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FOREWORD

The Numerical Techniques in Acoustics Forum of the Noise Control and
Acoustics Technical Division of the American Society of Mechanical Engineers
provides an opportunity for presenting, at the earliest possible time, current
work in the various aspects of numerical techniques in acoustics. The informal
nature of the forum encourages the presentation of results that are not yet
complete enough for formal presentation and the discussion of these results
while work is still current. When the results of the investigations presented
at this forum are confirmed by analysis or experiment, the ASME encourages the
authors to document their research as formal papers for possible publication
in the transactions of the society.

As part of this forum, it is intended to allow the participants time to
raise questions on unresolved problem areas and to generate discussions on
possible approaches and methods of solution.

The papers in this proceedings are arranged according to the planned
order of presentation at the 1985 ASME Winter Annual Meeting in Miami Beach,
Florida.

Dr. Kenneth J. Baumelster
NASA Lewis Research Center
Cleveland, Ohio 44135
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APPLICATIONOF HIGHORDERACOUSTICFINITEELEMENTSTO

TRANSMISSIONLOSSESAND ENCLOSUREPROBLEMS

A. Craggsand G. Stevenson
Universityof Alberta

Edmonton,Alberta,CanadaT6G 2GB

A family of acoustic finite elements has been developedbased on C°
continuity(acousticpressurebeingthe nodalvariable)andthe no-flow condition.
The family includestriangular, quadrilateral and hexahedral isoparametric
elementswith linear, quadraticandcubicvariation in modellinganddistortion.
Of greatest use in problems with irregular boundaries are the cubic
isoparametricelements:the 32 nodehexahedralelement for three-dimensional
systems,andthe twelve nodequadrilateral andten nodetriangularelementsfor
two-dimensional/axisymmetric applications. Theseelementshavebeenapplied
to problems involvingcavity resonances,transmissionloss in silencersandthe
studyof endeffects, usinga FloatingPoint Systems154 attachedarray processor
accessedthroughanAmdahl5860 mainframe.

Accuracyof the cubicelementsis quite good,requiringonlytwo elementsper
standingwavelengthin a rectangularroom cavity resonanceproblemto produce
eigenvalueswith lessthan0.5% error.

Theelementsare presentlybeingusedto studythe endeffects associatedwith
duct terminations within finite enclosures. Themodel utilized in this study is
essentiallya helmholtz resonator whichconsistsof two cavities connectedby a
duct, the overall enclosurebeingsymmetric aboutthe midpointof the duct. By
solvingfor the lowest non-zero eigenpair,the acousticpressurecontourscanbe
plotted (seefigure 1 for example)and the equivalentattachedmasscalculated.
Throughvariations in the geometry of the duct termination andthe locationof
the cavity walls, designcriteria are beingdeveloped.

The transmissionlossesassociatedwith varioussilencersandsidebranchesin
ductsis also beingstudiedusingthe sameelements. The inlet andoutlet ducts
are modelledashavinginfinite lengthsandthe inlet andoutlet wavesare forced
to be plane. Both the transmission lossspectrum for a particular frequency
rangeandthe pressureprofile for a specificfrequencycanbegenerated.As a test
of both the program andthe elements,a comparisonwas donewith experimental
data gatheredby Blaser andChung(1) for an expansionchambersilencer. The
modelof the silencerwasbasedon the useof two quadrilateralcubicelements
per wavelengthover the frequenciesof interest, andthe resultingtransmission
lossspectrumisvery closeto the experimental(seefigure2).

(1) D.A. Blaser andJ.Y. Chung1978ProoeedLngs-ZnternatJona] Conference
on NoJse Control E'ngineerJng..Znter-Noise '78. A transfer function
technique for determining the acoustic characteristics of duct systems
uithflou.
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RELATIVEPRESSURECONTOURSFOR A SHARP-EDGED CIRCULAR DUCT

Figure 1
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ON THE COMPUTATIONOF STRUCTURALVIBRATIONS

INDUCEDBY A LOW-SPEEDTURBULENTFLOW

Y.F. Hwang
David Taylor Naval Ship R&D Center

Bethesda,Maryland20084

This paper discusses a method for numerical evaluation of the vibrations

of a cylindrical shell structure induced by a low-speed external turbulent flow.

