has a general structure and consists of pro-

cessor modules, intcrconnection network and/or common memory modules. To benefit
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from the locality of reference, every processor module owns its local memory which is
accessible via a local bus. Every processor module can also access the shared memory
through the interconnection network. The rollback recovery operations of a task can be
applied to two types of multiprocessors: in one, there is no common memory, but local
memory of one processor module is accessible by other processor modules (e.g., Cm* sys-
tem [72]); in the other, the system is equipped with separate common memory modules
[25] and restricts the access of local memory only to the resident processor. These two

types are representatives of contemporary general-purpose multiprocessors.

5.1.1. Processor Module, Common Memory, and State-Save Mechanism

A basic processor module (PM) in the multiprocessor comprises a processor, a local
memory, a local switch, state-save memory units (SSUs) and a monitor swlitch as shown
in Figure 5.1. It is assumed that a given task is decomposed into processes each of
which is then assigned to a processor module. The shared variables among these
cooperating processes are located in the shared memory which is either separate common
memory or local memories depending upon the multiprocessor structure discussed above.
Thus each process in a PM can communicate with other processes (allocated to other
PMs) through the shared variables. Each PM saves its states (i.e. process local variables
and processor status) in SSUs at various stages of execution; this operation is called a
state-save. Ideally, it would be preferable to save states of all processes at the same
instant during the execution of task. Because of the indivisibility and asynchrony of
instruction execution in PMs, it is difficult to achieve this ideal case without forced syn-
chronization and the consequent loss of efficiency. In order to alleviate this problem, we
employ a quasi-synchronized method in which an external clock sends all PMs a state-

save invocation signal at a regular interval, T,,. This invocation signal will stimulate
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every PM to save its states as soon as it completes the current instruction and then to
execute a validation test. If the processor survives the test, the saved state would be
regarded as the recovery point for the next interval. If the processor fails the validation
test or an error is detected during execution of the resident process, the system will be
reconfigured to replace the faulty component and the associated process will roll back to
one of the previously saved states. The detailed operations of state saving and rollback

recovery are shown in Figure 5.2.

Similarly to a processor module, each common memory module (CM) also contains
state-save memory units and a monitor switch. These SSUs are used to record the
updates of CM only. The access requests of CM are managed by an access queue on the
basis of the first-come-first-serve discipline. When a PM refers to a variable resident in
a CM, an access request is sent to the destination CM through the interconnection net-
“work and enters the access queue associated with the CM. When all the preceding
requests to this CM are completed, the access request will be honored and a reply will be
sent back to the requesting PM. When a state-save invocation is issued, a state-save
request is placed at the tail of every access queue. Thus the state-save in CM is per-
formed when the requests made prior to the state-save invocation have been completely

serviced.

During a state-save interval, besides the normal memory reference or instruction
execution, certain operations are automatically executed; for example, an error correcting

code is used whenever a data is retrieved from memory. Some redundant error detection
units also accompany the processor module [38], dual-redundancy comparison, address-

in-bound check, etc. These units are expected to detect malfunctions whenever the
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corresponding function units are used. An additional validation process which could be
the execution of diagnostic routine is used to guarantee that the saved state be correct

and thus guards against the existing fault extending to the next state-save interval.

Suppose there are (N+1) state-save units for every PM (and every CM), called
SSU,, SSU,, ... SSUp,;. These units are used for saving states at (N+1) consecutive
state-save intervals. Thus each PM or CM is able to keep N valid states saved in N
SSUs and record the currently changing state in the remaining SSU. As shown in Figure
5.3, the SSU,;, SSU,, ..SSUy are so arranged to record the states for consecutive state-
save intervals T(s), T(i+1),..., T(++N) and the SSUy,, is used to record the updates in the
current state-save interval, T(f++N+1). To minimize the time overhead required for
state-saving, the saving is done concurrently with process execution. Every updatc of
variables in the local memory is also directed to the current SSU. When a PM or CM
moves to the next state-save interval, each used SSU will age one step and the oldest
SSU will be changed to the current position if all SSUs are exhausted. ‘The monitor
switch is used to route the updates to SSUs and to manage the aging of SSUs. Therefore
the state-save mechanism of each PM or CM provides an N-step rollback capability. In
the next section, we will show that only a small number of SSUs are sufficient to estab-

lish high coverage of rollback recovery for typical multiprocessor applications.

Since the update of dynamic elements is recorded in only one SSU, the other SSUs

are ignorant of it. This fact may bring about a serious problem: the newly updated vari-

ables may be lost. In order to avoid this, it is necessary to make the contents of
currently updated SSU identical with that of the memory or to copy the variables that

have been changed in the previous intervals into the current SSU. A solution to this
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problem has been discussed in [26]. At each state-switching instant, the current SSU con-
tains not only the currently updated variables but also the previously updated variables.

