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FOREWORD

The Numerical Techniques in Acoustics Forum of the Noise Control and
Acoustics Technical Division of the American Society of Mechanical Engineers
provides an opportunity for presenting, at the earliest possible time, current
work in the various aspects of numerical techniques in acoustics. The informal
nature of the forum encourages the presentation of results that are not yet
complete enough for formal presentation and the discussion of these results
while work is still current. When the results of the investigations presented
at this forum are confirmed by analysis or experiment, the ASME encourages the
authors to document their research as formal papers for possible publication
in the transactions of the society.

As part of this forum, it is intended to allow the participants time to
raise questions on unresolved probiem areas and to generate discussions on
possible approaches and methods of solution.

The papers in this proceedings are arranged according to the planned

order of presentation at the 1985 ASME Winter Annual Meeting in Miami Beach,
Florida.

Dr. Kenneth J. Baumeister
NASA Lewis Research Center
Cleveland, Ohio 44135
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APPLICATION OF HIGH ORDER ACOUSTIC FINITE ELEMENTS TO
TRANSMISSION LOSSES AND ENCLOSURE PROBLEMS

A. Craggs and G. Stevenson
University of Alberta
Edmonton, Alberta, Canada T6G 2G8

A family of acoustic finite elements has been developed based on C°
continuity (acoustic pressure being the nodal variable) and the no—flow condition.
The family includes triangular, quadrilateral and hexahedral isoparametric
elements with linear, quadratic and cubic variation in modelling and distortion.
Of greatest use in problems with irregular boundaries are the cubic
isoparametric elements: the 32 node hexahedral element for three—dimensional
systems; and the twelve node quadrilateral and ten node triangular elements for
two—dimensional/axisymmetric applications. These elements have been applied
to problems involving cavity resonances, transmission loss in silencers and the
study of end effects. using a Floating Point Systems 164 attached array processor
accessed through an Amdah! 5860 mainframe.

Accuracy of the cubic elements is quite good, requiring only two elements per
standing wavelength in a rectangular room cavity resonance problem to produce
eigenvalues with less than 0.5% error.

The elements are presently being used to study the end effects associated with
duct terminations within finite enclosures. The model utilized in this study is
essentially a helmholtz resonator which consists of two cavities connected by a
duct, the overall enclosure being symmetric about the midpoint of the duct. By
solving for the lowest non—zero eigenpair, the acoustic pressure contours can be
plotted (see figure 1 for example) and the equivalent attached mass calculated.
Through variations in the geometry of the duct termination and the location of
the cavity walls, design criteria are being developed.

- The transmission losses associated with various silencers and sidebranches in
ducts is also being studied using the same elements. The inlet and outlet ducts
are modelled as having infinite lengths and the inlet and outlet waves are forced
to be plane. Both the transmission loss spectrum for a particular frequency
range and the pressure profile for a specific frequency can be generated. As a test
of both the program and the elements, a comparison was done with experimental
data gathered by Blaser and Chung (1) for an expansion chamber silencer. The
mode! of the silencer was based on the use of two quadrilateral cubic elements
per wavelength over the frequencies of interest, and the resulting transmission
loss spectrum is very close to the experimental (see figure 2).

(1) D.A. Blaser and J.Y. Chung 1978 Proceedings - Internstionsl Conference
on Noise Control Engineering: Inter-Noise ‘78 A transfer function
technique for determining the acoustic characteristics of duct systems
with flow.
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ON THE COMPUTATION OF STRUCTURAL VIBRATIONS
INDUCED BY A LOW-SPEED TURBULENT FLOW

Y.F. Hwang
David Taylor Naval Ship R&D Center
Bethesda, Maryland 20084

This paper discusses a method for numerical evaluation of the vibrations
of a cylindrical shell structure induced by a low-speed external turbulent flow.
The direction of flow 1s along the axis of revolution of the shell (see Figure 1),
and the source of excitation is the pressure fluctuations in the turbulent bound-
ary layer (TBL).