The direction of flow is along the axis of revolution of the shell (see Figure I),

and the source of excitation is the pressure fluctuations in the turbulent bound-

ary layer (TBL).

For the investigation of vibration and noise problems it is usually more

desirable to utilize the modal expansion approach. The axisymmetric shell struc-

ture shown in Figure I can be modeled by the assemblage of conical-shell finite-

elements. This modeling allows the eigenfunction _mn(X,8) to be represented

in a rectangular product of a longitudinal modal function fmn(X) and a circular
harmonic function cos m0 (or sin mg), i.e.,

_mn(X,8) = fmn(X) cos m8 (i)

m=0, i, 2, . . .

n=l, 2, 3, . . .

The forcing function from the TBL is assumed to be spatially homogeneous

and temporally stationary. It is commonly expressed in terms of the wavevector-

frequency spectrum @ (k ,k ,_) where k is the streamwise wavenumber and k3P z a I
is the transverse wavenumber. For the calculation of the structural acceptance

with this forcing function, the structural modes must also be expressed in wave-

number space. This can be accomplished by taking a spatial Fourier transform
of the modes. The flnite-element modeling provides the computed eigenfunction

defined at a set of discrete points. If the grid points on the flow surface are

equally spaced, a Fast Fourier Transform (FFT) routine may be used. From the

FFT spectral coefficients, we may express

U 2v_ 2u_

fmn (x) = ao + Z [a_ cos _ x + b_ sin-- x] (2)
v=l L L

where U is one less than one half of the total number of FFT data points and L

is the axial length of the structure.

The effective modal input spectral density _mn(m) from the TBL can be
evaluated as follows,

_mn(_) = A2 _(_) J_n,mn (_) (3)

3



where A is the total area of the flow surface, J2mn,mn(_) is the modal joint-

acceptance (or called self-acceptance), which provides a measure of the degree of

coupling between the turbulent pressure field and the structure, and _(_) is

the frequency spectrum of the TBL pressure fluctuations. The joint-acceptance

can be computed by the following summation, i.e.,

J2mn,mn(_) = [(2_)3/A_(_)]

m I U 2_ m

x [a_ _p(0,_,_) + _ _ (a_+b_) _p(-_-,- ,_)]_=I R (4)

where R is the radius of the cylindrical shell.

Often it is required to evaluate the summation up to the convection wavenumber.

This requires that the number of FFT data points to be approximately mL/_Uc,

where Uc is the convection velocity of the TBL. If the length L of the structure
is large and the frequencies of interest are high, the required data points will

generally exceed the number of finlte-element grid points. This difficulty can
be overcome by obtaining additional data points from spline fitting and interpola-

tion of the eigenfunctions.

If the size of structure is larger than the correlation length of the pressure

field, the cross-modal acceptance J2mn,m,n,(m), can be neglected. In this case,
the structural displacement response spectrum [s(m)] evaluated at 8 = eo can be
calculated as follows:

[s(_)] = [_] IH*mn(_)__mn (_)_IHmn(_) 1[_]T (5)

where [_] is the assembly of eigenvectors, each column represents one eigen-

vector {fmn(X i) cos moo}. Hmn(m) is the modal admittance function which is
defined as

-i

Hmn(_) = {Mmn[(_n__2 ) + i(_ n nmn+_mn 6ran)]} (6)

and where Mmn is the mode mass, _mn is the structural modal loss factor, and

6mn is the modal acoustic loss factor.

The most difficult task in the numerical evaluation of flow induced vibration

is the uncertainty about the forcing functions, i.e., the wavevector-frequency

spectrum. Several theoretical forcing function models have been published in

recent years, all of them require an empirical fit with experimental data. Pub-

lished experimental data are very widely scattered depending on the measuring
facility, surface property, the method of scaling the data, etc. Selection of a

suitable forcing function model and the experimental data thus depend heavily on

experienced engineering judgement and knowledge of how the experimental data are
obtained.
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IMPROVINGTHE ACCURACYOF THE BOUNDARYINTEGRALMETHOD