Consequently, the contents of the current SSU always represents the newest state of the

PM or CM.

5.1.2. Rollback Recovery Operations of a Task

“

Suppése a task is partitioned and then allocated to M modules (s=1,2,...,M). These
modules include PMs and CMs and will be dedicated to this task until its completion.
The state saving of a task implies the state-savings of these modules. The rollback of a
process is equivalent to the state restoration of the associated modules. Since the pro-
cess state includes the internal hardware states, local variables and global variables, the
resumption of a failed process may need cooperation from common memory and/or other

" processes. Moreover, due to arbitrary interactions between cooperating processes and the
asynchrony in state savings among them, the rollback of one process may cause others to
roll back and it is therefore possible to require a multi-step rollback (a detail of this will
be discussed in the next section). In order to make a decision as to rollback propagation
and also to perform housekeeping jobs, (e.g. task allocation, interconnection network
arbitration, reconfiguration, etc.), a system monitor and a switch controller are included
in the multiprocessor. The switch controller handles the global variables references and
records these references for analyzing rollback propagation and multi-step rollback. The
system monitor receives the task execution command and then allocates PMs and CMs
to perform the task. Both devices are defined in a logical sense. They could be a host

computer, or a special monitor processor, or one of general processor modules in the sys-
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tem.

To deal with the error recovery, the system monitor receives reports from each
module regarding the state-save operations and its conditions. Once an error is detected,
the system monitor will signal "retry” to the module in question. If the error recurs, a
permanent fault is declared and the following steps are taken by the system monitor and

the switch controller.
1. Stop all PMs that are executing processes of the task in question.
2.  Make a decision as to rollback propagation.
3. Resume execution of the processes that are not affected by rollback propagation.
4. Find free module to replace the failed one.

Transfer the process or data in the failed module to the replacement module and

(@3]

reroute the path to map addresses directed to the faulty module into its replace-

ment.

6. Restore the previous states of the processes affected by the rollback of the

resident process in the faulty module.

7. Any interaction directed to a module to be restored must wait for the resumption
of the module. Old and unserviced interactions issued by the rolled-back PMs,

which are still queued in the access queues, are cancelled.

5.2. Rollback Propagation and Multi-step Rollback

In order to roll back a failed process, the consistent values of the process variables
and the internal states of the associated PM should be provided. The local variables and
internal states which are saved in the SSUs of a PM are easily obtainable. However, the

shared variables--which may be located in any arbitrary PM or CM and may be accessed
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by any process--bring about a difficult problem: the rollback of a failed process induces
the rollback of other processes. (i.e. Rollback propagation occurs.) The rollback propaga-
tion might result in another inconsistent state for certain processes of the task, thereby

requiring a multi-step rollback.

5.2.1. Rollback Propagation and Multi-Step Rollback

In general rollback propagation can not be avoided if the processes interact with
each other arbitrarily. For the multiprocessor organization in the previous section, a
précess is allocated to one PM and/or several CMs and each module has its own rollback
recovery mechanism. So each module can be regarded as an object for l:ollback propaga-
tion. An interaction between cooperating processes is implemented as a memory refer-
ence to a shared variable, i.e. a memory reference across the modules. To avoid the
need of tracing every reference to the shared variables and to simplify the detection of
rollback propagation, we assume that the failure of a particular module leads to the
automatic rollback of all modules that have interacted with the module during its
current state-save interval. Let P; — P; denote the rollback propagation in which the
rollback of process P, induces the state restoration in one or more modules containing P,
that is, the roliback of P; causes P; to roll back. Let the n-th state-save interval of P; be
T{(n) and the beginning moment of T(n) where P; saved its state bt t{n). An example is
presented in Figure 5.4, where process Py fails at time ¢; and saves its state at ¢(n) dur-
ing state-save interval Ty(n). Since interactions between P, and P, exist during the time
interval [t,(n), t], process P, must roll back to revive the interactions when P, is

resumed. The rollback of P, will propagate further to other processes; in this example,

P, — P, P, — Py, and P, — P, When Wood’s definitions [80] are used, the state of
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process P, saved at t,(n) can be regarded as a potential recovery initiator of the saved

states of P,, P3 and P,.

In the above example, we can find that the rollback of P; and P, to their most
recently saved state still cannot provide a consistent task state. The reason that a roll-
back of cooperating processes can not recover the process states is mainly due to the
occurrence of references between the asynchronous state savings of interacting processes.

For convenience, a restorable state for P; is defined as follows.

Definition: Suppose process P; rolls back to the state saved at t(k). This state is res-
torable for P; if either of the following two conditions is satisfied:

Cl. P, has no interaction with other processes during the state-save interval

(k).

