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ABSTRACT

An autonomous spaceborne gravity gradiometer mission is being
considered as a post Geopotential Research Mission project. The
introduction of satellite gradiometry data to geodesy is expected to
improve our solid earth gravity models.	 This study explores the
possibility of utilizing gradiometer data for the determination of
pertinent gravimetric quantities on a local basis. The analytical
technique of least squares collocation is investigated for its usefulness
in local solutions of this type. It is assumed, in the error analysis, that
the vertical gravity gradient component of the gradient tensor is used
as the re 4 data signal from which the corresponding reference
gradients ere removed to create the centered observations required in
the collocation solution. The reference gradients are computed from a
high degree and order geopotential model. The solution can be made in
terms of mean or point gravity anomalies, height anomalies, or other
useful ► gravimetric quantities depending on the choice of covariance
types. Selected for this study ware 30' x30' mean gravity and height
anomalies. Existing software and new software are utilized to implement
the collocation technique. It was determined that satellite gradiometry
data at an altitude of 200 km can be used sucessfully for the
determination of 30 ' x30' mean gravity anomalies to an accuracy of 9.2
mgal from this algorithm. It is shown that the resulting accuracy
estimates are sensitive to graviiy model coefficient uncertainties, data
reduction assumptions and satellite mission parameters.
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Z. INTRODUCTION

Gravimetric geodesy is in the midst of a period of rapid growth.
During the laat twenty-five years, geodetic information has grown
formidably, primarily due to the application of space technology. With
proper guidance and funding, this Lrend will continue at a pace
unimaginable to those scientists involved at the beginning of the "'Paco
age. Currently, many countries have offerred support for the rapid

growth of geodetic science. ,Fn the United States, geodetic progrese is

made by many government, agencies, universities and private

corporations who are involved in a wide variety of projects. Perhaps

the largest civilian endeavor is one under the au_e_pioes of the National

Aeronautics and Space Administration known as the The Geodynamics

Protect. The Wictiv6s of this project, as outlined in NASA (1983), are:

"(1) to contribute to the understanding of the solid Earth, in

particular the processes that result in movement and

deformation of tectonic plates; and

(2) to improve measurements of the Earth's rotational dynamics

and its gravity and magnetic fields".

These two objectives are inextricably related and perhaps a third

objective could be included;

(3) to form a useful geophysical information data base for the use

of studies in advanced Earth geophysics as well as absolute

and comparative planetology.

Thus the primary objectives could be reformed into the single sentence:

The primary goal of The Geodynamics Project is to formulate solid-Earth

^^	 1	 r
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models which more accurately depict the geophysical nature of our
planet,

Several types of observable phenomena exist which contribute to the

formulation of solid-Earth models.	 Two such phenomena are the

geopotential fields, the gravity and magnetic ;fields of the Earth_. In
this study, the gravity field is highlighted as the phenomenon of basic
interest. An interesting number of by-products, or applications, can be
made from the study of the Earth's gravitational potential (or, for short,
the geopotential). These applications are nicely summarized in the NFO
publication, Applications of a Dedicated Gravitational Satellite Mission

(National Academy of Science (19791).

The rationale for improving and increasing the knowledge of the
Earth's geopotential comes from many sources. Some examples include:

Geophysics: Gravity information is used to infer isostatic information to
supplement and constrain tectonic models. Geoid
undulations can be correlated with density anomalies to
constrain mantle convection models.

Oceanography: Highly accurate geoid models when used with altimetric
data yield precise knowledge on the sea surface
topography which is useful in the determination of local
ocean circulation patterns. With altimeter measurements
over a period of time, a fourth or dynamic dimension can
be included which may improve the understanding of the
meteorological/ocean circulation interface.

As can be seen from these few examples, improvements in gravity field
knowledge have strong repurcussions within the geophysical community
which can ultimately contribute to a unified earth model, There are
certain geodetic applications which would benefit, from improved
gravitational potential knowledge. The major impetus stems from the

Y.x
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need to improve the accuracy of artificial satellite ophemerides. Many

NASA projects being considered rely heavily upon how accurately a

satollite orbit can be determined. Altimetry projects (such as TOPRX)p

mapping projects (ouch as MAPSAT)p and other remote sensing misNiono

are some examples of missions requiring precise orbits.

With this brief introduction, some examples supporting the rationale

for gravity model improvements have been mentioned. It is then

worthwhile to describe a few of the projects currently 'under

consideration to directly improve our gravity field knowledge,

NASA is currently considering two types of instrunients to be used

in a gravity field measurment campaign; Satellite-to-Satellite tracking

(SST) techniques are to be used in the Geopotential Research Misf3ion

(GRM); and satellite gravity gradiometry utiiizing cryogenic technology is

to be used in a follow on mission. The Satellite-to-Satellite tracking

instrumentation is described in APL C1983) and a proposal for recovering

geopotential information is discussed in Colombo (1984). Satellite borne

gravity gradiometers (the instrument of primary interest in this work)

are summarized in Wells C 1904.). Instrument descriptions and

gradiometry theory will be discussed in the next chapter.

It should be stressed that the two types of instrumenbition (SST

and gradiometry) are not competitive with one another. Rather, they

are complementary since they are individually sensitive to different

wavelengths of the gravity field, This is evident in Figures la and lb

which were generated by the rapid error analysis procedure described

in Jekeli and Rapp (1980). The graph illustrates mean gravity anomaly

accuracy estimates from the six mc , .th GRM mission as well as those from

a six month gradiometry missions. It can be seen in Figure la that

higher resolution is achieved when the sensP14vity of the instrument is

increased. Higher resolution is also achieved when the satellite altitude

is lowered (Fig. lb) such as proposed 
in 

the apace shuttle tether system

(NASA (19841) which would allow for alti'^.. d , - near 140 kilometers. Thus
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if the GRM project &s fully supported, then the follow-on gravity
gradiometry mission, if it is also supported, will be under strict
instrumentation and altitude requirements in order to make significant
improvements in spatial resolution.

' * In this work Se prospect of utilizing local (as opposed to globA1)
gradiometry data _';. the estimation of mean gravity anomalies anal
height anomalies is explored. The theoretical foundation is supplied by
least-squares collocation theory. The idea of using only local
information was advanced due to the substantial computer effort
required in global solutions. The purpose of this work is to test a local
collocation algorithm for its accuracy, dependability, and ease of

" 	 operation.

The next chapter introduces the satellite gravity gradiometr y (SGG)l
concept along with the units and coordinate systems involved. Mentioned
too, are the design concepts, likely mission profiles, and a review of
previous reduction methods. In chapter three, the general theory of
collocation as applied to the local gradiometry reduction is expounded.
The use of a high degree and order geopotential model will be explained.
Chapter four presents the results of the error analysis and ensuing
discussion. The final chapter attempts to provide a petrsl„ective of this

tzf

work by drawing conclusions and suggesting alternative lines of
investigation.	 i

y7..
f

Y'
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REVIEW OF GRADIOMETRY, ITS INSTRUMENTS AND METHODS

Concepts and Theory

The basic theory behind gradiometers has been known since the
early days of torsion balances, when around 1900 a Hungarian physicist,
Roland E8tv8s, developed a working veriometer. Torsion balances had
wide spread use during the 1920 's for geophysical exploration. Their
use declined due to the introduction of the more economical gravimeter.
However, torsion balance measurements are still being made today but
they are rapidly* becoming obsolete with the influx of high technology
gradiometers and inertial systems.

In order to intuitively appreciate the concepts underlying
gradiometry, it may be worthwhile to discuss the theory, units and
physical interpretation behind this system. A gravity gradiometer is
capable of sensing and recording the values of the spatial second
derivatives of the gravitational potential. The discussion begins by
recalling that the potential is a scalar quantity having SI-units of
m's-'. The first spatial derivative of the potential is generally

associated with gravitation which is an acceleration quantity or vector

quantity having units of ms - = . Acceleration can be intuitively described

as the rate of change of an object 's velocity. The second spatial

derivative of the potential is also a vector quantity which has units of

s-'. These units may seem physically mee ►ningless at first, but it is

easy to recognize that the second spatial derivative allows for a,

description of the spatial variation of the gravitational acceleration. For

instance, the unit most often associated with these second derivatives is

the E8tv8s (denoted E). One E8tv8s is 10-' s-' 2 which can be thought

of as 10-' ms-'/m. In words, this means that one E8tv8s is a change of

7
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10-9 ms- 2 over a one meter distance. In more familiar gravity units,

one B8tv8s is equivalent to a 0.1 mgal change over one kilometer.

The nine spatial second derivatives of the gravitational potential

constitute the "gravity gradient tensor" which is conveniently expressed

in matrix form by

V 11 V i a V,a
Va l V as Vaa
Vai V ia Vaa

(II.1)

where V denotes the gravitational potential of a body and the subscripts

refer to the spatial derivatives (eg. V„ = a a V/axf, V,a = • aV/axlaxa,

etc.). The 1, 2, 3-subscripts refer to directions associated with an

orthogonal coordinate system. As long as the directions remain

orthogonal, then the gravity gradients along these directions must

satisfy Laplace's equation,

E Vii = 0	 (II.2)

that is, the diagonal elements of the gravity gradient tensor are subject

to Laplace's condition.

The formulation of the potential by spherical harmonics begins by

defining a geocentric coordinate system. Let the Xs-axis of a geocentric

Cartesian coordinate system coincide with the mean rotation axis of the

earth. Next, let the X, -axis lie in the mean equatorial plane as well as 	
r

in the plane formed by the Greenwich meridian. The X2-axis completes

the right handed Earth fixed Cartesian system by lying in the mean

equatorial plane in the direction of longitude ff/2. The geocentric

spherical coordinates (4, X, r) follow immediately which are defined as

shown in Figure 2. The earth's gravitational potential can then be 	 1

written in spherical harmonic form as
jr

1a

4	 l..
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Figure 2. Geocentric Cartesian and spherical coordinate systems

•	 n
n

V(i, A, r) _	 [1 +	 i r ,	 (C.cosaw + S^sind ► )P^(sini)^
n=2	 M=O

(II.3)

where C., in. are the normalized potential coefficients, Fnm(sini) are

the normalized associated Gegendre functions, a is a mean equatorial
radius value for the earth (e.g. 6378137 m for the 1980 Geodetic
Reference System) and r is the radial diaLance of the computation point

r	 at latitude i and longitude A. Similarly, an expression for the reference
r	 gravitational potential can be written as

t

a
x

C

i



eCr=Cn-C;
cSn = Sra - S;

a
V

{

^i

s

(II.7)

i
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N	 n

U(i, A, r) _	 ij +	 c In	 (Cmcoank 	 + SmsinuA)Pm(sini))
n=2	 n=o

(II.4)

where the prises denote reference potential coefficients which are

approximations to the Cm, SM in equation ( II.3).

The disturbing potential, in the present notation is t in the well
known formula,

B

T(i, A, r) = V(1, A, r) - U(i, A, r)
	

(II.5)

The disturbing potential can also be written in a spherical harmonic
expansion as:

N	 n
T(^ ' 1► , r) - r C	 r In F (CC.cosax + C9.sinzA)P.(sini)

n=z	 M=O
4

•	 n
a n+	 , T (Cmconva + SnxsinmA)Pnw ( sa,ni)}

n=2 r	 n=o

(II.6)

where here the aC= and aSrM terns are the discrepancies between the

coefficients of the true field and the coefficients of the reference field.
That is, more explicitly,
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These discrepancies are better termed "coefficient errors" which implies
that the reference (or "model") coefficients are in error with respect to
the unknown "true" coefficients (Colombo, [1980]). Since the coefficient
errors cannot be found directly, they are approximated by the a
posteriori variances for the computed model coefficients. These )rrors
will play a significant role in the covariance computations dis assed in
Section IIIA.

Next, the spatial derivatives of the various potential expressions will
be examined. A connection between the well known principles of
gravimetric geodesy and the spatial derivatives will be highlighted to
provide an intuitive framework.

The first spatial derivatives of (II.3) can be related to the
components of gravity by (Heiskanen and Moritz [19671)

gX 1 = Vx 1 + *x 1 9 gXa = Vx 2 + +xi , gx' = Vx' + ♦x y	(II.8)

where t denotes the centrifugal potential. Similarly, the components of
the reference (or normal) gravity are;

YX1 _ UX1 + 4x 1 9 YX Z = Ux 1 + #X 2 9 yx, = Ux", + +x 3 .	 ( II.9)

The gravity disturbance, is defined as the difference between the
true (measured) gravity, and the reference (modeled) gravity,
(Heiskanen and Moritz [19671, section 6-11

I = I ` I	 (II.10)
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Then, in geocentric Cartesian coordinates, the gravity disturbance
components are (since the centifugal potential terms cancel):

•T - •U	 •T
6x, = •V	 •x^ _ [xi- TxI = •gi

!V •U	 !T	 (

	

6x2 = •g 2 ` X^ = ItX2- 
'Yx2 = 

•xa	
II.11)

!V •T	 •T
6x• _ •X'_ •X 3 _ 9X3° Tx y

 = RXa

It is possible to differentiate each equation in (II.11) with respect to the
three directions thus yielding the nine anomalous tensor components
referred to the geocentric cartesian system

T;, _ OXt(6x,)

T2. = :X (6x.)
i

T„ _	 (6x^)

•
T,• _ L (6x1)

•
SX (6x2)

s

T„ ^X'(6x3)

T „ = OX3 (6x1

T, 3 = ^X3(6xa)

T; 3 = 
•
@
X3

(6x3)

I

(II.12)

where the primes denote that the gradients are referred to the
geocentric coordinate system. This equation illustrates how the gravity
disturbances are related to the anomalous gravity gradients referred to
the geocentric cartesian system. The anomalous gravity gradients are
then the spatial rates of change of the gravity disturbances.