BASEDON THE HELMHOLTZINTEGRAL

G.H. Koopmannand K. Brad
Universityof Houston- UniversityPark

Houston, Texas 77004

Severalrecentpapersintheliteraturehavebeenbasedonvariousforms

oftheHelmholtzintegraltocomputetheradiationfieldsofvibraing

bodies.The surfaceintegralhastheform
I

[iweG(R'Ro) V(Ro) - _-P(Ro)= 2-Tfl BG(R,Ro)P(Ro)] dS°

wherethesymbolsP,Ro,W,I_,G,R,V,andSO areacousticpressure,source

coordinate,angularfrequency,fluiddensity,Greenfunction,field

coordinate,surfacevelocityandbodysurfacerespectively.A discretized

form ofthesurfaceintegralis

El[,l
whereD andM arethedipoleandmonopolecoefficientsandiandjarethe
fieldandsourcecoordinates.Solutionstotheabovesurfaceintegralare

complicatedwiththesingularityoftheGreenfunctionatR=RO andwith

theuniquenessproblematinterioreigenfrequenciesoftheenclosed

space.The useoftheinteriorintegralcircumventsthethesingularitg
problemsincethefieldpointsarechosenintheinteriorspaceofthe

vibratingbodywherea zeropressureconditionexists.The interior

integralhastheform

_ OG(R,R o ) dS0 = _ iw_G(R'Ro) V(Ro)dS0
)P(Ro

_n

The discretizedversionofthei.ntegralrelatesthesurfacepressuretothe

surfacevelocitythrougha transferfunction,TIjas



[T,]H
Intheaboveform,thefieldpointsarelocatedintheinteriorspace

enclosedbythesurfaceofthebody.Ingeneral,we havefoundthatTijis

notinvariantwithchoiceofinteriorpoints,i.e.,differentsetsofinterior

fieldpointsproducedifferentsetsofsurfacepressures.(Itcanbeshown

thatthesame problemexistsforthesurfaceintegralapplications).Tij

canbemade invariant(ornearlyso)by placinga strongerconditiononthe

pressurefieldintheinteriorspace.Witha finitesetofofinteriorpoints,

therequirementthatthezeropressureconditionexistseverywhereinthe

interiorvolumeisnotmet.To satisfythisrequirement,theinterior

equationcanfirstbeintegratedoveran incrementalinteriorvolumeL_Vk

as

[ _ {_-_'_G(R,Ro)P(Ro)-iWeG(R,R O) V(RO)}dS03

I

dV

which,afterthevolumeintegralintegrationgives

_{ a--_Gk (Ro) P(Ro)-iWeGk(R o) V(Ro)}dSo_n

Breakinguptheinteriorspaceintothesame numberofelementalvolumes
as surfaceelememtsproducesa discretizedformoftheinteriorequation
as

An addedadvantageofsatisfyingthefieldpressureconditioninthe
interiorvolumeisthattheuniquenessproblemassociatedwiththe

interioreigenmodes iseliminatedsincetheinteriorpressureis

necessarilyzeroatallfrequencies.Examplesoftheabovemethodwillbe

presentedfora varietyofradiators.
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A NUMERICAL METHOD OF CALCULATING PROPELLER NOISE

INCLUDING ACOUSTIC NONLINEAR EFFECTS*

K.D. Korkan**

Texas A&M University

College Station, Texas 77843

Using the transonic flow fields(s) generated by the NASPROP-E

computer code _ for an eight blade SR3-series propeller, a theoretical

method is investigated to calculate the total noise values and frequency

content in the acoustic near and far field without using the Ffowcs

Williams - Hawkings equation 2. The flow field is numerically generated

using an implicit three-dimensional Euler equation solver in weak

conservation law form. Numerical damping is required by the

differencing method for stability in three dimensions, and the influence

of the damping on the calculated acoustic values is investigated. Since

the propeller flow field includes the wave systems near the propeller

blade surface, the quadrupole noise source term is accounted for as are
the monopole and dipole noise sources. The acoustic near field is

solved by integrating with respect to time the pressure oscillations

induced at a stationary observer location. The frequency spectrum at

the specified observer location is calculated by representing the

pressure time-history by a Fourier series and calculating the noise

levels for an appropriate number of harmonics of the fundamental

frequency3, _ . Comparisons between the theoretical model and the

experimental results of Dittmar, et.al 5 have been made for the SR-3

propfan, and found to be within 4% for the acoustic near field in the

propeller disc plane 6" The acoustic far field is calculated from the

near field primitive variables as generated by NASPROP-E computer code
using a method involving a perturbation velocity potential as suggested

by Hawkings _ in the calculation of the acoustic pressure time-history

at a specified far field observed location. The methodologies described

are valid for calculating total noise levels and are applicable to any

propeller geometry for which a flow field solution is available.