C2. The rollback of P; to t(k) induces the rollback of P; to t(k) for
3=1,2...,M and j5%i, but there is no interaction needed to be reissued
between P; and P; during the interval [t(k;), t(k))] if t{ky<t{k)) or
[¢(k)), t{k,)] otherwise.

Consider the cases in Figure 5.5 P; rolls back to (k) because of failure or rollback
propagation from another process. In case (a), the state saved at t{k) is restorable for P;
only. A single step rollback of P; is sufficient to recover its state. In cases (b) and (c),
both P, and P; have to roll back and the states saved at {(k) and t(k-1) are restorable
for P; and P; respectively, while in case (d), the states at t{k-1) and t(k) become restor-

able.

The necessary condition for recovering a task TK, where TK={P|i=1,2,....M},
with rollback mechanisms can be obtained from the above definition. The task TK is
recoverable from a failure if for all § either P; is not affected by the rollbacks of other

processes or P; rolls back to its most recently restorable state.
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5.2.2. The Detection of Rollback Propagation

Since every external memory reference is managed by the switch controller, the
switch controller should take responsibility for detecting rollback propagation and decid-
ing on multi-step rollbacks. Suppose there are (N+1) SSUs in each module, then the
maximum possible number of rollback steps is N. Let the current state-save interval of
module i be T{k), then an n-step rollback will restore the module 1 to the beginning of
interval T(k-n+1) (i.e. the state at t(k-n+1)). For state-save interval T(k-n+1),
(n=1,2,3,...,N), we assign two matrices KCy(MXM) and KP, (MXM) to represent the
interactions during T{k-n+1). Every element in both mutrices consists of a single bit.
KC(i,j) is set to 1 if an interaction occurs between module § and module j during the
state-save intervals T{k-n+1) and Tj{k-n+1). If an interaction exists between the two
during module j's previous state-save interval, T,(k-n), then KP,(15)=1. We also define
RB{k), k=1,2,...,N, to indicate the number of rollback steps for module +. If module &
rolls back n steps, then RB{k)=1 for all k<n. So, if RB{k)=0 for all k, then module ¢
does not have to roll back. The steps for setting these elements and checking the roll-

back propagation are listed below.

S1. Reset both matrices to zero at the beginning of the task.

S92. When an interaction is issued from module ¢ znd directed to module j, then
KCy(4,5) and KCy(3,5) are set to 1.

S3. If module i saves its state and moves to the next state-save interval, then for
J'=],2,...,1W
(a). If P, has already moved to its new state-save interval, then
KP,(5,))=KP,(5,))+KC\(i,j)  where + is logical OR operation.
KCy(4,)=0
(b) KC,,( 'vj)=']"Cn—l(‘yj)’
KP(i,)=KP, (3,j) for n=N,N-1,...,2
(C). KCI(‘J -)=0r KPI(':])=0
S4. When an error is detected in module i, RB{1) is set to one and all other RB's are
reset to zero.
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S5. If RB{n)=1 (i.e. module i rolls back at least n steps), the switch controller checks
the corresponding rows in matrices KC, and KP,, namely KC,(1,7), KC,(4,1), and
KP,(i,j) for j=1,2,...,M. There are four possible rollback propagations:

(i). if KP,(4,5)=1 then module j has to roll back (n+1) steps. Set RB(k) for
all k<(n+1) to 1.

(ii). if KP,(1,5)=0, KC,(1,5)=1 and KC{j,5)=1, then mocdule j also has to roll
back n steps. Set RB(k) for all k<n to 1.

(iii). if KP,(1,§)=0, KC,(1,5)=1 and KC(;,{)=0, then module j needs to roll
back (n-1) steps. Set RB(k) for all k<(n-1) to 1.

(iv). if KP,(1,5)=0 and KC,(1,)=D0, then there is no direct rollback
propagation from module s to module j.

S1, S2, and S3 are used to record interactions. S4 initiates rollback in module ¢
which may propagate to a farther state in the same module and/or to cooperating
modules. S5 deals with the determination of rollback propagations. In the condition (i)
of S5, there is an interaction occurred in both the P/'s (k-n+1)-th and the P)'s (k-n)-th
state saving intervals. Thus, P; has to roll back (n+1) steps to recover this interaction.
The conditions (ii) and (iii) indicate that an interaction occurred in the P,'s (k-n+1)-th
and (k-n-2)-th state saving intervals respectively. The corresponding bits of RB; are set
for these conditions. Since the rollback of P; decided in S5 can only provide a restorable
state for P, recursive checking for every j with RB(k)=1 is necessary. S5 can also be
casily implemented by a recursive procedure which will cease when no more setting of

RB's is needed. The final figure of RB's represents the number of necessary rollback

steps for each process.