It is expected that the gravity gradient observation will be referred
to a local level cartesian coordinate system. In this coordinate system,
the x,-axis coincides with the radius vector in the spherical case (Fig.
3). The x,-axis is oriented in a northerly direction and the x,-axis in

^N.

b^

ii
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an easterly direction such that

#.Lx 1x,1 ` ,	 (11.:3)
Ix, I

The curvature parameters of the level surfaces and the plumb line can

be developed with regards to this local level system ( Heiskanen and

Moritz [1967], section 2.2).

X:

X^

Figure 3. Local level cartesian coordinate system, xi
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2.2 Instrumentation

For the sake;- of comprehensiveness, a brief overview of satellite
gravity gradiometer instrumentation is provided to this work. The
discussion is by no means complete but only serves to increase the
reader's awareness of the measurment principles involved and the
accuracies obtainable by the proposed instruments. References will be
made throughout to aid the reader's desire for details.

At present, two very good reviews of instrument theory and design
exist. The first one by Forward (19741, presents a good historical
perspective of gradiometer mission and system development up to the
date of publication. Several types of designs are presented ranging
from quartz balance systems, vibrating string systems, to rotating
resonant torsional gradiometers.	 Since the review by Forward,

"	 applications of new technologies have shown remarkable improvements in
t gradiometry design. These new generation gradiometer systems are

reviewed in Wells (1984). This section attempts to highlight some of the
designs mentioned in this more recent publication.

In the United States, there are a number of research groups
investigating gradiometer instrumentation (Table 1). Some of the groups
have experienced continuous funding from various agencies for the
purpose of development, others have had their funding cut-off. Thus
this overview will contain only those groups known by the author to be
actively funded.

Basically there are two types of gradiometry sensors; Conventional
and Cryogenic. Conventional sensors operate at room temperature and
may have a higher level of maturity than cryogenic sensors which
operate at very low temperatures (less than 4.2 • Kelvin, the boiling
point of liquid Helium at one atmosphere). Only two of the o;-ganizations
listed in Table 1 are developing conventional gradiometers, these are
Bell Aerospace and Hughes.

1



The Bell Aerospace gradiometer utilises a slowly rotating platform on
which are mounted four accelerometers (Fig. 4). 	 The gravity gradients
are measured by differencing the outputs of opposing accelerometers.
Due to the rotation of the platform, the gradient signal is sinusoidally
modulated with a period at twice the rotational period. 	 The use of four
accelerometers facilitates the detection of minute gravity gradients by
utilizing "common mode refection of the large acceleration" (Metzger k
Jincitano, (19811).	 An orbital mission system has been proposed by Bell
which	 utilizes	 the	 same	 instrument	 concept.	 Miniature	 electrostatic
accelerometers	 (MESA's)	 are	 to	 replace	 the	 current	 operational
accelerometers (the Mark VII).	 It has been reported	 that the MESA]
based gradiometer will have much lower noise levels than the current
operational system (the MESA based system has an estimated noire level
of around 0.035E (Wells (19841, p. 32)).

i
i

I s

The Hughes gradiometer is also a rotating instrument but the system
design is quite different from U,9 Bell gradiometer. 	 The observable
quantity is the strain due to the torsional flexure experienced by the
resonant cruciform mass-spring system (Fig. 5). 	 The torsional flexure is
coupled to the differential torque experienced between the two arms.
Since	 the	 system	 is	 rotating,	 the	 differential	 torques,	 due	 to	 the
gradients of the gravitational field, Pre excited at a frequency twice
that of the system rotation frequency. 	 The differential torque, AT, is
related to the gravity gradients through the following expression

A T = 
n
4 [( Vxx - Vyy)cos 2ut + 2Vxysin2ttl	 (I1.14)

'r
where all terms are defined as illustrated in Figure 5 and where the x
and y directions lie in the plane of rotation. The system noise level
goal is 0.01E (lo) using a 35 second integration time. It was not
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Table 1
Organizations Active in Gravity Gradiometer R A D.

V.

Principle
Organization Gradiometer Type Investigators

Bell Aerospace Rotating Accelerometer Metzger/Jincitano

Bendix/Stanford Univ. Superconducting Cavity Reinhardt/

Oscillators Turneaure

Hughes Rotating Gravity Forward

Gradiometer

SAO/PSN Gravity Radiation

Sperry Defense Syst. Cryogenic Levitated Hastings

Balance Arm

Univ. of Maryland Superconducting Accelerations Peik

with SQUID readout

`^%' X

u	 Figure 4. Operational concept of the Bell Aerospace gradiometer
(from Wells, 1984, p.31).
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Figure 5. Operational concept of the Hughes gravity gradiometer
(from Forward et al [1973]).

s
i

R



wwqr- -z- - iQ 3

18

reported in Wells (1984) whether or not the system noise goal has been
achieved.

The remaining orgarleations listed in Table 1 are developing
cryogenic. based gravity gradiometers, these are; Bendix/Stanford Univ.,
SAO/PSN, Sperry Defense Systems, and Univ. of Maryland. Brief
descriptions and instrument sensitivity goals make up the remainder of
this section.

The Bendix/Stanford University gradiometer utilizes superconducting
Cavity Oscillator (SCO) technology developed at Stanford.	 The SCO is
capable of detecting minute displacements on the order of 10'"	 cm
which it then converts to frequency form.	 Thus the output signal
would	 be	 a	 frequency	 shift	 corresponding	 to	 the	 displacements
experienced	 by a	 mass-spring accelerometer 	 which are	 due to	 the
gravity gradients. 	 Bendix Field Engineering is developing the design of j
the SCO Based gradiometer. 	 Their gradiometer, called the canonical
gravity gradiometer, has six 3-axis SCO based accelerometers placed at
distances of 8/2 from the origin of a cartesian coordinate system (Figure
6).	 All	 nim,,	 components	 of	 the	 gravity	 gradient	 tensor	 can	 be
approximated	 directly	 from	 the	 outputs	 of	 the	 18	 component
measurements from the accelerometers. 	 Recalling the definition of an
Eotvos, the gravity gradient can be determined simply by differencing
two accelerometer outputs and dividing by their along axis distances
(4/2 or t in the canonical case).	 The noise sources affecting the SCO

based gradiometer have been investigated and it has been shown that a

gradiometer with a sense mass of a few kilograms and a baseline of % m

can	 have a resolution of	 10-4E, e►r a	 1	 second	 sampling	 time	 (as

reported in Wells ( 1984], p. 47).	 The primary error source for this

sampling period in due to thermally induced vibration which is itself
kept at a very low level since the instrument is operated at cryogenic
temperatures.
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Figure 6. Canonical gravity grad ,ometer

(from Wells [1984],  p.49 )
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The Smithsonian Astrophysical Observatory (SAO)/ Piano Spaziale
Nationale (PSN) designs utilize gravity radiation antenna technology
developed at PSN and cryogenic microwave cavity technology at SAO.
The two approaches are being taken to determine which technology will
be most suitable in a gravity gradiometer. Two single axis sensors are
being constructed which will commence with the ultimate sensitivity

goals of 10-' to 10- 3 E for thin capacitive probe/radiation antenna

gradiometer and 10-6 to 10-' E for the cryogenic cavity gradiometer.

The gradiometer being developed by Sperry Defense Systems could

be described is a cryogenic version, of the Hughes design since they

are related at least in principle ►. The Sperry design utilizes a

magnetically levitated balance arm within a cylindrical bearing. The

bearing itself' is levitated and rotated at a constant rate such that the

rotational ratty is one half the natural frequency of the balance arm.

The gradient signal is generated through the detection of inductance

created by the rotating system. The detection is made by using a

superconducting quantum interference device (SQUID) placed at the axis

of rotation. A SQUID is a parametric device whose output voltage varies

in response to an input flux. The cylindrical bearing responds only to

angular accelerations which are transmitted to the balance arm (which is

sensitive to the gradients as well). Thus a feed back loop can be

established to null the effects of the angular accelerations by monitoring
the bearing's angular position. In the orbiting instrument concept, the

cylindrical bearing is replaced with a rotating sphere and an ensemble

of three such spheres would be grouped in a noacolli.near conff,guration

to constitute the tensor gradiometer. Precise orientation and altitude

determination are a requirement inherent in this design. The noise level

goal set by the investigators at Sperry is 3x10- 4 E.

Completing the list of active gradiometer developers is the design

put forth by the University of Maryland. This design also uses SQUID

technology to detect changes in the magnetic flux which is coupled to

the displacement of a proof mass.	 Paik summarized the principles

^. w



involved very neatly in one sentence (Palk 119811):
"an acceleration Ag drives the proof mass to a displacement Ax,
which is converted to a magnetic flux signal A ♦ by means c►f the
superconducting inductive transducer and finally the magnetic; flux
is detected by the SQUID producing a voltage output AV."

The accelerometers can be placed in a configuration similar to that
shown in Figure 6. When this configuration is used then the gradients
are determined by differencing the outputs of the individual
gradiometers following the concept underlying the definition of an
Eotvos. In Paik [1981], ways of determining these differences are
discussed and the concept of current differencing is introduced.
Current differencing techniques provide a conceptually simple and
efficient method to determine the in-line and cross gravity gradients.
In the Univ. of Maryland design, the Niobium proof mass is ;weakly
suspended which will limit gradiometry sensitivity to about 10-4 E over
a 3 second integration time. Paik notes that the tree-mass scheme
would allow higher sensitivities and is realizable in space. Problems
arise in attempting to test such a design in a "hostile terrestrial
environment", i.e. the laboritory. Paik indicates further that a
free-mass design in the zero-g evnironment of space could provide
sensitivities up to 10- 6 E.

In conclusion, it should be noted that cryogenic gradiometers
•Y

promise higher resolutions than the conventional designs. However, the
conventional designs for terrestrial and airborne applications are in a
more advanced state of development. It should be noted too, though,
that the latest push in gradiometeic instrumentation is towards
cryogenic designs and given enough time, with appropriate funding,
cryogenic gradiometers could be available, in the next few years, for
Earth gravity field determination as well as gravity missions to other
terrestrial planets. This, then leads into a discussion of mission
characteristics and proposed time tables.

z
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2.3 Gradiometer Mission Characteristics

In this section, some aspects of mission and spacecraft design will

be addressed.	 Many options exist at the moment and specific decisions

are scheduled	 to	 be made over the	 next few years.	 Thus,	 only

recommendations and assumptions will	 be	 made to	 delineate	 mission

parameter limits to be used in the remainder of this study.

E

F 1

P

Since the principle objective of the gravity gradiometer mission is

to obtain a global data not of gradient, tensor values, the satellite should

thus be placed in an orbit to facilitate global coverage. This is most

easily done by placing the satellite in a polar orbit with the inclination

angle to be as near to 90 • as possible. Furthermore, as wag mentioned

in the introduction, higher resolution of quantities of interest (e.g.

gravity anomalies) is acheived with lower altitudes. The atmospheric

drag experienced by the satellite at these low altitudes becomes the

primary factor for premature termination of the mission. Two

approaches have been proposed. The first, as mentioned earlier, is the

use of the Tethered Satellite System in which the instrument package

with the gradiometer is lowered from the command vehicle (in this case

the space shuttle) and measurements are taken. Three main

disadvantages arize with this concept which limit its usefulness strictly

to the gradiometer test phase. These are due to the inclination of the

orbit, and duration of measuements, and untested tether dynamic models.

The space shuttle normally operates in a relatively low inclination orbit

(30 9 -50 0 ) so that global coverage is impossible. The measurement

density will likely be globally non-uniform due to the shortness of

typical shuttle missions, which is undesirable from an analytical point of

view. Finally, although investigations into the dynamic behavior of the

tether systems are being made, the resulting models are largely

untested in the real space environment. Until such tests are made, the

gradiometer system's response to the tether's dynamic behavior remains

uncertain.
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The second aproach to overcoming the effect of the atmosphere for

low orbits borrows technology from the GRM mission. In order to

maintain an orbit at (say) 200 km altitude, it is necessary to compensate

for the dra., by employing thruster rockets. With a properly designed

gradiometer, the accelerations from the thrusters will not affect the

gradient outputs. It is this fact which causes gradiometere to be of

interest in other dynamic applications (e.g. inertial navigation sytems,

airborne and terrestrial gravity surveying). This thruster aided

concept is formally called DISCOS ItDISturbance COmpensation System).

DISCOS, as used in the GRM mission, is under rather tight tolerances

and constraints. For the grediometry mission, the constraints ran be

eased somewhat, since it in not required that the gradiometry package

be treated as a drag free proof mass, as is required in the satellite to

satellite doppler tracking concept of G;RM. It has been recommended

that the free flying GGM mission utilize DISCOS technology or a variation

of DISCOS.	 See Wells (1984), pages 59-60 for a more complete

discussion.

Data coverage is a function of satellite inclination and altitude as

well as of time. For the best distribution of data it would be advisable

to avoid altitudes which yield resonant orbits with short period repeat

cycles. The quality of distribution improves with longer mission

durations. The optimal data distribution depends on the scientific goals

of the mission. To guarantee that mission goals be met, it is advisable 	 t

to overdetermine the system solutions (i.e. have too much data).

However, mission planners must decide how much overdetermination is

enough, given the economics of the mission. Also, in some cases, mission

goals are relaxed. In this case it is easy to filter or smooth the raw

data to meet these needs.

In Figure 7, the effects of varying mission durations can be seen.