References
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Propeller Flow Fields Using a Three-Dimensional Euler Analysis," NASA TM
83065, January 1983.

2. Ffowcs Williams, J.E., and Hawkings, D.L., "Sound Generated by
Turbulence and Surfaces in Arbitrary Motion," Philosophical Transactions
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**Associate Professor, Aerospace Engineering Department.
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Department, Texas A&M University, May 1985.

5. Dittmar, J.H. and Jeracki, R.J., "Additional Noise Data on the SR-3
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A GENERAL-APPLICATIONS DIRECT GLOBAL MATRIX ALGORITHM FOR RAPID

SEISMO-ACOUSTIC WAVEFIELD COMPUTATIONS

Henrlk Schmldt
SACLANT R&D Center
La Spezla, Italy

Gerard 3. Tango and Michael F. Werby
National Space Technology Laboratories
NSTL Station, Mississippi 39529-5004

The purpose of this paper is to explain and illustrate a new matrix method for rapid wave propagation
modeling in generalized stratified media, which has recently been applied to numerical simulations in
diverse areas of underwater acoustics, solid earth seismology, and nondestructive ultrasonic scattering.

This report summarizes a portion of recent effortsjointly undertaken at NATO SACLANT and NORDA
Numerical Modeling groups in developing, implementing, and testing a new fast general-applications wave
propagation algorithm, SAFARI, formulated atSACLANT by Schmidt (1982). Historically, most algorithms
for computing acoustic transmission loss, synthetic seismic time series, and ultrasonic beam scattering
have been separate applications-specificprograms, using a (local) Thomson-Haskell propagator matrix to
recursively propagate the complete wavefield solution across all layers. In contrast, the present general-
applications SAFARI program uses a Direct Global Matrix Approach to multilayer Green's function
calculation. A rapid and unconditionally stable solution is readily obtained via simple Gaussian elimina-
tion on the resulting sparsely banded block system, precisely analogous to that arising in the Finite Ele-
ment Method. The resulting gains in accuracy and computational speed allow consideration of much
larger multilayered air/ocean/earth/engineering material media models, for many more source-receiver
configurations than previously possible. The general mukisource capability aUowschoice of number and
location of point or line sources, for monofrequency transfer function, field contour or beam analysis,
and broadband pulse modeling, in plane or cylindrical geometries, for a general n-layered system. The
only effective limit is computer virtual memory, which on a VAX 11/780 + FPS 164, allows as many
as 250 layers/100 receivers/50 sources/2000 Hz bandwidth.

We demonstrate the validity and versatility of the SAFARI-DGM method by reviewing three practical
examples of engineering interest, drawn from ocean acoustics, engineering seismology and ultrasonic scat-
tering. Extension of these results to further infrasonicand atmospheric noise modeling (aswell as nondestruc-
tive evaluation) is immediate.

References

Pekeris, C. L., 1948. "Theory of Propagation of Explosive Sound in Shallow Water." GeoL Soc. Am.
Memoirs, no. 27.

Schmidt, H., 1982. "Excitation and Propagation of Marine Seismic Interface Waves (using a new Fast
Field Program)," in: N. G. Pace (ed.), Acoustics and the Seabed, Institute of Acoustics Proceedings.
Bath UK: University Press.
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SAFARINUMERICALMODEL

KNOWN: UNKNOWN"
SOURCE REFLECTED AND
CONTRIBUTION(S) TRANSMITTED FIELD

,

_)RECEIVER j
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SOURCEj ////" ', \\\_"
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1) SOURCE CONTRIBUTION DECOMPOSED INTO UP AND DOWNGOING PLANE WAVES IN EACH
LOCAL LAYER

2) CORRESPONDING PLANE-WAVE COMPONENTS OF UNKNOWN FIELD FOUND BY MATCHING
BOUNDARY CONDITIONS IN ALL LAYERS ACROSS ALL INTERFACES