An example is shown in Figure 5.4, where Figure 5.4(a) describes memory refer-
ences, Figure 5.4(b) is the current contents of KC and KP matrices, and Figure 5.4(c) is

the result of rollback propagation.
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5.2.3. The Evaluation of Multi-Step Rollback

If module ¢ fails at time ¢; during the k-th state-save interval, T(k), then we con-

sider a single step rollback of module ¢ to see if it is sufficient to recover from the failure.

The result may lead to rollback propagations and thus to multi-step rollbacks as previ-

ously discussed. Since the number of state-save units associated with each module is fin-

ste, the whole task may have to restart when all the states recorded in SSUs are

exhausted. In this section a probability model is derived to evaluate the coverage of the

multi-step rollback recovery which indicates the effectiveness of the present fault-

tolerant mechanism. Recall that a module has (N+1) SSUs and the task is allocated to

M modules including PMs and CMs. To derive the coverage, the following assumptions

are made and notations used:

fijn:

iyn:

'J‘:

The access matrix whose element a; represents the probability of making a
reference from module ¢ to module j. For a2 memory module 4, a;=0, for all ;.

The sum of all elements in one row must be equal to 1 for a processor
M

module 1, i.e. Y] a;=1.
=1

The probability that KP,(i,5)=0, which means no interaction occurs during
the disparity between module ¢'s and module y's (k-n+1)-th state saving in-
stants. For simplicity b;, is assumed to be a constant for all n, ie.
bijy=b;;=....=b;jy=b;. The exact value of b;; is difficult to obtain. Since
the state-saving invocations are synchronized, there is at most one instruc-
tion occurred during this disparity. An approximate representation is used,
i.e., b;=Prob((B;B;)U(BifB;)), where B; is the event that a memory
reference from module ¢ to module j occurs at any arbitrary moment.

The average probabilit.y of having direct rollback propagation from module s
to module j due to an n-step rollback of module 5. We also assume f;, to be

a constant, f; , for all n.

The probability that module 7 has to roll back because of the direct or in-
direct propagations if module ¢ fails and then rolls back. Note r;;=1 for all +.
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E: The matrix [e;,-], 5,j=1,2,...,M, in which element e; is the average execution
time for memory references issued from module ¢ to module ;.

T, The total execution time of a given task under an error free condition and
without the time overhead for generating recovery blocks.

T(k): The duration of the k-th state-save interval of module 5. Because of the
asynchrony between state-save invocation and actual state saving, T(k) is a
random variable. If T,, is long enough such that there is always a state
saving following every state-save invocation, the mean of T(k) is equal to
T,. To make the analysis simple, this duration is assumed to be constant
and equal to the duration of state-save invocation interval, T,,.

T,; The time overhead for generating a recovery block.

Ni The total number of state savings before task completion in error-free condi-

tion. N=L Tef/(Toi~ Tl

v The average memory reference rate from module § to module j during the &-
th state-save interval of module . Occurrence of these memory references is
assumed to be a Poisson process with a time-varying parameter during the
progress of task execution. In general, the memory references by processes
can be divided into different phases each of which has a constant reference
rate [7,47]. Thus, if N, is moderately large, u;; could be assumed to be a
constant during the k-th state-save interval.

To derive the coverage of a multi-step rollback, the probability of direct rollback
propagation, i.e. f,, should be obtained first. From the above definitions and assump-
tions, f; is the average probability that there exists at least one memory refercnce
between module 1 and module 5 during one state-save interval. It can be expressed as fol-

lows:

li = [ = 95999 (5.1)

N
where g;=(1/N) ) (l—e_"”'T”) represents the average probability of having an interac-
k=1

tion from module ¢ to module j during a single state-save interval. Since the total

number of memory references between module i and module j is equal to

M N,
a{ T/ Y 8 mim)) 230d Y Uil Ty~ Tyy), we have the following relationship:
k=1 :

m=1
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N, M
kgl “'jk=( Telaij)/ (( Tu' Tw) 2—:1 aimel'm) (5.2)

Also the maximum value of memory reference rate u;; must be less than or equal

io the reciprocal of ¢;; , that is,

1
- 2 (#j)max = e 2 0 (5.3)
¥

<

It is easy to observe that f; is a monotonically increasing function of g; and g;; is a
bounded concave function of uj. With the above two constraints we can get the

extrema of f; as follows:
(1). The maximum value of f, , denoted as max(f;;), occurs when u;;;=uj;,=...=t;; N,
(2). The minimum value of f;;, denoted as min(f,;) occurs when there are