For the investigation of vibration and noise problems it is usually more
desirable to utilize the modal expansion approach. The axisymmetric shell struc-
ture shown in Figure 1 can be modeled by the assemblage of conical-shell finite-
elements. This modeling allows the eigenfunction VYmn(X%,0) to be represented
in a rectangular product of a longitudinal modal function fan(x) and a circular
harmonic function cos mé (or sin mf), i.e.,

VUmn (x,0) = fan(x) cos mo (1)
m=0’ 1’ 2’ o * *
n=1, 2, 3, . ..

The forcing function from the TBL is assumed to be spatially homogeneous
and temporally stationary. It is commonly expressed in terms of the wavevector-
frequency spectrum ¢p(k1,k3,m) where k_ is the streamwise wavenumber and k,
1s the transverse wavenumber. For the calculation of the structural acceptance
with this forcing function, the structural modes must also be expressed in wave-
number space. This can be accomplished by taking a spatial Fourier transform
of the modes. The finite-element modeling provides the computed eigenfunction
defined at a set of discrete points. If the grid points on the flow surface are
equally spaced, a Fast Fourier Transform (FFT) routine may be used. From the
FFT spectral coefficients, we may express

u 2vw 2vm
fn(x) = a5 + } [a, cos — x + by sin — x] (2)
v=1 L L

where U is one less than one half of the total number of FFT data points and L
is the axial length of the structure.

The effective modal input spectral density Tmm(w) from the TBL can be
evaluated as follows,

Ton (@) = AZ ¢(w) J%n,mn(“) (3)
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where A is the total area of the flow surface, JZ,,mn(w) is the modal joint-
acceptance (or called self-acceptance), which provides a measure of the degree of
coupling between the turbulent pressure field and the structure, and ¢(w) is

the frequency spectrum of the TBL pressure fluctuations. The joint—acceptance
can be computed by the following summation, i.e.,

J%n,mn(w) = [(21)3/A¢(w)]

m 1 U 2vi  m
X [a% QP(O,E3m) + E-vzl (a%+b%) Qp(—z— ,-E ,w)]

(4)

where R is the radius of the cylindrical shell.

Often it is required to evaluate the summation up to the convection wavenumber.
This requires that the number of FFT data points to be approximately wL/7U.,
where U, is the convection velocity of the TBL. If the length L of the structure
is large and the frequencies of interest are high, the required data points will
generally exceed the number of finite—element grid points. This difficulty can
be overcome by obtaining additional data points from spline fitting and interpola-
tion of the eigenfunctions.

If the size of structure is larger than the correlation length of the pressure
field, the cross—modal acceptance J2. m'n'(w), can be neglected. In this case,
the structural displacement response spectrum [s(w)] evaluated at 6 = 8, can be
calculated as follows:

[sC)] = [][Hp ()] [rp @) ) [Hpn (@) ] [¥]F (5)

where [y] is the assembly of eigenvectors, each column represents one elgen—
vector {fpn(x4) cos mby}. Hpy(w) is the modal admittance function which is
defined as

Hpp(0) = {Mp[(0Bp-w?) + 1(ofn N9 ‘Smn)]}-1 (6)

and where My, is the mode mass, np, is the structural modal loss factor, and
8pn is the modal acoustic loss factor.

The most difficult task in the numerical evaluation of flow induced vibration
is the uncertainty about the forcing functions, i.e., the wavevector—frequency
spectrum. Several theoretical forcing function models have been published in
recent years, all of them require an empirical fit with experimental data. Pub-
lished experimental data are very widely scattered depending on the measuring
facility, surface property, the method of scaling the data, etc. Selection of a
suitable forcing function model and the experimental data thus depend heavily on
experienced engineering judgement and knowledge of how the experimental data are
obtained.
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IMPROVING THE ACCURACY OF THE BOUNDARY INTEGRAL METHOD
BASED ON THE HELMHOLTZ INTEGRAL

G.H. Koopmann and K. Brod
University of Houston - University Park
Houston, Texas 77004

Several recent papers in the literature have been based on various forms
of the Helmhoitz integral to compute the radiation fields of vibraing
bodies. The surface integral has the form

L N S _ 3G
P(R )= 2ng [iwpG(R,R,) V(R,) a_n(R'R°)P(R° )] dS,

where the symbols P.Rq.W,p,6, R, V,and Sg 8re acoustic pressure, source

coordinate, angular frequency, fluid density, Green function, field
coordinate, surface velocity and body surface respectively. A discretized
form of the surface integral is