3) TOTAL GLOBAL FIELD AT ALL DEPTHS IS CALCULATED VIA SUPERPOSITION OF ALL LOCAL
LAYER WAVEFIELDS
('DEFINING DEPTH-DEPENDENT GREENS FUNCTION" I

4) TOTAL FIELD AT ALL RANGES IS CALCULATED BY NUMERICAL INTEGRATION OF DEPTH
DEPENDENT GREENS FUNCTION OVER HORIZONTAL WAVENUMBER K,
(" DEFIING FREOUENCY-DOMAIN TRANSFER FUNCTION'I

5) SYNTHETIC TIME SERIES FOUND BY NUMERICAL INTEGRATION OVER EACH FREL)UENC_ _o
VIA INVERSE FOURIER TRANSFORM
('DEFINING SYNTHETIC SEISMIC TIME SERIES'I

Figure 1.
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Figure 2. Depth-range contoured transmission loss fields ([ = 10 Hz), for horizontal particle velocity (a), vertical particle
velocity (b), and normal stress (pressure) (c). Range = 0--25 km; depth = 0--5000 m.
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Figure 3. Multifrequency seismic pulse calculations: (a)Highfrequency normal acoustic mode 0c = O, 450 Hz; after Pekeris,
1948) at 2 offset ranges, showing direct water and subsequent mode arrivals. (b) Very-low-frequency seismic interface
(Scholte) wave ([ = O, 12 Hz) for shallow water waveguide over basalt, sDowing strong frequency dispersion over 4 offset
ranges between 2 and 8 km ranges (after Schmidt, 1982).
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Figure 4a. High-frequency reflection loss as a function of frequency and grazing angle for Arctic under-ice propagation.
2 m thick ice sheet (25 solid layers) overlying 4000 m deep sound channel.
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Figure 4b. Very-highfrequency beam reflection and transmission at a watersand-silt bottom interface OCromSchmidt and
Jensen, 1984).
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NUMERICAL TECHNIQUES FOR SCATTERING FROM SUBMERGED OB3ECTS

Michael F. Werby and Gerald 3. Tango
National Space Technology Laboratories
NSTL Station, M1sslsslppl 39529-5004

G.C. Gaunaurd

Naval Surface Weapons Center
Silver Spring, Maryland 20910

Scattering from submerged objects consisting of separable boundaries, such as spheres and infinite
cylinders, is amenable to closed-form solution by normal mode theory. Results from extensive investiga-
tions of these objects has been extremely fruitful in understanding resonance phenomena, background
contributions in the absence of resonances, and geometrical effects that give rise to diffraction phenomena.
However, when one wishes to examine arbitrary shapes, it is necessary to resort either to approximate
theories (valid under limiting assumptions) or numerical methods that adequately treat the problem in
question. It has, in fact, proven very difficult to describe scattering from general objects without resorting
to frequency-limiting approximations. In this Forum, we describe a numerical procedure, namely, the
"extended boundary condition" (EBC) method, together with its applications for treating a variety of
problems. The method was established by Waterman I for electromagnetic scattering in 1965, and was
extended to acoustical scattering by him in 19692. It is sometimes referred to as the "null-field" method
in electromagnetism, the "field equivalent principle," or more generally as the T-matrix method. This
last nomenclature is unfortunate, since any of a variety of methods can lead to a transition matrix relating
the scattered to the incident field, while the EBC or null-field terminology more properly reflects the
fact that one is employing a boundary integral technique.

Some of the salutary features of this approach are that (1) the method yields unique solutions
to the exterior problem; (2) the transition matrix is independent of the incident field; (3) the method
is not frequency-limiting, though it is more efficient for intermediate frequencies; (4) the method can
work for a large variety of shapes.