M
(') h intervals rh=ch¢]alj/(( T"_Tw) Z aimeim)] in which uijk=l/elj:

m=1

(ii) (N~h-1) intervals in which u;;=0, and

M
(iii) one interval in which uz=(Ta;/((T¢s- T,0) X 8;m€im))-h/ €.

m=1

To solve for r; from f;, a fully connected network is drawn as Figure 5.6 in which
every node represents a module, and the link (4,5) connecting node ¢ and node j denotes
the relationship for direct rollback propagation between module ¢ and module 5. Then f;
can be considered as the probability of having a directly connected link between node ¢

and node j. The theory of network rzliability [57] can be used to solve for r,:
ri=U(Di,) (5.4)
q

where D, , is the probability that the ¢-th path from node i to node j is connected and
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Figure 5.6 The Rollback Propagation Network.
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{J is the probability union operation. With an additional assumption that the
occurrence of failure is equally distributed over the entire modules in a statistical sense,
the coverage of a single step rollback, denoted by C(1), becomes
M M M
A)=(1/M Y [T(1-ry(1- 3 by) (5.5)
i=1=1 k=1
And the accumulated coverage from a single step rollback to an h-step roliback can be
derived by the following recursive equation:
AR)=C1)(1-C(h-1)+ (A1) (5.)
The coverage of the multi-step rollback recovery is calculated for an example with

the following access matrix:

9 008 0.02 O
1 085 0.03 0.02

03 0.03 09 0.04

0. 0.02 008 09

This example has the access localities 0.85 and 0.9 for processes which correspond to the
experimental results obtained from Cm# [72]. The numerical results are presented in
Table 1 and are aiso plotted in Figure 5.7. These results include three cases: the best
coverage computed from min(f;) for different values of N, and the worst coverage com-
puted from max(f;). These results show that only a small number of SSUs is enough to
achieve a satisfactory coverage of rollback recovery. It should be particularly noted that
the requirement of a small number of SSUs is mandatory for actual implementation. On
the other hand, this conclusion musi be interpreted in the context of access localities; the
number of SSUs required for a given coverage tends to increase with the decrease in

access localities (i.e., when there are heavy interactions). This tendency, however, should
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be understood as an inherent problem associated with multiprocessors rather than with
the present fault-tolerant mechanism (see [84] for the dependence of multiprocessor per-

formance on access localities).

5.3. The Performance of Rollback Recovery Mechanism

Several methods for analyzing the rollback recovery system have been proposed
[12-14,19-20,30-31,83]. They in general deal with a transaction-oriented database system
and compute the optimum value of the intercheckpoint interval. Castillo and Siewiorek
studied the expected execution time which is required to complete a task with the restart
recovery method [18]. All of these approaches either assume the state restoration is
obtainable by a single checkpoint or do not include the rollback propagation at all. In

this section, we explicitly take into account the problem of multi-step rollback and the

risk of restart for the rollback recovery mechanism.

5.3.1. Notations and Assumptions

The following notations will be used in the sequel:

Ty The total execution time to complete the given task with occurrence
of errors. It includes the required execution time under error-free con-
dition, the time loss due to rollbacks and restarts, and the time over-
head for generating recovery blocks.

T,... The total execution time to complete the task when all failures are
recovered by rollbacks instead of restarts.

ﬁo,,,m: The time lost due to the j~th rollback in module m which consists of

the set up time for resumption, ¢,;, and the computation undone by
rollback.
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T:.: The time lost due to the ith restart which includes the set up time
for restart, t,, and the time between the previous start and the mo-
ment at which error is detected.

TE,: The accumulated effective computation before the k-th rollback when
the task can be completed without restart.

X(X'): The duration between two consecutive rollbacks (restarts).
((i): The accumulated coverage of rollback recovery from a single step to ¢
steps. This value is calculated by the Equations 5.5 and 5.6 presented
in the previous section.

PyP,): The probability of rollback (restart) when a failure occurs.

P,{h): The probability of having an h-step rollback given that the failure is
recovered by the rollbuck.

P{m): The probability of having m rollbacks during the time interval, T\,
Z[2),Z,{?): The probability generating functions of P{m), P,,(h) respectively.

®(3),®,..{3): The characteristic functions of T,, T, respectively.