2-D..
LI B Y B L, P V)
1 Y113

where D and M are the dipole and monopole coefficients and i and j are the
field and source coordinates. Solutions to the above surface integral are
complicated with the singularity of the Green function at R=R, and with

the uniqueness problem at interior eigen frequencies of the enclosed
space. The use of the interior integral circumvents the the singularity
problem since the field points are chosen in the interior space of the
vibrating body where a zero pressure condition exists. The interior
integral has the form

8%(!2,&20)9(!20) dSq =g 1WPG(R,R) V(Rq)dS,

The discretized version of the integral relates the surface pressure to the
surface velocity through a transfer function, T]-j as



P -
j Tiy 11

In the above form, the field points are located in the interior space
enclosed by the surface of the body. In general, we have found that T; j is

not invariant with choice of interior points, i.e., different sets of interior
field points produce different sets of surface pressures. (It can be shown
that the same problem exists for the surface integral applications). Ti j

can be made invariant (or nearly so) by placing a stronger condition on the
pressure field in the interior space. With a finite set of of interior points,
the requirement that the zero pressure condition exists everywhere in the
interior volume is not met. To satisfy this requirement, the interior
equation can first be integrated over an incremental interior volume AV

as
S [ g {%(R.RO)P(RO ) - 1WPG(R.R ) V(Ry) }dSg) dV
/_\Vk

which, after the volume integral integration gives

8 (28K Rg) P(Ry)~ 190Gy (Ry) V(Rg) }dSg

Breaking up the interior space into the same number of elemental volumes
as surface elememts produces a discretized form of the interior equation
as

Tk j vj

Nt s
]

An added advantage of satisfying the field pressure condition in the
interior volume is that the uniqueness problem associated with the
interior eigen modes is eliminated since the interior pressure is
necessarily zero at all frequencies. Examples of the above method will be
presented for a variety of radiators.



A NUMERICAL METHOD OF CALCULATING PROPELLER NOISE
INCLUDING ACOUSTIC NONLINEAR EFFECTS*

K.D. Korkan**
Texas A&M University
College Station, Texas 77843

Using the transonic flow fields(s) generated by the NASPROP-E
computer code! for an eight blade SR3-series propeller, a theoretical
method is investigated to calculate the total noise values and frequency
content in the acoustic near and far field without using the Ffowcs
Williams - Hawkings equation?. The flow field is numerically generated
using an implicit three-dimensional Euler equation solver in weak
conservation law form. Numerical damping 1is required by the
differencing method for stability in three dimensions, and the influence
of the damping on the calculated acoustic values is investigated. Since
the propeller flow field includes the wave systems near the propeller
blade surface, the quadrupole noise source term is accounted for as are
the monopole and dipole noise sources. The acoustic near field is
solved by integrating with respect to time the pressure oscillations
induced at a stationary observer location. The frequency spectrum at
the specified observer location is calculated by representing the
pressure time-history by a Fourier series and calculating the noise
levels for an appropriate number of harmonics of the fundamental
frequency®,*. Comparisons between the theoretical model and the
experimental results of Dittmar, et.al® have been made for the SR-3
propfan, and found to be within 4% for the acoustic near field in the
propeller disc plane®’ The acoustic far field is calculated from the
near field primitive variables as generated by NASPROP-E computer code
using a method involving a perturbation velocity potential as suggested
by Hawkings’ in the calculation of the acoustic pressure time-history
at a specified far field observed location. The methodologies described
are valid for calculating total noise levels and are applicable to any
propeller geometry for which a flow field solution is available.

References

1. Bober, L.J., Chausee, D.S. and Kutler, P., "Prediction of High Speed
Propeller Flow Fields Using a Three-Dimensional Euler Analysis," NASA TM
83065, January 1983.

2. Ffowes Williams, J.E., and Hawkings, D.L., "Sound Generated by
Turbulence and Surfaces in Arbitrary Motion," Philosophical Transactions
of the Royal Society of London, Vol. A264, 1969,

*This work is supported by NASA Lewis Research Center Grant NAG 3-354.
**Associate Professor, Aerospace Engineering Department.
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3. Korkan, K.D., von Lavante, E. and White, T.A., "An Alternative Method
of Calculating Propeller Noise Generated at Transonic Tip Speeds,
Including Non-Linear Effects," AIAA Paper 85-0002, January 1985.