The data was generated with the same program an was used in the

construction of Figures la and lb. What it illustrates is that the

recoverable % • x% • mean gravity anomaly accuracy improves as the

4.

h»w-^Mr.-kr.,t^:+r-..wczwrraw.,..w^•-.,r,-..-..,..r.,.-._....,. ,. 	 ..,^.._ ....,.	 .,. ___ ..,^ ..	 _....	 -^s



v, h,

P	 Figure 7. 30'x30' mean gravity anomaly accuracies as a function of

mission duration.

r	 1

Nftolr

24

0
Lrn

., W

CC
t,

..^ o
0

U-^a

a:_

Ln

.. E

Q
r
E
t

>

Q o

ff--©

LD u^i

r

r

Y

N	 ±

0
Lr;

0.00 15.003.00	 6.00	 9.00	 12.00

DURATION	 (MONTHS)
U3 GGM. IOE-4 E. 200 KM

30 X 30 MEAN ACCURACIES

	

J. N. ROBBINS	 5.18.85

THE OHIO STATE UNIVERSITY

DEPT. OF GEODETIC SCIENCE 4 SURVEYING



s 

`emu,

26

duration increases (Le. more data is available). It is quite easily seen

that the curve 'levels off near 6 months and that a mission of twelve

months only improves the mean gravity anomaly accuracy byr

approximately 6% in comparison with a six month mission. Thus it

should be noted by system planners that extended missions may not

realize significant improvements in determining static gravity anomalies.

The demands for satellite ephemeriv and altitude monitoring will

provide the designers of the autonomous mission some technical

challenges. For example, the uncertainty in the attitude sensing system

must not exceed 3x10-' radians in order to prevent degredation of

measurement precision. In constrast, the space telescope pointing

requirement is an order of magnitude smaller, at less than 3x10'•

radians over a twenty minute observation period. It is expected that

the attitude control and monitor problems can be overcame as mentioned

in Wells [ 1984]. The design put forward by Paik 1'19811 should be

capable of monitoring attitude and position directly by integrating

certain gradiometer and accelerometer outputs. These integrated

quantities can further be placed in an absolute reference frame by

using state of the art conventional attitude sensors ana tracking

techniques.

It is necessary that certain assumptions be made concerning the

parameters associated with an automomou t satellite grai+ ity gradiometey

mission for the purpose of the primary investigation contained herein.

These assumptions are outlined in Tr ble 2. Using these parameters,

then the raw data should be distributed every 4' in latitude and every

3.6' in longitude at the equator. The east-west spacing of the data

decreases towards the poles due to the convergence of this orbits at the

poles. The sensitivity of the instrument (i0-^ E) was selected as a

conservative estimate. Up to this point, the sensitivity goal of 10-4E

for the mission has not actually been achieved by any of the

organizations developing gradiometers. The investigation scientists

remain optimistic however, that sensitivity goals will ultimately be met.

y
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Table 2,
Assumptions for Mission Parameters and Characteristics

sr,ion parameters

• orbit - low eccentricity (circular)

- inclination near 90 (polar)

- altitudes of 200 km and 160 km

r Duration - six months

► Sample rate - 1 set of tensor me,lsurements per sect)nd

strument assumptions

Cryogenic full tensor gradiometer of the University of Maryland type

6 Sensitivity - 10- 3 E (1 Ngal km-1)

titude and ephemeris assumptions

' Data assumed to be corrected for attitude and attitude rates and

converted from electrical output signals to real physical values

* Data assumed to be rotated into local level cartesian coordinate system

r Data assumed to be geographically tagged (latitude. longitude, altitude)

a

The particulars concerning the attitude and ephemeris assumptions are
beyond the scope of this work but these assumptions will need closer
examination after specific design decisions have been made. The
rotation of the gravity gradients, from the orientation at the time of
measurment to the local level coordinate system can be made by time
tagging the gradient output signal and the absolute attitude information.
The local vertical can be determined by the gradiometer output and the
required rotation angles can be determined from the attitude
information. The geographical tagging can be made by several methods
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including integration c ►f gradiometer outputs, supplemented with global
positioning system (OPS) simultaneous phase measurements (described by
Melbourne g Tapley (19831) and other conventional tracking methods
including laser and unified s-band radar tracking.

2.4 Previous Reduction Schemes

Several investigations have been made concerning techniques to
reduce the satellite altitude gravity gradient measurements to some
geophysically useful form. Two basic chases of reductions can be
defined; global solutions and local solutions. The proposed global
solutions attempt to determine the coefficients of the spherical harmonic
expansion of the disturbing potential. The proposed local solutions
attempt to determine directly, gravity quantities such as mean gravity
anomalies and mean height anomalies (or mean geoid heights). A brief
synopsis, highlighting certain aspects of these previously proposed
solutions, follows.

Many gradiometer studies were made in the 1960'x, however, most
of these were proof of concept studies and dealt primarily with the
improvement of inertial navigation system error sources. Geodetically
relevant gradiometer studies began formal investigation in the early
1970's. :Since then, the discussions have followed two paths; airborne
gradiometry and spaceborne (satellite) gradiometry. Much work has
been done for the airborne application and recent investigations by
Jekeli [1985] illustrate the immediate usefulness of the airborne case.
Although the airborne application and associated reductions will not be
included here, it is important to recognize the close linkage between the
two cases. The primary differences lie in the types of usable
instrumentation and in the height of the gradient measurements.

One of the earlier investigations of satellite gradiometer data
reduction appeared in a thesis by Glaser [1972]. In this work, Glaser
proposed an algorithm which computes improved estimates of the
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coefficients in the spherical harmonic expansion of the earth's
gravitational field. Hence, Glaser's solution is of a global nature. It is
very much a preliminary work as it was not possible for Glaser to fully
test the algoritt m. However, the proposed technique was novel for its
time. Essentially, Glaser proposed that the measured gradients (from a
rotating instrument) be downward continued to the earth's mean radius
and then integrated to directly yield improved coefficients. Probably
the factor most likely to have hindered Glaser's attempt at programming
the algorithm was the considerable computational effort required. Even
with the prospect of computational difficulty, Glacer's proposal, though
very bold, set the starting point for further investigations.

That same year (1972), Reed outlined a reduction scheme which is
less demanding with respect to the computations (Reed [19721). Reed
proposed a local solution where classical least squares techniques are
used to determine 2'x2 • and 5 • x5 • mean gr p►vity anomalies referred to a

14x14 degree and order geopotential model. The results presented are
C

in the form of an absolute error analysis, where the 2 • x2 • (and 5049)
! mean anomalies predicted from the simulated gradients at altitude were

differenced from the gravity anomalies used to create the simulated
gradients. Reed was very perceptive in making investigations for both
strap-down and rotating types of gradiometers, although his conclusions
concerning the future of strap-down systems was faulty. Much of the
present report draws from the analytical work of Reed.

The next definitive study on the geodetic usefulness of satellite
gradiometey was made by Krynak fa and Schwarz [1977]. They were
among the first to utilize the technique of collocation to compute
geodetically relevant information from satellite gradiometey. In their
study, they did work on determining the appropriate covariance model
parameters, configuration of the gradiometer signals, and on combined
solutions using additionally, terrestrial data. Their results, primarily in
the form of a very generalized error analysis, yielded some fairly
interesting conclusions. Among the more interesting of these is the

s "4T
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conclusion that only those gradients containing at least one radial
derivative contribute significantly in recovering gravity information (in

F

this case geoid heights). That is, only the Ts„ T I -j , and T23 gradients
in the local level system contribute significantly. What appears to be

t
missing from their study, however, is a discussion on the
non-stationarity and anisotropic nature of the gradient covariances.
Their conclusions remain sound in the case that their adopted
covariance function behaves realistically.

Recently, a new attempt at the global solution has been outlined by
Rummel & Colombo ( 19851. Due to the F emarkable breakthroughs in the
computational methods of harmonic analysie on the sphere by Colombo, a
new interest in large global solutions has resulted. Their proposed
solution solves for the coefficients of the spherical harmonic expansion
in an iterative process which includes orbit displacement and orientation
uncertainties. A prerequiste for using the advanced analysis algorithm
(decribed in elegant detail in Colombo (19811), is that the measured data

C	 be in gridded form. Rummel & Colombo suggest creating cells of data
k

averages which are then "dropped" onto a surface of revolution which
better aproximates the actual orbits to create the gridded data set. By
placing the data on an orbit approximating surface (rather than a

p

sphere) helps to decrease the number of iterations required due to the
reduction in the initial orbit displacement error. Rummel 8. Colombo ran
computer simulations which showed, quite positively, the success of the
method. There is much promise for this method because it has overcome
many obstacles, notably the reduced compute r time for the solution.
The computer time required for the global solution is expected to remain
substantial (i.e. greater than a Mw hours) thus, local solutions for
direct gravity parameter recovery, such as the one outlined in this
work, remain useful for those interested in regional investigations with

s	 a more direct approach (i.e. gravity gradients -r gravity parameters
t

	

	
rather than the three step method: gravity gradients ♦ geopotential
coefficients { gravity parameters).

r.
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3. APPLICATION OF LEAST SQUARES COLLOCATION

3.1 The Collocation Model

The techinque of least squares collocation has been used
successfully for a wide variety of problems in physical geodesy. It has
been especially useful in certain satellite mission applications touch as in
satellite altimetry ( happ (19831), satellite-to -satellite tracking (Hajela
(19811),  and in estimating gravity potential differences between
continents from satellite laser ranging data ( Hajela 1 19431). The results
from these reports showed that significant solutions can be found with
limited observational data. As is well known, for large observational
data sets, the collocation technique suffers from the requirement that a
large matrix be invertod or a large system of equations be solved. This
drawback can be bypassed in two ways. First, the simpler approach is
to determine what elements of the total data set can be ignored or
which elements can be smoothed or averaged such that the errors
resulting from the collocation soluton remain small. In this approach,
one may be forced to accept some loss et resolution in order to reduce
the computation time. The other method is to switch to frequency
domain collocation where the inversion can be handled with less
computational burden. Details of the latter technique are found in Eren
[1980]. The present study will follow the former, more simple approach.

The fundamental equation of the least squares collocation technique
is (Moritz, [ 19801, p. 102)

S = cstcilt
	

(111. 1)
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where t is the vector of observations, CS j (Ctt ♦ Cnn) is the sum of
the covariances of the observations and the observational noise, Cst is
the covariance matrix relating the observed quantities to the quantities
being predicted, 3 is the vector of predicted quantities.

The observational noise is usually associated with the observed signal
uncertainty and in most cases, this uncertainty is treated as
uncorrelated from one observation to the next, thus the Cnn matrix will
be diagonal with all the elements on the diagonal having similar values.

The collocation technique is especially appealing to geodesists since
it allows for an estimate of the inherent error convariance matrix
associated with the estimate vector S. The error covariance matrix (Ems)
is found through (Moritz (1880), p. 105)

Kai = Css - Cstcoo'ch
	

(III.2)

where all quantites were defined above and, in addition, Cgs is the
covariance matrix of the estimated signal. The diagonal of B88 provides

N
the variance of the estimated quantities S. In the case that only one
signal is being predicted (i.e. s has only one element), then B88 will
ha--e only one dement and this value will be the variance associated

A
with S.

Another aspect that makes collocation a desirable technique is due
to the fact that various data types can be combined to yield perhaps
more improve estimates of the quantities desired.	 This aspect will not
be a factor in this study because the it tention of this study is to
examine one specific data type (i.e. gradiomc-try data).

to
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3.2 BxpUcit Matrix Structure-Observation VW,,ir

In the following discussion, the developments will be made in the
most	 general	 way	 possible.	 This means	 that	 the "general	 case"
corresponds	 to the case	 that	 all five	 independent gradient	 tensor
components are used in the solution. It fewer components are used, as
is	 the	 case	 in	 this investigation, it	 ir.	 not	 difficult to modify	 the
following development to accomodate the changes.

The vector of obwarvations, s will then be composed, in the general
case, of the five independent residual tensor component values
determined at a particular location. To obtain these residual values,
several preprocessing steps are required.

First, it is assumed that the instrument outputs have been
converted to physical units and that these values have been rotated
into the local level coordinate system. The ►angles required for the
rotation are determined from the satellite attitude control subsystem. It
is further anaumed that the attitude information has a propagated noise

w level below that of which is detectable by the gradiometer, thus the
rotation angles are assumed errorless. Once these preprocessing steps
have been completed, then what results are the measured gravity
gradier.l. ►shown an a "vector segment" below,

E.

V33

V22
V12
	 (III.3)

Via
V"	 (=i, Ai, rij

where the numerical subscripts denote the differentiation axes
corresponding to Figure 4 and the quantities in braces are simply
reminders that the measurements are position tagged with ii, ai, ri
being latitude, longitude, and radial distance from the geocenter for the

s
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ith observation respectively.

Grouping of the vector segments can be made in many ways, but for
the purpose of gravity parameter estimation, the logical alternative is to
group by geographic location. If the data is randomly distributed, it
carp be grouped by choosing the spherical distance #0 and including as
segments in the observation vector, those gradient values at 4i, Ai such
that

cos- '[sinip sin#i + cosip cos(Ai - Ap)] & #0	 ( IIIA)	 .

where ♦p and Ap are the latitude and longitude of the prediction point.

However, using randomly distributed gravity gradient, data causes

problems in computing the required covariances. One way to overcome

these problems is to grid the data in some fashion.

There are several data gridding schemes available and depending on
	 I

the type of solution (i.e. global or local) some schemes may be

excessively complex or simplistic for application here. The first step in

gridding the data is to predict point gradient values at the grid

intersections of a regional block (cf. Figure 12). A least squares

collocation predictor could be used for this task where nearby

gradiometer measurements are used as input to form the predicted

values. Since the gravity gradients, as will be shown later, are a short

wavelength phenomenon, the prediction should be based upon only those

measurements that are sufficiently close enough to the predicted grid

value to keep the loss of gravity information to a minimum. The grid

values should be reduced to a specific surface in order to ease the

covariance computational demand, in the main collocation solution for

gravimetric quantities. Moving the height dependent aspect of the

gradient signal to the preprocessing step not only simplifies the

computation of the covariances in the main collocation algorithm, but also

E
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provides the possibility of forming the observation vector as will be
described shortly. The reduction to the specific surface can be
accomodated in the prediction step. The reducing surface assumed in
this study is a sphere with a radium of R N from the geocenter, which is
equal to the average geocentric radii of the gradiometer measurements
within the regional block. This surface should be sufficient in our case
since the orbit is considered circular and we are considering
observations in a re.Atively small region or block (with, in general, #A s

5 0 ). Another such surface is a surface of revolution about the earth's

axis which better fits the actual orbits (Rummel g Colombo [1985]). This

surface is not used in this work because the radial uncertainties which

are being solved for in Rummel It Colombo's global solution can be

ignored in this type of solution without detracting from the overall

results. It is also not used because of the complications resulting from

the height dependent covariance computations. Thus, once these

averages and reductions are made, then whet results is a geographical

grid of points, to each of which are attached the five predicted and

reduced independent gradients shown in Figure 8.