To represent the final results in terms of matrices, one expands all appropriate physical quantities
in terms of partial wave basis states. This includes expansions for the incident and scattered fields and

the surface quantities (i.e.,surface displacement, surface traction, etc.). The method then utilizes the Huygen-
Poincar_ integral representation for both the exterior and interior solutions, leading to the required matrix
equations. One thus deals with matrix equations, the complexity of which depends on the nature of the
problem. We show, however, that in general a transition matrix T can be obtained relating the incident
field A with the scattered field f having the form T = PQ-1, where f = TA. The structure of Q
can be quite complicated and can itself be composed of other matrix inversions such as arise from layered
objects. We focus on recent improvements in this method appropriate for a variety of physical problems,
and on their implementation. We outline results from scattering simulations for very elongated submerged
objects and resonance scattering from elastic solids and shells. Significant structural improvements such
as the coupled higher-order method 3, and the unitary method 4, which lead to more tractable forms of

the transition matrix enabling one to avoid matrix inversions and other numerical problems. The final
improvement concerns eigenfunction expansions of surface terms, arising from solution of the interior
problem, obtained via a preconditioning technique. This effectively reduces the problem to that of obtain-
ing eigenvalues of a Hermitian operator.
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This formalism is reviewed for scattering from targets that are rigid, sound-soft, acoustic, elastic
solids, elastic shells, and elastic layered objects. We present two sets of the more interesting results. The
first concerns scattering from elongated objects, and the second to thin elastic spheroids.

Figure 1 illustrates scattering from a spheroid with aspect ratio 30 for a KL/2 value of 30. Here
K is the incident wavenumber and L the object length. We show the case of scattering along the axis
of symmetry and 300 and 600 relative to the axis of symmetry and broadside. Elongation effects at 300
and 600 are particularly noticeable where the reflected wave occurs at the same angle as the incident
wave relative to the symmetry axis, similar to the plane scattering case. At 0° and 900 the flux is allowed
to proceed mainly in the forward direction, with broadside scattering creating the greatest disturbance.

Figure 2a shows resonance phenomena from backscattering from a very thin aluminum spheroid,
plotted against KL/2. Scattering here occurs along the axis of symmetry for a spheroid of aspect ratio
3-to-1. Because of the thin nature of the object, its scattering response is like that of a sound-soft object
in the absence of resonance. This is verified by subtracting the sound-soft background from the exact
elastic calculation, leaving only the resonance response (Figure 2b). Figure 2c is a plot of relative phase
for the elastic and sound-soft calculations. Note that the phase is almost zero except at a resonance, where
it undergoes a rapid phase-change of 180°, typical of this type of resonance.

REFERENCES

1. P.C. Waterman, "Matrix formulation of electromagnetic scattering," Proc. IEEE, 53, 805 (1965).
2. P.C. Waterman, "New foundations of acoustic scattering," J. Acoust. Soc. Am., 45, 1417 (1969).
3. M.F. Werby, "A coupled high-order T-matrix," J. Acoust. Soc. Am. (to appear) (1985).
4. M.F. Werby and L. H. Green, "An extended unitary approach-acoustical scattering from elastic

shells immersed in a fluid," J. Acoust. Soc. Am., 74, 625 (1983).
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270" 

Figure la. Scattering along axis of symmetry of spheroid. 

Figure Ic. Scattering at 60' relative to the axir 
of symmetry of spheroid. 

Figure lb .  Scattering at 30' relative to the axis 
of symmetry of spheroid. 

270" 

Figure Id. Broadside scattering from a sf heroid 
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Figure 2a. Form function plot of elastic spheroid end-on incidence.

Figure 2b. Resonance response of elastic spheroid end.on incidence.

Figure 2c. Relative phase between elastic thin shell and sound-soft object.
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PREDICTION OF ACOUSTICAL RESPONSE OF THREE-DIMENSIONAL

CAVITIES USING AN INDIRECT BOUNDARY ELEMENT METHOD

Robert J. Bernhard

Purdue University
West Lafayette, Indiana 47907

Carl R. Kipp
Bell Laboratories

Whlppany, New Jersey 07981

Boundary Element Methods are numerical techniques used to
implement boundary integral equations. In the past, most
acoustical boundary element implementations have utilized the
Helmholtz Integral Equation or Rayleigh Integral Equation. Such
implementations are classified as Direct Boundary Element Methods
(DBEM) since the primary variables of the problem, pressure and
velocity, are directly solved. Alternatively, as Chen and
Schweikert showed [i], the Huygens principle can be cast in the
form of a boundary integral equation whereby the unknown variable
to be solved is a ficticious boundary source distribution. Such
boundary element methods are classified as Indirect Boundary
Element Methods (IBEM).