4, white, T.A., "Numerical Evaluation of Propeller Noise, Including Non-
Linear Effects," Master of Science Thesis, Aerospace Engineering
Department, Texas A&M University, May 1985.

5. Dittmar, J.H. and Jeracki, R.J., "Additional Noise Data on the SR-3
Propeller," NASA TM 81736, May 1981.

6. Korkan, K.D., von Lavante, E., and Bober, L.J., "Numerical Evaluation
of Propeller Noise Including Non-Linear Effects," AIAA Paper 84-2301,
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7. Hawkings, D.L., "Noise Generation by Transonic Open Rotors," Research
Paper No. 599, Westland Helicopters Limited, June 1979.
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A GENERAL-APPLICATIONS DIRECT GLOBAL MATRIX ALGORITHM FOR RAPID
SEISMO-ACOUSTIC WAVEFIELD COMPUTATIONS

Henrik Schmidt
SACLANT R&D Center
La Spezia, Italy

Gerard J. Tango and Michael F. Werby
National Space Technology Laboratories
NSTL Station, Mississippi 39529-5004

The purpose of this paper is to explain and illustrate a new matrix method for rapid wave propagation
modeling in generalized stratified media, which has recently been applied to numerical simulations in
diverse areas of underwater acoustics, solid earth seismology, and nondestructive ultrasonic scattering.

This report summarizes a portion of recent efforts jointly undertaken at NATO SACLANT and NORDA
Numerical Modeling groups in developing, implementing, and testing a new fast general-applications wave
propagation algorithm, SAFARI, formulated at SACLANT by Schmidt (1982). Historically, most algorithms
for computing acoustic transmission loss, synthetic seismic time series, and ultrasonic beam scattering
have been separate applications-specific programs, using a (local) Thomson-Haskell propagator matrix to
recursively propagate the complete wavefield solution across all layers. In contrast, the present general-
applications SAFARI program uses a Direct Global Matrix Approach to multilayer Green’s function
calculation. A rapid and unconditionally stable solution is readily obtained via simple Gaussian elimina-
tion on the resulting sparsely banded block system, precisely analogous to that arising in the Finite Ele-
ment Method. The resulting gains in accuracy and computational speed allow consideration of much
larger multilayered air/ocean/earth/engineering material media models, for many more source-receiver
configurations than previously possible. The general multisource capability allows choice of number and
location of point or line sources, for monofrequency transfer function, field contour or beam analysis,
and broadband pulse modeling, in plane or cylindrical geometries, for a general n-layered system. The
only effective limit is computer virtual memory, which on a VAX 11/780 + FPS 164, allows as many
as 250 layers/100 receivers/50 sources/2000 Hz bandwidth.

We demonstrate the validity and versatility of the SAFARI-DGM method by reviewing three practical
examples of engineering interest, drawn from ocean acoustics, engineering seismology and ultrasonic scat-
tering. Extension of these results to further infrasonic and atmospheric noise modeling (as well as nondestruc-
tive evaluation) is immediate.

References

Pekeris, C. L., 1948. ““Theory of Propagation of Explosive Sound in Shallow Water.”* Geol, Soc. Am.
Memoirs, no. 27.

Schmidt, H., 1982. ‘“Excitation and Propagation of Marine Seismic Interface Waves (using a new Fast
Field Program),”” in: N. G. Pace (ed.), Acoustics and the Seabed, Institute of Acoustics Proceedings.
Bath UK: University Press.