The complete gradient vector is then structured from point 1 to

point UN. In transposed form the gradient vector is

a

i

f-

.y.

r	 .^

AT = [ V;S. V121 V121 V lar Vas .... 1 1, Vses. V"1, VIC Vza],	 (III.5)

where the superscripts indicate which point the gradient value pertains

to. Thus the observation vector, for the case that all five independent

tensor components are entering into the solution, will have 5(MN)

elements. For the formulation used by Krynski & Schwarz [ 19771, only

the three components containing at least, one radial derivative enter into

the solution. Thus their gradient vec+or had 3(MN) elements of the form

^	
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( 7 'ss * v as. vas t ... vivo Vill vs1)
	

(III.6)

it the usual case that the region considered 13 equi-angular, then
1 equal SA and M=N (in Figure 8). Bqui-area regions should be
in the polar regions due to problems associated with the
-Bence of the meridians.

1 2 3 4 N-2 N=,1 N

N+1 N+2 N+3 N+4 2N-2 2N-1 2N

2N+1 2N+2 2N+3 211+4 34-2 3N-1 3N

(M-2)N+1 (M-2)N+2 (11-2)N+3 (M-2)N+4 (M-1)N-2 (M-1)N-1 (M-1)N

(M-1)N+1 (M-1)N+2 (M-1)N+3 (M-1)N+4 MN-2 I	 MN-1 MN

Figure S. Numbering scheme for Sridded sub-blocks

.

(To complete the observation vector set-up, the differences between
the predicted grid gradient values and the computed reference
gradients are taken to form the residual gradients (or anomalous
gradients). This is done to meet the requirement that the observed
data be centered. To center the data, reference point gravity gradients
are computed for all components being considered in the solution at
each point (41, Ai) on the grid at radius RM.	 The reference gradients
are computed from a set of reference geopotential coefficients	 (Cnm,
Snm) complete up to degree and order N.	 The referene,+- coefficients,
together with (#i,	 Ai, RM ) are inserted into the properly differentiated
version of equation (II.4). The differentiations were made by Reed

[ 1972 1 and are summarized in Appendix A.	 Since the required reference
gradients	 are on a grid, then	 advantage	 can	 be	 taken	 of	 the

_.....- <,,...,w....vraMn.xra.wuya±^w. r ^	 ....w.w.....+««•.,.... 	 _	 .
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mathematical symmetries which result, and a computationally efficient
algorithm can be utilized, such as described by Robbins (1984). The
observation vector, 0 can then be established by (cf. sq. (II.5))

V 4 3 - U1 3

V2, - U;,

^ l = V iz — U1:

V ia — Ui3

V» - U123

T4,

T»
Tj y	 ( di,%MN)

Ti3

Tia

(II1.7)

where 8 1 is the ith observation vector segment.

3.3 Explicit Matrix Structure - Covariance Matrices

The overall structure of the covariance matrices is dependent upon
how the observation vector and the resulting signal matrix are
structured. The basic structure of the observation covariance matrix
will be 5MNx5MN, where MN are the total number of points contained in
the NxM grid of locations. The matrix illustrated in Figure 9 will need
to be inverted according to equations (III.1) and (III.2). Since the
matrix is symmetric, some inversion computation time can be saved by

Y

storing the matrix in symmetric storage (vector) mode. However, for the
purposes of testing and keeping computation times relatively short (less
than 10 minutes on the IBM 3081 at the Ohio State University), the
author selected 1000x1000 as the maximum dimension of the
autocovariance matrix. If all five of the components are used (as shown
in Figure 9), then, at a maximum, a grid of 200 points can be
considered. This corresponds to a 14x14 grid of residual gravity
gradient observations. More points on the grid can be utilized when
fewer than five components enter into the solution.

	

The covariance matrix relating the observed quantities to the	
e

desired signal, Cst, has its structure defined through the number of
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observations and the number of predicted quantities. It will have the
dimension L x 5MN where L is the number of predicted quantities and
5MN is the total number of observed gradients in the grid (general
case). The predicted quantity can be any gravimetric quantity (e.g.
gravity anomalies or height anomalies, as used in this study).

In general, Cst will be a row vector because normally only one
quantity is being predicted. That is, only one gravimetric quantity,
located in the center of the grid (and on the earth's approximating
sphere), is computed for a specific grid. For adjacent predicted
gravimetric quantities, the grid is shifted and observations symmetric to
the computation point enter into the computation. Thus, a moving

4:-

	

	 window technique is used in which the covariances are longitudinally
invariant. Computation of the covariances themselves, follows.

3.4 Covariance Compvtations

The covariances associated with the gravity gradients as well as the
gravimetric quantities can be expressed as linear functionale of the
disturbing potential. Thia well known property contributes to the
succbes of colAocation. The general form for the covariances of the
disturbing potential, T is

N

K(P ' p) -^?	 ^-- l rr.,n (2n+1) £ijPn(cos yhpp ' )
n=2

+ ifrr , n (2n+1) &APn(cos *pp') }	 (111.8)
n=N+1

where r, r' are the radial distances to point P and Q respectively, #Pp
"''	 is the spherical angle separating P and Q, a is the mean equatorial



rid Pn

Purthermore,
are the Legendre polynomials of degree n.
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a	 ^

39

n_

+ c 21rm)/(2n + 1)	 (III.9)
m=o

With the absolute error of the modeled coefficients given by

8 ns = Cnm(tru•) - CrM(mod.l) (III.10a)

43= = ins(true) ` S =(model) (III.10b)

Since cCnm and Anm are unknown, then as an approximation, the
" coefficient standard deviations of a spherical harmonic geopotential

model solution, eCnm and eSnm are substitued for cCnm and cSnm. The
corresponding term, oa in the right hand side of (ILLS) is the degree
variance of the potential coefficients;

n
+ S&)/(2n + 1)
	

(111.11)
n=o	 K

IY

H	 5."

This formulation is originally due to Colombo [1980] (section 3 .2) but the
notation of Hajela ( 1,983 1 (also section 3 .2) is used here. The potential
degree variances are related to the anomaly degree variances by (Hajela
[1983], p.17):

cn	 (n - 1)
2 (2n + 1)0,'„	 (111.12)

rr
4	 where yo is a mean value of gravity.

f	 The anomaly degree variances, cn, are usually given by empirically
t	 derived models. Many collocation studies have used the Tscherning do

t
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Rapp model:

o(n - 1)
cn	

(III.13)
(n-2)(n+B)

s

where a and B are model parameters. 	 The main reason for its extensive
use is due to the availability of advanced software based upon this
model (see Tscherning it Rapp [ 1974], Tscherning [ 1976], and Sunkel

^i
119791).	 This model exhibits logarithmic behavior and as such, it is not 	 z
the most suitable model for certain types of covariance modeling. 	 It has
been especially criticized for its unreasonably high gradient variance
especially in association with the parameters determined by Tscherning	 t

Rapp ( 1974).	 These parameters were determined by least-squares
fitting	 the	 model,	 equation	 (III.13),	 to	 observed	 anomaly	 degree

$' variances	 from	 degree	 3	 to	 20,	 1 •	 and	 5 •	 mean	 ( block)	 anomaly
rvariances, and a point variance of 1795 mgal'. 	 More recently, attempts	 j

to update the parameters were made by Rapp [ 19791p and Jekeli [ 1978] 	 p

attempted using various other parameters to determine their effects on
the variances of several gravimetric quantities (including the vertical
gravity	 gradient).	 The	 specific	 parameters	 and	 the	 effects	 upon

t

f gradiometry solutions will be discussed in the next chapter.
Y y.

kis

Other models for the anomaly degree variance have been proposed
by several investigators, we mention only the two component-model
attributed to Moritz. 	 It's basic form ie

Cn - °`' nt^ ^`+^ + az (n—z)(n+e) S"a+'	 (III.14)

r
ti

F

i where the a„ a„ S 1/ S„ A, and B terms are the model parameters.
Parameter investigations were made by Jekeli [ 19781, Hein and

x't	
^	 ^
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Jochemczyk (1979], and Kapp (1979). Although it has been shown by
there investigators that more natural anomaly and gradient variances
can be obtained from the two component model, this study will restrict
itself, with regard to the analysis, to the Tscherning and Rapp- model
for the afformantioned reason of readily available advanced software.
The resultscontained herein might be improved by using the
two-component model.

The particular covariances are derived through the law of
covariance propagation.	 The gravimetric quantities, i.e. gravity

	

anomalies and geoid heights are related to the disturbing potential by 	 .
(Moritz (1980), p.108)

dg = - T - ? T	 (III.15)
or	 r

N= 70 T 	(III.16)
6

with yo being a mean value of gravity. Both equations are given in
spherical approximation. The .functionals relating the gradients in a
local level coordinate system to the disturbing potential are slightly
more complicated. The functionals for the tensor diagonals are (Reed
[1972], p•32)i

T„ =r^c^ 1 Tax - 
tarsi T4 + °r Tr	 ( III.17e)

T22 r' Tii + r Tr	 (III.17b)

T3s = Trr	 (ITI.17c)
4

F

The sum of the above expressions yields Laplace's equation in spherical

y^+

1

" i., ^ .
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coordinates. The off diagonal tensor functionals are;

T" = Tat - rac^os- Tai + t= T.	 (111.1.86)

T" = Ta ' = rc I	 TAr - r°cos- TA
	 (111.18b)

Tai = T3  = T-r ° 1 T-
	 (111. 18c)

Now applying the law of covariance propagation with Li and L3 denoting
the functionals, the covariance of particular interest is (Moritz [ 19801,
p.87)

Mi3(P, 0) = LfLI ' K(P,Q)
	

(1I1.19)

where K (P, Q) is given by (I11.8). Substituting the functionals in
(III.15) through ( III.18) into (III . 19) will yield all of the covariance types
required in the "general case solution". These expressions have been
derived by the author and are given in Appendix B.

It should be emphasized however, that in some cases, the resulting
covariance expressions are no longer isotropic. That is to say, they are
no longer strictly functions of the radial distances, r and r', and the
spherical distance, #pQ. The gradient covariances can be treated in a
mariner similar to the treatment of vertical deflection covariances
described by Tacherning & Rapp [1974). Recently, Krarup & Tscherning
[1984) have recant the T i „ Ta, and T, a gradient component covariances

into isotropic form for use in collocation solutions utilizing torsion
balance observations. Tscherning has further modified his closed form
covariance algorithm (COVAX) to impliment the isotropic form (Tscherning

a

Y
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3.6 Reduced Forms of the Collocation Solution

t Since Krynski k Schwarz ( 1977) concluded that the gradients
contributing significantly to the local collocation solution are those
containing at least one radial derivative, then the "general case" of
utilizing all five of the observable gradients can be reduced to utilizing
the three radially differentiated gradients (T,,, T„ i T„) with negligible
loss of accuracy. If the same number of grid points is retained as was
Used in the consideration of the "general case" solution, then the
computational burden and necessary computer time will be reduced
especially for the inverson of Clo. In this core, the observation vector
will be

V1 3 - U43	 T1 3

^i =	 V13	 U13	 =	 T1 3 	 (1did► )
	

(III.20)

w=D	 U;,	 T13

where Si indicates the ith observation vector segment with i being a
number associated with a set of observation on a grid and where MN is
the total number of points in the grid (cf. Figure 8). The observation
covariance matrix will be similar to that shown in Figure 9 but without
the T„ and T„ related covariances. The dimension of Ogg is, in this
case, 3MNx3MN and if it is again assumed that the maximum dimension of
practical inversion for the purpose of testing is 1000x1000, than the
grid can be enlarged to the size of 18x18. The enlargement can be
made by densifying the grid (of specific geographic coverage) or by
retaining the data density and extending the geographical coverage.

i
,
a	

.5
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The formulation and covariance computations are simplified further
by only considering the second radial derivative component (the vertical
gravity gradient, T„ ). The covariance function for the vertical gravity
gradient is isotropic from the start since + the radial derivative
functional, when applied to the anomalous potential covariance through
the covariance prupogation law, does not disturb the isotropic nature of
the anomalous potential covariance function, K(P, q) (cf. equation
(III.19)). Only one observational type needs to be considered therefore
only one autocovariance table needs to be generated. The observation
covariarice matrix will have dimension MNxMN and with the assumed
maximum dimension of 10004000, then the grid can be further enlarged
to 3101. Again, either the density of observations can be increased (to
a limit not to exceed the actual measurement distribution) or the
geographical coverage can be made more extensive than for the case
mentioned in the previous paragraph.
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4. RESULTM OF THE ERROR ANALYSIS

4f1 'Description of the Investigations

, The investigations reported herein are primarily in the form of an
error analysis. This is due to the fact that at this time, a satellite
gravity gradiometer mission has not yet been tested, so no real data yet
exists. The basis for the error analysis ccmes from the expression of
the error covariances (equation (III.2)) which is repeated here for
reference (cf. section 3.1 for term definitions),

ski = ass -cetcWlt	 (IV.1)

This way they errors of the predicted signals are found by the model
implied covariancea, which are used to form the matrices Cas t Cet, and
Ctt, and the instrument noise level which enters through Cnn (recall
that Cis = Ctt + Cnn)•

Thee original idea was to impliment the "torsion balance version" of
Techerning 's COVAX program to compute the covariances for those
gradients containing at least one radial derivative. However, the results
of this attempt proved unsatisfactory either due to the instability of the
inversion of Cis  or due to undetected software errors. Thus to
simplifiy the investigation, it was decided that only gradient components
with , wo radial derivatives would be used as the assumed observable
(referred to as the radial-radial component, T,,, in the remaining
discussion).