The goal of our analysis is to calculate the mean and variance of the total execution
‘time of a given task, T, Recall that the task is decomposed and then allocated to M
modules. During the normai operation, the small overhead is required to generate con-

secutive recovery blocks in each module. When the j-th error occurs, module m spends

T

! ollm to Tecover from this crror if the error is recoverable by a rollback. Otherwise, the

whole task has to restart. T’,',o,,.m consists of the set up time which is composed of the
decision delay required for examining rollback propagation, the reconfiguration time, and
the time used to make up for the computation undone by the rollback. We assume that
the task completion be delayed by max{T’;o,,,m} where m=1,2,..M for the rollback
recovery of the jth error. The resultant completion time will be the upper bound
because of the following reasons. First, T";o,,’m can be interpreted as the time lost due to

the rollback in module m. So, the total time lost in all the concerned modules is
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M :
Y. Tiottm Since the completion of a task is regarded as the completions of all its
m=1

processes, the time lost from the task’'s point of view could be max{ 1";01,’,,} but not
larger than this maximal value. Secondly, the true delay effect on the completion of
task by a rollback will be shortened because of the possible reduction in the waiting time
of process synchronization. To facilitate system reconfiguration, we also assume the
multiprocessor has a sufficient number of standby modules so that the task may be exe-
cuted continuously from start to end without waiting for the availability of modules.
The time needed for error-free execution is regarded as constant and is independent of

reconfiguration.

In general, the occurrence of error can be modeled as a Poisson process with param-
eter A\(¢) which equals the reciprocal of mean time between failures [17]. Since A(¢) is
slowly time-varying (for example with a period of one day), it is assumed to be constant
over the duration of one task execution, i.e., \(t}=X\. For simplicity an error is assumed
to be detected immediately whenever it occurs. From the definitions of P,, P;, and
P,{(h), we have P,=1-C(N) when each module has (N+1) SSUs. Therefore the probabil-
ity of rollback, P;, becomes C{N). P,{(h) is equal to (1/P;)(C(h)-C(h-1)) for h=2,...,N,
and P,{1)=C(1)/P;. After the detection of error, the occurrence of rollback and restart
can be regarded as a Bernoulli process, with probability P, and P, respectively, and
independent of the error generation process. Thus they can be modelled as Poisson

processes with parameters A ;=X\ P and A\ ,=\P,, respectively.

5.3.2. The Performance Model

The total task execution time, T;, can be divided into several phases as shown in

Figure 5.8. The last phase is always ended with the completion of task. Other phases are
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followed by a restart. This implies that the amount of effective computation at the
beginning of each phase is zero. During each phase, the effective computation between
rollbacks are acc@iinulated toward the task completion. To derive the distribution of T,
we should determine the distribution of the duration of the last phase (which is defined
as T,.,), the probability of having R restarts prior to the last phase, and the distribution

of the durations of other phases which are defined as T%,, for i=1,2,..R.

In the last phase, the task will be executed from the beginning to the completion
without any restart. It is assumed that T,, is much larger than T,, (T,>>T,,) so that
the rollback distance of an h-step rollback can be approximated by AT,, The effective
computation between two consecutive rollbacks becomes (X,-AT,,)* when a module rolls
back h steps where (X)*=max{0,X} is a positive rectification function. With the proba-

bility of an A-step rollback, P,{h), two functions are introduced:

7= 5 M Iop (5.7)
=1
Heh=3 () 0-210* 6, () 59)

where G;_(t) is the (k-i)-th order gamma distribution function with parameter \; for
~ (k-1)>0, and Gy=1. In Appendix B, we show that the distribution function of the accu-
mulated effective computation after k rollbacks is Prol TE;<t)=Ht,k). Therefore the
probability of k rollbacks during the time interval T,,,, P,{k), is given by

P(k) = ATE; > T.)-P(TE>T,) (5.9)

= H( T pk}-H(T,pk+1)

T,.q1 is composed of T,; and the time lost due to rollbacks which is a sum of identically



distributed random variables, T,y for j=1,2,.k. Substituting the probability mass
functions of P[k) and P,{h), we get the characteristic function of T, which is given

below:

B peal ) = € T2 24T (5.10)
From Figure 5.8, The total time T, can be represented as the sum of T, and the

random sum of T%,. The characteristic function of T, derived in Appendix C is given in

the following:

Sls)= S ¢™ "{z(")( 1¥®,. A(G+1)(A+9)) (5.11)

n=:0 X+

This equation presents a general expression of the total execution time. For the system

without the rollback recovery mechanism, we can use P,=1, P=0, and then &,,(s)

becomes ¢ 'T/ The result obtained from the above equation is the same as that in [16].

2% ()

9°d(s)

ds*

an

|,—0- In Figure 5.9, the mean execution time for the example in the previous

section is plotted. It is obvious that the overhead of generating recovery blocks has an
important effect on the rollback recovery method. Since the state savings are performed
in parallel with the normal process execution, the overhead contains only the time
required for the validation test. When the embedded checking circuits are not very much
cost-effective and complex [15], the overhead of generating recovery blocks can be
reduced with a completely self-checking mechanism. Figure 5.10 expresses the variance
of execution time for the previous example. It suggests that the prediction of the total
execution time becomes more accurate when the rollback recovery mechanism is used.