It is the objective of this work to develop a technique
which would characterize the acoustics of generalized cavities
with the minimum model possible. Potential applications include
noise source identification, influence coefficient characteriza-
tion and active noise control. All boundary element methods have
two advantages over finite element methods: i) the models are
smaller, and 2) the assumed variable behavior, inherent in the
method to allow discretization, is harmonic rather than polyno-
mial. Further, IBEM often requires one rather than two numerical
boundary integrals as required by DBEM. Thus, a quadratic,
isoparametric IBEM program was developed for this investigation.
It should be pointed out that the source distribution in this
solution is continuous and quadratically variable rather than
continuous and constant as in Chen and Schweikert's work. The

program was also formulated to include the additional capability
of interior point sources and impedance boundary conditions.

To test the quadratic, isoparametric IBEM program, several
simple cavity enclosure problems where studied. Results are
shown in Figs, 1-3. As an aside, the program is easily converted
to radiation problems. Several radiation problems were run and
the results compare very favorably to numerical solutions to the
Helmholtz Integral Equation found in the literature.
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The IBEM methods for prediction of acoustical behavior in
cavities was found to work quite well. The advantages of IBEM
over DBEM or FEM are problem dependent and hence the user should
be fully versed in the merits of each. However, we found that
for cavity characterization where few pressures are required,
IBEM seems most appropriate.

The experience with isoparametric elements suggests one
other conclusion. Curved elements introduce substantial

complication to the numerical evaluation of the boundary
integrals. Thus, wherever appropriate, subparametric elements
(i.e. elements with linear geometric in%erpolation and higher
order variable interpolation) are recommended.

[i] L.H. Chen and D.G. Schweikert, "Sound Radiation from an
Arbitrary Body," J. Acoust. Soc. Am. 35, 1626-32 (1963).
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VORTEX STUDIES RELATING TO BOUNDARY LAYER TURBULENCE AND NOISE

J.L. Adelman

George Washington University
Hampton, Virginia 23665

J.C. Hardin

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Knowledge of vortex dynamics is crucial to the understanding of boundary

layer flow and its noise production, as well as structural fatigue caused by

interactions between turbulent flows and various surfaces. The growing use of

high-performance aircraft, rotorcraft, and other high-speed transportation

systems in recent years has emphasized the need to understand such dynamics,

since laminar flow control, interior noise reduction, and structural fatigue

characteristics may be critical to the success of such vehicles.

Turbulent boundary layers are comprised of vorticity whose characteristics

are defined by the flow direction and surface geometry. As a simple model of a

boundary layer, the present study considers the two-dimensional case of an array

of N rectilinear, like-sign vortices above an infinite flat boundary. The

method of images can be employed with this configuration to reduce the problem

to that of 2N vortices in free space, constrained by 2N symmetry relations.

This system is Hamiltonian and therefore certain invariants of the motion are

known. Further, from the Hamiltonian constant, the equations of motion are

readily derived and may be integrated numerically to determine the vortex

trajectories. This knowledge of the time-dependent vortex motion then allows

the resulting noise radiation to be computed by standard aeroacoustic

techniques.
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The model has been examined extensively for many different initial vortex

configurations, including both trajectory and noise calculations. Several

analytical and numerical characteristics of the interactions are observed. For

example, for N=2, a criterion,

yITY21/T(X 2 + y 2) > _T+I/T(X2 + y2)O

where YI and Y2 are the initial heights of the two vortices above the plane,

X and Y are their initial separations in the respective coordinate directions,

Yo is twice the average height of the vortices above the boundary, T is the

ratio of the circulations, and _ is the centroid of vorticity, for oscillating

motion of the vortices can be derived. Such motion is periodic and therefore

produces sound spectra containing only harmonically related discrete frequency

components. Figure la is an example of the vortex trajectories in this case

while Figure ib is the resulting noise radiation to a fixed observer. The

apparent modulation of the noise signal is due to the directivity of the noise

source as it moves with respect to the fixed observer. When this criterion is

not satisfied, the vortex motion is non-oscillating in nature and therefore

produces very little noise. Figure 2a is an example of the trajectories in this

type of motion while Figure 2b displays the resulting noise. In this case, the

influence of the image of the vortex closest to the boundary causes it to

convect rapidly away from the other vortex resulting in negligible interaction.

The differences between these two cases are similar to those between laminar and

turbulent boundary layers.