45
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The remainder of this chapter will include a discussion on the
generation and behavior of the covariances, and presentations of the
error analysis with variations in the parameters.

4.2 Covariance Generation and Behavior

Several methods have been devised to generate covariance tables.
Two of the more popular methods are by truncated series and by closed
form expressions. The truncated series method has been used
occasionally with the two component degree variance model of Moritz
(equation (111.14) ). The closed form expression method has been
programmed by Tscherning and Rapp (19741 and further modified by
Tscherning 1976) and [1983). The degree variance model used in the
closed form expression has traditionally been that Tscherning 8. Rapp
(equation (I11.13)), however recently the Moritz model has been
implimented in a closed form algorithm by Hein [ 19811.	 4

a

The closed form algorithm of Tscherning [ 1983) has been used r
throughout the present work. This algorithm (referred to as COVAX in
thin report) was selected since it was readily available to the author 	 a
and since it is easily adaptable for the use of higher order reference	 1
potential models.

The selection of parameters for use in the Tscherning & Rapp
degree variance model poses an interesting problem. The parameters
computed by Tscherning & Rapp [ 19741 implied a horizontal gradient
variance of 3500E' which is considered unrealistically high. The gravity
anomaly variance of 1.795 mgal' implied by their parameters has been
accepted for several years but recently the value has come under close
scrutiny. Evidence from studies of gravimetric quantities and empirical
covariances in Canada have suggested that the 1795 mgal' value may be
too high. For the Canadian region, Schwarz g Lachapelle [ 1980]
estimated the gravity anomaly variance to be 837 mgal'. One must

yy
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remember though, that the Canadian evidence is of a regional nature
and thus it is limited to an incomplete set of gravity anomaly producing
geophysical structures (i.e. the samples taken in Schwarz & Lachapelle's
investigation do not include a global net of geophysical structures such
as deep ocean basins, trenches, island arcs etc.). Thus their result for
the gravity anomaly variance may be somewhat low, perhaps not by a
very large amount. The horizontal gradient variance was estimated to
be approximately 200E' in Canada by Schwarz & Lachapelle which is in
fair agreement with slightly higher gradient variances determine'i by
Hein it Jochemzcyk [ 1978] in Germany. Therefore, the best degree
variance model parameters to use are those which imply a global anomaly
variance of approximately 1100 mgal' (Rapp, private communication) and
a horizontal gradient variance of approximately 300 E' (as a compromise
value between the results of Schwarz & Lachapelle and Hein &
Jochemzcyk). One set of parameters for the Tscherning & Rapp degree
variance model meets these variance requirements, which were
determined by Jekeli [1978). These parameters,, as well as other used in
previous investigations, are listed in Table 3 (cf. equations (III.13) and
(III.14) for the expressions of the degree variance models). To illustrate
the power spectrum of the three parameter sets of Table 3, the products
of the degree variances with their respective S-terms are plotted by
degree in Figures l0a and 10b. This product will be called the scaled
degree variances and are found by

cn = cnSn+ '	 (IV.2)

in = gnsn+a = n+E z ' cngn+3 	(IV.3)
E

with cn given by the Tscherning & Rapp model (equation (III.13)) and
with gn denoting the vertical gradient degree variance. For the Moritz
two component model, the scaled degree variances are

i,

w
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cn = cn	 ( cn from equation ( III.14))	 ( IV.4)

'n = SnRE	 l°^' nn+^ 
S^Q+3 + a,(n-:)(n+e) 59+3]	 (IV.'5)

The variances are found through the summation

Co =	 cn	 (IV. 6)

n=s

Gov =

	

	 In 1 2GgH	(IV. 7)
n=2

with the last approximate equality shown by Jekeli [1978).

Figure 1.0a illustrates the scaled gravity anomaly degree variances
6	

^.

for the three parameter sets of Table 3. The numbers associated to the
curves correspond with the enumeration in Table 3. It can be seen that
the Tscherning & Rapp model with Jekeli's parameters exhibits lower
power than the other two models for degrees below 800 this is the
reason for the lower value of the gravity anomaly variance, especially in
view of (IV.6).	 Also notable, is the similarity between the Jekeli	 y
parameter model and the Moritz with Hein parametor model beyond
degree 800. Tscherning & Rapp's parameters exhibit greater power for
the high degree spectrum. All curves can be seen to exhibit high
power at degrees below 700.

Figure 10b illustrates the scaled vertical gradient degree variances
for the same parameter sets. The effects due to the two components of
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Table 3. Degree Variance Model Parameters

1. Used in this work: Tacherning & Rapp model with Jekeli parameters

a = 343.3408 mgal'

B=24

S = 0.9988961

Implied variances:

(Co: gravity anomaly variance, Go": horizontal gradient

variance.)

Co = 1089.5 mgal'

DoN 338.9 B'

2. Tscherning & Rapp model with Tscherning & Rapp parameters:

a = 425.28 mgal'

B=24

S = 0.999617

Implied variances:

Co = 1795 mgal'

QON = 3500 B'

3. Moritz two component model with Hein [1981] parameters:

a, = 7.516922 mgal'	 a, = 82.04054 mgal'

S, = 0.994425	 S, = 0.9996642

A=-2	 B=7

Implied variances

Co = 1800 mgal'

GON = 1000 S'

I
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the Moritz model are strikingly evident by the two maximums reached at
n=390 and n=3000. The rather nharp maximum at n=390 is due to the
logarithmic portion of the two component model. The two parameter sets
based upon the Tscherning It Rapp model display similar spectral
behavior. It appears that the spectrum beyond (roughly) degree 500
contributes to the high horizontal gradient variance implied by
Tscherning & Rapp's parameters. Again, all curves exhibit the well
known fact that gravity gradients are primarily a high degree (short
wavelength) phenomenon. It should be remembered that the real world
spectral behavior of the gravity gradient variance is still largely
unknown. Perhaps with the influx of terrestrial and airborne
gradiometry data, the parameters of the degree variance models can be
refined further to incorporate this new information.

The effect upon the degree variances from using a high degree
and order reference potential model to remove reference gravity
gradients from the measured gradients is illustrated in Figures lla and
11 b. The DEC 81 reference potential model of Rapp (1981) has been
selected for this purpose. Recall from Section 3.4 that the reference
potential coefficient variances (e'Snm, e 2Cnm) are substituted for the
indeterminable absolute error of the reference potential coefficients.
Thus equation (III.9) becomes

n

CA = E (e 'Cns + e 19= ) /( 2n + ^)
	

(IV. 8)
o=o

The error potential degree variances are related to the error anomaly
degree variances by

2
'	 Cc = (	 , (n-1)(2n+1)CA	 (IV.9)

4
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The scaled error anomaly degree variances are found by substituting Ec

from (IV.9) for the Cn in (IV.2)

E.e = Ecgn+z	 (IV.10)

further, the scaled error vertical gradient degree variances are found
by substituting Cc for Cn in (IV.3)

Eg = n+E 
2 

EcSn+3
R 	 (IV.11)

Figures Ila and llb illustrates these scaled error degree variances
implied by the DEC 81 coefficient degree variances. The DEC 81 degree
variances are a modified set of degree variances not reported in Rapp
[1981]. The degree variances used in this study were recomputed by
(IV.8) up to and including degree 36. Beyond degree 36 the error
potential degree variances were computed by the expression

EA = e' (C, S)n	 036
	

(IV. 12)

f

where e(C, S)n are approximate degree accuracy estimates given by

e(U, S)n =2yo(n-1)	 + sampling errors	 (IV. 13)

r

w

z

where e(Sg) is a global estimate of the accuracies of the 1 •x1 • mean
gravity anomalies used in determining the coefficients; for the modified
degree variance computation, a value of 10 mgal was used; 9 is the

i
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block size (1 • x1 '• , i.e. 9=1 0 ), and yo is a mean value of gravity.

The scaled degree variances belonging to the three parameter sets
of Table 3 are shown in Figures Ila and llb for 0180. It should be

4 noted that the error degree variances abruptly alter the spectrum of
the modeled degree variances. This is especially true for the anomaly
degree variances of Fig ,lre Ila.

As geopotential models improve, their coefficient accuracies will
improve further supressing the error degree variance influwj ,̂ ,le in the
covariance computations. As a minimum case, one can consider the
reference geopotential model to be errorless (i.e. the coefficients are
equal to the true coefficients in equation (III.10) ). In this case (also
considered In the next section), the degree variance spectrum has no
power up to degree 180 and power beyond that degree as given by the
empirical degree variance model. Considering the reference potential
coefficients to be errorless is useful in determining the sensitivity of
the resulting accuracy of the gravimetric quantities to the coefficient
accuracies implied by the geopotential model actually used. A discussion
of the results of this consideration is made in the next section.

To summarize, the covariance model of Tscherning 8, Rapp will be
used for the remaining investigations due to its ease of operation and
availability. The parameters of Jekeli [ 19781 were chosen to be the most
compatible with the latest estimates of the gravity anomaly and
horizontal gradient variances.

4.3 Results of the Error Analysis

The error analysis primarily consists of determining the expected
error of the resulting gravimetric quantity computed through the
collocation technique for an assumed geographic area at altitude. A
computer program has been written which implements equation (IV.1) by
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using covariances competed from the "torsion balance version" of COVAX
by Techerning. The program is called GIFRAD, for which a listing may
be found in Appendix C.

There are three primary input variables for program GIFRAD, these
being; the latitude, ♦; the overall grid size, D; and grid spacing, DELD.
The latitude is necessary for the computation of the spherical distances,
equation (B.3) in the appendix, since the grid is to be based upon the
lines of latitude and longitude. The overall grid size and the grid
spacing are illustrated in Figure 12. These parameters can be varied
which then offers the possibility for investigating the behavior of the
error estimate with regard to these parameters. The gridded gradient
values lie at the intersections of the grid lines, as shown in Figure 120
at a mean satellite altitude computed as described earlier in section 3.2.
The gridded values of Figure 8 are treated as point values in Figure 12.
The error analysis utilized an equi-angular grid, this referring to
Figure 8, AA=A♦ and M=N, therefore in Figure 12, N=M=` D/DELD)+l. The
value of M and N are constrained to be odd thus causing the central
point of the grid to be positioned directly above the computation point,

^. n
P. This causes a symmetric distribution of data which can be utilized to

k
decrease CPU time during program runs.
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The computed gravity and height anomaly accuracies are in terms of
30' x30' means which correspond to a spatial resolution of approximately
56 km. Since mean values were chosen, the covariances must reflect
this choice. Several methods have been devised to compute mean
gravity quantity covariances. A good theoretical discussion can be
found in Jekeli [ 19781, whereby the Pellinen smoothing operator is
applied. However, a considerably simpler approach has been advanced
in Tscherning and Rapp (1974 1 whereby the Pellinen operator is
approximated by a height dependent quantity; Jekeli [ 19781 writes the
mean gravity anomaly as

Cov(A'1P' A1o) _ Y— BAcnS1+aPn(cos16PO )	 (IV. 14)

n=i

Tscherning and Rapp [ 1974] write, in the same notation, the approximate
formula as

1n+2 n
+^	 rCov(AgP ,A^o) _	 cn^(RE+h)21	

S	 Pn(cos14PO )	 (IV.15)
n=a

Thus, the Pellinen operator, PA is approximated by

PA X l (R E n

+a	
(IV.16)

!I.

Since the Pellinen operator is a function of the spherical distance #0,

G
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On= l-coGOo J^ oslf0
Pn(t)dt	 (IV. 17)C

where t=coslr0i then it refers to the smoothing within a cap of the size
ldo. However, block sizes of 30' x30' are of interest, thus the
corresponding cap size can be determined from

#0 = 2sin-1 (9s A9^% r e.e-%	 (IV. M

where 9 is the size of the block. Therefore when 9 = 0.5 0 , then from
(IV.18), '0o _ 16'56".

The value of the height, h which best approximates the Pn -function
for #0 = 16'56" is found by comparing the gravity anomaly variance
computed from (IV.14) for the particular block size 9 to the variance	 {
computed from (IV.' 5). Since, in the case of variance computations, P=Q,	 r '

then thR Legendre polynomial term becomes unity.	 Thus, the	 {
comparisons are based upon the following equations:

P

N'
Ver , ( el) _	 OAcnSn

+s 	 (IV.19)	 1

n=s

N

Vara(AW)_	 [ R— 1 2
]n+2cnSn+2	

(IV.20)
n=2 (R E

where N is the maximum degree of the summation. The comparison was
made by programming equations (IV.19) and (IV.20) with N=2000 by a
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program celled COVIRQUIV. Por the present investigation, the degreo
variances used were

cn = Cc (from eq. ( IV.9))	 (2bnb180)

1^+

cn = Tscherning h Rapp model with Jekeli parameters	 (0180)

k I	 Tho results of the comparison yielded a value for h of 6389 meters.

The covariances required in the radial/radial collocation solution
were generated by COVAXX where the error anomaly degree variances
implied by the DEC 81 geopotential coefficients, the parameters of Jekeii,
and the height It associated with the mean gravimetric quantites were
provided as input. The covariances, in table form, were placed inl
program GIFRAD where too, the input parameters D and DELD (cf. Figure
12) were specified. Another not of runs were made to test the effect of
the geopotential model errors upon the resulting gravity anomaly and
height anomaly accuracies. This was performed by r.,eana of omitting

? the coefficient errors in the covariance computations. This is equivalent
to assuming a perfect geopotential field model. The variances of tho
predicted quantities (C., in equation (II1.2)) area as followi DEC 81
model errors included; 302.12 mgal' and 1 . 161 m' gravity ,*nomaly and
height anomaly variances respectively; perfect goepotentlal model to
degree 180: 224 .74 mgal' and 0 . 114 m' gravity anomaly and height
anomaly variances respectively.