11



SAFARI NUMERICAL MODEL

KNOWN: UNKNOWN:
SOURCE REFLECTED AND
CONTRIBUTION(S) TRANSMITTED FIELD

W~
W A
SOURCE | ////(\ ‘PREC?{Q/\(E’R i

SOURCE |+

SOLUTION TECHNIQUE

1) SOURCE CONTRIBUTION DECOMPOSED INTO UP AND DOWNGOING PLANE WAVES IN EACH
LOCAL LAYER

2) CORRESPONDING PLANE-WAVE COMPONENTS OF UNKNOWN FIELD FOUND BY MATCHING
BOUNDARY CONDITIONS IN ALL LAYERS ACROSS ALL INTERFACES

3) TOTAL GLOBAL FIELD AT ALL DEPTHS IS CALCULATED VIA SUPERPQSITION OF ALL LOCAL

LAYER WAVEFIELDS
(* DEFINING DEPTH-DEPENDENT GREEN'S FUNCTION®)

4) TOTAL FIELD AT ALL RANGES IS CALCULATED BY NUMERICAL INTEGRATION OF NEPTH
DEPENDENT GREEN'S FUNCTION OVER HORIZONTAL WAVENUMBER K,
{* DEFIING FREQUENCY-DOMAIN TRANSFER FUNCTION ")

5) SYNTHETIC TIME SERIES FOUND BY NUMERICAL INTEGRATION OVER EACH FREQUENCY w

VIA INVERSE FOURIER TRANSFORM
(* DEFINING SYNTHETIC SEISMIC TIME SERIES )

Figure 1.
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Figure 2. Depth-range contoured transmission loss fields (f = 10 Hz), for horizontal particle velocity (a), vertical particle
velocity (b), and normal stress (pressure) (c). Range = 0—25 km; depth = 0—5000 m.
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Figure 3. Multifrequency seismic pulse calculations: (a) High-frequency normal acoustic mode (f = 0, 450 Hz; after Pekeris,
1948) at 2 offset ranges, showing direct water and subsequent mode arrivals. (b) Very-low-frequency seismic interface
(Scholte) wave (f = 0, 12 Hz) for shallow water waveguide over basalt, showing strong Sfrequency dispersion over 4 offset
ranges between 2 and 8 km ranges (after Schmidt, 1982).
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Figure 4b. Very-high-frequency beam reflection and transmission at a water/sand-silt bottom interface (from Schmidt and
Jensen, 1984).
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NUMERICAL TECHNIQUES FOR SCATTERING FROM SUBMERGED OBJECTS

Michael F. Werby and Gerald J. Tango
National Space Technology Laboratories
NSTL Station, Mississippi 39529-5004

G.C. Gaunaurd
Naval Surface Weapons Center
Silver Spring, Maryland 20910

Scattering from submerged objects consisting of separable boundaries, such as spheres and infinite
cylinders, is amenable to closed-form solution by normal mode theory. Results from extensive investiga-
tions of these objects has been extremely fruitful in understanding resonance phenomena, background
contributions in the absence of resonances, and geometrical effects that give rise to diffraction phenomena.
However, when one wishes to examine arbitrary shapes, it is necessary to resort either to approximate
theories (valid under limiting assumptions) or numerical methods that adequately treat the problem in
question. It has, in fact, proven very difficult to describe scattering from general objects without resorting
to frequency-limiting approximations. In this Forum, we describe a numerical procedure, namely, the
““extended boundary condition’’ (EBC) method, together with its applications for treating a variety of
problems. The method was established by Waterman! for electromagnetic scattering in 1965, and was
extended to acoustical scattering by him in 19692. It is sometimes referred to as the ‘‘nullfield’’ method
in electromagnetism, the “‘field equivalent principle,”’ or more generally as the T-matrix method. This
last nomenclature is unfortunate, since any of a variety of methods can lead to a transition matrix relating
the scattered to the incident field, while the EBC or null-field terminology more properly reflects the
fact that one is employing a boundary integral technique.

Some of the salutary features of this approach are that (1) the method yields unique solutions
to the exterior problem; (2) the transition matrix is independent of the incident field; (3) the method
is not frequency-limiting, though it is more efficient for intermediate frequencies; (4) the method can
work for a large variety of shapes.