The analysis is extended for N>2. In this case, the phenomena of

non-integrability and non-deterministic "chaotic" solutions occur. Examples of

this type of motion are included.
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The results of the study indicate that the separation of vortices is an

important factor in the noise production of boundary layer flow. Thus, the

possibility of control of this separation has implications to the development of

turbulence within the boundary layer and its noise radiation and may offer a

potential for drag reduction. However, it may prove difficult to obtain even a

small degree of control over vortex spacing within a boundary layer. The

possibility of doing this must be the subject of future experimental and

analytical work.
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Figure la: Vortex Trajectories in Oscillating Case
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STATISTICAL SIGNAL ANALYSIS FOR SYSTEMS WITH INTERFERENCED INPUTS

Robin M. Bal and Anna L. Mlelnlcka-Pate

Iowa State University
Ames, Iowa 50011

Statistical signal analysis approaches have been successfully

used in analyzing acoustical problems which can be modeled as multiple

input-one output systems. These methods require well identified and

measurable input signals. However, in many physical systems it is not

possible to separate all input signals because of the measurement

technique used or because of the superposition of several signals at

the point of measurement. Conventional and conditioned statistical

signal analysis produce significantly distorted results due to input

signal interference. This has been described in the literature by a

number of investigators as well as discussed in detail by Bendat and

Piersol in [i].

The objective of this presentation is to introduce a new

approach, based on statistical signal analysis,which overcomes the

error due to input signal interference. The model analyzed is shown

in Fig. i. The input signals ul(t) and u2(t) are assumed to be

unknown. The measurable signals xl(t) and x2(t) are interferenced

according to the frequency response functions, Hl2(f) and H21(f).

The goal of the analysis was to evaluate the power output due to

each input, ul(t) and u2(t), for the case where both are applied at

the same time. In addition, all frequency response functions Hl2(f),

H21(f), Hl(f) and H2(f) are calculated.
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The interferenced system is described by a set of five equations

with six unknown functions being ul(f), u2(f), Hl(f), H2(f), Hl2(f)

and H21(f). In order to increase the number of equations, three sets

of measurements are performed. Each time spectral estimates Sxlxl,

Sx2x2 , Sxlx2 , SxlY and Sx2Y are measured using a B_el & Kjaer model

2032 Frequency Analyzer (FFT). However, each set of measurements is

performed for a different input level. An IBM XT Personal Computer,

which was interfaced with the FFT, was used to solve the set of equa-

tions.

The software was tested on an electrical two-input, one-output

system. The results were excellent. The research presented in this

paper includes the analysis of the acoustic radiation from a rectan-

gular plate with two force inputs and the sound pressure as an output

signal. The acceleration-pressure frequency response functions cal-

culated on the basis of the conditioned spectral analysis is shown in

Fig. 2, from our new approach in Fig. 3, and the one-input, one-output

technique (when the second input is physically disconnected) in

Fig. 4. The results demonstrate the superiority of the new approach

when compared to the conditioned spectral analysis technique. More

examples involving the sources absolute and relative contributions in

the plate acoustic radiation will be presented and discussed.

[i] Bendat, J. S. and A. G. Piersol, "Engineering Applications of
Correlation and Spectral Analysis," J. Wiley & Sons, Chapter 9.3.
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x_ = ul(t) I Hl(f)_ N(t)

Hz1(f) ( _ y(t)

2(t)__H_2(f) IH2(f)l---x (t I

Fig. i. Interferenced two-input, one-output model
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Fig. 2. The frequency response Hl(f ) measured using
conditioned spectral analysis.
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SOME SEEMINGLY UNRESOLVED QUESTIONS IN NUMERICAL TECHNIQUES IN ACOUSTICS

A. Akay and M. Latcha

Wayne State University
Detroit, Michigan 48202

This is an invitation to the participants and the audience to

discuss some questions of continuing interest in the use of Helmholtz

Integral and the numerical techniques associated with it.

o Techniques for determing the location and number of

interior points to overdetermine the system of equa-
tions that results from the surface Helmholtz in-

tegral for a general geometry.

o Criteria for the modeling of surfaces in boundary
integral method.

o Techniques of solving overdetermined sets of linear

equations.

o Other questions on this topic are welcome.
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