The final results of both sets of rune are illustrated in Figures
13a-13g. Using the above variances for the predicted quantities, it can
be noted that the inclusion of gradiometer data causes a substantial
improvement in the mean gravity anomaly and height anomaly accuracies.

n

	

	
open boa type symbols referring to gravity anomaly accuracies and
Four curves are associated with each figure with the curves having
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a 11

i cross type symbols referring to height anomaly accuracies.
Note that the respective accuracy scales are plotted on each side of the
figures.

Several observations can be made from the results. 	 First, the
accuracies improve with smaller grid intervals. 	 This is not unusual
since the number of geographical points increases as the interval, DELD
decreases while the grid width D remains constant, that is, more data in
entering into the solution.	 The accuracies would reach their minimum,
for a specified grid width, wh6n the grid interval becomes infinitely

. small, or in other words, if the gradiometry data were continuous over
the region.	 However, this minimum cannot be achieved for two reasons:
one, the dimension of Ost would become infinite, and two, continuous
data	 is	 not	 realizable	 by	 current	 and	 planned	 gradiometers,
Furthermore, the minimum grid interval is constrained by the mission
parameters, most notable, the data acquisition rate, which determines the
raw date geographical spacing, and by the assumptions concerning the
gridding technique.

Noteworthy too, is the rather large jump in tha, accuracies for grid
intervals larger than one degree when the coefficient uncertainties are
included. This is a natural outcome of the spatial resolution of the
reference model which is approximately one degree. Therefore, the poor
accuracies resulting from the geographically sparse data distribution is
due to the influence of the coefficient uncertainites. Note that the
"errorless" accuracies retain a smooth character for grid intervals
beyond one degree of arc.

The figures also indicate a general increase of accuracy as the grid
width is increased for grid intervals less than one degree of arc.	 For
instance, if one considers a specific grid interval (e.g. 30'), then as the
grid width is increased two things are happening. 	 First, more data isi
entering into the algorithm and v, .,v,ond, the errors due to the omission
of the region exterior to the grid 	 being reduced.	 Both are thereby
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width.

.^i +FV*1k1<#k2pyci.u, .Rl	 e .,.:te 	 -N- .	 =.+i'.A..."RG..+iR.CMiF:w ; 3'G+sY1W+VY!'9M+M"^PK..XN,:.. waA^.wa+ssvc^'M+..+awumw> e -rr.	:..>I.-. 	 a. .x	 -	 ., t	 ..,	 t r.A a	 ,s'..'WV'bv-^X^.n.n.-Waww^.i^utln



62

00 0
to

I

d

+ ?

t

G O
U)

.-+

I ;

CD

Q O
LIJ

•-+ O V-

. w

t

O

U O O

U o M

O U.^cr
U

©
Z

:.. 	 ............
a

c
Q ! ;i '? C) UO N Z

Q
1,

•

!^
f i =

t ?

C) 4 i

CD

,
I

D

G
4

I

j

!

(

(

O

O

r o
-0.00 0.50	 1.00	 1.50 2.00

GRID	 INTERVAL	 (DEG.)

DEC.81 COEFF. ERRORS INCLUDED 	 PERFECT 180 DEG GRAVITY FIELD

1D GRAV. ANOM. ACCY.	 4 GRRV. ANOM. ACCY.

# HGT. RNOM. ACCY.	 X HGT. ANOM. ACCT.

!I

y^

rt45	 .	 tl

^I

GGM — RADIAVRADIAL CASE

` 200 KM ORBIT — LATITUDE 40 DEGREES J.	 N.	 ROBBINS	 5.18.85

30	 X	 *A0	 (MIN) MEAN GRRV.	 RNOM.	 ERRORS DEPT.	 OF GEODETIC SCIENCE 4 SURVEYING

T/R DEG.	 VAR. MOD.	 JEKELI	 PARAM. THE OHIO STATE UNIVERSITY	 N

Figure 13c. WOO' mean value (egg C) accuracy estimates for 2 0 grid

width.



63

co

\Zof

-j
cr-
Lo

X:

U
U
Q

ED
z
Cr

. 9
> C"
Cc
Cc
LD

O
OD

0
O

........	 ...	 .	 .......	 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 .................... .............................

.............. ........... ......................

............................... ............................. 	 ............................. .....................

--4 ..................	 ........... ................	 ............. ....	 ........ ..................	 ...........

...................... ...............I.".."... ..... ........................ ..............................	 .......................
......................... ...........

C)
Ln

M

O
Li

C)
M

MZ
C^ cr-

LD

C)

o

O
O

-0.00	 0.50	 1.00	 1.50	 2.00
GRID INTERVAL (DEG.)

GGM - RRDIRL/RADIRL CASE

200 KM ORBIT - LRTITUDE 40 DEGREES J.	 W.	 ROBBINS	 5.18.85

30 X 30	 ( MIN)	 MERN GRRV.	 ANOM.	 ERRORS DEPT. OF GEODETIC SCIENCE 4 SURVEYING

T/P DEG.	 VRR.	 MOD.	 JEKELI PRRRM. THE OHIO STRTE UNIVERSITY

Figure 13d.	 30' x30' mean value (egg accuracy estimates for 2 *.5 grid width.



'_qF

r

64

0.50	 1.00	 1.50

GRID INTERVAL (DEG.)

O
O
r
-0.00

0
0

m

O
0

N

O
b
O

2.00

EC.81 COEFF. ERRORS INCLUDED PERFECT 180 DEG GRAVITY	 .-IEL

0 GRAY. RNOM„	 RCCY. 4	 GRAV. ANOM.	 RCCY.

+ HGT. ANOM.	 RCCY. X	 HGT. ANOM.	 RCCY.

GGM - RRDIAL/RADIAL CASE

200 KM ORBIT - LATITUDE UO DEGREES 	 J. W. ROBBINS	 5.18.85

30 X 30 (MIN) MEAN GRRV. ANOM. ERRORS 	 DEPT. OF GEODETIC SCIENCE 4 SURVEYING

T/R DEG. VAR. MOD. JEKELI PARRM. 	 THE OHIO STATE UNIVERSITY

Figure 13e. 30'x30' mean value (Agp C) accuracy estimates for 3 • grid

width.

M....IY

O
Q O
U' 

X: .-.

O
U O
U o
Q

O
ZCI: o0
^ O
Q
M

CD

O
O
CD

t` It

0
ca

0

0
Ln
O

(n
O (C
M , W
O I-
W

O
M }_

o U
U
Q

0 E
fV Z
O Q

CD

O

O



:.81 COEFF. ERRORS INCLUDED PERFECT 180 DEG GRAVITY FIE

(D GRRV. ANOM. ACCT. 4	 GRAV. ANOM.	 ACCY.

+ HG T. ANOM.	 AGCY. X	 HGT. ANOM.	 ACCY.

GGM - RADIAL/RADIAL CASE

200 KM ORBIT - LATITUDE 40 DEGREES	 J. N. ROBBINS	 5.18.85

30 X 30 (MIN) MEAN GRRV. ANOM. ERRORS 	 DEPT. OF GEODETIC SCIENCE 'R SURVEYING

T/R DEG, VAR. MOD. JEKELI PARAM. 	 THE OHIO STATE UNIVERSITY

Figure 13f. 30 ' x30' mean value (egg r) accuracy estimates for 3.5 grid
width.

i

I

V^Y

F ^l 00
m

00
N

.J o
Q o

^ o
U °.
U o

O
Za o
0

> m

Ir
t,

0
0
0o

L	 tO
W

0

0

C

Cn
o M
:; W
o ^-

LLJ

o •
cn

o U
U
Q

ED
Z

o Q

C)

0

O

O
0

u
2.00

0
0

r

-0.00 0.50	 1.00	 1.50

GRID INTERVRL (DEG.)

65



J41'r,vftoor

DEC.81 COEFF. ERRORS	 INCLUDED PERFECT 180 DEG GRAVITY FIELD

C3 GRAV. ANOM.	 RCCY. 4	 GRAV. ANOM.	 RCCY.

+ HGT. ANOM.	 RCCY, X	 HGT. ANON.	 RCCY.

GGM t RRDIPL/RHDIRL CASE

200 KM ORBIT - LATITUDE 40 DEGREES J.	 N.	 ROBBINS	 5.18.85

30 X 30	 (MIN)	 MEAN GRAV.	 ANOM.	 ERRORS DEPT.	 OF GEODETIC SCIENCE 4 SURVEYING

T/R DEG.	 VAR.	 MOD.	 JEKELI	 PRARM, THE OHIO STATE (UNIVERSITY

Figure 13g.	 30'x30" mean value (dg, t,1 accuracy estimates for 4 • grid	 k

width*

0
0 0

to

CD

OO
N

O

O

Ln
o a--

:, LtJ

CD ^-

LLJ

v

O
M i-
o UU

Q

O
Z

O

1-
C
Z

0

0

J
CC o
C.7

U9
U o
CL .-'

ED
Z
CI:

 
a
0

m
Q
rr
LD

0
0

7 ,

k1	 .

CDO
O

2.00

C)

C)

-0,00 0.50	 1.00	 1.50

GRID INTERVRL (DEG.)

66



67

.,f

a21`

are 
n

altitude

collocation solutions

downward
n+3

RE	 continuation

(ra,

R	 RE n-1E
Tn- T	 n+ n+	 82T

Agn Far 
2 n

Tn

7n y.	 integration	 integration
surface	 surface	 surface	 1

Figure 14. Relationship between gravity gradients and gravimetric
quantities. Arrows point in direction of smoothing (damping
of high frequencies) with spectral operators also shown. In
the diagram, R E is a mean earth radius, yo is a mean value	

Yof gravity at the earth's surface, and ra is the radius of
the satellite at eltitude. From Rummel (1975).
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effecting the accuracies, causing their improvement. It should be noted
that the rate of accuracy improvement per increase in grid width can be
seen in the figures to be decreasing as the grid widths are enlarged
towards 29.

Additionally, it should be noted that, in general, the mean height
anomaly accuracy does not improve as dramatically as the mean gravity
anomaly accuracy considered as a function of decreasing grid interval
spacings ( i.e. introducing more data into the algorithm). This is easily
attributable of the relationships between the mean gravimetric data do
the gridded gradiometric data ( Figure 14). The tranformation from
gravity gradients to gravity anomalies is functionally equivalent to an
integration whereby smoothing takes place according to the spectral
operators given in the figure. 	 The situation is similar for the
transformation from gravity anomalies to height anomalies. The
transformation from gravity gradients is, in effect, undergoing two
smoothings with a combined spectral operator of

RE

(n+l)(n+2)	
( IV.21)

which behaves like 1 /n'. Since in Figure 13a-13g, shorter wavelength
data is entering into the solution when the data density is increased
(by reducing the grid interval), then, from the spectral operators, it
follows that the height anomaly accuracies behave smoother than the
gravity anomaly accuracies since the operator (IV.21) suppresses the
higher frequencies to a greater extent than the gradient-to-gravity
anomaly operator

RE(n-1)

(n+l)(n+2)	 ( IV.22)
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The accuracy estimates were computed for several other altitudes as
given in Table 4, The overall improvement of the gravity anomaly
accuracies is due to the strengthening of the signal in the medium
wavelength gravity information. The accuracy will reach a minimum at a

" certain altitude which is a function of instrument sensitivity, data
distribution and data coverage. The accuracies of the height anomaly
changed only a negligible amount since the improvement of the gradient
signal at lower altitudes occurs at frequencies higher than those which
contribute the majority of the total height anomaly signal.

Table 4. 30' x30' mean gravity anomaly accuracies computed by the local
collocation algorithm GIFRAD for a grid width of 2% 0 and a data spacing
of 15'. coefficient uncertainties included. Instrument sensitivity:
10- 3 E at 40' latitude.

Altitude accuracy
(ko) (agal)

200 9.36
180 8.60
160 7.61
140 6.96

t

Finally, the sensitivity of the accuracies to the coefficient errors
can be clearly seen in Figures 13a-13g. Since the height anomalies are
most affected by long wavelength information, they show marked
improvement when the long wavelength error in the coefficients are
removed. On the other hand, the gravity anomalies show only moderate
improvement when the potential model uncertainties are removed. This
behavior clearly indicates that a highly accurate geopotential model
when used in the local collocation algorithm can significantly improve
the resulting gravimetric accuracies. Since more accurate models will be
available when the satellite gradiometer mission is launched, then for
solutions using this algorithm, the resulting accuracies will be

is



_ V

1 0

nos

significantly better than those reported here. As gravity models
improve, Urie degree and order of their expansions will increase. This
can also improve the accuracies of the resulting gravimetric quantities
computed by this algorithm, if the uncertanties of the coefficients
remain optimally small.