To represent the final results in terms of matrices, one expands all appropriate physical quantities
in terms of partial wave basis states. This includes expansions for the incident and scattered fields and
the surface quantities (i.e., surface displacement, surface traction, etc.). The method then utilizes the Huygen-
Poincaré integral representation for both the exterior and interior solutions, leading to the required matrix
equations. One thus deals with matrix equations, the complexity of which depends on the nature of the
problem. We show, however, that in general a transition matrix T can be obtained relating the incident
field A with the scattered field f having the form T = PQ-!, where f = TA. The structure of 0
can be quite complicated and can itself be composed of other matrix inversions such as arise from layered
objects. We focus on recent improvements in this method appropriate for a variety of physical problems,
and on their implementation. We outline results from scattering simulations for very elongated submerged
objects and resonance scattering from elastic solids and shells. Significant structural improvements such
as the coupled higher-order method3, and the unitary method?, which lead to more tractable forms of
the transition matrix enabling one to avoid matrix inversions and other numerical problems. The final
improvement concerns eigenfunction expansions of surface terms, arising from solution of the interior
problem, obtained via a preconditioning technique. This effectively reduces the problem to that of obtain-
ing eigenvalues of a Hermitian operator.

17



This formalism is reviewed for scattering from targets that are rigid, sound-soft, acoustic, elastic
solids, elastic shells, and elastic layered objects. We present two sets of the more interesting results. The
first concerns scattering from elongated objects, and the second to thin elastic spheroids.

Figure 1 illustrates scattering from a spheroid with aspect ratio 30 for a KL/2 value of 30. Here
K is the incident wavenumber and L the object length. We show the case of scattering along the axis
of symmetry and 30° and 60° relative to the axis of symmetry and broadside. Elongation effects at 30°
and 60° are particularly noticeable where the reflected wave occurs at the same angle as the incident
wave relative to the symmetry axis, similar to the plane scattering case. At 0° and 90° the flux is allowed
to proceed mainly in the forward direction, with broadside scattering creating the greatest disturbance.

Figure 2a shows resonance phenomena from backscattering from a very thin aluminum spheroid,
plotted against KL/2. Scattering here occurs along the axis of symmetry for a spheroid of aspect ratio
3-to-1. Because of the thin nature of the object, its scattering response is like that of a sound-soft object
in the absence of resonance. This is verified by subtracting the sound-soft background from the exact
elastic calculation, leaving only the resonance response (Figure 2b). Figure 2c is a plot of relative phase
for the elastic and sound-soft calculations. Note that the phase is almost zero except at a resonance, where
it undergoes a rapid phase-change of 180°, typical of this type of resonance.

REFERENCES

1. P. C. Waterman, ‘‘Matrix formulation of electromagnetic scattering,”’ Proc. IEEE, 53, 805 (1965).

2. P.C. Waterman, ‘‘New foundations of acoustic scattering,”’ J. Acoust. Soc. Am., 45, 1417 (1969).

3. M. F. Werby, ‘A coupled high-order T-matrix,”’ J. Acoust. Soc. Am. (to appear) (1985).

4, M. F. Werby and L. H. Green, ‘‘An extended unitary approach-acoustical scattering from elastic
shells immersed in a fluid,”” J. Acoust. Soc. Am., 74, 625 (1983).
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270°

Figure la. Scattering along axis of symmetry of spheroid. Figure 1b. Scattering at 30° relative to the axis
of symmetry of spheroid.

90°

270°

Fipure lec. Scattering at 60° relative to the axis Figure 1d. Broadside scattering from a spheroid.
of symmetry of spheroid.
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PREDICTION OF ACOUSTICAL RESPONSE OF THREE-DIMENSIONAL
CAVITIES USING AN INDIRECT BOUNDARY ELEMENT METHOD

Robert J. Bernhard
Purdue University
West Lafayette, Indiana 47907

Carl R. Kipp
Bell Laboratories
Whippany, New Jersey 07981

Boundary Element Methods are numerical techniques used to
implement boundary integral equations. 1In the past, most
acoustical boundary element implementations have utilized the
Helmholtz Integral Equation or Rayleigh Integral Equation. Such
implementations are classified as Direct Boundary Element Methods
(DBEM) since the primary variables of the problem, pressure and
velocity, are directly solved. Alternatively, as Chen and
Schweikert showed (1], the Huygens principle can be cast in the
form of a boundary integral equation whereby the unknown variable
to be solved is a ficticious boundary source distribution. Such
boundary element methods are classified as Indirect Boundary
Element Methods (IBEM).