This result is expected intuitively since the probability of restart is reduced considerably.
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In a system with a higher probability of restart, the system contains a larger and more

uncertain recovery overhead (i.e. larger mean and variance).

Another interesting parameter is the duration of state-save invocation, T,, . The
interval has two mutually conflicting effects. Figure 5.7 indicates that the increasing of
T,, will induce more rollback propagations and degrade the coverage (a larger value of
N, means a shorter state-save interval). Since the occurrence of error is distributed
throughout the state-save interval, the average computation loss due to rollbacks is pro-
portional to the state-save duration. Therefore the increase of T,, , which invokes longer
state-save intervals, will introduce more computation loss and higher probability of res-
tart. On the other hand, the percentage of the total time overhead for generating
recovery blocks is reduced by the increase of T,, The optimum value which minimizes
the expected execution time can be found in Figure 5.11. The Figure shows that there
exists a linear rclationship between T, and T,, when N is larger (i.e. T,, gets smaller},
where the overhead of generating recovery blocks dominates the final result. When T,
is greater than the optimum value, the loss due to recovery increases considcrably

because of the larger time loss in each rollback.

6. CONCLUDING REMARKS

In this report, we have prescuted first a general model for the error detection pro-
cess and then applied it for estimating two important performance-related parameters of
fault-tolerant computers. These two are not usually included in the traditional reliability
models. The first parameter, the probability of having an unreliable result, indicates the
degree of lack of confidence in computatibn results. Suspicion in the computation results

is wholly due to the imperfect nature of error detection. Unfortunately, such
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imperfection cannot be eliminated completely from any practical error detection mechan-
ism. For the second parameter, we take a more detailed account of the computation loss
and execution cost resulting from the occurrence of error, its detection and subsequent
recovery. Since most reliable systems either include error recovery mechanisms with
unknown overheads or may suffer from an erroneous output, any reliability analysis has
to quantify the above overheads and uncertainty and also has to provide a good method

for estimating these quantities.

Meanwhile, we have outlined a feasible design space in which a proper combination
of different imperfect detection mechanisms needed to meet the specifications is indi-
cated. Since the determination of a feasible design space of detection mechanisms must
integrate the recovery methods used in the system, we also briefly presented the perfor-
mance of various recovery methods. Unfortunately, we cannot determine an optimal
trade-off between various detection mechanisms because of the insufficient understand-
ing of the function level detection and the lack of relations between hardware costs and
the signal level detecticn: capability. Further research is needed along these directions,
especially, experiments of program behavior under erroneous conditions and the design

of function level detection mechanisms.

In the second part, the rollabck recovery strategies are examined. The software
rollback recovery and hardware recovery blocks have been studied extensively. The dis-
tribution of the interval between two successive recovery lines, which is the upper bound

of recovery overhead in software rollback recovery, are used to represcnt the perfor-
mance of different strategies in software rollback recovery. For hardware rccovery

blocks, the distribution of task completion time has been formulated. With the combi-
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nation of the model of detection mechanisms and these quantitative evaluations of
recovery methods, thie execution cost and the probability of failure can be obtained
which will reflect the effects of fault-tolerance teckniques on the system’s normal opera-

tions.

After these studies in error detection and recovery, it is important to investigate
the reconfiguration of system after a faulty unit is detected. Since fault-tolerance is
grounded on redundancy, the management of redundancy will certainly effect the whole
error handling operation and system performance. One simple example is the assignment
of redundant modules for a single task in such a way that a certain number of errors can
be tolerated or detected through mutual consistency, thereby blocking error propagation.
Usually, system reconfiguration has two objectives; one is to enhance the computation
capability, the other is meant to improve reliability. The former emphasizes the effective
utilization of system resources. and the latter is to establish adequate redundancy for
error detection and recovery. When the system has enough resources for both purposes,
reconfiguration becomes trivial because no competition for resource exists. For an appli-
cation with a long life cycle, however, this may not apply. In such case, the management

of redundancy becomes essential.

Also of interest would be an analysis that allows the treatment of simultancously
extant multiple faults. Since most faults in the system are likely to be truasient or inter-
mittent, there is the possibility that the fault-latency is large. Note that the retry
recovery is applied as a temporary remedy when an intermittent fault becomes benign
shortly after its presence. This intermittent fault may still exist but is inactive. These
would cause faults to accumulate in F and/or FB, thus making the entire system

vulnerable to any environmental or other events that might activate them. The diffi-
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culty with any such model is likely to be a considerable expansion in the number of
states, thus increasing the model complexity. It is likely that in any realistic analysis,
some means must be sought to reduce the state-space size by approximating suitably.
The approach used in CARE Il [71], where states are aggregated and the state transi-
tion rates are separately determined, may be an appropriate attempt although the model
is forced to be non-homogeneous. The mature of such approximations is a matter for

further research.
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APPENDL? A