In summary, the primary investigation, in the form of a local
collocation error analysis, has been described and complete results for a
200 km altitude gradiometer mission were presented with and without the
influence of the DEC 81 coefficient uncertainties. This choice of degree
variance model used in the study was made in lieu of available software
and that the parameters of Jekeli adequately represent the actual
gravity field in terms of the implied gravimetric variances. The effects
of the DEC 81 geopotential coefficient uncertainties upon the degree
variances were mentioned. It was noted that the error degree variances
abruptly changed the power spectrum from its smooth character implied
by the modeled degree variances and further, the minimum case of
assuming errorless coefficients was described as a useful method to
determine the sensitivity of the resulting gravimetric accuracies. The
accuracy results were presented and their characteristics were
discussed particularly with regard to data density, mission altitude, and
reference coefficient uncertainty sensitivity. In the final chapter,
comparisons to other results will by made along with concluding remarkr.

i
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5. DISCUSSION AND CONCLUSIONS

5.1 Comparison to other Investigations

It would be useful to place the results of this study in context with
other similar investigations. Unfortunately, this is not easily done since
the investigation by Reed (1972) and Krynski 8 Schwarz [1977] solve for
different quantities than those determined here and since the initial
assumptions of those investigation differ considerably from those made
in this work. It is tempting to compare the results of this work with
those of a similar study involving satellite to satellite tracking by Hajela
[1983). For 30'x30' areas, Hajela determined the accuracy of the
predicted mean gravity anomaly to be 18.1 mgal. However, this result
was for a mean gravity anomaly referred to the GEM 9 gravity field
model. The results of the present report are referred to the 180 degree
and order DEC 81 gravity model of Rapp. Hence, the accuracies
reported in this work are expected to be better since the modeled
degree variances between degrees 20 and 180, as used in Hajela's study,
are replaced by the error degree variancesi implied by the DEC 81
coefficient variances which have considerable smaller spectral power (cf
Figure lls).

The rapid error analysis procedure of Jekeli It Rapp (1980) has been
used in this report to generate Figures la, lb and 7. The procedure
utilizes the Techerning & Rapp degree variance model and for the
construction of the figures mentioned above, Techerning & Rapp's
degree variance parameters have been used. A portion of the resultss	
used in :he construction of the figures is given in Table 5 along with

`,	 results frym other runs of the procedure using Jekelt's parameters
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(indicated by Jek).	 The procedure assumes that the entire global data
set of measurements in used in the computation of gravity anomaly or
height anomaly accuracies.	 The accurw .ies computed by the procedure
are expected to be better than those computed by the local collocation
algorithm developed here.	 This is especially true for the height anomaly
accuracy	 since	 the	 procedure	 includes,	 in	 its	 computation,	 the	 long
wavelength	 spectrum	 which	 comprise	 the	 bulk	 of	 the	 total	 height
anomaly signal.	 The best accuracies from the local collocation algorithm
tested in this study are (for WOO' means at gradiometer altitude of
200 km, 10- 3 E instrument accuracy):	 9.1 mgal and 43.3 cm (Figures 1.3f
and 13g) for gravity anomalies and height anomalies respectively, where
the DEC 81 coefficient errors are included. 	 The perfect gravity field
case yielded best values of 8.9 mgal and 13.6 cm. 	 From Table 5, the
corresponding accuracies computed by the rapid analysis procedure are
5.8 mgal and E. AV cm.	 Therefore the differences of 3.1 mgal and 4.2 cm
between	 the	 local	 collocation	 algorithm	 (with	 perfect	 potential
coefficients) and the, rapid analysis procedure is due to neglecting the
region exterior to the grid in the local collocation algorithm as well as
to the smoothing effects incured during the gridding of the data. 	 The
gravity anomaly accuracy can 	 be improved	 by lowering the mission
altitude, by increasing the instrument sensitivity, or by increasing the
gridded data density.	 There are dfficulties associated with all three
ways to improve the accuracy.	 Lowering the altitude will increase the
drag of the satellite thereby necessitating a disturbance compensation
system	 similar	 to	 that	 proposed	 for	 GRM.	 Increasing	 instrument
sensitivity may be possible with more research by instrument designers
(some designers are optimistic that gradiometers may achieve	 10- s	E
sensitivity levels in the near future. 	 The difficulties associated with
atmospheric	 drag	 and	 gradiometer	 sensitivity	 are	 mission	 design
considerations.	 The increasing of the gridded	 data density is more
directly a data reduction problem. 	 More specifically, when the gridded

F

p data is donsified, a larger inversion process entails, thus increasing the
computational demand. 	 Two factors limit the gridded data density. 	 One

' is physical, the other is economical,	 The physical limit is due to the

4

^ui6,..:.^1 V s
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tact that the data connot be #ridded more densely tt.sn the spacing of
the raw gradient measurements made in the satellite orbit. To do so
would introduce large errors in the high frequency spectrum of the
gradients. The economic limit is one acceptable CPU-time required for
the inversion. This of course, is a more subjective limit which depends
on many factors. Nevertheless, it should be kept in wind during the
selection of satellite gradiometer data reduction algorithm.

Table 5. 30' x3O' mean accuracies implied by Jekeli ! Rapp's rapid
analysis procedure. 1 sec data integration period.

Measurement

Accuracy

( E )

Altitude

(ko)

Parer. DEC 81
errors?

TOTAL RMS ERRORS
Oray . Anon.	 Height Anon.

(agal)	 (©)

0,1001 160 T/R N 4.8 6.3
0.001 160 JBK N 3.8 5.2
0.001 200 T/R N 7.3 11.4
0.001 200 T/R Y 7.5 11.7
0.001 200 JBK N 5.8 9.4
0.0001 160 T/R N 2.9 3.1
0.0001 166 JBK N 2.2 2.5
0.0001 200 T/R N 5.1 6.7
0.0001 200 JBK N 3.9 15.4
*1.0 N/s 160 T/R N 8.9 15.6
41.0 N/s 160 JBK N 7.1 13.0

VJRM parameters, 4s data integration, 300 kr satellite separation

5.2 Conclusions and Recommendations

This report has described the data reduction of satellite born
gradiometry measurements by the local collocution method. Only the
error analysis aspect has been investigated in this study since no test
data yet exists. The algorithm was simplified to utilize only the
anomalous vertical gravity gradients gridded at altitude. The anomalous
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gradients are determined by removing reference gravity gradients
computed from a high degree and order geopotential model. The
uncertainties of the reference geopotential coefficients must be included
in the covariance computations. Two cases were considered: one, where
the uncertainties of Rapp's DEC 81 geopotential model [Tapp (1931)) were
included in the covariance computations, and the other, where the
gravity , model to degree and order 180 was considered perfect. This
was done to test the sensitivity of the resulting gravimetric accuracies
to the uncertainties in the reference geopotential coefficients. It was
shown that the height anomaly accuracy is ineeed very sensitive to the
influence of refe,: ence coefficient uncertainties which follows quite
naturally since the height anomaly is a low frequency phenomenon and

!	 the coefficient uncertainties will contain these low frequencies. The
t

i gravity anomaly accuracy, on the other hand, did not improve as
dramatically when the coefficient errors were removed. The results of
this sensitivity study indicate that the accuracies of the gravimetric
quantities computed by the local collocation algorithm significantly
improve with better geopotential models. More accurate geopotential
models should be available in the future when the satellite gradiometer
scission is attempted.	 These models can be easily applied to the
algorithm to provf,de more accurate gravimetric reductions.

Further improvement may result with the inclusion of other
gradient components (notably, thoire with at least one radial derivative).
Krynski & Schwarz [ 1977) reported 15% to 20% accuracy improvement in

m the geoid undulation when the T,, and T„ components were included.
This could not be confirmed in this study due to software related
difficulties. A drawback caused by inclusion of the T„ and T„
components results in the increased dimension of C j j by a factor of
three, further exacerbating the CPU time required for the matrix
inversion.

The difficulties with large matrix inversion has been mentioned
several times in this report. Increasing the amount of data, either by

Fr
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increasing data densities or by including other gradient components, will
most certainly increase the CPU time as well as possibly degrading the
stability of the inversion. Although these two aspects were not studied
specifically, it is possible to suggest techniques to overcome these
difficulties. The technique of frequency domain collocation provides a
means for handling large amounts of data by redurzing the computational
demands incurred by the inversion process. The early study by Tait
[1883] examined this possibility for airborne gravity gradiometry with
rather promising result`. This concept could be extended to satellite
altitudes to test the validity of the technique. To stabilize the
inversion process a new technique described by Jekeli (1985] may be
very useful. The technique is known as Virtual Optimal Estimation
which provides a stable method to invert an ill conditioned (or "almost"
ill conditioned) symmetric definite matrix through iterative techniques.
With this method, error introduced by an unstable inversion process can
be avoided thereby strengthening the collocation solution.

The local collocation algorithm was devised as an alternative method
to compute surface mean anomalies based on data acquired by a satellite
gradiometer mission. The accuracy results and ens}zing discussion
illustrates the behavior pf the system with regard to data coverage,
data density, altitude, and reference coefficient uncertainties. All of
these factors pL.-#,r a crucial role in the accuracy of the computed mean
gravity or height anomalies. To bring the mean gravity anomaly
accuracies below the 5 mgal level using this algorithm, ft is
recommended that the mission altitude be kept as low as possible (e.g.
160 km), the data be gridded as densely as possible (e.g. (15') j the
gradiometer designed to be as sensitive as passible (e.g. (10-' li), and
that the gravity model to be used for the computations of the reference
gradients have the smallest coefficient uncertainties as possible. More
research is needed to further refine the algorithm and to fully test its
effectiveness by means of a simulation.

l
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APPENDIX A

Spherical Harmonic Expansions of the Reference Gradients

In section (III.2), it was shown that the "observed" gravity
gradients in the local level coordinate system need to be centered in
order to apply the least-squares collocation technique. The method to
center the observations involves computing reference gravity gradients
at points on the same geographical grid for which the observed
gradients are known. The centered observation is then the difference
of the observed gradient minus the reference gradient. In this
appendix are found the expressions for the reference gradients given in
terms of the reference geopotential model which are needed in equation
(III. ` ).	 Reed ( 19731 originally derived the spherical harmonic
expressions that are given here for ease of reference.

Using the local level coordinate system defined in Figure 3, the
expressions are:

	

N	 n
( 1 n

U„ (i, A, r) _ 
21 

[-1 + _ lrJ	 (C^cossA + SsiTMA) P(sini),
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N	 n

^; [ 2 +^ (2j n T ( Cn cos•il► + Sn sinmh) P(sini)^
n-a	 R=o

(A.3)

N	 n
M	 (rjn	 (CncosmA - 5nrsint^) PM(sini)

n=a	 M=O	 (A.4)

N	 n

LM
	 [r)

n
T	 (C^coszx - Snasinna) P11(sin4)

n= a 	M--o

(A.5)

N	 n
i^ Z: (A)"T 	 (Cn,coixA + SMsinah) P',^(sini)

n=a	 M=O

(A.6)

where the N denotes the maximum degree of the reference geopotentinl
model. The obeer ved gradients can be expressed by allowing N to
approach infinity and by substituting the unnormalized (conventional)
geopotential coefficients Cnm, Snm for the conventional reference
geopotential coefficients Cnm, %m. The superscripts attached to the
conventional associated Legendre functions denote the differentiations.
Reed [ 1973] aloo provides these differentiated functions in terms of
non-differentiated Legendre functions:

PAI(sini) = (msina
cos

2-aa
i
	^) (n+]Pnz(sini) - tani Pn,m+i (sini)l` 

Pa siz,4)	 1z2-
C09 2# 

_ (
n+i a P (sini) + tani P

(A.7)

(A.8)

P31(sini) = ( n+1)(n+2 ) Pnm(sin4)
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a,

PA„',(sini) _ - a m--1 sinia
Cos a#	 P..(sin#) + cogi Pn,m+,(siM)

P,'„'A(sini) _ - mcos2 Pn,,(siM)

Pn,'„(sin♦) = m(n+z)tan♦ Pnm (sin♦) - (n+z) Pn,m+,(sin♦)

(A.10)

(A. 11)

(A.12)

The, Pnm (sini) and Pnpm+, (sin4) terms can be found from familiar
recursion formulas such as (Ilk [19831);

(n-n)Pna(t) = ( an-,,)tpn_ ,,a(t) - (n+m-i)Pn-. ,MM
	

(A.13)
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APPENDIX B

Gradient Covariance Expressions

In this appendix, the explicit covariance expressions are given for
reference. The expressions are nothing more than applications of the
covariance propagation law (Moritz, [1980])

Ci ij(P,Q) = LPLjK(P,Q) 	 (B.1)

from which all gravimetric covariences can be related to the disturbing
potential covariance K(P,Q) by the functional L i and L j applied at the
point P and Q. The covariance function of the disturbing potential is
only a function of the reljtJve location of the points P and Q. On the
sphere, this can be written. its (Moritz, ( 19801)

t
K(P,Q) = K ( rp, ro, 1ipq ) = K	 (B.2)

where rp and rq are the geocentric radial distances of the points P and
Q and #pq is the spherical distance of P and Q given in terms of their
respective co-latitude and longitude as (e = e/2 - (r),

cos#pq = cosepcoseq + sin8psin0gcos(aq-Xp) 	 (B.3)
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Thus the covariance of the disturbing potential is isotropic and
stationary.

Using the functional@ given in equations (III.15) to (III . 18), the
covariances are determined and pre&cated for reference below. Those

'	 functionals with a prime attached denote that the functional is to be
applied at the point Q. Unprimed quantities refer to P.

I. Autocovariances of the observation covariance matrix, Ctt

1	 82	 tan# I	 • 1
Cov [ T 1I.( P ). T 11 (4)1 - [r 2co8 24 W	 r' •i + X s r J

(	 1	 •'K _ tan#' •K	 sK 1 =
r''cos'#' •A''	 r'' •i' r er' J

1	 04K 	 _	 tan#' _ •3K1	 63K

r2r''co@'icoe'i' •A'&A'' 	r 2 r' 2cos 2t •A'si' + r'r ' cos 2# s'Asr'

tan♦ 	 0 3K	 tan#tan#' • 'K	 tan# •'K
r2r'' COS 'i' s# a A'' 2 +	 r^r''	 ##	 - r'r' Oor'

1	 a'K	 _ tan#' e2%1 	 °'K	 (B4)+ rr''cos '#' er*A'' 	rr'' ar e#' + rr' •ror'	 .	 ,.