It is the objective of this work to develop a technique
which would characterize the acoustics of generalized cavities
with the minimum model possible. Potential applications include
noise source identification, influence coefficient characteriza-
tion and active noise control. All boundary element methods have
two advantages over finite element methods: 1) the models are
smaller, and 2) the assumed variable behavior, inherent in the
method to allow discretization, is harmonic rather than polyno-
mial. Further, IBEM often requires one rather than two numerical
boundary integrals as required by DBEM. Thus, a quadratic,
isoparametric IBEM program was developed for this investigation.
It should be pointed out that the source distribution in this
solution is continuous and gquadratically variable rather than
continuous and constant as in Chen and Schweikert's work. The
program was also formulated to include the additional capability
of interior point sources and impedance boundary conditions.

To test the quadratic, isoparametric IBEM program, several
simple cavity enclosure problems where studied. Results are
shown in Figs. 1-3. As an aside, the program is easily converted
to radiation problems. Several radiation problems were run and
the results compare very favorably to numerical solutions to the
Helmholtz Integral Equation found in the literature.
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The IBEM methods for prediction of acoustical behavior in
cavities was found to work quite well. The advantages of IBEM
over DBEM or FEM are problem dependent and hence the user should
be fully versed in the merits of each. However, we found that
for cavity characterization where few pressures are required,

IBEM seems most appropriate.

The experience with isoparametric elements suggests one
other conclusion. Curved elements introduce substantial
complication to the numerical evaluation of the boundary
integrals. Thus, wherever appropriate, subparametric elements
(i.e. elements with linear geometric interpolation and higher
order variable interpolation) are recommended.

(1] L.H. Chen and D.G. Schweikert, "Sound Radiation from an
Arbitrary Body," J. Acoust. Soc. Am. 35, 1626-32 (1963).
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VORTEX STUDIES RELATING TO BOUNDARY LAYER TURBULENCE AND NOISE
J.L. Adelman
George Washington University
Hampton, Virginia 23665
J.C. Hardin
National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665
Knowledge of vortex dynamics is crucial to the understanding of boundary
layer flow and its noise production, as well as structural fatigue caused by
interactions between turbulent flows and various surfaces. The growing use of
high-performance aircraft, rotorcraft, and other high-speed transportation
systems in recent years has emphasized the need to understand such dynamics,
since laminar flow control, interior noise reduction, and structural fatigue
characteristics may be critical to the success of such vehicles.
Turbulent boundary layers are comprised of vorticity whose characteristics

are defined by the flow direction and surface geometry. As a simple model of a
boundary layer, the present study considers the two-dimensional case of an array
of N rectilinear, like-sign vortices above an infinite flat boundary. The
method of images can be employed with this configuration to reduce the problem
to that of 2N vortices in free space, constrained by 2N symmetry relations.
This system is Hamiltonian and therefore certain invariants of the motion are
known. Further, from the Hamiltonian constant, the equations of motion are
readily derived and may be integrated numerically to determine the vortex
trajectories. This knowledge of the time-dependent vortex motion then allows
the resulting noise radiation to be computed by standard aeroacoustic

techniques.
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The model has been examined extensively for many different initial vortex
configurations, including both trajectory and noise calculations. Several
analytical and numerical characteristics of the interactions are observed. For

example, for N=2, a criterion,

3{1”3{21/”(x2 + Yoz) > T/ Y2 4 vy,
where Y| and Y2 are the initial heights of the two vortices above the plane,
X and Y are their initial separations in the respective coordinate directions,
Yo, is twice the average height of the vortices above the boundary, y is the
ratio of the circulations, and Y is the centroid of vorticity, for oscillating
motion of the vortices can be derived. Such motion is periodic and therefore
produces sound spectra containing only harmonically related discrete frequency
components. Figure la is an example of the vortex trajectories in this case
while Figure 1lb is the resulting noise radiation to a fixed observer. The
apparent modulation of the noise signal is due to the directivity of the noise
source as it moves with respect to the fixed observer. When this criterion is
not satisfied, the vortex motion is non-oscillating in nature and therefore
produces very little noise. Figure 2a is an example of the trajectories in this
type of motion while Figure 2b displays the resulting noise. In this case, the
influence of the image of the vortex closest to the boundary causes it to
convect rapidly away from the other vortex resulting in negligible interaction.
The differences between these two cases are similar to those between laminar and
turbulent boundary layers.