DENSITY FUNCTIONS OF TASK EXECUTION TIME

The density functions of task execution time with error occurrence due to three dif-

ferent types (i.e. transient, intermittent, and permanent) faults are expressed as follows:

SUFLT) = {1 - m(TIFy) - 7 TIFy) G-p )} {8) + me( TIF1)rp0,1(1,0)
+ m( TIF, 1)(1"4’1)[‘-“'61(‘*%) + (1-3-"')1':0.,1(‘,1)]
J{t|Fo, T) = {1 - ms( TIF2) - mo( TIF2)(1-p)}6 1(8) + me T\Fy)fy842(1,0)

+ m TIF)(1-p)] §l(1—62)“621,b.,2(e,n)1

J{tFs, T) = {1 - m(TIF3) = mo( T|Fs)(1-p1)}81(8) + me( T1F3)rse2(1,0)
+ ”7( T|F3)(1—P!)frbt,2(‘»l)
where f,4, (¢,n) is the density function of the time loss in recovery from an error induced

by F; after n unsuccessful retries, which is given as follows:

frbo,]( tyn) = ( l‘Pw)P«s( t-nt,- tb'Ef)'tlh { uT( t_ntr)‘uT(t_ntr_tch)}

'ch

+(psv+(l_pw){l_f dt}f:l‘arl,)( t_"'r)
0

pss(t|F)
t

ch

where 67=5(t-T), up=u(t-T-t;), f};a,,J=j,,d,,,,(t—T), and §(t) and «t) are impulse and

step functions.
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APPENDIX B

CALCULATION OF THE PROBABILITY OF HAVING k

ROLLBACK DURING THE DURATION T,

From the definition of P,{h) in Chapter 5, the task will roll back A steps with pro-
bability P,{h) following a failure detection within the last phase of duration T,,,. Let
the rollback distance for the j-th rollback recovery be T’;o" which is approximately equal

to hT,, with probability P,{(h). Thus the accumulated effective computation time before

the k-th rollback, TE;, is given by

k S
TE, = Y, (X}-T)0)

=1
Since the occurrence of rollback is a Poisson process with parameter \;, the density func-

: o N
tion of X is )\,,e_)‘". The probability of having (X}-T%,)=0is Y, P,,(h)(l—e“””). The
h=1

density function of (X~ T%,;) becomes

=% P.ih)(l—e‘*‘””)é(t)+e'“‘§ P (k)T
h=1 =,

-\hT,
e

N
where §(t) is an impulse function. Let Z= Y P,{h) *. Then [, is simplified by

h=1
f(8) = (1-2)8()+¢ 2

The characteristic function of TE;, which is equal to (®4(2))* where ®,(s) is the charac-

teristic function of (X’-T%,,), becomes
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k . i xb '-
Peils) = BDO-DD 1

Taking the inverse Laplace transform, the density function of TE} (denoted as

Jrei(1)) is obtained. Then the distribution function of TE; becomes

¢ . . .
ATES) = [l £ (H0-2(24 G402

where G;_{t) is the (k-1}-th order gamma distribution function.
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APPENDIX C

CALCULATION OF THE CHARACTERISTIC FUNCTION OF

TOTAL EXECUTION TIME, ¢(s)

From Figure 5.8, the total execution time T, is the sum of T, and T,,, where

n .
T,=1Y, Tty when there are n restarts. Given the conditional probability of T, we can
=1

write the following eqnation:

ﬂ Tll Trcal) = Treaﬁ'a Tral' Trcal)

It is assumed that the time interval between the (#~1)-th and the sth restarts, Xt is
exponentially distributed with mean 1/\,. Thus, for a given T,.q the time lost due to
the i-th restart, T, is randomly distributed between t,, to T, qt+t,, with deasity func-
tion, jist] r, (1), given by:

-),t

3

. Ae
fn!] T,"x H'tau) = T‘ﬁl for OS‘S Tiea
~€

The probability of having n restarts for a given T4 is

—X,T,“ ')‘:Tm n
PralT,"x") = (e ,)(l—c ,)

n .
Since Ty==T,.art Y, Trs if there are nrestarts before the task completion, the characteris-
=1

tic function of T, for a given T, becomes
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gz () = €T Prar ()& puyr fo)"
=0

where &, 7 _[9) is the characteristic function of the time loss due to a restart for a
given T,.q, i.e., the Laplace transformation of f;-fl 1, t). By substituting P, 1 (n) and
@, {4) into the above equation and integrating with the density function of T,.q the

characteristic function of T is obtained as the Eq. (5.11) in Chapter 5.
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