( 1 #24121 OR•	 1
Cov [T22(P),Tz2(0)1 = lr' 0#2 +r or r' z S#' K + r' ird

_	 1	 8+g1	 8 3K	 1	 03K	 s2K

	

rsr.s ;-420V
2+ 

r 'r' ^i^or' + rr' s or## + rr' eror .	 (B.5)

4
Cov [ T33 (P), T33 (0)] = orzs^ • z (B.6)
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1	 •a	 Ian • (	 1	 02K	 tan#' •K
Cov[T^a (P),T „(0)) -

[;:rc-os# •A ei + r• •A] r' acosi' #A W + r' a &A'^

84K 	 tan#'	 •aK
r a r' acosicosi' •Aei•A'•i' + 7r# 84 # 	 •A@#Sh.

	tan#	 03R	 tan#tan#' 82K
+ r r'2cosi' -00,84, + rr2r a •A•A .	 (B.7)
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840W O r .+ rar . , 8484'

II. Cross covariances of the observation covariance matrix, Ctt•

84K 	 i	 83K
rov[Tii(P),Taa(Q)l = r 2 r' 2c09 2i eA28i' 2 + r2r'cos24 #A2 or'

tans	 eaK _ taM • 2K1 83K	 02K
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(B.11)
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+ tan#' •'K
rr'' oroA' (B.12)
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Cov [ Tsa(P ), Taa(Q)] = ! oisor•z + r a r#3Ka 	 (B.15)
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B. Height anomaly C ( Z N the geoid height).
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III. Cross covariance matrix, Cst

a. Gravity anomalies, Ag.
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IV.	 The auto covariances of the predicted signals, Cgs.

From Moritz (1980), page 108,

' 0ov(68(P),dg(Q)1 =@2K. + ' AK + '- OK. + ^. K (B.37)
•rar 	 r	 Or 	 r •r	 rr

and for the height anomaly,

Cov(C (p) ,C(Q)] = 1. K•
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REAO45,991D.DELO9L
FORMAT(2F10.7.L2)
WRITE16.9B)D.0ELD*L
FORMAT(//1X.2F10.7,3X,L2)
DOEG=0
DDEL-DEL&
NPn IONINTI0/OELO M
NPS=NP •NP
NPXI=(NPS*I)/2

i
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Appendix ". Listing of program GIFRAO
C
C
C PROGRAM GIFRAOt A PROGRAM WHICH COMPUTES THE EXPECTED ERROR
C	 IN A MEAN GRAVITY OR HEIGHT ANOMALY BASED
C	 MW RADIAL/RADIAL GRAOIOMETERY MEASUREMENTS
C	 EVER A GRID GF FIXED SIZE.
C
C	 WRITTEN 6Yt JOHN M. ROBIIINS
C	 DATEt FEBRUARY 1 • 1985
C	 VERS1 FEBRUARY Ile 19ES
C	 RUN t FEaRLARY 20, 19CS
C
C	 DEPARTMENT OF GECOETIC SCIENCE ANO SURVEYING
C	 OHIO STATE UNIVERSITY.
C
C

IMPLICIT REAL 081A—H.O-2). LOGICAL IL)
COMMON /INTERP/COV(3.519)
DIMENSION CXXI22S.225)90I51(2259225).CSX(2.225)
DIMENSION OSX1225)*SCR(225loCSX1119225)PCSX241t1-251
OIMENSICN CCI(22S,11.CC2(225.1)•ANSII).ANT(l)
OIMENSICN CXX 11225.225 )

C	 DATA CSSI *CSS2/0.1141353830O.224.7384996DO/
DATA tSSI*CSS2/1.161360093.O2126B402/
DATA CLAT/40.00/

C
C	 READ IN THE COVARIANCE S.
C
C	 FIRST, THE CXX t CSX REQUIRED COVARIANCES ARE READ.
C

REAO(S.•)ICOV(Io1).COVI2@11&MV(3r1)olalvS191
C
C
C	 ENO OF CXX ` CSX RECUIREO COVARIANCE S,
C
C
C
C	 WRITE THE HEADING FOR THE OUTPUT TABLE.
C
C

WRITE(6.106)
106

	

	 FORMAT (2X. • GR I C • ,6X # •GR lO'.4X * 'MEAN GRAVI TY'.2X * 'MEAN HG' ,',3X.
$ 9 INVERS. 9 .6X. 9 CSX*CXXI6CXS VALUESOW
•2X o ^ NIOTH'.3X. • SPAC ING'.SX & & ANOMALY' o 6X * • ANOMALY' io4X P ' S 1 A81L.' p/'
•2X@'IDEGI O PDXm • f DEW v6Xe'(MGAL)'r7Xv' (HE TENS) 0*12X#9(METER5602)'I
•6X99("GAL**21*v/1)

READ IN THE OVERALL SIZE OF THE GRID AND WHETHER OR MOT IT
IS THE LAST GRID SIZE TO BE CONSIDERED (LOGICAL VARIABLEt L).
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NPX2-NPX1*1
C

e C INITIALIZE ALL ARRAYS 10 ZERO 10 AVOID CARRY-OVER FRUM
C PREVIOUS COMPUTATIONS.
C

" ANS111-0.00
ANT11)&0.00
00 12 1-I .225
00 12 r!-1 •225
01STII oil 00.00
CXX!(I.J)-0.00

12 CM 16080000
00 14	 1 R I r2
00 14 J-1.225

14 CSX(I.J)=0.00
00 13 1.1.225
CSXl1l.1)-0000
CSX241911.0.00
CCI1 lei )-0.00	 a
CC2(1.1)•0.00

13 DSX(11.0.00
c

s C COMPUTE THE MATRIX OF SPHESICAL DISTANCES FOR THE GRID
c SPECIFIED FOR THE OVERALL GRID SIZE (0) AT THE LAlf!"DE
C ICLAT). THE SUEROUTINE ONLY WORKS WITH RECTANG ALAR GR105.

r C RADIALLY SYMMETRIC CR,IOS FUST SE DEALT WITH DIFFERENTLY.
C

CALL SOIS(CLAT.OvNP,NPS.OIST)
C
C SET-UP THE COVARIANCE MATRIX 9 CXX.
C

DO 11	 Is1.NPS
DO 11 J-IvNPS

1: CXX(IgJ)-COVINI(OIST(1vjl#l)
00 23 )-19NPS
00 23 J-I.NPS

23 CXX(Jr1)=CXX(IPJ)
r
C AOOITION OF INSTRUMENT NOISE TO 01AGO14AL ELEMENTS. 	 ;4

THE VALUE 1.0-6 IS THE SQUARE OF THE	 INSTRUMENT SENSITIVITY
C OF 1.0-3 EOTVOS UNITS.
C
C ONF MUST REPLACE THIS VALUE FOR OTHER SENSITIVITIES.iA

C
00 24 I-1 vNPS

24 CXX(I,I)-CXXII.II41.0-6
C

' c SET—UP OF CSX RELATED C' STANCES.
C

00 21 1-1.NPX1
21 OSXII)-GIST(I,NPX1)

00 22 1-0iPX2.NPS
22 OSXII)-0IST(NPX1 vI)
C
C
C
C

SET—UP THE CSX•MATRIX.

00 31 J-I.NPS
CSX(1.J)-COVINT(OSXIJ)r2)	

k.

r	 ,
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31 CSXI2PJ)=COVIN11 USX IJ)@31
00 33 J•I&NPS
CSXIIIPJ)oCSXIIPJ)

33 CSX2(I.J)wCSX12.J1
C
C MAKE COMFUTATICNS FOR THE EXPECTED ERRORS RESULTING FROM
C THE GIVEN PARAMETERS.
C
C
C T'HE SUBROUTINES LINVIF&VMLLFP & VMULFF ARE PROVIDED BT
C IESSL SUBROUTINE LIBRARY.
C
C LINVIFS MATRIX INVERSION
C VMULFP& VMULFF: MATRIX ALGEBRAIC OPERATIONS.
C

CALL LINVIF(CXX&NPS,225&CXXIP5,PSCR&IER)
CALL VMULFP(CXXI&CSXI&NPS&NPS&IP22SP1&CCl&225P1ERI)
CALL VMULFP(CXXI.CSX29NPSPNPS&IP225P1&CC2P225&IER2)
CALL V14ULFFICSXI,CCI&1&NPS&I&1&2259ANS&1PIER31
CALL VMULFF(CSX2 9CC2 9 l,NPS.1.1,22'5.ANI.I,IER4) }
EMAnCSSI-ANS(I)
EGA•CSS2-ANT(I)
FGAmOSORT/EGA)
FHA nDSGRT/EHA )
CI
C WRITE RESULTS.
C

MR I TE (6.106) DOEG PDOEL P FGA &FHA P IER ,AN S I I) P AN T ( I )
108 FORMATIFB.593XPF7.5931,FIO.593XPF9.5P4X&14&3XPD14.793X,D14.71

IF(.NOT.L)GO TC 3
STOP
ENO
SUBROUTINE SDIS(CLAT&0&NP&NPS901S1)

C
C

C
C SUBROUTINE NOTES:	 VARIABLE LIST*

p

C
C 1. INPUT VARIABLES IN THE CALL STATEMENT? u.
C

C CLAY	 t	 THE LATITUDE CF THE CENTRAL POINT OF THE GR1C.
C
C 0	 t	 THE OVERALL SIZE OF TINE GRID.
C
C NP	 THE NUMlER OF INCREMENTS ALONG A GRID SIDE*
C
C NPS	 t	 THE TOTAL NUMBER OF POINTS WITHIN THE GRID.
C
C 29 OUTPUT VARIABLE RETURNED 10 MAIN PROGRAMS
C
C 01ST	 s	 THE ARRAY OF SPP •ERICAL DISTANCES IN RADIANS,
C IT IS UPPER- T-0 ,.ANGULAR FORM.
C
C 3. VARIABLES USED WITHIN THE SUBROUTINES
C
C NPMI	 t	 NP - I
C
C ONP	 t	 1. /NPMl - I ./ (NP —I) P THI S GIVES THE RELATIVE
C GRID SPACING VALUE.
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I•.

C

C	 NP2	 = NPONPM1*1 a NPA*2 - NP • I
C

C	 NPMA t NIPS - is TOTAL N0. OF POINTS MINUS Is
C
C^hMt^•^l•^^^^^^^^^^a^+tab••bf^^i^^• ♦^^^••tA^^^+^•r^^b^^^b^^ ^4+^
C
C

IMPLICIT REAL *81A-Hs0 -11
DIMENSION DIST12259225)sPLAT1225)sPLON(225)
SOIMoXoV*2)uDACOS(DSINIM)6DSINIY)4000SIN)ODCO'SITIODCO511—X)1
PI s4oDC LATAN(I.001
0=00PI1180900
SLA T uCLATOP I/ 180 s00
NPMIWNP-1
ONP•I*DO/NPM1
NP2 nNP*NFMl*l
MPMA=NPS-1

C
C ESTABLISH LATITUDES AMC LCNGITUDES FOR EACH OF THE POIN1Ss
C 1

00 S JwI9NP2sNP
JA*J-1
DJNP=FLOAT l JA) /FLOA'J IMP )
00 S IsIsNP

5 PLAT(I*JA)•BLAI*012*DO—OJNP*DNPOD
00 6 I•IsNP
IA•I—I
DO 6 J n IoNP2sNP
JAUJ-1

6 PLONII+JA)wFLOA.T(IA)#DNP*O
tl

C
C COMPUTE THE SPHERICAL DISTANCESs
C

DO 11 I*1.NPMA
IlIIt^l
DO It J = II sNPS

11 DIST1I9J) nSD(PLAT(IIsPLON111sPLATIJ)sPLONIJ))
00 12 1=1sNPS

12 OIST(1sll nO.DO k

RETURN kj,
ENO
FUNCTION COVIN110sI0)

C
L FUNCTION COVINI: INTERPOLATES THE COVARIANCES REQUIRED lb
C THE SOLUTION. THE COVARIANCE TAKES ARE PREVIOUSLY
C COMPUTED FROM THE •TORSION BALANCE VERSION• OF COVAX
C BY CsC. TSCNERNING AND TABULATED FOR READING INTO THIS
C PROGRAM• THE FUNCTION HA r' AS INPU'; THE SPHERICAL DISTANCE
C 000 AND THE COVARIANCE Tall s l0 s o IN THIS VERSION s10s
C HAS THE F OLLCNING MEANINGSt
C
C 10=I t RAOIAL/RADIAL GRADIENT AUTO-COVARIANCES
C IO=2 s GRADIENT/HEIGHT ANOMALY CROSS—COVARIANCES
C ID•3 t GRADIENT/GRAVITY ANOMALY CROSS—COVARIANCES
C
C THE OUTPUT IS 9COVINT s WHICH RETURNS TO THE MAIN PROGRAM.
C

IMPLICIT REAL •8(A-1190-1)
COMMON IINTERPICOV1395191
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00*0.00
OM•IeD-6
IF 110 * EQ *0)60 TO is
DA•OA8S(0)
IF (DA.LT.011)GC TO 16
IF IJO.LT.0) GO TO 20
MK =0
GO TO 21

10	 MK=I
10-100(-1)

21	 ONIR=2008820870-4
OR-0/OMIR
X=D I• NT I OR )
FRAC=OR-X
1X=IDINT/OR)

C
C	 IN THE NEXT STITEMENT. THE VALUE '519 0 CORRESPONDS TO THE
C	 MAXIMUM SPHERICAL DISTANCE IIN THIS CASE. 805 DEGREES).
C

IF IIX.Glo5l9) GO TO 17
IXISIX43
IX2=1X+2
COVINT-CCV11D,IXl)#FRACO(CCVI1DoIX2)—COV110,IX1)1
IF (NK.E091)COVINT•—COVINT
GO TO 16

15	 COVINT nO„00
16	 RETURN
18	 COVINT nCCV(1001)

RETURN
17	 MRITE169981
98	 FORMAT I///1X9 0 THE SPHERICAL DISTANCE IS TOO LARGE91

STOP
ENO
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