Tﬁe analysis is extended for N>2. In this case, the phenomena of
non-integrability and non-deterministic “chaotic” solutions occur. Examples of

this type of motion are included.
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The results of the study indicate that the separation of vortices is an
important factor in the noise production of boundary layer flow. Thus, the
possibility of control of this separation has implications to the development of
turbulence within the boundary layer and its noise radiation and may offer a
potential for drag reduction. However, it may prove difficult to obtain even a
small degree of control over vortex spacing within a boundary layer. The
possibility of doing this must be the subject of future experimental and
analytical work.
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STATISTICAL SIGNAL ANALYSIS FOR SYSTEMS WITH INTERFERENCED INPUTS

Robin M. Bai and Anna L. Mielnicka-Pate
Iowa State University
Ames, Iowa 50011

Statistical signal analysis approaches have been successfully
used in analyzing acoustical problems which can be modeled as multiple
input-one output systems. These methods require well identified and
measurable input signals. However, in many physical systems it is not
possible to separate all input signals because of the measurement
technique used or because of the superposition of several signals at
the point of measurement. Conventional and conditioned statistical
signal analysis produce significantly distorted results due to input
signal interference. This has been described in the literature by a
number of investigators as well as discussed in detail by Bendat and
Piersol in [1].

The objective of this presentation is to introduce a new
approach, based on statistical signal analysis,which overcomes the
error due to input signal interference. The model analyzed is shown
in Fig. 1. The input signals ul(t) and uz(t) are assumed to be
unknown. The measurable signals xl(t) and xz(t) are interferenced
according to the frequency response functions, le(f) and H21(f).

The goal of the analysis was to evaluate the power output due to
each input, ul(t) and uz(t), for the case where both are applied at
the same time. 1In addition, all frequency response functions le(f),

H21(f), Hl(f) and Hz(f) are calculated.
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The interferenced system is described by a set of five equations
with six unknown functions being ul(f), uz(f), Hl(f), Hz(f), le(f)
and HZl(f)' In order to increase the number of equations, three sets
of measurements are performed. Each time spectral estimates lexl'
szxz' lexz, ley and szy are measured using a Bruel & Kjaer model
2032 Frequency Analyzer (FFT). However, each set of measurements is
performed for a different input level. An IBM XT Personal Computer,
which was interfaced with the FFT, was used to solve the set of equa-
tions.

The software was tested on an electrical two-input, one-output
system. The results were excellent. The research presented in this
paper includes the analysis of the acoustic radiation from a rectan-
gular plate with two force inputs and the sound pressure as an output
signal. The acceleration-pressure frequency response functions cal-
culated on the basis of the conditioned spectral analysis is shown in
Fig. 2, from our new approach in Fig. 3, and the one-input, one-output
technique (when the second input is physically disconnected) in
Fig. 4. The results demonstrate the superiority of the new approach
when compared to the conditioned spectral analysis technique. More
examples involving the sources absolute and relative contributions in

the plate acoustic radiation will be presented and discussed.

[1] Bendat, J. S. and A. G. Piersol, "Engineering Applications of
Correlation and Spectral Analysis," J. Wiley & Sons, Chapter 9.3.
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Fig. 3. The frequency response Hj(f) measured
using the new approach.

FREQ RESF HIL nae v Ll

"% a00nz" ‘LXN T
0 200

l;'{uz n? 1000 . U L0 )

fetu
H (£)

Fig. 4. The frequency response Hj;(f) measured
using oneé-input, one-output model.

32



SOME SEEMINGLY UNRESOLVED QUESTIONS IN NUMERICAL TECHNIQUES IN ACOUSTICS

A. Akay and M. Latcha
Wayne State University
Detroit, Michigan 48202

This is an invitation to the participants and the audience to
discuss some questions of continuing interest in the use of Helmholtz
Integral and the numerical techniques associated with it.

o Techniques for determing the location and number of
interior points to overdetermine the system of equa-
tions that results from the surface Helmholtz in-
tegral for a general geometry.

o Criteria for the modeling of surfaces in boundary
integral method.

o Techniques of solving overdetermined sets of linear
equations.
o Other questions on this topic are welcome.
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